Science.gov

Sample records for antenna straps design

  1. Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio

    SciTech Connect

    Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D; D'Amico, G; Yager, R; Hosea, J; Wilson, J R; Ryan, P

    2009-05-26

    Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.

  2. Rotated 4-strap ICRF antenna: design and initial results

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Beck, W.; Doody, J.; Garret, M.; Koert, P.; Lin, Y.; Vieira, R.; Terry, J.; The Alcator C-MOD Team

    2011-10-01

    Previously, we have utilized low Z thin films to mitigate impurities related to ion cyclotron range of frequency (ICRF) antenna operation. A new rotated antenna is has been designed and installed to minimize impurity production by imposing symmetry along the total magnetic field line. The antenna is aligned to a 10° field pitch where the typical discharge range is 7-13° in C-Mod. Compared to our standard antennas (0° pitch), the power density (MW/m2) for the rotated antenna is ~50% higher for a given injected power for the rotated antenna due a decrease in available surface area. Due to geometric limitations, two locations have the RF electric field aligned with the total magnetic field and have potential to limit the antenna voltage handling. Initial results from experiments characterizing the power and voltage limits of the antenna will be presented. Using the standard antennas as reference, we will also present results from comparison of antenna impurity characteristics and their impact on the scrape off layer transport. Supported by US DOE award DE-FC02-99ER54512.

  3. Structural Design of the ICRH Antenna's Straps of the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Berruti, T.; Gola, M. M.; Salvetti, M. F.

    2002-11-01

    The ICRH antenna of the Ignitor experiment consists of an array of four poloidally-oriented straps, fed at one end and short circuited to the vacuum vessel at the other end. The feeders and the coaxial lines are located at the central part of the antenna because of the limited size of the equatorial ports. Both the assembly and the maintenance operations must be carried out in remote handling. Detailed non-linear thermo-structural analyses have been performed resorting to the ANSYS finite element code. A 3-D model of a single strap has been generated and thermal and electromagnetic loads have been applied to simulate normal and out-of-normal operating conditions. The Lorentz forces generated by eddy currents have been calculated and a resistive lumped circuit model has been considered in order to determine the currents, and the related forces, induced during a vertical displacement event. The design of the straps is optimized to facilitate remote handling operations and to minimize stresses at the connections. The results show that the straps will be able to withstand the expected loads during the considered operation conditions.

  4. First results with 3-strap ICRF antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Kallenbach, A.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Pütterich, Th.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; ASDEX Upgrade Team

    2016-08-01

    The 3-strap antennas in ASDEX Upgrade allow ICRF operation with low tungsten (W) content in the confined plasma with W-coated antenna limiters. With the 3-strap antenna configuration, the local W impurity source at the antenna is drastically reduced and the core W concentration is similar to that of the boron coated 2-strap antenna at a given ICRF power. Operation of the 3-strap antennas with the power ratio between the central and the outer straps of 1.5:1 and 2:1 is adopted to minimize the ICRF-specific W release.

  5. Upgrades to the 4-strap ICRF Antenna in Alcator C-Mod

    SciTech Connect

    G. Schilling; J.C. Hosea; J.R. Wilson; W. Beck; R.L. Boivin; P.T. Bonoli; D. Gwinn; W.E. Lee; E. Nelson-Melby; M. Porkolab; R. Vieira; S.J. Wukitch; and J.A. Goetz

    2001-06-12

    A 4-strap ICRF antenna suitable for plasma heating and current drive has been designed and fabricated for the Alcator C-Mod tokamak. Initial operation in plasma was limited by high metallic impurity injection resulting from front surface arcing between protection tiles and from current straps to Faraday shields. Antenna modifications were made in February 2000, resulting in impurity reduction, but low-heating efficiency was observed when the antenna was operated in its 4-strap rather than a 2-strap configuration. Further modifications were made in July 2000, with the installation of BN plasma-facing tiles and radio- frequency bypassing of the antenna backplane edges and ends to reduce potential leakage coupling to plasma surface modes. Good heating efficiency was now observed in both heating configurations, but coupled power was limited to 2.5 MW in H-mode, 3 MW in L-mode, by plasma-wall interactions. Additional modifications were started in February 2001 and will be completed by this meeting. All the above upgrades and their effect on antenna performance will be presented.

  6. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  7. Influence of mutual coupling between ICRH antenna straps on the load resilience of hybrid couplers

    SciTech Connect

    Lamalle, P. U.; Messiaen, A.

    2007-09-28

    The mutual coupling present between ICRF antenna straps can strongly reduce the performance of quadrature hybrid couplers when used as 'ELM dump' circuits. An analytical study of this effect shows that during resistive ELM-like load perturbations of a matched circuit configuration, the fraction of the reflected power returned to the generator through the hybrid has a lower bound that rapidly increases with the ratio {xi}{approx} (mutual reactance between straps)/(strap input resistance). At very low levels of mutual the reflected power is efficiently diverted to the dummy load. However when {xi} becomes of order 1, which readily occurs at low resistive loading, the load resilience of the quadrature hybrid coupler becomes inhibited. Illustrations based on matching circuit simulations for the JET ITER-like ICRF antenna are presented. The behaviour of the hybrids is found the same with the load resilient 'conjugate T' circuit as in the case of 'classic' tuners. The insertion of decoupling circuits between the tuners and the antenna significantly improves the load resilience.

  8. Influence of mutual coupling between ICRH antenna straps on the load resilience of hybrid couplers

    NASA Astrophysics Data System (ADS)

    Lamalle, P. U.; Messiaen, A.

    2007-09-01

    The mutual coupling present between ICRF antenna straps can strongly reduce the performance of quadrature hybrid couplers when used as "ELM dump" circuits. An analytical study of this effect shows that during resistive ELM-like load perturbations of a matched circuit configuration, the fraction of the reflected power returned to the generator through the hybrid has a lower bound that rapidly increases with the ratio ξ˜ (mutual reactance between straps)/(strap input resistance). At very low levels of mutual the reflected power is efficiently diverted to the dummy load. However when ξ becomes of order 1, which readily occurs at low resistive loading, the load resilience of the quadrature hybrid coupler becomes inhibited. Illustrations based on matching circuit simulations for the JET ITER-like ICRF antenna are presented. The behaviour of the hybrids is found the same with the load resilient `conjugate T' circuit as in the case of `classic' tuners. The insertion of decoupling circuits between the tuners and the antenna significantly improves the load resilience.

  9. Measurements and simulations of ICRF induced plasma convection in front of the 3-strap antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; ASDEX Upgrade Team; Eurofusion MST1 Team

    2016-10-01

    Plasma heating with waves in the Ion Cyclotron Range of Frequency (ICRF) is one of the standard heating methods in tokamaks. The parallel (to the magnetic field) component of the electric field of the waves enhances the edge plasma potential nonlinearly through radio-frequency-sheath (rf-sheath) rectification. The gradient of this potential across magnetic field drives plasma convection in the Scrape-Off Layer. To reduce the rf-sheath driven close to ICRF antennas, the parallel electric near-field has to be decreased. This can be achieved by minimization of undesired parasitic currents induced in the antenna box by the antenna currents. New antennas with a novel approach to reduce those undesired currents through the proper phase and amplitude of the current in 3-straps have been installed and validated on ASDEX Upgrade. With reflectometers embedded in one 3-strap antenna at different poloidal locations, the density profiles in front of the antenna can be measured in when the antenna is either active or passive. The ICRF induced edge plasma convection in different antenna feeding configurations (different phasing, different power ratio between the central and the side straps) has thus been studied. Also we have carried out comprehensive simulations by running the EMC3EIRENE, RAPLICASOL and SSWICH codes in an iterative and quasi self-consistent way. The steadystate ICRF induced plasma density convection can clearly be reproduced in the models and compared with the ones measured in experiments.

  10. Field-aligned ICRF antenna design for EAST

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Lin, Y.; Qin, C.; Zhang, X.; Beck, W.; Koert, P.; Zhou, L.

    2015-12-01

    For ion cyclotron range of frequency (ICRF), a number of physics and technological challenges remain for steady state, toroidal devices. Among the most critical is maintaining good coupling and maximizing the coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. As pulse length increases, enhanced localized heat loads associated with antenna operation can challenge antenna integrity. In addition, ICRF impurity sources and contamination need to be minimized to enable effective plasma heating. Here, we report on a four strap field aligned (FA) antenna design for the EAST tokamak. A FA antenna is an antenna where the current straps and antenna side enclosure are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In C-Mod, a FA antenna has been shown to be inherently load tolerant which allows for robust power delivery to the plasma. Furthermore, the RF enhanced heat flux and antenna impurity source were nearly eliminated. For both L and H-mode discharges, the core impurity contamination is 20-30% lower but not eliminated. The emerging physics understanding is that the local RF impurity sources and RF enhanced heat flux is reduced due to the geometric alignment of the FA antenna while impurity contamination is a result of far field sheaths. An important aspect of antenna design is to identify a core absorption scenario that is characterized by strong single pass absorption for a broad range of target discharges. To maximize power coupling, the antenna spectrum needs to balance the k|| needed for strong single pass absorption and high coupling efficiency through evanescent layer. The latest design for a FA four strap adapted to EAST device is balance between geometrical constraints and physics requirements.

  11. Three-Dimensional Electromagnetic Modeling of the ITER ICRF Antenna (External Matching Design)

    SciTech Connect

    Louche, F.; Lamalle, P.U.; Dumortier, P.; Messiaen, A.M.

    2005-09-26

    The present work reports on 3D radio-frequency (RF) analysis of a design for the ITER antenna with the CST Microwave Studio registered software. The four-port junctions which connect the straps in triplets have been analyzed. Non-TEM effects do not play any significant role in the relevant frequency domain, and a well-balanced splitting of current between the straps inside a triplet is achieved. The scattering matrix has also been compared with RF measurements on a scaled antenna mockup, and the agreement is very good. Electric field patterns along the system have been obtained, and the RF optimization of the feeding sections is under way.

  12. Overview on Experiments On ITER-like Antenna On JET And ICRF Antenna Design For ITER

    SciTech Connect

    Nightingale, M. P. S.; Blackman, T.; Edwards, D.; Fanthome, J.; Graham, M.; Hamlyn-Harris, C.; Hancock, D.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nicholls, K.; Stork, D.; Whitehurst, A.; Wilson, D.; Wooldridge, E.

    2009-11-26

    Following an overview of the ITER Ion Cyclotron Resonance Frequency (ICRF) system, the JET ITER-like antenna (ILA) will be described. The ILA was designed to test the following ITER issues: (a) reliable operation at power densities of order 8 MW/m{sup 2} at voltages up to 45 kV using a close-packed array of straps; (b) powering through ELMs using an internal (in-vacuum) conjugate-T junction; (c) protection from arcing in a conjugate-T configuration, using both existing and novel systems; and (d) resilience to disruption forces. ITER-relevant results have been achieved: operation at high coupled power density; control of the antenna matching elements in the presence of high inter-strap coupling, use of four conjugate-T systems (as would be used in ITER, should a conjugate-T approach be used); operation with RF voltages on the antenna structures up to 42 kV; achievement of ELM tolerance with a conjugate-T configuration by operating at 3{omega} real impedance at the conjugate-T point; and validation of arc detection systems on conjugate-T configurations in ELMy H-mode plasmas. The impact of these results on the predicted performance and design of the ITER antenna will be reviewed. In particular, the implications of the RF coupling measured on JET will be discussed.

  13. Design of a developmental dual fail operational redundant strapped down inertial measurement unit

    NASA Technical Reports Server (NTRS)

    Morrell, F. R.; Russell, J. G.

    1980-01-01

    An experimental redundant strap-down inertial measurement unit (RSDIMU) is being developed at NASA-Langley as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit consists of four two-degrees-of-freedom (TDOF) tuned-rotor gyros, and four TDOF pendulous accelerometers in a skewed and separable semi-octahedron array. The system will be used to examine failure detection and isolation techniques, redundancy management rules, and optimal threshold levels for various flight configurations. The major characteristics of the RSDIMU hardware and software design, and its use as a research tool are described.

  14. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  15. Design and implementation of interactive strap-down inertial navigation simulation system for UAV

    NASA Astrophysics Data System (ADS)

    Cheng, Chuan-qi; Cheng, Xiang; Hao, Xiang-yang; Zhao, Man-dan

    2016-01-01

    Strap-down inertial navigation system (SINS) is widely used in military field, to facilitate the study of SINS algorithms and various coupled navigation algorithms, a simulation system of SINS is designed. Based on modular design, with good portability and expansibility, the system consists of four independent modules: analysis module of motion state, trajectory simulator, IMU simulation module and SINS calculation module. With graphical interface, the system can control every motion state of the trajectory, which is convenient to generate various trajectories efficiently. Using rotation vector attitude algorithm to process simulation data, experiment results show that the attitude, velocity and position error is consistent with the theoretical value, which verifies the rationality of the simulation model and the availability of the simulation system.

  16. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis

    PubMed Central

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-01-01

    Background Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. Objectives To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Materials and Methods Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Results Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). Conclusions The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one). PMID:28180116

  17. Coupling Of The JET ICRF Antennas In ELMy H-mode Plasmas With ITER Relevant Plasma-Straps Distance

    SciTech Connect

    Mayoral, M.-L.; Monakhov, I.; Jacquet, P.; Brix, M.; Graham, M.; Erents, K.; Korotkov, A.; Lomas, P.; Mailloux, J.; McDonald, D. C.; Stamp, M.; Walden, A.; Hobirk, J.; Ongena, J.

    2007-09-28

    In ITER, the requirement for the ICRF antenna is to deliver 20 MW in ELMy H-mode plasmas with an averaged antenna - plasma separatrix distance of 14 cm. Two major problems will have to be solved: the very fast change in antenna loading during ELMs and the decrease of the loading when the plasma is pushed far away from the antenna. JET has the capability to combine these conditions and for the first time, experiments were performed in ELMy H-mode at antenna--separatrix distance, referred as ROG, varied from 10 to 14 cm. When ROG was increased, the perturbation caused by ELMs was found to decrease significantly and the loading between ELMs was found to deteriorate to very low values. In order to compensate the latter unwanted effect, different levels of deuterium gas were injected in the edge either from the divertor, the midplane or the top of the tokamak. Using this technique, the loading was increased by up to a factor 6 and up to 8 MW of ICRF power were coupled.

  18. Pyrolytic graphite film thermal straps: Characterization testing

    NASA Astrophysics Data System (ADS)

    McKinley, Ian M.; Smith, Colin H.; Ramsey, Perry G.; Rodriguez, Jose I.

    2016-12-01

    This paper reports on the experimentally-measured conductance, stiffness, and particulate contamination of pyrolytic graphite film thermal straps. This work was aimed at assessing the feasibility of replacing standard aluminum foil in thermal straps with graphite film, which is more conductive and lighter. Four different U-shaped straps with similar cross-sections and terminals were tested in the study. Three of the straps had a three-inch long flexible section. One of these was made from aluminum 1100 foil, and two were made from Pyrovo pyrolytic graphite film (PGF). One of the PGF straps was fabricated with an aluminized mylar blanket that was sealed at the terminals. The last strap was made from PGF, was blanketed, and was six inches long. The conductance of each strap was measured as a function of mean strap temperature ranging from 60 K to 300 K. The peak measured conductance of the three-inch PGF and aluminum straps were 1.0 W/K at 162 K and 0.28 W/K at 64 K, respectively. The conductance of all straps converged to around 0.3 W/K as the mean strap temperature approached 60 K. In addition, the peak conductance of the six-inch PGF strap was 0.83 W/K at 150 K. The fact that its peak conductance was near the conductance of the three-inch PGF strap indicated that the thermal resistance of the terminals in the PGF straps was significant. For a given temperature, the conductance varied by as much as 15% for two units of the same strap design. One of the straps was thermally cycled from 300 K to 60 K ten times. Its conductance was unchanged by the thermal cycling. Furthermore, one of the six-inch long PGF straps was subjected to random vibration. The random vibration spectrum was designed so that one terminal achieved a maximum displacement of ± 0.25 in. from its neutral position in three orthogonal axes while the other was held stationary. The conductance of this strap was unaffected by the random vibration test. The straps were also tested for the level of

  19. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    SciTech Connect

    Ryan, Philip Michael; Baity Jr, F Wallace; Caughman, John B; Goulding, Richard Howell; Hosea, J.; Greenough, Nevell; Nagy, Alex; Pinsker, R.; Rasmussen, David A

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  20. Design of an ICRH antenna for RF-plasma interaction studies

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Ryan, P. M.; Bigelow, T. S.; Diem, S. J.; Goulding, R. H.; Rasmussen, D. A.

    2012-10-01

    The interaction between an ion cyclotron resonant heating antenna and the near-field plasma can lead to rectified (high voltage) sheath formation and subsequent material erosion. This issue will be studied by using a simple loop antenna operated on the Physics Integration eXperiment (PhIX) at ORNL, which is a linear plasma device that uses an ECH heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. The antenna consists of a single strap with a single-tier Faraday shield. The antenna is ˜one-quarter wavelength long at 50 MHz and grounded at one end, which will allow for strap voltages of >20 kV to be located near the plasma. The PhIX edge plasma near the antenna is similar to typical edge conditions, with ne˜1-2x10^18/m^3 and Te=5-10 eV, with a magnetic field of 0.1-0.2 Tesla. Several diagnostics will be used to characterize the near-field interaction, including Langmuir and capacitive probes, energy analyzers, Stark effect spectroscopy, and local/remote material erosion measurements. Details of the antenna design and initial characterization will be presented.

  1. Head Strap Double Fluid Level Device: An Innovative and User Friendly Design to Record Natural Head Position (NHP)

    PubMed Central

    Jose, Nidhin Philip; Shetty, Siddarth

    2015-01-01

    Head positions can be oriented in a standardized position when the patient stands upright and focusses his/her eyes into a point in infinity. This is the natural head position. This position offers the maximum reproducibility and correlates well with the clinical picture offered to the diagnostician. This article describes an innovative and user friendly method to record natural head position using the head strap double fluid level device, a design modified from the popular fluid level device by Showfety, Vig and Matteson. PMID:25738103

  2. A new radiation stripline ICRF antenna design for EAST Tokamak

    SciTech Connect

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S.; Braun, F.; Notedame, J.-M.; Kasahara, H.; Collaboration: ICRF Team on EAST

    2014-02-12

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST.

  3. Microfluidic serpentine antennas with designed mechanical tunability.

    PubMed

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-07

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  4. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  5. Baseline antenna design for space exploration initiative

    NASA Technical Reports Server (NTRS)

    Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz

    1993-01-01

    A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.

  6. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  7. Conformal Antenna Array Design Handbook

    DTIC Science & Technology

    1981-09-01

    PLANAR ARRAY PHASE C LbP=IowITH CORRECT CONFORMAL ARRAY PHASE C NbPt NOe OF PhS&. SH-IFT UITSPII- NoP*.GT*1O CONRCLT PHASES ARE USED C TAP19PATTLRN...of Antenna Arrays, Radio Science , Vol. 3, May 1968, pp. 401-522. M. T. Ma, "Theory and Application of Antenna Arrays", Wiley, New York, 1974, Chapter

  8. MRF study. Part 2: Antenna design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An assessment of the practical feasibility of the design and construction of an antenna to meet the requirements of a conceptual radar system is studied. Both the subscale antenna, nominally 5 by 4 meters in dimensions, and the full scale antenna, taken as nominally 18 by 4 meters in size, were considered. The examination of feasibility was from electrical, mechanical, and thermal standpoints. Fundamental, electrical, microwave design questions applying to both the subscale and the full scale antennas were considered in greater detail than questions of mechanical configuration and thermal design. Layouts were made in the development of preliminary configurations, along with a deployment method, for the subscale antenna in conjunction with an antenna cluster for alternate arrangements of the three pallet configuration. Implementation of the array and support structure and attachment of the array to the support and thermal provision was considered. Results show that a microwave design of antennas that incorporate traveling wave arrays can be effected with the beam scanned to 45 degrees in elevation without occurrence of higher order beams.

  9. Design of the ITER ICRF Antenna

    SciTech Connect

    Hancock, D.; Nightingale, M.; Bamber, R.; Dalton, N.; Lister, J.; Porton, M.; Shannon, M.; Wilson, D.; Wooldridge, E.; Winkler, K.

    2011-12-23

    The CYCLE consortium has been designing the ITER ICRF antenna since March 2010, supported by an F4E grant. Following a brief introduction to the consortium, this paper: describes the present status and layout of the design; highlights the key mechanical engineering features; shows the expected impact of cooling and radiation issues on the design and outlines the need for future R and D to support the design process. A key design requirement is the need for the mechanical design and analysis to be consistent with all requirements following from the RF physics and antenna layout optimisation. As such, this paper complements that of Durodie et al.

  10. Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.; Christie, R.; Kashani, A.; Opalach, C.

    2012-01-01

    After evaluating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.

  11. Some aspects of the aerodynamics of separating strap-ons

    NASA Astrophysics Data System (ADS)

    Biswas, K. K.; Krishnan, C. G.

    1994-11-01

    An aerodynamics model for analyzing strap-on separation is proposed. This model comprises both interference aerodynamics and free-body aerodynamics. The interference aerodynamics is primarily due to the close proximity of core and strap-ons. The free-body aerodynamics is solely due to the body geometry of the strap-ons. Using this aerodynamic model, the dynamics of separating strap-ons has been simulated in a six-degree-of-freedom mode to determine if a collision occurs. This aerodynamic model is very handy for various off-design studies relating to separating strap-ons.

  12. Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.; Christie, R.; Gebby, P.; Kashani, A.

    2012-01-01

    After evalu1ating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.

  13. 47 CFR 17.9 - Designated antenna farm areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna...

  14. 47 CFR 17.9 - Designated antenna farm areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna...

  15. 47 CFR 17.9 - Designated antenna farm areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna...

  16. 47 CFR 17.9 - Designated antenna farm areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna...

  17. 47 CFR 17.9 - Designated antenna farm areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna...

  18. Stockpile reliability program for special purpose strap. Technical report

    SciTech Connect

    Mayfield, N.A.

    1993-06-01

    Since 1962, web strap tie-down assemblies have been used to secure nuclear weapon containers on tactical vehicles. In 1968, a 36 month useful life (in use) requirement was placed on the straps used to secure war reserve nuclear weapons containers on vehicles. This means that no matter what condition the straps were in, after 36 months they could no longer be used. Due to the numerous problems with the straps for different reasons throughout the years, in 1986 the US Army Armament Research, Development and Engineering Center was tasked to design a new special purpose strap. The US Armament, Munition and Chemical Command, Rock Island, was assigned to be the item manager and to procure the new design straps. Also, at that time, it was agreed that instead of placing the 36 month useful life requirement on the new straps, a stockpile reliability program would be established. This program was to determine whether real usage of tie-down strap could justify either the establishment of a 36 month useful life requirement or have no requirement at all and reject straps based on their condition as determined by inspections only. This report reflects the results, conclusions, and recommendations based on a 5 year stockpile reliability program.... Web strap tie-down assemblies, Stockpile Reliability Program(SPR), In-field use environment, Control storage sample, Base line, Ultimate load, Failure.

  19. FORTE antenna element and release mechanism design

    NASA Technical Reports Server (NTRS)

    Rohweller, David J.; Butler, Thomas A.

    1995-01-01

    The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.

  20. Antenna Design Using the Efficient Global Optimization (EGO) Algorithm

    DTIC Science & Technology

    2011-05-20

    small antennas in a parasitic super directive array configuration. (b) A comparison of the driven super directive gain achievable with these...we discuss antenna design optimization using EGO. The first antenna design is a parasitic super directive array where we compare EGO with a classic...In Section 4 (RESULTS AND DISCUSSION) we present design optimizations for parasitic, super directive arrays; wideband antenna design; and the

  1. Hemispherical radiating pattern antenna design for radio meteor observation

    NASA Astrophysics Data System (ADS)

    Kákona, J.

    2016-01-01

    A highly directional pattern antenna is usually used for radio meteor observations, but these types of antennas became impractical in cases where we have multiple transmitters spread around a reception station. In that situation the hemispherical sensitivity of the antenna is more important than directional antenna gain. We present a hemispherical radiation pattern antenna design which could be modified for almost any observational frequency reflective by a meteor trail. The symmetry of the radiation pattern of such antenna allows an easy construction of antenna arrays which could be used for the angular measurement of received signals.

  2. Design concepts for large reflector antenna structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Adams, L. R.

    1983-01-01

    Practical approaches for establishing large, precise antenna reflectors in space are described. Reflector surfaces consisting of either solid panels or knitted mesh are considered. The approach using a deep articulated truss structure to support a mesh reflector is selected for detailed investigations. A new sequential deployment concept for the tetrahedral truss is explained. Good joint design is discussed, and examples are described both analytically and by means of demonstration models. The influence of curvature on the design and its vibration characteristics are investigated.

  3. Deployable antenna kinematics using tensegrity structure design

    NASA Astrophysics Data System (ADS)

    Knight, Byron Franklin

    With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer

  4. Second-generation zone plate antenna design

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    1999-11-01

    A well-designed phase correcting Fresnel zone plate antenna can provide performance superior to a lens or, in some cases, a paraboloid antenna, particularly at millimeter wavelengths. This paper discusses design considerations and includes approaches to give improved characteristics, such as greater efficiency or higher gain. The approaches include the use of quarter-wave or better correction, thickness designs that permit the central zone and other zones to be air dielectric (for lower losses), and the use of low dielectric constant materials to reduce surface reflections and multiple reflections. At higher millimeter-wave or sub- millimeter wavelengths low loss materials are important. More sophisticated zoning is described, as well as the use of a compromise thickness to compensate for the fact that refraction of waves at the surfaces causes the path lengths through the zone plate to be different at different angles of incidence. Multiple-band zone plates are discussed.

  5. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  6. Millimeter-wave antenna design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1977-01-01

    Problems and opportunities are discussed for adapting certain design features and construction techniques, developed for producing high accuracy ground based radio dishes, to producing milimeter wave dishes for space use. Specifically considered is a foldable telescope of 24 m aperture and 9.6 m focal length, composed of 37 rigid hexagonal panels, which will fit within the 4.5 m diameter x 18 m long payload limits of space shuttle. As here conceived, the telescope would be a free flyer with its own power and pointing systems. Some of the structural design features and construction procedures are considered.

  7. Evolutionary design of corrugated horn antennas

    NASA Technical Reports Server (NTRS)

    Hoorfar, F.; Manshadi, V.; Jamnejad, A.

    2002-01-01

    An evolutionary progranirnitzg (EP) algorithm is used to optimize pattern of a corrugated circularhorn subject to various constraints on return loss and antenna beamwidth and pattern circularity and low crosspolarization. The EP algorithm uses a Gaussian mutation operator. Examples on design synthesis of a 45 section corrugated horn, with a total of 90 optimization parameters, are presented. The results show excellent and efficient optimization of the desired horn parameters.

  8. Designs for the ATDRSS tri-band reflector antenna

    NASA Technical Reports Server (NTRS)

    Lee, Shung-Wu; Zimmerman, Martin L.; Fujikawa, Gene; Sharp, G. Richard

    1991-01-01

    Two approaches to design a tri-band reflector antenna for the Advanced TDRSS are examined. Two reflector antenna configurations utilizing frequency selective surfaces for operation in three frequency bands, S, Ku, and Ka, are proposed. Far-field patterns and the antenna feed losses were computed for each configuration. An offset-fed single reflector antenna configuration was adapted for conceptual spacecraft design. CADAM drawings were completed and a 1/13th scale model of the spacecraft was constructed.

  9. The design of parabolic cylindrical antenna with light emitting plasma

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Shi, Jia-ming; Liu, Yang; Zhang, Ji-kui; Li, Zhi-gang

    2016-11-01

    By using the electromagnetic wave reflection characteristics of the plasma, the plasma can be used to design the reflector antenna. the paper designs a metal parabolic cylindrical antenna and a plasma luminescence parabolic cylindrical antenna, and uses CST software calculating the radiative properties of them, analysising the key parameters of plasma luminescence parabolic cylindrical antenna radiation and scattered radiation resistance. Simulation results show that selecting appropriate plasma column spacing, plasma frequency, collision frequency, the plasma luminescence parabolic cylindrical antenna has the same radiation performance with metal parabolic antenna, at the same time, the RCS of plasma antenna in working and not working are smaller compared with the metal antenna, especially in plasma does not work ,the bistatic RCS reduced to a greater extent than the previous related literature design.

  10. Electromechanical co-design and experiment of structurally integrated antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Jinzhu; Huang, Jin; Song, Liwei; Zhang, Dan; Ma, Yunchao

    2015-03-01

    This paper proposes an electromechanical co-design method of a structurally integrated antenna to simultaneously meet mechanical and electrical requirements. The method consists of three stages. The first stage involves finishing an initial design of the microstrip antenna without a facesheet or honeycomb, according to some predefined performances. Subsequently, the facesheet and honeycomb of the structurally integrated antenna are designed using an electromechanical co-design optimization. Based on the results from the first and second stages, a fine full-wave electromagnetic model is developed and the coarse design results are further optimized to meet the electrical performance. The co-design method is applied to the design of a 2.5 GHz structurally integrated antenna, and then the designed antenna is fabricated. Experiments from the mechanical and electrical performances are conducted, and the results confirm the effectiveness of the co-design method. This method shows great promise for the multidisciplinary design of a structurally integrated antenna.

  11. Satellite antenna layout and optimization in electromagnetic compatibility design

    NASA Astrophysics Data System (ADS)

    Zhang, Jinshuo; Xie, Shuguo; Liu, Yan

    2009-12-01

    This paper firstly analyzes the main factors that impact the layout of satellite antenna. The uniform geometrical theory of diffraction (UTD) is used to establish mathematical model for calculating the coupling of satellite antenna, and set up the objective function of the placement optimization. The genetic algorithm incorporating high-frequency simulation to minimize antenna coupling by optimally positioning satellite antenna is described in detail. The results of antenna placement on a realistic satellite show that this method is effective in the optimal design of satellite antenna layout for the purpose of electromagnetic compatibility.

  12. Design and Analysis of Embedded Antennas for 60-mm Mortars

    DTIC Science & Technology

    2008-06-01

    antenna patches were fabricated from RT Duroid high-frequency laminate (RT6010) in the form of circular microstrip patches. This material is well...Weld) was used as a radome covering on each of the four antenna elements (figure 1 shows installed antenna elements and radome). A miniature ...alternative for embedded, high-g telemetry antenna designs. 7 3. References 1. Flowmerics, Inc. Microstripes . http://www.cst.com/ microstripes

  13. Two-Arm Flexible Thermal Strap

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.

    2011-01-01

    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.

  14. Adaptive antenna arrays for satellite communications: Design and testing

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Swarner, W. G.; Walton, E. K.

    1985-01-01

    When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.

  15. Electrical Testing of the Full-Scale model of the NSTX HHFW Antenna Array

    SciTech Connect

    Fadnek, A.; Ryan, P.M.; Sparks, D.O.; Swain, D.W.; Wilgen, J.B.

    1999-04-12

    The 30 MHz high harmonic fast wave (HHFW) antenna array for NSTX consists of 12 current straps, evenly spaced in the toroidal direction. Each pair of straps is connected as a half-wave resonant loop and will be driven by one transmitter, allowing rapid phase shift between transmitters. A decoupling network using shunt stub tuners has been designed to compensate for the mutual inductive coupling between adjacent current straps, effectively isolating the six transmitters from one another. One half of the array, consisting of six full-scale current strap modules, three shunt stub decouplers, and powered by three phase-adjustable rf amplifiers had been built for electrical testing at ORNL. Low power testing includes electrical characterization of the straps, operation and performance of the decoupler system, and mapping of the rf fields in three dimensions.

  16. An Optimal Design For Steerable Dish Antenna With BWG

    NASA Technical Reports Server (NTRS)

    Chuang, K. L.; Lansing, F. L.

    1990-01-01

    New design proposed for highly-efficient 34-m-diameter millimeter-wavelength antennas of NASA's Deep Space Network. Incorporates axial beam waveguide, BWG, and improved structure to maintain shape and alignment of reflecting surfaces. General approach to conceptual construction of structure to modularize overall system so critical constraint conditions pertaining to microwave optics and structural performance satisfied. Design retrofitted to existing NASA Deep Space Network 34-m antennas, or used as basis to build large ground-based steerable antennas. Engineering concepts involved in design adapted to design of other large, steerable antennas for telecommunications, radio astronomy, and military uses.

  17. Zeroth order resonator (ZOR) based RFID antenna design

    NASA Astrophysics Data System (ADS)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  18. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  19. Design and Evaluation of Compact Antennae for Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Erjavec, T. J.; Vierinen, J.

    2014-12-01

    Compact high frequency (HF) antennas are crucial for enabling the use of HF radar sounding for ionospheric remote sensing using a dense network of sounders. Current ionosonde antennas are large and expensive. In this study, we investigate two compact HF antenna designs through modeling and prototypes: a folded resistively loaded dipole, and a capacitively tuned small magnetic loop. Both antennas were modeled using FEKO to investigate antenna efficiency and beam patterns. The folded dipole was bought off the shelf, while the compact magnetic loop prototype was built in house. In this study, we present both modeling and measurements of the antenna characteristics. We also present the first ionospheric soundings obtained using the prototype antennas.

