Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor)
2005-01-01
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.
Antenna feed system for receiving circular polarization and transmitting linear polarization
NASA Technical Reports Server (NTRS)
Seidel, B. L.; Bathker, D. A. (Inventor)
1979-01-01
An invention is described which provides for receiving a circularly polarized signal from an antenna feed connected to orthogonally spaced antenna elements. It also provides for transmitting a linearly polarized signal through the same feed without switches, and without suffering a 3 dB polarization mismatch loss, using an arrangement of hybrid junctions. The arrangement is comprised of two dividing hybrid junctions, each connected to a different pair of antenna elements and a summing hybrid junction. In one version, a receiver is connected to the summing hybrid junction directly. A diplexer is used to connect a transmitter to only one pair of antenna elements. In another version, designated left and right circularly polarized (LCP and RCP) transmitters are connected to the summing hybrid junction by separate diplexers, and separate LCP and RCP sensitive receivers are connected to the diplexers in order to transmit linearly polarized signals using all four antenna elements while receiving circularly polarized signals as before. An orthomode junction and horn antenna may replace the two dividing hybrid junctions and antenna feed.
Thin conformal antenna array for microwave power conversions
NASA Technical Reports Server (NTRS)
Dickinson, R. M. (Inventor)
1978-01-01
A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.
Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks
Dung, Le The; Hieu, Tran Dinh; Choi, Seong-Gon; Kim, Byung-Seo; An, Beongku
2017-01-01
This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs). Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA) and uniform circular array (UCA) antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs. PMID:28346377
Extended-Range Passive RFID and Sensor Tags
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Kennedy, Timothy F.; Lin, Gregory Y.; Barton, Richard
2012-01-01
Extended-range passive radio-frequency identification (RFID) tags and related sensor tags are undergoing development. A tag of this type incorporates a retroreflective antenna array, so that it reflects significantly more signal power back toward an interrogating radio transceiver than does a comparable passive RFID tag of prior design, which does not incorporate a retroreflective antenna array. Therefore, for a given amount of power radiated by the transmitter in the interrogating transceiver, a tag of this type can be interrogated at a distance greater than that of the comparable passive RFID or sensor tag of prior design. The retroreflective antenna array is, more specifically, a Van Atta array, named after its inventor and first published in a patent issued in 1959. In its simplest form, a Van Atta array comprises two antenna elements connected by a transmission line so that the signal received by each antenna element is reradiated by the other antenna element (see Figure 1). The phase relationships among the received and reradiated signals are such as to produce constructive interference of the reradiated signals; that is, to concentrate the reradiated signal power in a direction back toward the source. Hence, an RFID tag equipped with a Van Atta antenna array automatically tracks the interrogating transceiver. The effective gain of a Van Atta array is the same as that of a traditional phased antenna array having the same number of antenna elements. Additional pairs of antenna elements connected by equal-length transmission lines can be incorporated into a Van Atta array to increase its directionality. Like some RFID tags here-to-fore commercially available, an RFID or sensor tag of the present developmental type includes one-port surface-acoustic-wave (SAW) devices. In simplified terms, the mode of operation of a basic one-port SAW device as used heretofore in an RFID device is the following: An interrogating radio signal is converted, at an input end, from an electrical signal to an acoustic wave that propagates along a surface and encounters multiple reflectors suitably positioned along the surface. Upon returning to the input end, the reflected acoustic wave is re-converted to an electrical signal, which, in turn, is reradiated from an antenna. The distances between the reflectors in the SAW device and the corresponding times between reflections encode the identifying or sensory information onto the reradiated signal. The fundamental problem in the present development is how to combine a Van Atta antenna array (which is inherently a multiple-port device) and one or more one-port SAW device(s) into a single, compact, passive unit that can function as a retroreflective RFID tag. The solution is to use one or more hybrid, half-power 90 couplers. A basic unit of this type, shown in Figure 2, includes a half-power 90 hybrid coupler; two identical SAW devices (SAW1 and SAW2) connected to ports 3 and 4 of the coupler, respectively; and antenna elements connected to ports 1 and 2 of the coupler. Necessarily omitting details for the sake of brevity, it must suffice to report that the phase relationships among the coupler inputs and outputs are such as to couple the incident signal from the antenna elements to the SAW devices and couple the reflected signals from the SAW devices back to the antenna elements in the phase relationships required for a Van Atta array. Hence, the reradiated signal is automatically directed back toward the interrogating transceiver and contains identifying and/or sensory information encoded in time intervals between reflections.
A demonstration of real-time connected element interferometry for spacecraft navigation
NASA Technical Reports Server (NTRS)
Edwards, C.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.
1992-01-01
Connected element interferometry is a technique of observing a celestial radio source at two spatially separated antennas, and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. A connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, CA tracking complex is developed. Fiber optic links are used to transmit the data at 112 Mbit/sec to a common site for processing. A real-time correlator to process these data in real-time is implemented. The architecture of the system is described, and observational data is presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.
The goldstone real-time connected element interferometer
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.
1992-01-01
Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.
An adaptive array antenna for mobile satellite communications
NASA Technical Reports Server (NTRS)
Milne, Robert
1988-01-01
The adaptive array is linearly polarized and consists essentially of a driven lambda/4 monopole surrounded by an array of parasitic elements all mounted on a ground plane of finite size. The parasitic elements are all connected to ground via pin diodes. By applying suitable bias voltages, the desired parasitic elements can be activated and made highly reflective. The directivity and pointing of the antenna beam can be controlled in both the azimuth and elevation planes using high speed digital switching techniques. The antenna RF losses are neglible and the maximum gain is close to the theoretical value determined by the effective aperture size. The antenna is compact, has a low profile, is inexpensive to manufacture and can handle high transmitter power.
Loui, Hung; Strassner, II, Bernd H.
2018-03-20
The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).
Directional control of infrared antenna-coupled tunnel diodes.
Slovick, Brian A; Bean, Jeffrey A; Krenz, Peter M; Boreman, Glenn D
2010-09-27
Directional control of received infrared radiation is demonstrated with a phased-array antenna connected by a coplanar strip transmission line to a metal-oxide-metal (MOM) tunnel diode. We implement a MOM diode to ensure that the measured response originates from the interference of infrared antenna currents at specific locations in the array. The reception angle of the antenna is altered by shifting the diode position along the transmission line connecting the antenna elements. By fabricating the devices on a quarter wave dielectric layer above a ground plane, narrow beam widths of 35° FWHM in power and reception angles of ± 50° are achieved with minimal side lobe contributions. Measured radiation patterns at 10.6 μm are substantiated by electromagnetic simulations as well as an analytic interference model.
Kerley, P.L.
1959-01-01
A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.
Microstrip Yagi array antenna for mobile satellite vehicle application
NASA Technical Reports Server (NTRS)
Huang, John; Densmore, Arthur C.
1991-01-01
A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.
Microwave switching power divider. [antenna feeds
NASA Technical Reports Server (NTRS)
Stockton, R. J.; Johnson, R. W. (Inventor)
1981-01-01
A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.
NASA Technical Reports Server (NTRS)
Dietrich, F. J.; Koloboff, G. J.; Martel, R. J.; Johnson, C. C. (Inventor)
1974-01-01
A spin stabilized satellite has an electronically despun antenna array comprising a multiplicity of peripheral antenna elements. A high gain energy beam is established by connecting a suitable fraction or array of the elements in phase. The beam is steered or caused to scan by switching elements in sequence into one end of the array as elements at the other end of the array are switched out. The switching transients normally associated with such steering are avoided by an amplitude control system. Instead of abruptly switching from one element to the next, a fixed value of power is gradually transferred from the element at the trailing edge of the array to the element next to the leading edge.
System implications of large radiometric array antennas
NASA Technical Reports Server (NTRS)
Levis, C. A.; Lin, H. C.
1976-01-01
Current radiometric earth and atmospheric sensing systems in the centimeter wavelength range generally employ a directive antenna connected through a single terminal pair to a Dicke receiver. It is shown that this approach does not lend itself to systems with greatly increased spatial resolution. Signal to noise considerations relating to antenna efficiency force the introduction of active elements at the subarray level; thus, if Dicke switching is to be used, it must be distributed throughout the system. Some possible approaches are suggested. The introduction of active elements at the subarray level is found to ease the design constraints on time delay elements, necessary for bandwidth, and on multiple beam generation, required in order to achieve sufficient integration time with high resolution.
Study of the characteristics of reconfigurable plasma antenna array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alias, Nur Salihah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi
This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radiusmore » of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.« less
Dynamic and thermal response finite element models of multi-body space structural configurations
NASA Technical Reports Server (NTRS)
Edighoffer, Harold H.
1987-01-01
Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.
Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma
Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.
1988-01-01
A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.
L-C Measurement Acquisition Method for Aerospace Systems
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.
2003-01-01
This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.
MSAT-X phased array antenna adaptions to airborne applications
NASA Technical Reports Server (NTRS)
Sparks, C.; Chung, H. H.; Peng, S. Y.
1988-01-01
The Mobile Satellite Experiment (MSAT-X) phased array antenna is being modified to meet future requirements. The proposed system consists of two high gain antennas mounted on each side of a fuselage, and a low gain antenna mounted on top of the fuselage. Each antenna is an electronically steered phased array based on the design of the MSAT-X antenna. A beamforming network is connected to the array elements via coaxial cables. It is essential that the proposed antenna system be able to provide an adequate communication link over the required space coverage, which is 360 degrees in azimuth and from 20 degrees below the horizon to the zenith in elevation. Alternative design concepts are suggested. Both open loop and closed loop backup capabilities are discussed. Typical antenna performance data are also included.
Switch Using Radio Frequency Identification
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor)
2015-01-01
Disclosed is an apparatus for use as a switch. In one embodiment, the switch comprises at least one RFID tag, each RFID tag comprising an antenna element and an RFID integrated circuit, at least one source element, and at least one lever arm. Each lever arm is connected to one of the RFID tags, and each lever arm is capable of two positions. One of the positions places the lever arm and the RFID tag connected thereto into alignment with the source element. Other embodiments are also described.
Two-port active coupled microstrip antenna
NASA Astrophysics Data System (ADS)
Avitabile, G. F.; Maci, S.; Biffi Gentili, G.; Roselli, L.; Manes, G. F.
1992-12-01
A multilayer structure, based on a patch antenna coupled through a nonresonant slot to a pair of feeding microstrips is a versatile module which can be used as a radiating and resonating element in a number of different configurations. Direct connection to a low cost transistor in a feedback loop results in a very simple active antenna, as reported in the Letter. Different termination conditions at the four microstrip ports give rise to a number of alternative configurations for active generation/detection and multipatch arrays.
Rectifying antenna and method of manufacture
NASA Technical Reports Server (NTRS)
Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)
2006-01-01
In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.
Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.; Hodges, Richard E.; Zawardzki, Mark S.
2012-01-01
It is known that the impedance at the center of a patch antenna element is a short circuit, implying that a wire or post can be connected from the patch to the groundplane at this point without impacting radiation performance. In principle, this central post can be used to support the patch element, thus eliminating the need for dielectric. In spaceborne applications, this approach is problematic because a patch element supported by a single, thin post is highly susceptible to acoustic loads during launch. The technology reported here uses a large-diameter center post as its supporting structure. The supporting structure allows for the fabrication of a sufficiently rigid antenna element that can survive launch loads. The post may be either hollow or solid, depending on fabrication approach and/or mass constraints. The patch antenna element and support post are envisioned as being fabricated (milled) from a single piece of aluminum or other metal. Alternately, the patch plate and support column can be fabricated separately and then joined using fasteners, adhesive, or welding. Casting and electroforming are also viable techniques for manufacturing the metal patch part(s). The patch structure is then either bonded or fastened to the supporting groundplane. Arrays of patch elements can be fabricated by attaching several structures to a common groundplane/support structure.
High Performance Circularly Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Bondyopadhyay, Probir K. (Inventor)
1997-01-01
A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.
El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M
2016-01-13
We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.
A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications
NASA Astrophysics Data System (ADS)
Zhang, Feng; Liu, Xiaojun; Fang, Guangyou
2014-03-01
A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.
Multiple Antenna Implementation System (MAntIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.
1993-01-01
The MAntIS code was developed as an aid to the design of radio frequency (RF) antennas for fusion applications. The code solves for the electromagnetic fields in three dimensions near the antenna structure with a realistic plasma load. Fourier analysis is used in the two dimensions that are tangential to the plasma surface and backwall. The third dimension is handled analytically in a vacuum region with a general impedance match at the plasma-vacuum interface. The impedance tensor is calculated for a slab plasma using the ORION-lD code with all three electric field components included and warm plasma corrections. The codemore » permits the modeling of complicated antenna structures by superposing currents that flow on the surfaces of rectangular parallelepipeds. Specified current elements have feeders that continuously connect the current flowing from the ends of the strap to the feeders. The elements may have an arbitrary orientation with respect to the static magnetic field. Currents are permitted to vary along the length of the current strap and feeders. Parameters that describe this current variation can be adjusted to approximately satisfy boundary conditions on the current elements. The methods used in MAntIS and results for a primary loop antenna design are presented.« less
Analysis of the stress-deformed condition of the disassembly parabolic antenna
NASA Astrophysics Data System (ADS)
Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.
2018-01-01
Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.
Schenberg microwave cabling seismic isolation.
NASA Astrophysics Data System (ADS)
Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.
2018-02-01
SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.
Ultra-wideband horn antenna with abrupt radiator
McEwan, Thomas E.
1998-01-01
An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
Ultra-wideband horn antenna with abrupt radiator
McEwan, T.E.
1998-05-19
An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
NASA Technical Reports Server (NTRS)
Neto, Andrea; Siegel, Peter H.
2001-01-01
At submillimeter wavelengths typical gap discontinuities in microstrip, CPW lines or at antenna terminals, which might contain diodes or active elements, cannot be viewed as simple quasi statically evaluated lumped elements. Planar Schottky diodes at 2.5 THz, for example, have a footprint that is comparable to a wavelength. Thus, apart from modelling the diodes themselves, the connection with their exciting elements (antennas or microstrip) gives rise to parasitics. Full wave or strictly numeric approaches can be used to account for these parasitics but at the expense of generality of the solution and the CPU time of the calculation. In this paper an equivalent network is derived that accurately accounts for large gap discontinuities (with respect to a wavelength) without suffering from the limitations of available numeric techniques.
Electrically Small Microstrip Quarter-Wave Monopole Antennas
NASA Technical Reports Server (NTRS)
Young, W. Robert
2004-01-01
Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.
Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project
NASA Technical Reports Server (NTRS)
Zakrajsek, Robert J.
2000-01-01
The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate approximately five satellites on the orbital arc. Spread spectrum techniques will be employed to keep the power impinging on the adjacent satellites below their noise floor so that no interference results. This antenna is power limited. If the antenna elements (currently 254) are increased by a factor of 4 (1024) or 16 (4096), the gain will increase and the beamwidth will decrease in proportion. For the latter two antenna sizes, the power must be "backed off" to prevent interference with the neighboring satellites. The receiving antenna, which is approximately 90-cm high, 60-cm wide, and 3.5-cm thick, is composed of 1500 phased-array elements. The system phased-array controller can control both a 1500-element receiving antenna and a 500-element transmitting antenna. For ground testing, this controller will allow manual beam pointing and polarization alignment. For normal operation, the system can be connected to the receiving antenna and the navigation system for real-time autonomous track operation. This will be accomplished by first pointing both antennas at the satellite using information from the aircraft data bus. Then, the system phased-array controller will electronically adjust the antenna pointing of the receiving antenna to find the peak signal. After the peak signal has been found, the beam of the transmitting antenna will be pointed to the same steering angles as the receiving antenna. For initial ground testing without an aircraft, the ARINC 429 data bus (ARINC Inc., Annapolis, Maryland) will be simulated by a gyro system purchased for the follow-on to the Monolithic Microwave Integrated Circuit (MMIC) Arrays for Satellite Communication on the Move (MASCOM) Project. MASCOM utilized the Advanced Communications Technology Satellite (ACTS) with a pair of Ka-band experimental phased-array antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru
To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Astrophysics Data System (ADS)
Foldes, P.
1984-11-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Technical Reports Server (NTRS)
Foldes, P.
1984-01-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
Link Correlation Based Transmit Sector Antenna Selection for Alamouti Coded OFDM
NASA Astrophysics Data System (ADS)
Ahn, Chang-Jun
In MIMO systems, the deployment of a multiple antenna technique can enhance the system performance. However, since the cost of RF transmitters is much higher than that of antennas, there is growing interest in techniques that use a larger number of antennas than the number of RF transmitters. These methods rely on selecting the optimal transmitter antennas and connecting them to the respective. In this case, feedback information (FBI) is required to select the optimal transmitter antenna elements. Since FBI is control overhead, the rate of the feedback is limited. This motivates the study of limited feedback techniques where only partial or quantized information from the receiver is conveyed back to the transmitter. However, in MIMO/OFDM systems, it is difficult to develop an effective FBI quantization method for choosing the space-time, space-frequency, or space-time-frequency processing due to the numerous subchannels. Moreover, MIMO/OFDM systems require antenna separation of 5 ∼ 10 wavelengths to keep the correlation coefficient below 0.7 to achieve a diversity gain. In this case, the base station requires a large space to set up multiple antennas. To reduce these problems, in this paper, we propose the link correlation based transmit sector antenna selection for Alamouti coded OFDM without FBI.
All-digital radar architecture
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.
2014-10-01
All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.
Neah Bay Antenna Connectivity Tests and Analysis: November 19, 2001
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David; Edgein, Ken; Pansera, Vincent; Bell, Terry; Shell, Dan; Miller, Cecil
2002-01-01
The purpose of these tests was to determine the connectivity range and associated data rates for connection between the flat panel antennas on the Federal Building and the dipole and L-3 tracking antennas on the Neah Bay.
Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Converse, Mark C.; Chang, John T.; Duoss, Eric B.
A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.
Time-lapse imaging of human heart motion with switched array UWB radar.
Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik
2014-10-01
Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.
Comparative Study of Antenna Elements for TDRSS Enhanced Multiple Access System
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Lambert, Kevin; Acosta, Roberto; Nessel, James
2006-01-01
We compare three antennas, which are candidates for the TDRSS-Continuation enhanced MA array antenna elements. Measured and simulated data show very good agreement for all antenna elements. All of the antennas meet the specifications with the exception of the SBA isolation. However, improvements can likely be made with further design efforts.
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Eight-Element Antenna Array for LTE 3.4-3.8 GHz Mobile Handset Applications
NASA Astrophysics Data System (ADS)
Yang, Lingsheng; Ji, Ming; Cheng, Biyu; Ni, Bo
2017-05-01
In this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured -10 dB impedance bandwidth is 3.2-3.9 GHz which can cover the LTE bands 42 and 43 (3.4-3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.
Antenna structure with distributed strip
Rodenbeck, Christopher T.
2008-10-21
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.
Antenna structure with distributed strip
Rodenbeck, Christopher T [Albuquerque, NM
2008-03-18
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.
Microstrip Antenna Arrays on Multilayer LCP Substrates
NASA Technical Reports Server (NTRS)
Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin
2007-01-01
A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.
