Science.gov

Sample records for anthocyanins rich extract-induced

  1. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    SciTech Connect

    Chang, Y.-C.; Huang, H.-P.; Hsu, J.-D.; Yang, S.-F.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-06-15

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  2. Effect of Hibiscus anthocyanins-rich extract induces apoptosis of proliferating smooth muscle cell via activation of P38 MAPK and p53 pathway.

    PubMed

    Lo, Chia-Wen; Huang, Hui-Pei; Lin, Hui-Mei; Chien, Cheng-Ting; Wang, Chau-Jong

    2007-12-01

    Hibiscus sabdariffa L. (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in Sudan and in eastern Taiwan. It has been reported to contain a number of protocatechuic acid and anthocyanins. In vitro experimental studies have shown that anthocyanins administration of the extract produces anti-inflammation and chemoprevention effects. In spite of the wide use of Hibiscus sabdariffa L. in folk medicine for treating various diseases, our previous study indicated a potency of Hibiscus sabdariffa extract (HSE) in anti-atherosclerosis. The mechanisms of anthocyanins administration of the extract produce from Hibiscus sabdariffa L. to attenuate atherosclerosis were not clarified. In this study, we found that Hibiscus anthocyanins (HAs) could inhibit the serum-stimulated proliferation of smooth muscle cell (SMC) and result in cell apoptosis. The HAs inducing cell apoptosis was dose dependent. We further used SB203580 (p38 inhibitor) to block cellular apoptosis and evaluate its effect on the HAs-inducing SMC death via some apoptosis criteria including DNA fragmentation and flow cytometry. We suggested that the mechanisms of the inhibitory effect of HAs on atherosclerosis could be via inhibiting the proliferation of SMC. HAs induces apoptosis via (i) activating p38 MAP kinase that subsequently phosphorylates target protein c-Jun and transduces the signal to further activate the apoptotic protein cascades that contain Fas-mediated signaling (Fas/caspase-8 signaling module) and (ii) activating p53 and inducing bax expression. As an outcome of the events, cytochrome c releases from the mitochondria, leading to cell apoptosis. In these experiments, HAs showed strong potential to induce SMC cell apoptosis via p38 and p53 pathway. In consequence, the rate of atherosclerotic formation is slowed down, and the progress is suppressed.

  3. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin.

    PubMed

    Lin, Z; Fischer, J; Wicker, L

    2016-03-01

    Pectin was extracted from blueberry powder into three fractions of water soluble (WSF), chelator soluble (CSF) and sodium carbonate soluble (NSF). The fractions were incubated with cyanidin-3-glucoside (C3G), a mixture of five anthocyanidins (cyanidin, pelargonidin, malvidin, petunidin and delphinidin) or blueberry juice at pH 2.0-4.5. Free anthocyanins and bound anthocyanin-pectin mixtures were separated by ultrafiltration. WSF bound the least amount of anthocyanin at all pH values. CSF had stronger anthocyanin binding ability at pH 2.0-3.6, while NSF had stronger anthocyanin binding ability at pH 3.6-4.5. The pectin and anthocyanin binding was lowest at pH 4.5 and higher at pH 2.0-3.6. Nearly doubling C3G pigment content increased bound anthocyanin percentage by 16-23% at pH 3.6, which favored anthocyanin aromatic stacking, compared to 3-9% increase at pH 2.0. Ionic interaction between anthocyanin flavylium cations and free pectic carboxyl groups, and anthocyanin stacking may be two major mechanisms for pectin and anthocyanin binding.

  4. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function.