  20. Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.

  1. Design of Frequency Tunable Compact Antenna and Millimeter to Terahertz Array Antennas

    NASA Astrophysics Data System (ADS)

    Damman, Rafid Noel

    As increased bandwidth demands continue to rise and overly crowded existing bands need be relieved, the study of frequency tunable and higher frequency array antennas is needed. By tuning the resonant frequency of an antenna, the bandwidth increases since the operating frequency has increased from the tuning. Also, higher frequency antenna designs are beginning to take flight to alleviate the lower bands and allow for an increase in bandwidth. Both the methods can bring a solution to the increased bandwidth demand. Thesis work begins with the design of a novel single feed planar antenna with 4G tunable bands and consistent upper LTE bands. This antenna is simulated using full wave analysis tool, fabricated and measured. This antenna shows near omni-directional radiation pattern exhibiting gain levels from -4.25dBi in the lower band to 2.69dBi in the upper band. The impedance matching for the lower band can be tuned from 690 MHz - 970 MHz while the higher band is consistently present between 1.29 GHz - 2.05 GHz, both based on S 11 ≤ - 6dBi. To begin the stepping stone for higher frequency planar array antenna designs, first an 8x8 array antenna is designed in the Ka band. The impedance matching for this design is measured 28.34 GHz - 32.09 GHz having fractional bandwidth of 12.41% based on S11 ? - 10dB. This array antenna was fabricated and experimentally verified for its impedance matching and radiation performances. Next, a 4x4 antenna array is designed for operation in the 5G wireless band and using 0.07mm quartz material. The design has matching band from 53.6 GHz - 54.0 GHz having fractional bandwidth of 0.7435% based on S 11 ≤ -10dB. Finally, a 2x2 array antenna having a center frequency of 300 GHz with fractional bandwidth of 11.2% based on S11 ≤ -10dB is designed. This 2x2 array antenna was also designed using 0.07mm thick quartz substrate material so as to fabricate using the photolithography method due to the limitations of the standard method of

  2. Design and verification of mechanisms for a large foldable antenna

    NASA Technical Reports Server (NTRS)

    Luhmann, Hans Jurgen; Etzler, Carl Christian; Wagner, Rudolf

    1989-01-01

    The characteristics of the Synthetic Aperture Radar (SAR) antenna aboard the ESA Remote Sensing Satellite (ERS-1) are presented. The antenna is folded into a dense package for launch and is deployed in orbit. The design requirements and constraints, their impact on the design, and the resulting features of the mechanisms are discussed.

  3. Modern Design of Resonant Edge-Slot Array Antennas

    NASA Technical Reports Server (NTRS)

    Gosselin, R. B.

    2006-01-01

    Resonant edge-slot (slotted-waveguide) array antennas can now be designed very accurately following a modern computational approach like that followed for some other microwave components. This modern approach makes it possible to design superior antennas at lower cost than was previously possible. Heretofore, the physical and engineering knowledge of resonant edge-slot array antennas had remained immature since they were introduced during World War II. This is because despite their mechanical simplicity, high reliability, and potential for operation with high efficiency, the electromagnetic behavior of resonant edge-slot antennas is very complex. Because engineering design formulas and curves for such antennas are not available in the open literature, designers have been forced to implement iterative processes of fabricating and testing multiple prototypes to derive design databases, each unique for a specific combination of operating frequency and set of waveguide tube dimensions. The expensive, time-consuming nature of these processes has inhibited the use of resonant edge-slot antennas. The present modern approach reduces costs by making it unnecessary to build and test multiple prototypes. As an additional benefit, this approach affords a capability to design an array of slots having different dimensions to taper the antenna illumination to reduce the amplitudes of unwanted side lobes. The heart of the modern approach is the use of the latest commercially available microwave-design software, which implements finite-element models of electromagnetic fields in and around waveguides, antenna elements, and similar components. Instead of building and testing prototypes, one builds a database and constructs design curves from the results of computational simulations for sets of design parameters. The figure shows a resonant edge-slot antenna designed following this approach. Intended for use as part of a radiometer operating at a frequency of 10.7 GHz, this antenna

  4. Antenna Designs for the Mars Exploration Rovers (MER) Spacecraft, Lander, and Rover

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph; Thelen, Michael; Brown, Paula; Huang, John; Kelly, Ken; Krishnan, Satish

    2001-01-01

    This presentation focuses on the design of antennas for the Mars Exploration Rovers (MER). Specific topics covered include: MER spacecraft architecture, the evolution of an antenna system, MER cruise stage antennas, antenna stacks, the heat-shield/back shell antenna, and lander and rover antennas. Additionally, the mission's science objectives are reviewed.

  5. Whip antenna design for portable rf systems

    NASA Astrophysics Data System (ADS)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  6. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  7. Optical antenna design for fluorescence enhancement in the ultraviolet.

    PubMed

    Jiao, Xiaojin; Blair, Steve

    2012-12-31

    Through rational design, we compare the performance of three plasmonic antenna structures for UV fluorescence enhancement. Among the antenna performance metrics considered are the local increase in excitation intensity and the increase in quantum efficiency, the product of which represents the net fluorescence enhancement. With realistic structures in aluminum, we predict that greater than 100× net enhancement can be obtained.

  8. Design and analysis of a folded Fresnel Zone Plate antenna

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Fujita, Masaharu

    1994-08-01

    Based on the Kirchhoff-Huygens diffraction theory, a simple analytical method of a planar folded Fresnel zone-plate (FZP), that is the case when a planar reflector is placed behind the zone plates, has been developed. According to the numerical calculation results, the design procedure of the FZP antenna has been presented, and its focusing characteristics and gain-optimized conditions have been discussed. The variations of the focal field distribution with the antenna parameters such as zone numbers, focal length and antenna diameter and the radiation power patterns of the FZP have been simulated numerically. To take a good balance of both receiving and transmitting antennas, at 60GHz operating frequency, the focal length should be designed as a half of the antenna diameter and the zone number should be from 10 to 15. The results in this work show that the folded FZP has good focal characteristics and off-axis performance, and its antenna gain can be optimized by the suitable antenna parameter design. The possibility of applying the folded FZP as a low cost and high gain antenna without strict manufacturing requirement for millimeter-wave communications has been shown.

  9. Effect of backpack shoulder straps length on cervical posture and upper trapezius pressure pain threshold

    PubMed Central

    Abdelraouf, Osama Ragaa; Hamada, Hamada Ahmed; Selim, Ali; Shendy, Wael; Zakaria, Hoda

    2016-01-01

    [Purpose] This study was performed to investigate the effect of the length of backpack shoulder straps on upper trapezius muscle pain threshold and craniovertebral angle. [Subjects and Methods] There were 25 participants, with ages from 15 to 23 years old. Upper trapezius pain threshold and craniovertebral angle were measured for all subjects without the backpack then re-measured after walking on a treadmill for 15 min under 2 conditions: 1) wearing a backpack with short straps; and 2) wearing a backpack with long straps. [Results] there was a significant reduction in upper trapezius pain threshold and craniovertebral angle while carrying a backpack with long shoulder straps, compared to use of a backpack with short shoulder straps or no backpack. [Conclusion] A backpack with short straps is less harmful than a backpack with long straps. This result should be considered in ergonomic design of backpacks to reduce the incidence of various physiological and biomechanical disorders. PMID:27799665

  10. Silicone Rubber Superstrate Loaded Patch Antenna Design Using Slotting Technique

    NASA Astrophysics Data System (ADS)

    Kaur, Bhupinder; Saini, Garima; Saini, Ashish

    2016-09-01

    For the protection of antenna from external environmental conditions, there is a need that antenna should be covered with a stable, non-reactive, highly durable and weather resistive material which is insensitive to changing external environment. Hence, in this paper silicone rubber is proposed as a superstrate layer for patch antenna for its protection. The electrical properties of silicon rubber sealant are experimentally found out and its effect of using as superstrate on coaxial fed microstrip patch antenna using transmission line model is observed. The overall performance is degraded by slightly after the use of superstrate. Further to improve the performance of superstrate loaded antenna, patch slots and ground defects have been proposed. The proposed design achieves the wideband of 790 MHz (13.59 %), gain of 7.12 dB, VSWR of 1.12 and efficiency of 83.02 %.

  11. Spotter strap for the prevention of wheelchair tipping.

    PubMed

    Kirby, R L; Lugar, J A

    1999-10-01

    Injuries caused by wheelchair rear-tipping accidents are common. This article reports on the safety and effectiveness of a spotter strap that attaches to the cross-brace or frame below the center of gravity of an occupied wheelchair. We videotaped five therapists spotting 89 wheelchair users while the users each performed six tasks that were designed to induce rear instability. We induced 16 episodes of complete rear tipping. In all cases, the spotter strap allowed the spotter to stay out of the way during the task, but step in easily when necessary to prevent the wheelchair user from being injured. In one instance, the spotter needed assistance lifting a heavy subject to the upright position after catching the subject with the strap. In summary, the spotter strap is a safe and effective device. We recommend its use when there is a high risk of a rear-tipping accident.

  12. Very Broad Band VHF/UHF Omnidirectional Antenna Design Study

    DTIC Science & Technology

    1989-12-01

    antennas, is unsuitable for the given appli- cation because its pattern is bi- directional and produces a broad lobe perpendicular to both sides of the...starting point for the new design. The objective was to modify the LPDA to fit the A/V and concurrently achieve a nearly omni- directional radiation pattern...has been included in this review. In particular, many conformal designs including microstrip patch, stripline, slot, and cavity antennas have been

  13. Modeling and design of antennas for implantable telemetry applications.

    PubMed

    Venkatasubramanian, Arun; Gifford, Brandon

    2016-08-01

    Incorporating an RF communications link in an implanted medical device can increase its range of applicability and improve quality of life for the patient. Developments in support electronics decrease design risk, but the implanted antenna remains a critical component of a communications link that operates at very low received power. Transmitted power is limited both by regulatory restrictions and, for most implanted devices, by power source capacity. Dielectric losses and wave trapping in the body result in transmission losses much greater than seen in free space communications. Small antenna size is required for physiological acceptability. Design optimization must trade antenna size, geometric complexity and material cost against efficiency, operating bandwidth and driving power. Designs must also work in differing body morphologies. This paper describes the methodology for simulation and the impact of different body morphologies on implant antenna performance. An understanding of these is required to optimize antenna performance and meet ever increasing range requirements. It is shown that depending on the use case and end user morphology, the antenna performance can be incredible successful or marginally adequate. Given the high sensitivity to small changes in thickness of the human body, testing the antenna for a range of BMI and body fat percentages is a must to truly characterize its performance.

  14. Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna

    SciTech Connect

    Durodié, F. Dumortier, P.; Vrancken, M.; Messiaen, A.; Huygen, S.; Louche, F.; Van Schoor, M.; Vervier, M.; Winkler, K.

    2014-06-15

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the

  15. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  16. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  17. Preliminary design of a redundant strapped down inertial navigation unit using two-degree-of-freedom tuned-gimbal gyroscopes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration.

  18. Interdisciplinary design analysis of a precision spacecraft antenna

    NASA Technical Reports Server (NTRS)

    Steinbach, R. E.; Winegar, S. R.

    1985-01-01

    The Advanced Communications Technology Satellite (ACTS) will operate in the 20/30 GHz range (Ka Band), and will include a multi-beam antenna (MBA) capable of 0.3 degree scanning spot beams with very high beam-to-beam isolation. The antenna Radio Frequency (RF) performance requirements lead to stringent requirements on the antenna reflector surface shape. A prediction of RF performance of a potential flight model antenna reflector operating under space environmental conditions is made using a radiant heat input model (TRASYS), a thermal analyzer (SINDA), a structural model (NASTRAN), and RF far field pattern simulation. Interfacing software has been written to pass thermal model temperature results to the structural model, and structural model thermal deformation results to the RF far field pattern simulation. A complete analysis can be performed in a single computer run, and potential changes in design can be quickly and easily evaluated using this interdisciplinary design analysis tool.

  19. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  20. Textile Materials for the Design of Wearable Antennas: A Survey

    PubMed Central

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  1. UHF Antenna Design for AFIT Random Noise Radar

    DTIC Science & Technology

    2012-03-01

    waveform limits the options available for antenna system design. The use of a phased array antenna system to achieve a narrow, electrically-scanned...main beam is not available for noise waveform systems, as the array is based on the use of phase shifters between the multiple element feeds. UWB... array theories can rely on the use of variable time delay differences between the elements for beam forming and steering . The AFIT system was

  2. Development of a fishbone travelling wave antenna for LHD

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Moeller, C. P.; Seki, T.; Takeuchi, N.; Watari, T.; Callis, R.; Ejiri, A.; Ikezi, H.; Kasahara, H.; Kasuya, N.; Kumazawa, R.; Mutoh, T.; Ohkubo, K.; Olstad, R. A.; Saigusa, M.; Saito, K.; Shiraiwa, S.; Taniguchi, T.; Torii, H.; Wada, H.; Yamagishi, K.; Yamamoto, T.

    2004-02-01

    The 'fishbone' fast wave travelling wave antenna was developed for LHD to provide a capability for rotational transform profile control by current drive. The fishbone antenna is equivalent to two combline antennae stacked vertically. The antenna operates around 75 MHz and excites a wavenumber of 14 m-1 when the phase difference between adjacent current straps is 90°. A test of a combline antenna with plasma load on the TST-2 spherical tokamak suggested the possibility that this type of antenna does not need to be installed in the immediate vicinity of the last closed flux surface. Optimization of the design was performed based on measurements on mock-up antennas and model calculations. In the fishbone antenna, controlled excitation of the even mode (with currents in the top and bottom halves of a current strap in the same direction) is necessary. A predominant excitation of the even mode was realized in the LHD fishbone antenna with simulated loading by selecting an appropriate operating frequency.

  3. Design concepts for large antenna reflectors

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1981-01-01

    A type of antenna reflector was studied in which a stiff structure is constructed to hold a membrane like reflector mesh in the correct position. An important basic restriction is that the mesh be controlled only by the structure and that no additional local shaping be employed. Furthermore, attention is confined to structures in which no adjustments would be made on assembly. Primary attention is given to the tetrahedral truss configuration because of its outstanding stiffness and dimensional stability.

  4. ICRF antenna matching system with ferrite tuners for the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Binus, A.; Wukitch, S. J.; Koert, P.; Murray, R.; Pfeiffer, A.

    2015-12-01

    Real-time fast ferrite tuning (FFT) has been successfully implemented on the ICRF antennas on Alcator C-Mod. The former prototypical FFT system on the E-port 2-strap antenna has been upgraded using new ferrite tuners that have been designed specifically for the operational parameters of the Alcator C-Mod ICRF system (˜ 80 MHz). Another similar FFT system, with two ferrite tuners and one fixed-length stub, has been installed on the transmission line of the D-port 2-strap antenna. These two systems share a Linux-server-based real-time controller. These FFT systems are able to achieve and maintain the reflected power to the transmitters to less than 1% in real time during the plasma discharges under almost all plasma conditions, and help ensure reliable high power operation of the antennas. The innovative field-aligned (FA) 4-strap antenna on J-port has been found to have an interesting feature of loading insensitivity vs. plasma conditions. This feature allows us to significantly improve the matching for the FA J-port antenna by installing carefully designed stubs on the two transmission lines. The reduction of the RF voltages in the transmission lines has enabled the FA J-port antenna to deliver 3.7 MW RF power to plasmas out of the 4 MW source power in high performance I-mode plasmas.

  5. Antennas.

    DTIC Science & Technology

    1980-09-15

    experimentally shown that tae same range properti-; possesses the multiturn helical antenna wita tee contrary ccil/winding. In contr to the spiral with the one...Characteristics off Mul~iturn Cyclindrical Helical Antennas with Counter Winding, by 0. A. Yurtsev ....... 233 U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION...value of load within sufficiently wide limits. Page 68. LEAKY- PIPE ANTENNA WITH TaZ PAS.li EtlITTEPS. Conclusion/output of fundamental principles. Fig

  6. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  7. The Design of Impedance- Matching Networks for Broadband Antennas.

    DTIC Science & Technology

    1987-09-01

    AD-RIB? GN THE DESIGN OF IMPEDANCE - MATCHING NETWORKS FOR / BRORDBAM RNTENNAS(U) NAVAL OCEAN SYSTEMS CENTER SAN DDIEGO CA S T LI .ET AL. SEP 87 NOSC...z Technical Document 1148 September 1987 The Design of Impedance - Matching Networks for Broadband Antennas o S. T.LU DTIC D. W. S. TamSJANO06 1988~1...over a given frequency band of interest. The device used to perform this impedance matching is called an antenna matching network. The number of

  8. Magneto-Dielectric Wire Antennas Theory and Design

    NASA Astrophysics Data System (ADS)

    Sebastian, Tom

    supported by the magneto-dielectric structure and leads to useful design rules connecting the permeability of the material to the cross sectional area of the antenna in relation to the desired frequency of operation. The Green function problem of the permeable prolate spheroidal antenna is also solved as a good approximation to a finite cylinder.

  9. Optimum design of Cassegrain antenna for space laser communication

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Jiang, Lun; Wang, Chao; Li, Yingchao

    2016-10-01

    The divergence angle is very important index in space laser communication for energy transfer. Typically, the large aperture telescope as optical antenna is used for angle compression, and the divergence angle of communication beam is usually calculated by diffraction limit angle equation 1.22λ/D. This equation expresses the diffraction of a spherical wave through a circular aperture. However, the light source commonly used laser with a Gaussian distribution, and the optical antenna is central obscurations. The antenna parameters which is obscuration ratio and Gaussian beam apodization were significantly relative with the far field energy. In this study, we obtain the mathematic relation between the divergence angle, energy loss and the antenna parameters. From the relationship, we know that the divergence angle smaller as the increase of antenna obscuration ratio. It would tend to enhance the far-field energy density. But a larger obscuration ratio will increase the energy loss. At the same time, the increase of Gaussian beam apodization resulted in the energy of first diffraction ring was raised but the radius of first ring was increased. They were conflict. And then, the antenna parameters of trade-off was found from curves of obscuration ratio and curves of divergence angle. The parameters of a Cassegrain antenna was optimum designed for the energy maximization, and considerd the apodization from mechanical structure blocking. The long-distance laser communications were successful in these airborne tests. Stable communication was demonstrated. The energy gain is sufficient for SNR of high-bandwidth transmission in atmospheric channel.

  10. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  11. Miniaturization design and implementation of magnetic field coupled RFID antenna

    NASA Astrophysics Data System (ADS)

    Hu, Tiling

    2013-03-01

    The development of internet of things has brought new opportunities and challenges to the application of RFID tags. Moreover, the Miniaturization application trend of tags at present has become the mainstream of development. In this paper, the double-layer design is to reduce the size of HF antenna, and the magnetic null point of magnetic reconnection region between the RLC resonant circuit and the reader provides sufficient energy to the miniaturization of antenna. The calculated and experimental results show that the miniaturization of HF antennas can meet the reading and writing requirement of the international standard ISO/IEC14443 standard. The results of this paper may make a positive contribution to the applications of RFID technology.

  12. Design of an ICRF plasma thruster antenna by TOPICA

    NASA Astrophysics Data System (ADS)

    Vecchi, Giuseppe; Lancellotti, Vito; Maggiora, Riccardo

    2006-10-01

    A typical RF plasma thruster is comprised of an RF plasma source, an open-ended magnetic confinement device, an RF acceleration unit and a magnetic nozzle. The usual choice for the acceleration is to employ the Ion-Cyclotron resonance frequency (ICRF), a well established technology in fusion experiments for transferring large RF powers to magnetized plasmas. To help design RF thruster ICRF antennas, TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code [1] has been recently extended to handle cylindrically symmetric plasmas. The latter entailed developing a wholly new module of TOPICA charged with the task of solving Maxwell's equations in cylindrical magnetized warm plasmas and yielding the Green's functionY (m,kz), i.e. the relationship at the air-plasma interface between the transverse magnetic and electric fields in the spectral (wavenumber) domain. The approach to the problem of determining the antenna input impedance relies on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. This work reports on TOPICA evolution and presents the design of an RF thruster ICRF antenna. *V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476-S499

  13. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  14. Three-dimensional effects for radio frequency antenna modeling

    SciTech Connect

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C. )

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  15. Shaped cassegrain reflector antenna. [design equations

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.

  16. Shuttle antenna radome technology test program. Volume 2: Development of S-band antenna interface design

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.; Baranowski, L. C.

    1977-01-01

    The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements.

  17. Strapping for temporomandibular joint dysfunction.

    PubMed

    Babu, Abraham Samuel; John, Sandhya Mary; Unni, Amith

    2008-01-01

    Temporomandibular joint dysfunction (TMJD) is a common problem seen in many of the dental clinics. Management of this depends on an accurate diagnosis of the cause for the TMJD. Physical therapy and rehabilitation play a vital role in the management of these dysfunctions. Physical therapy is useful in treating post-traumatic stiffness of the TMJ while strapping of the TMJ for a dysfunction along with conventional physical therapy is of benefit in terms of reduction in click, decrease in pain, and an improvement in function.

  18. Design of optical transmitting antenna with enhance performance in visible light communication

    NASA Astrophysics Data System (ADS)

    Kuang, Dang; Wang, Jianping; Lu, Huimin

    2016-10-01

    An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.

  19. New trends in antenna design: transformation optics approach

    NASA Astrophysics Data System (ADS)

    Tichit, P. H.; Burokur, S. N.; de Lustrac, A.

    2013-04-01

    Transformation optics is an emerging field offering a powerful and unprecedented ability to manipulate and control electromagnetic waves. Using this tool, we demonstrate the design of novel antenna concepts by tailoring their radiation properties. The wave manipulation is enabled through the use of engineered dispersive composite metamaterials that realize a space coordinate transformation. Numerical simulations together with experimental measurements are performed in order to validate the coordinate transformation concept. Near-field cartography and far-field pattern measurements performed on fabricated prototypes agree qualitatively with Finite Element Method (FEM) simulations. It is shown that a particular radiation pattern can be tailored at ease into a desired one by modifying the electromagnetic properties of the space around the radiating element. This idea opens the way to novel antenna design techniques for various application domains such as aeronautical and transport fields.

  20. Simple analysis and design of annular ring microstrip antennas

    NASA Astrophysics Data System (ADS)

    El-Khamy, S. E.; El-Awadi, R. M.; El-Sharrawy, E.-B. A.

    1986-06-01

    A simple analysis of thin annular-ring microstrip antennas (AR-MSA), along with a design technique that yields the optimum ring dimensions which maximizes the radiation efficiency and the bandwidth, is presented in this paper. Using the cavity model, exact closed form solutions for the radiation fields are derived. The antenna fields distribution, resonance dimensions, radiation patterns, directivity, radiation conductance, quality factor and bandwidth are investigated for the different TMnm modes. AR-MSAs operated at the high order TMn2 modes are found to have better radiation properties and broader bandwidths than the corresponding disk-MSAs. A design table for the optimum ring dimensions for different types of the dielectric substrate material is also given in the paper.

  1. Multiple Antenna Implementation System (MAntIS)

    SciTech Connect

    Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.

    1993-01-01

    The MAntIS code was developed as an aid to the design of radio frequency (RF) antennas for fusion applications. The code solves for the electromagnetic fields in three dimensions near the antenna structure with a realistic plasma load. Fourier analysis is used in the two dimensions that are tangential to the plasma surface and backwall. The third dimension is handled analytically in a vacuum region with a general impedance match at the plasma-vacuum interface. The impedance tensor is calculated for a slab plasma using the ORION-lD code with all three electric field components included and warm plasma corrections. The code permits the modeling of complicated antenna structures by superposing currents that flow on the surfaces of rectangular parallelepipeds. Specified current elements have feeders that continuously connect the current flowing from the ends of the strap to the feeders. The elements may have an arbitrary orientation with respect to the static magnetic field. Currents are permitted to vary along the length of the current strap and feeders. Parameters that describe this current variation can be adjusted to approximately satisfy boundary conditions on the current elements. The methods used in MAntIS and results for a primary loop antenna design are presented.

  2. The design and simulation test of wireless antenna protection network

    NASA Astrophysics Data System (ADS)

    Chen, Zipeng; Dai, Yawen; Li, Peng; Li, Zhuoqiu

    2013-03-01

    In this paper, a wireless antenna protection program has been designed. In the program, the TVS diode was used as the first lever for protection, and the π-type high pass filtering network as the second lever. As a result, the program not only has the traditional function of ESD protection, which can avoid the high voltage damage to the internal circuit, but also achieves the purpose of load matching, ensuring the signal source not to distort. The ADS simulation software was used to test the ability of this program for filtering and impedance matching, which proved the feasibility of this program. The wireless antenna protection network has been practically used, and its' performance of anti-electromagnetic interference has been validated.

  3. Antenna design and distribution of the LOFAR super station

    NASA Astrophysics Data System (ADS)

    Girard, Julien N.; Zarka, Philippe; Tagger, Michel; Denis, Laurent; Charrier, Didier; Konovalenko, Alexander A.; Boone, Frédéric

    2012-01-01

    The Nançay radio astronomy observatory and associated laboratories are developing the concept of a "Super Station" for extending the LOFAR station now installed and operational in Nançay. The LOFAR Super Station (LSS) will increase the number of high sensitivity long baselines, provide short baselines, act as an alternate core, and be a large standalone instrument. It will operate in the low frequency band of LOFAR (15-80 MHz) and extend this range to lower frequencies. Three key developments for the LSS are described here: (i) the design of a specific antenna, and the distribution of such antennas; (ii) at small-scale (analog-phased mini-array); and (iii) at large-scale (the whole LSS).

  4. Development of S-band antenna interface design, volume 1

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1976-01-01

    The construction of an analytical thermal model of an S-band antenna in a typical Space Shuttle Orbiter installation is discussed. The selection and modeling of orbital and entry thermal environment inputs for the thermal analyses are discussed. The results of analyses for a variety of orbital thermal environments and entry initial conditions are given. Design and fabrication details of a thermal test fixture which physically approximates the Orbiter installation are discussed. The design and fabrication of two electrical test fixtures which electrically simulate the Orbiter surface shape and thermal protection system are discussed.

  5. Multi-platform laser communication networking optical antenna system design

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    2016-10-01

    In this paper, a new conclusion based on rotating parabolic model and a different scheme of laser communication networking antenna system has been put forward in the paper. Based on rotating parabolic antenna, a new theory of the optical properties have been deduced, which can realize larger dynamic, duplex, networking communications among multiple platforms in 360° azimuth and pitch range. Meanwhile, depending on the operation mode of the system, multiple mathematical optimization models have been established. Tracking communication range, emission energy efficiency and receiving energy efficiency have been analyzed and optimized. Relationship among opening up and low apertures, the lens unit aperture, focal length of lens unit as well as rotating parabolic focal length have been analyzed. Tracking pitching range and emission energy utilization has carried on the theoretical derivation and optimization and networking platform link between energy receiver and transmitter has been analyzed. Taking some parameters of this new system into calculation, optimized results can be utilized with MATLAB software for its application and system of communication engineering. The rotating parabolic internal can form a hollow structure, which is utilized for miniaturization, light-weighted design and realize duplex communication in a wide range and distance. Circular orbit guidance is the modern way used in dynamic tracking system. The new theory and optical antenna system has widespread applications value as well.

  6. Design and construction of prototype radio antenna for shortest radio wavelengths

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1975-01-01

    A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.

  7. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  8. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  9. Computer Aided Antenna Design and Frequency Selection for HF Communications.

    DTIC Science & Technology

    1984-06-01

    EESIGN ON THE ADPE-.- NIF (GREEN MACHINE) ... .... . . . . . . . 57 E. COMPUTER AIDED DESIGN USING ECAC1S ACCESSIBIE ANTENNA PACKAGE . . . . . . .. 57 F...8217 C8 L4 E-4 W 3a ’H 1 H -g I) - 4 ’ 0-4 =2 E-4 V. E-4 b. m 0 m 4 =- v- -4 3 4 E’- 4 = P4 H - ofC. I- 1 4 = W P4 w 4 I = N = V rq I 0-4 ~ to H W4

  10. Design of the Vacuum Feedthrough for the EAST ICRF Antenna

    NASA Astrophysics Data System (ADS)

    Yang, Qingxi; Song, Yuntao; Wu, Songtao; Zhao, Yanping

    2011-04-01

    Detailed design of the vacuum feedthrough for the ion cyclotron radio frequency (ICRF) antenna in EAST, along with an electro-analysis and thermal structural analysis, is presented. The electric field, the voltage standing wave ratio (VSWR) and the stresses in the vacuum feedthrough are studied. A method using the rings of oxygen-free copper as the cushion and macro-beam plasma arc welding is applied in the assembly to protect the ceramic from being damaged during welding. The vacuum leak test on the prototype of vacuum feedthrough is introduced.

  11. Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition

    DTIC Science & Technology

    2014-08-01

    Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition by Gregory Mitchell and Wasyl Wasylkiwskyj ARL-TR...2014 Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition Gregory Mitchell and Wasyl Wasylkiwskyj Sensors...DATES COVERED (From - To) 01/2014–06/2014 4. TITLE AND SUBTITLE Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance

  12. Design study of TDRS antenna gimbal system for LANDSAT-D

    NASA Technical Reports Server (NTRS)

    Wu, J.

    1977-01-01

    The conceptual design studies of a two axis antenna drive assembly for the TDRSS link communications subsystem for LANDSAT D are presented. The recommended antenna drive assembly is a simple and reliable design substantially similar to the antenna and solar array drives developed and space qualified for programs such as DSCS 2 and FltSatCom. The gimbal design tradeoff is presented, along with drive electronics.

  13. Optical design of a synthetic aperture ladar antenna system

    NASA Astrophysics Data System (ADS)

    Cao, Changqing; Zeng, Xiaodong; Zhao, Xiaoyan; Liu, Huanhuan; Man, Xiangkun

    2008-03-01

    The spatial resolution of a conventional imaging LADAR system is constrained by the diffraction limit of the telescope aperture. The purpose of this work is to investigate Synthetic Aperture Imaging LADAR (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long range, two-dimensional imaging with modest aperture diameters. According to the demands of the Synthetic Aperture LADAR (SAL), the key techniques are analyzed briefly. The preliminary design of the optical antenna is also introduced in this paper. We investigate the design method and relevant problems of efficient optical antenna that are required in SAL. The design is pursued on the basis of the same method as is used at microwave frequency. The method is based on numerical analysis and the error values obtained by present manufacturing technology. According to the requirement to SAL with the trial of little size, light mass, low cost and high image quality, the result by ZEMAX will result.

  14. Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Hornby, Gregory S.; Rodriguez-Arroyo, Adan; Linden, Derek S.; Kraus, William F.; Seufert, Stephen E.

    2003-01-01

    We present an evolved X-band antenna design and flight prototype currently on schedule to be deployed on NASA s Space Technology 5 spacecraft in 2004. The mission consists of three small satellites that wall take science measurements in Earth s magnetosphere. The antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth. Two genetic algorithms were used: one allowed branching an the antenna arms and the other did not. The highest performance antennas from both algorithms were fabricated and tested. A handdesigned antenna was produced by the contractor responsible for the design and build of the mission antennas. The hand-designed antenna is a quadrifilar helix, and we present performance data for comparison to the evolved antennas. As of this writing, one of our evolved antenna prototypes is undergoing flight qualification testing. If successful, the resulting antenna would represent the first evolved hardware in space, and the first deployed evolved antenna.

  15. Design and optimization of LTE 1800 MIMO antenna.

    PubMed

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  16. Design investigation for a microstrip phased array antenna for the ORION satellite

    NASA Astrophysics Data System (ADS)

    Smith, Mark B.

    1988-06-01

    Students at the Naval Postgraduate School are designing a general purpose mini-satellite that can be launched from a Get-Away-Special cannister located in the cargo bay of the Space Shuttle and will be compatible with expendable launch vehicles as well. This thesis defines preliminary antenna systems and the design parameters for the telemetry system of the ORION mini-satellite. These antenna design parameters may be used for investigations of various proposed antenna systems and the design parameters also allow for trade-off studies with the mission capabilities and subsystems of the satellite. An investigation is made into the feasibility of using conformal microstrip patch array antennas for the telemetry, tracking and command (TT&C) systems. It is necessary to have two separate microstrip patch array antennas for the telemetry system: one uplink and one downlink antenna. The microstrip patch array antenna can operate as either an omnidirectional antenna or a directional antenna by changing the phase of the individual patch feeds. This feature gives the microstrip patch array antenna more flexibility for meeting the needs of potential users.