Evolutionary Design of a Phased Array Antenna Element
NASA Technical Reports Server (NTRS)
Globus, Al; Linden, Derek; Lohn, Jason
2006-01-01
We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.
Detail of dipole antenna element (right) and 94' lowband reflector ...
Detail of dipole antenna element (right) and 94' low-band reflector screen poles (left), note the guy wires from the antenna element, view facing north northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Adding a Second Ku-Band Antenna to the International Space Station
NASA Technical Reports Server (NTRS)
DuSold, Chuck; Thacker, Corey; Kwatra, Sundeep
2011-01-01
The International Space Station, as originally developed, used the Ku-Band Tracking and Data Relay Satellite System communications link to transmit non-critical data to the ground. Since becoming operational, the use for the link evolved to include additional services that, although also not critical, were deemed to be necessary for the crew. The external Ku-Band Antennas were designed for transport to the ISS in the shuttle cargo bay and thus are not suitable for manifesting on any current cargo vehicle. The original intent was to stow two spare antennas on orbit in a protective container until such time as they were needed to replace a failing unit which is a long and complicated process due to the complexity of the removal and replacement procedure. The Boeing Company proposed manifesting one of those spare antennas in an operable configuration eliminating the need for an Extravehicular Activity (EVA) to correct the first failure and as such minimizing the time to hours rather than weeks required to restore the Ku-Band communications link after failures. After the first failure, an EVA would be scheduled to replace the failed antenna with the stowed spare antenna. Because the hot spare is activated internal to the ISS, the replacement of the failed unit can be done when convenient rather than in haste. This paper describes the methodology used to locate a suitable site to add a new antenna mast to the ISS as well the process followed to fabricate, deliver and install the new interface hardware. Because this was not planned when the ISS was originally designed, structural, power, data and Intermediate Frequency signal connections had to be found for use. With the movement of the P6 solar array element from the initial location in the center zenith location of the ISS to the end of the port side of the truss and concurrent relocation of one string of S-Band communications assets, there were candidate power, data and structural connections available on the Z1 Truss. The engineering team evaluated these residual interfaces for use and designed cabling and structural elements for the candidate interfaces. The antenna was recently installed on ULF-4 and has completed a preliminary checkout. Included in this check out were evaluation of the power level received from the TDRS and evaluation of the gimbal position feedback for consideration in the static bias pointing matrix. This process demonstrates the ability to modify and upgrade manned space vehicles as either need or technology requires.
Wireless thin film transistor based on micro magnetic induction coupling antenna.
Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun
2015-12-22
A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).
Wireless thin film transistor based on micro magnetic induction coupling antenna
Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun
2015-01-01
A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929
Wireless thin film transistor based on micro magnetic induction coupling antenna
NASA Astrophysics Data System (ADS)
Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun
2015-12-01
A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).
8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER ...
8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER S-111 FACING NORTHEAST. BUILDING 1 AND ANTENNA TOWER S-110 IN THE BACKGROUND. - U.S. Naval Base, Pearl Harbor, Lualualei Radio Transmitter, Edison & Tower Drives, Pearl City, Honolulu County, HI
Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands
NASA Astrophysics Data System (ADS)
Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.
2008-08-01
This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.
Analysis of a Waveguide-Fed Metasurface Antenna
NASA Astrophysics Data System (ADS)
Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.
2017-11-01
The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.
Wang, Ziyang; Zhao, Luyu; Cai, Yuanming; Zheng, Shufeng; Yin, Yingzeng
2018-02-16
In this paper, a method to reduce the inevitable mutual coupling between antennas in an extremely closely spaced two-element MIMO antenna array is proposed. A suspended meta-surface composed periodic square split ring resonators (SRRs) is placed above the antenna array for decoupling. The meta-surface is equivalent to a negative permeability medium, along which wave propagation is rejected. By properly designing the rejection frequency band of the SRR unit, the mutual coupling between the antenna elements in the MIMO antenna system can be significantly reduced. Two prototypes of microstrip antenna arrays at 5.8 GHz band with and without the metasurface have been fabricated and measured. The matching bandwidths of antennas with reflection coefficient smaller than -15 dB for the arrays without and with the metasurface are 360 MHz and 900 MHz respectively. Using the meta-surface, the isolation between elements is increased from around 8 dB to more than 27 dB within the band of interest. Meanwhile, the total efficiency and peak gain of each element, the envelope correlation coefficient (ECC) between the two elements are also improved by considerable amounts. All the results demonstrate that the proposed method is very efficient for enhancing the performance of MIMO antenna arrays.
Transformation from a Single Antenna to a Series Array Using Push/Pull Origami
Shah, Syed Imran Hussain
2017-01-01
We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5–2.65 GHz and 2.48–2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications. PMID:28846603
Transformation from a Single Antenna to a Series Array Using Push/Pull Origami.
Shah, Syed Imran Hussain; Lim, Sungjoon
2017-08-26
We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5-2.65 GHz and 2.48-2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications.
NASA Astrophysics Data System (ADS)
Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu
2009-04-01
Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.
Analysis of resonance response performance of C-band antenna using parasitic element.
Zaman, M R; Islam, M T; Misran, N; Mandeep, J S
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4-8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency.
Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications
NASA Astrophysics Data System (ADS)
Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.
2017-11-01
In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.
UWB delay and multiply receiver
Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.
2013-09-10
An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.
Performance of a four-element Ka-band high-temperature superconducting microstrip antenna
NASA Technical Reports Server (NTRS)
Richard, M. A.; Bhasin, K. B.; Gilbert, C.; Metzler, S.; Koepf, G.; Claspy, P. C.
1992-01-01
Superconducting four-element microstrip array antennas operating at 30 GHz have been designed and fabricated on a lanthanum aluminate (LaAlO3) substrates. The experimental performance of these thin film Y-Ba-Cu-O superconducting antennas is compared with that of identical antenna patterned with evaporated gold. Efficiency measurements of these antennas show an improvement of 2 dB at 70 K and as much as 3.5 dB at 40 K in the superconducting antenna over the gold antenna.
The interaction of the near-field plasma with antennas used in magnetic fusion research
NASA Astrophysics Data System (ADS)
Caughman, John
2015-09-01
Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.
Design and development of a unit element microstrip antenna for aircraft collision avoidance system
NASA Astrophysics Data System (ADS)
De, Debajit; Sahu, Prasanna Kumar
2017-10-01
Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.
Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua
2016-08-22
Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.
Current Status of the Development of a Transportable and Compact VLBI System by NICT and GSI
NASA Technical Reports Server (NTRS)
Ishii, Atsutoshi; Ichikawa, Ryuichi; Takiguchi, Hiroshi; Takefuji, Kazuhiro; Ujihara, Hideki; Koyama, Yasuhiro; Kondo, Tetsuro; Kurihara, Shinobu; Miura, Yuji; Matsuzaka, Shigeru;
2010-01-01
MARBLE (Multiple Antenna Radio-interferometer for Baseline Length Evaluation) is under development by NICT and GSI. The main part of MARBLE is a transportable VLBI system with a compact antenna. The aim of this system is to provide precise baseline length over about 10 km for calibrating baselines. The calibration baselines are used to check and validate surveying instruments such as GPS receiver and EDM (Electro-optical Distance Meter). It is necessary to examine the calibration baselines regularly to keep the quality of the validation. The VLBI technique can examine and evaluate the calibration baselines. On the other hand, the following roles are expected of a compact VLBI antenna in the VLBI2010 project. In order to achieve the challenging measurement precision of VLBI2010, it is well known that it is necessary to deal with the problem of thermal and gravitational deformation of the antenna. One promising approach may be connected-element interferometry between a compact antenna and a VLBI2010 antenna. By measuring repeatedly the baseline between the small stable antenna and the VLBI2010 antenna, the deformation of the primary antenna can be measured and the thermal and gravitational models of the primary antenna will be able to be constructed. We made two prototypes of a transportable and compact VLBI system from 2007 to 2009. We performed VLBI experiments using theses prototypes and got a baseline length between the two prototypes. The formal error of the measured baseline length was 2.7 mm. We expect that the baseline length error will be reduced by using a high-speed A/D sampler.
A finite element-boundary integral method for cavities in a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.
'Invisible' antenna takes up less space
NASA Astrophysics Data System (ADS)
Shelley, M.; Bond, K.
1986-06-01
A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.
Phased-Array Antenna With Optoelectronic Control Circuits
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.
1995-01-01
Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.
Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element
Islam, M. T.; Misran, N.; Mandeep, J. S.
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643
Detail view looking eastnortheast at elements of antenna array ...
Detail view looking east-northeast at elements of antenna array - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Antenna Array, At the end of Steam Road, Moscow, Somerset County, ME
Detail of base of monopole antenna element with graduated pole, ...
Detail of base of monopole antenna element with graduated pole, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua
2016-01-01
Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469
Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna
NASA Technical Reports Server (NTRS)
duToit, Cornelis
2014-01-01
A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2013-01-01
Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.
Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters
NASA Technical Reports Server (NTRS)
1991-01-01
The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Structurally Integrated Antenna Concepts for HALE UAVs
NASA Technical Reports Server (NTRS)
Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.
2006-01-01
This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.
A Low Loss Microstrip Antenna for Radiometric Applications
NASA Technical Reports Server (NTRS)
Wahid, Parveen
2000-01-01
The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
Dual-Band Microstrip Antenna With Reactive Loading
NASA Technical Reports Server (NTRS)
Davidson, Shayla E.
1988-01-01
Effective but bulky coaxial stub replaced. Short-circuited microstrip transmission line serves as reactive loading element for microstrip antenna. Constructed integrally with stripline radiating element, shorted line preserves low microstrip profile and enables tuning of antenna for two-band operation.
Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications.
Bellanca, Gaetano; Calò, Giovanna; Kaplan, Ali Emre; Bassi, Paolo; Petruzzelli, Vincenzo
2017-07-10
In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.
The tapered slot antenna - A new integrated element for millimeter-wave applications
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.
1989-01-01
Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.
Detail of monopole antenna element (right) an d25' highband reflector ...
Detail of monopole antenna element (right) an d25' high-band reflector screen poles (left), view facing northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Adaptive antenna arrays for satellite communications: Design and testing
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Swarner, W. G.; Walton, E. K.
1985-01-01
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.
Characterization of tapered slot antenna feeds and feed arrays
NASA Technical Reports Server (NTRS)
Kim, Young-Sik; Yngvesson, K. Sigfrid
1990-01-01
A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
Detail of 25' highband reflector screen poles with monopole antenna ...
Detail of 25' high-band reflector screen poles with monopole antenna elements behind, note the metal sleeve bases of the reflector screen poles and the guy wire anchors from the dipole antenna elements (left foreground), view facing north northwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
Stauffer, P R; Rossetto, F; Leoncini, M; Gentilli, G B
1998-05-01
The finite difference time domain (FDTD) method has been used to calculate electromagnetic radiation patterns from 915-MHz dual concentric conductor (DCC) microwave antennas that are constructed from thin and flexible printed circuit board (PCB) materials. Radiated field distributions are calculated in homogeneous lossy muscle tissue loads located under variable thickness coupling bolus layers. This effort extends the results of previous investigations to consider more realistic applicator configurations with smaller 2-cm-square apertures and different coupling bolus materials and thicknesses, as well as various spacings of multiple-element arrays. Results are given for practical applicator designs with microstrip feedlines etched on the backside of the PCB antenna array instead of previously tested bulky coaxial-cable feedline connections to each radiating aperture. The results demonstrate that for an optimum coupling bolus thickness of 2.5-5 mm, the thin, flexible, and lightweight DCC antennas produce effective heating to the periphery of each aperture to a depth of approximately 1 cm, and may be combined into arrays for uniform heating of large area superficial tissue regions with the 50% power deposition contour conforming closely to the outer perimeter of the array.
A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications
NASA Astrophysics Data System (ADS)
Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.
2017-10-01
In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.
Antenna with distributed strip and integrated electronic components
Rodenbeck, Christopher T [Albuquerque, NM; Payne, Jason A [Albuquerque, NM; Ottesen, Cory W [Albuquerque, NM
2008-08-05
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.
Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.
Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun
2017-09-22
Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.
Reconfigurable antenna pattern verification
NASA Technical Reports Server (NTRS)
Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)
2013-01-01
A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.
DOT National Transportation Integrated Search
1979-09-01
Volume II of Theoretical Studies of Microstrip Antennas deals with the analysis and synthesis of several types of novel multi-resonant elements with emphasis on dual-frequency operation of rectangular microstrip patch antennas with or without externa...
Impulse Testing of Corporate-Fed Patch Array Antennas
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.
2011-01-01
This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies
Hansson, Björn; Thors, Björn; Törnevik, Christer
2011-12-01
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-01
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360* n ( n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-05
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
NASA Astrophysics Data System (ADS)
Chen, Yen-Sheng; Zhou, Huang-Cheng
2017-05-01
This paper presents a multiple-input-multiple-output (MIMO) antenna that has four-unit elements enabled by an isolation technique for long-term evolution (LTE) small-cell base stations. While earlier studies on MIMO base-station antennas cope with either a lower LTE band (698-960 MHz) or an upper LTE band (1710-2690 MHz), the proposed antenna meets the full LTE specification, yet it uses the maximum number of unit elements to increase channel capacity. The antenna configuration is optimized for good impedance matching and high radiation efficiency. In particular, as the spacing between unit elements is so small that severe mutual coupling occurs, we propose a simple structure with extremely low costs to enhance the isolation. By using suspended solid wires interconnecting the position having strong coupled current of two adjacent elements, an isolation enhancement of 37 dB is achieved. Although solid wires inherently aim at direct-current applications, this work successfully employs such a low-cost technique to microwave antenna development. Experimental results have validated the design guidelines and the proposed configuration, showing that antenna performances including impedance matching, isolation, radiation features, signal correlation, and channel capacity gain are highly desired for LTE small-cell base stations.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Novel metamaterial based antennas for flexible wireless systems
NASA Astrophysics Data System (ADS)
Khaleel, Haider Raad
Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.
Optical phased arrays with evanescently-coupled antennas
Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman
2015-03-24
An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).
Synthesis of a large communications aperture using small antennas
NASA Technical Reports Server (NTRS)
Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.
1994-01-01
In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.
Compact Miniaturized Antenna for 210 MHz RFID
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Chun, Kue
2008-01-01
This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
Mutual Elements and Substrate Effect Analysis on Patch Antenna Arrays
NASA Astrophysics Data System (ADS)
Wallace, Matthew J.
There have been many different technology advancements with the invention of solid state electronics, leading to the digital era which has changed the way users employ electronic circuits. Antennas are no different; however, they are still analog devices. With the advancements in technology, antennas are being fabricated on much higher frequencies and with greater bandwidths, all while trying to keep size and weight to a minimum. Centimeter and millimeter wave technologies have evolved for many different radio frequency (RF) applications. Microstrip patch antennas have been developed, as wire and tubular antenna elements are difficult to fabricate with the tolerances required at micro-wavelengths. Microstrip patch antennas are continuously being improved. These types of antennas are great for embedded or conformal applications where size and weight are of the essence and the ease of manufacturing elements to tight tolerances is important. One of the greatest benefits of patch antennas is the ease in creating an array. Many simulation programs have been created to assist in the design of patch antennas and arrays. However, there are still discrepancies between simulated results and actual measurements. This research will focus on these differences. It begins with a literature research of patch antenna design, followed by an assessment of simulation programs used for patch antenna design. The resulting antenna design was realized by the fabrication of an antenna from the Genesys software. Laboratory measurements of the real-world antenna are then compared to the theoretical antenna characteristics. This process is used to illustrate deficiencies in the software models and likely improvements that need to be made.
Study of array plasma antenna parameters
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Kumar, Prince
2018-04-01
This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.
Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.
Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong
2014-03-26
We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A
2014-11-01
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
NASA Astrophysics Data System (ADS)
Kumari, Preeti; Tripathi, Pankaj; Sahu, B.; Singh, S. P.; Kumar, Devendra
2018-05-01
A simulation and fabrication study of a coaxial probe-fed four-element composite triangular dielectric resonator antenna (TDRA) using low loss Li2O-1.94MgO-0.02Al2O3-P2O5 (LMAP) ceramic and Teflon. LMAP ceramic was carried out and the ceramic was synthesized using a solid-state sintering route. The phase, microstructure and microwave dielectric properties of LMAP were investigated using x-ray diffraction pattern, scanning electron microscopy and a network analyzer. A coaxial probe-fed four-element composite TDRA was designed and fabricated using LMAP as one section of each composite element of the proposed antenna. Each triangular element of the proposed dielectric resonator antenna (DRA) consists of two sections of different dielectric constant materials. The inner triangular section touching the coaxial probe at one of its corners is made of the LMAP ceramic (ɛ r = 6.2) while othe uter section is made of Teflon (ɛ r = 2.1). Four triangular DRA elements are excited bya centrally located 50-Ω coaxial probe. The parametric study of the proposed antenna was performed through simulation using Ansys High Frequency Structure Simulator software by varying the dimensions and dielectric constants of both sections of each triangular element of the TDRA to optimize the results for obtaining a wideband antenna. The simulated resonant frequency of 9.30 GHz with a percentage bandwidth of 61.65% for the proposed antenna is obtained within its operating frequency range of 7.82-14.8 GHz. Monopole-like radiation patterns with low cross-polarization levels and a peak gain of 5.63 dB are obtained for the proposed antenna through simulation. The antenna prototype having optimized dimensions has also been fabricated. The experimental resonant frequency of 9.10 GHz with a percentage bandwidth of 66.09% is obtained within its operating frequency range of 7.70-15.30 GHz. It is found that the simulation results for the proposed antenna are in close agreement with the measured data. The proposed antenna can potentially be used in broadcast base stations, radar and satellite communications.
Aerial tracking of radio-marked white-tailed tropicbirds over the Caribbean Sea
Fuller, M.R.; Obrecht, H.H.; Pennycuick, C.J.; Schaffner, F.C.; Amlaner, Charles J.
1989-01-01
We radio-marked nesting white-tailed tropicbirds at Culebra National Wildlife Refuge, Puerto Rico, and tracked them from a Cessna 182 during flights over the open sea. Locations of the birds were determined using standard aerial telemetry techniques for side-facing Yagi antennas. We used strut-mounted, 4-element Yagi antennas connected to a switchbox and scanning receiver. By recording bearing and distance from at least 1 of 3 aeronautical navigation beacons, the position of the aircraft and the bird could be estimated with an error of about 2 km. On several occasions we plotted the general heading of a bird and then relocated and tracked the same bird on the following day. Our method of aerial tracking and navigation was useful for tracking birds over the sea to at least 116 km from the breeding colony
Amplitude-steered, pseudophased antenna array
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Martel, R. J.; Dietrich, F. J.; Koloboff, G. J.
1975-01-01
Beam may be smoothly scanned around ring array without instantaneous phase transitions while maintaining constant radiated power by gradually transferring power from receding element to element next to leading edge of driven segment, and by accomplishing antenna element switching during intervals when no power is being applied to elements being switched.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... include provisions for the location of the measurement antenna, antenna height, signal measurement method, antenna orientation and polarization, and data recording. Therefore, satellite and broadcast industries... strength meters, measuring antenna, and connecting cable; (c) For each spot at the measuring site, all...
