NASA Astrophysics Data System (ADS)
Gibson, S. W.
This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.
Reconfigurable antenna pattern verification
NASA Technical Reports Server (NTRS)
Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)
2013-01-01
A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.
X-Antenna: A graphical interface for antenna analysis codes
NASA Technical Reports Server (NTRS)
Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.
1995-01-01
This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.
Antenna theory: Analysis and design
NASA Astrophysics Data System (ADS)
Balanis, C. A.
The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.
An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2007-01-01
This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.
Fundamental Fractal Antenna Design Process
NASA Astrophysics Data System (ADS)
Zhu, L. P.; Kim, T. C.; Kakas, G. D.
2017-12-01
Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.
NASA Astrophysics Data System (ADS)
Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.
Multilayer Patch Antenna Surrounded by a Metallic Wall
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Huang, John
2003-01-01
A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.
UHF Antenna Design for AFIT Random Noise Radar
2012-03-01
relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas Electric antennas (e.g. dipoles and monopoles ) Magnetic antennas (e.g. loops) Electrically small antennas
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Broadband standard dipole antenna for antenna calibration
NASA Astrophysics Data System (ADS)
Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao
1995-06-01
Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.
Transformation from a Single Antenna to a Series Array Using Push/Pull Origami
Shah, Syed Imran Hussain
2017-01-01
We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5–2.65 GHz and 2.48–2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications. PMID:28846603
Transformation from a Single Antenna to a Series Array Using Push/Pull Origami.
Shah, Syed Imran Hussain; Lim, Sungjoon
2017-08-26
We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5-2.65 GHz and 2.48-2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications.
Study of array plasma antenna parameters
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Kumar, Prince
2018-04-01
This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.
Telecommunications Antennas for the Juno Mission to Jupiter
NASA Technical Reports Server (NTRS)
Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.
2012-01-01
The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.
16 CFR 1402.4 - Requirements to provide performance and technical data by labeling and instructions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CB BASE STATION ANTENNAS, TV ANTENNAS, AND... instructions. (a) Notice to purchasers. Manufacturers of CB base station antennas, TV antennas, and antenna... base station antennas and TV antennas shall be provided with the following: EC03OC91.048 (i) Label. (A...
'Invisible' antenna takes up less space
NASA Astrophysics Data System (ADS)
Shelley, M.; Bond, K.
1986-06-01
A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.
A Modal Approach to Compact MIMO Antenna Design
NASA Astrophysics Data System (ADS)
Yang, Binbin
MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored energy and recently reported work on antenna Q factor minimization, we extend the minimum Q limit to antennas of arbitrary geometry, and show that given an antenna aperture, any antenna design based on its substructure will result into minimum Q factors larger than or equal to that of the complete structure. This limit is much tighter than Chu's limit based on spherical modes, and applies to antennas of arbitrary geometry. Finally, considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we develop new decoupling networks (DN) and decoupling network synthesis techniques. An information-theoretic metric, information mismatch loss (Gammainfo), is defined for DN characterization. Based on this metric, the optimization of decoupling networks for broadband system performance is conducted, which demonstrates the limitation of the single-frequency decoupling techniques and room for improvement.
GPS Antenna Data Needed : GPS Adjacent Band Compatibility Workshop Volpe Center, Cambridge MA
DOT National Transportation Integrated Search
2014-09-18
Topics. 1. Technical Objective: Receiver Antenna Mask and Electronics Data. 2. Definition of Receiver Antenna Mask. 3. Use of Receiver Antenna Mask. 4. Approaches to Generate the Antenna Mask. 5. Request for Receiver Antenna Data. 6. Next Steps.
L-Band Orthogonal-Mode Crossed-Slot Antenna and VHF Crossed-Loop Antenna
DOT National Transportation Integrated Search
1972-01-01
A low-gain, circularly polarized, L-ban antenna; a low-gain, lineraly polarized, L-band antenna; and a low-gain, lineraly polarized, L-ban antenna; and a low-gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended ...
JPL Large Advanced Antenna Station Array Study
NASA Technical Reports Server (NTRS)
1978-01-01
In accordance with study requirements, two antennas are described: a 30 meter standard antenna and a 34 meter modified antenna, along with a candidate array configuration for each. Modified antenna trade analyses are summarized, risks analyzed, costs presented, and a final antenna array configuration recommendation made.
47 CFR 80.866 - Spare antenna.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...
47 CFR 80.866 - Spare antenna.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...
47 CFR 80.866 - Spare antenna.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...
47 CFR 80.866 - Spare antenna.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...
47 CFR 80.866 - Spare antenna.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...
Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Hornby, Gregory S.; Rodriguez-Arroyo, Adan; Linden, Derek S.; Kraus, William F.; Seufert, Stephen E.
2003-01-01
We present an evolved X-band antenna design and flight prototype currently on schedule to be deployed on NASA s Space Technology 5 spacecraft in 2004. The mission consists of three small satellites that wall take science measurements in Earth s magnetosphere. The antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth. Two genetic algorithms were used: one allowed branching an the antenna arms and the other did not. The highest performance antennas from both algorithms were fabricated and tested. A handdesigned antenna was produced by the contractor responsible for the design and build of the mission antennas. The hand-designed antenna is a quadrifilar helix, and we present performance data for comparison to the evolved antennas. As of this writing, one of our evolved antenna prototypes is undergoing flight qualification testing. If successful, the resulting antenna would represent the first evolved hardware in space, and the first deployed evolved antenna.
Dual Mode Slotted Monopole Antenna
2017-01-05
of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...to a dual mode antenna having one mode as a slotted cylinder antenna and another mode as a monopole antenna . (2) Description of the Prior Art...0004] Slotted cylinder antennas are popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds
NASA Astrophysics Data System (ADS)
Koyadan Koroth, Ajith; Bhattacharya, Amitabha
2017-04-01
Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve the forward gain. This antenna had the same impedance bandwidth of 10:1 while pattern bandwidth has been raised to 7:1. In antenna 3, a loop loaded bowtie antenna has been designed. This antenna do not employ any kind of resistive loading, yet achieves an impedance bandwidth of 11:1 and also a usable bandwidth of 11:1. The antenna 4 employs concentric offset loops which acts as directors to improve the directivity. This antenna achieved an impedance bandwidth and a pattern bandwidth of 13:1. All the antennas have a maximum size of about 0.3λ at lowest operating frequency. An experimental stepped frequency type GPR has been constructed to study the suitability of the fabricated antennas in detecting buried targets. Four experiments have been conducted viz. 1.) To detect a metallic pipe of 1in diameter, 2.) To detect a metallic pipe of 2in diameter 3.) To detect dry bamboo, 3.) To detect rebar in concrete. The detectability and imaging capability of GPR has been found to be improving from antenna 1 to 4.
Ion source with external RF antenna
Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen
2005-12-13
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2016-08-15
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
Comparison of three underwater antennas for use in radiotelemetry
Beeman, J.W.; Grant, C.; Haner, P.V.
2004-01-01
The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.
E-Textile Antennas for Space Environments
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.
2007-01-01
The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.
NASA Astrophysics Data System (ADS)
Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2018-03-01
This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.812 - Rounding of power and antenna heights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Rounding of power and antenna heights. 73.812... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.812 Rounding of power and antenna...) Antenna radiation center, antenna height above average terrain (HAAT), and antenna supporting structure...
47 CFR 73.812 - Rounding of power and antenna heights.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Rounding of power and antenna heights. 73.812... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.812 Rounding of power and antenna...) Antenna radiation center, antenna height above average terrain (HAAT), and antenna supporting structure...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 80.863 - Antenna system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...
47 CFR 73.316 - FM antenna systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...
47 CFR 80.863 - Antenna system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...
47 CFR 73.812 - Rounding of power and antenna heights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Rounding of power and antenna heights. 73.812... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.812 Rounding of power and antenna...) Antenna radiation center, antenna height above average terrain (HAAT), and antenna supporting structure...
47 CFR 73.812 - Rounding of power and antenna heights.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Rounding of power and antenna heights. 73.812... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.812 Rounding of power and antenna...) Antenna radiation center, antenna height above average terrain (HAAT), and antenna supporting structure...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.316 - FM antenna systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...
47 CFR 73.812 - Rounding of power and antenna heights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Rounding of power and antenna heights. 73.812... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.812 Rounding of power and antenna...) Antenna radiation center, antenna height above average terrain (HAAT), and antenna supporting structure...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.316 - FM antenna systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...
47 CFR 73.316 - FM antenna systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...
47 CFR 73.316 - FM antenna systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...
47 CFR 80.863 - Antenna system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...
47 CFR 80.863 - Antenna system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...
Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor)
2005-01-01
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.
Development of Novel Integrated Antennas for CubeSats
NASA Technical Reports Server (NTRS)
Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew
2015-01-01
The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.
Modeling of the EAST ICRF antenna with ICANT Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Chengming; Zhao Yanping; Colas, L.
2007-09-28
A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.
Modeling of the EAST ICRF antenna with ICANT Code
NASA Astrophysics Data System (ADS)
Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.
2007-09-01
A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.
NASA Astrophysics Data System (ADS)
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-01
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360* n ( n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-05
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
NASA Technical Reports Server (NTRS)
Hartenstein, Richard G., Jr.
1985-01-01
Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.
Design and optimization of LTE 1800 MIMO antenna.
Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin
2014-01-01
A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.
NASA Astrophysics Data System (ADS)
Petrie, L. E.
1983-05-01
Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for an HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits or both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.
NASA Astrophysics Data System (ADS)
Petrie, L. E.
1986-03-01
Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.
Far field focusing for a microwave patch antenna with composite substrate
NASA Astrophysics Data System (ADS)
Wan, Jian; Rybin, Oleg; Shulga, Sergey
2018-03-01
Modeling for a compact microwave antenna structure on base of a miniaturized rectangular patch antenna with composite substrate and magnetic superstrates is made in this study by using FDTD simulations. The resonant frequency of the antenna structure is supposed to be 15 GHz. The design of the antenna with composite substrate and without superstrate is made up by using the microwave miniaturization concept for rectangular patch antennas created by first author of this study. The optimal distance between the superstrate and antenna surface is found by using Fabry-Perot cavity theory as maximum values of power directivity and efficiency of the antenna is achieved. The comparative analysis with regard to some far and near field parameters of the above antenna structures and the antenna with dielectric substrate having same value of the relative permittivity is performed.
Shear sensing based on a microstrip patch antenna
NASA Astrophysics Data System (ADS)
Mohammad, I.; Huang, H.
2012-10-01
A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.
Radiation characteristics of input power from surface wave sustained plasma antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp; Yamaura, S.; Fukuma, Y.
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input powermore » is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.« less
CPW-fed wearable antenna at 2.4 GHz ISM band
NASA Astrophysics Data System (ADS)
Muhammad, Zuraidah; Shah, S. M.; Abidin, Z. Z.; Asyhap, Adel Y. I.; Mustam, S. M.; Ma, Y.
2017-09-01
A wearable antenna working in 2.4 GHz for Industrial, Scientific and Medical (ISM) radio bands is presented in this work. The proposed antenna is a rectangular textile antenna with a coplanar waveguide (CPW) feeding on a cotton jeans as the substrate material. The antenna has a compact size with dimensions of 30 × 30 mm2 which makes it an attractive solution in a wearable antenna construction. The linear characteristics of the antenna are investigated to evaluate the performance of the antenna. The simulation and measurements results are compared and they agree well with each other.
Ground penetrating radar antenna system analysis for prediction of earth material properties
Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.
2005-01-01
The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.
Negative ion source with external RF antenna
Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.
2007-02-13
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.
Evolutionary Design of a Phased Array Antenna Element
NASA Technical Reports Server (NTRS)
Globus, Al; Linden, Derek; Lohn, Jason
2006-01-01
We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.
Proceedings of the Antenna Applications Symposium (1988) Volume 1
1989-06-01
FIELD GROUP SUB-GROUP Antennas)p Microstrip, ,.Multibeam Antennas 6 Satellite Antennas. Reflector Array Antennas, ____________I____ Broadband Antennas...C. Sullivan and G. E. Evans 8. " Broadband MMIC T/R Module/Subarray Performance," D. Brubaker, 157 D. Scott, S. Ludvik, M. Lynch, H. II. Chung, W...34 S. Sanzgiri, 277 B. Powers, Jr., and J. Hart ib. " broadbanding Techniques for Microstrip Patch Antennas - A ’.93 kReview," K. C. Gupta * NUT INCLUDED
Adaptive antenna arrays for satellite communications: Design and testing
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Swarner, W. G.; Walton, E. K.
1985-01-01
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.
Millimeter-wave and terahertz integrated circuit antennas
NASA Technical Reports Server (NTRS)
Rebeiz, Gabriel M.
1992-01-01
This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.
High-temperature superconductor antenna investigations
NASA Technical Reports Server (NTRS)
Karasack, Vincent G.
1990-01-01
The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
Design and Optimization of LTE 1800 MIMO Antenna
Wong, Huey Shin; Islam, Mohammad Tariqul
2014-01-01
A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than −15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz–1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440
Design and construction of prototype radio antenna for shortest radio wavelengths
NASA Technical Reports Server (NTRS)
Leighton, R. B.
1975-01-01
A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.
Lockey, Jacob K; Willis, Mark A
2015-07-01
Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten
2016-09-01
We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
Choice of antenna geometry for microwave power transmission from solar power satellites
NASA Technical Reports Server (NTRS)
Potter, Seth D.
1992-01-01
A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.
Characteristics of the wire biconical antenna used for EMC measurements
NASA Astrophysics Data System (ADS)
Austin, Brian A.; Fourie, Andre P. C.
1991-08-01
The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.
Multibeam antenna study, phase 1
NASA Technical Reports Server (NTRS)
Bellamy, J. L.
1972-01-01
A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.
2010-12-01
papers relating to antenna arrays and elements, millimeter wave antennas, simulation and measurement of antennas, integrated antennas, and antenna...Hansen 282 v Artificial Impedance Surface Antenna Design and Simulation D.J. Gregoire and J.S. Colburn 288 uCAST - A New Generation UTD...radiating mode to be self-resonant in the electrically small region. 260 hs (cm) Predicted L0 (nH) Simulated L0 (nH) R1 (Ω) Q1 -- -- -- 7.5
Performance of a four-element Ka-band high-temperature superconducting microstrip antenna
NASA Technical Reports Server (NTRS)
Richard, M. A.; Bhasin, K. B.; Gilbert, C.; Metzler, S.; Koepf, G.; Claspy, P. C.