  17. Design and Measurement of Self-Matched, Dual-Frequency Coplanar-Waveguide-Fed Slot Antennas

    NASA Technical Reports Server (NTRS)

    Omar, Amjad A.; Scardelletti, Maxmilian C.; Hejazi, Zuhair M.; Dib, Nihad

    2007-01-01

    This report presents two new designs of dual-frequency, coplanar-waveguide-fed, double-folded slot antennas. An important advantage of these antennas is that, because they are self-matched to the feeding coplanar waveguide, they do not need an external matching circuit. This reduces the antenna size and simplifies its design. To verify the designs, the authors measured and compared the return loss and radiation patterns with those obtained using available commercial software with good agreement. Dual-frequency slot antennas;

  18. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  19. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    SciTech Connect

    Speer, Pete

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  20. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  1. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  2. New designs for antenna-coupled superconducting bolometers

    SciTech Connect

    Mees, J.; Nahum, M.; Richards, P.L. )

    1991-10-28

    We propose a novel antenna-coupled low {ital T}{sub {ital c}} superconducting bolometer which makes use of the thermal boundary resistance and the trapping of quasiparticles at metal-superconducting interfaces. A thin strip of superconductor, whose temperature is regulated at the midpoint of its resistive transition, serves both as a resistive load to thermalize the infrared current from the antenna and as a thermometer to measure the resulting temperature rise. Calculations give a noise equivalent power (NEP){approx}7{times}10{sup {minus}16} {ital T}{sup 5/2} WHz{sup {minus}1/2} and a time constant {tau}{approx}10{sup {minus}8} {ital T}{sup {minus}2} s for a 2{times}2 {mu}m{sup 2} thermometer area at temperature {ital T} (K). Designs for efficient on-chip rf matching and filter networks with well-defined bandpasses are presented. These detectors can be used to make frequency-multiplexed array receivers for astronomical observations at near millimeter wavelengths.

  3. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    SciTech Connect

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-11-26

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  4. Design of highly efficient metallo-dielectric patch antennas for single-photon emission.

    PubMed

    Bigourdan, F; Marquier, F; Hugonin, J-P; Greffet, J-J

    2014-02-10

    Quantum emitters such as NV-centers or quantum dots can be used as single-photon sources. To improve their performance, they can be coupled to microcavities or nano-antennas. Plasmonic antennas offer an appealing solution as they can be used with broadband emitters. When properly designed, these antennas funnel light into useful modes, increasing the emission rate and the collection of single-photons. Yet, their inherent metallic losses are responsible for very low radiative efficiencies. Here, we introduce a new design of directional, metallo-dielectric, optical antennas with a Purcell factor of 150, a total efficiency of 74% and a collection efficiency of emitted photons of 99%.

  5. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    PubMed Central

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  6. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    PubMed

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  7. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Astrophysics Data System (ADS)

    King, J. L.

    1980-05-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  8. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  9. Design and Optimization of Broadband High Impedance Ground Planes (HIGP) for Surface Mount Antennas

    DTIC Science & Technology

    2008-03-01

    materials, all of these material parameters are negative. With these unusual material parameters, new kinds of miniaturized antennas and microwave devices... ANTENNAS THESIS Murat Dogrul, First Lieutenant, TUAF AFIT/GE/ENG/08-08 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF...United States Government. AFIT/GE/ENG/08-08 DESIGN AND OPTIMIZATION OF BROADBAND HIGH IMPEDANCE GROUND PLANES (HIGP) FOR SURFACE MOUNT ANTENNAS

  10. The L-/C-band feed design for the DSS 14 70-meter antenna (Phobos mission)

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.; Reilly, H. F., Jr.

    1991-01-01

    A dual-frequency (1.668 and 5.01 GHz) feed was designed for the Deep Space Station (DSS) 14 70-m antenna to support the Soviet Phobos Mission. This antenna system was capable of supporting telemetry, two-way Doppler, and very long baseline interferometry (VLBI). VLBI and two-way Doppler information on the Phobos spacecraft was acquired with this antenna in 1989.

  11. Miniaturized Multi-Band Antenna Design via Element Collocation and Inductive Feed Loading

    SciTech Connect

    Martin, R. P.

    2012-09-12

    In a FY09 SDRD project, four separate antennas were designed to receive signals of interest covering a broad range of frequencies. While the elements exceeded specifications, the array footprint is substantial. Research performed by the CU Microwave Active Antenna Group in collaboration with RSL, showed promise in realizing a reduced structure. This work will expand upon this previous research. This project will result in a prototype quad-band antenna.

  12. Prototype 10-meter radio telescope antenna and mount design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1976-01-01

    A prototype radio antenna of 10.4 meters diameter and 0.41 meter focal length, intended for use at the shortest radio wavelengths transmitted by the atmosphere, was successfully completed. The surface accuracy is at least four times better than that of any existing antenna in this size class: 50 micrometer rms. A prototype mount is being constructed and will be ready by early 1976. The development of an improved antenna of identical size, but heavier weight has been continued.

  13. Efficient global optimization of a limited parameter antenna design

    NASA Astrophysics Data System (ADS)

    O'Donnell, Teresa H.; Southall, Hugh L.; Kaanta, Bryan

    2008-04-01

    Efficient Global Optimization (EGO) is a competent evolutionary algorithm suited for problems with limited design parameters and expensive cost functions. Many electromagnetics problems, including some antenna designs, fall into this class, as complex electromagnetics simulations can take substantial computational effort. This makes simple evolutionary algorithms such as genetic algorithms or particle swarms very time-consuming for design optimization, as many iterations of large populations are usually required. When physical experiments are necessary to perform tradeoffs or determine effects which may not be simulated, use of these algorithms is simply not practical at all due to the large numbers of measurements required. In this paper we first present a brief introduction to the EGO algorithm. We then present the parasitic superdirective two-element array design problem and results obtained by applying EGO to obtain the optimal element separation and operating frequency to maximize the array directivity. We compare these results to both the optimal solution and results obtained by performing a similar optimization using the Nelder-Mead downhill simplex method. Our results indicate that, unlike the Nelder-Mead algorithm, the EGO algorithm did not become stuck in local minima but rather found the area of the correct global minimum. However, our implementation did not always drill down into the precise minimum and the addition of a local search technique seems to be indicated.

  14. Investigation of 'Conjugate T' Load-Resilient ICRF Antenna Systems - Application to the JET ITER-Like and to a Possible ITER ICRF System

    SciTech Connect

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Vervier, M.; Weynants, R.

    2005-09-26

    The paper reports on the radio-frequency (RF) analysis of multiple-short-strap load-resilient ICRF antenna systems, applied to the JET ITER-Like and to a proposed ITER ICRF system. The short radiating straps minimize the antenna voltage and the 'conjugate T' load resilient matching circuit aims at reliable power delivery to ELMy H mode plasmas. The two designs mainly differ by the use of in-vessel matching capacitors for the JET array, whereas the proposed ITER design uses an optimized combination of straps in parallel and ex-vessel matching by means of line stretchers. Asymmetries and mutual coupling between straps strongly influence the performance of such load-resilient circuits and complicate their operation. These effects have been analyzed in detail along two parallel lines of investigation: (i) Detailed RF simulations, in which the input impedance matrix of the ICRF arrays has been computed with a three-dimensional electromagnetic code and incorporated in realistic models of the transmission and matching circuits, (ii) Comprehensive RF measurements on a scaled-down mockup of the proposed ITER antenna. Ongoing work to optimize array performance and to develop practical matching procedures and reliable automatic control of the matching elements is discussed. The main outstanding issues are reliable arc detection and demonstration of a robust array control algorithm.

  15. Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design

    PubMed Central

    Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941

  16. Implanted miniaturized antenna for brain computer interface applications: analysis and design.

    PubMed

    Zhao, Yujuan; Rennaker, Robert L; Hutchens, Chris; Ibrahim, Tamer S

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits.

  17. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  18. Three-dimensional effects for radio frequency antenna modeling

    SciTech Connect

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-09-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. Comparisons with experiments indicate that these 2-D calculations can overestimate the loading of the antenna and fail to give the correct reactive behavior. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap, conducting sidewalls, and finite phase velocity are considered. The plasma impedance matrix for the loading calculation is generated by use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D limit. For finite-length antennas, inductance calculations are found to be in much more reasonable agreement with experiments for 3-D modeling than for the 2-D estimates. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna sidewalls rather than in the plasma as in the 2-D model. Thus, the feeders have much more influence than the plasma on the currents that return in the sidewall. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model.

  19. Designing and implementing Multibeam Smart Antennas for high bandwidth UAV communications using FPGAs

    NASA Astrophysics Data System (ADS)

    Porcello, J. C.

    Requirements for high bandwidth UAV communications are often necessary in order to move large amounts of mission information to/from Users in real-time. The focus of this paper is antenna beamforming for point-to-point, high bandwidth UAV communications in order to optimize transmit and receive power and support high data throughput communications. Specifically, this paper looks at the design and implementation of Multibeam Smart Antennas to implement antenna beamforming in an aerospace communications environment. The Smart Antenna is contrasted against Fast Fourier Transform (FFT) based beamforming in order to quantify the increase in both computational load and FPGA resources required for multibeam adaptive signal processing in the Smart Antenna. The paper begins with an overall discussion of Smart Antenna design and general beamforming issues in high bandwidth communications. Important design considerations such as processing complexity in a constrained Size, Weight and Power (SWaP) environment are discussed. The focus of the paper is with respect to design and implementation of digital beamforming wideband communications waveforms using FPGAs. A Multibeam Time Delay element is introduced based on Lagrange Interpolation. Design data for Multibeam Smart Antennas in FPGAs is provided in the paper as well as reference circuits for implementation. Finally, an example Multibeam Smart Antenna design is provided based on a Xilinx Virtex-7 FPGA. The Multibeam Smart Antenna example design illustrates the concepts discussed in the paper and provides design insight into Multibeam Smart Antenna implementation from the point of view of implementation complexity, required hardware, and overall system performance gain.

  20. Aircraft antennas/conformal antennas missile antennas

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1987-04-01

    Three major areas of airborne microwave antennas are examined. The basic system environment for missile telemetry/telecommand and fuze functions is sketched and the basic antenna design together with practical examples are discussed. The principle requirements of modern nose radar flat plate antennas are shown to result from missile/aircraft system requirements. Basic principles of slotted waveguide antenna arrays are sketched and practical antenna designs are discussed. The present early warning system designs are sketched to point out requirements and performance of practical radar warning and jamming antennas (broadband spiral antennas and horn radiators). With respect to newer developments in the ECM scenario, some demonstrated and proposed antenna systems (lens fed arrays, phased array, active array) are discussed.

  1. Design, development and testing of the x-ray timing explorer High Gain Antenna System

    NASA Technical Reports Server (NTRS)

    Lecha, Javier; Woods, Claudia; Phan, Minh

    1995-01-01

    The High Gain Antenna System (HGAS), consisting of two High Gain Antenna Deployment Systems (HGADS) and two Antenna Pointing Systems (APS), is used to position two High Gain Antennas (HGA) on the X-Ray Timing Explorer (XTE). A similar APS will be used on the upcoming Tropical Rainfall Measuring Mission (TRMM). Both XTE and TRMM are NASA in-house satellites. The salient features of the system include the two-axis gimbal and control electronics of the APS and the spring deployment and latch/release mechanisms of the HGADS. This paper describes some of the challenges faced in the design and testing of this system and their resolutions.

  2. The Numerical Simulation of the Broadband Spiral Antenna Design Based on Hybrid Backed-Cavity

    NASA Astrophysics Data System (ADS)

    Liu, Chunheng; Lu, Yueguang; Du, Chunlei; Cui, Jingbo; Shen, Ximing

    2009-09-01

    In the paper, the hybrid backed-cavity with EBG (Electromagnetic Band-Gap) structure and PEC (Perfect Electronic Conductor) is proposed for Archimedean spiral antenna, which can make the spiral antenna work over the 10:1 bandwidth, without the loss introduced by absorbing materials. Based on the AMC characteristic (Artificial Magnetic Conductor), the EBG is placed in the outer region of backed-cavity to improve the blind spot gain in the low frequency. The PEC at the center of the structure is used to obtain high gain at high frequency. The better antenna performances are achieved in the low profile spiral antenna. A typical spiral antenna with hybrid backed cavity is numerically studied. The novel spiral antenna design with hybrid backed cavity is validated by simulated results.

  3. Bird Face Microstrip Printed Monopole Antenna Design for Ultra Wide Band Applications

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Md. Moinul; Islam, Mohammad Tariqul; Rahman, Md. Atiqur

    2016-11-01

    In this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1-12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.

  4. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  5. Design and Experimental Implementation of Optimal Spacecraft Antenna Slews

    DTIC Science & Technology

    2013-12-01

    any spacecraft antenna configuration. Various software suites were used to perform thorough validation and verification of the Newton -Euler...verification of the Newton -Euler formulation developed herein. The antenna model was then utilized to solve an optimal control problem for a geostationary...DEVELOPING A MULTI-BODY DYNAMIC MODEL ........................................9  A.  THE NEWTON -EULER APPROACH

  6. System and antenna design considerations for highly elliptical orbits as applied to the proposed Archimedes Constellation

    NASA Technical Reports Server (NTRS)

    Paynter, C.; Cuchanski, M.

    1995-01-01

    The paper discusses various aspects of the system design for a satellite in a highly elliptical inclined orbit, and presents a number of antenna design options for the proposed Archimedes mission. A satellite constellation was studied for the provision of multi media communication services in the L and S Band for northern latitudes. The inclined elliptical orbit would allow coverage of Europe, America, and East Asia. Using Canada and North America as the baseline coverage area, this paper addresses system considerations such as the satellite configuration and pointing, beam configuration, and requirements for antennas. A trade-off is performed among several antenna candidates including a direct radiating array, a focal-fed reflector, and a single reflector imaging system. Antenna geometry, performance, and beam forming methods are described. The impact of the designs on the antenna deployment is discussed.

  7. Quasi-optical antenna-mixer-array design for terahertz frequencies

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  8. Quasi-isotropic VHF antenna array design study for the International Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1975-01-01

    Results of a study to design a quasi-isotropic VHF antenna array for the IUE satellite are presented. A free space configuration was obtained that has no nulls deeper than -6.4 dbi in each of two orthogonal polarizations. A computer program named SOAP that analyzes the electromagnetic interaction between antennas and complicated conducting bodies, such as satellites was developed.

  9. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    NASA Astrophysics Data System (ADS)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  10. Design and implementation of dual-band antennas based on a complementary split ring resonators

    NASA Astrophysics Data System (ADS)

    Ortiz, Noelia; Iriarte, Juan Carlos; Crespo, Gonzalo; Falcone, Francisco

    2015-07-01

    A simple dual-band antenna design and implementation method is proposed in this work, based on the equivalent media properties inspired by resonant metamaterial elements. The equivalent circuit model of dual-band patch antennas based on a complementary split ring resonator (CSRR) is presented and validated. The dual-band patch antenna is designed etching a CSRR in the patch of a conventional rectangular microstrip patch antenna. The first resonance is governed by the quasi-static resonance of the CSRR while the second resonance is originated by the rectangular patch. The fact of etching a CSRR on a rectangular patch antenna also produces a miniaturization of a conventional patch antenna. The equivalent circuit model proposed in this letter is sound in order to understand the functionality of dual-band patch antennas based on a CSRR. Good agreement between simulation, equivalent circuit model and experimental results is shown and discussed. These results lead the equivalent circuit model to become a simple and straightforward tool for the design of this type of multiband antennas, of low cost and versatile operation for a broad range of wireless communication systems.

  11. Project Report: Design and Analysis for the Deep Space Network BWG Type 2 Antenna Feed Platform

    NASA Technical Reports Server (NTRS)

    Crawford, Andrew

    2011-01-01

    The following report explains in detail the solid modeling design process and structural analysis of the LNA (Low Noise Amplifier) feed platform to be constructed and installed on the new BWG (Beam Wave Guide) Type-2 tracking antenna in Canberra, Australia, as well as all future similar BWG Type-2 antennas builds. The Deep Space Networks new BWG Type-2 antennas use beam waveguides to funnel and 'extract' the desired signals received from spacecraft, and the feed platform supports and houses the LNA(Low Noise Amplifier) feed-cone and cryogenic cooling equipment used in the signal transmission and receiving process. The mandated design and construction of this platform to be installed on the new tracking antenna will be used and incorporated on all future similar antenna builds.

  12. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags

    PubMed Central

    Islam, Mohammad Tariqul; Rowe, Wayne S. T.; Kibria, Salehin; Jit Singh, Mandeep; Misran, Norbahiah

    2016-01-01

    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919–923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for ‘place and tag’ application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP). PMID:27533470

  13. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags.

    PubMed

    Rokunuzzaman, Md; Islam, Mohammad Tariqul; Rowe, Wayne S T; Kibria, Salehin; Jit Singh, Mandeep; Misran, Norbahiah

    2016-01-01

    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919-923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for 'place and tag' application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP).

  14. Consequences of antenna design in telemetry studies of small passerines

    USGS Publications Warehouse

    Dougill, Steve J.; Johnson, Luanne; Banko, Paul C.; Goltz, Dan M.; Wiley, Michael R.; Semones, John D.

    2000-01-01

    Entanglement and mortality of Palila (Loxioides bailleui), an endangered Hawaiian honeycreeper, occurred when birds were radio-tagged with transmitters equipped with a long, limp, solder-tipped antenna. Birds were found suspended in trees by their transmitter antenna on eight occasions. Although these birds eventually freed themselves or were freed by us, at least one bird died afterwards. For radio telemetry studies of small passerine species we recommend avoiding transmitters equipped with an antenna that is bulbous at the tip, >16 cm in length, limp, and shiny.

  15. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    NASA Astrophysics Data System (ADS)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  16. Plasmonic antennas as design elements for coherent ultrafast nanophotonics

    PubMed Central

    Brinks, Daan; Castro-Lopez, Marta; Hildner, Richard; van Hulst, Niek F.

    2013-01-01

    Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric–femtosecond regime. Despite great developments, this goal has yet to materialize. Previous work failed to provide the ability to engineer and control the ultrafast response of a plasmonic system at will, needed to fully realize the potential of ultrafast nanophotonics in physical, biological, and chemical applications. Here, we perform systematic measurements of the coherent response of plasmonic nanoantennas at femtosecond timescales and use them as building blocks in ultrafast plasmonic structures. We determine the coherent response of individual nanoantennas to femtosecond excitation. By mixing localized resonances of characterized antennas, we design coupled plasmonic structures to achieve well-defined ultrafast and phase-stable field dynamics in a predetermined nanoscale hotspot. We present two examples of the application of such structures: control of the spectral amplitude and phase of a pulse in the near field, and ultrafast switching of mutually coherent hotspots. This simple, reproducible and scalable approach transforms ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid-state physics, and quantum biology. PMID:24163355

  17. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  18. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  19. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  20. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  1. 21 CFR 868.5560 - Gas mask head strap.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a...

  2. 21 CFR 868.5560 - Gas mask head strap.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a...

  3. 21 CFR 868.5560 - Gas mask head strap.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a...

  4. 21 CFR 868.5560 - Gas mask head strap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a...

  5. 21 CFR 868.5560 - Gas mask head strap.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a...

  6. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  7. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Clips, straps, and hose clamps... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.532 Clips, straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a...

  8. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Clips, straps, and hose clamps... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.532 Clips, straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a...

  9. On the design of large space deployable modular antenna reflectors

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.; Woods, A. A., Jr.

    1981-01-01

    The deployment kinematics, stowing philosophy, and deployment sequencing for large deployable antenna modules were verified. Mesh attachment methods compatible with full scale modules were devised. Parametric studies of large modular reflectors established size, mass, and aperture frequency capabilities for these assemblies. Preliminary studies were made devising means of delivering modules to orbit, and once there, of assembling the modules into complete modular antenna reflectors. The basic feasibility of creating mass efficient modules erectable into large structures in space was established.

  10. Present Status of the ITER-like ICRF Antenna on JET

    SciTech Connect

    Durodie, F.; Huygen, S.; Lerche, E.; Ongena, J.; Van Eester, D.; Vrancken, M.; Gauthier, M.; Goulding, R.

    2009-11-26

    The commissioning of the ITER-Like ICRF Antenna (ILA) on JET plasmas from May 2008 to April 2009 in various conditions (33, 42 and 47 MHz, L- and H-mode, antenna strap-plasma separatrix distances of {approx}9 to 17 cm) has provided relevant information for future antenna design and operation. The maximum power density achieved was 6.2 MW/m{sup 2} in L-mode with strap to plasma separatrix distance of {approx}9-10 cm at 42 MHz on the lower half of the ILA extrapolating to 8 MW/m{sup 2} if the full generator power had been available. Efficient (trip-free operation) ELM tolerance was obtained both at 33 and 42 MHz on a large range of ELMs with strap voltages up to 42 kV and a maximum power density of 4.1 MW/m{sup 2}. The paper reviews these achievements as well as remaining issues.

  11. System and method of designing a load bearing layer that interfaces to a structural pass-through of an inflatable vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary R. (Inventor)

    2010-01-01

    A method for determining a design of an inflatable module including a rigid member disposed in a restraint layer, wherein the restraint layer includes orthogonal straps, includes modeling a strap adjacent to the rigid member and a strap connected to the rigid member. The adjacent strap and the member strap extend in a first direction. The method further includes selecting a first length of the member strap such that the adjacent strap carries load before the member strap during pressurization of the inflatable module, modeling tensions in the member strap with the first length and the adjacent strap during pressurization of the inflatable model, and outputting the modeled tensions in the member strap with the first length and the adjacent strap. An inflatable module includes a member strap having a length such that an adjacent strap carries load before the member strap during pressurization of the inflatable module.

  12. Structural design of a vertical antenna boresight 18.3 by 18.3-m planar near-field antenna measurement system

    NASA Astrophysics Data System (ADS)

    Sharp, G. R.; Trimarchi, P. A.; Wanhainen, J. S.

    A large very precise near-field planar scanner was proposed for NASA Lewis Research Center. This scanner would permit near-field measurements over a horizontal scan plane measuring 18.3 m by 18.3 m. Large aperture antennas mounted with antenna boresight vertical could be tested up to 60 GHz. When such a large near field scanner is used for pattern testing, the antenna or antenna system under test does not have to be moved. Hence, such antennas and antenna systems can be positioned and supported to simulate configuration in zero g. Thus, very large and heavy machinery that would be needed to accurately move the antennas are avoided. A preliminary investigation was undertaken to address the mechanical design of such a challenging near-field antenna scanner. The configuration, structural design and results of a parametric NASTRAN structural optimization analysis are contained. Further, the resulting design was dynamically analyzed in order to provide resonant frequency information to the scanner mechanical drive system designers. If other large near field scanners of comparable dimensions are to be constructed, the information can be used for design optimization of these also.

  13. Design optimization studies for large-scale contoured beam deployable satellite antennas

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroaki

    2006-05-01

    Satellite communications systems over the past two decades have become more sophisticated and evolved new applications that require much higher flux densities. These new requirements to provide high data rate services to very small user terminals have in turn led to the need for large aperture space antenna systems with higher gain. Conventional parabolic reflectors constructed of metal have become, over time, too massive to support these new missions in a cost effective manner and also have posed problems of fitting within the constrained volume of launch vehicles. Designers of new space antenna systems have thus begun to explore new design options. These design options for advanced space communications networks include such alternatives as inflatable antennas using polyimide materials, antennas constructed of piezo-electric materials, phased array antenna systems (especially in the EHF bands) and deployable antenna systems constructed of wire mesh or cabling systems. This article updates studies being conducted in Japan of such deployable space antenna systems [H. Tanaka, M.C. Natori, Shape control of space antennas consisting of cable networks, Acta Astronautica 55 (2004) 519-527]. In particular, this study shows how the design of such large-scale deployable antenna systems can be optimized based on various factors including the frequency bands to be employed with such innovative reflector design. In particular, this study investigates how contoured beam space antennas can be effective by constructed out of so-called cable networks or mesh-like reflectors. This design can be accomplished via "plane wave synthesis" and by the "force density method" and then to iterate the design to achieve the optimum solution. We have concluded that the best design is achieved by plane wave synthesis. Further, we demonstrate that the nodes on the reflector are best determined by a pseudo-inverse calculation of the matrix that can be interpolated so as to achieve the minimum

  14. Preliminary design of a 15 m diameter mechanically scanned deployable offset antenna

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The preliminary design of a 15 meter diameter mechanically scanned, offset rotating, fed parabolic reflector antenna system is reported and the results of preliminary performance, structural and thermal analyses are presented.

  15. Design of the reduced LQG compensator for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    1993-01-01

    A linear-quadratic-Gaussian (LQG) compensator design procedure is proposed for the DSS-13 antenna. The procedure is based on two properties. It is shown that tracking and flexible motion of the antenna are almost independent (the separation property). As a consequence, compensators for the flexible and tracking parts can be designed separately. It is shown also that the balanced LQG compensator's effort is evenly divided between the controller and the estimator. This allows a minimization of the compensator order, which is important for implementation purposes. An efficient compensator reduction procedure that gives a stable low-order compensator of satisfactory performance is introduced. This approach is illustrated with a detailed compensator design for the DSS-13 antenna. The implementation of this compensator design requires an update of the antenna model.

  16. Status of the ITER ICRF system design - 'Externally Matched' approach

    SciTech Connect

    Lamalle, P. U.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Messiaen, A.; Vervier, M.; Shannon, M.; Borthwick, A.; Chuilon, B.; Nightingale, M.; Goulding, R.; Swain, D.

    2007-09-28

    The design of the ITER ICRF system has been under revision for several years. The paper presents the status of the design proposal based on a 24 strap antenna plug (6 poloidal by 4 toroidal short radiating conductors) in which the straps are passively combined in 8 poloidal triplets by means of 4-port junctions. These triplets are connected in parallel pairwise through matching elements to form 4 load-resilient conjugate-T circuits. All adjustable matching elements are located outside the plug, i.e. in the ITER port cell and in the generator area.

  17. Design and performance analysis of the DSS-13 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, T.; Imbriale, W.; Bathker, D.

    1990-01-01

    A new 34 m research and development antenna is currently being constructed prior to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. The new 34 m antenna, fed with either a center or bypass BWG, will lose less than 0.2 dB (excluding surface root mean square and mirror misalignment losses), as compared with a standard-fed Cassegrain antenna a X- (8.4 GHz) and Ka-bands. The antenna is currently under construction and is scheduled to be completed July 1990. Phase 1 of the project is for independent X- and Ka-band receive-only tests. Phase 2 of the project is for simultaneous S- (2.3 GHz) and X-band or X- and Ka-band operation, and the design is currently under way.

  18. Testing a Protocol for a Randomized Controlled Trial of Therapeutic versus Placebo Shoulder Strapping as an Adjuvant Intervention Early after Stroke.

    PubMed

    Appel, Caroline; Perry, Lin; Jones, Fiona

    2015-06-01

    This study tested a protocol for a randomized controlled trial of therapeutic versus placebo shoulder strapping as an adjuvant intervention early after stroke. Despite widespread use, there is little evidence of the efficacy or acceptability of shoulder strapping to improve arm function in patients with shoulder paresis following stroke. This study tested a protocol designed to trial shoulder strapping as an adjuvant therapy in patients with shoulder paresis after stroke and tested its acceptability for patients and clinical staff. A multiple-method design comprised one quantitative randomized, double-blind, placebo-controlled study and two qualitative exploratory investigations entailing patient interviews and staff surveys. Seventeen sub-acute stroke patients with shoulder paresis were recruited in London stroke service settings between November 2007 and December 2009. Outcomes from a 4-week therapeutic strapping protocol were compared with those of placebo strapping as an adjunct to conventional rehabilitation. Minimal adverse events and greater improvement in arm function (Action Research Arm Test) were seen with therapeutic compared with placebo strapping (effect size 0.34). Patients and staff found the strapping acceptable with minimal adverse effects. This study provided data for sample size calculation and demonstrated a workable research protocol to investigate the efficacy of shoulder strapping as an adjuvant intervention to routine rehabilitation for stroke patients. Small-scale findings continue to flag the importance of investigating this topic. The protocol is recommended for a definitive trial of shoulder strapping as an adjuvant intervention.

  19. Ultra-wideband miniaturized microstrip patch antennas for wireless communications: Design guidelines and modeling

    NASA Astrophysics Data System (ADS)

    Dandu, Varun Kumar

    The number of wireless communication applications continue to increase steadily, leading to competition for currently allocated frequency bands. Capacity issues in form of data rate and latency have always been a bottleneck for broadband wireless-communication usage. New communication systems like ultra-wideband (UWB) require larger bandwidth than what is normally utilized with traditional antenna techniques. The interest for compact consumer electronics is growing in the meantime, creating a demand on efficient and low profile antennas which can be integrated on a printed circuit board. The main objective of this thesis is to study, design, analyze and implement UWB low profile microstrip patch antenna that satisfy UWB technology requirements. Some methods to extend the bandwidth and other antenna parameters associated with wideband usages are studied. Several techniques are used for optimal UWB bandwidth performance of the UWB microstrip patch antenna. The performance parameters such as VSWR, Gain and radiation pattern of the UWB microstrip patch antenna is extensively investigated with simulations using FEKO. A set of simple design guidelines is proposed to provide approximate rules that result in optimum "first-pass" designs of probe-fed, miniaturized, low profile, microstrip UWB antennas using different bandwidth-enhancement techniques to satisfy UWB bandwidth that require minimal tuning.

  20. A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra

    2015-11-01

    In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.

  1. Analysis and verification of a proposed antenna design for an implantable RFID Tag at 915 MHz

    NASA Astrophysics Data System (ADS)

    Bakore, Rahul

    This work focused on design and analysis of an antenna to be used with an RFID tag that is implanted in human brain tissue. The goal is to maximize the power transferred between the external RFID measurement system and the implanted RFID tag while minimizing the power dissipated within the surrounding tissue. The commercial computational electromagnetics software package COMSOL, based on finite element method (FEM) has been used for design process. The COMSOL models have been validated against additional simulations using the FEKO commercial package based on method of moments (MOM) as well as against measurement of test antenna structures radiating in bulk homogeneous medium. The proposed antenna geometry is compatible with the human tissue and viable for use in implantable RFID Tag. The proposed antenna is a planar folded dipole made from a gold conductor that acts as a biocompatible material. The metal thickness is 1 micrometer and the overall antenna dimensions are 22 mm × 3.5 mm. The antenna structure also includes a dielectric substrate and an acrylic coating. The antenna impedance is 28 + j201.5 Ω at 915 MHz. The inductive reactance is high enough to compensate the capacitive reactance of RFID tag and the antenna resistance is close to effective chip resistance providing a conjugate match. This antenna fulfills the criteria for minimizing the power dissipation within the human tissue. Also, a radiation efficiency of 87% is achieved with this antenna at 915 MHz. The quality factor of greater than 10 is achieved which is sufficient to turn on the diodes in the electronic circuit of the RFID tag due to the high D.C voltage obtained.

  2. THE COUPLING AND MUTUAL IMPEDANCE BETWEEN BALANCED WIRE-ARM CONICAL LOG-SPIRAL ANTENNAS

    DTIC Science & Technology

    CONICAL ANTENNAS, *COUPLED ANTENNAS, * HELICAL ANTENNAS, ANTENNA COMPONENTS, ANTENNA RADIATION PATTERNS, COUPLINGS, DESIGN, ELECTRIC CURRENTS...ELECTRIC POTENTIAL, ELECTRICAL IMPEDANCE, MEASUREMENT, POLARIZATION, PROPAGATION, ROTATION, SPIRAL ANTENNAS, THEORY

  3. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  4. Design of a dual slot antenna for small animal microwave ablation studies.

    PubMed

    Moon, Tyler J; Brace, Christopher L; Moon, Tyler J; Brace, Christopher L; Brace, Christopher L; Moon, Tyler J

    2016-08-01

    This study presents the development of a dual-slot antenna for small animal tumor ablation. By using a dual-slot design at 8 GHz, it was hypothesized that smaller and more spherical ablations can be produced. After computer-aided design optimization, antennas were fabricated and ablations performed at 5-20 W for 15-120 s with the objective of creating ablations with a diameter/length aspect ratio of at least 0.9. The new dual-slot design at 8 GHz created significantly more spherical ablations than a commercial antenna at 2.45 GHz in ex vivo liver tissue (Average Aspect Ratio 0.8081 vs. 0.4532, p <;<; 0.05). In vivo studies confirmed the highly spherical results ex vivo. Initial testing shows that the dual-slot antenna and 8 GHz generator can be used to ablate tumors in mice.

  5. Design and analysis of ultra-wideband antennas for transient field excitations

    NASA Astrophysics Data System (ADS)

    Kotzev, Miroslav; Kreitlow, Matthias; Gronwald, Frank

    2016-09-01

    This work addresses the design of two ultra-wideband antennas for the application of transient field measurements that are characterized by frequency spectra that typically range from a few MHz to several GHz. The motivation for their design is the excitation of high power transient pulses, such as double exponential or damped sinusoidal pulses, within highly resonant metallic enclosures. The antenna design is based on two independent numerical full-wave solvers and it is aimed to achieve a low return loss over a wide range of frequencies together with a high pulse fidelity. It turns out that antennas of the conical and discone type do achieve satisfactory broadband characteristics while limitations towards low frequencies persist. Also the concept of fidelity factor turns out as advantageous to determine whether the proposed antennas allow transmitting certain broadband pulse forms.