47 CFR 15.111 - Antenna power conduction limits for receivers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna power conduction limits for receivers... DEVICES Unintentional Radiators § 15.111 Antenna power conduction limits for receivers. (a) In addition to... CB receivers that provide terminals for the connection of an external receiving antenna may be tested...
47 CFR 15.111 - Antenna power conduction limits for receivers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna power conduction limits for receivers... DEVICES Unintentional Radiators § 15.111 Antenna power conduction limits for receivers. (a) In addition to... CB receivers that provide terminals for the connection of an external receiving antenna may be tested...
47 CFR 15.111 - Antenna power conduction limits for receivers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna power conduction limits for receivers... DEVICES Unintentional Radiators § 15.111 Antenna power conduction limits for receivers. (a) In addition to... CB receivers that provide terminals for the connection of an external receiving antenna may be tested...
47 CFR 15.111 - Antenna power conduction limits for receivers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna power conduction limits for receivers... DEVICES Unintentional Radiators § 15.111 Antenna power conduction limits for receivers. (a) In addition to... CB receivers that provide terminals for the connection of an external receiving antenna may be tested...
47 CFR 15.111 - Antenna power conduction limits for receivers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna power conduction limits for receivers... DEVICES Unintentional Radiators § 15.111 Antenna power conduction limits for receivers. (a) In addition to... CB receivers that provide terminals for the connection of an external receiving antenna may be tested...
Detail of the base of dipole antenna element with graduated ...
Detail of the base of dipole antenna element with graduated pole, note the arms supporting the vertical wires away from the mast and the metal mesh covering the concrete base, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Spiral microstrip antenna with resistance
NASA Technical Reports Server (NTRS)
Shively, David G. (Inventor)
1994-01-01
The present invention relates to microstrip antennas, and more particularly to wide bandwidth spiral antennas with resistive loading. A spiral microstrip antenna having resistor element embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement.
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-11-06
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376
An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2007-01-01
This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.
Multi-band Monopole Antennas Loaded with Metamaterial TL
NASA Astrophysics Data System (ADS)
Song, Zhi-jie; Liang, Jian-gang
2015-05-01
A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.
Analysis of a Near Field MIMO Wireless Channel Using 5.6 GHz Dipole Antennas
NASA Astrophysics Data System (ADS)
Maricar, Mohamed Ismaeel; Gradoni, Gabriele; Greedy, Steve; Ivrlac, Michel T.; Nossek, Josef A.; Phang, Sendy; Creagh, Stephen C.; Tanner, Gregor; Thomas, David W. P.
2016-05-01
Understanding the impact of interference upon the performance of a multiple input multiple output (MIMO) based device is of paramount importance in ensuring a design is both resilient and robust. In this work the effect of element-element interference in the creation of multiple channels of a wireless link approaching the near-field regime is studied. The elements of the 2-antenna transmit- and receive-arrays are chosen to be identical folded dipole antennas operating at 5.6 GHz. We find that two equally strong channels can be created even if the antennas interact at sub-wavelength distances, thus confirming previous theoretical predictions.
Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)
NASA Technical Reports Server (NTRS)
Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.
1986-01-01
As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
A Wire Antenna Designed for Space Wave Radiation Over the Earth Using a Genetic Algorithm
1997-12-01
are extended beyond that of connecting the wires in series. 1.6 Assumptions 1.6.1 Smooth Earth. It was not prudent for the research to account for an...and circuit grounds are connected in some manner. 1.7 Scope The research proposes a system antenna design, taking into account the link budget. The...1.10 Goals The purpose of the research is to conduct a thorough design approach taking into account all aspects of antenna design, to include the
A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns
NASA Astrophysics Data System (ADS)
Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-07-01
In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.
NASA Astrophysics Data System (ADS)
Mourtzios, Ch.; Siakavara, K.
2015-08-01
A method to design hybrid antenna configurations with very low profile, suitable for smart and Multiple Input-Multiple Output antenna systems is proposed. The antennas are incorporated with novel Electromagnetic Band Gap (EBG) surfaces with non-similar cells. These non-uniform EBG surfaces have been properly designed to cause focusing, of the incident waves, thus enhancing the characteristics of operation of antenna elements positioned in close proximity to the surface and also to increase the isolation between them. Theoretical analysis of the reflection mechanism of this type of lattices as well as the prediction of the resulting performance of the antenna is presented. All these considerations are validated with implementation and simulation of the hybrid structures inside the Universal Mobile Telecommunications System frequency band. The results show that increment of the gain and isolation between the antenna elements can be obtained. Moreover, results for the correlation coefficient between the elements, for Gaussian distribution of the incoming waves have been received and the tolerance of the antennas to the variation of the polarization characteristics of the incoming waves has been investigated. A Genetic Algorithm has been constructed and applied to find the proper geometry of the hybrid antennas in order the correlation coefficient to be minimized and get almost independent from the polarization of incident waves.
Design of one-kilometer-long antenna sticks and support structure for a geosynchronous satellite
NASA Astrophysics Data System (ADS)
Freeman, Janet Elizabeth
This study develops a preliminary structural design for three one-kilometer-long antenna sticks and an antenna support structure for a geosynchronous earth-imaging satellite. On each of the antenna sticks is mounted a linear array of over 16,000 antenna elements. The antenna sticks are parallel to each other, and are spaced 1 km apart so that they form the corners of an imaginary triangular tube. This tube is spinning about its long axis. Antenna performance requires that the position of each antenna element be known to an accuracy of 0.5 cm, and that the spacecraft's spin axis be parallel to the earth's spin axis within one degree. Assuming that the position of each joint on each antenna stick is known, the antenna sticks are designed as beams under a uniformly distributed acceleration (due to spacecraft spin) to meet the displacement accuracy requirements for the antenna elements. Both a thin-walled round tube and a three-longeron double-laced truss are considered for the antenna stick structure. A spacecraft spinrate is chosen by considering the effects of environmental torques on the precession of a simplified spacecraft. A preliminary truss-like support structure configuration is chosen, and analyzed in quasi-static equilibrium with control thrusters firing to estimate the axial loads in the structural members. The compressive loads found by this analysis are used to design the support structure members to be buckling-critical three-longeron double-laced truss columns. Some tension-only members consisting of Kevlar cord are included in the design to eliminate the need for bulkier members. The lateral vibration modes of the individual structural members are found by conventional analysis -- the fundamental frequencies are as low as 0.0066 Hz. Finite element dynamic analyses of the structure in free vibration confirm that simplified models of the structure and members can be used to determine the structural modes and natural frequencies for design purposes.
Improvement of antenna decoupling in radar systems
NASA Astrophysics Data System (ADS)
Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban
2015-02-01
In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.
Measured Radiation Patterns of the Boeing 91-Element ICAPA Antenna With Comparison to Calculations
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Burke, Thomas (Technical Monitor)
2003-01-01
This report presents measured antenna patterns of the Boeing 91-Element Integrated Circuit Active Phased Array (ICAPA) Antenna at 19.85 GHz. These patterns were taken in support of various communication experiments that were performed using the antenna as a testbed. The goal here is to establish a foundation of the performance of the antenna for the experiments. An independent variable used in the communication experiments was the scan angle of the antenna. Therefore, the results presented here are patterns as a function of scan angle, at the stated frequency. Only a limited number of scan angles could be measured. Therefore, a computer program was written to simulate the pattern performance of the antenna at any scan angle. This program can be used to facilitate further study of the antenna. The computed patterns from this program are compared to the measured patterns as a means of validating the model.
The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Belotserkovskii, G. B.
This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Kempel, L. C.; Sliva, R.; Wang, H. T. G.; Woo, A. G.
1994-01-01
The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique.
Control of small phased-array antennas
NASA Technical Reports Server (NTRS)
Doland, G. D.
1978-01-01
Series of reports, patent descriptions, calculator programs, and other literature describes antenna control and steering apparatus for seven-element phased array. Though series contains information specific to particular system, it illustrates methods that can be applied to antennas with greater or fewer numbers of elements. Included are programs for calculating beam parameters and design functions and information to interfacing digital controller to beam-steering apparatus.
ERIC Educational Resources Information Center
Ford, Tracy
2012-01-01
Many institutions implement a distributed antenna system (DAS) as part of a holistic approach to providing better wireless coverage and capacity on campus. A DAS provides wireless service within a particular area or structure via a network of separate antenna nodes that are connected to a common source through fiber or coaxial cable. Because DAS…
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)
2006-01-01
A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.
Glass antenna for RF-ion source operation
Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.
2000-01-01
An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.
Spiral Microstrip Antenna with Resistance
NASA Technical Reports Server (NTRS)
Shively, David G. (Inventor)
1998-01-01
A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.
Design of inside cut von koch fractal UWB MIMO antenna
NASA Astrophysics Data System (ADS)
Tharani, V.; Shanmuga Priya, N.; Rajesh, A.
2017-11-01
An Inside Cut Hexagonal Von Koch fractal MIMO antenna is designed for UWB applications and its characteristics behaviour are studied. Self-comparative and space filling properties of Koch fractal structure are utilized in the antenna design which leads to the desired miniaturization and wideband characteristics. The hexagonal shaped Von Koch Fractal antenna with Defected Ground Structure (DGS) is designed on FR4 substrate with a compact size of 30mm x 20mm x 1.6mm. The antenna achieves a maximum of -44dB and -51dB at 7.1GHz for 1-element and 2-element case respectively.
NASA Technical Reports Server (NTRS)
Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.
1985-01-01
Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.
A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes
NASA Astrophysics Data System (ADS)
Labadie, Nathan Richard
Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.
Distributing flight dynamics products via the World Wide Web
NASA Technical Reports Server (NTRS)
Woodard, Mark; Matusow, David
1996-01-01
The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Optimum concentric circular array antenna with high gain and side lobe reduction at 5.8 GHz
NASA Astrophysics Data System (ADS)
Zaid, Mohammed; Rafiqul Islam, Md; Habaebi, Mohamed H.; Zahirul Alam, AHM; Abdullah, Khaizuran
2017-11-01
The significance of high gain directional antennas stems from the need to cope up with the everyday progressing wireless communication systems. Due to low gain of the widely used microstrip antenna, combining multiple antennas in proper geometry increases the gain with good directive property. Over other array forms, this paper uses concentric circular array configuration for its compact structure and inherent symmetry in azimuth. This proposed array is composed of 9 elements on FR-4 substrate, which is designed for WLAN applications at 5.8GHz. Antenna Magus software is used for synthesis, while CST software is used for optimization. The proposed array is designed with optimum inter-element spacing and number of elements achieving a high directional gain of 15.7 dB compared to 14.2 dB of available literature, with a high reduction in side lobe level of -17.6 dB.
Reconfigurable antenna using plasma reflector
NASA Astrophysics Data System (ADS)
Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan
2018-02-01
This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.
Mustafa, Farahiyah; Hashim, Abdul Manaf
2014-01-01
We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T
2012-01-21
Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Methods and apparatus for vertical coupling from dielectric waveguides
Yaacobi, Ami; Cordova, Brad Gilbert
2014-06-17
A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.
Layout and cabling considerations for a large communications antenna array
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.
1993-01-01
Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
CryoPAF4: a cryogenic phased array feed design
NASA Astrophysics Data System (ADS)
Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas
2016-07-01
Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.
NASA Astrophysics Data System (ADS)
Sláma, Libor; Dobeš, Josef; Boštík, Tomáš; Vejražka, František
2018-03-01
An analysis of the L-probe fed patch antenna with an extraordinary parasitic patch is described. The element of the antenna is fed by the L-probe partially implemented in PCB. An excellent impedance matching is obtained (< ‑26 dB in the design frequency band 4.4–5 GHz). The radiation characteristics are also very good (gain > 10 dBi). For the numerical analyses, the Full Wave—CST Microwave Studio software was used in both frequency and time domains, and a very good agreement between the Time Domain Solver (TDS) and Frequency Domain Solver (FDS) was obtained. Real antenna samples have been created and measured as well as eight-element antenna arrays designed by the Dolph-Chebyshev method.
Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications
NASA Astrophysics Data System (ADS)
Yang, Lingsheng; Cheng, Biyu; Jia, Hongting
2018-04-01
In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.
A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.
Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu
2018-04-17
A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.
Thermal modeling and analysis of structurally complex spacecraft using the IDEAS system
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1983-01-01
Large antenna satellites of unprecedented sizes are needed for a number of applications. Antenna diameters on the order of 50 meters and upward are required. Such antennas involve the use of large expanses of lattice structures with hundreds or thousands of individual connecting members. In connection with the design of such structures, the consideration of thermal effects represents a crucial factor. Software capabilities have emerged which are coded to include major first order thermal effects and to purposely ignore, in the interest of computational efficiency, the secondary effects. The Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) is one such system. It has been developed for an employment in connection with thermal-structural interaction analyses related to the design of large structurally complex classes of future spacecraft. An IDEAS overview is presented. Attention is given to a typical antenna analysis using IDEAS, the thermal and loading analyses of a tetrahedral truss spacecraft, and ecliptic and polar orbit analyses.
Microstrip Antennas with Broadband Integrated Phase Shifting
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)
2001-01-01
The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.
NASA Astrophysics Data System (ADS)
Gibson, S. W.
This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.
NASA Astrophysics Data System (ADS)
Hu, Fei; Song, Yanping; Huang, Zhirong; Liu, Wenlan; Li, Wan
2018-05-01
The tetrahedral elements that make up the large deployable reflector (LDR) are a kind of metamorphic element, which belongs to the multi-loop coupling mechanism. Firstly, the method of combining topology with screw theory is put forward. The parametric model and the constrained matrix are established to analyze the malleability of 3RR-3RRR tetrahedral element. Secondly, the kinematics expression of each motion pair is deduced by the relationship between the velocity and the motion spinor. Finally, the configuration of the metamorphic element is optimized to make the parabolic antenna fully folded, so that the antenna can meet the maximum folding ratio. The results show that the 3RR-3RRR element is a single-degree of freedom (DOF) mechanism. What's more, three new configurations 3RS-3RRR, 3SR-3RRR and 3UU-3RRR are obtained on the basis of optimization. In particular, it proves to be that the LDR which consists of the 3RS-3RRR metamorphic element can achieve the maximum folding ratio. This paper provides a theoretical basis for the computer-aided design of the truss antennas, which has an excellent applicability in the field of aerospace and other multi-loop coupling mechanism.
Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz
2014-01-01
A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
Microstrip antenna arrays with parasitic elements
NASA Technical Reports Server (NTRS)
Lee, Kai-Fong
1996-01-01
This research was concerned with using parasitic elements to improve the bandwidth, gain and axial ratio characteristics of microstrip antennas and arrays. Significant improvements in these characteristics were obtained using stacked and coplanar parasitic elements. Details of the results are described in a total of 16 journal and 17 conference papers. These are listed in Section four of this report.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Tapered slot antenna design for vehicular GPR applications
NASA Astrophysics Data System (ADS)
Bıçak, Emrullah; Yeǧin, Korkut; Nazlı, Hakki; Daǧ, Mahmut
2014-05-01
Vehicular applications of UWB GPR demand multiple GPR sensors operating in a harsh environment. One of the key elements of in the sensor is its UWB antenna which has minimal inter-element coupling, low group delay, high directivity and less prone to environmental conditions. Tapered slot antennas (TSA's) provide good impedance match, but they need to be modified for above specifications. Parasitic slot loaded TSA with balanced feed is proposed and a multi-channel antenna array structure is formed. Structural parameters are numerically analyzed and a prototype is built. Measurements show good performance for UWB GPR applications.
Design considerations for MST radar antennas
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
The design of antenna systems for radar capable of probing the mesosphere are discussed. The spatial wavelength dependency of turbulent advected ionization are cut off rapidly below wavelengths of about 3 m, imply frequencies of 100 MHz and below. The frequency and aperture requirements point to an array antenna of some kind as the most economical solution. Such an array could consist of dipoles or more directive elements; these elements can be either active or passive.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement.
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-07-31
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications. PMID:28811432
Dielectric Covered Planar Antennas
NASA Technical Reports Server (NTRS)
Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)
2014-01-01
An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications
NASA Technical Reports Server (NTRS)
Strickland, P. C.
1995-01-01
CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.
Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won
2014-06-01
Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.
... attached to your abdomen. Each patch contains an antenna with wires that connect to a recorder. Some ... your waist. The camera sends images to an antenna on your abdomen, which feeds the data to ...
2010-12-01
papers relating to antenna arrays and elements, millimeter wave antennas, simulation and measurement of antennas, integrated antennas, and antenna...Hansen 282 v Artificial Impedance Surface Antenna Design and Simulation D.J. Gregoire and J.S. Colburn 288 uCAST - A New Generation UTD...radiating mode to be self-resonant in the electrically small region. 260 hs (cm) Predicted L0 (nH) Simulated L0 (nH) R1 (Ω) Q1 -- -- -- 7.5
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2
NASA Astrophysics Data System (ADS)
Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke
2016-10-01
Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications
NASA Astrophysics Data System (ADS)
Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.
2016-12-01
A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.
Phased Antenna Array for Global Navigation Satellite System Signals
NASA Technical Reports Server (NTRS)
Turbiner, Dmitry (Inventor)
2015-01-01
Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.
A doubly curved reflector X-band antenna with integrated IFF array
NASA Astrophysics Data System (ADS)
Alia, F.; Barbati, S.
Primary radar antennas and Identification Friend or Foe (IFF) antennas must rotate with the same speed and synchronism, so that the target echo and IFF transponder mark will appear to the operator at the same time and at the same angular direction. A doubly-curved reflector antenna with a six-element microstrip array integrated in the reflector surface is presented to meet this requirement. The main antenna operates at X-band for low angle search radar, while the secondary antenna operates at L-band for IFF functions. The new configuration minimizes masking of the X-band radiated energy as a result of the IFF L-band elements. In fact, the only effect of the microstrip array on the X-band radiation pattern is the presence of several sidelobes in the + or - 90 deg angular region. The proposed new solution is compared to three other L-band/X-band integrated antenna configurations, and is found to be more advantageous with respect to masking, mechanical aspects, and production costs.
Robustness of plasmon phased array nanoantennas to disorder
Arango, Felipe Bernal; Thijssen, Rutger; Brenny, Benjamin; Coenen, Toon; Koenderink, A. Femius
2015-01-01
We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to varations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments. PMID:26038871
S-band omnidirectional antenna for the SERT-C satellite
NASA Technical Reports Server (NTRS)
Bassett, H. L.; Cofer, J. W., Jr.; Sheppard, R. R.; Sinclair, M. J.
1975-01-01
The program to design an S-band omnidirectional antenna system for the SERT-C spacecraft is discussed. The program involved the tasks of antenna analyses by computer techniques, scale model radiation pattern measurements of a number of antenna systems, full-scale RF measurements, and the recommended design, including detailed drawings. A number of antenna elements were considered: the cavity-backed spiral, quadrifilar helix, and crossed-dipoles were chosen for in-depth studies. The final design consisted of a two-element array of cavity-backed spirals mounted on opposite sides of spacecraft and fed in-phase through a hybrid junction. This antenna system meets the coverage requirement of having a gain of at least minus 10 dBi over 50 percent of a 4 pi steradian sphere with the solar panels in operation. This coverage level is increased if the ground station has the capability to change polarization.