1992-01-01
Superconducting four-element microstrip array antennas operating at 30 GHz have been designed and fabricated on a lanthanum aluminate (LaAlO3) substrates. The experimental performance of these thin film Y-Ba-Cu-O superconducting antennas is compared with that of identical antenna patterned with evaporated gold. Efficiency measurements of these antennas show an improvement of 2 dB at 70 K and as much as 3.5 dB at 40 K in the superconducting antenna over the gold antenna.
Apparatus and Method for Improving the Gain and Bandwidth of a Microstrip Patch Antenna
2013-09-30
improving both the gain and the bandwidth of a microstrip patch antenna . (2) Description of the Prior Art [0004] A patch antenna , also referred to as a...rectangular microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The patch antenna includes a...patch antenna form a Attorney Docket No. 101925 2 of 11 resonant piece of microstrip transmission line. The patch is designed to have a length of
Mutual Elements and Substrate Effect Analysis on Patch Antenna Arrays
NASA Astrophysics Data System (ADS)
Wallace, Matthew J.
There have been many different technology advancements with the invention of solid state electronics, leading to the digital era which has changed the way users employ electronic circuits. Antennas are no different; however, they are still analog devices. With the advancements in technology, antennas are being fabricated on much higher frequencies and with greater bandwidths, all while trying to keep size and weight to a minimum. Centimeter and millimeter wave technologies have evolved for many different radio frequency (RF) applications. Microstrip patch antennas have been developed, as wire and tubular antenna elements are difficult to fabricate with the tolerances required at micro-wavelengths. Microstrip patch antennas are continuously being improved. These types of antennas are great for embedded or conformal applications where size and weight are of the essence and the ease of manufacturing elements to tight tolerances is important. One of the greatest benefits of patch antennas is the ease in creating an array. Many simulation programs have been created to assist in the design of patch antennas and arrays. However, there are still discrepancies between simulated results and actual measurements. This research will focus on these differences. It begins with a literature research of patch antenna design, followed by an assessment of simulation programs used for patch antenna design. The resulting antenna design was realized by the fabrication of an antenna from the Genesys software. Laboratory measurements of the real-world antenna are then compared to the theoretical antenna characteristics. This process is used to illustrate deficiencies in the software models and likely improvements that need to be made.
47 CFR 95.647 - FRS unit and R/C transmitter antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as compared...
47 CFR 95.647 - FRS unit and R/C transmitter antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as compared...
47 CFR 95.647 - FRS unit and R/C transmitter antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as compared...
47 CFR 95.647 - FRS unit and R/C transmitter antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as compared...
47 CFR 95.647 - FRS unit and R/C transmitter antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as compared...
Measurements of AAFE RADSCAT antenna characteristics
NASA Technical Reports Server (NTRS)
Cross, A. E.; Jones, W. L., Jr.; Jones, A. L.
1977-01-01
Antenna characteristics (active and passive) for a modified AAFE-RADSCAT parabolic dish antenna are documented for a variety of antenna configurations. The modified antenna was a replacement for the original unit which was damaged in January 1975. Pattern measurements made at Langley Research Center and Johnson Space Center are presented, with an analysis of the results. Antenna loss measurements are also presented and summarized.
Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Converse, Mark C.; Chang, John T.; Duoss, Eric B.
A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.
High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas
Kazyak, David C.; Zydlewski, Joseph D.
2012-01-01
Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in y and z directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available.
Computer-Automated Evolution of Spacecraft X-Band Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.
2010-01-01
A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.
Design of broadband single polarized antenna
NASA Astrophysics Data System (ADS)
Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd
2015-05-01
In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.
Wearable near-field communication antennas with magnetic composite films
NASA Astrophysics Data System (ADS)
Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng
2017-06-01
The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.
Brace, Christopher L; Laeseke, Paul F; Sampson, Lisa A; Frey, Tina M; van der Weide, Daniel W; Lee, Fred T
2007-07-01
To prospectively investigate the ability of a single generator to power multiple small-diameter antennas and create large zones of ablation in an in vivo swine liver model. Thirteen female domestic swine (mean weight, 70 kg) were used for the study as approved by the animal care and use committee. A single generator was used to simultaneously power three triaxial antennas at 55 W per antenna for 10 minutes in three groups: a control group where antennas were spaced to eliminate ablation zone overlap (n=6; 18 individual zones of ablation) and experimental groups where antennas were spaced 2.5 cm (n=7) or 3.0 cm (n=5) apart. Animals were euthanized after ablation, and ablation zones were sectioned and measured. A mixed linear model was used to test for differences in size and circularity among groups. Mean (+/-standard deviation) cross-sectional areas of multiple-antenna zones of ablation at 2.5- and 3.0-cm spacing (26.6 cm(2) +/- 9.7 and 32.2 cm(2) +/- 8.1, respectively) were significantly larger than individual ablation zones created with single antennas (6.76 cm(2) +/- 2.8, P<.001) and were 31% (2.5-cm spacing group: multiple antenna mean area, 26.6 cm(2); 3 x single antenna mean area, 20.28 cm(2)) to 59% (3.0-cm spacing group: multiple antenna mean area, 32.2 cm(2); 3 x single antenna mean area, 20.28 cm(2)) larger than 3 times the mean area of the single-antenna zones. Zones of ablation were found to be very circular, and vessels as large as 1.1 cm were completely coagulated with multiple antennas. A single generator may effectively deliver microwave power to multiple antennas. Large volumes of tissue may be ablated and large vessels coagulated with multiple-antenna ablation in the same time as single-antenna ablation. (c) RSNA, 2007.
Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.
Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of relevance to loop antennas in space.« less
NASA Astrophysics Data System (ADS)
Burke, G. J.; King, R. J.; Miller, E. K.
1984-09-01
Relative communication efficiency (RCE) as defined by Fenwick and Weeks compares the field of a test antenna to that of a reference antenna at the same location for equal input plower to each antenna. Thus, RCE is similar to power gain but is definable in the presence of ground. The effectiveness of antennas in launching TM surface waves was compared. Antennas considered included the vertical dipole, monople on a ground stake, monopole on a radial-wire ground screen, Beverage antenna and vertical half rhombic. Since the performance of these antennas is strongly dependent on parameters such as the number wires in a ground screen or the length of a Beverage antenna, results are presented with parameters varying over a reasonable range. Thus, antenna performance can be weighed against the effort and limitations of construction.
Mode Matching for Optical Antennas
NASA Astrophysics Data System (ADS)
Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert
2017-11-01
The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.
Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.
Kim, Sun-Woong; Choi, Dong-You
2016-01-01
In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.
Determination of antenna factors using a three-antenna method at open-field test site
NASA Astrophysics Data System (ADS)
Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao
1992-09-01
Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.
Design, Fabrication and Testing of Two Dimensional Radio-Frequency Metamaterials
2014-03-03
metasurfaces . These antennas are either MTM based or utilize MTMs to increase performance. The benefits of these antennas are: reduced size, lower...reduced size and increased quality factor. Finally, the antennas loaded with metasurfaces are similar to the MTM loading; in the fact that the... metasurface enhances the antenna performance instead of performing the antenna function. This type of antenna has shown increased directionality and
International Conference on Antenna Theory and Techniques
1999-12-03
modeling; (5) mobile —nicaWon^a^nas^ radane? and absorbing coatings; (7) antenna measurements; (8) microwave ccmponents and feeders; (9 SSrial^d...LOW-GAIN ANTENNAS PRINTED ANTENNAS ANTENNAS FOR MOBILE COMMUNICATIONS 299 Radiation of the multi-mode slotted radiator V. Antyfeev, A. Borsov, A...band antenna alternatives for the European mobile satellite (EMSAT) network G. de Balbine (Tarzana, USA) 304 Optimization of characteristics of
Integrated Nanoscale Antenna-LED for On-Chip Optical Communication
NASA Astrophysics Data System (ADS)
Fortuna, Seth
Traditional semiconductor light emitting diodes (LEDs) have low modulation speed because of long spontaneous emission lifetime. Spontaneous emission in semiconductors (and indeed most light emitters) is an inherently slow process owing to the size mismatch between the dipole length of the optical dipole oscillators responsible for light emission and the wavelength of the emitted light. More simply stated: semiconductors behave as a poor antenna for its own light emission. By coupling a semiconductor at the nanoscale to an external antenna, the spontaneous emission rate can be dramatically increased alluding to the exciting possibility of an antenna-LED that can be directly modulated faster than the laser. Such an antenna-LED is well-suited as a light source for on-chip optical communication where small size, fast speed, and high efficiency are needed to achieve the promised benefit of reduced power consumption of on-chip optical interconnect links compared with less efficient electrical interconnect links. Despite the promise of the antenna-LED, significant challenges remain to implement an antenna-coupled device in a monolithically integrated manner. Notably, most demonstrations of antenna-enhanced spontaneous emission have relied upon optical pumping of the light emitting material which is useful for fundamental studies; however, an electrical injection scheme is required for practical implementation of an antenna-LED. In this dissertation, demonstration of an electrically-injected III-V antenna-LED is reported: an important milestone toward on-chip optical interconnects. In the first part of this dissertation, the general design principles of enhancing the spontaneous emission rate of a semiconductor with an optical antenna is discussed. The cavity-backed slot antenna is shown to be uniquely suited for an electrically-injected antenna-LED because of large spontaneous emission enhancement, simple fabrication, and directional emission of light. The design, fabrication, and experimental results of the electrically-injected III-V antenna-LED is then presented. Clear evidence of antenna-enhanced electroluminescence is demonstrated including a large increase in the emitted light intensity with respect to an LED without antenna. Furthermore, it is shown that the active region emission wavelength is influenced by the antenna resonance and the emitted light is polarized; consistent with the expected behavior of the cavity-backed slot antenna. An antenna-LED consisting of a InGaAs quantum well active region is shown to have a large 200-fold enhancement of the spontaneous emission rate. In the last half of this dissertation, the performance of the antenna-LED is discussed. Remarkably, despite the high III-V surface recombination velocity, it is shown that an efficient antenna-LED consisting of an InGaAs active region is possible with an antenna-enhanced spontaneous emission rate. This is true provided the active region surface quality is preserved through the entire device process. A novel technique to preserve and clean InGaAs surfaces is reported. Finally, a rate-equation analysis shows that the optimized antenna-LED with cavity-backed slot antenna is fundamentally capable of achieving greater than 100 GHz direct modulation rate at high efficiency thus showing that an antenna-LED faster than the laser is achievable with this device architecture.
Computer-automated evolution of an X-band antenna for NASA's Space Technology 5 mission.
Hornby, Gregory S; Lohn, Jason D; Linden, Derek S
2011-01-01
Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., WTB, 1270 Fairfield Road, Gettysburg, PA 17325. (b) Maintenance contracts. Antenna structure owners... contracts with other entities to monitor and carry out necessary maintenance of antenna structures. Antenna... make such contractual arrangements continue to be responsible for the maintenance of antenna structures...
View north of the antenna array, note the communications antenna ...
View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR
View of antenna tunnel end. Right to Antenna Silo #1, ...
View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO
Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min
2008-12-01
Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.
Portable receiver for radar detection
Lopes, Christopher D.; Kotter, Dale K.
2008-10-14
Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.
Vehicle antenna development for mobile satellite applications
NASA Technical Reports Server (NTRS)
Woo, K.
1988-01-01
The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.
Antenna Controller Replacement Software
NASA Technical Reports Server (NTRS)
Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza;
2010-01-01
The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and monitoring tracking performance.
Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I
2011-02-09
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications
NASA Astrophysics Data System (ADS)
Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.
2017-10-01
In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.
Land vehicle antennas for satellite mobile communications
NASA Technical Reports Server (NTRS)
Haddad, H. A.; Paschen, D.; Pieper, B. V.
1985-01-01
Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.
Two antenna, two pass interferometric synthetic aperture radar
Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.
2005-06-28
A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.
Evaluation of detectable angle of mid-infrared slot antennas
NASA Astrophysics Data System (ADS)
Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.
2017-07-01
For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.
Electrically Small Folded Slot Antenna Utilizing Capacitive Loaded Slot Lines
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Merritt, Shane; Minor, John S.; Zorman, Christian A.
2007-01-01
This paper presents an electrically small, coplanar waveguide fed, folded slot antenna that uses capacitive loading. Several antennas are fabricated with and without capacitive loading to demonstrate the ability of this design approach to reduce the resonant frequency of the antenna, which is analogous to reducing the antenna size. The antennas are fabricated on Cu-clad Rogers Duriod(TM) 6006 with multilayer chip capacitors to load the antennas. Simulated and measured results show close agreement, thus, validating the approach. The electrically small antennas have a measured return loss greater than 15 dB and a gain of 5.4, 5.6, and 2.7 dBi at 4.3, 3.95, and 3.65 GHz, respectively.
Optical antenna gain. I - Transmitting antennas
NASA Technical Reports Server (NTRS)
Klein, B. J.; Degnan, J. J.
1974-01-01
The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.
NASA Astrophysics Data System (ADS)
LaBelle, Remi C.; Rochblatt, David J.