  6. Metatarsal strapping tightness effect to vertical jump performance.

    PubMed

    Zhang, Yan; Baker, Julien S; Ren, Xuejun; Feng, Neng; Gu, Yaodong

    2015-06-01

    The study investigated the effect of metatarsal strapping on vertical jump performance and evaluated the difference in lower limb kinematics and electromyographic signal (EMG) between different strapping force levels. Twelve male callisthenic athletes completed single vertical jump from a squat posture with hands on hips under three conditions as non-strapping (NS), moderate strapping (MS) and high strapping (HS) round metatarsals. Ground reaction force (GRF) was recorded with KISTLER force platform to calculate the vertical jump height. Angles of ankle, knee and hip were measured with VICON motion analysis system and EMG data were recorded with mega6000 system. Data showed that jump height was significantly higher under HS than NS condition. Compared with NS, ankle inversion decreased significantly during take-off and external rotation increased significantly during landing with MS. Significant difference was also found in the muscle activity of tibialis anterior between non-strapping and strapping conditions.

  7. Nuclear fuel spacer grid with improved outer straps

    SciTech Connect

    De Mario, E.E.; Knott, R.P.

    1986-04-29

    A grid is described for the spacing of fuel rods in a nuclear reactor fuel assembly, comprising: a plurality of interleaved grid straps arranged in an egg-crate configuration defining cells therein for the separate enclosure of each of the fuel rods; and four outer straps attached together in a generally square-shaped array surrounding the heightwise edges of the grid straps. The outer straps each has a central portion and a top and a bottom resilient lengthwise border portion, with the heightwise edges of the grid straps attached to the central portions of their associated outer straps and with the border portions extending vertically beyond and projecting horizontally outwardly beyond their associated central portions of their common outer straps.

  8. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  9. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  10. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  11. Concepted design of a surface measurement system for large deployable space antennas

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1982-01-01

    The sensor system is in essence a point design, specifically interfacing with the Harris, Inc., 1000 meter deployable mesh communication antenna. The design can, without large modification, be adapted to other large deployable antennas such as the Lockheed Wrap-rib, the General Dynamics Precision Erectable Truss and the TRW Advanced Sunflower antennas. Measurements are optical displacements. The elements of the system are a central cluster of receivers near the apex of the antenna and active bright targets at the antenna. The cluster defines a single coordinate frame from which all surface positions are referenced. The receivers continuously observe an extended array of sample points located throughout the reflecting surface and its supporting structure. For the Harris antenna, the surface samples are at the mesh gore lines and at the supporting hoop. Output data is in real-time, compatible with on-board processing and active control of antenna figure. Lifetime of the system is at least 10 years continuous operation in space.

  12. Concepted design of a surface measurement system for large deployable space antennas

    NASA Astrophysics Data System (ADS)

    Neiswander, R. S.

    1982-03-01

    The sensor system is in essence a point design, specifically interfacing with the Harris, Inc., 1000 meter deployable mesh communication antenna. The design can, without large modification, be adapted to other large deployable antennas such as the Lockheed Wrap-rib, the General Dynamics Precision Erectable Truss and the TRW Advanced Sunflower antennas. Measurements are optical displacements. The elements of the system are a central cluster of receivers near the apex of the antenna and active bright targets at the antenna. The cluster defines a single coordinate frame from which all surface positions are referenced. The receivers continuously observe an extended array of sample points located throughout the reflecting surface and its supporting structure. For the Harris antenna, the surface samples are at the mesh gore lines and at the supporting hoop. Output data is in real-time, compatible with on-board processing and active control of antenna figure. Lifetime of the system is at least 10 years continuous operation in space.

  13. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  14. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    PubMed

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-05

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system.

  15. Designing Ground Antennas for Maximum G/T: Cassegrain or Gregorian?

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.

    2005-01-01

    For optimum performance, a ground antenna system must maximize the ratio of received signal to the receiving system noise power, defined as the ratio of antenna gain to system-noise temperature (G/T). The total system noise temperature is the linear combination of the receiver noise temperature (including the feed system losses) and the antenna noise contribution. Hence, for very low noise cryogenic receiver systems, antenna noise-temperature properties are very significant contributors to G/T.It is well known that, for dual reflector systems designed for maximum gain, the gain performance of the antenna system is the same for both Cassegrain and Gregorian configurations. For a12-meter antenna designed to be part of the large array based Deep Space Network, a Cassegrain configuration designed for maximum G/T at X-band was 0.7 dB higher than the equivalent Gregorian configuration. This study demonstrates that, for maximum GIT, the dual shaped Cassegrain design is always better than the Gregorian.

  16. MoM-based topology optimization method for planar metallic antenna design

    NASA Astrophysics Data System (ADS)

    Liu, Shutian; Wang, Qi; Gao, Renjing

    2016-12-01

    The metallic antenna design problem can be treated as a problem to find the optimal distribution of conductive material in a certain domain. Although this problem is well suited for topology optimization method, the volumetric distribution of conductive material based on 3D finite element method (FEM) has been known to cause numerical bottlenecks such as the skin depth issue, meshed "air regions" and other numerical problems. In this paper a topology optimization method based on the method of moments (MoM) for configuration design of planar metallic antenna was proposed. The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance. In this way, the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain. The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities. The conductive material (metal) was assumed to have zero impedance, whereas the non-conductive material was simulated as a material with a finite but large enough impedance. The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function. The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency. The results illustrated the effectiveness of the method.

  17. Computer simulations for rf design of a Spallation Neutron Source external antenna H ion source

    SciTech Connect

    Lee, Sung-Woo; Goulding, Richard Howell; Kang, Yoon W; Shin, Ki; Welton, Robert F

    2010-01-01

    Electromagnetic modeling of the multicusp external antenna H ion source for the Spallation Neutron Source SNS has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as . Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  18. Computer simulations for rf design of a Spallation Neutron Source external antenna H- ion source.

    PubMed

    Lee, S W; Goulding, R H; Kang, Y W; Shin, K; Welton, R F

    2010-02-01

    Electromagnetic modeling of the multicusp external antenna H(-) ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as sigma. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  19. Conformal Antenna and Array Design Using Novel Electronic Materials

    DTIC Science & Technology

    2010-03-31

    4. Miniature conformal spirals on textured/ metamaterial ferrite substrates (middle) to replace traditional blade antennas that protrude nearly...waves (as photonic crystal modes) in textured or layered dielectric media ( metamaterials ). Of importance is that these modes are non- reflecting at...low loss ferrites within the substrate of the printed coupled lines will significantly enhance bandwidth and radiation. A concept that includes

  20. LQG controller design using GUI: application to antennas and radio-telescopes

    PubMed

    Maneri; Gawronski

    2000-01-01

    The Linear Quadratic Gaussian (LQG) algorithm has been used to control the JPL's beam wave-guide, and 70-m antennas. This algorithm significantly improves tracking precision in a wind disturbed environment. Based on this algorithm and the implementation experience a Matlab based Graphical User Interface (GUI) was developed to design the LQG controllers applicable to antennas and radiotelescopes. The GUI is described in this paper. It consists of two parts the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.

  1. Studies in Fin-Line Antenna Design for Phased Array Applications.

    DTIC Science & Technology

    1983-11-01

    bend fin-line ........ 2 2. Extended dielectric fin-lime antenna . . . ............ 4 3. Dielectric rod fin-linm antena ..................... S 4...endftire. Mhe latter Is perhaps the most difficult criterion to satisfy. It is easy to visualize a broadside fin-line antena based on a * * periodic...of endfire fin-line antenas , whose designs are shown in fils. 2-5.* In Fig. 2, an antenna is shown in which the dielectric portion of the fin-line wee

  2. DESIGN AND PERFORMANCE OF A LOW-FREQUENCY CROSS-POLARIZED LOG-PERIODIC DIPOLE ANTENNA

    SciTech Connect

    Raja, K. Sasikumar; Kathiravan, C.; Ramesh, R.; Rajalingam, M.; Barve, Indrajit V.

    2013-07-01

    We report the design and performance of a cross-polarized log-periodic dipole (CLPD) antenna for observations of polarized radio emission from the solar corona at low frequencies. The measured isolation between the two mutually orthogonal log-periodic dipole antennas was as low as Almost-Equal-To - 43 dBm in the 65-95 MHz range. We carried out observations of the solar corona at 80 MHz with the above CLPD and successfully recorded circularly polarized emission.

  3. Global ICRF system designs for ITER and TPX

    SciTech Connect

    Goulding, R.H.; Hoffman, D.J.; Ryan, P.M.; Durodie, F.

    1995-09-01

    The design of feed networks for ICRF antenna arrays on ITER and TPX are discussed. Features which are present in one or both of the designs include distribution of power to several straps from a single generator, the capability to vary phases of the currents on antenna elements rapidly without the need to rematch, and passive elements which present a nearly constant load to the generators during ELM induced loading transients of a factor of I0 or more. The FDAC (Feedline/Decoupler/Antenna Calculator) network modeling code is described, which allows convenient modeling of the electrical performance of nearly arbitrary ICRF feed networks.

  4. Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

    PubMed Central

    Shakib, M. N.; Moghavvemi, M.; Mahadi, W. N. L.

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size. PMID:24723835

  5. Design of Compact Penta-Band and Hexa-Band Microstrip Antennas

    NASA Astrophysics Data System (ADS)

    Srivastava, Kunal; Kumar, Ashwani; Kanaujia, Binod K.

    2016-03-01

    This paper presents the design of two multi-band microstrip antennas. The antenna-1 gives Penta-Band and antenna-2 gives Hexa-band in the WLAN band. The frequency bands of the antenna-1 are Bluetooth 2.47 GHz (2.43 GHz-2.54 GHz), WiMax band 3.73 GHz (3.71 GHz-3.77 GHz), WLAN 5.1 GHz (4.99 GHz-5.13 GHz), upper WLAN 6.36 GHz (6.29 GHz-6.43 GHz), C band band 7.42 GHz (7.32 GHz-7.50 GHz) and the antenna-2 are WLAN band 2.6 GHz (2.56 GHz-2.63 GHz), 3.0 GHz (2.94 GHz-3.05 GHz), WiMax band 3.4 GHz (3.34 GHz-3.55 GHz), 4.85 GHz (4.81 GHz-4.92 GHz), WLAN 5.3 GHz (5.27 GHz-5.34 GHz) and upper WLAN 6.88 GHz. Both the antennas are fabricated and their measured results are presented to validate the simulated results. Proposed antennas have compact sizes and good radiation performances.

  6. Design of a compact tuning fork-shaped notched ultrawideband antenna for wireless communication application.

    PubMed

    Shakib, M N; Moghavvemi, M; Mahadi, W N L

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33-13.8 GHz (at -10 dB return loss) with a rejection frequency band of 5.28-6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size.

  7. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    NASA Astrophysics Data System (ADS)

    Meena, M. L.; Parmar, Girish; Kumar, Mithilesh

    2016-03-01

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  8. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  9. Inversely-designed printed microwave ablation antenna for controlled temperature profile synthesis

    NASA Astrophysics Data System (ADS)

    Sharma, Shashwat; Sarris, Costas D.

    2017-02-01

    Microwave ablation (MWA) is based on localized heating of biological tissues, enabled by an electric field. Antennas for ablation are commonly designed in a forward approach to generate a temperature profile specific to the design. The concept of an inversely-designed MWA antenna, consisting of printed dipoles, is presented herein. This design can be configured to synthesize a desired target temperature profile by controlling and optimizing its current distribution, as demonstrated by simulations. This concept provides the functionality of a phased array on the tip of an interstitial device.

  10. Module strap tests and how they effect the 25 cm stack construction

    SciTech Connect

    Hill, N.F.

    1994-09-06

    We were asked at the previous Atlas collaboration meeting to confirm our proposal that the Argonne design option could maintain the tie straps in a prestressed condition after welding. This was deemed necessary to maintain compression loading of the steel plate stack. The compression load requirement was set at a load equivalent to that necessary to maintain continuity of the stack using friction. We will attempt to prove that through the strap testing and the ultimate construction of the 25 cm prototype stack that we have in fact met these requirements.

  11. Design and Measurements of a Hybrid RF-MEMS Reconfigurable Loop Antenna on a Flexible Substrate (PREPRINT)

    DTIC Science & Technology

    2010-06-01

    AFRL-RY-WP-TP-2010-1147 DESIGN AND MEASUREMENTS OF A HYBRID RF-MEMS RECONFIGURABLE LOOP ANTENNA ON A FLEXIBLE SUBSTRATE (PREPRINT) Nelson... Antenna on a Flexible Substrate Nelson Sepulveda(1), Dimitrios E. Anagnostou* (2), Rafael A. Rodriguez-Solis(1), and John L. Ebel(3) (1... antenna was designed, fabricated (on a flexible substrate) and measured. The design concepts and measurement results are presented and discussed

  12. Design of an omnidirectional optical antenna for ultraviolet communication.

    PubMed

    Zhang, Xuebin; Tang, Yi; Huang, Heqing; Zhang, Lijun; Bai, Tingzhu

    2014-05-20

    In this paper we propose an omnidirectional large field-optical antenna with a dual-mirror structure and field devices and demonstrate its utilization in ultraviolet (UV) communications. Theoretical analysis shows that it is suitable for short-range UV communication. Simulation indicates that the optical gain is 32, and the system has a good spot uniformity. Additionally, incident angles of incident ray meet the requirement of the interference filter (±10°). Outdoor experiments show that the angle of FOV is in the range of ±20°~±80° and a SNR increase of 31 dB compared with bare tube is observed, demonstrating the effectiveness of the omnidirectional optical antenna structure for free-space UV communication.

  13. Antennas for the array-based Deep Space Network: current status and future designs

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Gama, Eric

    2005-01-01

    Development of very large arrays1,2 of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network DSN) by two or three orders of magnitude thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-m antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. NASA has undertaken a technology program to prove the performance and cost of a very large DSN array. Central to that program is a 3-element interferometer to be completed in 2005. This paper describes current status of the low cost 6-meter breadboard antenna to be used as part of the interferometer and the RF design of the 12-meter antenna.

  14. Design, dynamic modelling and experimental validation of a 2DOF flexible antenna sensor

    NASA Astrophysics Data System (ADS)

    Castillo, Claudia F.; Naci Engin, Seref; Feliu Batlle, Vicente

    2014-04-01

    A two-degree-of-freedom flexible antenna sensor platform was designed to physically simulate the ability of a robotic arm, which rapidly reorients and targets itself towards specific surfaces from different approachable angles. An accurate antenna model involves non-linear expressions that represent the system dynamics. Therefore, a comprehensive study along with experimental work has been carried out in order to achieve accurate system identification and validate the dynamic model. The model developed has proven useful in controlling the antenna tip, minimising the effects of the non-linear flexural dynamics and the Coulomb friction. The system was driven by servo motors. Algebraic controllers were developed for the antenna tip to track the reference trajectory. The platform system used encoders to measure the joint angles and a loadcell sensor to obtain the flexible link tip position. To validate the sensory information, the results obtained by the integrated sensors were compared to that of an external camera system.

  15. On the design and optimisation of new fractal antenna using PSO

    NASA Astrophysics Data System (ADS)

    Rani, Shweta; Singh, A. P.

    2013-10-01

    An optimisation technique for newly shaped fractal structure using particle swarm optimisation with curve fitting is presented in this article. The aim of particle swarm optimisation is to find the geometry of the antenna for the required user-defined frequency. To assess the effectiveness of the presented method, a set of representative numerical simulations have been done and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimisation procedure. The proposed fractal antenna resonates at the 5.8 GHz industrial, scientific and medical band which is suitable for wireless telemedicine applications. The antenna characteristics have been studied using extensive numerical simulations and are experimentally verified. The antenna exhibits well-defined radiation patterns over the band.

  16. Design of an offset fed scanning antenna for the shuttle imaging microwave system. [performance prediction parabolic reflectors and microwave antennas for space shuttles

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J.

    1975-01-01

    A design study is described for a mechanically scanned offset fed parabolic torus reflector antenna having a 4m x 2m aperture for simultaneous use at eleven frequency channels from UHF to millimeter wavelengths. A design for the antenna is presented utilizing dipole and horn feeds at the low frequencies and a Gregorian aberration correcting subreflector system for feeding the torus at the high frequencies. The results and details of a theroetical study based on geometrical optics performed to evaluate the high frequency design and the results of an experimental study involving a one-tenth scale model for evaluation of the low-frequency behavior are given. Beam efficiencies, antenna patterns, beamwidths and cross polarization levels are presented and these results demonstrate that the antenna concept is viable for the Shuttle Imaging Microwave System requirement.

  17. Design options for an ITER ion cyclotron system

    SciTech Connect

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  18. DSN 70-meter antenna microwave optics design and performance improvements. Part 1: Design optimization

    NASA Technical Reports Server (NTRS)

    Bathker, D. A.; Slobin, S. D.

    1989-01-01

    The design optimizations associated with the microwave and structural upgrade of the DSN 64-m antennas are discussed. Expected area efficiency/gain performances at S- and X-band are given for both the original 64-m systems and the upgraded 70-m systems, and error estimates are developed. The DSN 70-m Upgrade Project specifications, based on predesign estimates, were 1.4-dB gain at S-band and 1.9-dB at X-band, with no degradation to critical receiving system noise temperatures. The measurements show an S-band gain increase of 1.9 dB and an average increase of 2.1 dB at X-band. The Project also delivered small receiving system noise decreases at both frequency bands. The three DSN 70-m antennas, in the initial state of mechanical adjustment as of the end of calendar year 1988, are performing with very high peak microwave area efficiencies at very nearly the engineering design expectations of 76 percent at S-band and 71 percent at X-band.

  19. Design of Dual band Modified Inverted F-Antenna for Military and Intelligent Transportation System (ITS) Applications by Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Hossain, Robiul; Karmokar, Debabrata Kumar

    2012-11-01

    A design of single feed Dual Band Modified Inverted F-Antenna (IFA) operating at 4.45 GHz (4.4-4.7GHz) and 5.9 GHz (5.850-5.925 GHz) has been proposed in this paper. The design is initiated by trial and error method of Numerical Analysis and method of moments (MoMís) in Numerical Electromagnetic code (NEC) is used to design, simulate and analyze this antenna. The results exhibit a proper operation of the antenna in terms of return loss, bandwidth, efficiency, VSWR, and gain at both bands. Proposed antenna is designed to achieve multi-serving purposes. Military applications and applications in the Intelligent Transportation Systems (ITS) are the most important applications within the above mentioned frequency bands respectively. The simulated results including performance parameters of antenna are presented and all are acceptable for the standard antennas.

  20. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad O.; Gupta, Inder J.; Burnside, Walter D.

    1993-01-01

    Dielectric straps can support very heavy targets and have low backscattering levels, especially at low frequencies (below 8 GHz); thus, they can be used effectively to support targets during backscattered field measurements. In this paper, the scattered fields of nonmagnetic dielectric straps surrounding a perfectly conducting structure are presented, and the computed results are compared with experimental data. Empirical formulas for the strap scattered fields are also given. These formulas are good for general convex structures whose radii of curvature are large compared with the wavelength and are expected to give a reasonable estimate of the true backscattered fields from the dielectric straps when used as a target support structure.

  1. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  2. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  3. Design, Analysis and Measurement of a Millimeter Wave Antenna Suitable for Stand off Imaging at Checkpoints

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Li, Chao; Gu, Shengming; Fang, Guangyou

    2011-11-01

    A systematic method is proposed to design a novel beam-scanning antenna with fan-beam, which is suitable for stand off imaging at millimeter wave band. The antenna has not only an elliptical main-reflector to generate thin fan beam, but also a rotating sub-reflector to realize beam scanning function. All these structures are embedded between two parallel metal plates. A Reversed Ray Tracing Algorithm (RRTA) was introduced to optimize the positions and dimensions of the subreflector and the feed horn. A modified Physical Optics method based on Discrete Real Mirror Image theory (DRMI-PO) was developed to efficiently analyze and optimize the field patterns of the antenna with specific structures. Based on above methods, an antenna working at 200 GHz is designed and fabricated. The measured patterns are in well agreement with the calculated results. It's found that, the total beam scanning range is about 60 cm with its minimum half -power beam widths about 1.7 cm in the scanning direction. All the results validate the design method and potential applications of the antenna in the stand off imaging systems.

  4. Design of a low-loss series-fed microstrip array antenna

    NASA Technical Reports Server (NTRS)

    Mahbub, M. R.; Christodoulou. C. G.; Bailey, M. C.

    1998-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The array antenna is composed of two sub arrays. Each sub array consists of an equal number of microstrip patches all connected together through a series microstrip line. The first element of each sub array is coaxially fed but 180 degree out of phase. This approach ensures a symmetric radiation pattern. The design approach, is accomplished using the IE3D code that utilizes the method of moments. All experimental and simulated data are presented and discussed.

  5. Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.

    1982-01-01

    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.

  6. Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-01-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described.

  7. Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications

    NASA Astrophysics Data System (ADS)

    Valjibhai, Gohil Jayesh; Bhatia, Deepak

    2013-01-01

    This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.

  8. Electrical Design of an ICRF System for Ignitor

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Vecchi, G.; Riccitelli, M.; Carter, M. D.

    1996-11-01

    A system of 6 antennae is designed for ion cyclotron resonance heating (ICRH) in Ignitor. The coupling properties of each antenna are calculated by using a two-dimensional slab model to obtain the parameters necessary to model the current strap as a trasmission line then using the calculated current profile in a three-dimensional simulation (the codes have been developed at ORNL). The antenna consists of 4 loop (straps) to form a 2×2 poloidal and toroidal phased array; in our proposal each strap is fed by a coaxial cable, an adapter and a RF power generator. The power spectrum of the radiated parallel index is optimized for out-of-phasing in order to obtain a high heating efficiency and a high loading resistance. The predicted loading and "effective" resistance is sufficient for ICRH experiments with 4.0 MW of power injected in the plasma by each antenna as long as the distance between the Faraday shield and plasma separatrix surface is smaller than 4.0 cm. The maximum RF voltage in the system is 50.0 kV which is limited by generator power and coaxial cable dimensions. The development of a self-consistent integral-equation code is presently under way to analyze geometry effects on the antenna performances. Sponsored by ENEA, CNR, and ASP of Italy, and by the US DoE

  9. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  10. Analysis And Design Of Antennas Facing Cylindrical Plasma Columns With TOPCYL

    NASA Astrophysics Data System (ADS)

    Guadamuz, S.; Graswinckel, M. F.; Koch, R.; Maggiora, R.; Van De Pol, M.; Vietti, G.; Van Rooij, G.

    2011-12-01

    On recent years TOPICA[1] has shown its capabilities as a designing tool for ICRF antennas on tokamaks, handling both the realistic geometrical detail of the structure as well as a complete description of the plasma region behavior. Now, expanding these capabilities, the TOrino Polythecnic CYLindrical code (TOPCYL) has been added in order to simulate antennas facing cylindrical plasma columns. This feature allows the analysis and design of RF heating systems for applications as VASIMR-like plasma thrusters and plasma-surface-interaction (PSI) experiments. In the present work, the theoretical basis and implementation of TOPCYL is presented, as well as the results obtained on simulating antennas for the ICRF and 2,45 GHz regimes.

  11. Integrated Thermal-structural-electromagnetic Design Optimization of Large Space Antenna Reflectors

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Padula, S. L.

    1986-01-01

    The requirements for low mass and high electromagnetic (EM) performance in large, flexible space antenna structures is motivating the development of a systematic procedure for antenna design. In contrast to previous work which concentrated on reducing rms distortions of the reflector surface, thereby indirectly increasing antenna performance, the current work involves a direct approach to increasing electromagnetic performance using mathematical optimization. The thermal, structural, and EM analyses are fully integrated in the context of an optimization procedure, and consequently, the interaction of the various responses is accounted for directly and automatically. Preliminary results are presented for sizing cross-sectional areas of a tetrahedral truss reflector. The results indicate potential for this integrated procedure from the standpoint of mass reduction, performance increase, and efficiency of the design process.

  12. BROADBAND ANTENNA MATCHING NETWORK DESIGN AND APPLICATION FOR RF PLASMA ION SOURCE

    SciTech Connect

    Shin, Ki; Kang, Yoon W; Piller, Chip; Fathy, Aly

    2011-01-01

    The RF ion source at Spallation Neutron Source has been upgraded to meet higher beam power requirement. One important subsystem for efficient operation of the ion source is the 2MHz RF impedance matching network. The real part of the antenna impedance is very small and is affected by plasma density for 2MHz operating frequency. Previous impedance matching network for the antenna has limited tuning capability to cover this potential variation of the antenna impedance since it employed a single tuning element and an impedance transformer. A new matching network with two tunable capacitors has been built and tested. This network can allow precision matching and increase the tunable range without using a transformer. A 5-element broadband matching network also has been designed, built and tested. The 5-element network allows wide band matching up to 50 kHz bandwidth from the resonance center of 2 MHz. The design procedure, simulation and test results are presented.

  13. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Aguiam, D. E.; Silva, A.; Bobkov, V.; Carvalho, P. J.; Carvalho, P. F.; Cavazzana, R.; Conway, G. D.; D'Arcangelo, O.; Fattorini, L.; Faugel, H.; Fernandes, A.; Fünfgelder, H.; Gonçalves, B.; Guimarais, L.; De Masi, G.; Meneses, L.; Noterdaeme, J. M.; Pereira, R. C.; Rocchi, G.; Santos, J. M.; Tuccillo, A. A.; Tudisco, O.

    2016-11-01

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 1019 m-3, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.

  14. Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2015-03-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

  15. Design and realization of a planar ultrawideband antenna with notch band at 3.5 GHz.

    PubMed

    Azim, Rezaul; Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin; Arshad, Haslina

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.

  16. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  17. A strap-on monitoring system for rail car applications

    SciTech Connect

    Hogan, J.; Rey, D.; Mitchell, J.; Breeding, R.; McKeen, R.G.; Brogan, J.

    1996-12-01

    A joint Sandia National Laboratories, University of New Mexico, and New Mexico Engineering Research Institute project to investigate an architecture implementing real-time monitoring and tracking technologies in the railroad industry is presented. The work examines a strap-on sensor package, designed as a value-added component, integrated into existing industry systems and standards. As applied to freight trains, the sensors` primary purpose is to minimize operating costs by decreasing losses due to theft, and by reducing the number, severity, and a consequence of hazardous materials incidents. Product requirements are based on a cost-benefit analysis of operating losses. Results of a concept validation experiment conducted on a revenue generating train are reported.

  18. Mitigating Multipath Bias Using a Dual-Polarization Antenna: Theoretical Performance, Algorithm Design, and Simulation.

    PubMed

    Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan

    2017-02-13

    It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna's capability in mitigating short delay multipath-the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an RHCP

  19. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  20. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  1. Operating The Upgraded NSTX HHFW Antenna Array In An Environment With Li-coated Surfaces

    SciTech Connect

    Ryan, P. M.; Ellis, R.; Hosea, J. C.; Kung, C. C.; LeBlanc, B. P.; Taylor, G.; Wilson, J. R.; Pinsker, R. I.

    2011-12-23

    The single-feed, end-grounded straps of the NSTX 12-strap HHFW antenna array have been replaced with double-feed, center-grounded straps to reduce the voltages in the vicinity of the Faraday shield (FS) for a given strap current. The strap spacings to the FS and to the back plate were increased by 3 mm to decrease the electric fields for a given voltage. The electric fields near the FS have been roughly halved for the same strap currents, permitting a direct examination of the roles that internal fields play in determining antenna power limits in plasmas. Extensive RF/plasma conditioning of the antenna was required to remove enough of the evaporated Li deposits from prior wall conditioning to permit coupling in excess of 4 MW to L- and H-mode plasmas in 2009. Most arcs were associated with expulsion of Li from the FS/antenna frame surfaces. The center-grounded straps were less susceptible to arcing during ELMing H-mode plasmas. Reliable operation above 2 MW was difficult after the installation of the Liquid Lithium Divertor (LLD) in 2010. Li-compound 'dust' was found in the antennas after this run and is believed to have contributed to the reduced power limit.

  2. Operating the Upgraded NSTX HHFW Antenna Array in an Environment with Li-coated Surfaces

    SciTech Connect

    Ryan, Philip Michael; Ellis, R.; Hosea, J.; Kung, C. C.; LeBlanc, B; Pinsker, R.; Taylor, G.; Wilson, J. R.; NSTX Team,

    2011-01-01

    The single-feed, end-grounded straps of the NSTX 12-strap HHFW antenna array have been replaced with double-feed, center-grounded straps to reduce the voltages in the vicinity of the Faraday shield (FS) for a given strap current. The strap spacings to the FS and to the back plate were increased by 3 mm to decrease the electric fields for a given voltage. The electric fields near the FS have been roughly halved for the same strap currents, permitting a direct examination of the roles that internal fields play in determining antenna power limits in plasmas. Extensive RF/plasma conditioning of the antenna was required to remove enough of the evaporated Li deposits from prior wall conditioning to permit coupling in excess of 4 MW to L- and H-mode plasmas in 2009. Most arcs were associated with expulsion of Li from the FS/antenna frame surfaces. The center-grounded straps were less susceptible to arcing during ELMing Hmode plasmas. Reliable operation above 2 MW was difficult after the installation of the Liquid Lithium Divertor (LLD) in 2010. Li-compound dust was found in the antennas after this run and is believed to have contributed to the reduced power limit.

  3. Optimum design of antennas using metamaterials with the efficient global optimization (EGO) algorithm

    NASA Astrophysics Data System (ADS)

    Southall, Hugh L.; O'Donnell, Teresa H.; Derov, John S.

    2010-04-01

    EGO is an evolutionary, data-adaptive algorithm which can be useful for optimization problems with expensive cost functions. Many antenna design problems qualify since complex computational electromagnetics (CEM) simulations can take significant resources. This makes evolutionary algorithms such as genetic algorithms (GA) or particle swarm optimization (PSO) problematic since iterations of large populations are required. In this paper we discuss multiparameter optimization of a wideband, single-element antenna over a metamaterial ground plane and the interfacing of EGO (optimization) with a full-wave CEM simulation (cost function evaluation).

  4. Miniaturized differentially fed dual-band implantable antenna: Design, realization, and in vitro test

    NASA Astrophysics Data System (ADS)

    Lei, Wen; Guo, Yong-Xin

    2015-10-01

    A differentially fed dual-band implantable antenna is designed in this paper, with an additional shorting strip to achieve a size reduction. The antenna has been simulated by using one-layer and multilayer tissue models and a human anatomical model. The prototype model is fabricated and in vitro demonstrated with skin-mimicking phantoms, which experimentally achieves impedance bandwidths of 32 MHz at 401-406 MHz Medical Device Radiocommunications Service band and 151 MHz at 2.4-2.48 GHz Industrial, Scientific, and Medical band. Radiation characteristic has been evaluated in Computer Simulation Technology (CST) human voxel model.

  5. A liquid metal-based structurally embedded vascular antenna: II. Multiobjective and parameterized design exploration

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Frank, G. J.; Malak, R. J.; Baur, J. W.

    2017-02-01

    Research on the structurally embedded vascular antenna concept leverages past efforts on liquid metal (LM) reconfigurable electronics, microvascular composites, and structurally integrated and reconfigurable antennas. Such a concept has potential for reducing system weight or volume while simultaneously allowing in situ adjustment of resonant frequencies and/or changes in antenna directivity. This work considers a microvascular pattern embedded in a laminated composite and filled with LM. The conductive liquid provides radio frequency (RF) functionality while also allowing self-cooling. Models describing RF propagation and heat transfer, in addition to the structural effects of both the inclusion of channels and changes in temperature, were described in part 1 of this two-part work. In this part 2, the engineering models developed and demonstrated in part 1 toward the initial exploration of design trends are implemented into multiple optimization frameworks for more detailed design studies, one of which being novel and particularly applicable to this class of problem. The computational expense associated with the coupled multiphysical analysis of the structurally embedded LM transmitting antenna motivates the consideration of surrogate-based optimization methods. Both static and adaptive approaches are explored; it is shown that iteratively correcting the surrogate leads to more accurate optimized design predictions. The expected strong dependence of antenna performance on thermal environment motivates the consideration of a novel ‘parameterized’ optimization approach that simultaneously calculates whole families of optimal designs based on changes in design or operational variables generally beyond the control of the designer. The change in Pareto-optimal response with evolution in operating conditions is clearly demonstrated.

  6. Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

  7. Low-Cost Dielectric Substrate for Designing Low Profile Multiband Monopole Microstrip Antenna

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Arshad, H.; Mansor, M. F.