Delivering both sum and difference beam distributions to a planar monopulse antenna array
Strassner, II, Bernd H.
2015-12-22
A planar monopulse radar apparatus includes a planar distribution matrix coupled to a planar antenna array having a linear configuration of antenna elements. The planar distribution matrix is responsive to first and second pluralities of weights applied thereto for providing both sum and difference beam distributions across the antenna array.
The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array
NASA Technical Reports Server (NTRS)
Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.
1994-01-01
The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were essentially the same as that for the copper array. The measured gain of the YBCO antenna was greater than that for the room temperature copper design at temperatures below 82K, reaching a value of 3.4 dB at the lowest temperatures.
An ultra-wideband microwave tomography system: preliminary results.
Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe
2009-01-01
We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.
Wavefront Correction for Large, Flexible Antenna Reflector
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng
2010-01-01
A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.
NASA Astrophysics Data System (ADS)
de Lera Acedo, E.; Razavi-Ghods, N.; Troop, N.; Drought, N.; Faulkner, A. J.
2015-10-01
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellent performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of the first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450 MHz) but it is now aimed to cover the re-defined SKA-low band (50-350 MHz) and furthermore the antenna is capable of performing up to 650 MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45° from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
Multi-Band Cable Antenna with Irregular Reactive Loading
2014-11-04
antenna 10 consists of an insulated solid conductor 12 of radius a. Preferably, this element is made from copper ; however, any highly conductive metal...Docket No. 300035 5 of 12 improved flotation . A low dielectric constant is essential for optimal RF performance. Reactive elements (not shown, see
DOT National Transportation Integrated Search
1979-09-01
Volume 1 of Theoretical Studies of Microstrip Antennas deals with general techniques and analyses of single and coupled radiating elements. Specifically, we review and then employ an important equivalence theorem that allows a pair of vector potentia...
NASA Technical Reports Server (NTRS)
Richard, Mark A.
1993-01-01
The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.
Antenna theory: Analysis and design
NASA Astrophysics Data System (ADS)
Balanis, C. A.
The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.
On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms
NASA Technical Reports Server (NTRS)
Rengarajan, S. R.; Rahmat-Samii, Y.
2002-01-01
In many modern communication applications there is a need for simple circularly polarized antennas for hemispherical coverage with good axial ratio or low value of cross polarization. We revisited the crooked wire antenna because of its simplicity. This paper presents results of our investigation on the crooked wire antennas and other elements.
NASA Technical Reports Server (NTRS)
Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.
1995-01-01
Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating equivalent magnetic currents across the antenna aperture using the FEM code. These currents were employed as the sources in the high frequency code.
High-frequency feed structure antenna apparatus and method of use
NASA Technical Reports Server (NTRS)
Sarehraz, Mohammad (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)
2009-01-01
An antenna apparatus for the reception of, and or transmission of, electromagnetic energy, the apparatus including a non-radiating dielectric waveguide aperture coupled to at least one dielectric rod antenna, which is electromagnetically coupled to a transmission line element.
Passive Tracking System and Method
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)
2003-01-01
Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.
Passive Tracking System and Method
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)
2005-01-01
System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.
Antenna array geometry optimization for a passive coherent localisation system
NASA Astrophysics Data System (ADS)
Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel
2012-11-01
Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.
Radiation and scattering from printed antennas on cylindrically conformal platforms
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil
1994-01-01
The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.
Circularly-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Stanton, P. H.
1985-01-01
Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.
Design and development of conformal antenna composite structure
NASA Astrophysics Data System (ADS)
Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang
2017-09-01
In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.
Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.
1988-01-01
The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.
A Novel Sensor for Attitude Determination Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.
1998-01-01
An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.
Using EIGER for Antenna Design and Analysis
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.
2007-01-01
EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.
Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-05-01
Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.
Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance
NASA Technical Reports Server (NTRS)
Snook, Allen David
1993-01-01
Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
Compact Low Frequency Radio Antenna
Punnoose, Ratish J.
2008-11-11
An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.
1992-01-01
A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in y and z directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available.
Smart Antenna UKM Testbed for Digital Beamforming System
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin
2009-12-01
A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.
Modified Coaxial Probe Feeds for Layered Antennas
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.
2006-01-01
In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.
Near millimeter wave imaging/multi-beam integrated antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Schaubert, D. H.
1985-01-01
This report describes the most recent work on the theory of single element Linearly Tapered Slot Antennas (LTSAs) and Constant Width Slot Antennas (CWSAs). The radiation mechanism for these is presently well understood and allows quantitative calculation of beamwidths and sidelobe levels, provided that the antennas have a sufficiently wide conducting region on either side of the tapered slot. Appendices 4 to 7 represent earlier work on the grant. This work further elucidates the properties of arrays of CWSA elements, and the effects of coupling on the beam-shape. It should be noted that typical beam-efficiencies of 65% have been estimated, and that element spacings of about one Rayleigh unit are possible. Further, two-point resolution at the Rayleigh spacing has been demonstrated for a CWSA array in a 30.4 cm paraboloid at 31 GHz. These results underscore that interest in further studies of the radiation mechanism of tapered slot arrays. Appendix 7 constitutes a final, detailed report on the work leading to a 94 GHz seven element LTSA array imaging system, which has been reported previously in less detail. Experimental results are presented.
Kausar, Abu Sulaiman Mohammad Zahid; Reza, Ahmed Wasif; Latef, Tarik Abdul; Ullah, Mohammad Habib; Karim, Mohammad Ershadul
2015-01-01
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters. PMID:25884787
MAARSY: The new MST radar on Andøya—System description and first results
NASA Astrophysics Data System (ADS)
Latteck, R.; Singer, W.; Rapp, M.; Vandepeer, B.; Renkwitz, T.; Zecha, M.; Stober, G.
2012-02-01
The Middle Atmosphere Alomar Radar System (MAARSY) on the North-Norwegian island Andøya is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300 m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output up to 2 kW. This arrangement provides a very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6° allowing classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. The installation of the antenna array was completed in August 2009. The radar control and data acquisition hardware as well as an initial expansion stage of 196 transceiver modules was installed in spring 2010 and upgraded to 343 transceiver modules in November 2010. The final extension to 433 transceiver modules has recently been completed in May 2011. Beside standard observations of tropospheric winds and Polar Mesosphere Summer Echoes, the first multi-beam experiments using up to 97 quasi-simultaneous beams in the mesosphere have been carried out in 2010 and 2011. These results provide a first insight into the horizontal variability of polar mesosphere summer and winter echoes with time resolutions between 3 and 9 minutes. In addition, first meteor head echo observations were conducted during the Geminid meteor shower in December 2010.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS The Standard § 1204.2 Definitions. In... following definitions apply for the purposes of this standard. (a) Antenna system means a device for... other functional or non-functional elements. (b) Antenna-mast system means the completed assembly of the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS The Standard § 1204.2 Definitions. In... following definitions apply for the purposes of this standard. (a) Antenna system means a device for... other functional or non-functional elements. (b) Antenna-mast system means the completed assembly of the...
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-04-16
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.
Performance Evaluation of INMARSAT Fleet 77 Services Aboard the R/V Ewing
NASA Astrophysics Data System (ADS)
Schmidt, V. E.; Chayes, D. N.; Gold, E.
2002-12-01
In late 2001, the R/V Ewing was asked to conduct a trial installation of the Thrane and Thrane [of Denmark] F77 antennae [TT-3084A Capsat] and the newest IMNARSAT communications channel, INMARSAT F. Branded as "Fleet F77 Service" by INMARSAT, the service provides ISDN 64kbps and 56kbps high quality voice and data connections as well as Mobile Packet Data Service which allows an "always on" connection under which users pay for the packets they send rather than the time they are connected. Fleet F77 also allows low bandwidth [2.4kbps] "Mini-M" voice and fax services. While not currently available, the Capsat antennae also is prepared to take advantage of 4th Generation Inm-IV satellites [expected in 2004] allowing LAN speeds up to 432kbps. The F77 antenna consists of two units, the TT-3084A antenna and a single "Below Deck Unit". The Capsat antennae radome is a mere 84 cm in diameter - considerably smaller than that typically associated with INMARSAT A or B. It was mounted above the forward port corner of the pilot house atop a reinforced mast. Below deck electronics consist of a single unit containing three analog RJ-11 interfaces, a single ISDN interface, two RS-232 serial interfaces, a USB interface [not functional on our test unit] and a standard Handset. This was mounted in the pilot house electronics space. The Capsat antennae and associated electronics were installed in Guam in mid February 2002 and the system began operational trials during the following cruise on February 24th. Tests of the Fleet 77 system consisted of Mini-M voice and fax both to and from the ship, 64kbs voice to and from the ship, MPDS connects to shore, and operational tests with the INMARSAT Command Center. The trial period completed May 12th after which the F77 became an integral part of the Ewing's communication suite. Results of these tests as well as latency and packet loss measurements made over various data connection types will be presented.
FORTE antenna element and release mechanism design
NASA Technical Reports Server (NTRS)
Rohweller, David J.; Butler, Thomas A.
1995-01-01
The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.
Recent activities in printed Antennas at LeRC
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.
Zivkovic, Irena; Scheffler, Klaus
2015-08-01
We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.
A broadband double-slot waveguide antenna
NASA Astrophysics Data System (ADS)
Kisliuk, M.; Axelrod, A.
1987-09-01
A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.
16 CFR § 1204.2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS The Standard § 1204.2 Definitions. In... following definitions apply for the purposes of this standard. (a) Antenna system means a device for... other functional or non-functional elements. (b) Antenna-mast system means the completed assembly of the...
Trade-off between land vehicle antenna cost and gain for satellite mobile communications
NASA Technical Reports Server (NTRS)
1984-01-01
Trade-offs between antenna cost and gain made for nine antennas as a feasibility study for the experimental land mobile satellite system, M-SAT(X) reported. This system is under development by JPL-NASA for a mobile telephone system to be used throughout the continental USA and Alaska. The mobile antenna is a key element in the development of this system.
Equalization in Aeronautical Telemetry Using Multiple Antennas
2014-04-01
Multiple Antennas April 2014 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test Resource Management Center...Telemetry Using Multiple Antennas 5a. CONTRACT NUMBER: W900KK-13-C- 0026 5b. GRANT NUMBER: N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael...employing two transmit antennas and as a method for exploiting partial channel state information by the transmitter. The generalization involves
Low cost impulse compatible wideband antenna
Rosenbury, Erwin T.; Burke, Gerald J.; Nelson, Scott D.; Stever, Robert D.; Governo, George K.; Mullenhoff, Donald J.
2002-01-01
An antenna apparatus and method for building the antenna is disclosed. Impulse signals travel through a feed point of the antenna with respect to a ground plane. A geometric fin structure is connected to the feed point, and through a termination resistance to the ground plane. A geometric ridge structure connected to the ground is positioned with respect to the fin in order to receive and radiate electromagnetic energy from the impulse signal at a predetermined impedance and over a predetermined set of frequencies. The fin and ridge can be either a wire or a planar surface. The fin and ridge may be disposed within a radiation cavity such as a horn. The radiation cavity is constructed of stamped and etched metal sheets bent and then soldered together. The fin and ridge are also formed from metal sheets or wires. The fin is attached to the feed point and then to the cavity through a termination resistance. The ridge is attached to the cavity and disposed with respect to the fin in order to achieve a particular set of antenna characteristics.
Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves
NASA Astrophysics Data System (ADS)
Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors
2003-12-01
Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.
Multilayer Patch Antenna Surrounded by a Metallic Wall
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Huang, John
2003-01-01
A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.
Integrated optical transceiver with electronically controlled optical beamsteering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna
A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less
A 94 GHz imaging array using slot line radiators. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Korzeniowski, T. L.
1985-01-01
A planar endfire slotted-line antenna structure was investigated. It was found that the H-plane beamwidths are basically dependent upon the substrate properties, whereas the E-plane beamwidths are more strongly a function of the slot's shape and size. It is shown that these antennas produce symmetrical E and H-plane beamwidths while following Zucker's standard traveling-wave antenna beamwidth curves over some range of antenna normalized length. An empircally derived design formula for effective substrate thickness is shown to predict this range for linearly tapered slotted-line antennas. The experimental imaging properties of these arrays are presented and imaging theory is discussed. It is shown that a minimum spacing of elements is necessary for exact reconstruction for a sampled image in a diffraction limited system. Because these LTSA elements employ the traveling-wave mechanism of radiation, they can be spaced two times closer than a conical feed horn of comparable beamwidth.
802GHz integrated horn antennas imaging array
NASA Technical Reports Server (NTRS)
Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon
1991-01-01
Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.
Compact resonator on leather for nonradiative inductive power transfer and far-field data links
NASA Astrophysics Data System (ADS)
Monti, G.; Corchia, L.; De Benedetto, E.; Tarricone, L.
2016-06-01
In this paper, a wearable resonator suitable to be used for both power and data transmission is presented. The basic element is a complementary split ring resonator that has been optimized to operate both as a dipole-like antenna at 2.45 GHz and as the receiver of a resonant energy link operating at 915 MHz when coupled with an identical external resonator connected to a power source. Experimental data referring to a prototype fabricated by using a conductive adhesive fabric on a leather substrate are reported and discussed. With regard to the wireless resonant energy link (WREL), it is demonstrated that at 915 MHz, the RF-to-RF power transfer efficiency of the link is approximately 78.1%. As for the performance obtained when the resonator is used as an antenna, a gain of approximately -0.43 dB was obtained. Additionally, the performance of the proposed link when connected to a Power Management Unit (PMU) that converts the radio frequency (RF) energy received by the wearable resonator into DC energy that can be directly used for recharging a thin-film battery was also investigated. Experimental tests were performed in order to evaluate both the total efficiency of the wireless charger (i.e., the WREL link connected to the PMU) and the time necessary to recharge a THINERGY MEC201 battery. The obtained results demonstrate the feasibility of using the proposed WREL for implementing a battery charger; in particular, by providing an input power higher than 8 dBm, the time necessary to recharge the considered thin-film battery is shorter than 38 min.
High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application
NASA Astrophysics Data System (ADS)
Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.
2017-12-01
The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, George
This was a collaboration between UCSD and MIT to study the effective application of ion-cyclotron heating (ICRH) on the EAST tokamak, located in China. The original goal was for UCSD to develop a diagnostic that would allow measurement of the steady state, or DC, convection pattern that develops on magnetic field lines that attach or connect to the ICRH antenna. This diagnostic would then be used to develop techniques and approaches that minimize or even eliminate such DC convection during application of strong ICRH heating. This was thought to then indicate reduction or elimination of parasitic losses of heating power,more » and thus be an indicator of effective RF heating. The original plan to use high speed digital gas-puff imaging (GPI) of the antenna-edge plasma region in EAST was ultimately unsuccessful due to limitations in machine and camera operations. We then decided to attempt the same experiment on the ALCATOR C-MOD tokamak at MIT which had a similar instrument already installed. This effort was ultimately successful, and demonstrated that the underlying idea of using GPI as a diagnostic for ICRH antenna physics would, in fact, work. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced E x B flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E-r were observed to increase with the toroidal magnetic field strength B and the ICRF power. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the probe measurements of poloidal phase velocity. The results suggest that effective ICRH heating with reduced impurity production is possible when the antenna/box system is designed so as to reduce the RF-induced image currents that flow in the grounded conducting antenna frame elements that surround the RF antenna current straps.« less
Using Antenna Arrays to Motivate the Study of Sinusoids
ERIC Educational Resources Information Center
Becker, J. P.
2010-01-01
Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…
Stripline Antenna Beam-Forming Network
NASA Technical Reports Server (NTRS)
Cramer, P. W.
1984-01-01
Stripline antenna beam-forming network includes 87 beam ports and 136 feed-element ports and contained on only two microstrip boards. Both uplink and downlink strips supported on same boards. Originally used for communications coverage of continental United States for Land Mobile Satellite System, structure of interest to antenna designers in other applications.
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-10-18
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805
A Compact, Broadband Antenna for Planetary Surface-to-Surface Wireless Communications
NASA Technical Reports Server (NTRS)
Barr, Philip; Zaman, Afroz; Miranda, Felix
2006-01-01
The Compact Microstrip Monopole Antenna (CMMA) is a novel antenna design that combines a microstrip patch antenna with a three-dimensional structure to attain a highly directive, broadband, compact antenna. A Tri-Lobed Patch (TLP) was designed to minimize the patch's area while reducing the antenna's operating frequency. A Grounding Wall (GW) connects the patch to the ground plane and a Vertical Enclosure Wall (VEW) extends up away from portions of the patch's perimeter. This VEW supplies the antenna with a higher directivity in the radial direction as well as reduces the operating frequency. The CMMA was designed to operate at 2.23 GHz, but experimental results have shown this antenna resonates at 2.05 GHz which is on the order of approximately Lambda(sub o)/11.6 with respect to the antenna's largest dimension, with a directivity and bandwidth of 6.0 dBi, and 130 MHz (6.3 percent), respectively. This miniature, radially emitting antenna makes the CMMA attractive for planetary-based surface-to-surface communications.
McEwan, Thomas E.
1994-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
McEwan, Thomas E.
1996-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
Code division multiple access signaling for modulated reflector technology
Briles, Scott D [Los Alamos, NM
2012-05-01
A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
Cellular reflectarray antenna and method of making same
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R (Inventor)
2011-01-01
A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n.
Cellular reflectarray antenna and method of making same
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R (Inventor)
2010-01-01
A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n..
Microstrip Yagi Antenna with Dual Aperture-Coupled Feed
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald; Venkatesan, Jaikrishna
2008-01-01
A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.
Infrared technology for satellite power conversion. [antenna arrays and bolometers
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.
1984-01-01
Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.
Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1999-01-01
Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed
NASA Technical Reports Server (NTRS)
Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix
2014-01-01
Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul
1990-01-01
Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... antenna connection to sever, rendering the ELT ineffective and severely impacting the performance of the... AAR-11-03: The antenna cable was severed from the ELT when the ELT slipped out of the hook and loop... NTSB ID WPR10FA273: The antenna cable was severed from the ELT when the ELT slipped out of the hook and...
1997-02-25
Bob Cummings, a technician at NASA's Dryden Flight Research Center, Edwards, California, checks out a new "Smart Skin" antenna mounted on the tip of the right vertical fin of Dryden's F/A-18 Systems Research Aircraft. Flight tests of the antenna system demonstrated a five-fold increase in voice communications range and a substantial improvement in the pattern of radiation and quality of transmission compared to the standard dorsal blade antenna on the aircraft. The Smart Skin antenna system was electrically as well as physically connected to the airframe, making the aircraft skin operate as an antenna along with the antenna itself. The concept was developed by TRW Avionics Systems Division and integrated into the F/A-18's vertical fin by Northrop-Grumman Corporation.
Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications
NASA Technical Reports Server (NTRS)
Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.
2004-01-01
Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.