    PubMed

    Ghosh, Dilip; Konishi, Tetsuya

    2007-01-01

    Anthocyanins are the largest group of water-soluble pigments in the plant kingdom, known collectively as flavonoids. More than 8000 flavonoids, and 500 anthocyanin structures had been reported by the year 2000 and more are continually being isolated. Anthocyanins are believed to display an array of beneficial actions on human health and well-being. Due to our increasing understanding and awareness of the potential beneficial human health effects, research on anthocyanins has recently intensified. During the past two decades an increasing number of studies have investigated the diverse protective effects elicited by polyphenolics present in various fruits and vegetables. These effects include antioxidant, anti-allergic, anti-inflammatory, anti-viral, antiproliferative, anti-mutagenic, anti-microbial, anti-carcinogenic, protection from cardiovascular damage and allergy, microcirculation improvement, peripheral capillary fragility prevention, diabetes prevention, and vision improvement. Other physiological effects are continually being investigated. The aim of the present article is to summarise the known anti-diabetic and eye function properties of anthocyanins to help in our understanding of their functional mechanism.

  5. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice.

    PubMed

    Diaconeasa, Zoriţa; Leopold, Loredana; Rugină, Dumitriţa; Ayvaz, Huseyin; Socaciu, Carmen

    2015-01-22

    The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs) obtained from two commercially available juices (blueberry and blackcurrant juices) on three tumor cell lines; B16F10 (murine melanoma), A2780 (ovarian cancer) and HeLa (cervical cancer). Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases.

  6. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism.

    PubMed

    Miyake, Seiji; Takahashi, Noriko; Sasaki, Mariko; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2012-01-01

    Anthocyanin-rich bilberry extract, a plant-derived antioxidant, has been utilized as a popular supplement for ocular health worldwide. However, it is unclear whether this extract has any biological effect on visual function, and the mechanism for such an effect is completely unknown. In this study, we generated a mouse model of endotoxin-induced uveitis (EIU) that shows retinal inflammation, as well as uveitis, by injecting lipopolysaccharide. We pretreated the mice with anthocyanin-rich bilberry extract and analyzed the effect on the retina. Anthocyanin-rich bilberry extract prevented the impairment of photoreceptor cell function, as measured by electroretinogram. At the cellular level, we found that the EIU-associated rhodopsin decreased and the shortening of outer segments in photoreceptor cells were suppressed in the bilberry-extract-treated animals. Moreover, the extract prevented both STAT3 activation, which induces inflammation-related rhodopsin decrease, and the increase in interleukin-6 expression, which activates STAT3. In addition to its anti-inflammatory effect, the anthocyanin-rich bilberry extract ameliorated the intracellular elevation of reactive oxygen species and activated NF-κB, a redox-sensitive transcription factor, in the inflamed retina. Our findings indicate that anthocyanin-rich bilberry extract has a protective effect on visual function during retinal inflammation.

  7. The effects of anthocyanin-rich wheat diet on the oxidative status and behavior of rats

    PubMed Central

    Janšáková, Katarína; Bábíčková, Janka; Havrlentová, Michaela; Hodosy, Július; Kraic, Ján; Celec, Peter; Tóthová, Ľubomíra

    2016-01-01

    Aim To evaluate the effect of food containing anthocyanin-rich wheat on oxidative status and behavior of healthy rats. Methods Twenty male rats were divided into the control and anthocyanin group. Oral glucose tolerance test was performed, and proteinuria and creatinine clearance were measured. Behavioral analysis was performed in Phenotyper cages. Serum and tissues were collected to measure the markers of oxidative stress and antioxidant status. Results Anthocyanins significantly increased total antioxidant capacity in serum (P = 0.039), decreased advanced oxidation protein products in the kidney (P = 0.002), but increased thiobarbituric acid reactive substances in the kidney compared to the control group. No significant difference between the groups was found in the markers of oxidative stress in the liver and colon, as well as in renal functions and glucose metabolism. The anthocyanin group spent significantly less time in the spotlight zone of the Phenotyper cages (P = 0.040), indicating higher anxiety-like behavior. Conclusion Food containing anthocyanin-rich wheat had positive effects on serum antioxidant status and kidney protein oxidation, but increased lipid peroxidation in the kidney and modified animal behavior related to anxiety. The molecular mechanisms leading to observed effects should be further elucidated. PMID:27106354

  8. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows.