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm2 radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53–2.89 GHz) and 440 MHz (3.47–3.91 GHz) for WiMAX and 1550 MHz (6.28–7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively. PMID:25136648

  8. Proximally placed alignment control strap for ankle varus deformity: a case report.

    PubMed

    Oh-Park, Mooyeon; Park, Geun Young; Hosamane, Sadvi; Kim, Dennis D

    2007-01-01

    Ankle varus is a commonly encountered deformity in patients with neurologic or musculoskeletal disorders. It impedes stability during the stance phase of gait and often causes skin lesions on the lateral ankle area. Plastic or conventional ankle-foot orthoses (AFOs) with supplementary features such as a T-strap or increased contact area of the lateral flange have been used for correctable varus deformities. These supplementary modifications, however, have limitations as effective tools for varus control, and ankle varus may persist despite their use. We are revisiting the concept of a proximally placed alignment control strap for ankle varus, which may overcome the limitations of currently available modifications. This alignment control strap is designed to provide a medially directed force on the tibia and fibula against the force of varus deformation of the ankle. This modification can be easily added to various types of existing AFOs with acceptable aesthetic appearance. We describe 2 cases of manually correctable but persistent varus deformities of the ankle that were successfully controlled by utilization of the proximally placed alignment control strap.

  9. Computer-aided design of reflector antennas - The Green Bank Radio Telescope

    NASA Astrophysics Data System (ADS)

    Terada, Marco A. B.; Stutzman, Warren L.

    1998-03-01

    This paper presents an evaluation of the electrical performance of the Green Bank Telescope (GBT) reflector antenna, operating as single- and dual-offset configurations, as well as a general overview of the GBT system. The GBT dual-offset Gregorian configuration is designed for low cross polarization (XPOL) using the dual-offset reflector antenna (DORA) synthesis package code. The procedure implemented in DORA to upgrade an existing main reflector to a low cross-polarized dual-offset Gregorian reflector antenna is also described. All computed patterns were obtained with the parabolic reflector analysis code (PRAC) program, and with the commercial code GRASP7. The GBT radiation patterns and performance values indicate that low XPOL performance can be achieved with a dual-offset configuration, provided that a low XPOL feed is used. The GBT configuration is employed as a case example for the aforementioned procedure.

  10. The design and development of two-failure tolerant mechanisms for the Spaceborne Imaging Radar (SIR-B) antenna

    NASA Technical Reports Server (NTRS)

    Presas, S. J.

    1984-01-01

    The performance requirements, design constraints, and design qualification status of the mechanisms necessary to restrain, deploy, and stow the Spaceborne Imaging Radar (SIR) B antenna experiment on the Shuttle Orbiters are described.

  11. Design and Analysis of Miniaturized Microstrip Patch Antenna with Metamaterials Based on Modified Split-Ring Resonator for UWB Applications

    NASA Astrophysics Data System (ADS)

    Khedrouche, D.; Bougoutaia, T.; Hocini, A.

    2016-11-01

    In this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9-13.5 GHz, (for return loss less than or equal -10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.

  12. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports

    NASA Astrophysics Data System (ADS)

    Liu, Wang; Li, Dong-Xu; Yu, Xin-Zhan; Jiang, Jian-Ping

    2014-04-01

    An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method, a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice. [Figure not available: see fulltext.

  13. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Zuo, Ying-Xi; Lou, Zheng; Cheng, Jing-Quan; Zhang, Qi-Zhou; Shi, Sheng-Cai; Huang, Jia-Sheng; Yao, Qi-Jun; Wang, Zhong

    2013-12-01

    As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATE5) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 μm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper introduces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the panels, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.

  14. Design of On-Chip N-Fold Orbital Angular Momentum Multicasting Using V-Shaped Antenna Array

    PubMed Central

    Du, Jing; Wang, Jian

    2015-01-01

    We design a V-shaped antenna array to realize on-chip multicasting from a single Gaussian beam to four orbital angular momentum (OAM) beams. A pattern search assisted iterative (PSI) algorithm is used to design an optimized continuous phase pattern which is further discretized to generate collinearly superimposed multiple OAM beams. Replacing the designed discrete phase pattern with corresponding V-shaped antennas, on-chip N-fold OAM multicasting is achieved. The designed on-chip 4-fold OAM multicasting exploiting V-shaped antenna array shows favorable operation performance with low crosstalk less than -15 dB. PMID:25951325

  15. Integrated design and simulation for millimeter-wave antenna systems

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Katz, D. S.; Villegas, F. J.

    2000-01-01

    In this paper the development and application of MODTool (Millimeter-wave Optics Design), a design tool that efficiently integrates existing millimeter-wave optics design software with a solid body modeler and thermal/structural analysis packages, will be discussed.

  16. The design, development and qualification of a lightweight antenna pointing mechanism

    NASA Technical Reports Server (NTRS)

    Shmulevitz, M.; Halsband, A.

    1996-01-01

    This paper describes the design, development, and qualification of a new lightweight and compact Antenna Pointing Mechanism (APM). The APM was specially designed to meet the stringent mass, envelope, and environmental requirements of OFFEQ experimental satellite. During the development phase, some problems were encountered with the brushless DC motors, slip ring contact resistance, and bearing drag torque. All of these problems were resolved, and two APM units have been operating successfully in orbit since April, 1995.

  17. Mitigating Multipath Bias Using a Dual-Polarization Antenna: Theoretical Performance, Algorithm Design, and Simulation

    PubMed Central

    Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan

    2017-01-01

    It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna’s capability in mitigating short delay multipath—the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an

  18. Concept Design of a Multi-Band Shared Aperture Reflectarray/Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Spence, Thomas; Cooley, Michael E.; Stenger, Peter; Park, Richard; Li, Lihua; Racette, Paul; Heymsfield, Gerald; Mclinden, Matthew

    2016-01-01

    A scalable dual-band (Ka/W) shared-aperture antenna system design has been developed as a proposed solution to meet the needs of the planned NASA Earth Science Aerosol, Clouds, and Ecosystem (ACE) mission. The design is comprised of a compact Cassegrain reflector/reflectarray with a fixed pointing W-band feed and a cross track scanned Ka-band Active Electronically Scanned Array (AESA). Critical Sub-scale prototype testing and flight tests have validated some of the key aspects of this innovative antenna design, including the low loss reflector/reflectarray surface. More recently the science community has expressed interest in a mission that offers the ability to measure precipitation in addition to clouds and aerosols. In this paper we present summaries of multiple designs that explore options for realizing a tri-frequency (Ku/Ka/W), shared-aperture antenna system to meet these science objectives. Design considerations include meeting performance requirements while emphasizing payload size, weight, prime power, and cost. The extensive trades and lessons learned from our previous dual-band ACE system development were utilized as the foundation for this work.

  19. Development of a Multi-Band Shared Aperture Reflectarray/Reflector Antenna Design for NASA

    NASA Technical Reports Server (NTRS)

    Spence, Thomas; Cooley, Michael; Stenger, Peter; Park, Richard; Li, Lihua; Racette, Paul; Heymsfield, Gerald; Mclinden, Matthew

    2016-01-01

    A dual-band (Ka/W) shared-aperture antenna system design has been developed as a proposed solution to meet the needs of NASA's planned Aerosol, Clouds, and Ecosystem (ACE) mission. The design is comprised of a compact Cassegrain reflector/reflect array with a fixed W-band feed and a cross track scanned Ka-band Active Electronically Scanned Array (AESA). Critical Sub-scale prototype testing and flight tests have validated some of the key aspects of this innovative antenna design, including the low loss reflector/reflect array surface. More recently the science community has expressed interest in a mission that offers the ability to measure precipitation (Ku- band with scanning) in addition to clouds and aerosols. In this paper we present findings from a design study that explores options for realizing a tri-frequency (Ku/Ka/W), shared-aperture antenna system to meet these science objectives. Design considerations included meeting performance requirements while striving to minimize payload size, weight, prime power, and cost. The extensive trades and lessons learned from the ACE system development were utilized as the foundation for this work.

  20. Concept Design of a Multi-Band Shared Aperture Reflectarray/Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Spence, Thomas; Cooley, Michael; Stenger, Peter; Park, Richard; Li, Lihua; Racette, Paul; Heymsfield, Gerald; Mclinden, Matthew

    2016-01-01

    A scalable dual-band (KaW) shared-aperture antenna system design has been developed as a proposed solution to meet the needs of the planned NASA Earth Science Aerosol, Clouds, and Ecosystem (ACE) mission. The design is comprised of a compact Cassegrain reflector/reflectarray with a fixed pointing W-band feed and a cross track scanned Ka-band Active Electronically Scanned Array (AESA). Critical Sub-scale prototype testing and flight tests have validated some of the key aspects of this innovative antenna design, including the low loss reflector/reflectarray surface.More recently the science community has expressed interest in a mission that offers the ability to measure precipitation in addition to clouds and aerosols. In this paper we present summaries of multiple designs that explore options for realizing a tri-frequency (KuKaW), shared-aperture antenna system to meet these science objectives. Design considerations include meeting performance requirements while emphasizing payload size, weight, prime power, and cost. The extensive trades and lessons learned from our previous dual-band ACE system development were utilized as the foundation for this work.

  1. A Simple Tool for the Design and Analysis of Multiple-reflector Antennas in a Multi-disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel, S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error.

  2. Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Piepmeier, Jeffrey

    2015-01-01

    Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms. Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane

  3. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  4. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Claspy, Paul C.; Richard, Mark A.; Bhasin, Kul B.

    1990-01-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  5. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Astrophysics Data System (ADS)

    Kunath, Richard R.; Claspy, Paul C.; Richard, Mark A.; Bhasin, Kul B.

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  6. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Astrophysics Data System (ADS)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-06-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  7. Design of broadband antenna elements for a low-frequency radio telescope using Pareto genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Kerkhoff, A.; Ling, H.

    2009-12-01

    We apply Pareto genetic algorithm (GA) optimization to the design of antenna elements for use in the Long Wavelength Array (LWA), a large, low-frequency radio telescope currently under development. By manipulating antenna geometry, the Pareto GA simultaneously optimizes the received Galactic background or “sky” noise level and radiation patterns of the antenna over all frequencies. Geometrical constraints are handled explicitly in the GA in order to guarantee the realizability, and to impart control over the monetary cost of the generated designs. The antenna elements considered are broadband planar dipoles arranged horizontally over the ground. It is demonstrated that the Pareto GA approach generates a set of designs, which exhibit a wide range of trade-offs between the two design objectives, and satisfy all constraints. Multiple GA executions are performed to determine how antenna performance trade-offs are affected by different geometrical constraint values, feed impedance values, radiating element shapes and orientations, and ground conditions. Two different planar dipole antenna designs are constructed, and antenna input impedance and sky noise drift scan measurements are performed to validate the results of the GA.

  8. Recent Progress in Active Antenna Designs for the Long Wavelength Array (LWA)

    NASA Astrophysics Data System (ADS)

    Hicks, B. C.; Stewart, K. P.; Paravastu, N.; Bradley, R. F.; Parashare, C. R.; Erickson, W. C.; Gross, C.; Polisensky, E.; Crane, P. C.; Ray, P. S.; Kassim, N. E.; Weiler, K. W.

    2005-12-01

    We present new designs for active antenna systems optimized for HF/VHF radio astronomy, ionospheric science, space weather, and other radio science applications. Active antenna designs have been developed and tested which satisfy the need for high linearity and stability while achieving Galactic background dominated noise levels. The presence of very strong terrestrial radio-frequency interference (RFI), and world-wide propagation at these frequencies require that the preamplifiers have very high dynamic range. Distortion products must be below the Galactic background level for RFI mitigation techniques to be successful. Individual antennas should have broad response patterns to cover most of the sky without pointing mechanisms, but with decreased sensitivity at low elevations. Ideal designs would also be immune to environmental effects such as temperature variations and precipitation. For projects such as the LWA, where thousands of receptors will be needed, they must also be robust, inexpensive, and easy to manufacture and install. We discuss high-performance designs that are optimized for cost-sensitive applications such as the LWA. Basic research in astronomy is supported by the Office of Naval Research.

  9. Lock 6 Detail of hinge stone with iron straps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 6 - Detail of hinge stone with iron straps and carved completion date (1830) located on ground at southeast corner of lock - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  10. Design tradeoff study for reflector antenna systems for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    Hansen, R. C.

    1974-01-01

    A general tradeoff is made of the symmetric Cassegrain antenna with regard to the possibility of meeting a 90% beam efficiency. The effects of aperture taper and blockage are calculated using an adjustable sidelobe circular distribution. Numerical integration is used. For the feed spillover calculation, a low sidelobe symmetric feed pattern is used with the equivalent parabola and numerical integration. Reflector cross polarization is calculated using double numerical integration. Reflector back lobes are estimated from radiation pattern envelopes of commercial common carrier dish antennas. The curves allow a range of f/D to be determined for a specified edge taper and blockage diameter ratio, and with a table of Cassegrain parameters, a range of possible designs that meet the 90% beam efficiency is obtained. It is shown that the feed and reflector design and implementation must be carefully done.

  11. Design and analysis of an antenna for wireless energy harvesting in a head-mountable DBS device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Berk, Michael

    2013-01-01

    This paper presents design and simulation of a circular meander dipole antenna at the industrial, scientific, and medical band of 915 MHz for energy scavenging in a passive head-mountable deep brain stimulation device. The interaction of the proposed antenna with a rat body is modeled and discussed. In the antenna, the radiating layer is meandered, and a FR-4 substrate is used to limit the radius and height of the antenna to 14 mm and 1.60 mm, respectively. The resonance frequency of the designed antenna is 915 MHz and the bandwidth of 15 MHz at a return loss of -10 dB in free space. To model the interaction of the antenna with a rat body, two aspects including functional and biological are considered. The functional aspect includes input impedance, resonance frequency, gain pattern, radiation efficiency of the antenna, and the biological aspect involves electric field distribution, and SAR value. A complete rat model is used in the finite difference time domain based EM simulation software XFdtd. The simulated results demonstrate that the specific absorption rate distributions occur within the skull in the rat model, and their values are higher than the standard regulated values for the antenna receiving power of 1W.

  12. Maturation and Hardening of the Stabilized Radiometer Platforms (STRAPS) Field Campaign Report

    SciTech Connect

    Bucholtz, A.; Bluth, R.; Pfaff, B.

    2016-04-01

    Measurements of solar and infrared irradiance by instruments rigidly mounted to an aircraft have historically been plagued by the introduction of offsets and fluctuations into the data that are solely due to the pitch and roll movements of the aircraft. Two STabilized RAdiometer Platforms (STRAPs) were developed for the U.S. Navy in the early to mid-2000s to address this problem. The development was a collaborative effort between the Naval Research Laboratory (NRL), the Naval Postgraduate School Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), and the U.S. Department of Energy (DOE) Sandia National Laboratories. The STRAPs were designed and built by L-3 Communications Sonoma EO (formerly the small business Sonoma Design Group).

  13. An Aperture-Coupled Patch Antenna Design for Improved Impedance Bandwidth

    DTIC Science & Technology

    2006-11-01

    structure is the frequency variation of the propagation velocity and the presence of higher order waveguide modes that are not incorporated in the... FEKO from EM Software & Systems (www.feko.info) a fully 3-D implementation of the MoM in which the multilayer Greens Function can also be used for a...2.5-D model of semi-infinite substrates. Here we present the calculated and measured antenna characteristics for this new design compared to a

  14. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain

  15. Design of the 0.5 - 1 GHz Planar Recycler Pickup and Kicker Antennas

    SciTech Connect

    Deibele, C.; /Fermilab

    1999-01-01

    The stochastic cooling system in the Recycler ring at Fermilab required the addition of a 0.5-1 GHz cooling system. This requirement dictated the design of a new antenna for this band of the system. The design problem is defined, method of design is illustrated, and the measurement data are reported. The Recycler is a storage ring comprised of mostly permanent magnets located in the tunnel of the Main Injector at Fermilab. The goal for the construction of the Recycler is to collect and store unused antiprotons from collisions in the Tevatron for use in future collisions in the Tevatron. It will both stochastically and electron cool these unused antiprotons before another collision experiment is possible in the Tevatron. By reusing the antiprotons the luminosity of the experiment can be increased faster. The Recycler will use three bands for its stochastic cooling system. It will reuse the existing designs from the Antiproton Source for the 1-2 GHz and 2-4 GHz systems, and it requires a new design for an additional lower frequency band for the 0.5-1 GHz system. Since the existing designs were fabricated using a microstrip topology it was desired that the new design use a similar topology so that the vacuum tank designs and supporting hardware be identical for all three bands. A primary difference between the design of the pickups/kickers of the Antiproton Source and the Recycler is a different aperture in the machine itself. The Recycler has a bigger aperture and consequently reusing the designs for the existing Antiproton Source pickups/kickers is not electrically optimal but is cost efficient. Measurements will be shown later in this paper for the design of the 0.5-1 GHz system showing the effect of the aperture on the antenna performance. A mockup of the Recycler tank was manufactured for designing and testing the 0.5-1 GHz pickups/kickers. The design procedure was an iterative process and required both a constant dialogue and also a strong relationship with a

  16. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  17. Design of anisotropic focusing metasurface and its application for high-gain lens antenna

    NASA Astrophysics Data System (ADS)

    Guo, Wenlong; Wang, Guangming; Li, Haipeng; Li, Tangjing; Ge, Qichao; Zhuang, Yaqiang

    2017-03-01

    In this paper, we propose an anisotropic focusing metasurface with function of focusing orthogonally polarized waves in refraction and reflection modes respectively. By employing four layered metallic patches spaced by triple layered dielectric spacers, an anisotropic phase element is designed with capability of transmitting x-polarized waves but reflecting y-polarized beams efficiently. Composed of 21 × 21 cells and with size of 105 × 105 mm2, a focusing metasurface operating at 15 GHz is designed with the same focal length of 30 mm for x- and y-polarized waves. By setting a patch antenna at the focal point, the metasurface sample is employed to enhance gain of the radiation source. For verification, the metasurface sample is fabricated and measured. The antenna performance, in terms of realized boresight gain and operating bandwidth under x- and y-polarized waves illumination, is presented. Results show that the 1 dB gain bandwidths are respectively from 14.7 to 15.3 GHz and 14.7 to 15.2 GHz, and the gain are enhanced by 14.1 dB, 15.1 dB in refraction and reflection modes when the metasurface is impinged by x- and y-polarized spherical waves. The proposed anisotropic metasurface may afford an alternative for designing anisotropic planar lens or high-gain antenna.

  18. Computer Aided Design of Microwave Front-End Components and Antennas for Ultrawideband Systems

    NASA Astrophysics Data System (ADS)

    Almalkawi, Mohammad J.

    This dissertation contributes to the development of novel designs, and implementation techniques for microwave front-end components and packaging employing both transmission line theory and classical circuit theory. For compact realization, all the presented components have been implemented using planar microstrip technology. Recently, there has been an increase in the demand for compact microwave front-ends which exhibit advanced functions. Under this trend, the development of multiband front-end components such as antennas with multiple band-notches, dual-band microwave filters, and high-Q reconfigurable filters play a pivotal role for more convenient and compact products. Therefore, the content of this dissertation is composed of three parts. The first part focuses on packaging as an essential process in RF/microwave integration that is used to mitigate unwanted radiations or crosstalk due to the connection traces. In printed circuit board (PCB) interconnects, crosstalk reduction has been achieved by adding a guard trace with/without vias or stitching capacitors that control the coupling between the traces. In this research, a new signal trace configuration to reduce crosstalk without adding additional components or guard traces is introduced. The second part of this dissertation considers the inherent challenges in the design of multiple-band notched ultrawideband antennas that include the integration of multilayer antennas with RF front-ends and the realization of compact size antennas. In this work, a compact UWB antenna with quad band-notched frequency characteristics was designed, fabricated, and tested demonstrating the desired performance. The third part discusses the design of single- and dual-band dual-mode filters exhibiting both symmetric and asymmetric transfer characteristics. In dual-mode filters, the numbers of resonators that determine the order of a filter are reduced by half while maintaining the performance of the actual filter order. Here, in

  19. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps

    NASA Astrophysics Data System (ADS)

    Granstrom, Jonathan; Feenstra, Joel; Sodano, Henry A.; Farinholt, Kevin

    2007-10-01

    Over the past few decades the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful. However, the gains that have been made in the device performance have resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnant growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user's gait or endurance are avoided. These issues have arisen from previous attempts to integrate power harvesting mechanisms into a shoe such that the energy released during a heal strike could be harvested. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the traditional strap of the backpack with one made of the piezoelectric polymer polyvinylidene fluoride (PVDF). Piezoelectric materials have a structure such that an applied electrical potential results in a mechanical strain. Conversely, an applied stress results in the generation of an electrical charge, which makes the material useful for power harvesting applications. PVDF is highly flexible and has a high strength, allowing it to effectively act as the load bearing

  20. Array feed/reflector antenna design for intense microwave beams

    NASA Astrophysics Data System (ADS)

    Blank, Stephen J.

    1990-04-01

    It is shown that a planar-array feed has excellent potential as a solution to paraboloidal reflector distortion problems and beam-steering requirements. Numerical results from an algorithmic procedure are presented which show that, for a range of distortion models, appreciable on-axis gain restoration can be achieved with as few as seven elements. For beam-steering to + or - 1 MW, 19 elements are required. For arrays with either seven or 19 elements, high effective aperture elements give higher system gain than elements having lower effective apertures. With 37 elements, excellent gain and beam-steering performance to + or - 1.5 BW is obtained independently of assumed effective aperture of the array element. A few simple rules of thumb are presented for the design of the planar-array feed configuration.

  1. Advancements in artificial magnetic conductor design for improved performance and antenna applications

    NASA Astrophysics Data System (ADS)

    Kern, Douglas John

    for many different design constraints. A unique application of AMC surfaces will be investigated which demonstrates the equivalence between a high impedance AMC structure and a magnetic substrate backed by a PEC ground plane. This structure is called a metamaterial ferrite, or metaferrite for short. This procedure allows for a means of creating an equivalent structure to a magnetic substrate without using any magnetic materials whatsoever. In fact, the metaferrite can be optimized, much like a conventional AMC, to achieve a desired magnetic permeability for one or more frequencies. The uses for such structures are as lightweight, thin absorbers for electromagnetic radiation. Both conventional, high loss absorbers and low loss magnetic materials can be created via the metaferrite equivalence. Further research into metasurfaces resulted in the ability to design a matched impedance metamaterial to act as a magneto-dielectric substrate without using magnetic materials. The metamaterial is optimized by a GA to obtain an equivalent low-loss dielectric and magnetic constant, as a lossy substrate is not beneficial to antenna performance. The primary application of this magneto-dielectric metastructure reduces the aperture size without negatively impacting antenna operating bandwidth. Since no magnetic materials are used in this metastructure, a thin, lightweight, low-profile antenna system could be developed. Finally, the combination of electromagnetic bandgap AMC surfaces and low-profile antennas will be examined to obtain improved antenna performance over the desired frequency band. The result, when optimized correctly, is an antenna system that achieves improved realized gain compared to the conventional antenna. This increase in performance is directly related to the fact that the antenna is placed above an AMC rather than the conventional PEC ground plane, thus improving the antenna gain and pattern shape.

  2. Design and analysis of a large cylinder antenna array in Tianlai

    NASA Astrophysics Data System (ADS)

    Chen, Z. P.; Wang, R. L.; Peterson, J.; Chen, X. L.; Zhang, J. Y.; Shi, H. L.

    2016-07-01

    In order to make a large area survey, detect a large scale structure and understand dark energy, a large radio interference array with a large number of feeds is required. However, cost and deformation control are main considerations in designing a large antenna array. In this paper we designed a cylinder parabolic structure for antenna array 45m x 40m of "Tianlai" project in Xinjiang, China in 2015. In order to largely reduce weight and cost, the antenna was divided into many assemble units, their structure was optimized by MSC.Patran/Nastran and their reflector deformation under various load cases of gravity, snow and wind was analyzed. For the feed support, we compared different types of structure such as arch-bridge, tower, cable and pole, and by mechanical simulations we found that the arch-bridge structure is very helpful to achieve large span, decrease weight and improve stability, for example, the total weight of optimized structure can be reduced to 43.7% of before. Finally some deformation measurement and experiment methods were discussed, which can be extended to array 100m×100m in the future.

  3. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  4. High Power Antenna Design for Lower Hybrid Current Drive in MST

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Goetz, J. A.; Kaufman, M. C.; Oliva, S. P.; Caughman, J. B. O.; Ryan, P. M.

    2003-10-01

    RF current drive has been proposed as a method for reducing the tearing fluctuations that are responsible for anomalous energy transport in the RFP. A system for launching lower hybrid slow waves at 800 MHz and n_||= 7.5 is now in operation at up to 50 kW on MST. The antenna is an enclosed interdigital line using λ/4 resonators with an opening in the cavity through which the wave is coupled to the plasma. It has an untuned VSWR of ˜2, and is instrumented on 5 of its 23 elements to allow measurement of damping length. The antenna design is being optimized for higher power handling. Improvements include larger vacuum feedthroughs, better impedance matching, and RF instrumentation on all resonators. The new antenna will be modeled in Microwave Studio^TM. The goal is a design which can handle ˜250 kW and presents a VSWR of 1.4 or better without external tuning. Full instrumentation will allow more detailed power deposition measurements.

  5. Design criteria for limited scan antennas at digital microwave line of sight links

    NASA Astrophysics Data System (ADS)

    Lighthart, L. P.

    1984-10-01

    The angle diversity technique for multipath fading reduction which uses limited scan antennas is examined. Antenna design criteria for this purpose are investigated under the assumption that only group delay requirements instead of fading depth are the determining factors to fulfill bit error ratio (BER) specifications. In a two-way fading model the maximum group delay time difference is in first approximation equal to the ratio between the minimum received signal strength and the path delay time difference. It is known that group delay time differences are dependent on the worst BER and the modulation system. The path delay time difference and the angles of arrival are calculated in a spherical propagation model. To come to a design procedure independent of refractive index profiles it is assumed that each ray is influenced along its path by a constant refractive index gradient. Combining the results from the spherical propagation model and the group delay requirements allows the computation of the maximum fading depth for given angles of arrival. The pattern envelope of limited scan antennas around the angles of interest are derived under the assumption that infinite deep fading occurs if no diversity technique is used.

  6. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  7. Novel Dual-band Slot Antenna Design for Bluetooth and UWB Applications

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Yan; Shao, Wei; Wang, Bing-Zhong; Ma, Xiao-Liang

    2014-05-01

    A novel technique to introduce an additional low frequency band to compact ultra wideband (UWB) slot antennas is proposed in this paper. To get an additional Bluetooth band, a parasitic strip is mounted on the back side of the slot edge. Because of the interaction of the strip and the slot edge, the Bluetooth band can be obtained while a notch band between the Bluetooth band and UWB band also appears. Two types of feeding, coplanar waveguide and microstrip line, are investigated. The proposed antennas are both fabricated on a low-cost FR4 substrate and have compact size (24 mm × 28 mm × 1 mm). The good agreement between measured and simulated results verifies our design.

  8. Validation of space/ground antenna control algorithms using a computer-aided design tool

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1995-01-01

    The validation of the algorithms for controlling the space-to-ground antenna subsystem for Space Station Alpha is an important step in assuring reliable communications. These algorithms have been developed and tested using a simulation environment based on a computer-aided design tool that can provide a time-based execution framework with variable environmental parameters. Our work this summer has involved the exploration of this environment and the documentation of the procedures used to validate these algorithms. We have installed a variety of tools in a laboratory of the Tracking and Communications division for reproducing the simulation experiments carried out on these algorithms to verify that they do meet their requirements for controlling the antenna systems. In this report, we describe the processes used in these simulations and our work in validating the tests used.

  9. Development of a 14-vane, double-strapped, 5.8-GHz magnetron oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo; Lee, Han Seoul; Jang, Kwang Ho; Sim, Sung Hun; Choi, Heung Sik

    2016-08-01

    Experiments on a 14-vane, double-strapped magnetron oscillator were performed to demonstrate high-power, high-efficiency coherent radiation at 5.8 GHz. The double-strapped magnetron was designed by using the Buneman-Hatree resonance condition, electromagnetic simulations and non-linear three-dimensional particle-in-cell (PIC) simulations. Experiments showed an oscillation output power of 5.3 kW at 5.79 GHz, corresponding to a DC-RF conversion efficiency of 57%. The cathode voltage was 9.2 kV, the collected anode current was 1 A, and the external magnetic field is 7.5 kG. Experimental results for the RF power, oscillation frequency, and efficiency were in good agreement with the corresponding values from non-linear three-dimensional PIC simulations.

  10. Taming the ICRF Antenna - Plasma Edge Interaction via Novel Field-Aligned ICRF Antenna on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Lin, Y.; Terry, J.; Hubbard, A.; Mumgaard, R. T.; Reinke, M. L.; the Alcator C-Mod Team

    2016-10-01

    Although ICRF is attractive for bulk plasma heating due to favorable wave propagation, ICRF antenna - edge plasma interaction remains a challenge. Recent experiments reveal that RF-induced potentials in the scrape-off layer and antenna impurity source are dependent on the power ratio between the inner and outer current staps, Pcent/Pout. Using a modified field aligned antenna, the transmission line network connected the center two straps at [0,pi] to one transmitter and the outer two straps another transmitter. This experiment was motivated by positive three strap antenna results from ASDEX-U. With -30 dB decoupling, we scanned Pcent/Pout from zero to greater than 1000. A minimum in the RF enhanced potential and local impurity source is observed for Pcent/Pout greater than 1 and less than 4 with a gradual rise in impurity source for Pcent/Pout greater than 4. This minimum correlates where the image currents in the antenna limiters are expected to be smallest. We also tested antenna operation in [0,0,pi,pi] antenna phasing and found excessive local impurity production despite the antenna being field aligned. This antenna phasing excites low k and potentially have higher coupling. Latest results and analysis will be presented Supported by US DOE Award DE-FC02-99ER54512.

  11. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing

    NASA Astrophysics Data System (ADS)

    Wang, G.; Doyle, E. J.; Peebles, W. A.

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  12. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.

    PubMed

    Takook, Pegah; Persson, Mikael; Gellermann, Johanna; Trefná, Hana Dobšíček

    2017-01-08

    Using UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.43-1 GHz is achieved by immersing the antenna in a water bolus. The radiation characteristics are improved by appropriate shaping the water bolus and by inclusion of dielectric layers on the top of the radiating arms of the antenna. In order to find the most appropriate design, we use a combination of performance indicators representing the most important attributes of the antenna. These are the UWB impedance matching, the transmission capability and the effective field size. The antenna was constructed and experimentally validated on muscle-like phantom. The measured reflection and transmission coefficients as well as radiation characteristics are in excellent agreement with the simulated results. MR image acquisitions with antenna located inside MR bore indicate a negligible distortion of the images by the antenna itself, which indicates MR compatibility.

  13. A comparison of reflector antenna designs for wide-angle scanning

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmat-Samii, Y.; Acosta, R.

    1989-01-01

    Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.

  14. Design of an RF Antenna for a Large0Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    SciTech Connect

    Rasmussen, D.A.; Freeman, R.L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  15. Computer simulations for rf design of a Spallation Neutron Source external antenna H{sup -} ion source

    SciTech Connect

    Lee, S. W.; Kang, Y. W.; Shin, K.; Welton, R. F.; Goulding, R. H.

    2010-02-15

    Electromagnetic modeling of the multicusp external antenna H{sup -} ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as {sigma}. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  16. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  17. Study of mechanical architectures of large deployable space antenna apertures: from design to tests

    NASA Astrophysics Data System (ADS)

    Datashvili, L.; Endler, S.; Wei, B.; Baier, H.; Langer, H.; Friemel, M.; Tsignadze, N.; Santiago-Prowald, J.

    2013-12-01

    The technical assessment of large deployable reflector structures covering a diameter range from 4 to 50 m and RF frequencies up to Ka-Band is presented from the conceptual designs to the tests. Parametric FEM analysis tools of the concepts have been developed to study their static, modal and buckling behaviors. According to the selected conceptual design and acquired analysis results two complete breadboards with diameters of 1.6 m and 4 m based on a peripheral ring structure have been designed, manufactured and tested. Test results of both breadboards fulfilling the requirements on deployment repeatability and accuracy as well as scalability demonstrate the successful selection of a deployable ring design and large deployable antenna concept in whole.

  18. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  19. Plastic debris straps on threatened blue shark Prionace glauca.

    PubMed

    Colmenero, Ana I; Barría, Claudio; Broglio, Elisabetta; García-Barcelona, Salvador

    2017-02-15

    Juveniles of blue shark Prionace glauca caught in pelagic longlines targeting tuna and swordfish in the Atlantic Ocean and the Mediterranean Sea were found entangled with plastic straps around their gill region. The plastic debris were identified as strapping bands and caused several degrees of injuries on the dorsal musculature and pectoral fins. They were also obstructing the gill slits probably causing breathing issues. These records were uploaded in the web site seawatchers.org, and highlight the potential of citizen science in revealing the occurrence of such problems which could help to measure the effects of plastic debris on marine life.

  20. STRAP regulates c-Jun ubiquitin-mediated proteolysis and cellular proliferation

    SciTech Connect

    Reiner, Jennifer; Ye, Fei; Kashikar, Nilesh D.; Datta, Pran K.