Design of microwave antenna system on planar Yagi-Uda elements and microstrip coupler
NASA Astrophysics Data System (ADS)
Petrovnin, K. V.; Latypov, R. R.
2017-11-01
Paper presents results of calculation, electromagnetic modelling and measurements of manufactured antenna system on planar Yagi-Uda elements and microstrip coupler. System has summary and subtract modes. Center frequency of system is 1532 MHz with 96 MHz bandwidth. Gain of system is 8 dB in main lobe direction (in-phase mode) and 5 dB (antiphase mode).
1998-11-01
S98-E-09732 (Nov. 1998) --- Closeup view of part of the antenna system for the Teleoperator Control System (TORU) manual docking system on Zarya. This photograph was taken prior to Zarya's deployment. Recent activities showed an indication of a possible failure to deploy of two small antennae elements in the TORU. Accompanying image shows pre-flight closeout closeup image of the second small element.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecoul, S.; Heuraux, S.; Koch, R.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are verymore » close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}« less
Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-01-01
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios. PMID:27092512
Passive monitoring using a combination of focused and phased array radiometry: a simulation study.
Farantatos, Panagiotis; Karanasiou, Irene S; Uzunoglu, Nikolaos
2011-01-01
Aim of this simulation study is to use the focusing properties of a conductive ellipsoidal reflector in conjunction with directive phased microwave antenna configurations in order to achieve brain passive monitoring with microwave radiometry. One of the main modules of the proposed setup which ensures the necessary beamforming and focusing on the body and brain areas of interest is a symmetrical axis ellipsoidal conductive wall cavity. The proposed system operates in an entirely non-invasive contactless manner providing temperature and/or conductivity variations monitoring and is designed to also provide hyperthermia treatment. In the present paper, the effect of the use of patch antennas as receiving antennas on the system's focusing properties and specifically the use of phased array setups to achieve scanning of the areas under measurement is investigated. Extensive simulations to compute the electric field distributions inside the whole ellipsoidal reflector and inside two types of human head models were carried out using single and two element microstrip patch antennas. The results show that clear focusing (creation of "hot spots") inside the head models is achieved at 1.53GHz. In the case of the two element antennas, the "hot spot" performs a linear scan around the brain area of interest while the phase difference of the two microstrip patch antennas significantly affects the way the scanning inside the head model is achieved. In the near future, phased array antennas with multiband and more elements will be used in order to enhance the system scanning properties toward the acquisition of tomography images without the need of subject movement.
MAARSY - The new MST radar on Andøya: System description and first results
NASA Astrophysics Data System (ADS)
Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner; Renkwitz, Toralf
2012-07-01
In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}) on the North-Norwegian island Andøya. MAARSY is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangular grid forming a circular aperture of approximately 6300 m^2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW. This arrangement provides very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6°. The system allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. Standard observations of tropospheric winds and polar mesosphere summer echoes started immediately with an initial stage of expansion in spring 2010. Meteor head echo experiments and 3D observations of polar mesospheric winter echoes were conducted after an upgrade of the system in December 2010. Multi-beam experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during campaigns in summer 2011 with the completed system. We present a system description of MAARSY including beam pattern validation and show initial results from various campaigns obtained during the first 2 years of operation.
Highly Directive Reflect Array Antenna Design for Wireless Power Transfer
2017-04-14
AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4076 5c. PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology
Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas
NASA Astrophysics Data System (ADS)
Poduval, Dhruva
Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions. Finally, simulated beam scanning in several angles of the array is shown considering specific phases for each antenna element in the array.
System for RFID-Enabled Information Collection
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor)
2017-01-01
A sensor and system provide for radio frequency identification (RFID)-enabled information collection. The sensor includes a ring-shaped element and an antenna. The ring-shaped element includes a conductive ring and an RFID integrated circuit. The antenna is spaced apart from the ring-shaped element and defines an electrically-conductive path commensurate in size and shape to at least a portion of the conductive ring. The system may include an interrogator for energizing the ring-shaped element and receiving a data transmission from the RFID integrated circuit that has been energized for further processing by a processor.
8. View of DR 3 antenna showing lower front connector, ...
8. View of DR 3 antenna showing lower front connector, third from left vertical member at first level above foundation level, showing small diameter turnbuckle stays, vertical member with flange connection, and various struts and connectors with antenna assembly in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Improved Dual-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Huang, John
1993-01-01
Dual-polarized microstrip antenna features microstrip transmission-line feeds arranged in such configuration that cross-polarized components of radiation relatively low and degree of isolation between feed ports relatively high. V and H feed ports offset from midpoints of feed lines to obtain required opposite phases at feed-point connections to microstrip patches. Two independent beams of same frequency with electric fields polarized orthogonally to each other transmitted or received via antenna. Improved design saves space.
Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.
Lai, J; Domier, C W; Luhmann, N C
2014-03-01
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.
Characteristics of the wire biconical antenna used for EMC measurements
NASA Astrophysics Data System (ADS)
Austin, Brian A.; Fourie, Andre P. C.
1991-08-01
The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.
Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong
2012-09-24
We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
High Rate User Ka-Band Phased Array Antenna Test Results
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)
2001-01-01
The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.
THROUGH CABLE TO CLASSROOM, A GUIDE TO ITV DISTRIBUTION SYSTEMS.
ERIC Educational Resources Information Center
LEWIS, WILLIAM C.
THE BENEFITS OF MASTER ANTENNA TELEVISION SYSTEMS (HAVING CENTRAL ANTENNA AND AMPLIFIERS WITH CABLE CONNECTIONS TO CLASSROOM) ARE DISCUSSED WITH RESPECT TO OTHER SYSTEMS OF CLASSROOM TELEVISION. INCLUDED ARE COST CONSIDERATIONS, NEED DETERMINATION, SCHOOL DESIGN, UTILIZATION OF EXISTING EQUIPMENT, AND FUTURE DEVELOPMENTS. AN EXTENSIVE ILLUSTRATED…
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.
1993-01-01
This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between measurements and calculations are truly impressive. Another unique aspect of this work is the incorporation of the FFT as part of the BiCG solver by overlaying a structured triangular mesh over the unstructured mesh. The implementation of this BiCG-FFT solution algorithm is important in minimizing the CPU and storage requirements. This final report will be submitted for publication in a refereed journal.
Configuration study for a 30 GHz monolithic receive array: Technical assessment
NASA Technical Reports Server (NTRS)
Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.
1984-01-01
The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.
Modified Reference SPS with Solid State Transmitting Antenna
NASA Technical Reports Server (NTRS)
Woodcock, G. R.; Sperber, B. R.
1980-01-01
The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.
Microstrip Yagi array for MSAT vehicle antenna application
NASA Technical Reports Server (NTRS)
Huang, John; Densmore, Arthur; Pozar, David
1990-01-01
A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.
NASA Astrophysics Data System (ADS)
Sanada, Atsushi
2008-08-01
A two-dimensional beam steering array composed of an eight-element antenna array using composite right/left-handed leaky-wave antennas fed by an 8 × 8 Butler matrix network is designed at X-band. An eight-way beam switching in one direction by input port switching and a continuous beam steering in the other direction by frequency sweep are achieved. A wide range beam steering operation covering from -55 to +53 degrees by port switching and from -37 to +27 degrees by frequency sweep is demonstrated with the maximum gain of 9.2 dBi.
NASA Astrophysics Data System (ADS)
Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan
2018-04-01
Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.
Novel Approaches for Mutual Coupling Reduction among Vertical and Planar Monopole Elements
NASA Astrophysics Data System (ADS)
Isaac, Ayman A.
Modern wireless systems such as 4G LTE-A, RFID, Wi-Fi, WiMAX, and GPS utilize miniaturized antenna array elements to improve performance and reliability through diversity and increase throughput using spatial multiplexing schemes of MIMO systems. One original contribution in this thesis is to significantly reduce the complexity of traditional design approaches targeting mutual coupling reductions such as metamaterials, defected ground plane structures, soft electromagnetic surfaces using novel design alternatives. A decoupling network is proposed, which consists of a rectangular metallic ring along with two tuning strips printed on a dielectric substrate, surrounding a two-element monopole antenna array fed by a coplanar waveguide or microstrip structure. The array design offers a reduction in mutual coupling level by around 20 dB at 2.4 GHz as compared to the same array in which the two monopoles share the same ground plane but without the decoupling network. The array achieves a -10 dB S11 bandwidth of 0.63 GHz, (2.12 GHz - 2.75 GHz), a 0.24 GHz (2.33 GHz - 2.57 GHz) bandwidth in which S21 is less than -20 dB, respectively. A total realized gain of 1.6 to 1.69 dB in the frequency range over which S11 and S21 is less than -10 dB and -20 dB respectively. The boresight of the radiation patterns of two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm are shown to be orthogonal and inclined by 45° with respect to the horizon while maintaining the shape of the isolated single antenna element. Hence, we denote this design as the descattered and decoupled orthogonal MIMO antenna array, which is reported for the first time in this dissertation, providing the ideal far-field radiation characteristics as theoretically deemed for handheld MIMO devices. Moreover, two new approaches for the reduction of mutual coupling between two rectangular planar monopole antennas printed on a dielectric substrate with a partial ground plane are presented in this thesis. In the first design, two thin strips are attached to the adjacent corners of the radiating elements and extend to a certain distance above the partial ground plane. Results reveal a mutual coupling less than -20 dB over the frequency range from 2.16 GHz up to 2.74 GHz. while maintaining the -10 dB reflection coefficient bandwidth. Three implementations are presented which demonstrate an envelope correlation coefficient below 0.06 when the antenna elements are separated by 0.04lambda o, 0.048lambdao, 0.064lambdao, and 0.085lambda o with lambdao calculated at 1.5 GHz, 1.8 GHz, 2.4 GHz, and 3.2 GHz, respectively. The second design employs a decoupling structure consisting of planar or meander strip extending along the partial ground, the space between the two antenna elements, and beyond by a certain extent. The antennas provide a realized gain of 4.39 dB and 4.66 dB at 2.4 GHz using strip and meander lines, respectively, and bandwidth of (1.65 GHz- 4 GHz) and (1.43 GHz - 3.7 GHz), respectively. The two antenna arrays consisting of planar and meander strip achieve an envelope correlation coefficient of 0.05 and 0.06, respectively.
McEwan, T.E.
1994-09-06
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.
McEwan, T.E.
1996-06-04
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.
Millimeter wave micro-CPW integrated antenna
NASA Astrophysics Data System (ADS)
Tzuang, Ching-Kuang C.; Lin, Ching-Chyuan
1996-12-01
This paper presents the latest result of applying the microstrip's leaky mode for a millimeter-wave active integrated antenna design. In contrast to the use of the first higher-order leaky mode, the second higher-order leaky mode, the second higher-order leaky mode of even symmetry is employed in the new approach, which allows larger dimension for leaky-wave antenna design and thereby reduces its performance sensitivity to the photolithographic tolerance. The new active integrated antenna operating at frequency about 34 GHz comprises of a microstrip and a coplanar waveguide stacked on top of each other, named as the millimeter wave micro-CPW integrated antenna. The feed is through the CPW that would be connected to the active uniplanar millimeter-wave (M)MIC's. Our experimental and theoretical investigations on the new integrated antenna show good input matching characteristics for such a highly directed leaky-wave antenna with the first-pass success.
Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.
Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali
2018-04-12
In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.
Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems †
Aghaeinezhadfirouzja, Saeid; Liu, Hui
2018-01-01
In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data. PMID:29649177
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
Minimizing yagi-uda radiosonde receiver antenna size using minkowski curve fractal model
NASA Astrophysics Data System (ADS)
Sani, Arman; Suherman
2018-03-01
This paper discusses Yagi-Uda antenna design for radiosonde earth station receiver. The design was performed by using Minkowski curve fractal model to reduce physical dimension. The antenna design should fulfil the following requirements: work on frequency of 433MHz, match to the 50 Ohm of radiosonde characteristic impedance, the expected gain is higher than 10 dBi, VSWR is smaller than 2 and the expected bandwidth is higher than 10 MHz. Antenna design and evaluation were conducted by using MMANA-GAL simulator. The evaluation of the designed antenna shows that the Yagi-Uda antenna designed by using Minkowski curve model successfully reduces antenna size up to 9.41% and reduces number of elements about 33%.
Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications
NASA Astrophysics Data System (ADS)
Garrido Lopez, David
This thesis introduces several novel antenna systems with extended performance capabilities achieved by either enabling multiple operation bands or by widening the bandwidth. Proposed theoretical concepts are successfully tested through simulations and experiments with excellent agreement are demonstrated. The designs developed in this thesis research are low-profile or flush mountable, enabling simple platform integration. In the HF/VHF bands, the development of a novel low-profile multiband antenna for vehicular applications is presented. Specifically, an inverted-F antenna is used as a driven element, to operate at the lowest frequency of 27 MHz, whereas two parasitic elements are built as inverted-L monopoles to enable resonances at 49 and 53 MHz. To eliminate the need for an external matching network, an offset feeding technique is used. When the antenna is mounted on a vehicle and bent to follow its profile, a very low-profile is achieved (lambda/44) while good impedance and far-field performance are maintained across all three bands. The developed antenna system is not only electrically smallest among others found in the literature, but it is easily modified for other band selections and tuning of each band can be readily achieved. Vehicular antennas are often used for high power applications, which may cause exposure of nearby individuals to possibly dangerous electromagnetic fields. To assess this hazard, the RF exposure of a vehicle's crew is discussed and an original and fast modeling approach for prediction thereof is demonstrated. The modeling approach is based on eigenmode analysis for acquiring a range of frequencies where the shielding effectiveness of a vehicle cabin is expected to be lower than average. This approach is typically much faster and requires less computational resources as compared to classical full-wave analyses. This analysis also shows that the position of an antenna system is critical and must be considered when high-power RF emissions are planned. Following the same trend of antenna system size reduction with extension of capabilities in a congested spectral environment, the millimeter wave spectrum is explored next. Specifically, antenna systems for wideband amplitude only (AO) direction finding (DF) are thoroughly considered. Theory and design considerations are developed to fill gaps in open literature. Typical sources of errors are theoretically analyzed, and a discussion on limitations and advantages of different AO DF architectures is given. Practical millimeter wave realizations of AO DF antenna front-ends in the K/Ka/Q bands (18-45 GHz) are developed using two different architectures: a passive phased-array and a squinted antenna system. For the former, a tightly coupled two-element tapered slot antenna (TSA) array with a stacked arrangement is developed. A novel enclosure of the array inside an absorbing cavity is proposed and improved system performance with flush mounted configuration is demonstrated. The squinted antenna system avoids the use of a beamformer, therefore reducing insertion loss and amplitude/phase imbalances to reduce DF errors. For design robustness, the same TSA element used in the phased-array configuration is used. A novel tapered cavity is also developed to stabilize H-plane radiation patterns and suppress sidelobes. It is seen that the squinted antenna AO DF front-end has better performance than the phased-array antenna system at the expense of larger size.
Ultra-wideband, omni-directional, low distortion coaxial antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eubanks, Travis Wayne; Gibson, Christopher Lawrence
An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminatemore » at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.« less
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.
1992-01-01
A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.
Metamaterial-based "sabre" antenna
NASA Astrophysics Data System (ADS)
Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume
2014-05-01
The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.
NASA Astrophysics Data System (ADS)
Martin, M. J.; Gekelman, W.; Van Compernolle, B.; Pribyl, P.; Carter, T.
2017-11-01
An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E →×B→0 flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.
Martin, M J; Gekelman, W; Van Compernolle, B; Pribyl, P; Carter, T
2017-11-17
An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.
Shuttle S-band high gain switched beam breadboard antennas
NASA Technical Reports Server (NTRS)
Mullaney, J. J.
1985-01-01
The final fabrication and assembly of the S-band five-element, eight-beam breadboard antennas developed for the Space Shuttle program are described. Data summary sheets from component and final assembly testing are presented.
Modeling and analysis of the DSS-14 antenna control system
NASA Technical Reports Server (NTRS)
Gawronski, W.; Bartos, R.
1996-01-01
An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.
Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)
2017-01-01
A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.
Advanced GPS Technologies (AGT)
2015-05-01
Distribution A GPS Ill Developmental Optical Clock Deployable Antenna Concept 3 \\.J Science and Technology for GPS •:• Spacecraft • AFRL has funded a...Digital Waveform Generators New antenna concepts Supporting electronics Algorithms and new signal combining methods Satellite bus technologies...GPS Military High Gain Antenna Developing Options for Ground Testing 1) Deployable phased array • Low profile element • High efficiency phase
Topology Design for Directional Range Extension Networks with Antenna Blockage
2017-03-19
introduced by pod-based antenna blockages. Using certain modeling approximations, the paper presents a quantitative analysis showing design trade-offs...parameters. Sec- tion IV develops quantitative relationships among key design elements and performance metrics. Section V considers some implications of the...Topology Design for Directional Range Extension Networks with Antenna Blockage Thomas Shake MIT Lincoln Laboratory shake@ll.mit.edu Abstract
RF Device for Acquiring Images of the Human Body
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; McGrath, William R.
2010-01-01
A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB data set into a three-dimensional image in a matter of seconds. The innovation is to configure the receiver array in a ring topology surrounding the scanned object. The ring is then scanned vertically to cover the necessary two-dimensional surface. This fabrication of the ring is made possible by using planar antenna and circuit technology. A planar circuit board serves as a medium for both antennas and signal processing components. Using this technique, parts counts are kept low, and the cost per element is a small fraction of a waveguide-based system.
Characterization and Calibration of the 12-m Antenna in Warkworth, New Zealand
NASA Technical Reports Server (NTRS)
Gulyaev, Sergei; Natusch, Tim; Wilson, David
2010-01-01
The New Zealand 12-m antenna is scheduled to start participating in regular IVS VLBI sessions from the middle of 2010. Characterization procedures and results of calibration of the New Zealand 12- m radio telescope are presented, including the main reflector surface accuracy measurement, pointing model creation, and the system equivalent flux density (SEFD) determination in both S and X bands. Important issues of network connectivity, co-located geodetic systems, and the use of the antenna in education are also discussed.
Initial '80s Development of Inflated Antennas
NASA Technical Reports Server (NTRS)
Friese, G. J.; Bilyeu, G. D.; Thomas, M.
1983-01-01
State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.
Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar Imaging
Oh, Daegun; Kim, Sunwoo; Chong, Jong-Wha
2018-01-01
This article deals with the development of a dual channel S-Band frequency-modulated continuous wave (FMCW) system for a through-the-wall imaging (TWRI) system. Most existing TWRI systems using FMCW were developed for synthetic aperture radar (SAR) which has many drawbacks such as the need for several antenna elements and movement of the system. Our implemented TWRI system comprises a transmitting antenna and two receiving antennas, resulting in a significant reduction of the number of antenna elements. Moreover, a proposed algorithm for range-angle-Doppler 3D estimation based on a 3D shift invariant structure is utilized in our implemented dual channel S-band FMCW TWRI system. Indoor and outdoor experiments were conducted to image the scene beyond a wall for water targets and person targets, respectively. The experimental results demonstrate that high-quality imaging can be achieved under both experimental scenarios. PMID:29361777
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.
2010-01-01
Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.