    PubMed

    Hosoda, Kenji; Eruden, Bayaru; Matsuyama, Hiroki; Shioya, Shigeru

    2012-06-01

    Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin-rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin-rich corn silage (AR treatment) in a crossover design. The anthocyanin-rich corn silage-based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids-not-fat contents in the AR-treatment cows were lower than in the control cows. The feeding of the anthocyanin-rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin-rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin-rich corn with good nutritional value is needed for practical use as a ruminant feed.

  9. Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC(Min) mice fed suboptimal levels of sulindac.

    PubMed

    Bobe, Gerd; Wang, Bing; Seeram, Navindra P; Nair, Muraleedharan G; Bourquin, Leslie D

    2006-12-13

    A promising approach for cancer chemoprevention might be a combination therapy utilizing dietary phytochemicals and anticarcinogenic pharmaceuticals at a suboptimal dosage to minimize any potential adverse side effects. To test this hypothesis, various dosages of anthocyanin-rich tart cherry extract were fed in combination with suboptimal levels of the nonsteroidal anti-inflammatory drug sulindac to APCMin mice for 19 weeks. By the end of the feeding period, fewer mice that were fed the anthocyanin-rich extract in combination with sulindac lost more than 10% of body weight than mice fed sulindac alone. Mice that were fed anthocyanin-rich extract (at any dose) in combination with sulindac had fewer tumors and a smaller total tumor burden (total tumor area per mouse) in the small intestine when compared to mice fed sulindac alone. These results suggest that a dietary combination of tart cherry anthocyanins and sulindac is more protective against colon cancer than sulindac alone.

  10. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease.

    PubMed

    Strathearn, Katherine E; Yousef, Gad G; Grace, Mary H; Roy, Susan L; Tambe, Mitali A; Ferruzzi, Mario G; Wu, Qing-Li; Simon, James E; Lila, Mary Ann; Rochet, Jean-Christophe

    2014-03-25

    Neuropathological evidence indicates that dopaminergic cell death in Parkinson׳s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function.

  11. Chemopreventive Action of Anthocyanin-rich Black Soybean Fraction in APCMin/+ Intestinal Polyposis Model

    PubMed Central

    Park, Mi-Young; Kim, Jung-Mi; Kim, Jong-Sang; Choung, Myoung-Gun; Sung, Mi-Kyung

    2015-01-01

    Background: Anthocyanins have been shown to inhibit cancer cell growth by suppressing oxidative stress and inflammatory responses. The purpose of this study was to investigate the effects of an anthocyanin-rich extract (AE) from black soybean coat on intestinal carcinogenesis. Methods: ApcMin/+ mice were fed a diet of 0.2% or 0.5% AE for 7 weeks. We analyzed the number of intestinal tumors, oxidative stress and inflammatory markers associated with β-catenin and cytosolic phospholipase A2 (cPLA2) signals. The number of intestinal tumors, and cellular expression of β-catenin were determined. Results: The number of intestinal tumors was significantly lower in mice fed a 0.5% AE diet compared to those of the other groups. Cytosolic β-catenin expression was significantly decreased in the AE supplemented groups compared to that of the control animals. In addition, mucosa expression of cyclooxygenase-2 and cPLA2 were also significantly decreased in the 0.5% AE group, by 32% and 62%, respectively, compared to the control group. Conclusions: These results suggest that dietary AE reduced the development of intestinal tumors, possibly through the ability to suppress oxidative stresses, decreasing inflammatory responses mediated by β-catenin associated signals. PMID:26473158

  12. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  13. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black beans contain anthocyanins that could be used as colorants in foods with associated health benefits. The objective was to optimize anthocyanins extraction from black bean coats and evaluate their physicochemical stability and antidiabetes potential. Optimal extraction conditions were 24% ethan...