    2011-04-08

    Highlights: {yields} STRAP is specifically correlated with c-Jun expression and activation in fibroblasts. {yields} STRAP inhibits c-Jun ubiquitylation in vivo and prolongs the half-life of c-Jun. {yields} STRAP expression increases expression of the AP-1 target gene, cyclin D1, and promotes cell autonomous growth. -- Abstract: STRAP is a ubiquitous WD40 protein that has been implicated in tumorigenesis. Previous studies suggest that STRAP imparts oncogenic characteristics to cells by promoting ERK and pRb phosphorylation. While these findings suggest that STRAP can activate mitogenic signaling pathways, the effects of STRAP on other MAPK pathways have not been investigated. Herein, we report that STRAP regulates the expression of the c-Jun proto-oncogene in mouse embryonic fibroblasts. Loss of STRAP expression results in reduced phospho-c-Jun and total c-Jun but does not significantly reduce the level of two other early response genes, c-Myc and c-Fos. STRAP knockout also decreases expression of the AP-1 target gene, cyclin D1, which is accompanied by a reduction in cell growth. No significant differences in JNK activity or basal c-Jun mRNA levels were observed between wild type and STRAP null fibroblasts. However, proteasomal inhibition markedly increases c-Jun expression in STRAP knockout MEFs and STRAP over-expression decreases the ubiquitylation of c-Jun in 293T cells. Loss of STRAP accelerates c-Jun turnover in fibroblasts and ectopic over-expression of STRAP in STRAP null fibroblasts increases c-Jun expression. Collectively, our findings indicate that STRAP regulates c-Jun stability by decreasing the ubiquitylation and proteosomal degradation of c-Jun.

  1. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  2. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  3. Preliminary Design of the Alfvén Antennas on the J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    He, Jiyang; Hu, Qiming; Rao, Bo; Liu, Linzi; Zhuang, Ge; J-TEXT Team

    2015-11-01

    Research on Alfvén waves and Alfvén eigenmodes(AEs) is of importance in tokamak plasma physics, such as investigation of interaction between energetic particles and AEs, turbulence and anomalous transport due to AEs, and so on. In order to study the Alfvén eigenmode excitation, damping features and the interaction between AEs and plasma transport, an Alfvén antennas system is designed for the J-TEXT tokamak. The system can generate high frequency magnetic field aiming to excite the AEs, especially toroidal Alfvén eigenmodes (TAE). For a typical J-TEXT plasma (BT = 1-2.2 T,ne = 3-6 ×1019m-3), the computed gaps in the Alfvén continua range from 300 to 500 kHz, with respect to the Alfvén waves dispersion relation. Three pairs of antennas are designed at different toroidal angles respectively on the low field side. Each pair consisting of two coils installed with angles of +/- 45° off the mid-plane along the poloidal direction. With this system, magnetic field components of mode number m =1-10, n =1-20 can be produced. The calculations show that the magnetic field in the LCFS can reach ~ 10Gs totally while about ~ 0.5Gs for each mode number, with the coil current of 20A. Corresponding author

  4. Architectural design of a ground-based deep-space optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  5. On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms

    NASA Technical Reports Server (NTRS)

    Rengarajan, S. R.; Rahmat-Samii, Y.

    2002-01-01

    In many modern communication applications there is a need for simple circularly polarized antennas for hemispherical coverage with good axial ratio or low value of cross polarization. We revisited the crooked wire antenna because of its simplicity. This paper presents results of our investigation on the crooked wire antennas and other elements.

  6. 15. DETAIL OF IRON STRAP AT JUNCTURE OF CENTRAL ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL OF IRON STRAP AT JUNCTURE OF CENTRAL ROOF SUPPORT TRUSS LOWER CHORD AND INCLINED END POST. BOLTING FOR LAMINATED WOODED TRUSS ELEMENTS ALSO VISIBLE. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  7. Novel Low Cost High Efficiency Tunable RF Devices and Antenna Arrays Design based on the Ferroelectric Materials and the CTS Technologies

    DTIC Science & Technology

    2011-02-14

    Microwave Theory and Techniques,”vol. 55, pp. 402-409, 2007 W. Kim and M. Iskander, "Integrated Phased Array Antenna Design Using Ferroelectric...on Microwaves , Communications, Antennas and Electronic Systems (IEEE COMCAS’09), Tel Aviv, Israel, Nov. 9-11, 2009. W. C. Kim, and m. F. Iskander, “A...Transactions on Microwave Theory and Techniques,”vol. 55, pp. 402-409, (2007) B. "Integrated Phased Array Antenna Design Using Ferroelectric

  8. Theory and Practice in ICRF Antennas for Long Pulse Operation

    SciTech Connect

    Colas, L.; Bremond, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Gunn, J.P.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  9. Accurate design of ICRF antennas for RF plasma thruster acceleration units with TOPICA

    SciTech Connect

    Lancellotti, V.; Maggiora, R.; Vecchi, G.; Milanesio, D.; Meneghini, O.

    2007-09-28

    In recent years electromagnetic (RF) plasma generation and acceleration concepts for plasma-based propulsion systems have received growing interest, inasmuch as they can yield continuous thrust as well as highly controllable and wide-ranging exhaust velocities. The acceleration units mostly adopt the Ion Cyclotron Resonance Frequency (ICRF) - a proven technology in fusion experiments for transferring large RF powers into magnetized plasmas, and also used by the VASIMR propulsion system. In this work we propose and demonstrate the use of TOPICA code to design and optimize the ICRF antenna of a typical acceleration stage. To this end, TOPICA was extended to cope with magnetized cylindricaily-symmetric radially-inhomogeneous warm plasmas, which required coding a new module charged with solving Maxwell's equations within the plasma to obtain the relevant Green's function Y-tilde(m,k{sub z}) in the Fourier domain, i.e. the relation between the transverse magnetic and electric fields at the air-plasma interface. Then, calculating the antenna input impedance - and hence the loading - relies on an integral-equation formulation and subsequent finite-element weighted-residual solution scheme for the self-consistent evaluation of the current density distribution on the conducting bodies and at the air-plasma interface.

  10. Accurate design of ICRF antennas for RF plasma thruster acceleration units with TOPICA

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Maggiora, R.; Vecchi, G.; Milanesio, D.; Meneghini, O.

    2007-09-01

    In recent years electromagnetic (RF) plasma generation and acceleration concepts for plasma-based propulsion systems have received growing interest, inasmuch as they can yield continuous thrust as well as highly controllable and wide-ranging exhaust velocities. The acceleration units mostly adopt the Ion Cyclotron Resonance Frequency (ICRF)—a proven technology in fusion experiments for transferring large RF powers into magnetized plasmas, and also used by the VASIMR propulsion system. In this work we propose and demonstrate the use of TOPICA code to design and optimize the ICRF antenna of a typical acceleration stage. To this end, TOPICA was extended to cope with magnetized cylindricaily-symmetric radially-inhomogeneous warm plasmas, which required coding a new module charged with solving Maxwell's equations within the plasma to obtain the relevant Green's function Ỹ(m,kz) in the Fourier domain, i.e. the relation between the transverse magnetic and electric fields at the air-plasma interface. Then, calculating the antenna input impedance—and hence the loading—relies on an integral-equation formulation and subsequent finite-element weighted-residual solution scheme for the self-consistent evaluation of the current density distribution on the conducting bodies and at the air-plasma interface.

  11. Design and characterization of an Antenna Pointing Mechanism for on-orbit servicing missions

    NASA Astrophysics Data System (ADS)

    Purschke, R.; Hoehn, A.

    The goal of this work was to (1) define parameters to characterize a pointing mechanism, (2) design a setup to test these parameters and, (3) verify the test methods by comparing the results to the theoretically calculated or independently verified numbers. The verification of the test results was conducted with an in-house built Antenna Pointing Mechanism for on-orbit servicing applications. The test setup was developed to find a method to measure the behavior of a pointing mechanism. This was realized by mounting a Laser pointer on the antenna interface of the mechanism and pointing it towards a two-dimensional Position Sensitive Detector, providing means to resolve small motions, and to derive velocity and acceleration of the mechanism. The results show good correlation for characteristic parameters such as pointing velocity and acceleration, repeatability, resolution and pointing accuracy of the mechanism. In future work this test method will be qualified for and used to compare the performance of the mechanism at different environmental conditions such as vacuum, temperature and microgravity.

  12. Design of a radar system based on compact cavity-backed ultra wide band slot antennas for ground penetrating applications

    NASA Astrophysics Data System (ADS)

    Sagnard, F.

    2012-04-01

    Antennas with broadband characteristics have recently found various applications in modern ultra wide band (UWB) communication systems and in ground penetrating radar (GPR). Our applications are focused on imaging the subsurface of a large range of civil engineering structures at several depths using a bistatic GPR positioned on or close to the ground surface. The development of a compact (34*29 cm2) broadband pair of antennas operating in the frequency band from 0.27 to 3.1 GHz, whose radiation characteristics have been preliminary studied theoretically in details in different configurations, is to allow the probing of the subsurface in several frequency sub-bands using a step frequency (SF-GPR) acquisition mode. Microstrip patch antennas (MPAs) are one of the most basic and important types of planar antennas because they offer many advantages such as compact size, low-cost, ease of fabrication, light weight, and various shapes design. However, a low bandwidth and a low gain are the main shortcomings for such planar structure. The microstrip antenna has now reached maturity and many techniques have been suggested for achieving a high bandwidth such as using more complex shapes, parasitic elements, multilayer configurations and the tuning of the feed line. In this paper, an original printed rectangular slot antenna fed by a 50 Ohms CPW (coplanar waveguide) transmission line tuned by a E-shaped patch is presented. Presently, little work has been made to lower the operating frequency band of microstrip antennas at frequencies less than 0.8 MHz and to reduce the antenna size at these frequencies because major applications concern UWB wireless communications. By choosing a relative combination of a E-shaped patch, a linear feed line and a rectangular slot, we have designed an antenna structure on a FR4 substrate (h=1.5mm) with a very wide operating bandwidth whose nearly half of the spectrum covers frequencies lower than 1 GHz. A partial shield, only opened towards the

  13. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  14. Optical antenna gain. 1: transmitting antennas.

    PubMed

    Klein, B J; Degnan, J J

    1974-09-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM(00) mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  15. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  16. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  17. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.

  18. Preliminary Optimal Orbit Design for the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    In this paper we present a preliminary optimal orbit analysis for the Laser Interferometer Space Antenna (LISA). LISA is a NASA/ESA mission to study gravitational waves and test predictions of general relativity. The nominal formation consists of three spacecraft in heliocentric orbits at 1 AU and trailing the Earth by twenty degrees. This configuration was chosen as a trade off to reduce the noise sources that will affect the instrument and to reduce the fuel to achieve the final orbit. We present equations for the nominal orbit design and discuss several different measures of performance for the LISA formation. All of the measures directly relate the formation dynamics to science performance. Also, constraints on the formation dynamics due to spacecraft and instrument limitations are discussed. Using the nominal solution as an initial guess, the formation is optimized using Sequential Quadratic Programming to maximize the performance while satisfying a set of nonlinear constraints. Results are presented for each of the performance measures.

  19. Controller design and parameter identifiability studies for a large space antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1985-01-01

    The problem of control systems synthesis and parameter identifiability are considered for a large, space-based antenna. Two methods are considered for control system synthesis, the first of which uses torque actuators and collocated attitude and rate sensors, and the second method is based on the linear-quadratic-Gaussian (LQG) control theory. The predicted performance obtained by computing variances of pointing, surface and feed misalignment errors in the presence of sensor noise indicates that the LQG-based controller yields superior results. Since controller design requires the knowledge of the system parameters, the identifiability of the structural parameters is investigated by obtaining Cramer-Rao lower bounds. The modal frequencies are found to have the best identifiability, followed by damping ratios, and mode-slopes.

  20. Strain powered antennas

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Carman, Greg P.

    2017-01-01

    This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.

  1. Design of smoothed multi-flared antenna for multi-frequency reception of direct transmission from meteorological satellites

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kesarkar, Amit P.; Thawait, Prateek

    2016-07-01

    The direct radiance data assimilation is found to be advantageous for the numerical weather prediction over short and medium range. Therefore reception of satellite radiance in real time is important. Satellite earth station is the preferred choice for direct reception of this data, which is voluminous. High Rate Information being transmitted from these satellites operating in L, S, C and X bands needs to be received. A commercial wide band antenna is not preferred for such application, as it operates uniformly over the entire frequency range in these bands and may create interference over the unwanted frequencies. As the frequencies of interest occupy only a small portion of these bands, it is essential to design a horn antenna, which receives only specified frequencies and filter other frequencies. In this work, we have designed a multi-flare multi-frequency cylindrical horn antenna for reception of direct transmission from meteorological satellites. This earth station antenna tracks selected satellites working over specified frequency ranges, which are 1.694-1.703 GHz, 2.0-2.06 GHz, 4.5-4.6 GHz and 7.8-7.9 GHz in L, S, C and X bands respectively. Cylindrical waveguides for the frequencies, 1.6, 2, 4.5 and 8 GHz are designed and they are joined in the increasing order of radius with suitable conical shapes. The slope of the cones is adjusted experimentally. With this design, the return loss is simulated and found to be better than 20 dB upto 4.5 GHz and later it became poor. To overcome this difficulty, the abrupt transitions at the joints of the conical and cylindrical waveguides are made smoothen by increasing the diameter of one mouth of the cylinder and reducing the other mouth to match with the cylinders corresponding to next higher and lower frequency respectively. As a result, a smooth flared antenna is obtained and the simulated results are satisfactory. A parabolic reflector of 4 m diameter is designed and the smooth multi-flared antenna is kept at the

  2. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets

    SciTech Connect

    Tamagnone, M.; Gomez-Diaz, J. S.; Perruisseau-Carrier, J.

    2012-12-01

    Resonant graphene antennas used as true interfaces between terahertz (THz) space waves and a source/detector are presented. It is shown that in addition to the high miniaturization related to the plasmonic nature of the resonance, graphene-based THz antenna favorably compare with typical metal implementations in terms of return loss and radiation efficiency. Graphene antennas will contribute to the development of miniature, efficient, and potentially transparent all-graphene THz transceivers for emerging communication and sensing application.

  3. Computational design of miniaturized microstrip antenna for satellite communications in the S and C bands

    NASA Astrophysics Data System (ADS)

    Marulanda Bernal, Jose Ignacio; Campo Caicedo, Damian Andres

    2014-05-01

    This paper presents computational models of microstrip antennas using the software CST. The main objective of this paper is to evaluate an alternative way to miniaturize dimensions of microstrip antennas. In order to this, a coating made of ceramic with high dielectric constant was considered for two different cases. Scattering parameters (S11) and radiation patterns were obtained for both structures and compared with standard microstrip antennas for S and C bands. Finally, the results show the possibility of reducing the dimensions by 22% to 31% and demonstrate the feasibility for the implementation and development of these antennas.

  4. Gain enhancement for wideband end-fire antenna design with artificial material.

    PubMed

    Wei, Min; Sun, Yuanhua; Wu, Xi; Wen, Wu

    2016-01-01

    Gain enhancement wideband end-fire antenna is proposed in this paper. The proposed antenna can achieve gain enhancement by loading novel artificial materials structures (Split-ring Resonators) in the end-fire direction while broad bandwidth is realized by using elliptic dipole elements and a microstrip to coplanar balun. The measurements show that the proposed antenna have around 5-8 dB gain in the working band (5-11 GHz), which is around 2 dB more than the unloaded one. This antenna can be used in target recognition systems for its advantages of end-fire radiation broad bandwidth and high gain.

  5. Lightning tests and analyses of tunnel bond straps and shielded cables on the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Druen, William M.

    1993-01-01

    The purposes of the tests and analyses described in this report are as follows: (1) determine the lightning current survivability of five alternative changed designs of the bond straps which electrically bond the solid rocket booster (SRB) systems tunnel to the solid rocket motor (SRM) case; (2) determine the amount of reduction in induced voltages on operational flight (OF) tunnel cables obtained by a modified design of tunnel bond straps (both tunnel cover-to-cover and cover-to-motor case); (3) determine the contribution of coupling to the OF tunnel cables by ground electrical and instrumentation (GEI) cables which enter the systems tunnel from unshielded areas on the surfaces of the motor case; and (4) develop a model (based on test data) and calculate the voltage levels at electronic 'black boxes' connected to the OF cables that run in the systems tunnel.

  6. Hiking strap force decreases during sustained upwind sailing.

    PubMed

    Buchardt, R; Bay, J; Bojsen-Møller, J; Nordsborg, N B

    2017-05-01

    The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2 × 10 min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2 of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10 min sailing periods (430 ± 131 vs. 285 ± 130 N, P < .001 and 369 ± 74 vs. 267 ± 97 N, P < .001, respectively), but MVC was similar before, between and after the two 10 min sailing periods (878 ± 215 vs. 852 ± 202 vs. 844 ± 211 130 N). In part 2, a significant positive correlation (r(2) = 0.619, P < .01) was observed between hMVC and regatta results. In conclusion, upwind sailing in wind speeds above 12 knots causes sailing-specific fatigue as evidenced by a marked reduction in exerted hiking strap force. However, MVC of the knee extensors was not compromised ∼45 s after hiking was terminated. Additionally, sailing performance is related to maximal hiking force.

  7. Real-Time Strap Pressure Sensor System for Powered Exoskeletons

    PubMed Central

    Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis

    2015-01-01

    Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life. PMID:25690551

  8. Real-time strap pressure sensor system for powered exoskeletons.

    PubMed

    Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis

    2015-02-16

    Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  9. The Enhanced Performance Launcher Design For The ITER Upper Port ECH Antenna

    SciTech Connect

    Henderson, M. A.; Chavan, R.; Bertizzolo, R.; Duron, J.; Landis, J.-D.; Sauter, O.; Sanchez, F.; Shidara, H.; Udintsev, V. S.; Zucca, C.; Bruschi, A.; Criant, S.; Farina, D.; Ramponi, G.; Heidinger, R.; Poli, E.; Zohm, H.; Saibene, G.

    2007-09-28

    The ITER ECH heating and current drive system delivers 24 MW (170 GHz), which can be directed to either the equatorial (EL) or upper (UL) port launching antennas depending on the desired physics application. The UL design uses two front steering (FS) mirrors that sweep eight beams in a poloidal plane providing co-ECCD over the outer half of the plasma cross section. A novel frictionless, backlash-free steering mechanism has been developed for an increased reliability and providing a steering mirror rotation of up to {+-}7 deg. ({+-}14 deg. for RF beam). The principle aim of the UL is to stabilize the neoclassical tearing modes (NTM) and (by extending the steering range) access the q = 1 flux surface for control of the sawtooth oscillation. Increasing the range of the UL can relax the EL steering range, and optimize the EL for enhanced performance with an optimized central deposition and potential for counter ECCD. This paper will summarize the present UL design status along with the proposed design modifications to the UL for enhanced performance and increased reliability.

  10. JPL antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.

    1981-01-01

    Plans for evaluating, designing, fabricating, transporting and deploying cost effective and STS compatible offset wrap rib antennas up to 300 meters in diameter for mobile communications, Earth resources observation, and for the orbiting VLBI are reviewed. The JPL surface measurement system, intended for large mesh deployable antenna applications will be demonstrated and validated as part of the antenna ground based demonstration program. Results of the offset wrap rib deployable antenna technology development will include: (1) high confidence structural designs for antennas up to 100 meters in diameter; (2) high confidence estimates of functional performance and fabrication cost for a wide range of antenna sizes (up to 300 meters in diameter); (3) risk assessment for fabricating the large size antennas; and (4) 55 meter diameter flight quality hardware that can be cost effectively completed toto accommodate a flight experiment and/or application.

  11. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  12. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  13. Horn antenna design studies. Citations from the International Aerospace Abstract data base

    NASA Technical Reports Server (NTRS)

    Gallagher, M. K.

    1980-01-01

    These citations from the international literature describe the antenna radiation patterns, polarization characteristics, wave propagation, noise temperature, wave diffraction, and wideband communication of various horn antennas. This updated bibliography contains 217 citations, 63 of which are new entries to the previous edition.

  14. Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Singh, G.

    2010-01-01

    The effects of 2-D electromagnetic crystal substrate on the performance of a rectangular microstrip patch antennas at THz frequencies is simulated. Electromagnetic crystal substrate is used to obtain extremely broad-bandwidth with multi-frequency band operation of the proposed microstrip antennas. Multi-frequency band microstrip patch antennas are used in modern communication systems in order to enhance their capacity through frequency reuse. The simulated 10 dB impedance bandwidth of the rectangular patch microstrip antenna is 34.3% at THz frequency (0.6-0.95 THz). The radiation efficiency, gain and directivity of the proposed antenna are presented at different THz frequencies. The simulation has been performed using CST Microwave Studio, which is a commercially available electromagnetic simulator based on finite integral technique.

  15. The design of RFID convey or belt gate systems using an antenna control unit.

    PubMed

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  16. Design and Performance Evaluation of a Dual Antenna Joint Carrier Tracking Loop

    PubMed Central

    Guo, Wenfei; Lin, Tao; Niu, Xiaoji; Shi, Chuang; Zhang, Hongping

    2015-01-01

    In order to track the carrier phases of Global Navigation Satellite Systems (GNSS) signals in signal degraded environments, a dual antenna joint carrier tracking loop is proposed and evaluated. This proposed tracking loop processes inputs from two antennas, namely the master antenna and the slave antenna. The master antenna captures signals in open-sky environments, while the slave antenna capture signals in degraded environments. In this architecture, a Phase Lock Loop (PLL) is adopted as a master loop to track the carrier phase of the open-sky signals. The Doppler frequency estimated by this master loop is utilized to assist weak carrier tracking in the slave loop. As both antennas experience similar signal dynamics due to satellite motion and clock frequency variations, a much narrower loop bandwidth and possibly a longer coherent integration can be adopted to track the weak signals in slave channels, by utilizing the Doppler aid from master channels. PLL tracking performance is affected by the satellite/user dynamics, clock instability, and thermal noise. In this paper, their impacts on the proposed phase tracking loop are analyzed and verified by both simulation and field data. Theoretical analysis and experimental results show that the proposed loop structure can track degraded signals (i.e., 18 dB-Hz) with a very narrow loop bandwidth (i.e., 0.5 Hz) and a TCXO clock. PMID:26437415

  17. Analysis and design of ring-resonator integrated hemi-elliptical lens antenna at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Jha, Kumud Ranjan; Singh, G.

    2012-07-01

    In this paper, a novel lens integrated ring-resonator microstrip antenna is analyzed and simulated at 600 GHz. A mathematical model to compute the directivity of this kind of the antenna has been developed and the directivity of the antenna has been computed which is 18 dBi. The proposed model has been simulated by using CST Microwave Studio a commercially available simulator based on finite integral technique and similar result has been obtained. Further, the directivity of the antenna has also been computed by using the techniques reported in the literature and in this case also we have obtained the similar result. Later, a probe-fed patch integrated lens antenna has also been investigated to validate the correctness of the numerical method. To find the potential advantages of this kind of the structure, the - 10 dB impedance bandwidth of the antenna has been compared to a lens-integrated probe-fed microstrip patch antenna and a significant enhancement in the bandwidth has been observed.

  18. Design and Performance Evaluation of a Dual Antenna Joint Carrier Tracking Loop.

    PubMed

    Guo, Wenfei; Lin, Tao; Niu, Xiaoji; Shi, Chuang; Zhang, Hongping

    2015-10-01

    In order to track the carrier phases of Global Navigation Satellite Systems (GNSS) signals in signal degraded environments, a dual antenna joint carrier tracking loop is proposed and evaluated. This proposed tracking loop processes inputs from two antennas, namely the master antenna and the slave antenna. The master antenna captures signals in open-sky environments, while the slave antenna capture signals in degraded environments. In this architecture, a Phase Lock Loop (PLL) is adopted as a master loop to track the carrier phase of the open-sky signals. The Doppler frequency estimated by this master loop is utilized to assist weak carrier tracking in the slave loop. As both antennas experience similar signal dynamics due to satellite motion and clock frequency variations, a much narrower loop bandwidth and possibly a longer coherent integration can be adopted to track the weak signals in slave channels, by utilizing the Doppler aid from master channels. PLL tracking performance is affected by the satellite/user dynamics, clock instability, and thermal noise. In this paper, their impacts on the proposed phase tracking loop are analyzed and verified by both simulation and field data. Theoretical analysis and experimental results show that the proposed loop structure can track degraded signals (i.e., 18 dB-Hz) with a very narrow loop bandwidth (i.e., 0.5 Hz) and a TCXO clock.

  19. Antenna Measurement and Design for the CanX-7 Nanosatellite and the Development of a Global Navigation Satellite System Based Attitude Determination System

    NASA Astrophysics Data System (ADS)

    Ang, Paris Yen-Jun

    This thesis describes and presents solutions to various challenges small satellites may encounter during design and operation, particularly in the areas of communications and attitude determination. The first section of this thesis presents simulation and measurement of communications antennas on a nanosatellite to verify that the antennas have sufficient gain and polarization to enable near-omnidirectional operation. Near-omnidirectional antennas are essential to ensure reliable communication with the spacecraft regardless of its attitude, especially when fine pointing ability is unavailable or inadequate. Next, the following section covers the design of a circularly polarized patch antenna for use on an aircraft tracking payload. Lastly, the final section of this thesis presents the development and analysis of a technique for augmenting a single GPS antenna on a spacecraft to estimate attitude. It is possible for GPS measurements to partially supplement an existing attitude sensor that has been denied operation.

  20. Shuttle orbiter Ku-band radar/communications system design evaluation: High gain antenna/widebeam horn

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.; Dodds, J. G.; Broad, P.

    1979-01-01

    The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.

  1. Impact of Optical Baffle on Antenna Pattern

    NASA Technical Reports Server (NTRS)

    Wu, T.; Pogorzelski, R.

    1994-01-01

    One of the major concerns of antenna design for spacecraft applications is the effect of surrounding structures which can reflect and diffract the antenna's radiated energy and cause degradation in the antenna directivity, beam shape, and sidelobe levels.

  2. Antenna Design Method and Performance Improvement of a Micro Ion Engine Using Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyuki; Kuninaka, Hitoshi

    In this study, we are proposing a novel miniaturized ion engine system µ1. Recently microspacecraft and propulsion system to be installed there have attracted a lot of attentions. To accomplish the miniaturization of spacecraft component, multifunctionalization of devices are key technologies. The ion engine we are proposing here is distributed on microspacecraft and give a number of functions and strong redundancy to the spacecraft. To realize this concept, we introduced a novel idea for an ion engine system. That is to use single plasma source as both ion beam source and neutralizing electron source only by electrical connection. This ion engine system is released from the necessity of a number of neutralizers. Our concept requires a plasma source driven by very low power microwave. Here we proposed an antenna design method for a small plasma source using microwave discharge, and developed a miniaturized ion engine. As a result, the performance of the miniaturized ion engine was improved up to the ion production cost of 240 V and propellant utilization efficiency of 40 % at the input microwave power of 1.0 W and mass flow rate of 0.15 sccm.

  3. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  4. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  5. Design and implementation of a beam-waveguide mirror control system for vernier pointing of the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.

    1994-01-01

    The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.

  6. Embedded Meta-Material Antennas

    DTIC Science & Technology

    2009-01-31

    of electronic warfare signal and information processing systems. To realize such systems, the key is to miniaturize antennas that transmit and...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas , new materials...and technologies have to be incorporated. For this purpose, the PI has designed and demonstrated miniaturized antennas by introducing metamaterials

  7. Wind tunnel investigation of strap-on booster separation characteristics of a launch vehicle

    NASA Astrophysics Data System (ADS)

    Sundara Murthy, H.; Narayan, K. Y.; Suryanarayana, G. K.; Lochan, Rajeev; Sasidharan Nair, K. G.

    1986-12-01

    A description and typical results of wind tunnel tests carried out to determine the separation characteristics of the strap-on boosters of a launch vehicle after their separation from the core vehicle are presented. The test program was carried out in two phases. An extensive aerodynamic data base was generated using the grid approach in the first phase. This data base was utilized for the design of the ejection mechanism. In the second phase of the test program, the semicaptive trajectory technique was used to determine the trajectories of the separated boosters. A specially designed test rig featuring six degrees-of-freedom positioning capability for the two boosters was utilized for the tests. The wind tunnel studies showed that the separation trajectories of the boosters were safe.

  8. Design of a composite right/left-handed transmission line unit-cell for a U-shaped mushroom ZOR antenna based on left-handed metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, Cherl-Hee; Lee, Jonghun; Woo, Dong-Sik; Kim, Kang-Wook

    2012-11-01

    In this paper, a metamaterial-based zeroth-order (ZOR) mushroom antenna is presented by using a new composite right/left-handed (CRLH) transmission line unit-cell implemented with a U-shaped top plate is presented to extend bandwidth. The ZOR antenna whose resonance frequency is independent of the antenna size can enable a reduction of the antenna size. Because the shunt capacitance is determined by the area of a mushroom patch, a U-shaped mushroom having a lower shunt capacitance than the Sievenpiper mushroom structure is properly designed to widen the small bandwidth of the CRLH TL antenna. Compared to a square-shaped mushroom structure, a U-shaped mushroom structure for three unit-cells provided a reduced shunt capacitance and increased the 10-dB bandwidth by 2.5 times at 9.37 GHz.

  9. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging

    PubMed Central

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B.

    2014-01-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than –35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla. PMID:24649430

  10. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.

    PubMed

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-02-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.

  11. Design and Experiment of an Ultra-wideband Dual-Pulse Radiating Antenna

    NASA Astrophysics Data System (ADS)

    Sitao, Z.; Guozhi, L.; Chaolong, Y.; Xiaoxin, S.; Yajun, F.; Lei, S.; Wenfeng, X.; Yufeng, Z.

    A method to widen the microwave spectrum by radiating two pulses of different FWHM is presented. Based on this method, a high-power ultra-wideband dual-pulse radiating antenna is developed. The antenna is made up of a half-impulse radiating antenna (IRA) over a ground plane. The diameter of the reflector is 3 m with focal length 1.2 m and the ground plane is a rectangle of metal with length of 4 m and width of 3 m. Three TEM horns are adopted to feed two pulses into the reflector. The antenna can radiate two different bipolar pulses with peak-to-peak width of 1.7 ns and 3 ns effectively. The 3 ns bipolar pulse is after 1.7 ns bipolar pulse with a delay of 12.5 ns. Simulation analysis and experiments on the antenna are performed. Good agreements between calculated and measured results are obtained. The radiated spectrum of the 1.7 ns pulse covers from 240 MHz to 400 MHz, while the radiated spectrum of the 3 ns pulse covers from 110 MHz to 210 MHz. The radiated spectrum of the combined 1.7 ns and 3 ns dual-pulse with a 12.5 ns delay covers from 100 MHz to 430 MHz. Results show that radiating the combined pulses is a more effective method to widen the microwave spectrum than radiating a single pulse.

  12. A design study for the use of a multiple aperture deployable antenna for soil moisture remote sensing satellite applications

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1986-01-01

    The instrumentation problems associated with the measurement of soil moisture with a meaningful spatial and temperature resolution at a global scale are addressed. For this goal only medium term available affordable technology will be considered. The study while limited in scope, will utilize a large scale antenna structure, which is being developed presently as an experimental model. The interface constraints presented by a singel Space Transportation System (STS) flight will be assumed. Methodology consists of the following steps: review of science requirements; analyze effects of these requirements; present basic system engineering considerations and trade-offs related to orbit parameters, number of spacecraft and their lifetime, observation angles, beamwidth, crossover and swath, coverage percentage, beam quality and resolution, instrument quantities, and integration time; bracket the key system characteristics and develop an electromagnetic design of the antenna-passive radiometer system. Several aperture division combinations and feed array concepts are investigated to achieve maximum feasible performacne within the stated STS constraints.

  13. Design of a planar multiband Sierpinski E-shaped carpet antenna with CPW fed for multi standard wireless terminals

    NASA Astrophysics Data System (ADS)

    Sahu, K. Satyabrat; Panda, Asit K.

    2013-01-01

    In this paper Sierpinski E-Carpet antenna based on the implementation of fractal technique is proposed for multiband applications in 2-10 GHz band. There appeared 5 resonant frequencies at 2.35 GHz, 3.5 GHz, 5.503 GHz, 7.248GHz, and 8.79GHz for 2nd iteration. From the return loss plot it is seen that antenna achieved the IEEE Bluetooth/WLAN (2.4-2.484 GHz), WiMAX (3.4-3.69 GHz) and WIFI (5.1-5.825 GHz) frequency band with -10dB return loss. Also nearly omni-directional radiation pattern is observed. A prototype of the design is successfully implemented with close agreement between measurement and simulation result.

  14. Integrated head design using a nanobeak antenna for thermally assisted magnetic recording.

    PubMed

    Matsumoto, Takuya; Akagi, Fumiko; Mochizuki, Masafumi; Miyamoto, Harukazu; Stipe, Barry

    2012-08-13

    We propose a near-field optical transducer using a triangular antenna and a thin film structure (wing) to efficiently generate an optical near-field near a magnetic head. A finite-difference time-domain calculation showed that the near-field was efficiently generated at the apex of the antenna when the dimensions of the wing were optimized for efficient delivery of the surface plasmon excited on the wing to the antenna. The calculated light utilization efficiency (ratio between the absorbed power in the recording medium and the input power) was 8%. The temperature distribution on the medium, magnetic field distribution, and magnetization pattern were calculated; the proposed recording head may be capable of an areal recording density of 2.5 Tb/in.(2).