2018-06-01
The NASA Deep Space Network (DSN) has recently constructed two new 34-m antennas at the Canberra Deep Space Communications Complex (CDSCC). These new antennas are part of the larger DAEP project to add six new 34-m antennas to the DSN, including two in Madrid, three in Canberra and one in Goldstone (California). The DAEP project included development and implementation of several new technologies for the X, and Ka (32 GHz) -band uplink and downlink electronics. The electronics upgrades were driven by several different considerations, including parts obsolescence, cost reduction, improved reliability and maintainability, and capability to meet future performance requirements. The new antennas are required to support TT&C links for all of the NASA deep-space spacecraft, as well as for several international partners. Some of these missions, such as Voyager 1 and 2, have very limited link budgets, which results in demanding requirements for system G/T performance. These antennas are also required to support radio science missions with several spacecraft, which dictate some demanding requirements for spectral purity, amplitude stability and phase stability for both the uplink and downlink electronics. After completion of these upgrades, a comprehensive campaign of tests and measurements took place to characterize the electronics and calibrate the antennas. Radiometric measurement techniques were applied to characterize, calibrate, and optimize the performance of the antenna parameters. These included optical and RF high-resolution holographic and total power radiometry techniques. The methodology and techniques utilized for the measurement and calibration of the antennas is described in this paper. Lessons learned (not all discussed in this paper) from the commissioning of the first antenna (DSS-35) were applied to the commissioning of the second antenna (DSS-36). These resulted in achieving antenna aperture efficiency of 66% (for DSS-36), at Ka-Band (32-Ghz), which is currently the highest operating frequency for these antennas. The other measurements and results described include antenna noise temperature, photogrammetry and holography alignment of antenna panels, beam-waveguide mirrors, and subreflector, antenna aperture efficiencies and G/T versus frequency, and antenna pointing models. The first antenna (DSS-35) entered into operations in October 2014 and the 2nd antenna (DSS-36) in October 2016. This paper describes the measurement techniques and results of the testing and calibration for both antennas, along with the driving requirements.
Assessment of a field-aligned ICRF antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Brunner, D.; Ennever, P.
Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.« less
47 CFR 73.753 - Antenna systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...
47 CFR 80.290 - Auxiliary receiving antenna.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...
47 CFR 80.290 - Auxiliary receiving antenna.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...
47 CFR 80.290 - Auxiliary receiving antenna.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...
47 CFR 73.753 - Antenna systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...
47 CFR 73.753 - Antenna systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...
47 CFR 80.290 - Auxiliary receiving antenna.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...
47 CFR 73.753 - Antenna systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...
47 CFR 73.753 - Antenna systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...
47 CFR 80.290 - Auxiliary receiving antenna.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...
A Compact, Broadband Antenna for Planetary Surface-to-Surface Wireless Communications
NASA Technical Reports Server (NTRS)
Barr, Philip; Zaman, Afroz; Miranda, Felix
2006-01-01
The Compact Microstrip Monopole Antenna (CMMA) is a novel antenna design that combines a microstrip patch antenna with a three-dimensional structure to attain a highly directive, broadband, compact antenna. A Tri-Lobed Patch (TLP) was designed to minimize the patch's area while reducing the antenna's operating frequency. A Grounding Wall (GW) connects the patch to the ground plane and a Vertical Enclosure Wall (VEW) extends up away from portions of the patch's perimeter. This VEW supplies the antenna with a higher directivity in the radial direction as well as reduces the operating frequency. The CMMA was designed to operate at 2.23 GHz, but experimental results have shown this antenna resonates at 2.05 GHz which is on the order of approximately Lambda(sub o)/11.6 with respect to the antenna's largest dimension, with a directivity and bandwidth of 6.0 dBi, and 130 MHz (6.3 percent), respectively. This miniature, radially emitting antenna makes the CMMA attractive for planetary-based surface-to-surface communications.
NASA Technical Reports Server (NTRS)
Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip
2000-01-01
The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.
Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P
2015-01-01
This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.
Investigation of high temperature antennas for space shuttle
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.
Broadband Circularly Polarized Patch Antenna and Method
2016-09-16
300152 1 of 14 BROADBAND CIRCULARLY POLARIZED PATCH ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...present invention provides a method and apparatus for a broadband circularly polarized patch antenna . (2) Description of the Prior Art [0004] A...patch antenna , also referred to as a microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The
NASA Astrophysics Data System (ADS)
Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.
2013-08-01
This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.
NASA Astrophysics Data System (ADS)
Rabbani, Muhammad Saqib; Ghafouri-Shiraz, Hooshang
2017-05-01
In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject's body area.
Design and development of conformal antenna composite structure
NASA Astrophysics Data System (ADS)
Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang
2017-09-01
In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 17.4 - Antenna structure registration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed construction...
47 CFR 73.510 - Antenna systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
47 CFR 73.510 - Antenna systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
47 CFR 73.53 - Requirements for authorization of antenna monitors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Requirements for authorization of antenna... antenna monitors. (a) Antenna monitors shall be verified for compliance with the technical requirements in...) An antenna monitor shall meet the following specifications: (1) The monitor shall be designed to...
47 CFR 17.4 - Antenna structure registration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed construction...
47 CFR 17.8 - Establishment of antenna farm areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Establishment of antenna farm areas. 17.8... LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.8 Establishment of antenna farm areas. (a) Each antenna farm area will be established by an appropriate rulemaking...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 73.53 - Requirements for authorization of antenna monitors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Requirements for authorization of antenna... antenna monitors. (a) Antenna monitors shall be verified for compliance with the technical requirements in...) An antenna monitor shall meet the following specifications: (1) The monitor shall be designed to...
47 CFR 17.9 - Designated antenna farm areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna farm...
47 CFR 17.9 - Designated antenna farm areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna farm...
47 CFR 73.1213 - Antenna structure, marking and lighting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna structure, marking and lighting. 73... SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1213 Antenna structure... of Antenna Structures), requires certain antenna structures to be painted and/or lighted in...
47 CFR 17.8 - Establishment of antenna farm areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Establishment of antenna farm areas. 17.8... LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.8 Establishment of antenna farm areas. (a) Each antenna farm area will be established by an appropriate rulemaking...
47 CFR 17.8 - Establishment of antenna farm areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Establishment of antenna farm areas. 17.8... LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.8 Establishment of antenna farm areas. (a) Each antenna farm area will be established by an appropriate rulemaking...
47 CFR 73.1213 - Antenna structure, marking and lighting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna structure, marking and lighting. 73... SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1213 Antenna structure... of Antenna Structures), requires certain antenna structures to be painted and/or lighted in...
47 CFR 73.53 - Requirements for authorization of antenna monitors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Requirements for authorization of antenna... antenna monitors. (a) Antenna monitors shall be verified for compliance with the technical requirements in...) An antenna monitor shall meet the following specifications: (1) The monitor shall be designed to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...
47 CFR 73.510 - Antenna systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 17.9 - Designated antenna farm areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna farm...
47 CFR 73.1213 - Antenna structure, marking and lighting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna structure, marking and lighting. 73... SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1213 Antenna structure... of Antenna Structures), requires certain antenna structures to be painted and/or lighted in...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...
47 CFR 73.53 - Requirements for authorization of antenna monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Requirements for authorization of antenna... antenna monitors. (a) Antenna monitors shall be verified for compliance with the technical requirements in...) An antenna monitor shall meet the following specifications: (1) The monitor shall be designed to...
47 CFR 73.510 - Antenna systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
47 CFR 17.8 - Establishment of antenna farm areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Establishment of antenna farm areas. 17.8... LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.8 Establishment of antenna farm areas. (a) Each antenna farm area will be established by an appropriate rulemaking...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 73.1213 - Antenna structure, marking and lighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna structure, marking and lighting. 73... SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1213 Antenna structure... of Antenna Structures), requires certain antenna structures to be painted and/or lighted in...
47 CFR 17.9 - Designated antenna farm areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna farm...
47 CFR 73.510 - Antenna systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
47 CFR 73.53 - Requirements for authorization of antenna monitors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Requirements for authorization of antenna... antenna monitors. (a) Antenna monitors shall be verified for compliance with the technical requirements in...) An antenna monitor shall meet the following specifications: (1) The monitor shall be designed to...
47 CFR 17.9 - Designated antenna farm areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Designated antenna farm areas. 17.9 Section 17... ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.9 Designated antenna farm areas. The areas described in the following paragraphs of this section are established as antenna farm...
47 CFR 73.1213 - Antenna structure, marking and lighting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna structure, marking and lighting. 73... SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1213 Antenna structure... of Antenna Structures), requires certain antenna structures to be painted and/or lighted in...
47 CFR 17.8 - Establishment of antenna farm areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Establishment of antenna farm areas. 17.8... LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.8 Establishment of antenna farm areas. (a) Each antenna farm area will be established by an appropriate rulemaking...
47 CFR 25.120 - Application for special temporary authorization.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (c) Each application proposing construction of one or more earth station antennas or alteration of the overall height of one or more existing earth station antenna structures, where FAA notification... Antenna Structure Registration Number(s) for the affected satellite earth station antenna(s). If no such...
47 CFR 25.120 - Application for special temporary authorization.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (c) Each application proposing construction of one or more earth station antennas or alteration of the overall height of one or more existing earth station antenna structures, where FAA notification... Antenna Structure Registration Number(s) for the affected satellite earth station antenna(s). If no such...
47 CFR 25.120 - Application for special temporary authorization.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (c) Each application proposing construction of one or more earth station antennas or alteration of the overall height of one or more existing earth station antenna structures, where FAA notification... Antenna Structure Registration Number(s) for the affected satellite earth station antenna(s). If no such...
47 CFR 25.120 - Application for special temporary authorization.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (c) Each application proposing construction of one or more earth station antennas or alteration of the overall height of one or more existing earth station antenna structures, where FAA notification... Antenna Structure Registration Number(s) for the affected satellite earth station antenna(s). If no such...
47 CFR 25.120 - Application for special temporary authorization.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (c) Each application proposing construction of one or more earth station antennas or alteration of the overall height of one or more existing earth station antenna structures, where FAA notification... Antenna Structure Registration Number(s) for the affected satellite earth station antenna(s). If no such...
NASA Technical Reports Server (NTRS)
Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)
2008-01-01
Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.
47 CFR 97.15 - Station antenna structures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...
47 CFR 15.203 - Antenna requirement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...
47 CFR 15.203 - Antenna requirement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 15.203 - Antenna requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...
47 CFR 73.1675 - Auxiliary antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...
47 CFR 17.47 - Inspection of antenna structure lights and associated control equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Inspection of antenna structure lights and... CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.47 Inspection of antenna structure lights and associated control equipment...
47 CFR 17.47 - Inspection of antenna structure lights and associated control equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Inspection of antenna structure lights and... CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.47 Inspection of antenna structure lights and associated control equipment...
47 CFR 73.1675 - Auxiliary antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...
47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in the...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 73.1680 - Emergency antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...
47 CFR 97.15 - Station antenna structures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...
47 CFR 17.47 - Inspection of antenna structure lights and associated control equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Inspection of antenna structure lights and... CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.47 Inspection of antenna structure lights and associated control equipment...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 17.57 - Report of radio transmitting antenna construction, alteration, and/or removal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Report of radio transmitting antenna... COMMISSION GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.57 Report of radio transmitting antenna construction...
47 CFR 73.1680 - Emergency antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...
47 CFR 17.47 - Inspection of antenna structure lights and associated control equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Inspection of antenna structure lights and... CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.47 Inspection of antenna structure lights and associated control equipment...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 15.203 - Antenna requirement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...
47 CFR 73.1675 - Auxiliary antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 73.1680 - Emergency antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...
47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in the...
47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in the...
47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in the...
47 CFR 17.57 - Report of radio transmitting antenna construction, alteration, and/or removal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Report of radio transmitting antenna... COMMISSION GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.57 Report of radio transmitting antenna construction...
47 CFR 97.15 - Station antenna structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...
47 CFR 73.1680 - Emergency antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...
47 CFR 1.30003 - Installations on an AM antenna.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Installations on an AM antenna. 1.30003 Section... Random Selection Disturbance of AM Broadcast Station Antenna Patterns § 1.30003 Installations on an AM antenna. (a) Installations on a nondirectional AM tower. When antennas are installed on a nondirectional...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 73.1675 - Auxiliary antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...
47 CFR 97.15 - Station antenna structures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 15.203 - Antenna requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...
47 CFR 17.47 - Inspection of antenna structure lights and associated control equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Inspection of antenna structure lights and... CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.47 Inspection of antenna structure lights and associated control equipment...
47 CFR 97.15 - Station antenna structures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...
47 CFR 73.1675 - Auxiliary antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 73.1680 - Emergency antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... assess fees for antenna placements against telecommunication service providers for antenna site outleases... antenna placements against telecommunication service providers for antenna site outleases on major..., upon approval from GSA, may charge fees based on market value to telecommunication service providers...
Code of Federal Regulations, 2010 CFR
2010-07-01
... assess fees for antenna placements against telecommunication service providers for antenna site outleases... antenna placements against telecommunication service providers for antenna site outleases on major..., upon approval from GSA, may charge fees based on market value to telecommunication service providers...
Code of Federal Regulations, 2014 CFR
2014-01-01
... assess fees for antenna placements against telecommunication service providers for antenna site outleases... antenna placements against telecommunication service providers for antenna site outleases on major..., upon approval from GSA, may charge fees based on market value to telecommunication service providers...
Code of Federal Regulations, 2012 CFR
2012-01-01
... assess fees for antenna placements against telecommunication service providers for antenna site outleases... antenna placements against telecommunication service providers for antenna site outleases on major..., upon approval from GSA, may charge fees based on market value to telecommunication service providers...
Code of Federal Regulations, 2013 CFR
2013-07-01
... assess fees for antenna placements against telecommunication service providers for antenna site outleases... antenna placements against telecommunication service providers for antenna site outleases on major..., upon approval from GSA, may charge fees based on market value to telecommunication service providers...
W-Band On-Wafer Measurement of Uniplanar Slot-Type Antennas
NASA Technical Reports Server (NTRS)
Raman, Sanjay; Gauthier, Gildas P.; Rebeiz, Gabriel M.
1997-01-01
Uniplanar slot-type antennas such as coplanar waveguide fed single- and dual-polarized slot-ring antennas and double folded-slot antennas are characterized using a millimeter-wave network analyzer and on-wafer measurement techniques. The antennas are designed to be mounted on a dielectric lens to minimize power loss into substrate modes and realize high-gain antenna patterns. On-wafer measurements are performed by placing the antenna wafer on a thick dielectric spacer of similar e(sub t) and eliminating the reflection from the probe station chuck with time-domain gating. The measured results agree well with method-of-moments simulations.
Cassegrain antenna with a semitransparent secondary mirror.