Orthogonal feeding techniques for tapered slot antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1998-01-01
For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.
Beamed microwave power transmitting and receiving subsystems radiation characteristics
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.
Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel
Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao
2016-01-01
With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya
2004-01-01
The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.
Information-Theoretic Limits on Broadband Multi-Antenna Systems in the Presence of Mutual Coupling
NASA Astrophysics Data System (ADS)
Taluja, Pawandeep Singh
2011-12-01
Multiple-input, multiple-output (MIMO) systems have received considerable attention over the last decade due to their ability to provide high throughputs and mitigate multipath fading effects. While most of these benefits are obtained for ideal arrays with large separation between the antennas, practical devices are often constrained in physical dimensions. With smaller inter-element spacings, signal correlation and mutual coupling between the antennas start to degrade the system performance, thereby limiting the deployment of a large number of antennas. Various studies have proposed transceiver designs based on optimal matching networks to compensate for this loss. However, such networks are considered impractical due to their multiport structure and sensitivity to the RF bandwidth of the system. In this dissertation, we investigate two aspects of compact transceiver design. First, we consider simpler architectures that exploit coupling between the antennas, and second, we establish information-theoretic limits of broadband communication systems with closely-spaced antennas. We begin with a receiver model of a diversity antenna selection system and propose novel strategies that make use of inactive elements by virtue of mutual coupling. We then examine the limits on the matching efficiency of a single antenna system using broadband matching theory. Next, we present an extension to this theory for coupled MIMO systems to elucidate the impact of coupling on the RF bandwidth of the system, and derive optimal transceiver designs. Lastly, we summarize the main findings of this dissertation and suggest open problems for future work.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Hoffmann, Axel; Ketterson, John B.
2018-05-01
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 μm thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 μm spatially-resonant, antenna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; ...
2017-12-22
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.
Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna
2016-02-01
optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear ...would expect that linear combinations of them in a neighborhood around would also have low sidelobes. The algorithms in this paper exploit this
Luneburg lens with extended flat focal surface for electronic scan applications.
Li, Ying; Zhu, Qi
2016-04-04
Luneburg lens with flat focal surface has been developed to work together with planar antenna feeds for beam steering applications. According to our analysis of the conventional flattened Luneburg lens, it cannot accommodate enough feeding elements which can cover its whole scan range with half power beamwidths (HPBWs). In this paper, a novel Luneburg lens with extended flat focal surface is proposed based on the theory of Quasi-Conformal Transformation Optics (QCTO), with its beam steering features reserved. To demonstrate this design, a three-dimensional (3D) prototype of this novel extend-flattened Luneburg lens working at Ku band is fabricated based on 3D printing techniques, whose flat focal surface is attached to a 9-element microstrip antenna array to achieve different scan angles. Our measured results show that, with different antenna elements being fed, the HPBWs can cover the whole scan range.
ALMA test interferometer control system: past experiences and future developments
NASA Astrophysics Data System (ADS)
Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken
2004-09-01
The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.
Directly connecting the Very Long Baseline Array
NASA Astrophysics Data System (ADS)
Hunt, Gareth; Romney, Jonathan D.; Walker, R. Craig
2002-11-01
At present, the signals received by the 10 antennas of the Very Long Baseline Array (VLBA) are recorded on instrumentation tapes. These tapes are then shipped from the antenna locations - distributed across the mainland USA, the US Virgin Islands, and Hawaii - to the processing center in Socorro, New Mexico. The Array operates today at a mean sustained data rate of 128 Mbps per antenna, but peak rates of 256 Mbps and 512 Mbps are also used. Transported tapes provide the cheapest method of attaining these bit rates. The present tape system derives from wideband recording techniques dating back to the late 1960s, and has been in use since the commissioning of the VLBA in 1993. It is in need of replacement on a time scale of a few years. Further, plans are being developed which would increase the required data rates to 1 Gbps in 5 years and 100 Gbps in 10 years. With the advent of higher performance networks, it should be possible to transmit the data directly to the processing center. However, achieving this connectivity is complicated by the remoteness of the antennas -
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
Antenna system for MSAT mission
NASA Technical Reports Server (NTRS)
Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora
1988-01-01
Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
Gain enhancement for wideband end-fire antenna design with artificial material.
Wei, Min; Sun, Yuanhua; Wu, Xi; Wen, Wu
2016-01-01
Gain enhancement wideband end-fire antenna is proposed in this paper. The proposed antenna can achieve gain enhancement by loading novel artificial materials structures (Split-ring Resonators) in the end-fire direction while broad bandwidth is realized by using elliptic dipole elements and a microstrip to coplanar balun. The measurements show that the proposed antenna have around 5-8 dB gain in the working band (5-11 GHz), which is around 2 dB more than the unloaded one. This antenna can be used in target recognition systems for its advantages of end-fire radiation broad bandwidth and high gain.
Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.
1995-01-01
A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
2002-07-01
A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.
Compact CPW-fed spiral-patch monopole antenna with tuneable frequency for multiband applications
NASA Astrophysics Data System (ADS)
Beigi, P.; Nourinia, J.; Zehforoosh, Y.
2018-04-01
A frequency reconfigurable monopole antenna with coplanar waveguide-fed with four switchable for multiband application is reported. The monopole antenna includes square-spiral patch and two L-shaped elements. The number of frequency resonances are increased by adding square spiral. In the reported antenna, two PIN diodes are used to achieve the multiband operation. PIN diodes embedded on the spiral patch can control the frequency resonance when they are forward-biased or in those off-state. The final designed antenna, with compact size of 20 × 20 ×1 mm3, has been fabricated on an inexpensive FR4 substrate. All experimental and simulation results are acceptable suggesting that the reported antenna is a good candidate for multiband applications.
Radiation-hardened fast acquisition/weak signal tracking system and method
NASA Technical Reports Server (NTRS)
Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)
2009-01-01
A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.
Magnetic quench antenna for MQXF quadrupoles
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...
2016-12-21
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Magnetic quench antenna for MQXF quadrupoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Inflight IFR procedures simulator
NASA Technical Reports Server (NTRS)
Parker, L. C. (Inventor)
1984-01-01
An inflight IFR procedures simulator for generating signals and commands to conventional instruments provided in an airplane is described. The simulator includes a signal synthesizer which generates predetermined simulated signals corresponding to signals normally received from remote sources upon being activated. A computer is connected to the signal synthesizer and causes the signal synthesizer to produce simulated signals responsive to programs fed into the computer. A switching network is connected to the signal synthesizer, the antenna of the aircraft, and navigational instruments and communication devices for selectively connecting instruments and devices to the synthesizer and disconnecting the antenna from the navigational instruments and communication device. Pressure transducers are connected to the altimeter and speed indicator for supplying electrical signals to the computer indicating the altitude and speed of the aircraft. A compass is connected for supply electrical signals for the computer indicating the heading of the airplane. The computer upon receiving signals from the pressure transducer and compass, computes the signals that are fed to the signal synthesizer which, in turn, generates simulated navigational signals.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2000-01-01
The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.
Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies
Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M
2014-01-01
To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565
Larsen, Lawrence E.
2000-01-01
A hyperthermia apparatus, suitable for transurethral application, has an energy radiating element comprising a leaky-wave antenna. The leaky wave antenna radiation pattern is characterized by a surface wave which propagates along an aperture formed by openings (small in comparison to a wavelength) in the outer conductor of a transmission line. Appropriate design of the leaky wave antenna produces a uniform, broadside pattern of temperature elevation that uniformly heats all or part of the periurethral tissues.
Embedded Meta-Material Antennas
2009-01-31
influence of the overall capacitance . Based on the tunable SRRs, we designed a tunable loop antenna with SRRs and HPTs as tuning elements. In this case, we...are those of the authors) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas, new materials
Modern Design of Resonant Edge-Slot Array Antennas
NASA Technical Reports Server (NTRS)
Gosselin, R. B.
2006-01-01
Resonant edge-slot (slotted-waveguide) array antennas can now be designed very accurately following a modern computational approach like that followed for some other microwave components. This modern approach makes it possible to design superior antennas at lower cost than was previously possible. Heretofore, the physical and engineering knowledge of resonant edge-slot array antennas had remained immature since they were introduced during World War II. This is because despite their mechanical simplicity, high reliability, and potential for operation with high efficiency, the electromagnetic behavior of resonant edge-slot antennas is very complex. Because engineering design formulas and curves for such antennas are not available in the open literature, designers have been forced to implement iterative processes of fabricating and testing multiple prototypes to derive design databases, each unique for a specific combination of operating frequency and set of waveguide tube dimensions. The expensive, time-consuming nature of these processes has inhibited the use of resonant edge-slot antennas. The present modern approach reduces costs by making it unnecessary to build and test multiple prototypes. As an additional benefit, this approach affords a capability to design an array of slots having different dimensions to taper the antenna illumination to reduce the amplitudes of unwanted side lobes. The heart of the modern approach is the use of the latest commercially available microwave-design software, which implements finite-element models of electromagnetic fields in and around waveguides, antenna elements, and similar components. Instead of building and testing prototypes, one builds a database and constructs design curves from the results of computational simulations for sets of design parameters. The figure shows a resonant edge-slot antenna designed following this approach. Intended for use as part of a radiometer operating at a frequency of 10.7 GHz, this antenna was fabricated from dimensions defined exclusively by results of computational simulations. The final design was found to be well optimized and to yield performance exceeding that initially required.
A practical guide to the design and construction of a single wire beverage antenna
NASA Astrophysics Data System (ADS)
Spong, H. L.
1980-09-01
Theoretical results are presented which show the performance likely to result from using differing antenna heights, lengths and wire sizes and from operating with different ground conductivities. These studies were undertaken to provide practical advice for constructors and operators. Design parameters can be easily obtained with the aid of computer programs and an antenna can be rapidly constructed from readily available materials. Directivity can be increased by adding more elements, either in parallel or on a radial basis. A particular performance can be achieved with great latitude in the parameters. Good low angle performance can be achieved without large ground screens. A directional array can be made by switching between a number of elements set up on different bearings.
Multi-band reflector antenna with double-ring element frequency selective subreflector
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Lee, S. W.
1993-01-01
Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.
Microstrip antenna array with parasitic elements
NASA Technical Reports Server (NTRS)
Lee, Kai F.; Acosta, Roberto J.; Lee, Richard Q.
1987-01-01
Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented.
Proceedings of the STRESS Data Review Meeting, 29-30 November 1977
1978-06-01
INSULATORS MAGNETOMETER BEACON ANTENNA fe?^ S-BAND ANTENNA- -DC PROBE SENSING ELEMENT PLASMA FREQUENCY PROBE MONOPOLE -GUARD ELECTRODE PLASMA...have demonstrated, using calculational results from MICE and MRHYDE (MHD computer codes), that the gradient-drift instability is the one primarily
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
Geostationary multipurpose platforms
NASA Technical Reports Server (NTRS)
Bekey, I.; Bowman, R. M.
1981-01-01
In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.
Simulation of Conformal Spiral Slot Antennas on Composite Platforms
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.
1998-01-01
During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.
Baseline antenna design for space exploration initiative
NASA Technical Reports Server (NTRS)
Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz
1993-01-01
A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.
Structural Test and Analysis of a Hybrid Inflatable Antenna
NASA Technical Reports Server (NTRS)
Gaspar, James L.; Mann, Troy; Sreekantamurthy, Tham; Behun, Vaughn
2007-01-01
NASA is developing ultra-lightweight structures technology for communication antennas for space missions. One of the research goals is to evaluate the structural characteristics of inflatable and rigidizable antennas through test and analysis. Being able to test and analyze the structural characteristics of a full scale antenna is important to enable the simulation of various mission scenarios to determine system performance in space. Recent work completed to evaluate a Hybrid Inflatable Antenna concept will be discussed. Tests were completed on a 2-m prototype to optimize its static shape and identify its modal dynamics that are important for analytical model validation. These test results were used to evaluate a preliminary finite element model of the antenna, and this model development and correlation activity is also described in the paper.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems
2016-06-01
in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation...Approaches for the design and fabrication of a wearable anti-jam global positioning system (GPS) antenna are explored to support accurate and uninterrupted...including GPS antenna element and array designs , and algorithms for jammer mitigation, and the candidate technologies best fit for wearable anti-jam GPS
Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities
2014-01-01
New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
NASA Astrophysics Data System (ADS)
Morabito, David D.; D'Addario, Larry; Finley, Susan
2016-02-01
Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.
A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.
2000-01-01
This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.
A comparison of reflector antenna designs for wide-angle scanning
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmatsamii, Y.; Acosta, R. J.
1989-01-01
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.
A note on the proposed UK VHF radar
NASA Technical Reports Server (NTRS)
Hall, A. J.
1984-01-01
The proposal for the establishment of a VHF radar in the UK is still under active consideration, although for financial reasons no start has yet been made on an installation. Several changes have been made to the scheme as described and these are listed. (1) The initial installation will be suitable for stratosphere-troposphere (ST) operation only using 64 antennas and 2 power modules. (2) An existing site is being examined on the west coast of Wales, which because it is a former Loran ground station is provided with the buildings, power and communications facilities to enable a radar to be assembled much more quickly than a green field site would allow. Because the site is not within a mountain valley as originally intended, careful early attention will have to be given to the possible problems of local interference and sea-surface returns. (3) Preliminary discussions with the UK licensing authorities suggest that a frequency of 47 MHz is more likely than 50 MHz. (4) Minor changes are planned in the antenna array connection scheme of the 400-element mesosphere-stratosphere-troposphere (MST) array to allow more precise sidelobe suppression to be achieved in the receive mode.
Radio Heating of Lunar Soil to Release Gases
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2006-01-01
A report proposes the development of a system to collect volatile elements and compounds from Lunar soil for use in supporting habitation and processing into rocket fuel. Prior exploratory missions revealed that H2, He, and N2 are present in Lunar soil and there are some indications that water ice may also be present. The proposed system would include a shroud that would be placed on the Lunar surface. Inside the shroud would be a radio antenna aimed downward. The antenna would be excited at a suitably high power and at a frequency chosen to optimize the depth of penetration of radio waves into the soil. The radio waves would heat the soil, thereby releasing volatiles bound to soil particles. The escaping volatiles would be retained by the shroud and collected by condensation in a radiatively cooled vessel connected to the shroud. It has been estimated that through radio-frequency heating at a power of 10 kW for one day, it should be possible to increase the temperature of a soil volume of about 1 cubic m by about 200 C -- an amount that should suffice for harvesting a significant quantity of volatile material.
Extended Range Passive Wireless Tag System and Method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor)
2013-01-01
A passive wireless tag assembly comprises a plurality of antennas and transmission lines interconnected with circuitry and constructed and arranged in a Van Atta array or configuration to reflect an interrogator signal in the direction from where it came. The circuitry may comprise at least one surface acoustic wave (SAW)-based circuit that functions as a signal reflector and is operatively connected with an information circuit. In another embodiment, at least one delay circuit and/or at least one passive modulation circuit(s) are utilized. In yet another embodiment, antennas connected to SAW-based devices are mounted to at least one of the orthogonal surfaces of a corner reflector.
Printed Antennas Made Reconfigurable by Use of MEMS Switches
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2005-01-01
A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.
Antenna Characterization for the Wideband Instrument for Snow Measurements
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Graphene array antenna for 5G applications
NASA Astrophysics Data System (ADS)
Sa'don, Siti Nor Hafizah; Kamarudin, Muhammad Ramlee; Ahmad, Fauzan; Jusoh, Muzammil; Majid, Huda A.
2017-02-01
Fifth generation (5G) needs to provide better coverage than the previous generation. However, high frequency and millimeter wave experience penetration loss, propagation loss and even more loss in energy for long distance. Hence, a graphene array antenna is proposed for high gain to cover a long distance communications since array antenna enables in providing more directive beams. The investigation is conducted on three types of substrates with gain achieved is more than 7 dBi. The gain obtained is good since it is comparable with other studies. In addition, these antennas consume small numbers of elements to achieve high gain.
Wideband Microstrip Antenna-Feeding Array
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.
1988-07-01
iv BROADBAND ANTENNAS Contents 21. "Performance Characteristics of Notch Array Elements Over a 6/1 263 Frequoncy Band," C. J. Monser * 22. " Broadband ...synthesized RF signal is taken from the output port of the Hewlett-Packard 8408B Microvae Network Alnalyzer to a 20-watt TWT anplifier, and then to...j kr -Sinn H 0 = -jk 47rjk ° a 2 H r4 0 r 406 4. Helix antenna The cur-ent distribution of a helix antenna as shown in Fig. 2.11 of [33 may be
Analysis and synthesis of (SAR) waveguide phased array antennas
NASA Astrophysics Data System (ADS)
Visser, H. J.
1994-02-01
This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.
Antenna induced range smearing in MST radars
NASA Technical Reports Server (NTRS)
Watkins, B. J.; Johnston, P. E.
1984-01-01
There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.
E-Textile Antennas for Space Environments
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.
2007-01-01
The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.
A Review of Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.
2006-01-01
NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions
A Review of Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.
2007-01-01
NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.
Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, J.; Domier, C. W.; Luhmann, N. C.
2014-03-15
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advancesmore » in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.« less
Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1997-01-01
This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch... control level. Power must be summed across all antennas and antenna elements. The average must not include... modulation techniques and provide a wide array of high data rate mobile and fixed communications for...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch... control level. Power must be summed across all antennas and antenna elements. The average must not include... modulation techniques and provide a wide array of high data rate mobile and fixed communications for...
Code of Federal Regulations, 2014 CFR
2014-10-01
... power control level. Power must be summed across all antennas and antenna elements. The average must not... symbols, during which the average symbol envelope power is constant. (q) RLAN. Radio Local Area Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch between...
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
Self-contained sub-millimeter wave rectifying antenna integrated circuit
NASA Technical Reports Server (NTRS)
Siegel, Peter H. (Inventor)
2004-01-01
The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.
Jiang, Yingxu; Zhao, Jinzhe; Li, Weitao; Yang, Yamin; Liu, Jia; Qian, Zhiyu
2017-11-01
Investigation of the structures and properties of antennas is important in the design of microwave ablation (MWA) system. In this study, we studied the performance of the novel tri- and single-slot antennas with frequency of 433 MHz in ex vivo conditions. The dielectric properties of liver tissue under different thermal coagulation levels were explored, which was beneficial to evaluate ablation condition of tissue and simulate temperature field. Then, the performances of the antennas were analyzed by using numerical method based on finite element method (FEM). It indicated that the present antennas with frequency of 433 MHz could produce a gourd-shaped MWA area with a longer length. Compared to antenna with frequency of 2450 MHz, the designed single-slot antenna could obtain the larger MWA area. In addition, the multiple-point ablations and a larger MWA area could be achieved simultaneously by using the present tri-slot antenna. This study has a potential for the innovative design of MWA antenna for treatment of liver tumor with a large range and a long length.
NASA Astrophysics Data System (ADS)
Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar
2015-02-01
An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.
Characterization of polymer silver pastes for screen printed flexible RFID antennas
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta
Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.
Omnidirectional, circularly polarized, cylindrical microstrip antenna
NASA Technical Reports Server (NTRS)
Stanton, Philip H. (Inventor)
1985-01-01
A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.