  15. Rf modeling and design of a folded waveguide launcher for the Alcator C-Mod tokamak

    SciTech Connect

    Bigelow, T.S.; Fogelman, C.F.; Baity, F.W.; Carter, M.D.; Hoffman, D.J.; Ryan, P.M.; Yugo, J.J.; Golovato, S.N.; Bonoli, P.

    1993-12-01

    The folded waveguide (FWG) launcher is being investigated as an improved antenna configuration for plasma heating in the ion cyclotron range of frequencies (ICRF). A development FWG launcher was successfully tested at Oak Ridge National Laboratory (ORNL) with a low-density plasma load and found to have significantly greater power density capability than current strap-type antennas operating in similar plasmas. To further test the concept on a high density tokamak plasma, a collaboration has been set up between ORNL and Massachusetts Institute of Technology (MIT) to develop and test an 80-MHz, 2-MW FWG on the Alcator C-Mod tokamak at MIT. The radio frequency (rf) electromagnetic modeling techniques and laboratory measurements used in the design of this antenna are described in this paper. A companion paper describes the mechanical design of the FWG.

  16. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.

    PubMed

    Jacobsen, S; Stauffer, P R; Neuman, D G

    2000-11-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.

  17. 3D modeling and optimization of the ITER ICRH antenna

    NASA Astrophysics Data System (ADS)

    Louche, F.; Dumortier, P.; Durodié, F.; Messiaen, A.; Maggiora, R.; Milanesio, D.

    2011-12-01

    The prediction of the coupling properties of the ITER ICRH antenna necessitates the accurate evaluation of the resistance and reactance matrices. The latter are mostly dependent on the geometry of the array and therefore a model as accurate as possible is needed to precisely compute these matrices. Furthermore simulations have so far neglected the poloidal and toroidal profile of the plasma, and it is expected that the loading by individual straps will vary significantly due to varying strap-plasma distance. To take this curvature into account, some modifications of the alignment of the straps with respect to the toroidal direction are proposed. It is shown with CST Microwave Studio® [1] that considering two segments in the toroidal direction, i.e. a "V-shaped" toroidal antenna, is sufficient. A new CATIA model including this segmentation has been drawn and imported into both MWS and TOPICA [2] codes. Simulations show a good agreement of the impedance matrices in vacuum. Various modifications of the geometry are proposed in order to further optimize the coupling. In particular we study the effect of the strap box parameters and the recess of the vertical septa.

  18. An experimental 20/30 GHz communications satellite conceptual design employing multiple-beam paraboloid reflector antennas

    NASA Technical Reports Server (NTRS)

    Goldman, A. M., Jr.

    1980-01-01

    An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.

  19. A True Metasurface Antenna

    PubMed Central

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately. PMID:26759177

  20. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Bagherian, A. B.; Mielke, R. R.

    1983-01-01

    Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.

  1. Bidirectional zoom antenna

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1975-01-01

    Antenna comprises two parabolic cylinders placed orthogoanlly to each other. One cylinder serves as main reflector, and the other as subreflector. Cylinders have telescoping sections to vary antenna beamwidth. Beamwidth can be adjusted in elevation, azimuth, or both. Design has no restriction as to choice of polarization.

  2. Loaded cavity-backed slot (LCBS) antennas for Reentry Vehicles

    SciTech Connect

    Sena, M.D.

    1992-09-01

    This report describes the linearly-polarized, loaded cavity-backed slot (LCBS) antenna developed for Reentry Vehicles (RVs) and the development process used by the Antenna Development Department. It includes typical antenna engineering design considerations or requirements, fabrication/assembly process, and performance characteristics. Antenna design theory is reduced to the basic concepts useful in designing LCBS antennas for reentry vehicles.

  3. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    SciTech Connect

    Vrancken, M.; Dumortier, P.; Durodie, F.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Vervier, M.; Argouarch, A.; Blackman, T.; Graham, M.; Nicholls, K.; Nightingale, M.

    2007-09-28

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST registered Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  4. Assessment of a field-aligned ICRF antenna

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.

    2014-02-01

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma

  5. Assessment of a field-aligned ICRF antenna

    SciTech Connect

    Wukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.

    2014-02-12

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma

  6. 24 CFR 3285.403 - Sidewall, over-the-roof, mate-line, and shear wall straps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., and shear wall straps. 3285.403 Section 3285.403 Housing and Urban Development Regulations Relating to... Anchorage Against Wind § 3285.403 Sidewall, over-the-roof, mate-line, and shear wall straps. If sidewall, over-the-roof, mate-line, or shear wall straps are installed on the home, they must be connected to...

  7. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    PubMed Central

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  8. Design, fabrication, test and delivery of a K-band antenna breadboard model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.

  9. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  10. A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication

    NASA Astrophysics Data System (ADS)

    Yan, J. H.; Lin, Z. Y.; Liu, P.; Yang, G. W.

    2014-10-01

    Visible light communication has been widely investigated due to its larger bandwidth and higher bit rate, and it can combine with the indoor illumination system that makes it more convenient to carry out. Receiving and processing the visible light signal on chip request for nanophotonics devices performing well. However, conventional optical device cannot be used for light-on-chip integration at subwavelength dimensions due to the diffraction limit. Herein, we propose a design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication based on the interaction between Si nanoparticle and Au nanorod. This device integrates the unique scattering property of high-refractive index dielectric Si nanoparticles, whose scattering spectrum is dependent on the particle size, with the localized surface plasmon resonance of Au nanorod. We calculated the spectra collected by plane detector and near field distribution of nanostructure, and theoretically demonstrate that the proposed device can act as good receiver, amplifier and superlens during the visible light signal receiving and processing. Besides, unlike some other designs of nanoantenna devices focused less on how to detect the signals, our hybrid nanoantenna can realize the transfer between the scattering source and the detector effectively by Au nanorod waveguides. These findings suggest that the designed nanoplasmonic structure is expected to be used in on-chip nanophotonics as antenna, spectral splitter and demultiplexer for visible light communication.

  11. A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication

    SciTech Connect

    Yan, J. H.; Lin, Z. Y.; Liu, P.; Yang, G. W.

    2014-10-21

    Visible light communication has been widely investigated due to its larger bandwidth and higher bit rate, and it can combine with the indoor illumination system that makes it more convenient to carry out. Receiving and processing the visible light signal on chip request for nanophotonics devices performing well. However, conventional optical device cannot be used for light-on-chip integration at subwavelength dimensions due to the diffraction limit. Herein, we propose a design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication based on the interaction between Si nanoparticle and Au nanorod. This device integrates the unique scattering property of high-refractive index dielectric Si nanoparticles, whose scattering spectrum is dependent on the particle size, with the localized surface plasmon resonance of Au nanorod. We calculated the spectra collected by plane detector and near field distribution of nanostructure, and theoretically demonstrate that the proposed device can act as good receiver, amplifier and superlens during the visible light signal receiving and processing. Besides, unlike some other designs of nanoantenna devices focused less on how to detect the signals, our hybrid nanoantenna can realize the transfer between the scattering source and the detector effectively by Au nanorod waveguides. These findings suggest that the designed nanoplasmonic structure is expected to be used in on-chip nanophotonics as antenna, spectral splitter and demultiplexer for visible light communication.

  12. (GameChanger) Multifunctional Design of Hybrid Composites of Load Bearing Antennas

    DTIC Science & Technology

    2011-06-01

    and Hydroethyl Cellulose ", Nov 2009, AICHE Annual Meeting 24. June 2009:Gordon Research Conference, “ Carbon Nanotube Nanostructures E. Jan, N...Volakis, “Polymer- Carbon Nanotube Sheets for Conformal Load Bearing Antennas,” IEEE Trans. Antenn. Propag., vol. 58, no. 7, pp. 2169- 2175, Jul. 2010...Propagation, Toronto, Canada, July, 2010. 7. Y. Bayram, Feng Du, L. Dai, J.L. Volakis, “Surface Conditioned Carbon Nanotube Conductive Sheet for Flexible and

  13. The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas

    DTIC Science & Technology

    2013-06-01

    antennas or phased arrays , can be explored in contrast to beam ... pattern of the array may be altered by phasing the individual elements of the array . 2. The array can be reconfigured to alter its performance. 3. The...Far-Field (FF) radiation pattern (amplitude and phase ), the beam width(s) (First Null Beam Width (FNBW) or Half 34 Power Beam Width (HPBW)), and

  14. Design Issues on Broadcast Routing Algorithms using Realistic Cost-Effective Smart Antenna Models

    DTIC Science & Technology

    2004-01-01

    affected due to: • beam shape (flatness and roundness) • (electronically) steerability of antenna (beam scanning capability) • beamwidth expansibility All...pattern is deter- mined by the polar plot of r = r (θ, φ) = α √ Pt ( λ 4π )2 Gt (θ, φ). A. Flat-top Beam Pattern + Variable Beamwidth + Steerable ...Section III-C. B. Flat-top Beam Pattern + Fixed Beamwidth + Steerable Phased Array Compared to the previous scenario, we keep the beamwidth fixed at θmin

  15. Comparison of Anisotropic versus Isotropic Metamaterials in Low Profile UHF Antenna Design

    DTIC Science & Technology

    2014-08-01

    unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report compares the use of anisotropic material versus isotropic material in a partially ...antenna. The shape of the cavity is uniquely determined by a transverse resonance resulting from the partial loading and the permittivity and/or...Figures iv List of Tables v 1. Introduction 1 2. Sub-Wavelength Cavities Loaded with High Index Materials 2 2.1 Air Filled Rectangular Cavity Benchmark

  16. A portable Ka-band front-end test package for beam-waveguide antenna performance evaluation. Part 1: Design and ground tests

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    A unique experimental method was used to test the beam waveguide (BWG) antenna at Deep Space Station (DDS) 13 in the Goldstone Deep Space Communications Complex near Barstow, California. The methodology involved the use of portable test packages to make measurements of operating noise temperatures and antenna efficiencies (as functions of antenna pointing angles) at the Cassegrain focal point and the final focal point located in a subterranean pedestal room. Degradations caused by the BWG mirror systems were determined by making comparisons of the measured parameters at the two focal points of the antenna. Previous articles were concerned with the design, performance characteristics, and test results obtained with an X-band test package operating at 32 GHz. Noise temperature measurement results are presented for the Ka-band test package in an on-the-ground test configuration.

  17. STRAP Acts as a Scaffolding Protein in Controlling the TLR2/4 Signaling Pathway

    PubMed Central

    Huh, Hyunbin D.; Ra, Eun A.; Lee, Taeyun A.; Kang, Sujin; Park, Areum; Lee, Eunhye; Choi, Junhee L.; Jang, Eunji; Lee, Ji Eun; Lee, Sungwook; Park, Boyoun

    2016-01-01

    The WD40-repeat protein serine/threonine kinase receptor-associated protein (STRAP) is involved in the regulation of several biological processes, including cell proliferation and apoptosis, in response to various stresses. Here, we show that STRAP is a new scaffold protein that functions in Toll-like receptor (TLR)-mediated immune responses. STRAP specifically binds transforming growth factor β-activated kinase 1 (TAK1) and IκB kinase alpha (IKKα) along with nuclear factor-κB (NF-κB) subunit p65, leading to enhanced association between TAK1, IKKα, and p65, and subsequent facilitation of p65 phosphorylation and nuclear translocation. Consequently, the depletion of STRAP severely impairs interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β production, whereas its overexpression causes a significant increase in the secretion of these pro-inflammatory cytokines by TLR2 or TLR4 agonist-stimulated macrophages. Notably, STRAP translocates to the nucleus and subsequently binds to NF-κB at later times after lipopolysaccharide (LPS) stimulation, resulting in prolonged IL-6 mRNA production. Moreover, the C-terminal region of STRAP is essential for its functional activity in facilitating IL-6 production. Collectively, these observations suggest that STRAP acts as a scaffold protein that positively contributes to innate host defenses against pathogen infections. PMID:27934954

  18. Design and Analysis of a New ZOR Antenna with Wide Half Power Beam Width (HPBW) Characteristic

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Xie, Ji-yang; Jiang, Xing; Ruan, Cheng-li

    2017-01-01

    Novel zeroth-order resonator (ZOR) composites epsilon-zero resonance (EZR) and mu-zero resonance (MZR) characteristics was proposed. The proposed resonator was constructed by moving via from centre of the conventional mushroom structure (CMS) to the edge, then, an edge-located via mushroom structure (ELV-MS) was formed. Thus, boundary conditions were transformed from all open-ended to half short-ended and half open-ended. Then, the new ZOR composites EZR and MZR characteristics (called EZR-MZR resonator). Owing to the unique characteristic of the composite EZR and MZR, the proposed ZOR antenna radiates both horizontal-polarized field (uni-directional) and vertical-polarized field (omni-directional). Then, wide half power beam width (HPBW) radiation patterns were realized for the antenna. The deduction and analysis of the proposed EZR-MZR resonator were conducted based on the composite right/left-handed transmission line (CRLH TL) and ZOR theories, and field distributions. The proposed ZOR antenna was investigated with two cases of coupling feeding.

  19. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  20. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  1. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  2. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  3. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  4. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  5. Bifocal dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    A bifocal dual reflector antenna is similar to and has better scan capability than classical cassegrain reflector antenna. The method used in determining the reflector surfaces is a modification of a design method for the dielectric bifocal lens. The three dimensional dual reflector is obtained by first designing an exact (in geometrical optics sense) two-point corrected two dimensional reflector and then rotating it around its axis of symmetry. A point by point technique is used in computing the reflector surfaces. Computed radiation characteristics of the dual reflector are compared with those of a cassegrain reflector. The results confirm that the bifocal antenna has superior performance.

  6. Satellite Antenna Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.

  7. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  8. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    of ground reflections, and situations where they may be applied to the estimation of the parameters associated with an interior wall. It is demonstrated through extensive computer simulations and laboratory experiments that, by proper exploitation of the electromagnetic characteristics of walls, one can efficiently extract the constitutive parameters associated with unknown wall(s) as well as to characterize and image the intra-wall region. Additionally, it is possible, to a large extent, to remove the negative wall effects, such as shadowing and incorrect target localization, as well as to enhance the imaging and classification of targets behind walls. In addition to the discussion of post processing the radar data to account for wall effects, the design of antenna elements used for transmit (Tx) and receive (Rx) operations in TWR radars is also discussed but limited to antennas for mobile, handheld, or UAV TWR systems which impose design requirements such as low profiles, wide operational bands, and in most cases lend themselves to fabrication using surface printing techniques. A new class of wideband antennas, formed though the use of printed metallic paths in the form of Peano and Hilbert space-filling curves (SFC) to provide top-loading properties that miniaturize monopole antenna elements, has been developed for applications in conformal and/or low profile antennas systems, such as mobile platforms for TWRI and communication systems. Additionally, boresight gain enhancements of a stair-like antenna geometry, through the addition of parasitic self-similar patches and gate like ground plane structures, are presented.

  9. Design of antenna-coupled lumped-element titanium nitride KIDs for long-wavelength multi-band continuum imaging

    NASA Astrophysics Data System (ADS)

    Ji, C.; Beyer, A.; Golwala, S.; Sayers, J.

    2014-07-01

    Many applications in cosmology and astrophysics at millimeter wavelengths — CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect, studies of star formation at high redshift and in our local universe and our galaxy— require large-format arrays of millimeter-wave detectors. Feedhorn, lens-coupled twinslot antenna, and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics and for simultaneous coverage of both polarizations and/or multiple spectral bands. Simultaneously, kinetic inductance detectors using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because their high responsivity can render two-level-system noise subdominant to photon and recombination noise. However, coupling the two is a challenge because of the impedance mismatch between the microstrip exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption in the KID is also a challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallelplate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable two-level-system noise. We show that an optimized design can yield expected sensitivities very close to the fundamental limit from photon and recombination noises for two relevant examples: single spectral band designs appropriate for 90 and 150 GHz for CMB polarization and a multi-spectral-band design that covers 90 GHz to 405 GHz in six bands for SZ effect studies.

  10. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2017-01-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  11. DSN 100-meter X and S band microwave antenna design and performance

    NASA Technical Reports Server (NTRS)

    Williams, W. F.

    1978-01-01

    The RF performance is studied for large reflector antenna systems (100 meters) when using the high efficiency dual shaped reflector approach. An altered phase was considered so that the scattered field from a shaped surface could be used in the JPL efficiency program. A new dual band (X-S) microwave feed horn was used in the shaping calculations. A great many shaping calculations were made for various horn sizes and locations and final RF efficiencies are reported. A conclusion is reached that when using the new dual band horn, shaping should probably be performed using the pattern of the lower frequency

  12. Gimbals Drive and Control Electronics Design, Development and Testing of the LRO High Gain Antenna and Solar Array Systems

    NASA Technical Reports Server (NTRS)

    Chernyakov, Boris; Thakore, Kamal

    2010-01-01

    Launched June 18, 2009 on an Atlas V rocket, NASA's Lunar Reconnaissance Orbiter (LRO) is the first step in NASA's Vision for Space Exploration program and for a human return to the Moon. The spacecraft (SC) carries a wide variety of scientific instruments and provides an extraordinary opportunity to study the lunar landscape at resolutions and over time scales never achieved before. The spacecraft systems are designed to enable achievement of LRO's mission requirements. To that end, LRO's mechanical system employed two two-axis gimbal assemblies used to drive the deployment and articulation of the Solar Array System (SAS) and the High Gain Antenna System (HGAS). This paper describes the design, development, integration, and testing of Gimbal Control Electronics (GCE) and Actuators for both the HGAS and SAS systems, as well as flight testing during the on-orbit commissioning phase and lessons learned.

  13. Full scale LANDSAT-D antenna pattern measurements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design verification of the LANDSAT-D antenna subsystem is addressed. In particular, the analysis of the antenna radiation patterns utilizing a full scale mockup of the LANDSAT-D satellite is discussed. Test antennas included two S-Band shaped beam antennas, two S-Band omni unit radiators (to operate in array), a GPS antenna, an X-Band shaped beam antenna, and one S-Band high-gain parabolic antenna.

  14. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    NASA Technical Reports Server (NTRS)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us

  15. Biomechanical Assessment of Rucksack Shoulder Strap Attachment Location: Effect on Load Distribution to the Torso

    DTIC Science & Technology

    2001-05-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11003 TITLE: Biomechanical Assessment of Rucksack Shoulder Strap...ADP010987 thru ADPO11009 UNCLASSIFIED 20-1 Biomechanical Assessment of Rucksack Shoulder Strap Attachment Location: Effect on Load Distribution to the...Education Queen’s University Kingston, Ontario, Canada K7L 3N6 Summary The objective of this study was to conduct biomechanical testing of pack component

  16. Website malfunction: a case report highlighting the danger of using electrical insulating tape for buddy strapping.

    PubMed

    Devitt, Brian Meldan; Baker, Joseph F; Fitzgerald, Eilis; McCarthy, Conor

    2010-05-06

    A case of injury to the third web space of the right hand of a rugby player, as a result of buddy strapping with electrical insulating tape of the little and ring finger, is presented. A deep laceration of the web space and distal palmar fascia resulted, necessitating wound exploration and repair. This case highlights the danger of using electrical insulating tape as a means to buddy strap fingers.

  17. Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo

    2016-11-01

    A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.

  18. Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle

    NASA Astrophysics Data System (ADS)

    Rabbani, Muhammad Saqib; Ghafouri-Shiraz, Hooshang

    2016-12-01

    In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject's body area.

  19. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  20. Numerical simulation of inviscid supersonic flow over a launch vehicle with strap-on boosters

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Prahlad, T. S.; Deshpande, S. M.

    1987-01-01

    A numerical simulation of an inviscid supersonic flow over a multibody configuration of a launch vehicle with strap-on booster is presented using an overlapping grid technique. In this approach, separate optimized grids with sufficient overlapping regions are employed for the core vehicle and the each strap-on boosters. The flow field information from one grid to another is transferred through the overlapping region. In each grid, Euler's equations in conservation form are integrated by the shock capturing technique. As a test case for establishing the concept of overlapping grids for the simulation of supersonic flow, a simple case of a core vehicle with the strap-on booster at a freestream Mach number of 2.5 at zero angle of attack is considered. The numerical results are presented in the form of the pressure contours, pressure and aerodynamic load distribution and the variation of the side force on the strap-on. The present results compare well with the experimental data and the other numerical results. Finally, the results are obtained for the case of core vehicle with two strap-ons and the pressure coefficient is compared with experimental values. The present numerical results show that the overlapping grid technique is stable and is capable of capturing accurately all the significant feature of an inviscid flow field over a launch vehicle with strap-ons.

  1. The effect of strapping on the motor performance of the ankle and wrist joints.

    PubMed

    Kauranen, K; Siira, P; Vanharanta, H

    1997-08-01

    The purpose of this study was to examine the effect of strapping on different components of motor performance of wrist and ankle joints. The subjects were 14 healthy volunteers (12 females, two males), aged 21-33 years, with no known previous injuries of the ankle and wrist joints. The measurements were made with the HPM/BEP system and Isokinetic Lido Active Multi-joint system. First, the subjects performed the test without strapping and then, on the following day, with strapped right wrist and ankle joints. The strapping of the wrist increased the simple reaction time by 9%, choice reaction time by 9% and decreased the wrist tapping speed by 21%. Wrist strength decreased in flexion (180 degrees/s) by 14% and ulnar deviation (180 degrees/s) by 8%. The strapping of the ankle increased the simple reaction time by 12%, choice reaction time by 9% and decreased foot tapping speed by 14%. Ankle strength in plantar flexion decreased in 60 degrees/s by 22% and 180 degrees/s by 14% and in inversion in 60 degrees/s by 28% and 180 degrees/s by 15%. These results suggest the strapping of ankle and wrist joints reduces motor performance in the above-mentioned directions as measured by the following parameters: simple reaction time, choice reaction time, tapping speed, and muscle strength.

  2. Strapping rowers to their sliding seat improves performance during the start of single-scull rowing.

    PubMed

    van Soest, A J Knoek; de Koning, H; Hofmijster, M J

    2016-09-01

    In this study, the effect of strapping rowers to their sliding seat on performance during 75 m on-water starting trials was investigated. Well-trained rowers performed 75 m maximum-effort starts using an instrumented single scull equipped with a redesigned sliding seat system, both under normal conditions and while strapped to the sliding seat. Strapping rowers to their sliding seat resulted in a 0.45 s lead after 75 m, corresponding to an increase in average boat velocity of about 2.5%. Corresponding effect sizes were large. No significant changes were observed in general stroke cycle characteristics. No indications of additional boat heaving and pitching under strapped conditions were found. The increase in boat velocity is estimated to correspond to an increase in average mechanical power output during the start of on-water rowing between 5% and 10%, which is substantial but smaller than the 12% increase found in a previous study on ergometer starting. We conclude that, after a very short period of adaptation to the strapped condition, single-scull starting performance is substantially improved when the rower is strapped to the sliding seat.

  3. Development and Testing of an Innovative Two-Arm Focal-Plane Thermal Strap (TAFTS)

    NASA Technical Reports Server (NTRS)

    Urquiza, E.; Vasquez, C.; Rodriguez, J.; Van Gorp, B.

    2011-01-01

    Maintaining temperature stability in optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness. This paper will describe the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three degrees of freedom.

  4. SPS antenna pointing control

    NASA Technical Reports Server (NTRS)

    Hung, J. C.

    1980-01-01

    The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.

  5. Antenna system for MSAT mission

    NASA Technical Reports Server (NTRS)

    Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora

    1988-01-01

    Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.

  6. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  7. Design of a plasmonic-organic hybrid slot waveguide integrated with a bowtie-antenna for terahertz wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chen, Chin-Ta; Chen, Ray T.

    2016-03-01

    Electromagnetic (EM) wave detection over a large spectrum has recently attracted significant amount of attention. Traditional electronic EM wave sensors use large metallic probes which distort the field to be measured and also have strict limitations on the detectable RF bandwidth. To address these problems, integrated photonic EM wave sensors have been developed to provide high sensitivity and broad bandwidth. Previously we demonstrated a compact, broadband, and sensitive integrated photonic EM wave sensor, consisting of an organic electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW) modulator integrated with a gold bowtie antenna, to detect the X band of the electromagnetic spectrum. However, due to the relative large RC constant of the silicon PCW, such EM wave sensors can only work up to tens of GHz. In this work, we present a detailed design and discussion of a new generation of EM wave sensors based on EO polymer refilled plasmonic slot waveguides in conjunction with bowtie antennas to cover a wider electromagnetic spectrum from 1 GHz up to 10THz, including the range of microwave, millimeter wave and even terahertz waves. This antennacoupled plasmonic-organic hybrid (POH) structure is designed to provide an ultra-small RC constant, a large overlap between plasmonic mode and RF field, and strong electric field enhancement, as well as negligible field perturbation. A taper is designed to bridge silicon strip waveguide to plasmonic slot waveguide. Simulation results show that our device can have an EM wave sensing ability up to 10 THz. To the best of our knowledge, this is the first POH device for photonic terahertz wave detection.

  8. Fast Wave Current Drive Antenna Performance on DIII-D

    NASA Astrophysics Data System (ADS)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Porkolab, M.; Prater, R.; Baity, F. W.; Goulding, R. H.; Hoffman, D. J.

    1992-01-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the DIII-D tokamak for the first time in high electron temperature, high β target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n∥ value (≂7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90°) in each of the straps for a directional spectrum. In this paper we describe the performance of the DIII-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  9. Fast wave current drive antenna performance on D3-D

    NASA Astrophysics Data System (ADS)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.

    1991-10-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  10. Antenna pattern study

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1988-01-01

    Prediction of antenna radiation patterns has long been an important function in the design of command, communication, and tracking systems for rocket vehicles and spacecraft. An acceptable degree of assurance that a radio link will provide the required quality of data or certainty of correct command execution must be acquired by some means if the system is to be certified as reliable. Two methods have been used to perform this function: (1) Theoretical analysis, based on the known properties of basic antenna element types and their behavior in the presence of conductive structures of simple shape, and (2) Measurement of the patterns on scale models of the spacecraft or rocket vehicle on which the antenna is located. Both of these methods are ordinarily employed in the antenna design process.

  11. Anatomical and Molecular Design of the Drosophila Antenna as a Flagellar Auditory Organ

    PubMed Central

    TODI, SOKOL V.; SHARMA, YASHODA; EBERL, DANIEL F.

    2007-01-01

    The molecular basis of hearing is less well understood than many other senses. However, recent studies in Drosophila have provided some important steps towards a molecular understanding of hearing. In this report, we summarize these findings and their implications on the relationship between hearing and touch. In Drosophila, hearing is accomplished by Johnston’s Organ, a chordotonal organ containing over 150 scolopidia within the second antennal segment. We will discuss anatomical features of the antenna and how they contribute to the function of this flagellar auditory receptor. The effects of several mutants, identified through mutagenesis screens or as homologues of vertebrate auditory genes, will be summarized. Based on evidence gathered from these studies, we propose a speculative model for how the chordotonal organ might function. PMID:15252880

  12. Design for steering accuracy in antenna arrays using shared optical phase shifters

    NASA Technical Reports Server (NTRS)

    Kam, Moshe; Herczfeld, Peter R.; Wilcox, Jeffrey

    1989-01-01

    Uniform linear phased arrays where many radiating elements share a relatively small number of phase shifters are investigated. Such architectures arise in arrays which derive the time delays in the signal paths from a small group of independent phase shifters. In particular, a true time-delay device which has been suggested recently for optically controlled arrays is used as the basic phase shifter. Different architectures, viz. alternative procedures of deriving the necessary time delay for each antenna in the face of phase-shifter inaccuracies, are examined. The variance of the steered beam's direction is used as the performance criterion. The direction-optimal architecture is obtained by means of quadratic programming, and is shown not to be unique. The nonuniqueness of the optimal architecture is exploited to improve other characteristics of the array's beam shape, and the optimal solution is shown to compare favorably with a suboptimal interleaved solution which is easier to implement.

  13. Ultradirective antenna via transformation optics

    NASA Astrophysics Data System (ADS)

    Tichit, P.-H.; Burokur, S. N.; de Lustrac, A.

    2009-05-01

    Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We show that the directivity of this antenna is competitive with regard to conventional directive antennas (horn and reflector antennas), besides its dimensions are smaller. Numerical simulations using finite element method are performed to illustrate these properties. A reduction in the electromagnetic material parameters is also proposed for an easy fabrication of this antenna from existing materials. Following that, the design of the proposed antenna using a layered metamaterial is presented. The different layers are all composed of homogeneous and uniaxial anisotropic metamaterials, which can be obtained from simple metal-dielectric structures. When the radiating source is embedded in the layered metamaterial, a highly directive beam is radiated from the antenna.

  14. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  15. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  16. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  17. Harvesting of electrical energy from a backpack using piezoelectric shoulder straps

    NASA Astrophysics Data System (ADS)

    Sodano, Henry A.; Granstrom, Jonathan; Feenstra, Joel; Farinholt, Kevin

    2007-04-01

    Over the past few decades the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful, however, the gains that have been made in the device performance has resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnate growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user's gait or endurance are avoided. These issues have arisen from previous attempts to integrate power harvesting mechanisms into a shoe such that the energy released during a heal strike could be harvested. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the traditional strap of the backpack with one made of the piezoelectric polymer polyvinylidene fluoride (PVDF). Piezoelectric materials have a structure such that an applied electrical potential results in a mechanical strain. Conversely, an applied stress results in the generation of an electrical charge, which makes the material useful for power harvesting applications. PVDF is highly flexible and has a high strength allowing it to effectively act as the load bearing

  18. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  19. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  20. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    SciTech Connect

    Gorham, P. W.; Allison, P.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C. L.; Hoover, S.; Israel, M. H.; Learned, J. G.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  1. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  2. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  3. ICRF Antenna Characteristics and Comparison with 3-D Code Calculation in the LHD

    SciTech Connect

    Mutoh, T.; Kasahara, H.; Seki, T.; Saito, K.; Kumazawa, R.; Shimpo, F.; Nomura, G.

    2009-11-26

    The plasma coupling characteristics and local heat spots of an ion cyclotron range of frequencies (ICRF) antenna in the Large Helical Device (LHD) are compared with the results of 3-D computing simulator code calculation. We studied several dependences of antenna loading resistances with plasma experimentally and observed a clear relation between the maximum injection power and the loading resistance. Realistic three-dimensional configuration of the ICRF antenna was taken into account to simulate the coupling characteristics and the local heat absorption near the ICRF antenna, which has a helically twisted geometry in the LHD. The electromagnetic field distribution and the current distribution on the antenna strap were calculated. We compared the RF absorption distribution on the antenna structure with the temperature rise during steady state operation and found that the temperature rise was well explained by comparing with the model simulation.

  4. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    SciTech Connect

    Messiaen, A. Ongena, J.; Vervier, M.; Swain, D.

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.

  5. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    SciTech Connect

    Messiaen, Andre; Swain, David W; Ongena, Jef; Vervier, Michael

    2015-01-01

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V-max amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V-max of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is +/- 20 degrees, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k//computed by means of the coupling code ANTITER II remains small for the considered cases. [GRAPHICS] .

  6. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  7. The Helios experiment 5 antenna mechanism

    NASA Technical Reports Server (NTRS)

    Mueller, J. W.

    1976-01-01

    The Experiment 5 Antenna deployment problem onboard Helios A, the failure analysis, and changes in design, test, and operation which led to a successful deployment of both antennas during the early Helios B mission phase are described.

  8. STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post-Translational Modifications

    PubMed Central

    Spencer, Jean L.; Bhatia, Vivek N.; Whelan, Stephen A.; Costello, Catherine E.

    2014-01-01

    The identification of protein post-translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography-tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post-Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi-sample comparison by collating, scoring, and ranking PTMs and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans-Proteomic Pipeline. The easy-to-use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting. PMID:25422678

  9. Analysis of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1984-01-01

    The problem of microstrip antennas covered by a dielectric substrate is formulated in terms of coupled integro-differential equations with the current distribution on the conducting patch as an unknown quantity. The Galerkin method is used to solve for the unknown patch current. Using the present formulation, the radiation pattern, the resonant frequency, and the bandwidth of a rectangular microstrip antenna are computed. Design data for a rectangular microstrip antenna are also presented.

  10. Active antenna

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1994-01-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  11. Reduction of RF sheaths potentials by compensation or suppression of parallel RF currents on ICRF antennae

    SciTech Connect

    Mendes, A.; Colas, L.; Vulliez, K.; Argouarch, A.; Milanesio, D.