Caiyang, Weinan; Yang, Huajun; Jiang, Ping; He, Wensen; Tian, Yu; Chen, Xue
2017-06-10
With the help of the vector theory of reflection and refraction, a novel emitting Cassegrain antenna with a semitransparent secondary mirror has been proposed and analyzed for a distant point source. Based on the absorptivity valued at 3.00% and the reflectivity valued at 0.10%, this new emitting antenna can increase the transmission efficiency from 63.65% to 93.85%. In addition, an off-axis parabolic receiving antenna corresponding to the emitting antenna is designed and the 3D ray-trace simulation result is given. According to the simulation result, this receiving antenna can nicely converge the rays from the emitting antenna.
Antennas in matter: Fundamentals, theory, and applications
NASA Technical Reports Server (NTRS)
King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.
1981-01-01
The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.
Modeling of the JET-EP ICRH antenna
NASA Astrophysics Data System (ADS)
Koch, R.; Amarante, G. S.; Heuraux, S.; Pécoul, S.; Louche, F.
2001-10-01
The new ICRH antenna planned for the Enhanced Performance phase of JET (JET-EP) is analyzed using the antenna coupling code ICANT, which self-consistently determines the currents on all antenna parts. This study addresses, using a simplified antenna model, the question of the impact on the coupling of the poloidal segmentation of the conductors, of their width and of their poloidal phasing. We also address the question of the relation between the imaginary part of the power computed by the code and the input impedance of the antenna. An example of current distribution on the complete antenna in vacuum is also shown.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecoul, S.; Heuraux, S.; Koch, R.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are verymore » close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}« less
Broad band antennas and feed methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benzel, David M.; Twogood, Richard E.
Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less
Design of optical transmitting antenna with enhance performance in visible light communication
NASA Astrophysics Data System (ADS)
Kuang, Dang; Wang, Jianping; Lu, Huimin
2016-10-01
An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.
The Atacama Compact Array: An Overview
NASA Astrophysics Data System (ADS)
Iguchi, S.; Wilson, T. L.
2010-01-01
When completed, ALMA will comprise a 12-meter diameter antennas array (12-m Array) of a minimum of fifty antennas, and the ACA (Atacama Compact Array), composed of four 12-meter diameter antennas and twelve 7-meter diameter antennas. Out of the fifty antennas of the 12-m Array, one-half are provided by the North American partners of ALMA, the other half by the European partners. The sixteen antennas that will comprise the ACA are provided by the East Asian Partners of ALMA. In the last issue of the ALMA Science Newsletter, we outlined the testing of the prototype ALMA 12-meter diameter antennas and the procurement process for these antennas. In that article, only a short account was given of the antennas for the Atacama Compact Array (ACA). In the following we give an overview of the ACA, starting with an introduction to imaging using interferometers.
Beam-Steerable Flat-Panel Reflector Antenna
NASA Technical Reports Server (NTRS)
Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.
2005-01-01
Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.
Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.
Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale
2017-01-01
In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.
A tunable microwave slot antenna based on graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.
The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower thanmore » a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.« less
A compact annular ring microstrip antenna for WSN applications.
Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie
2012-01-01
A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.
Modeling and analysis of the DSS-14 antenna control system
NASA Technical Reports Server (NTRS)
Gawronski, W.; Bartos, R.
1996-01-01
An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.
Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas
NASA Technical Reports Server (NTRS)
Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce
2010-01-01
To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.
Near-field measurement facility plans at Lewis Research Center
NASA Technical Reports Server (NTRS)
Sharp, R. G.
1983-01-01
The direction of future antenna technology will be toward antennas which are large, both physically and electrically, will operate at frequencies up to 60 GHz, and are non-reciprocal and complex, implementing multiple-beam and scanning beam concepts and monolithic semiconductor devices and techniques. The acquisition of accurate antenna performance measurements is a critical part of the advanced antenna research program and represents a substantial antenna measurement technology challenge, considering the special characteristics of future spacecraft communications antennas. Comparison of various antenna testing techniques and their relative advantages and disadvantages shows that the near-field approach is necessary to meet immediate and long-term testing requirements. The LeRC facilities, the 22 ft x 22 ft horizontal antenna boresight planar scanner and the 60 ft x 60 ft vertical antenna boresight plant scanner (with a 60 GHz frequency and D/lamdba = 3000 electrical size capabilities), will meet future program testing requirements.
Analysis of photoelectron effect on the antenna impedance via Particle-In-Cell simulation
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.
2008-08-01
We present photoelectron effects on the impedance of electric field antennas used for plasma wave investigations. To illustrate the photoelectron effects, we applied electromagnetic Particle-In-Cell simulation to the self-consistent antenna impedance analysis. We confirmed the formation of a dense photoelectron region around the sunlit surfaces of the antenna and the spacecraft. The dense photoelectrons enhance the real part, and decrease the absolute value of the imaginary part, of antenna impedance at low frequencies. We also showed that the antenna conductance can be analytically calculated from simulation results of the electron current flowing into or out of the antenna. The antenna impedance in the photoelectron environment is represented by a parallel equivalent circuit consisting of a capacitance and a resistance, which is consistent with empirical knowledge. The results also imply that the impedance varies with the spin of the spacecraft, which causes the variation of the photoelectron density around the antenna.
Environmental projects, volume 10. Environmental assessment: New 34-meter antenna at Apollo site
NASA Technical Reports Server (NTRS)
1990-01-01
The Goldstone Deep Space Communications Complex (GDSCC) is part of NASA's Deep Space Network (DSN), one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. A detailed description of the GDSCC is presented. At present the Venus Station has an unused 9-meter antenna and a 26-meter (85 ft) antenna known as DSS-13. Construction of a new 34-meter (111.5 ft) antenna at the Venus site is under way to replace the present DSS-13 26-meter antenna. The proposed construction at the Apollo Site of a new, high efficiency, 34-meter, multifrequency beam waveguide-type antenna to replace the aging, 20-year old, DSS-12 34-meter antenna located at the Echo Site is analyzed. This new 34-meter antenna, to be constructed at the Apollo Site and to be known as DSS-18, will be of a design similar to the new DSS-13 34-meter antenna now being constructed at the Venus Site. When the new 34-meter antenna is completed and operational at the Apollo Site (planned for 1993), the old DSS-12 34-meter antenna at the Echo Site will be decommissioned, dismantled, and removed.
NASA Technical Reports Server (NTRS)
Richard, Mark A.
1993-01-01
The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.
Multi-functional Chassis-based Antennas Using Characteristic Mode Theory
NASA Astrophysics Data System (ADS)
Kishor, Krishna Kumar
Designing antennas for handheld devices is quite challenging primarily due to the limited real-estate available, and the fact that internal antennas occupy a large volume. With the need to support a variety of radio systems such as GSM, LTE and WiFi that operate in a wide range of frequency bands, multi-band, wideband and frequency reconfigurable antenna designs have been explored in the literature. Moreover, to support higher data rates, the Long Term Evolution Advanced (LTE-A) standard has been introduced, which requires supporting multiple input multiple output (MIMO) antenna technology and carrier aggregation (CA) on a handheld device. Both of these benefit from the use of multiple antennas or multi-port antennas, but with the limited space available, adding more internal antennas may not be easily possible. Additionally, to realize the benefits of these technologies the multiple antenna ports have to be well isolated from each other. This thesis explores the utilization of the ground plane (or chassis) of a handheld device as an antenna to meet some of these challenges. To achieve this, the theory of characteristic modes (TCM) for conducting bodies is relied upon, to determine the eigen-currents supported on the chassis. The orthogonality properties of these eigencurrents, and their corresponding far-field eigenfields (electric and magnetic) makes TCM a good tool to design multiple antennas with high isolation. This is demonstrated in this thesis via the design of four chassis-based antennas that have different functionalities. The first design is a two port MIMO antenna utilizing a combination of eigenmodes to achieve port isolation. The second design is a pattern reconfigurable MIMO antenna that can operate in two states at 2.28 GHz. The third design is a four port antenna that operates in three frequency bands, with two bands below 1 GHz for CA and the remaining two ports for MIMO communication. The final design is a five port antenna that supports MIMO operation in two frequency bands along with an additional port for CA in the third band. The four designs have been experimentally verified, validating the use of TCM as a versatile tool to design multi-functional chassis-based antennas.
Miniaturization of Microwave Ablation Antennas
NASA Astrophysics Data System (ADS)
Luyen, Hung
Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun-equipped antennas. The antennas were evaluated and optimized in electromagnetic and thermal simulations. Then prototypes of these antennas were fabricated and experimentally characterized in ex vivo ablation experiments. Simulation and experimental results are in good agreement and demonstrate that the proposed antennas provide good impedance matching and localized heating patterns at their operating frequencies while having about 30% smaller diameters compared to conventional coax-fed balun-equipped MWA antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.
Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less
GNSS Antenna Caused Near-Field Interference Effect in Precise Point Positioning Results
NASA Astrophysics Data System (ADS)
Dawidowicz, Karol; Baryła, Radosław
2017-06-01
Results of long-term static GNSS observation processing adjustment prove that the often assumed "averaging multipath effect due to extended observation periods" does not actually apply. It is instead visible a bias that falsifies the coordinate estimation. The comparisons between the height difference measured with a geometrical precise leveling and the height difference provided by GNSS clearly verify the impact of the near-field multipath effect. The aim of this paper is analysis the near-field interference effect with respect to the coordinate domain. We demonstrate that the way of antennas mounting during observation campaign (distance from nearest antennas) can cause visible changes in pseudo-kinematic precise point positioning results. GNSS measured height differences comparison revealed that bias of up to 3 mm can be noticed in Up component when some object (additional GNSS antenna) was placed in radiating near-field region of measuring antenna. Additionally, for both processing scenario (GPS and GPS/GLONASS) the scattering of results clearly increased when additional antenna crosses radiating near-field region of measuring antenna. It is especially true for big choke ring antennas. In short session (15, 30 min.) the standard deviation was about twice bigger in comparison to scenario without additional antenna. When we used typical surveying antennas (short near-field region radius) the effect is almost invisible. In this case it can be observed the standard deviation increase of about 20%. On the other hand we found that surveying antennas are generally characterized by lower accuracy than choke ring antennas. The standard deviation obtained on point with this type of antenna was bigger in all processing scenarios (in comparison to standard deviation obtained on point with choke ring antenna).
Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yun-Sik; Department of Physics, University of Science, Pyongyang, North Korea; Hao, Zuoqiang
A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg,more » and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.« less
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
NASA Technical Reports Server (NTRS)
Lightsey, Edgar Glenn (Inventor)
1999-01-01
A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.
An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna
NASA Technical Reports Server (NTRS)
Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo
1991-01-01
Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).
Comparative Study of Antenna Elements for TDRSS Enhanced Multiple Access System
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Lambert, Kevin; Acosta, Roberto; Nessel, James
2006-01-01
We compare three antennas, which are candidates for the TDRSS-Continuation enhanced MA array antenna elements. Measured and simulated data show very good agreement for all antenna elements. All of the antennas meet the specifications with the exception of the SBA isolation. However, improvements can likely be made with further design efforts.
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 95.51 - Antenna height.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...
47 CFR 87.75 - Maintenance of antenna structure marking and control equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Maintenance of antenna structure marking and... Requirements § 87.75 Maintenance of antenna structure marking and control equipment. The owner of each antenna... Communications Act of 1934, as amended, shall operate and maintain the antenna structure painting and lighting in...
ERIC Educational Resources Information Center
Marine Corps, Washington, DC.
These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 87.75 - Maintenance of antenna structure marking and control equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Maintenance of antenna structure marking and... Requirements § 87.75 Maintenance of antenna structure marking and control equipment. The owner of each antenna... Communications Act of 1934, as amended, shall operate and maintain the antenna structure painting and lighting in...
General view looking northnorthwest at antenna array. Troposhperic scatter communications ...
General view looking north-northwest at antenna array. Troposhperic scatter communications antennas are seen at far left, transmitter building is in center, antenna array at right - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Antenna Array, At the end of Steam Road, Moscow, Somerset County, ME
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 95.51 - Antenna height.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 87.75 - Maintenance of antenna structure marking and control equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Maintenance of antenna structure marking and... Requirements § 87.75 Maintenance of antenna structure marking and control equipment. The owner of each antenna... Communications Act of 1934, as amended, shall operate and maintain the antenna structure painting and lighting in...
47 CFR 95.51 - Antenna height.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 87.75 - Maintenance of antenna structure marking and control equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Maintenance of antenna structure marking and... Requirements § 87.75 Maintenance of antenna structure marking and control equipment. The owner of each antenna... Communications Act of 1934, as amended, shall operate and maintain the antenna structure painting and lighting in...
47 CFR 87.75 - Maintenance of antenna structure marking and control equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Maintenance of antenna structure marking and... Requirements § 87.75 Maintenance of antenna structure marking and control equipment. The owner of each antenna... Communications Act of 1934, as amended, shall operate and maintain the antenna structure painting and lighting in...
47 CFR 95.51 - Antenna height.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...
47 CFR 95.51 - Antenna height.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...
Base Level Management of Radio Frequency Radiation Protection Program
1989-04-01
Antennae ....... 17 5 Estimated Hazard Distance for Vertical Monopole Antennae ....... 17 6 Permissible Exposure Limits...36 H-1 Monopole Antennas .............................................. 83 H-2 Radiation Pattern of Monopole Antennas...correction factors for determining power density values in the near-field of an emitter. Power Density = (4 x P av)/(Antenna Area) (14) For dipole, monopole
Carbon Nanotube Thin-Film Antennas.
Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J
2016-08-17
Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.
Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
NASA Astrophysics Data System (ADS)
Januszkiewicz, Łukasz; Barba, Paolo Di; Hausman, Sławomir
2017-12-01
In this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user's body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.
Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review
NASA Astrophysics Data System (ADS)
Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy
2018-04-01
Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.
MSAT-X phased array antenna adaptions to airborne applications
NASA Technical Reports Server (NTRS)
Sparks, C.; Chung, H. H.; Peng, S. Y.
1988-01-01
The Mobile Satellite Experiment (MSAT-X) phased array antenna is being modified to meet future requirements. The proposed system consists of two high gain antennas mounted on each side of a fuselage, and a low gain antenna mounted on top of the fuselage. Each antenna is an electronically steered phased array based on the design of the MSAT-X antenna. A beamforming network is connected to the array elements via coaxial cables. It is essential that the proposed antenna system be able to provide an adequate communication link over the required space coverage, which is 360 degrees in azimuth and from 20 degrees below the horizon to the zenith in elevation. Alternative design concepts are suggested. Both open loop and closed loop backup capabilities are discussed. Typical antenna performance data are also included.
Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications
NASA Astrophysics Data System (ADS)
Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.
2017-11-01
In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.
Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.
Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong
2014-03-26
We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.
Antenna Efficiency and the Genius of the IEEE Standard for Antenna Terms [Education Column
NASA Astrophysics Data System (ADS)
Warnick, Karl F.
2012-08-01
At a 2007 Square Kilometre Array Design Studies (SKADS) workshop in Dwingeloo, Wim van Cappellen of the Nether lands Institute for Radio Astronomy (ASTRON) gave a presentation on figures of merit, in which he memorably compared antenna terms to apples. What seems like a simple, homogeneous fruit comes in all colors and varieties. Similarly, a survey of antenna literature and textbooks shows that authors use a wide variety of antenna figures of merit, often not in compliance with the relevant IEEE Standard Definitions of Terms for Antennas [1]. Since this standard is now in the process of revision by the Antennas and Propagation Society Antenna Standards Committee, it seems worth while to consider the standard, and clarify some common misunderstandings and inconsistent usages.
NASA Astrophysics Data System (ADS)
Maimaiti, Maimaitirebike
Inkjet printing is an attractive patterning technology that has received tremendous interest as a mass fabrication method for a variety of electronic devices due to its manufacturing exibility and low-cost feature. However, the printing facilities that are being used, especially the inkjet printer, are very expensive. This thesis introduces an extremely cost-friendly inkjet printing method using a printer that costs less than $100. In order to verify its reliability, linearly and circularly polarized (CPd) planar and conformal microstrip antennas were fabricated using this printing method, and their measurement results were compared with copper microstrip antennas. The result shows that the printed microstrip antennas have similar performances to those of the copper antennas except for lower efficiency. The effects of the conductivity and thickness of the ink layer on the antenna properties were studied, and it is found that the conductivity is the main factor affecting the radiation efficiency, though thicker ink yields more effective antennas. This thesis also presents the detailed antenna design for a sub-payload. The sub-payload is a cylindrical structure with a diameter of six inches and a height of four inches. It has four booms coming out from the surface, which are used to measure the variations of the energy flow into the upper atmosphere in and around the aurora. The sub-payload has two types of antennas: linearly polarized (LPd) S-band antennas and right-hand circularly polarized (RHCPd) GPS antennas. Each type of antenna has various requirements to be fully functional for specific research tasks. The thesis includes the design methods of each type of antenna, challenges that were confronted, and the possible solutions that were proposed. As a practical application, the inkjet printing method was conveniently applied in validating some of the antenna designs.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Miranda, Felix A.
2014-01-01
As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we explored the possibility of developing these arrays in thin, flexible form to make conformable antennas.
Meandered-line antenna with integrated high-impedance surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, Michael A.
2010-09-01
A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.
Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.
Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan
2015-08-20
An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.
Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing
NASA Technical Reports Server (NTRS)
Blevins, B. A.
1983-01-01
Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.
NASA Technical Reports Server (NTRS)
1973-01-01
The general goal of this task, STDN Antenna and Preamplifier G/T Study, was to determine cost-effective combinations of antennas and preamplifiers for several sets of conditions for frequency, antenna elevation angle, and rain. The output of the study includes design curves and tables which indicate the best choice of antenna size and preamplifier type to provide a given G/T performance. The report indicates how to evaluate the cost effectiveness of proposed improvements to a given station. Certain parametric variations are presented to emphasize the improvement available by reducing RF losses and improving the antenna feed.
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana.
Jia, Ting; Ito, Hisashi; Tanaka, Ayumi
2016-11-01
The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b-less mutants, ch1-1, to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b, the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.
Application of Ruze Equation for Inflatable Aperture Antennas
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.
2014-06-01
antenna beamwidth and R is the range distance. Antenna beam width is proportional to the real aperture size and is given as antennaL ...18) where is the wavelength and antennaL is the physical length of the radar antenna; therefore, cross-range resolution for a real aperture... antennaL R (20) A value of 50 meters for cross-range resolution is rather high and signifies poor resolution. Under these conditions, obtaining
Microwave mode shifting antenna system for regenerating particulate filters
Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA
2011-04-26
A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.
Glass antenna for RF-ion source operation
Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.
2000-01-01
An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.
Mathematical modeling of bent-axis hydraulic piston motors
NASA Technical Reports Server (NTRS)
Bartos, R. D.
1992-01-01
Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.
Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices
NASA Astrophysics Data System (ADS)
Olmon, Robert L.
Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.
Jia, Hongwei; Liu, Haitao; Zhong, Ying
2015-01-01
The radiation of an electric dipole emitter can be drastically enhanced if the emitter is placed in the nano-gap of a metallic dipole antenna. By assuming that only surface plasmon polaritons (SPPs) are excited on the antenna, we build up an intuitive pure-SPP model that is able to comprehensively predict the electromagnetic features of the antenna radiation, such as the total or radiative emission rate and the far-field radiation pattern. With the model we can distinguish the respective contributions from SPPs and from other surface waves to the antenna radiation. It is found that for antennas with long arms that support higher-order resonances, SPPs provide a dominant contribution to the antenna radiation, while for other cases, the contribution of surface waves other than SPPs should be considered. The model reveals an intuitive picture that the enhancement of the antenna radiation is due to surface waves that are resonantly excited on the two antenna arms and that are further coupled into the nano-gap or scattered into free space. From the model we can derive a phase-matching condition that predicts the antenna resonance and the resultant enhanced radiation. The model is helpful for a physical understanding and intuitive design of antenna devices. PMID:25678191
Design and development of a unit element microstrip antenna for aircraft collision avoidance system
NASA Astrophysics Data System (ADS)
De, Debajit; Sahu, Prasanna Kumar
2017-10-01
Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.
Robinson, Thomas N; Barnes, Kelli S; Govekar, Henry R; Stiegmann, Greg V; Dunn, Christina L; McGreevy, Francis T
2012-08-01
(1) To determine if antenna coupling occurs in common operating room scenarios. (2) To define modifiable clinical variables that reduce the magnitude of antenna coupling. Mechanisms of electrosurgical burns where monitoring devices contact the surgical patient are unclear. Antenna coupling occurs when the "bovie" active electrode (electrically active transmitting antenna) emits energy, which is captured by a nonelectrically active wire (electrically inactive receiving antenna) in close proximity without direct contact. Monopolar radiofrequency energy was delivered to a laparoscopic instrument (electrically active transmitting antenna), whereas other nonelectrically active wires (electrically inactive receiving antenna) including electrocardiogram (EKG) lead, nonactive "bovie" pencil, and nerve electrode monitor were placed in proximity. Temperature changes of tissue placed adjacent to the electrically inactive receiving antennae were measured. Nonelectrically active wires (receiving antenna) increase tissue temperature when lying parallel to the active electrode cord: EKG pad 2.4°C ± 1.2°C (P = 0.002), "bovie" pencil tip 90°C ± 9°C (P < 0.001), and nerve electrode monitor 106°C ± 12°C (P < 0.001). Factors that reduced the heat generated by antenna coupling included the following: increasing angulation between transmitting and receiving antennae (parallel = 90°C ± 9°C; 45° angle = 53°C ± 10°C; perpendicular = 35°C ± 11°C; P < .001), increasing separation distance between parallel transmitting and receiving antenna (<1 cm = 90°C ± 9°C; 15 cm = 44°C ± 18°C; 30 cm = 39°C ± 2°C; P < .001); and decreasing generator power setting (15 W = 59°C ± 11°C; 30 W = 90°C ± 9°C; 45 W = 98°C ± 8°C; P < .001). Antenna coupling occurs in common operating room scenarios. Simple, practical measures by the surgeon, such as orienting the receiving antenna at a greater angle and with greater separation to the active electrode cord, or lowering the generator power setting reduce antenna coupling.
Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bobkov, Vl. V.; Braun, F.; Dux, R.; Herrmann, A.; Giannone, L.; Kallenbach, A.; Krivska, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, T.; Rohde, V.; Schweinzer, J.; Sips, A.; Zammuto, I.; ASDEX Upgrade Team
2010-03-01
The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall. The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna. An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles. In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma-antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap-box distance, e.g. by increasing the number of toroidally distributed straps; (c) by a better balance of (0π)-phased contributions to RF image currents.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Cramer, Paul
1990-01-01
The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.
Antenna Technologies for NASA Applications
NASA Technical Reports Server (NTRS)
Miranda, Felix
2007-01-01
This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.
Antenna Technologies for NASA Applications
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2006-01-01
This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... controlled by the utility; and 4) extended to antennas that receive and transmit telecommunications and other..., maintenance or use of certain video antennas on property within the exclusive use or control of the antenna... subscriber antennas are labeled to give notice of potential radio frequency safety hazards of these antennas...
Autonomous omnidirectional spacecraft antenna system
NASA Technical Reports Server (NTRS)
Taylor, T. H.
1983-01-01
The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.
Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands
2015-09-01
the various techniques that can be used to improve the performance of a circularly polarized microstrip patch antenna . These adjustments include... microstrip antenna . 15. SUBJECT TERMS Patch Antenna , Circular Polarization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Frequency Structural Simulator (HFSS) has allowed engineers to create scalable multiband microstrip antennas . Several factors were taken into
Cylindrical Antenna Using Near Zero Index Metamaterial
2012-07-24
circularly polarized microstrip patch antenna (SFCP-MPA). Simultaneous enhancement on antenna gain, impedance bandwidth (ZBW) and axial-ratio...K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna ...device for enhancing the directivity and port isolation of a dual-frequency dual- polarization (DFDP) microstrip antenna by using metamaterial
47 CFR 90.542 - Broadband transmitting power limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... combination of antenna height and vertical gain pattern must not exceed 3000 microwatts per square meter on... and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted... ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m...
47 CFR 90.542 - Broadband transmitting power limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... combination of antenna height and vertical gain pattern must not exceed 3000 microwatts per square meter on... and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted... ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m...
47 CFR 73.318 - FM blanketing interference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... begins with the commencement of program tests, or commencement of programming utilizing the new antenna... antenna systems, or the use of high gain antennas or antenna booster amplifiers. Mobile receivers and non...
Antenna cab interior showing equipment rack and fiberglass antenna panels, ...
Antenna cab interior showing equipment rack and fiberglass antenna panels, looking west. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA
Antenna cab interior showing equipment rack and fiberglass antenna panels, ...
Antenna cab interior showing equipment rack and fiberglass antenna panels, looking southeast. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA
Deep convolutional neural network based antenna selection in multiple-input multiple-output system
NASA Astrophysics Data System (ADS)
Cai, Jiaxin; Li, Yan; Hu, Ying
2018-03-01
Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.
Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies
Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M
2014-01-01
To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565
Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications
Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale
2017-01-01
In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860–960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations. PMID:28570706
A Compact Annular Ring Microstrip Antenna for WSN Applications
Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie
2012-01-01
A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510
NASA Astrophysics Data System (ADS)
Kammerer, J.; Reiter, L.; Lindenmeier, S.
2013-04-01
Nowadays cars are equipped frequently with typical 400 mm long active AM/FM antennas mounted on top close to the rear windshield. In [1], we presented a novel capacitive coupled helical antenna with a height of only 140 mm which performs equivalent to such an 400 mm long antenna. In the next step the antenna height has been reduced to only 56 mm in order to be placed in a low 65 mm housing in combination with other decoupled antennas. The measured results for AM/FM are close to the performance of a whip antenna of 900 mm length. The GPS and SDARS antennas are realized in a combination of two table-formed ring structures with a maximum gain for LHCP at 2339 MHz with 2.9 dBi in zenith and with 5.2 dBi in zenith for RHCP at 1575 MHz with GPS. The VSWR of the cell phone antenna is below 3 for AMPS and PCS1900.
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-01-01
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620
Characterisation and optimisation of Ground Penetrating Radar antennas
NASA Astrophysics Data System (ADS)
Warren, Craig; Giannopoulos, Antonios
2014-05-01
Research on the characterisation and optimisation of Ground Penetrating Radar (GPR) antennas will be presented as part of COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This work falls within the remit of Working Group 1 - "Novel GPR instrumentation" which focuses on the design of innovative GPR equipment for Civil Engineering (CE) applications, on the building of prototypes and on the testing and optimisation of new systems. The diversity of applications of GPR has meant there are a number of different GPR antenna designs available to the end-user as well as those being used in the research community. The type and size of a GPR antenna is usually dependent on the application, e.g. low frequency antennas, which are physically larger, are used where significant depth of penetration is important, whereas high frequency antennas, which are physically smaller, are used where less penetration and better resolution are required. Understanding how energy is transmitted and received by a particular GPR antenna has many benefits: it could lead to more informed usage of the antenna in GPR surveys; improvements in antenna design; and better interpretation of GPR signal returns from the ground/structure. The radiation characteristics of a particular antenna are usually investigated by studying the radiation patterns and directivity. For GPR antennas it is also important to study these characteristics when the antenna is in different environments that would typically be encountered in GPR surveys. In this work Finite-Difference Time-Domain (FDTD) numerical models of GPR antennas have been developed. These antenna models replicate all the detailed geometry and main components of the real antennas. The models are representative of typical high-frequency, high-resolution GPR antennas primarily used in CE for the evaluation of structural features in concrete: the location of rebar, conduits, and post-tensioned cables, as well as the estimation of material thickness on bridge decks and pavements. Radiation patterns obtained using the antenna models as well as physical measurements have been used to investigate the radiation characteristics of high-frequency GPR antennas. Studies were conducted with homogeneous materials of different dielectric constants (Er=3, 10, 30, & 72) and at a range of observation distances. The first objective was to compare, using the FDTD antenna model, 'traditional' transmitted field patterns with field patterns obtained using responses from a target spaced at regular intervals around the circumference of a circle, i.e. received energy. Our initial results show, for the same dielectric and observation distance, E- and H-field patterns obtained using the received energy approach have a significantly narrower main lobe than the traditional transmitted patterns. This raises the question of which approach is more beneficial for the characterisation of GPR antennas, and hence better interpretation of GPR responses. The second objective was to compare modelled field patterns with measured patterns obtained from a commercial high-frequency GPR antenna using the received energy approach. The measurements were made in different oil-in-water emulsions which were used to simulate materials with different permittivities and conductivities. Initial comparisons of the measured and modelled data show a very good correlation, which validates use of the antenna model for further studies.