SETI-ITALIA 2008: On-going searches and future prospects
NASA Astrophysics Data System (ADS)
Montebugnoli, S.; Bartolini, M.; Bianchi, G.; Cosmovici, C.; Monari, J.; Orlati, A.; Perini, F.; Pluchino, S.; Pupillo, G.; Salerno, E.; Schillirò, F.; Zoni, L.
2010-12-01
The Medicina Radioastronomical Station is located nearby Bologna, in Italy. It consists of two receiving antennas currently dedicated to the astronomical research at radio frequencies. The 32 m diameter parabolic dish performs observations from 1.4 to 22 GHz whereas the Northern Cross (a 30.000 m 2 wide T-shaped array transit antenna) works at 408 MHz. So far SETI observations have been performed using a SERENDIP IV high resolution spectrometer connected to the parabolic antenna. Data acquisition were performed meanwhile the antenna was employed in ordinary astronomical observations (piggy-back mode). An innovative method to search for possible extraterrestrial signals could be provided by using the UHF Northern Cross transit telescope. In this paper observational modalities and the required technological set-up are investigated.
Ka-Band Multibeam Aperture Phased Array Being Developed
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.
Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.
2016-01-01
To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size. PMID:27185385
The design of RFID convey or belt gate systems using an antenna control unit.
Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan
2011-01-01
This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A
2017-07-05
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.
Mulcahy, Daniel M.; Burek, K.A.; Esler, Daniel N.
2007-01-01
In wild birds implanted intracoelomically with radio transmitters, a synthetic fabric collar placed around the base of a percutaneous antenna is believed to function as a barrier to contamination of the coelom. We examined 13 fabric collars recovered from percutaneous antennas of radio transmitters implanted intracoelomically in harlequin ducks (Histrionicus histrionicus) 12 months earlier. Both the transmitters and antenna collars were encapsulated in fibrous connective tissue, with adhesions to internal organs. Histologically, bacteria were evident at the fabric-plastic interface in 8 of 10 collars examined in cross section and along the length of the collar in 3 collars examined longitudinally. Bacteria were confined within the fibrotic sheath surrounding the transmitter and the antenna collar in all birds. No evidence of chronic systemic effects secondary to implantation was present on hematologic or serum biochemical testing. These findings indicate that antenna collars do not prevent the entry of bacteria along the percutaneous antenna but may help stabilize the antenna and minimize coelomic contamination. We conclude that radio transmitters implanted into the coelom of harlequin ducks do not appear to cause significant health problems for at least 1 year after implantation.
The Design of RFID Convey or Belt Gate Systems Using an Antenna Control Unit
Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan
2011-01-01
This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance. PMID:22164119
Near-field testing of the 15-meter hoop-column antenna
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Adams, Richard R.; Bailey, M. C.; Belvin, W. Keith; Butler, David H.; Campbell, Thomas G.
1989-01-01
A 15-m-diameter antenna was tested to verify that dimensional tolerances for acceptable performance could be achieved and to verify structural, electromagnetic, and mechanical performance predictions. This antenna utilized the hoop column structure, a gold plated molybdenum mesh reflector, and 96 control cables to adjust the reflector conformance with a paraboloid. The dimensional conformance of the antenna structure and surface was measured with metric camera and theodolites. Near field pattern data were used to assess the electromagnetic performance at five frequencies from 2.225 to 11.6 GHz. The reflector surface was adjusted to greatly improve electromagnetic performance with a finite element model and the surface measurements. Measurement results show that antenna surface figure and adjustments and electromagnetic patterns agree well with predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.
Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less
Performance of a modified feedback loop adaptive array with TVRO satellite signals
NASA Technical Reports Server (NTRS)
Steadman, Karl N.; Gupta, Inder J.; Walton, Eric K.
1990-01-01
Performance of an experimental adaptive antenna array system is evaluated using television receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceller with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops used two spatialy separated antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.
Exploiting Phase Diversity for CDMA2000 1X Smart Antenna Base Stations
NASA Astrophysics Data System (ADS)
Kim, Seongdo; Hyeon, Seungheon; Choi, Seungwon
2004-12-01
A performance analysis of an access channel decoder is presented which exploits a diversity gain due to the independent magnitude of received signals energy at each of the antenna elements of a smart-antenna base-station transceiver subsystem (BTS) operating in CDMA2000 1X signal environment. The objective is to enhance the data retrieval at cellsite during the access period, for which the optimal weight vector of the smart antenna BTS is not available. It is shown in this paper that the access channel decoder proposed in this paper outperforms the conventional one, which is based on a single antenna channel in terms of detection probability of access probe, access channel failure probability, and Walsh-code demodulation performance.
Miniature modular microwave end-to-end receiver
NASA Technical Reports Server (NTRS)
Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)
1993-01-01
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.
Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM
2006-05-09
A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.
Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET
Klepper, C. C.; Borodin, D.; Groth, M.; ...
2016-01-18
Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less
High temperature electrons exhausted from rf plasma sources along a magnetic nozzle
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira
2017-08-01
Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Miranda, Felix A.
2006-01-01
In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.
Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model
Bertram, John M; Yang, Deshan; Converse, Mark C; Webster, John G; Mahvi, David M
2006-01-01
Background An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution. PMID:16504153
Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics
2008-07-31
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5652--08-9137 Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics July...NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Field Test on the Feasibility of Remoting HF Antenna...optic link was employed to remote a high-frequency ( HF , 2-30 MHz) direction-finding (DF) array. The test link comprised a seven-element “L” array
Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications
NASA Technical Reports Server (NTRS)
Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey
2000-01-01
The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.
2009-12-12
Circuit Design, Theory and Applications. Prentice-Hall, 1 ed., 2000. 39 MEASUREMENT OF ELECTRICALLY SMALL ANTENNAS Suhail Barot, Paul E. Mayes, Paul ...2] “Ansoft HFSS, Version 9.2.1,” Ansoft Corporation, Pittsburgh, PA. 50 REDUCED-SIZE LINEAR ANTENNA ELEMENTS Paul E. Mayes, Paul W. Klock and...structures," IRE Internation convention, vol. 5, pp. 119-129, Mar 1957. [2] K. M. P. Aghdam, R. Faraji- Dana , and J. Rashed-Mohassel, "Compact dual
2010-12-01
learned for this expensive (in time and dollars) one year phased array element investigation is that simpler is better. The crossed dipole and helix...and amplitude control. One of the major lessons Fidelity Comtech learned from the cellular industry was not to attempt to control the performance of...Coaxial Antennas With Feed Gap Effect," IEEE Transactions on Antennas and Propagation, vol.57, no.2, pp.559-563, Feb. 2009. [18] Tam Do-Nhat, R
JPL-IDEAS - ITERATIVE DESIGN OF ANTENNA STRUCTURES
NASA Technical Reports Server (NTRS)
Levy, R.
1994-01-01
The Iterative DEsign of Antenna Structures (IDEAS) program is a finite element analysis and design optimization program with special features for the analysis and design of microwave antennas and associated sub-structures. As the principal structure analysis and design tool for the Jet Propulsion Laboratory's Ground Antenna and Facilities Engineering section of NASA's Deep Space Network, IDEAS combines flexibility with easy use. The relatively small bending stiffness of the components of large, steerable reflector antennas allows IDEAS to use pinjointed (three translational degrees of freedom per joint) models for modeling the gross behavior of these antennas when subjected to static and dynamic loading. This facilitates the formulation of the redesign algorithm which has only one design variable per structural element. Input data deck preparation has been simplified by the use of NAMELIST inputs to promote clarity of data input for problem defining parameters, user selection of execution and design options and output requests, and by the use of many attractive and familiar features of the NASTRAN program (in many cases, NASTRAN and IDEAS formatted bulk data cards are interchangeable). Features such as simulation of a full symmetric structure based on analyses of only half the structure make IDEAS a handy and efficient analysis tool, with many features unavailable in any other finite element analysis program. IDEAS can choose design variables such as areas of rods and thicknesses of plates to minimize total structure weight, constrain the structure weight to a specified value while maximizing a natural frequency or minimizing compliance measures, and can use a stress ratio algorithm to size each structural member so that it is at maximum or minimum stress level for at least one of the applied loads. Calculations of total structure weight can be broken down according to material. Center of gravity weight balance, static first and second moments about the center of mass and optionally about a user-specified gridpoint, and lumped structure weight at grid points can also be calculated. Other analysis outputs include calculation of reactions, displacements, and element stresses due to specified gravity, thermal, and external applied loads; calculations of linear combinations of specific node displacements (e.g. to represent motions of rigid attachments not included in the structure model), natural frequency eigenvalues and eigenvectors, structure reactions and element stresses, and coordinates of effective modal masses. Cassegrain antenna boresight error analysis of a best fitting paraboloid and Cassegrain microwave antenna root mean square half-pathlength error analysis of a best fitting paraboloid are also performed. The IDEAS program is written in ATHENA FORTRAN and ASSEMBLER for an EXEC 8 operating system and was implemented on a UNIVAC 1100 series computer. The minimum memory requirement for the program is approximately 42,000 36-bit words. This program is available on a 9-track 1600 BPI magnetic tape in UNIVAC FURPUR format only; since JPL-IDEAS will not run on other platforms, COSMIC will not reformat the code to be readable on other platforms. The program was developed in 1988.
Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2006-01-01
NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.
Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.
Raval, Manan; Poulton, Christopher V; Watts, Michael R
2017-07-01
We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.
Microstrip patch antenna receiving array operating in the Ku band
NASA Technical Reports Server (NTRS)
Walcher, Douglas A.
1996-01-01
Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.
Direction of Arrival Estimation with a Novel Single-Port Smart Antenna
NASA Astrophysics Data System (ADS)
Sun, Chen; Karmakar, Nemai C.
2004-12-01
A novel direction of arrival (DOA) estimation technique that uses the conventional multiple-signal classification (MUSIC) algorithm with periodic signals is applied to a single-port smart antenna. Results show that the proposed method gives a high-resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only 1 analogue-to-digital converter (ADC) is used in this antenna, which features low power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling among antenna elements. Therefore, it offers an economical way to extensively implement smart antennas into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals such as laptops in wireless networks.
Low-index-metamaterial for gain enhancement of planar terahertz antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing-Le; Si, Li-Ming, E-mail: lms@bit.edu.cn; Lv, Xin
2014-03-15
We theoretically present a high gain planar antenna at terahertz (THz) frequencies by combing a conventional log-periodic antenna (LPA) with a low-index-metamaterial (LIM, |n| < 1). The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width) and more than 4 dB gain enhancement are seen within a certain frequencymore » range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.« less
Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models
Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon
2010-01-01
Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510
Antennas for mobile satellite communications
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.
Radiation pattern of a borehole radar antenna
Ellefsen, K.J.; Wright, D.L.
2005-01-01
The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Remote sensing of the coastal ocean with standard geodetic GNSS-equipment
NASA Astrophysics Data System (ADS)
Löfgren, J. S.; Haas, R.; Larson, K. M.; Scherneck, H.-G.
2012-04-01
We use standard geodetic Global Navigation Satellite System (GNSS) equipment to perform remote sensing measurements of the coastal ocean. This is done by a so-called GNSS-based tide gauge that uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. Our installation is located at the Onsala Space Observatory (OSO) at the west coast of Sweden and consists of a zenith-looking Right Hand Circularly Polarized (RHCP) and a nadir-looking Left Hand Circularly Polarized (LHCP) antenna. Each antenna is connected to a standard geodetic-type GNSS-receiver. We applied two different analysis strategies to our GNSS data set. The first strategy is based on a traditional geodetic differential analysis [Löfgren et al., 2011] and makes use of the data from both receivers; connected to the zenith and the nadir looking antennae. This approach results in local sea level that is automatically corrected for land motion, meaning that the GNSS-based tide gauge can provide reliable sea-level estimates even in tectonic active regions. The second strategy focuses on the Signal-to-Noise Ratio (SNR) recorded with the receiver connected to the zenith-looking antenna [Larson et al., 2011]. The SNR is affected by multipath originating from the sea surface reflections. Analysis of the SNR data allows to determine the distance between the antenna and the reflecting surface, and thus to measure sea surface height. Results from both analysis strategies are compared to independently observed sea-level data from two stilling-well gauges operated by the Swedish Meteorological and Hydrological Institute (SMHI), which lie in a distance of several km from OSO. The root-mean-square agreement between the different time series of several month's length is on the order of 5 cm and better. These results indicate the large potential for using coastal GNSS-sites for the monitoring of the coastal ocean.
NASA Astrophysics Data System (ADS)
Benefo, Roshan; Gallardo, Samavarti; Aguirre, James; La Plante, Paul; HERA Collaboration
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope situated in South Africa designed to observe the universe from redshifts 13 through 6, in order to detect the emission of the 21 cm line from the hydrogen spin-flip transition. We perform 21 cm cosmology due to its relation with reionization; by detecting this emission line, we can identify the timing of reionization, and understand more about the nature of the universe during the birth of the first stars and galaxies. With that, we can understand the heating conditions of the initial universe, providing us a larger picture of the conditions that created the large-scale structure of the universe we observe today. The HERA array currently consists of 19 antennas, spaced in a hexagonal grid pattern. We consider a robust observable, the time-averaged visibility (TAV), which is in principle sensitive to variations in the beam pattern between antenna elements and is easier to measure than the beam pattern itself. We use this TAV to explore the non-redundancy of baselines in the HERA array due either to cross-coupling between antennas (probed by antenna location in the array) or non-uniformity in their manufacture. The TAV may provide a simple way of verifying improvements in antenna element redundancy.
Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.
Takook, Pegah; Persson, Mikael; Gellermann, Johanna; Trefná, Hana Dobšíček
2017-01-08
Using UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.43-1 GHz is achieved by immersing the antenna in a water bolus. The radiation characteristics are improved by appropriate shaping the water bolus and by inclusion of dielectric layers on the top of the radiating arms of the antenna. In order to find the most appropriate design, we use a combination of performance indicators representing the most important attributes of the antenna. These are the UWB impedance matching, the transmission capability and the effective field size. The antenna was constructed and experimentally validated on muscle-like phantom. The measured reflection and transmission coefficients as well as radiation characteristics are in excellent agreement with the simulated results. MR image acquisitions with antenna located inside MR bore indicate a negligible distortion of the images by the antenna itself, which indicates MR compatibility.
Evolutionary Optimization of Quadrifilar Helical and Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Stoica, Adrian; Clancy, Daniel (Technical Monitor)
2002-01-01
We present optimization results obtained for two type of antennas using evolutionary algorithms. A quadrifilar helical UHF antenna is currently flying aboard NASA's Mars Odyssey spacecraft and is due to reach final Martian orbit insertion in January, 2002. Using this antenna as a benchmark, we ran experiments employing a coevolutionary genetic algorithm to evolve a quadrifilar helical design in-situ - i.e., in the presence of a surrounding structure. Results show a 93% improvement at 400 MHz and a 48% improvement at 438 MHz in the average gain. The evolved antenna is also one-fourth the size. Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain and the inclusion of numerous parasitic elements. Our fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain.
Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas
NASA Astrophysics Data System (ADS)
Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.
2017-04-01
A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.
Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots
NASA Astrophysics Data System (ADS)
Eliseev, S. P.; Kurochkin, N. S.; Vergeles, S. S.; Sychev, V. V.; Chubich, D. A.; Argyrakis, P.; Kolymagin, D. A.; Vitukhnovskii, A. G.
2017-05-01
A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.
Performance of a modified feedback loop adaptive array with TVRO satellite signals
NASA Technical Reports Server (NTRS)
Steadman, K.; Gupta, I. J.; Walton, E. K.
1990-01-01
The performance of an experimental adaptive antenna array system is evaluated using television-receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceler with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops use two spatially separate antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.
Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1998-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Novel Metamaterial Blueprints and Elements for Electromagnetic Applications
NASA Astrophysics Data System (ADS)
Odabasi, Hayrettin
In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for miniaturization purposes. We first employ electric-field-coupled (ELC) resonators and complementary electric-field-coupled (CELC) resonators to design a new class of electrically small antennas. Since electric-field coupled resonators were recently proposed in the literature to obtain negative permittivity response, we next propose ELC resonators as a new type of waveguide loadings to provide mode control and waveguide miniaturization.
System Identification of an on Orbit Spacecraft’s Antenna Dynamics
2009-06-01
10 II. Background Information ...boxes denote the 20 modes of the flexible antenna structure, all of which are in parallel. The information for the modes (gain, natural frequency...thoughts and processes of the writer. Chapter 2 reviews what information is available for the various elements of signal analysis and system
Metal-free magnetic conductor substrates for placement-immune antenna assemblies
Eubanks, Travis Wayne; Loui, Hung; McDonald, Jacob Jeremiah
2015-09-29
A magnetic conductor substrate produced for mounting to an antenna includes a sheet of dielectric lattice material having a length, a width and a thickness that is less than the length and less than the width. Within the sheet of dielectric lattice material is disposed an array of dielectric elements.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
FDTD Analysis of U-Slot Rectangular Patch Antenna
NASA Technical Reports Server (NTRS)
Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.
1997-01-01
The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.
Solar polar orbit radio telescope for space weather forecast
NASA Astrophysics Data System (ADS)
Wu, J.; Wang, C.; Wang, S.; Wu, J.; Sun, W.; Cai, J.; Yan, Y.
Radio emission from density plasma can be detected at low radio frequencies. An image of such plasma clouds of the entire inner interplanetary space is always a wanted input for space weather forecast and ICME propagation studies. To take such an image within the ecliptic plane may not fully explore what is happening around the Sun not only because of the blockage of the Sun, also because most of the ICMEs are propagating in the low-latitude of the Sun, near the ecliptic plane. It is then proposed to launch a solar polar orbit radio telescope to acquire high density plasma cloud images from the entire inner interplanetary space. Low radio frequency images require a large antenna aperture in space. It is, therefore, proposed to use the existing passive synthetic aperture radiometer technology to reduce mass and complicity of the deployment system of the big antenna. In order to reduce the mass of the antenna by using minimum number of elements, a zero redundant antenna element design can be used with a rotating time-shared sampling system. A preliminary assessment study shows the mission is feasible.
Directly Connecting the Very Long Baseline Array
NASA Astrophysics Data System (ADS)
Hunt, Gareth; Romney, Jonathan D.; Walker, R. Craig
At present, the signals received by the 10 antennas of the Very Long Baseline Array (VLBA) are recorded on instrumentation tapes. These tapes are then shipped from the antenna locations --- distributed across the mainland USA, the US Virgin Islands, and Hawaii --- to the processing center in Socorro, New Mexico. The Array operates today at a mean sustained data rate of 128 Mbps per antenna, but peak rates of 256 Mbps and 512 Mbps are also used. Transported tapes provide the cheapest method of attaining these bit rates. The present tape system derives from wideband recording techniques dating back to the late 1970s, and has been in use since the commissioning of the VLBA in 1993. It is in need of replacement on a time scale of a few years. Further, plans are being developed which would increase the required data rates to 1 Gbps in five years and 100 Gbps in ten years. With the advent of higher performance networks, it should be possible to transmit the data directly to the processing center. However, achieving this connectivity is severely complicated by the remoteness of the antennas --- ``the last mile problem.'' In addition, it is not clear that the data rates involved can be obtained at a reasonable cost.
Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1994-01-01
Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.
2015-01-01
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503
Optical antenna enhanced spontaneous emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
Optical antenna enhanced spontaneous emission.
Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C
2015-02-10
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...
2015-01-26
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
Design and Performance of the Antenna-Coupled Lumped-Element Kinetic Inductance Detector
NASA Astrophysics Data System (ADS)
Barry, P. S.; Doyle, S.; Hornsby, A. L.; Kofman, A.; Mayer, E.; Nadolski, A.; Tang, Q. Y.; Vieira, J.; Shirokoff, E.
2018-05-01
Focal plane arrays consisting of low-noise, polarisation-sensitive detectors have made possible the pioneering advances in the study of the cosmic microwave background (CMB). To make further progress, the next generation of CMB experiments (e.g. CMB-S4) will require a substantial increase in the number of detectors compared to current instruments. Arrays of kinetic inductance detectors (KIDs) provide a possible path to realising such large-format arrays owing to their intrinsic multiplexing advantage and relative cryogenic simplicity. In this paper, we report on the design of a variant of the traditional KID design: the antenna-coupled lumped-element KID. A polarisation-sensitive twin-slot antenna placed behind an optimised hemispherical lens couples power onto a thin-film superconducting microstrip line. The power is then guided into the inductive section of an aluminium KID, where it is absorbed and modifies both the resonant frequency and quality factor of the KID. We present the various aspects of the design and preliminary results from the first set of seven-element prototype arrays and compare to the expected modelled performance.
The C-patch - A small microstrip element
NASA Astrophysics Data System (ADS)
Kossiavas, G.; Papiernik, A.; Boisset, J. P.; Sauvan, M.
1989-02-01
A radiating element operating in the UHF and L-bands is presented. The element has dimensions smaller than those of conventional square or circular elements. For this type of antenna, good matching is obtained with a coaxial feed, and the omnidirectional radiation pattern is achieved using linear polarization. The bandwidth, however, remains somewhat narrow.
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.
2017-01-01
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
NASA Astrophysics Data System (ADS)
Keyrouz, Shady; Visser, Huib
2013-12-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1994-01-01
A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.
Characterization of surface tilt of foundations for high-precision radio-astronomic antennas
NASA Astrophysics Data System (ADS)
Hoff, Brian D.; Puga, Jose P.
2010-07-01
The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas operating in the millimeter and sub-millimeter wavelength range. It will be located at an altitude above 5000m in the Chajnantor Plateau in northern Chile. There are 192 antenna foundations under construction at ALMA's Array Operations Site (AOS). Interchangeability between foundations will permit a variety of array configurations. Foundations provide the physical interface to the bedrock, as well as to the underground signal and power cable conduits. To achieve ALMA's precision requirements, the antenna pointing angular error budget is strict with anticipated non-repeatable error on the order of a few arc seconds. This level of precision imposes rigorous requirements on antenna foundations. The objective of this study is to demonstrate the methodology of precision tilt measurements combined with finite element simulation predictions to portray the qualitative nature of the antenna foundation surface deformation. Characteristics of foundation surface tilt have been examined in detail. Although the actual foundation has demonstrated much less resistance to tilt than the finite element representation, the simulation has predicted some key characteristics of the tilt pattern. The large deviations from the ideal have incited speculations into the compliance of materials, ambiguities in the construction, thermal effects and several other aspects described herein. This research has served as groundwork to characterize ALMA's foundation surface behavior on a micro-degree level and to identify subsequent studies to pursue. This in turn has contributed to the diagnosis of antenna pointing anomalies.
NASA Astrophysics Data System (ADS)
Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang
2018-03-01
In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.
Molecular elements of pheromone detection in the female moth, Heliothis virescens.
Zielonka, Monika; Breer, Heinz; Krieger, Jürgen
2018-06-01
Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female-released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)-9-tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the "sensory neuron membrane protein 1" (SNMP1) and were associated with supporting cells expressing the pheromone-binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1-expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1-neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Large space deployable antenna systems
NASA Technical Reports Server (NTRS)
1978-01-01
The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pingenot, J; Rieben, R; White, D
2005-10-31
We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less
Single- and dual-carrier microwave noise abatement in the deep space network. [microwave antennas
NASA Technical Reports Server (NTRS)
Bathker, D. A.; Brown, D. W.; Petty, S. M.
1975-01-01
The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given.
Noncoherent Tracking of a Source of a Data-Modulated Signal
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey; Ngo, Phong; Chen, Henry; Phan, Chau T.; Hill, Brent; Bourgeois, Brian; Dusl, John
2003-01-01
A proposed tracking receiver system containing three suitably positioned antenna elements and special signal-processing equipment would determine the direction of incidence of a microwave signal containing spread-spectrum digital data modulation. If the system were to contain two sets of antenna elements separated by a known baseline, it could determine the location of the transmitter as the intersection of the lines of incidence on the two antennas. Such systems could be used for diverse purposes in outer space and on Earth, including tracking astronauts and small robotic spacecraft working outside a spacecraft or space station, and locating cellular telephones from which distress calls have been made. The principle of operation does not require the transmission of a special identifying or distress signal by the cellular telephone or other transmitter to be tracked; instead, the system could utilize the data signal routinely sent by the transmitter, provided that the signal had the characteristics needed for processing.
Distributed antenna system and method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)
2004-01-01
System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.
Characterization of the RPW Electric Antenna System aboard Solar Orbiter
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Rucker, H. O.; Oswald, T.; Sampl, M.; Fischer, G.; Macher, W.; Maksimovic, M.
2009-12-01
Radio and Plasma Waves Experiment The Radio and Plasma Waves experiment (RPW) is unique amongst the Solar Orbiter instruments in that it makes both important in situ and remote-sensing measurements. It is of prime importance for the Solar Orbiter mission. RPW will perform measurements to determine the properties, dynamics and interactions of plasma, fields and particles in the near-Sun heliosphere. It will participate in the investigation of the links between the solar surface, corona and inner heliosphere. RPW will explore, at all latitudes, the energetics, dynamics and fine-scale structure of the Sun’s magnetized atmosphere. More specifically, RPW will measure magnetic and electric fields in high time resolution using a number of sensors, to determine the characteristics of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz. Electric Antenna System A novel electric antenna design is proposed for the RPW experiment. It consists of a set of three identical monopoles, each of a total length of more than 6 meters, deployed from the corners of the spacecraft and perpendicular to the spacecraft-Sun axis. Each of the three antennas rods has a length of 5m and is mounted on a boom. The antennas are equally spaced, so the angles between the antennas are 120°. Simulation of the Antenna System Performance The electromagnetic wave reception properties of the spacecraft antenna system are influenced by the currents flowing on the conductive surface of the spacecraft body and the impedances at the foot points of the antenna rods. In the specific case of Solar Orbiter the spacecraft body and the antenna system structure is not yet finally defined, however the preliminary known schematics enable a first estimate of the effective length vectors. The foot point voltages for all antenna elements are calculated for linear polarized waves, incident from different directions. Applying the reciprocity theorem a full polarimetric characterization of the antenna system is performed in a frequency range from 100 kHz up to 20 MHz. One-side heating of the antenna rods caused by solar radiation will lead to a significant antenna bending. This will influence the effective antenna vectors and has to be taken into account for the calibration process, especially if the bending will cause asymmetries in the antenna system. A detailed study of radiation coupling effects caused for instance by solar panels and high gain communication antenna (HGA) has been performed. The orientation of solar panels and HGA as well as the bending of the antenna elements has a significant influence on the instrument calibration. The analysis of different combinations of the three foot point voltages points out the instrument capabilities in polarization sensitive direction finding. The results of the computer simulations together with model scaled measurements will be used to evaluate the influence of the spacecraft on the antenna system reception properties and may be used for a re-evaluation of the structure and position of antennas and instruments on board Solar Orbiter
Detail of 25' highband reflector screen pole showing the horizontal ...
Detail of 25' high-band reflector screen pole showing the horizontal wood beams and vertical wires hung from ceramic insulators, note the dipole antenna element and 94' low-band reflector screen poles in background, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Bandwidth enhancement of dielectric resonator antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.
Space Power Amplification with Active Linearly Tapered Slot Antenna Array
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.
1993-01-01
A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.
A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions
NASA Technical Reports Server (NTRS)
DeLange, Gert; Jacobson, Brian R.; Hu, Qing
1996-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Operational fitness of box truss antennas in response to dynamic slewing
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Schartel, W. A.; Karanian, L. A.
1985-01-01
A parametric study was performed to define slewing capability of large satellites along with associated system changes or subsystem weight and complexity impacts. The satellite configuration and structural arrangement from the Earth Observation Spacecraft (EOS) study was used as the baseline spacecraft. Varying slew rates, settling times, damping, maneuver frequencies, and attitude hold times provided the data required to establish applicability to a wide range of potential missions. The key elements of the study are: (1) determine the dynamic transient response of the antenna system; (2) calculate the system errors produced by the dynamic response; (3) determine if the antenna has exceeded operational requirements at completion of the slew, and if so; (4) determine when the antenna has settled to the operational requirements. The slew event is not considered complete until the antenna is within operational limits.
Reagor, David; Vasquez-Dominguez, Jose
2006-12-12
A through-the-earth communication system that includes a digital signal input device; a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth; a data compression circuit that is connected to an encoding processor; an amplifier that receives encoded output from the encoding processor for amplifying the output and transmitting the data to an antenna; and a receiver with an antenna, a band pass filter, a decoding processor, and a data decompressor.
Comparison between electric dipole and magnetic loop antennas for emitting whistler modes
NASA Astrophysics Data System (ADS)
Stenzel, R.; Urrutia, J. M.
2016-12-01
In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.
Development and coupling analysis of active skin antenna
NASA Astrophysics Data System (ADS)
Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei
2017-02-01
An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng
2016-04-29
In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.
Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen
2014-10-15
In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.
Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial
NASA Astrophysics Data System (ADS)
Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun
2015-12-01
Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.
UHF Microstrip Antenna Array for Synthetic- Aperture Radar
NASA Technical Reports Server (NTRS)
Thomas, Robert F.; Huang, John
2003-01-01
An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.
A new design of an S/X dual band circular slot antenna for radar applications.
Ghnimi, Said; Wali, Rawia; Gharsallh, Ali; Razban, Tchanguiz
2013-01-01
A novel design of dual-band slot antenna with a circular patch for radar applications is presented and studied. It is fed by a micro-strip line and built on a FR-4 substrate with a whole size of 18 x 30 mm2. A dual band printed antenna is created by introducing slots on the radiating element. By this, two bandwidth, covering C and X band, are achieved. In order to obtain a good fundamental antenna design, the initial studies were carried out theoretically, using CST Microwave Studio simulation software. In this case, the frequency range at return loss < 10 dB is 5.24 - 6.16 GHz for low frequency and is 7.9 -11.7 GHz for high frequency. In addition, the proposed antenna has good radiation characteristics and stable gains over the whole operating bands. A prototype of antenna is fabricated and tested. Experimental data show good agreement between simulated and measured results.
Modeling and control for vibration suppression of a flexible smart structure
NASA Technical Reports Server (NTRS)
Dosch, J.; Leo, D.; Inman, D.
1993-01-01
Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs which constitutes a smart antenna in the sense that the actuator and sensors are an integral part of the structure. The antenna exhibits closely space and repeated modes, thus multi-input multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits mode localization phenomenon and contains post buckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum order model of the antenna is synthesized from identified single-input single-output (SISO) transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback (PPF) controller that increases damping in all of the modes in the targeted frequency range. Due to the accuracy of the open loop model of the antenna, the closed loop response predicted by the identified model correlates well wtih experimental results.
NASA Astrophysics Data System (ADS)
Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei
2018-04-01
By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.
2014-01-01
Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the relative strength of power coupling between the first and second microstrip antennas with and without the DFR. Typically, a DFR is designed for use at a particular frequency; however, testing of a DFR indicated a relatively wide operational bandwidth of approximately 8.2%. Wider bandwidth operation and multi-band operation are anticipated by extending the known art of conventional Fresnel rings to the DFRs. Increasing the number of rings used to construct a DFR antenna increases the gain, with the upper bound limited often by the largest practical dimensions that can be tolerated for a given application. The maximum theoretical improvement in gain for a single ring is 9.5 dB. Experimental results are within 0.9 dB of this theoretical value. Adding rings increases gain, and theoretically, improvements of 10 to 13 dB above that of the primary antenna gain can be achieved with two- and three-ring versions.
MRI-induced heating of deep brain stimulation leads
NASA Astrophysics Data System (ADS)
Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman
2008-10-01
The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.
Radome having integral heating and impedance matching elements
NASA Astrophysics Data System (ADS)
Lopez, Alfred R.
1992-04-01
An antenna radome includes a dielectric member shaped to protect an antenna from environmental conditions, and a plurality of conductors fixed in relation to a major surface of the dielectric member in a predetermined pattern so that the member with the conductors provides a lower reflection coefficient to incident electromagnetic waves at the operating wavelength of the antenna than in the absence of the conductors. Means are provided for causing a desired heating current to flow through the conductors, thereby enabling sufficient heat to be generated in the dielectric member to de-ice the radome during severe weather conditions. A specific embodiment of the radome of the invention is described for use with an antenna of the type used in a microwave landing system.
SMI adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1987-01-01
The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarici, G.; Klepper, C Christopher; Colas, L.
A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less
NASA Astrophysics Data System (ADS)
Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.
2009-11-01
W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.
NASA Astrophysics Data System (ADS)
Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.
2013-09-01
A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.
Design of Dual Band Microstrip Patch Antenna using Metamaterial
NASA Astrophysics Data System (ADS)
Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.
2017-11-01
Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.
Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.
Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu
2017-12-08
This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.
Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H
2016-04-01
A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.
Phase shifter for antenna beam steering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jindal, Ravi, E-mail: rjindal21@gmail.com; Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr
Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aimmore » of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.« less
Structural optimization and recent large ground antenna installations
NASA Technical Reports Server (NTRS)
Levy, Roy
1989-01-01
Within the past several years, the Jet Propulsion Laboratory has designed and built major ground antenna structures in Spain, Australia, and California. One of the antennas at each location is a 70 meter-diameter structure that is a retrofit of the existing 64 meter antenna. The 64 meter existing antennas were first stripped back to a 34 meter interior and then completely new construction with deeper trusses was added to extend the interior to 70 meters. The 70 meter project included the rare opportunity to collect field data to compare with predictions of the finite-element analytical models. The new quadripod design was tested for its lower mode natural frequencies and the main reflector was measured by theodolite to determine deflections of subsets of the backup-structure deformations under load. The emphasis here is to examine measurement results and possibly provide some appreciation of the relationship of predictions made from the design model to actual measurements.
Antennas for the array-based Deep Space Network: current status and future designs
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Gama, Eric
2005-01-01
Development of very large arrays1,2 of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network DSN) by two or three orders of magnitude thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-m antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. NASA has undertaken a technology program to prove the performance and cost of a very large DSN array. Central to that program is a 3-element interferometer to be completed in 2005. This paper describes current status of the low cost 6-meter breadboard antenna to be used as part of the interferometer and the RF design of the 12-meter antenna.
NASA Astrophysics Data System (ADS)
Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal
2017-07-01
We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.
Decoupling antennas in printed technology using elliptical metasurface cloaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernety, Hossein M., E-mail: hmehrpou@go.olemiss.edu, E-mail: yakovlev@olemiss.edu; Yakovlev, Alexander B., E-mail: hmehrpou@go.olemiss.edu, E-mail: yakovlev@olemiss.edu
2016-01-07
In this paper, we extend the idea of reducing the electromagnetic interactions between transmitting radiators to the case of widely used planar antennas in printed technology based on the concept of mantle cloaking. Here, we show that how lightweight elliptical metasurface cloaks can be engineered to restore the intrinsic properties of printed antennas with strip inclusions. In order to present the novel approach, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies cloaked by confocal elliptical metasurfaces formed by arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the drasticmore » suppression of mutual near-field and far-field couplings between the antennas, and thus, their radiation patterns are restored as if they were isolated. Moreover, it is worth noting that this approach is not limited to printed radiators and can be applied to other planar structures as well.« less
NASA Astrophysics Data System (ADS)
Ryan, Colan Graeme Matthew
Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates NRI-TL elements to achieve circular polarization at 2.3 GHz and 2.7 GHz, with radiation efficiencies of 70% and 78%, respectively. Optical transparency of 50% is then realized by cutting a grid through the antenna and substrate, making the device suitable for direct integration with solar panels. Therefore, this research provides several proof-of-concept devices to highlight the flexibility and multi-band properties of the G-NRI-TL which extend the capabilities of microwave transceiver systems.
Particle-In-Cell Simulations on Electric Field Antenna Characteristics in the Spacecraft Environment
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.
2006-12-01
The Solar Terrestrial Physics (STP) group in Japan has organized a new magnetospheric mission named SCOPE whose objective is to investigate the scale-coupling process of plasma dynamics in the Terrestrial magnetosphere. For the sophisticated electric field measurements planned in the SCOPE mission, we have to investigate the antenna characteristics which are essential for the precise calibration of observed data. Particularly, (1) realistic antenna geometries including spacecraft body and (2) inhomogeneous plasma environment created by plasma-spacecraft interactions should be taken into consideration in the antenna analysis for application to the scientific mission. However, the analysis of the antenna impedance is very complex because the plasma is a dispersive and anisotropic medium, and thus it is too difficult to consider the realistic plasma environment near the spacecraft by the theoretical approaches. In the present study, we apply the Particle-In-Cell simulations to the antenna analysis, which enables us to treat the antenna model including a spacecraft body and analyze the effects of photoelectron emission on antenna characteristics. The present antenna model consists of perfect conducting antennas and spacecraft body, and the photoelectron emission from the sunlit surfaces is also modeled. Using these models, we first performed the electrostatic simulations and examined the photoelectron environment around the spacecraft. Next, the antenna impedance under the obtained photoelectron environment was examined by the electromagnetic simulations. Impedance values obtained in photoelectron environment were much different from those in free space, and they were analogous to the impedance characteristics of an equivalent electric circuit consisting of a resistance and capacitance connected in parallel. The validity of the obtained values has been examined by the comparison with the measurements by the scientific spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de
2015-10-15
This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
Optical antenna gain. III - The effect of secondary element support struts on transmitter gain
NASA Technical Reports Server (NTRS)
Klein, B. J.; Degnan, J. J.
1976-01-01
The effect of a secondary-element spider support structure on optical antenna transmitter gain is analyzed. An expression describing the influence of the struts on the axial gain, in both the near and far fields, is derived as a function of the number of struts and their width. It is found that, for typical systems, the struts degrade the on-axis gain by less than 0.4 dB, and the first side-lobe level is not increased significantly. Contour plots have also been included to show the symmetry of the far-field distributions for three- and four-support members.
Parallel traveling-wave MRI: a feasibility study.
Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2012-04-01
Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.
Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.
2007-01-01
The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.