    2009-11-26

    Radio Frequency (RF) sheaths are suspected to limit the performance of present-day Ion Cyclotron Range of Frequencies (ICRF) antennae over long pulses and should be minimized in future Fusion devices. Within the simplest models, RF sheath effects are quantified by the integral V{sub RF} {integral}E{sub ||}{center_dot}dl where the parallel RF field E{sub ||} is linked with the slow wave. On 'long open field lines' with large toroidal extension on both sides of the antenna it was shown that V{sub RF} is excited by parallel RF currents j{sub ||} flowing on the antenna structure. We thus propose two ways to reduce |V{sub RF}| by acting on j{sub ||} on the antenna front face. The first method, more adapted for protruding antennae, consists in avoiding the j{sub ||} circulation on the antenna structure, by slotting the antenna frame on its horizontal edges and by cutting partially the Faraday screen rods. The second method, well suited for recessed antennae, consists in compensating j{sub ||} of opposite signs along long flux tubes, with parallelepiped antennae aligned with tilted flux tubes. The different concepts are assessed numerically on a 2-strap Tore Supra antenna phased [0, {pi}] using near RF fields from the antenna code TOPICA. Simulations stress the need to suppress all current paths for j{sub ||} to reduce substantially |V{sub RF}| over the whole antenna height.

  12. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.

    PubMed

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-12-16

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.

  13. Improvised design of THz spectrophotometer using LT-GaAs photoconductive antennas, pyroelectric detector and band-pass filters

    NASA Astrophysics Data System (ADS)

    Mottamchetty, V.; Chaudhary, A. K.

    2016-01-01

    We report the improvised design of LT-GaAs photoconductive antenna and pyroelectric detector-based terahertz (THz) spectrophotometer by introducing band-pass filters. The spectrophotometer provides direct optical/absorption information of materials in THz domain without using any signal processing devices (such as lock-in amplifier) and delay arrangement, etc., which are required in conventional THz spectrometer. Moreover, obtained absorption results from spectrometer are less affected by laser fluctuations and inherent noises of the detector. The laser pulses of duration 15 fs at 80 MHz repetition rate are utilized in this spectrometer to generate THz radiation with good conversion efficiency ( η) of the order 3 × 10-3. In addition, emphasis is also given to understand the effect of single- and two-photon absorption on generated THz power with respect to incident laser power density. Absorption properties of packing materials such as paper, Teflon, transparency and rubber (eraser) sheets are investigated in terms of their attenuation coefficients and absorbance at 0.5 and 1.5 THz region in our newly designed THz spectrophotometer. Our study demonstrates the significant information about their attenuation coefficients lying between 300 and 5000 dB/m. The attenuation in THz power has been measured as a function of the paper thickness (0.3-1.5 mm). The obtained results show the exponential growth in absorption with respect to paper thickness.

  14. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.

    PubMed

    Ferguson, John E; Wittig, Becky L; Payette, Mark; Goldish, Gary D; Hansen, Andrew H

    2014-01-01

    Custom wheelchair seats can be used to help prevent pressure ulcers in individuals with spinal cord injury. In this study, a strap-based system was evaluated in three Veterans with spinal cord injury. Interface pressure distributions were measured after transfers, wheeling, and pressure relief maneuvers and after fittings by three different therapists. We found that pressure distribution measures were not generally affected after transfers and wheeling using the strap-based wheelchair and that pressure relief maneuvers were able to be performed. Additionally, all therapists were able to customize the wheelchair seat to clinically acceptable levels in 4 to 40 min for the three subjects. Future studies can test the long-term effects of using the strap-based wheelchair seat and identifying individuals that would most benefit from a rapidly customizable wheelchair seat.

  15. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1979-01-01

    Technology developed by NASA in conjunction with industry for potential large, deployable space antennas with applications in communication, radio astronomy and earth observation is reviewed. Concepts for deployable antennas that have been developed to the point of detail design are summarized, including the advanced sunflower precision antenna, the radial rib antenna, the maypole (hoop/column) antenna and the parabolic erectable truss antenna. The assessment of state-of-the-art deployable antenna technology is discussed, and the approach taken by the NASA Large Space Systems Technology (LSST) Program to the development of technology for large space antenna systems is outlined. Finally, the further development of the wrap-rib antenna and the maypole (hoop/column) concept, which meet mission model requirements, to satisfy LSST size and frequency requirements is discussed.

  16. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  17. Systems analysis for DSN microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  18. Strap grid tubular plate—a new positive plate for lead-acid batteries. Processes of residual sulphation of the positive plate

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Papazov, G.; Monahov, B.

    For almost a century now the tubular plate design has been based on cylindrical tubes and spines. The contact surface between the positive active mass (PAM) and the spine is small, which results in high polarisation of the plate at high discharge currents and low power output of the cell. In an attempt to eliminate these disadvantages, the shape of the tubes has been changed to flattened elliptic and the spines have been replaced by strap grids. The thickness of this new type of tubular plate, strap grid tubular plate (SGTP), is between 3 and 5 mm. Batteries with tubular plates of the new design (SGTP batteries) can be used in electric vehicle (EV) and photovoltaic (PV) system applications. This paper presents results of SGTP battery tests according to the European standards for EV, hybrid electric vehicle (HEV) and photovoltaic (PV) system batteries. SGTP batteries have a cycle life of 1000 ECE-15-EV cycles, 6000 ECE-HEV cycles and more than eight gross PV cycles. The optimum battery charge algorithm for VRLA batteries with strap grid tubular plates has been established and the mechanism of disintegration of the positive active mass has been disclosed. The following phenomena are responsible for the decline in capacity of the positive plates. First, when the PAM is built up of globules adhering closely to each other, a strong skeleton with thick aggregates (branches) with a membrane surface is formed. The surface layer of the branches impedes the access of H 2O and H 2SO 4 to their interior thus reducing the utilisation of the PAM. Besides, internal stresses are created in the aggregates, which cause them to crack. Secondly, when the PAM is built up of individual agglomerates with micropores in between, a porous mass with large surface is formed. The tubes keep the aggregates together and prolong the cycle life of the battery. During discharge, the contacts between the aggregates weaken and the capacity declines. Third, during discharge, the H 2SO 4 concentration

  19. Using Shoulder Straps Decreases Heart Rate Variability and Salivary Cortisol Concentration in Swedish Ambulance Personnel

    PubMed Central

    Karlsson, Kåre J.; Niemelä, Patrik H.; Jonsson, Anders R.; Törnhage, Carl-Johan A.

    2015-01-01

    Background Previous research has shown that paramedics are exposed to risks in the form of injuries to the musculoskeletal system. In addition, there are studies showing that they are also at increased risk of cardiovascular disease, cancer, and psychiatric diseases, which can partly be explained by their constant exposure to stress. The aim of this study is to evaluate whether the use of shoulder straps decreases physical effort in the form of decreased heart rate and cortisol concentration. Methods A stretcher with a dummy was carried by 20 participants for 400 m on two occasions, one with and one without the shoulder straps. Heart rate was monitored continuously and cortisol samples were taken at intervals of 0 minutes, 15 minutes, 30 minutes, 45 minutes, and 60 minutes. Each participant was her or his own control. Results A significant decrease in heart rate and cortisol concentration was seen when shoulder straps were used. The median values for men (with shoulder straps) at 0 minutes was 78 bpm/21.1 nmol/L (heart rate/cortisol concentration), at 15 minutes was 85 bpm/16.9 nmol/L, and at 60 minutes was 76 bpm/15.7 nmol/L; for men without shoulder straps, these values were 78 bpm/21.9 nmol/L, 93 bpm/21.9 nmol/L, and 73 bpm/20.5 nmol/L. For women, the values were 85 bpm/23.3 nmol/L, 92 bpm/20.8 nmol/L, and 70 bpm/18.4 nmol/L and 84 bpm/32.4 nmol/L, 100 bpm/32.5 nmol/L, and 75 bpm/25.2 nmol/L, respectively. Conclusion The use of shoulder straps decreases measurable physical stress and should therefore be implemented when heavy equipment or a stretcher needs to be carried. An easy way to ensure that staff use these or similar lifting aids is to provide them with personalized, well-adapted shoulder straps. Another better option would be to routinely sewn these straps into the staff's personal alarm jackets so they are always in place and ready to be used. PMID:27014488

  20. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  1. Design and operations of a load-tolerant external conjugate-T matching system for the A2 ICRH antennas at JET

    NASA Astrophysics Data System (ADS)

    Monakhov, I.; Graham, M.; Blackman, T.; Dowson, S.; Durodie, F.; Jacquet, P.; Lehmann, J.; Mayoral, M.-L.; Nightingale, M. P. S.; Noble, C.; Sheikh, H.; Vrancken, M.; Walden, A.; Whitehurst, A.; Wooldridge, E.; Contributors, JET-EFDA

    2013-08-01

    A load-tolerant external conjugate-T (ECT) impedance matching system for two A2 ion cyclotron resonance heating (ICRH) antennas was successfully put into operation at JET. The system allows continuous injection of the radio-frequency (RF) power into plasma in the presence of strong antenna loading perturbations caused by edge-localized modes (ELMs). Reliable ECT performance was demonstrated under a variety of antenna loading conditions including H-mode plasmas with radial outer gaps (ROGs) in the range 4-14 cm. The high resilience to ELMs predicted during the circuit simulations was fully confirmed experimentally. Dedicated arc-detection techniques and real-time matching algorithms were developed as a part of the ECT project. The new advanced wave amplitude comparison system has proven highly efficient in detection of arcs both between and during ELMs. The ECT system has allowed the delivery of up to 4 MW of RF power without trips into plasmas with type-I ELMs. Together with the 3 dB system and the ITER-like antenna, the ECT has brought the total RF power coupled to ELMy plasma to over 8 MW, considerably enhancing JET research capabilities. This paper provides an overview of the key design features of the ECT system and summarizes the main experimental results achieved so far.

  2. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  3. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  4. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  5. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  6. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  7. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  8. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA)

    PubMed Central

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-01-01

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude. PMID:27314360

  9. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA).

    PubMed

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-06-15

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude.

  10. Multiple Reflector Scanning Antennas

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Narrow beamwidth antenna systems are important to remote sensing applications and point-to-point communication systems. In many applications the main beam of the antenna radiation pattern must be scannable over a region of space. Scanning by mechanically skewing the entire antenna assembly is difficult and in many situations is unacceptable. Performance during scan is, of course, also very important. Traditional reflector systems employing the well-focused paraboloidal -shaped main reflector accomplish scan by motion of a few feeds, or by phase steering a focal plane feed array. Such scanning systems can experience significant gain loss. Traditional reflecting systems with a spherical main reflector have low aperture efficiency and poor side lobe and cross polarization performance. This dissertation introduces a new approach to the design of scanning spherical reflector systems, in which the performance weaknesses of high cross polarization and high side lobe levels are avoided. Moreover, the low aperture utilization common in spherical reflectors is overcome. As an improvement to this new spherical main reflector configuration, a flat mirror reflector is introduced to minimize the mechanical difficulties to scan the main beam. In addition to the reflector system design, reflector antenna performance evaluation is also important. The temperature resolution issue important for earth observation radiometer antennas is studied, and a new method to evaluate and optimize such temperature resolution is introduced.

  11. Tracking and Data Relay Satellite System user impact and network compatibility study. [antenna design and telecommunication links

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.

  12. Optical antenna for photofunctional molecular systems.

    PubMed

    Ikeda, Katsuyoshi; Uosaki, Kohei

    2012-02-06

    Optical antennas can enhance the efficiency of photon-molecule interactions. To design efficient antenna structures, it is essential to consider physicochemical aspects in addition to electromagnetic considerations. Specifically, chemical interactions between optical antennas and molecules have to be controlled to enhance the overall efficiency. For this purpose, sphere-plane nanostructures are suitable optical antennas for molecular-modified functional electrode systems when a well-defined electrode is utilized as a platform.

  13. The collinear coaxial array antenna

    NASA Astrophysics Data System (ADS)

    Brammer, D. J.; Williams, D.

    1981-03-01

    A design of a coaxial vertical antenna proposed in the ARRL antenna handbook is analyzed. A numerical analysis was carried out using the moment method. A variety of antenna configurations in the 160 MHz design frequency are analyzed and current distribution, gain, polar diagrams and impedances are calculated. The analysis is carried out for simple configurations and extended to a case with 16 repeated center sections. The effects of using lossy cable in the construction is also investigated. A defect in the original ARRL design is rectified. An array of an overall length 5.33 wavelengths is shown to have a gain of 10.69 dB.

  14. The CREATE Program Software Applications for the Design and Analysis of Air Vehicles, Naval Vessels, Radio Frequency Antennas, and Ground Vehicles

    DTIC Science & Technology

    2015-07-10

    1 The CREATE Program Software Applications for the Design and Analysis of Air Vehicles, Naval Vessels, Radio Frequency Antennas, and Ground ... ground vehicles) through the construction and analysis of virtual prototypes for those systems. Code development began in 2008, and eight years later...in history–we have the potential to make accurate predictions of the behavior of complex physical systems (e.g. the weather, the behavior of chemical

  15. Telecommunications Antennas for the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  16. Preliminary design of 19-element feed cluster for a large F/D reflector antenna

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1983-01-01

    The design of a low sidelobe 19 element microstrip cluster and its distribution network is described. The problem of spillover illumination of an adjacent reflector in a multiple aperture reflector system is addressed. A practical implementation of the array is presented which requires only one printed circuit board for the distribution network with the potential for being easily tailored to a wide range of excitation distributions.

  17. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    ERIC Educational Resources Information Center

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  18. 29 CFR 1926.959 - Lineman's body belts, safety straps, and lanyards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(i) All fabric used for safety straps shall withstand an A.C. dielectric test of not less than 25,000 volts per foot “dry” for 3 minutes, without visible deterioration. (ii) All fabric and leather used... used around bar of D rings to prevent wear between these members and the leather or fabric...

  19. 29 CFR 1926.959 - Lineman's body belts, safety straps, and lanyards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(i) All fabric used for safety straps shall withstand an A.C. dielectric test of not less than 25,000 volts per foot “dry” for 3 minutes, without visible deterioration. (ii) All fabric and leather used... used around bar of D rings to prevent wear between these members and the leather or fabric...

  20. Low profile antennas for MSAT applications

    NASA Technical Reports Server (NTRS)

    Shafai, L.; Moheb, H.; Chamma, W.; Barakat, M.

    1995-01-01

    For MSAT applications, a number of different antennas have been designed and investigated. They include low gain omnidirectional antennas and medium gain to high gain directional antennas. The latter include both portable and vehicular antennas. While portable units are desirable to be low profile and low cost, the vehicular antennas have proved to be the most challenging antenna types for the mobile satellite application. The results of our efforts in design of such antennas are described briefly. Low profile designs are emphasized in most cases, and microstrip type radiators are therefore selected. The single radiator provides low gain omnidirectional patterns and is optimized for low cost applications. It provides low gains around 2-6 dBic and is useful mostly for the data transmission. Medium to high gain antennas are developed as arrays of omnidirectional elements. Again, different designs are optimized to meet the needs of different applications. For portable units, the array configuration can be flexible and is optimized for maximum broadside gains. For vehicular units, however the configurations are desirable to be low profile, or compact, and have means for scanning the antenna beam. For simplicity, fixed beam antennas with mechanical beam scan are selected. For these antennas, as well, different designs, having low profile or compact size, are selected and optimized to meet the MSAT gain and G/T requirements.

  1. Design and development of a conformal load-bearing smart skin antenna: overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Alt, Kevin H.; Coughlin, Daniel P.; Durham, Michael D.; Kudva, Jayanth N.; Goetz, Allan C.; Tuss, James

    1999-07-01

    Documented herein is a review of progress for the recently completed 'Smart Skin Structure Technology Demonstration' (S3TD) contract number F33615-93-C-3200 performed by Northrop Grumman Corporation, Hawthorne, California and TRW/ASD, Rancho Bernardo, San Diego, California under the Air Force Research Laboratory, Flight Dynamics Directorate, Structures Division's direction and sponsorship. S3TD was conceived as the first serious attempt, to made a complex antenna become a bone fide aircraft structural panel, without loss of overall structural integrity or electrical performance. The program successfully demonstrated the design, fabrication, and structural validation of a load bearing multifunction antenna component panel subjected to realistic aircraft flight load conditions. The final demonstration article was a structurally effective 36 by 36 inch curved multifunction antenna component panel that withstood running loads of 4,000 pounds per inch, and principal strain levels of 4,700 microstrain. Testing the structural component to ultimate, the panel failed at the predicted limit of 148 kips equating to 150 percent design limit load, after successfully completing one lifetime of fatigue. The load conditions were representative of a mid-fuselage F-18 class fighter component panel installation. The panel was designed not to buckle at ultimate failure, and the dominant failure mode was face sheet pull off, as predicted. Structural test data correlated closely with analysis. Wide band electrical performance for the component antenna panel was validated using anechoic chamber measurements and near field probing techniques, covering avionics communication navigation and identification and electronic warfare functions in the 0.15 to 2.2 GHz frequency regimes.

  2. Initial Testing of Optical Arc Detector Inside 285/300 Fast Wave Antenna Box on DIII-D

    SciTech Connect

    Diem, Stephanie J; Fehling, Dan T; Hillis, Donald Lee; Horton, Anthony R; Unterberg, E. A.; Nagy, A.; Pinsker, R.

    2013-01-01

    Locating arcs within the fast wave current drive system is necessary to improve antenna performance and coupling to the plasma. Previously, there had been no way to observe arcs inside the vacuum vessel in an ICRF antenna on DIII-D. A new diagnostic that uses photomultiplier tubes has been installed for the 2012 run campaign on the 285/300 antenna of the fast wave system. The diagnostic has top and bottom views of the back of the four antenna straps and uses narrow-bandpass visible filters to isolate emission lines of copper (577 nm) and deuterium (656.1 nm). This diagnostic is based on the ORNL filterscope system currently in use on multiple devices. The system will be used to guide fast wave antenna conditioning, plasma operation and provide insight into future antenna upgrades on DIII-D.

  3. Design optimization of transmitting antennas for weakly coupled magnetic induction communication systems

    PubMed Central

    2017-01-01

    This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463

  4. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  5. Imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  6. Coupling and matching study of the ICRF antenna for W7-X

    SciTech Connect

    Messiaen, A.; Krivska, A.; Louche, F.; Ongena, J.; Dumortier, P.; Durodie, F.; Van Eester, D.; Vervier, M.

    2014-02-12

    A tight antenna plug consisting in a pair of straps with strong pre-matching covers the first selected frequency band (25-38MHz) for W7-X and provides the toroidal phasings for heating, current drive and wall conditioning. Another plug-in with two short strap triplets is devoted for operation around 76MHz. The antenna coupling to a reference plasma profile is first analyzed by means of the coupling code ANTITER II. It shows the radiation power spectra for the different phasing cases and indicates the problem of the edge power deposition through the Alfven resonance occurring when the operating frequency is lower than the majority cyclotron frequency. Matrices provided by the TOPICA code are used for the matching-decoupling study of the first antenna plug. The large mutual coupling between the 2 straps is counterbalanced by the use of a decoupler. Finally the tunable 5-port junction used to feed in parallel each triplet of the second plug-in is analyzed by means of MWS simulation together with its decoupling-matching system.

  7. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    SciTech Connect

    Durodié, Frédéric Křivská, Alena; Helou, Walid; Collaboration: EUROfusion Consortium

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  8. Design and realisation of tissue-equivalent dielectric simulators for dosimetric studies on microwave antennas for interstitial ablation.

    PubMed

    Lopresto, V; Pinto, R; Lodato, R; Lovisolo, G A; Cavagnaro, M

    2012-07-01

    Thermal ablation therapies, based on electromagnetic field sources (interstitial or intracavitary antennas) at radio and microwave frequencies, are increasingly used in medicine due to their proven efficacy in the treatment of many diseases (tumours, stenosis, etc). Such techniques need standardized procedures, still not completely consolidated, as to analyze the behaviour of antennas for treatment optimisation. Several tissue-equivalent dielectric simulators (also named phantoms) have been developed to represent human head tissues, and extensively used in the analysis of human exposure to the electromagnetic emissions from hand-held devices; yet, very few studies have considered other tissues, as those met in ablation therapies. The objective of this study was to develop phantoms of liver and kidney tissue to experimentally characterise interstitial microwave antennas in reference conditions. Phantom properties depend on the simulated target tissue (liver or kidney) and the considered frequency (2.45 GHz in this work), addressing the need for a transparent liquid to easily control the positioning of the probe with respect to the antenna under test. An experimental set-up was also developed and used to characterise microwave ablation antenna performances. Finally, a comparison between measurements and numerical simulations was performed for the cross-validation of the experimental set-up and the numerical model. The obtained results highlight the fundamental role played by dielectric simulators in the development of microwave ablation devices, representing the first step towards the definition of a procedure for the ablation treatment planning.

  9. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    SciTech Connect

    Harris, J.H.; Hutter, T.; Hogan, J.T.

    1996-10-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra- ion-cyclotron range-of-frequencies (ICRF) antennas and lower-hybrid (LH) grills-are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900{degrees} C are observed by the end of 2-s power pulses of 2 MW per antenna. The distribution and maximum values of temperature are determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90` (current drive) phasing. Transient heat fluxes of 1-20 MW/m{sup 2} are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control, and are not simply correlated with the strap phasing or the final surface temperature distributions. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m{sup 2} over areas of several cm{sup 2} to plasma-facing components such as the grill or antenna lateral bumpers. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented, and possibilities for controlling these interactions are discussed.

  10. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  11. Single side strapping: a new approach to fine tuning the anion recognition properties of calix[4]pyrroles.

    PubMed

    Lee, Chang-Hee; Na, Hee-Kyung; Yoon, Dae-Wi; Won, Dong-Hoon; Cho, Won-Seob; Lynch, Vincent M; Shevchuk, Sergey V; Sessler, Jonathan L

    2003-06-18

    Three calix[4]pyrroles bearing m-orcinol-derived diether straps of different lengths on one side of the tetrapyrrolic core have been synthesized and characterized. Structural information for an analogous diester bridged strapped system reported previously (Yoon, D. W.; Hwang, H.; Lee, C. H. Angew. Chem., Int. Ed. Engl. 2002, 41, 1757-1759) is also provided as are bromide and chloride anion affinities for all four systems determined by Isothermal Titration Calorimetry (ITC) in acetonitrile. Although both sets of the strapped calix[4]pyrroles displayed enhanced affinities for chloride and bromide anion, differences were seen among the various receptors that support the conclusion that the anion binding ability of calixpyrrole-type systems can be effectively tuned by modifying the length and nature of the bridging straps. In the specific case of the diether systems, the largest chloride affinity was seen with the shortest strap, whereas the largest affinity for bromide anion was recorded in the case of the longest strap. On the basis of these findings, as well as supporting (1)H NMR spectroscopic studies, it is postulated that not only cavity size per se, but also the ability of the aryl portion of the strap to serve as a CH hydrogen bond donor site are important in regulating the observed anion affinities.

  12. Effect of Upper Strap Downward Displacement on N95 Filtering Facepiece Respirator Fit Factors: A Pilot Study

    PubMed Central

    Roberge, Raymond J.; Palmiero, Andrew J.; Liu, Yuewei; Kim, Jung-Hyun; Zhuang, Ziqing

    2015-01-01

    Fifteen subjects underwent three replicates of quantitative respirator fit-testing with N95 filtering facepiece respirators that were donned with the upper strap high on the occiput, as per the manufacturers’ donning instructions. Each fit-test was immediately followed by repeat fit-testing with the upper strap downwardly displaced to the level of the ear sulcus to determine any change in fit factors that might occur with upper strap downward slippage. A total of 35/45 (78%) initial fit-tests had a passing score (fit factor ≥100) with the top strap high on the occiput and 33/35 (94%) of these passed subsequent fit-testing after the top strap was displaced downward to the ear sulcus. Geometric mean fit factors for the initial passed fit-tests, and following downward strap displacement, were 217±1.6 and 207±1.9, respectively (p = 0.64). Downward displacement of the top strap did not significantly impact fit factors of N95 FFRs that had previously passed fit-testing. PMID:24274974

  13. Dielectric Antennas for Millimeter-Wave Applications.

    DTIC Science & Technology

    1986-05-01

    for efficient power transfer. This type of antenna is also of interest because of its relatively simple design , compactness, light weight, and low ...instead gives an overview of the experimental results which may be helpful in the actual design of low side-lobe pattern antennas . Kobayashi discusses the... DESIGN FACTORS FOR A DIELECTRIC ROD ANTENNA . Co=on Factors: Frequency range Metal Waveguide (cross-sectional dimensions) Material of the rod

  14. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  15. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  16. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  17. Improvement of antenna decoupling in radar systems

    NASA Astrophysics Data System (ADS)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  18. Shuttle Millimeter Wave Communications Experiment (MWCE) antenna system development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An antenna system requirements report is presented. Topics reported include: (1) antenna system specifications; (2) waveguide circuitry; (3) feed horn design; (4) dish reflectors; (5) gimbal systems; and (6) summary of system design.

  19. Millimeter Wave Antenna Technology,

    DTIC Science & Technology

    1984-09-30

    development work will be required. Milli- meter wave antennas play a key role in the rationale for millimeter system designs beas ihspatial resolution...results in their popularity for multiple bea applications. In their design, care ust be exercised to minimize reflection losses at the lens surfaces...Alternatively, the radome surface may be treated to repel the water, and rivulet flow results. Since the water is more randomly distribu- ted, the gain loss is

  20. An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna

    NASA Technical Reports Server (NTRS)

    Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo

    1991-01-01

    Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).

  1. Compact antennas for lower hybrid wave heating

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Takamura, S.; Okuda, T.

    1981-01-01

    A T-shaped antenna loaded with alumina was designed and constructed for lower hybrid wave heating of toroidal plasmas. The theoretical power spectra showed that a T-shaped antenna can be used for both ion and electron heating, and the accuracy of the calculation was verified by measuring the antenna's impedance. The dependence of the impedance on the power fed to the antenna was also investigated, and it was found that the RF pressure affected the coupling between the antenna and the plasma.

  2. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  3. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    SciTech Connect

    Rasmussen, D. A.; Freeman, R. L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  4. System Study and Design of Broad-Band U-Slot Microstrip Patch Antennas for Aperstructures and Opportunistic Arrays

    DTIC Science & Technology

    2005-12-01

    Professor Michael Melich Wayne E. Meyer Institute of System Engineering Naval Postgraduate School Monterey, California 9. Professor Rodney Johnson ... Johnson , “Antenna Engineering Handbook,” 3rd edition, McGraw Hill, New York, 1993. [25] R. P. Owens, “Accurate Analytical Determination of Quasistatic

  5. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  6. Conical quadreflex antenna analytical study

    NASA Technical Reports Server (NTRS)

    Cramer, P. W., Jr.

    1973-01-01

    A method for evaluating the performance of a four-reflection or quadreflex antenna is reported. Geometrical optics was used initially to determine the ideal feed pattern required to produce uniform illumination on the aperture of the conical reflector and the reverse problem of quickly finding the aperture illumination given an arbitrary feed pattern. The knowledge of the aperture illumination makes it possible to compute the antenna efficiency, which is useful for comparing antenna performance during tradeoff studies. Scattering calculations, using physical optics techniques, were then used to more accurately determine the performance of a specific design.

  7. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  8. Fatal accidental hanging by a high-chair waist strap in a 2-year-old girl.

    PubMed

    Souheil, Mlayeh; Audrey, Farrugia; Anny, Geraut; Sebastien, Raul J; Bertrand, Ludes

    2011-03-01

    High chairs are commonly used to feed children after 6 months. Related injuries are oftentime minor and rarely leading to death. We describe a case of a 2-year-old female child who used to jump alone on her high chair and also had the habit to fasten the straps by herself. Her mother found her hanging by the waist straps. A thorough investigation showed that she climbed her high chair and fastened the waist straps but not the crotch one. The girl slid down into the seat, trapping her neck in the waist straps and thus resulting in hanging. In here, we concluded that the victim's death was caused by asphyxia, itself, caused by accidental hanging. The present case is of a special interest because of the rare similar cases reported. This case suggests that a correct restraint use and a close supervision would have prevented such a fatal issue.

  9. Plasma loop and strapping field dynamics: Reproducing solar eruptions in the laboratory

    NASA Astrophysics Data System (ADS)

    Ha, Quoc Bao N.

    Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold. We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability. Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.

  10. Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing

    NASA Technical Reports Server (NTRS)

    Blevins, B. A.

    1983-01-01

    Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.

  11. LETTER: An ICRF antenna for the next step tokamak operating in a wide frequency band

    NASA Astrophysics Data System (ADS)

    Bhatnagar, V. P.; Jacquinot, J.

    1994-06-01

    The flexibility provided by a variety of ion cyclotron resonance heating (ICRH) and current drive (CD) scenarios for ITER requires that the antenna should operate at a number of frequencies spread over a wide frequency range (20-85 MHz). A short circuited strip-line antenna in which a long strap is connected in parallel with a very short section is shown to provide the frequency range of operation required for ITER. The short section acts as a matching element located within the antenna and improves the power coupling capability especially at low frequencies where the plasma coupling is generally poor. The short section also supports the feeder-line central conductor. This means there is no longer a need for a ceramic support in the immediate vicinity of the antenna that will be subjected to a harsh neutron environment in a reactor

  12. Releveling and behavior of strap-retrofitted damaged test foundations exposed to mine subsidence

    SciTech Connect

    Marino, G.G.

    1997-09-01

    Test foundation walls were constructed in an area of planned subsidence. These crawl space-sized block bearing walls were located in the tension zone of a longwall panel. The test walls were 1.2 m (40 ft) long and were vertically loaded on top with soil binds to simulate the weight of a house. As the longwall proceeded past these test foundations, subsidence movements damaged the test structures. These damaged foundations were then structurally and aesthetically repaired by using a steel strap retrofit and applying a cementitious surface coating. The repaired test foundations underwent significant subsequent subsidence as an adjacent longwall was mined beneath. The response of the repaired foundation is summarized in this paper. The steel straps were also used to relevel another set of the test foundations after they were tilted and damaged by subsidence. First, the straps were applied to the block bearing walls, and then wall jacks were used to lift the upper portion of the walls to a level position. This releveling procedure is outlined with the results.

  13. Force transmission to the mandible by chin straps during head impacts in football.

    PubMed

    Rowson, Steven; McNeely, David E; Duma, Stefan M

    2008-01-01

    The objective of this study was to determine the force transmitted to the mandible from the chin strap in football helmets for head impacts. A total of 32 tests were performed comparing front and side impact locations. Each location was tested at two impact velocities (6.5 m/s and 9.0 m/s). Different combinations of neck collars and shoulder pads were tested at each speed and location to account for potential equipment variability between football players. A 50th percentile male Hybrid III dummy was equipped with a helmet, shoulder pads, and various neck collars. Tension load cells were installed on the left and right sides of the chin straps. From the tension values in the chin strap, the force transmitted to the mandible was calculated. With the front impact location, the average peak mandible load was 568 +/- 80 N at 6.5 m/s and 806 +/- 64 N at 9.0 m/s. With the side impact location, the average peak mandible load was 87 +/- 36 N at 6.5 m/s and 170 +/- 80 N at 9.0 m/s. Although there are some overlying assumptions, these values represent a good estimation of the forces acting on the mandible for head impacts in football.

  14. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOEpatents

    Byrne, S.C.

    1984-07-03

    A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.

  15. 24 CFR 3285.403 - Sidewall, over-the-roof, mate-line, and shear wall straps.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Sidewall, over-the-roof, mate-line... Anchorage Against Wind § 3285.403 Sidewall, over-the-roof, mate-line, and shear wall straps. If sidewall, over-the-roof, mate-line, or shear wall straps are installed on the home, they must be connected to...

  16. Superluminal antenna

    DOEpatents

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  17. Reflection-Zone-Plate Antenna

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Leighty, Bradley D.

    1989-01-01

    Microwave antenna, based on reflection holography, designed and tested. Modified to produce arbitrary beam patterns by controlling relief pattern. Antenna planar or contoured to supporting structure. Low off-axis radar cross section at frequencies removed from operational frequency. Interference pattern produced by spherical wave intersecting plane wave consists of concentric circles similar to Newton's rings. Pattern identical to Fresnel zone plate, which has lens properties. Plane wave incident on hologram, or zone plate, focused to point.

  18. Omnidirectional antenna for radar applications

    NASA Astrophysics Data System (ADS)

    Vitiello, R.

    The development of an omnidirectional antenna for sidelobe blanking is described. The results of electrical measurements for an S-band and L-band configuration are given. The antenna architecture consists of eight printed radiating elements arranged in a biconical fashion. The single radiating element is a pseudo log periodic microstrip array fed by means of capacitive coupling. Modularity and flexibility are the outstanding characteristics of the design.

  19. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  20. Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21(Cip1) by modulating the transcription factor Sp1.

    PubMed

    Jin, Lin; Datta, Pran K

    2014-01-01

    We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21(Cip1). However, the functional mechanism of regulation of E-cadherin and p21(Cip1) by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21(Cip1) by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21(Cip1) promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21(Cip1) by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21(Cip1) by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21(Cip1) and to tumor progression.