Antenna cab interior showing waveguide from external parabolic antenna (later ...
Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA
To increase controllability of a large flexible antenna by modal optimization
NASA Astrophysics Data System (ADS)
Wang, Feng; Wang, Pengpeng; Jiang, Wenjian
2017-12-01
Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.
Pisa, S; Cavagnaro, M; Bernardi, P; Lin, J C
2001-05-01
A 915-MHz antenna design that produces specific absorption rate distributions with preferential power deposition in tissues surrounding and including the distal end of the catheter antenna is described. The design features minimal reflected microwave current from the antenna flowing up the transmission line. This cap-choke antenna consists of an annular cap and a coaxial choke which matches the antenna to the coaxial transmission line. The design minimizes heating of the coaxial cable and its performance is not affected by the depth of insertion of the antenna into tissue. The paper provides a comparison of results obtained from computer modeling and experimental measurements made in tissue equivalent phantom materials. There is excellent agreement between numerical modeling and experimental measurement. The cap-choke, matched-dipole type antenna is suitable for intracavitary microwave thermal ablation therapy.
Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin
2018-04-01
A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.
NASA Technical Reports Server (NTRS)
Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken
1993-01-01
This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.
NASA Astrophysics Data System (ADS)
Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal
2016-03-01
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.
Design of a novel high efficiency antenna for helicon plasma sources
NASA Astrophysics Data System (ADS)
Fazelpour, S.; Chakhmachi, A.; Iraji, D.
2018-06-01
A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
Research on HOPE communication and data processing equipment
NASA Astrophysics Data System (ADS)
Yamamoto, Satoru; Kikuchi, Toshio
1992-08-01
An overview of the research on heat-resisting antenna is presented. Candidate heat-resisting antennas which were selected as the result of review on seven kinds of antenna are the antennas of micro strip, cavity, and horn types. Heat resistance characteristics of electric power supplying section (connectors) of heat-resisting antenna were studied. Heat cycling test and heat shock tests were conducted on the subject plugs and it was confirmed that they can be usable at - 80 C to + 200 C against - 65 C to + 125 C for the existing plugs. Fundamental electric data such as antenna pattern were acquired mating trial produced components simulating electric characteristics of heat-resisting antenna and trial-produced ceramic tiles.
Compact Miniaturized Antenna for 210 MHz RFID
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Chun, Kue
2008-01-01
This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.
Implementation for wideband applications using UWB fractal patch antenna
NASA Astrophysics Data System (ADS)
Kumar, D. Naresh
2018-04-01
This paper defines in detail about the diverse fractal patch antenna. Microstrip patch antennas has evolved in the field of research and development extending its impact across wide range of applications. A combination of patch antenna with fractal patterns has become a tryout to outspread it further. Because of its low profile nature patch antennas have added to a lot of prominence. Apart from have this property it can also be renovated further for wide bandwidth (2929 MHz) applications, as it exhibits self-analogous property. This antenna is premeditated on a patch using Sierpinski(4.040 GHz, 6.566 GHz) and Koch fractal geometries respectively. The antenna is designed using HFSS software.
and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo
Aerogel-Based Antennas for Aerospace and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)
2016-01-01
Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.
Slotted Antenna with Uniaxial Dielectric Covering
2016-07-08
1 of 12 SLOTTED ANTENNA WITH UNIAXIAL DIELECTRIC COVERING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas ...slotted cylinder antenna for use in a towed buoy. Though somewhat broadband in performance, it is not suitable for vertical mounting over a
Slotted Antenna with Anisotropic Magnetic Loading
2016-07-26
10 SLOTTED ANTENNA WITH ANISOTROPIC MAGNETIC LOADING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas are...popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds 300 MHz. FIG. 1 provides a diagram
Reproducible, high performance patch antenna array apparatus and method of fabrication
Strassner, II, Bernd H.
2007-01-23
A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.
Space Qualification Testing of a Shape Memory Alloy Deployable CubeSat Antenna
2016-09-15
the SMA deployment in the space environment. The HCT QHA successfully passed all required NASA General Environmental Verification Standards space... NASA /JPL parabolic deployable antenna design [28] .................. 19 Figure 11. SERC and NASA /JPL parabolic antenna prototype [28...19 Figure 12. SERC and NASA /JPL parabolic antenna stowed configuration [28] ............. 20 Figure 13. JPL KaPDA antenna [29
Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications
NASA Astrophysics Data System (ADS)
Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.
2018-04-01
The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement.
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-07-31
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications. PMID:28811432
NASA Astrophysics Data System (ADS)
Wu, Dong Ho; Kim, Christopher; Graber, Benjamin
2014-03-01
Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.
Pushing the limits of radiofrequency (RF) neuronal telemetry
Yousefi, Tara; Diaz, Rodolfo E.
2015-01-01
In a previous report it was shown that the channel capacity of an in vivo communication link using microscopic antennas at radiofrequency is severely limited by the requirement not to damage the tissue surrounding the antennas. For dipole-like antennas the strong electric field dissipates too much power into body tissues. Loop-type antennas have a strong magnetic near field and so dissipate much less power into the surrounding tissues but they require such a large current that the antenna temperature is raised to the thermal damage threshold of the tissue. The only solution was increasing the antenna size into hundreds of microns, which makes reporting on an individual neuron impossible. However, recently demonstrated true magnetic antennas offer an alternative not covered in the previous report. The near field of these antennas is dominated by the magnetic field yet they don’t require large currents. Thus they combine the best characteristics of dipoles and loops. By calculating the coupling between identical magnetic antennas inside a model of the body medium we show an increase in the power transfer of up to 8 orders of magnitude higher than could be realized with the loops and dipoles, making the microscopic RF in-vivo transmitting antenna possible. PMID:26035824
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Trimarchi, P. A.; Wanhainen, J. S.
1984-01-01
A large very precise near-field planar scanner was proposed for NASA Lewis Research Center. This scanner would permit near-field measurements over a horizontal scan plane measuring 18.3 m by 18.3 m. Large aperture antennas mounted with antenna boresight vertical could be tested up to 60 GHz. When such a large near field scanner is used for pattern testing, the antenna or antenna system under test does not have to be moved. Hence, such antennas and antenna systems can be positioned and supported to simulate configuration in zero g. Thus, very large and heavy machinery that would be needed to accurately move the antennas are avoided. A preliminary investigation was undertaken to address the mechanical design of such a challenging near-field antenna scanner. The configuration, structural design and results of a parametric NASTRAN structural optimization analysis are contained. Further, the resulting design was dynamically analyzed in order to provide resonant frequency information to the scanner mechanical drive system designers. If other large near field scanners of comparable dimensions are to be constructed, the information can be used for design optimization of these also.
Tunable Reduced Size Planar Folded Slot Antenna Utilizing Varactor Diodes
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Jordan, Jennifer L.; Jastram, Nathan; Mahaffey, Joshua V.
2010-01-01
A tunable folded slot antenna that utilizes varactor diodes is presented. The antenna is fabricated on Rogers 6006 Duriod with a dielectric constant and thickness of 6.15 and 635 m, respectively. A copper cladding layer of 17 m defines the antenna on the top side (no ground on backside). The antenna is fed with a CPW 50 (Omega) feed line, has a center frequency of 3 GHz, and incorporates Micrometrics microwave hyper-abrupt 500MHV varactors to tune the resonant frequency. The varactors have a capacitance range of 2.52 pF at 0 V to 0.4 pF at 20 V; they are placed across the radiating slot of the antenna. The tunable 10 dB bandwidth of the 3 GHz antenna is 150 MHz. The varactors also reduce the size of the antenna by 30% by capacitively loading the resonating slot line. At the center frequency, 3 GHz, the antenna has a measured return loss of 44 dB and a gain of 1.6 dBi. Full-wave electromagnetic simulations using HFSS are presented that validate the measured data. Index Terms capacitive loading, Duriod, folded slot antenna, varactor.
Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)
NASA Technical Reports Server (NTRS)
Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.
1989-01-01
A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.
Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications
NASA Astrophysics Data System (ADS)
Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.
2017-03-01
The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.
Porous textile antenna designs for improved wearability
NASA Astrophysics Data System (ADS)
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
A generic set of HF antennas for use with spherical model expansions
NASA Astrophysics Data System (ADS)
Katal, Nedim
1990-03-01
An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.
Measurement of Antenna Bore-Sight Gain
NASA Technical Reports Server (NTRS)
Fortinberry, Jarrod; Shumpert, Thomas
2016-01-01
The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.
A broadband double-slot waveguide antenna
NASA Astrophysics Data System (ADS)
Kisliuk, M.; Axelrod, A.
1987-09-01
A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.
NASA Technical Reports Server (NTRS)
Njoku, E. G.; Christensen, E. J.; Cofield, R. E.
1980-01-01
The antenna temperatures measured by the Seasat scanning multichannel microwave radiometer (SMMR) differ from the true brightness temperatures of the observed scene due to antenna pattern effects, principally from antenna sidelobe contributions and cross-polarization coupling. To provide accurate brightness temperatures convenient for geophysical parameter retrievals the antenna temperatures are processed through a series of stages, collectively known as the antenna pattern correction (APC) algorithm. A description of the development and implementation of the APC algorithm is given, along with an error analysis of the resulting brightness temperatures.
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Novel method to control antenna currents based on theory of characteristic modes
NASA Astrophysics Data System (ADS)
Elghannai, Ezdeen Ahmed
Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.
Taisova, A S; Yakovlev, A G; Fetisova, Z G
2014-03-01
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.
NASA Astrophysics Data System (ADS)
Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.
2009-11-01
W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement.
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-11-06
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376
NASA Technical Reports Server (NTRS)
Yu, C. L.
1976-01-01
A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.
The Use of Conductive Ink in Antenna Education and Design
NASA Astrophysics Data System (ADS)
Addison, David W.
Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.
The Greenland Telescope (GLT): antenna status and future plans
NASA Astrophysics Data System (ADS)
Raffin, Philippe; Algaba-Marcosa, Juan Carlos; Asada, Keiichi; Blundell, Raymond; Burgos, Roberto; Chang, Chih-Cheng; Chen, Ming-Tang; Christensen, Robert; Grimes, Paul K.; Han, C. C.; Ho, Paul T. P.; Huang, Yau-De; Inoue, Makoto; Koch, Patrick M.; Kubo, Derek; Leiker, Steve; Liu, Ching-Tang; Martin-Cocher, Pierre; Matsushita, Satoki; Nakamura, Masanori; Nishioka, Hiroaki; Nystrom, George; Paine, Scott N.; Patel, Nimesh A.; Pradel, Nicolas; Pu, Hung-Yi; Shen, H.-Y.; Snow, William; Sridharan, Tirupati K.; Srinivasan, Ranjani; Tong, Edward; Wang, Jackie
2014-07-01
The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), SAO's main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.
Astigmatism in reflector antennas.
NASA Technical Reports Server (NTRS)
Cogdell, J. R.; Davis, J. H.
1973-01-01
Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.
Antenna and Electronics Cost Tradeoffs For Large Arrays
NASA Technical Reports Server (NTRS)
D'Addario, Larry R.
2007-01-01
This viewgraph presentation describes the cost tradeoffs for large antenna arrays. The contents include: 1) Cost modeling for large arrays; 2) Antenna mechanical cost over a wide range of sizes; and 3) Cost of per-antenna electronics.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.
Wireless Fluid Level Measuring System
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2007-01-01
A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.
Improvement of antenna decoupling in radar systems
NASA Astrophysics Data System (ADS)
Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban
2015-02-01
In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
Dual band new bisected-Π CRLH metamaterial cell loaded dipole antennas
NASA Astrophysics Data System (ADS)
Abdalla, M. A.; Ghouz, M. H.; Abo El-Dahab, M.
2018-06-01
In this paper, two different designs for new metamaterial loaded dipole antenna are presented. The designs are based on loading printed dipole antennas with modified versions of composite right left handed cells. Different objectives are intended for these new designs; which are achieving compact size, dual band functionalities and good gain of the loaded dipole antenna. The designed antennas can serve different wireless services for GPS (1.227 GHz and 1.57 GHz), Universal Telecommunications System (UMTS 1.9 GHz), and WiFi (2.4 GHz). The two presented antennas have gain whose values are better than 1.9 dB up to 3.5 dB at all operating frequencies. The designed loading has reduced the physical / electrical length of conventional dipole antenna by 25%. The theoretical analysis, circuit model, full wave simulations and experimental measurements of the reported antennas are introduced.
Measured Radiation Patterns of the Boeing 91-Element ICAPA Antenna With Comparison to Calculations
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Burke, Thomas (Technical Monitor)
2003-01-01
This report presents measured antenna patterns of the Boeing 91-Element Integrated Circuit Active Phased Array (ICAPA) Antenna at 19.85 GHz. These patterns were taken in support of various communication experiments that were performed using the antenna as a testbed. The goal here is to establish a foundation of the performance of the antenna for the experiments. An independent variable used in the communication experiments was the scan angle of the antenna. Therefore, the results presented here are patterns as a function of scan angle, at the stated frequency. Only a limited number of scan angles could be measured. Therefore, a computer program was written to simulate the pattern performance of the antenna at any scan angle. This program can be used to facilitate further study of the antenna. The computed patterns from this program are compared to the measured patterns as a means of validating the model.
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
2002-07-01
A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.
The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Belotserkovskii, G. B.
This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused onmore » achieving a dual band operation.« less
Phased Antenna Array for Global Navigation Satellite System Signals
NASA Technical Reports Server (NTRS)
Turbiner, Dmitry (Inventor)
2015-01-01
Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.
Downsizing Antenna Technologies for Mobile and Satellite Communications
NASA Technical Reports Server (NTRS)
Huang, J.; Densmore, A.; Tulintseff, A.; Jamnejad, V.
1993-01-01
Due to the increasing and stringent functional requirements (larger capacity, longer distances, etc.) of modern day communication systems, higher antenna gains are generally needed. This higher gain implies larger antenna size and mass which are undesirable to many systems. Consequently, downsizing antenna technology becomes one of the most critical areas for research and development efforts. Techniques to reduce antenna size can be categorized and are briefly discussed.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.
47 CFR 95.408 - (CB Rule 8) How high may I put my antenna?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 8) How high may I put my antenna? 95....408 (CB Rule 8) How high may I put my antenna? (a) Antenna means the radiating system (for... everything else attached to the radiating system and the structure. (b) If your antenna is mounted on a hand...
47 CFR 95.408 - (CB Rule 8) How high may I put my antenna?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false (CB Rule 8) How high may I put my antenna? 95....408 (CB Rule 8) How high may I put my antenna? (a) Antenna means the radiating system (for... everything else attached to the radiating system and the structure. (b) If your antenna is mounted on a hand...
47 CFR 95.408 - (CB Rule 8) How high may I put my antenna?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false (CB Rule 8) How high may I put my antenna? 95....408 (CB Rule 8) How high may I put my antenna? (a) Antenna means the radiating system (for... everything else attached to the radiating system and the structure. (b) If your antenna is mounted on a hand...
Broadband Cylindrical Antenna and Method
2016-07-27
1 of 12 BROADBAND CYLINDRICAL ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...directed to a cylindrical antenna having a broader bandwidth and a method for making such an antenna . (2) Description of the Prior Art [0004...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose
Analysis of Satellite Communications Antenna Patterns
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1985-01-01
Computer program accurately and efficiently predicts far-field patterns of offset, or symmetric, parabolic reflector antennas. Antenna designer uses program to study effects of varying geometrical and electrical (RF) parameters of parabolic reflector and its feed system. Accurate predictions of far-field patterns help designer predict overall performance of antenna. These reflectors used extensively in modern communications satellites and in multiple-beam and low side-lobe antenna systems.
Improved Gain Microstrip Patch Antenna
2015-08-06
08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the...patch antenna having increased gain, and an apparatus for increasing the gain and bandwidth of an existing microstrip patch antenna . (2) Description
Breakthroughs in Low-Profile Leaky-Wave HPM Antennas
2015-03-18
presentation of our work at the 17th annual DEPS conference. 15. SUBJECT TERMS Leaky-wave Antennas. High Power Microwaves (HPM) Antennas. Low-profile...the performance, behavior, and design of innovative High Power Microwave (HPM, GW-class) antennas of the forward-traveling, fast-wave, leaky-wave...Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor
Radar antenna pointing for optimized signal to noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter; Marquette, Brandeis
2013-01-01
The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.
Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L
2014-10-01
To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaya, N.; Iwashita, M.; Nakasuka, S.; Summerer, L.; Mankins, J.
2004-12-01
Construction technology of huge structures is essential for the future space development as well as the Solar Power Satellite (SPS). The SPS needs huge antennas to transmit the generated electric power toward the ground, while the huge antenna have many useful applications in space as well as on the ground, for example, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. A parabola antenna was mostly used for the space antenna. However, it is very difficult for the larger parabola antenna to keep accuracy of the reflectors and the beam control, because the surfaces of the reflectors are mechanically supported and controlled. The huge space antenna with flexible and ultra-light structures is essential and necessary for the future applications. An active phased array antenna is more suitable and promising for the huge flexible antenna than the parabola antenna. We are proposing to apply the Furoshiki satellite [1] with robots for construction of the huge structures. While a web is deployed using the Furoshiki satellite in the same size of the huge antenna, all of the antenna elements crawl on the web with their own legs toward their allocated locations. We are verifying the deployment concept of the Furoshiki satellite using a sounding rocket with robots crawling on the deployed web. The robots are internationally being developed by NASA, ESA and Kobe University. The paper describes the concept of the crawling robot developed by Kobe University as well as the plan of the rocket experiment.
Ibitoye, Ayo Zaccheaus; Nwoye, Ephraim Okeke; Aweda, Adebayo Moses; Oremosu, Ademola A; Anunobi, Chidozie Charles; Akanmu, Nurudeen Olanrewaju
2016-12-01
To study the efficiency of a dual slot antenna with a floating metallic sleeve on the ablation of different ex vivo bovine tissues. COMSOL Multiphysics® version 4.4 (Stockholm, Sweden), which is based on finite element methods (FEM), was used to design and simulate monopole and dual slot with sleeve antennas. Power, specific absorption rate (SAR), temperature and necrosis distributions in the selected tissues were determined using these antennas. Monopole and dual slot with sleeve antennas were designed, simulated, constructed and applied in this study based on a semi-rigid coaxial cable. Ex vivo experiments were performed on liver, lung, muscle and heart of bovine obtained from a public animal slaughter house. The microwave energy was delivered using a 2.45 GHz solid-state microwave generator at 40 W for 3, 5 and 10 min. Aspect ratio, ablation length and ablation diameter were also determined on ablated tissues and compared with simulated results. Student's t-test was used to compare the statistically significant difference between the performance of the two antennas. The dual slot antenna with sleeve produces localised microwave energy better than the monopole antenna in all ablated tissues using simulation and experimental validation methods. There were significant differences in ablation diameter and aspect ratio between the sleeve antenna and monopole antenna. Additionally, there were no significant differences between the simulation and experimental results. This study demonstrated that the dual slot antenna with sleeve produced larger ablation zones and higher sphericity index in ex vivo bovine tissues with minimal backward heating when compared with the monopole antenna.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Mobile satellite communications - Vehicle antenna technology update
NASA Technical Reports Server (NTRS)
Bell, D.; Naderi, F. M.
1986-01-01
This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu
2014-10-15
In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cellmore » antenna used in satellite systems.« less
Spiral microstrip antenna with resistance
NASA Technical Reports Server (NTRS)
Shively, David G. (Inventor)
1994-01-01
The present invention relates to microstrip antennas, and more particularly to wide bandwidth spiral antennas with resistive loading. A spiral microstrip antenna having resistor element embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.
Minimizing yagi-uda radiosonde receiver antenna size using minkowski curve fractal model
NASA Astrophysics Data System (ADS)
Sani, Arman; Suherman
2018-03-01
This paper discusses Yagi-Uda antenna design for radiosonde earth station receiver. The design was performed by using Minkowski curve fractal model to reduce physical dimension. The antenna design should fulfil the following requirements: work on frequency of 433MHz, match to the 50 Ohm of radiosonde characteristic impedance, the expected gain is higher than 10 dBi, VSWR is smaller than 2 and the expected bandwidth is higher than 10 MHz. Antenna design and evaluation were conducted by using MMANA-GAL simulator. The evaluation of the designed antenna shows that the Yagi-Uda antenna designed by using Minkowski curve model successfully reduces antenna size up to 9.41% and reduces number of elements about 33%.
Eight-Element Antenna Array for LTE 3.4-3.8 GHz Mobile Handset Applications
NASA Astrophysics Data System (ADS)
Yang, Lingsheng; Ji, Ming; Cheng, Biyu; Ni, Bo
2017-05-01
In this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured -10 dB impedance bandwidth is 3.2-3.9 GHz which can cover the LTE bands 42 and 43 (3.4-3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.
Base Level Management of Radio Frequency Radiation Protection Program
1989-04-01
Monopole Antennae ....... 17 6 Permissible Exposure Limits .................................... 24 7 AFOEHL Equipment Inventory...25 16 Representative RFR Signal ...................................... 36 H-1 Monopole Antennas...83 H-2 Radiation Pattern of Monopole Antennas ......................... 84 H-3 Blade, Stub, and Fin Antennas
Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels
NASA Astrophysics Data System (ADS)
Yousefi, Tara
There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and apparatus required to implement a flux-channel carrying the magnetic current wave near the speed of light over a very broad frequency range which also makes the design of a frequency independent antenna (spiral) possible. We will learn how to construct extremely thin conformal antennas, frequency-independent permeable antennas, and even micron-sized antennas that can be embedded inside the brain without damaging the tissue.
Hansson, Björn; Thors, Björn; Törnevik, Christer
2011-12-01
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.
Design of a C- Band Circular Polarization Microstrip Antenna
NASA Astrophysics Data System (ADS)
Yohandri; Jumiah, Yusna; Tetuko Sri Sumantyo, Josaphat
2018-04-01
The development of circularly polarized microstrip antenna is an interesting topic in current research, due to its superiority in various applications. In this work, the design of a circular polarization antenna that will be operated in the C-band range will be described. The developed antenna is intended to be used for Synthetic Aperture Radar (SAR) applications. Through this application, various targets or areas on the surface of the earth, such as buildings, soil and land can be observed. To get the ideal antenna characteristic, in this research the various parameters in antenna design will be simulated. A software CST Studio will be operated in this simulation. Based on the simulation results, the optimum parameters are obtained in term of reflection coefficient, VSWR, axial ratio, and gain. The reflection coefficient of the antenna (S11) is obtained at -19.75 dB and VSWR of 1.23. Meanwhile, the axial ratio and gain of the antenna were obtained at 2.66 dB and 2.1 dBi, respectively. Based on this simulated results, antenna design is potential to be developed and fabricated for SAR sensor applications.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
Jiang, Yingxu; Zhao, Jinzhe; Li, Weitao; Yang, Yamin; Liu, Jia; Qian, Zhiyu
2017-11-01
Investigation of the structures and properties of antennas is important in the design of microwave ablation (MWA) system. In this study, we studied the performance of the novel tri- and single-slot antennas with frequency of 433 MHz in ex vivo conditions. The dielectric properties of liver tissue under different thermal coagulation levels were explored, which was beneficial to evaluate ablation condition of tissue and simulate temperature field. Then, the performances of the antennas were analyzed by using numerical method based on finite element method (FEM). It indicated that the present antennas with frequency of 433 MHz could produce a gourd-shaped MWA area with a longer length. Compared to antenna with frequency of 2450 MHz, the designed single-slot antenna could obtain the larger MWA area. In addition, the multiple-point ablations and a larger MWA area could be achieved simultaneously by using the present tri-slot antenna. This study has a potential for the innovative design of MWA antenna for treatment of liver tumor with a large range and a long length.
A survey of various enhancement techniques for square rings antennas
NASA Astrophysics Data System (ADS)
Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.
2017-09-01
The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.
NASA Astrophysics Data System (ADS)
Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar
2015-02-01
An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.
ATCRBS Antenna Modification Kit
DOT National Transportation Integrated Search
1976-06-01
The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...
47 CFR 15.317 - Antenna requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...
47 CFR 15.317 - Antenna requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
47 CFR 15.317 - Antenna requirement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...
View of Antenna #1 (foreground), and Antenna #2 surface doors. ...
View of Antenna #1 (foreground), and Antenna #2 surface doors. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
47 CFR 15.317 - Antenna requirement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...
47 CFR 15.317 - Antenna requirement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...
The Galileo high gain antenna deployment anomaly
NASA Technical Reports Server (NTRS)
Johnson, Michael R.
1994-01-01
On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.
Thin-Wire Modeling Techniques Applied to Antenna Analysis.
1974-10-11
Ol- MULT11 CRN LOOP ANTENNA ... 30 2.4.1 Balanced vs unbalanced operation ... 3 1 2.4.2 Horizontal vs vertical configuration ... 33 3.0...of the Ml A-l Mimloop ... 28 Hl; multiturn loop antenna of Ohio State University ...31 Configurations ot balanced and unbalanced MTLs ... 32...4. Evaluation of Multiturn Loop Antenna In each example the specific project is outlined and the antenna analysis problems of particular interest
Airborne antenna polarization study for the microwave landing system
NASA Technical Reports Server (NTRS)
Gilreath, M. C.
1976-01-01
The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.
Unfurlable satellite antennas - A review
NASA Technical Reports Server (NTRS)
Roederer, Antoine G.; Rahmat-Samii, Yahia
1989-01-01
A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.
The 64 meter antenna operation at K sub A band
NASA Technical Reports Server (NTRS)
Potter, P. D.
1980-01-01
The future potential of the 32 GHz K sub A band frequency region to planetary exploration, and the expected performance of the 64 m antenna network at 32 GHz is addressed. A modest level of noninterference upgrade work is assumed to achieve reasonable antenna aperture efficiency and alleviate antenna pointing difficulties. Electronic compensation of antenna aperture phasing errors is briefly considered as an alternative to the physical upgrade.
Infrared technology for satellite power conversion. [antenna arrays and bolometers
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.
1984-01-01
Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.
1980-05-15
antenna platform . Moving 320.1 MHz from antenna B to antenna G at the GATR site would reduce the lobing structure for this frequency and provide more...uniform coverage. Providing increased antenna separation by spacing only four antennas along the east and west sides of the antenna platform would also...E~ 0 / C4 Is- / It /;/ ,iK 4 I’~ / / ~;~:;’/if ~4Co j0 I i0 - - - -L C4- j Wix L -,> 3-4 = x GZ li i Iz 3 0 Cc -, A25-4 L Attachment 25 ooLa I.- 0
Design and analysis microstrip dipole using fractal Koch for 433 MHz applications
NASA Astrophysics Data System (ADS)
Zulfin, M.; Rambe, A. H.; Budi, B.
2018-02-01
This paper discussed the dipole microstrip antenna design using fractal Koch for working on frequency of 433 MHz. The fractal Koch was used to reduce the size of the microstrip antenna. The smaller the antenna size, the lighter the equipment. AWR simulator was employed to evaluate antenna parameters such as return loss, gain and radiation pattern. The antenna was designed on a FR4 substrate with relative permittivity of 4.4 and thickness 1.6 mm. The result shows that the fractal Koch reduce antenna size about 41.2% and decrease return loss about 30%.
Quartz antenna with hollow conductor
Leung, Ka-Ngo; Benabou, Elie
2002-01-01
A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.
The enhancement mechanism of thin plasma layer on antenna radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai
A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.
Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming
2018-03-01
In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.
NASA Astrophysics Data System (ADS)
Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.
2012-11-01
A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.
Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies
NASA Technical Reports Server (NTRS)
Meador, Mary Ann
2017-01-01
This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.
Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1999-01-01
Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.
NASA Astrophysics Data System (ADS)
Deepak, A.; Kannan, P. Muthu; Shankar, P.
This work explores the design and fabrication of graphene reinforced polyvinylidene fluoride (PVDF) patch-based microstrip antenna. Primarily, antenna was designed at 6GHz frequency and simulation results were obtained using Ansoft HFSS tool. Later fabrication of antenna was carried out with graphene-PVDF films as conducting patch deposited on bakelite substrate and copper as ground plane. Graphene-PVDF films were prepared using solvent casting process. The radiation efficiency of fabricated microstrip patch antenna was 48% entailing it to be adapted as a practically functional antenna. Both simulated and the practical results were compared and analyzed.
Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang
2016-07-26
In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.
Wang, Ziyang; Zhao, Luyu; Cai, Yuanming; Zheng, Shufeng; Yin, Yingzeng
2018-02-16
In this paper, a method to reduce the inevitable mutual coupling between antennas in an extremely closely spaced two-element MIMO antenna array is proposed. A suspended meta-surface composed periodic square split ring resonators (SRRs) is placed above the antenna array for decoupling. The meta-surface is equivalent to a negative permeability medium, along which wave propagation is rejected. By properly designing the rejection frequency band of the SRR unit, the mutual coupling between the antenna elements in the MIMO antenna system can be significantly reduced. Two prototypes of microstrip antenna arrays at 5.8 GHz band with and without the metasurface have been fabricated and measured. The matching bandwidths of antennas with reflection coefficient smaller than -15 dB for the arrays without and with the metasurface are 360 MHz and 900 MHz respectively. Using the meta-surface, the isolation between elements is increased from around 8 dB to more than 27 dB within the band of interest. Meanwhile, the total efficiency and peak gain of each element, the envelope correlation coefficient (ECC) between the two elements are also improved by considerable amounts. All the results demonstrate that the proposed method is very efficient for enhancing the performance of MIMO antenna arrays.
Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang
2016-01-01
In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331
A microfabricated low-profile wideband antenna array for terahertz communications.
Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W
2017-04-28
While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.
Van Baelen, Dries; Lemey, Sam; Verhaevert, Jo; Rogier, Hendrik
2018-01-03
A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.
Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke
2012-01-04
To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Buttgenbach, Thomas H.
1993-01-01
The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.
Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application
Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui
2016-01-01
Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954
Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.
Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui
2016-06-27
Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.
Analysis of a generalized dual reflector antenna system using physical optics
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Lagin, Alan R.
1992-01-01
Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
Characterization of the RPW Electric Antenna System aboard Solar Orbiter
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Rucker, H. O.; Oswald, T.; Sampl, M.; Fischer, G.; Macher, W.; Maksimovic, M.
2009-12-01
Radio and Plasma Waves Experiment The Radio and Plasma Waves experiment (RPW) is unique amongst the Solar Orbiter instruments in that it makes both important in situ and remote-sensing measurements. It is of prime importance for the Solar Orbiter mission. RPW will perform measurements to determine the properties, dynamics and interactions of plasma, fields and particles in the near-Sun heliosphere. It will participate in the investigation of the links between the solar surface, corona and inner heliosphere. RPW will explore, at all latitudes, the energetics, dynamics and fine-scale structure of the Sun’s magnetized atmosphere. More specifically, RPW will measure magnetic and electric fields in high time resolution using a number of sensors, to determine the characteristics of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz. Electric Antenna System A novel electric antenna design is proposed for the RPW experiment. It consists of a set of three identical monopoles, each of a total length of more than 6 meters, deployed from the corners of the spacecraft and perpendicular to the spacecraft-Sun axis. Each of the three antennas rods has a length of 5m and is mounted on a boom. The antennas are equally spaced, so the angles between the antennas are 120°. Simulation of the Antenna System Performance The electromagnetic wave reception properties of the spacecraft antenna system are influenced by the currents flowing on the conductive surface of the spacecraft body and the impedances at the foot points of the antenna rods. In the specific case of Solar Orbiter the spacecraft body and the antenna system structure is not yet finally defined, however the preliminary known schematics enable a first estimate of the effective length vectors. The foot point voltages for all antenna elements are calculated for linear polarized waves, incident from different directions. Applying the reciprocity theorem a full polarimetric characterization of the antenna system is performed in a frequency range from 100 kHz up to 20 MHz. One-side heating of the antenna rods caused by solar radiation will lead to a significant antenna bending. This will influence the effective antenna vectors and has to be taken into account for the calibration process, especially if the bending will cause asymmetries in the antenna system. A detailed study of radiation coupling effects caused for instance by solar panels and high gain communication antenna (HGA) has been performed. The orientation of solar panels and HGA as well as the bending of the antenna elements has a significant influence on the instrument calibration. The analysis of different combinations of the three foot point voltages points out the instrument capabilities in polarization sensitive direction finding. The results of the computer simulations together with model scaled measurements will be used to evaluate the influence of the spacecraft on the antenna system reception properties and may be used for a re-evaluation of the structure and position of antennas and instruments on board Solar Orbiter
ATCRBS Antenna Modification Kit - Phase I
DOT National Transportation Integrated Search
1973-06-01
The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...
Space vehicle electromechanical system and helical antenna winding fixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; Guenther, David
A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.
New Concepts in Electromagnetic Materials and Antennas
2015-01-01
Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division
Layout and cabling considerations for a large communications antenna array
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.
1993-01-01
Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.
Implementation of the 64-meter-diameter Antennas at the Deep Space Stations in Australia and Spain
NASA Technical Reports Server (NTRS)
Bartos, K. P.; Bell, H. B.; Phillips, H. P.; Sweetser, B. M.; Rotach, O. A.
1975-01-01
The management and construction aspects of the Overseas 64-m Antenna Project in which two 64-m antennas were constructed at the Tidbinbilla Deep Space Communications Complex in Australia, and at the Madrid Deep Space Communications Complex in Spain are described. With the completion of these antennas the Deep Space Network is equipped with three 64-m antennas spaced around the world to maintain continuous coverage of spacecraft operations. These antennas provide approximately a 7-db gain over the capabilities of the existing 26-m antenna nets. The report outlines the project organization and management, resource utilization, fabrication, quality assurance, and construction methods by which the project was successfully completed. Major problems and their solutions are described as well as recommendations for future projects.
UHF coplanar-slot antenna for aircraft-to-satellite data communications
NASA Technical Reports Server (NTRS)
Myhre, R. W.
1979-01-01
A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.
Orthogonal feeding techniques for tapered slot antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1998-01-01
For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.
Antenna Calibration and Measurement Equipment
NASA Technical Reports Server (NTRS)
Rochblatt, David J.; Cortes, Manuel Vazquez
2012-01-01
A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.
El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M
2016-01-13
We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.
Multi-mode horn antenna simulation
NASA Technical Reports Server (NTRS)
Dod, L. R.; Wolf, J. D.
1980-01-01
Radiation patterns were computed for a circular multimode horn antenna using waveguide electric field radiation expressions. The circular multimode horn was considered as a possible reflector feed antenna for the Large Antenna Multifrequency Microwave Radiometer (LAMMR). This horn antenna uses a summation of the TE sub 11 deg and TM sub 11 deg modes to generate far field primary radiation patterns with equal E and H plane beamwidths and low sidelobes. A computer program for the radiation field expressions using the summation of waveguide radiation modes is described. The sensitivity of the multimode horn antenna radiation patterns to phase variations between the two modes is given. Sample radiation pattern calculations for a reflector feed horn for LAMMR are shown. The multimode horn antenna provides a low noise feed suitable for radiometric applications.
Low-SAR metamaterial-inspired printed monopole antenna
NASA Astrophysics Data System (ADS)
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2017-01-01
In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.
Geodetic antenna calibration test in the Antarctic environment
Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.
2006-01-01
TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection sessions, a reference station was occupied continuously with the Ashtech D/M choke ring antenna, while the second station was occupied by the tested antennas, one 3-day session for each antenna type. The coordinate differences were produced using software optimized for the analysis of data collected over short baselines. Each solution incorporated the NGS antenna calibration data appropriate for each antenna model. Hourly and 24-hour solutions were analyzed for repeatability and compared to the standard baseline coordinate differences. No significant variation was observed when comparing the same type of antennas and when switching antennas at the test site using daily solutions. An mm-level scatter can be observed comparing different antennas over the 1-hour solutions; it is smaller for the horizontal components, as compared to the vertical direction. At this point, it can be concluded that the standard antenna calibration models from NGS used for each antenna involved in this test did not result in any significant variation in the daily results, but with some in the hourly results. Thus, based on this fact, the antenna types tested here could be used in the future TAMDEF campaigns, where 24-hour solutions are normally used for deformation monitoring. These results can serve as good guidance to any future use of GPS equipment in Antarctica.
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
Small Patch Antennas for UWB Wireless Body Area Network
NASA Astrophysics Data System (ADS)
Klemm, M.; Tröster, G.
This paper presents the transient characteristics of an aperture-stacked patch antenna (ASPA) and its miniaturized version. These antennas were designed for ultra-wideband (UWB) body area network (BAN) applications, to operate within the 3 to 6 GHz frequency band. The APSA with large ground plane size has a planar dimensions 70 × 70 mm2, the smaller version has dimensions 32 × 26 mm2. The latest yields 85% reduction of the antenna surface. Time- and frequency-domain characteristics of these antennas were calculated in a transmission mode (Tx) and also in a complete, two-antenna (Tx-Rx) system. We have used 3 different waveforms to drive the antenna: gaussian pulse (duration-250 ps), monocycle pulse (duration-300 ps) and defined wavelet (duration-650 ps). The received pulses have very similar shapes (fidelity >90%), but they differ in the voltage amplitudes. Results show that the highest received voltage (best transmission efficiency) is achieved for the pulse with the closest spectrum to the antenna's transfer function characteristic. In order to disclose the effects of the human body proximity, two body models were built and full-wave FDTD method was employed to carry out the simulations. Significant changes of the UWB antenna performance when close to the body were identified. The most important effects are the seriously decreased radiation efficiency (16 to 34%) and different (from that in a free space) shape of the antenna transfer function. The first one can have the impact on low power implementations of UWB wearable radios; the second one discloses possible influence on the UWB systems design (especially for template receivers). The impact of the human body on antenna characteristics was identified to be a key factor in UWB body-worn antenna design.
In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana
2013-02-15
To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less
Ionospheric effects to antenna impedance
NASA Technical Reports Server (NTRS)
Bethke, K. H.
1986-01-01
The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.
An Approach for Smart Antenna Testbed
NASA Astrophysics Data System (ADS)
Kawitkar, R. S.; Wakde, D. G.
2003-07-01
The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... supporting structures, CB base station antennas, and TV antennas are defined in § 1402.1(b)(1) through (3). ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CB BASE STATION ANTENNAS, TV ANTENNAS, AND SUPPORTING STRUCTURES § 1402.3 Definitions. (a) The definitions in...
Collapsible structure for an antenna reflector
NASA Technical Reports Server (NTRS)
Trubert, M. R. (Inventor)
1973-01-01
A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.
Adaptive Nulling in Hybrid Reflector Antennas
1992-09-01
correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 17.7 - Antenna structures requiring notification to the FAA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structures requiring notification to..., MARKING, AND LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.7 Antenna structures requiring notification to the FAA. A notification to the Federal Aviation...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.150 - Directional antenna systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Directional antenna systems. 73.150 Section 73... BROADCAST SERVICES AM Broadcast Stations § 73.150 Directional antenna systems. (a) For each station employing a directional antenna, all determinations of service provided and interference caused shall be...
47 CFR 80.876 - VHF radiotelephone antenna system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false VHF radiotelephone antenna system. 80.876... to Subpart W § 80.876 VHF radiotelephone antenna system. A vertically polarized nondirectional antenna must be provided for VHF radiotelephone installations. The construction and installation of this...
47 CFR 101.125 - Temporary fixed antenna height restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Temporary fixed antenna height restrictions... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.125 Temporary fixed antenna height restrictions. The overall antenna structure heights employed by mobile stations in the Local...
47 CFR 2.1051 - Measurements required: Spurious emissions at antenna terminals.
Code of Federal Regulations, 2014 CFR
2014-10-01
... antenna terminals. 2.1051 Section 2.1051 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1051 Measurements required: Spurious emissions at antenna terminals. The radio... checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves...
47 CFR 80.1017 - Antenna system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...
47 CFR 17.7 - Antenna structures requiring notification to the FAA.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna structures requiring notification to..., MARKING, AND LIGHTING OF ANTENNA STRUCTURES Federal Aviation Administration Notification Criteria § 17.7 Antenna structures requiring notification to the FAA. A notification to the Federal Aviation...
47 CFR 73.150 - Directional antenna systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Directional antenna systems. 73.150 Section 73... BROADCAST SERVICES AM Broadcast Stations § 73.150 Directional antenna systems. (a) For each station employing a directional antenna, all determinations of service provided and interference caused shall be...
47 CFR 80.876 - VHF radiotelephone antenna system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false VHF radiotelephone antenna system. 80.876... to Subpart W § 80.876 VHF radiotelephone antenna system. A vertically polarized nondirectional antenna must be provided for VHF radiotelephone installations. The construction and installation of this...
47 CFR 2.1051 - Measurements required: Spurious emissions at antenna terminals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... antenna terminals. 2.1051 Section 2.1051 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1051 Measurements required: Spurious emissions at antenna terminals. The radio... checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves...
47 CFR 73.150 - Directional antenna systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Directional antenna systems. 73.150 Section 73... BROADCAST SERVICES AM Broadcast Stations § 73.150 Directional antenna systems. (a) For each station employing a directional antenna, all determinations of service provided and interference caused shall be...
47 CFR 2.1051 - Measurements required: Spurious emissions at antenna terminals.
Code of Federal Regulations, 2013 CFR
2013-10-01
... antenna terminals. 2.1051 Section 2.1051 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1051 Measurements required: Spurious emissions at antenna terminals. The radio... checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 101.125 - Temporary fixed antenna height restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Temporary fixed antenna height restrictions... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.125 Temporary fixed antenna height restrictions. The overall antenna structure heights employed by mobile stations in the Local...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.150 - Directional antenna systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Directional antenna systems. 73.150 Section 73... BROADCAST SERVICES AM Broadcast Stations § 73.150 Directional antenna systems. (a) For each station employing a directional antenna, all determinations of service provided and interference caused shall be...