  14. Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India.

    PubMed

    Joshi, Robin; Rana, Ajay; Gulati, Ashu

    2015-06-01

    Recently anthocyanin-rich purple tea varieties have been developed. The quality of these new purple tea varieties developed in Kangra valley was assessed, and compared with the quality of tea from standard Kangra clone. Purple tea shoots (PL) recorded higher amount of polyphenols compared to standard green tea shoot (GL) while epigallocatechin gallate (EGCG) recorded higher levels in GL. Higher levels of theaflavins were recorded in orthodox black tea from purple shoots (BTP) compared to black tea (BT) made from green shoots. Both theanine and caffeine recorded higher levels in GL. Volatile flavour profiles of these teas showed qualitative and quantitative differences. Aroma extract dilution assay showed higher dilution factors in BTP than BT. Orthodox teas from purple shoots exhibited higher antioxidant activity compared to standard black tea. Strong correlation of total quality scores with aroma and infusion colour was observed. Tea from anthocyanin-rich cultivars can become specialty teas with high antioxidant activity.

  15. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility.

    PubMed

    Sui, Xiaonan; Zhang, Yan; Zhou, Weibiao

    2016-04-01

    Anthocyanin-rich black rice extract powder (ABREP) as a nutraceutical source was fortified into bread. The quality and digestibility behaviors of bread with ABREP were evaluated through instrumental and in vitro digestion studies. The quality of bread with 2% of ABREP was not significantly (p>0.05) different from the control bread; however, increasing the ABREP level to 4% caused less elasticity and higher density of bread. A mathematical model was further developed to systemically describe the trajectory of bread digestion. The digestion rates of bread with ABREP were found to be reduced by 12.8%, 14.1%, and 20.5% for bread with 1%, 2%, and 4% of ABREP, respectively. Results of the study suggest that the fortification of anthocyanins into bread could be an alternative way to produce functional bread with a lower digestion rate and extra health benefits.

  16. Effects of extraction conditions on improving the yield and quality of an anthocyanin-rich purple corn (Zea mays L.) color extract.

    PubMed

    Jing, P; Giusti, M M

    2007-09-01

    Purple corn (Zea mays L.) is a rich and economic source of anthocyanin colorants and functional ingredients. However, high levels of anthocyanin-rich waste are generated during processing, reducing the yields and increasing the costs of the final product. This waste has been associated with anthocyanin complexation with tannins and proteins. Our objective was to evaluate anthocyanin extraction methods to reduce purple corn waste. Different solvents (water, 0.01%-HCl-acidified water, and 0.01%-HCl-acidified ethanol), temperatures (room temperature, 50, 75, and 100 degrees C), and times of exposure to the solvents were investigated. Acetone (70% acetone in water) extraction was used as control. Anthocyanins, total phenolics, tannins, and proteins in extracts were measured by the pH differential, Folin-Ciocalteu, protein precipitation, and BCA assay methods. Qualitative analyses were done by HPLC coupled to a PDA detector and SDS-PAGE analysis. Water at 50 degrees C achieved the highest yield of anthocyanins (0.94 +/- 0.03 g per 100 g dry corncob) with relatively low tannins and proteins, comparable to the anthocyanin yield obtained by 70% acetone (0.98 +/- 0.08 g per 100 g dry corncob). Extending the extraction time from 20 to 60 min and using consecutive reextraction procedures reduced anthocyanin purity, increasing the yields of other phenolics. A neutral protease was applied to the extracts and effectively decomposed the major protein that was believed to contribute to the development of anthocyanin complexation and waste generation. Extraction time, consecutive reextraction procedures, and enzyme hydrolysis should be considered for high yield of anthocyanins and waste reduction.

  17. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins.

    PubMed

    Taheri, Rod; Connolly, Bryan A; Brand, Mark H; Bolling, Bradley W

    2013-09-11

    Polyphenols from underutilized black, purple, and red aronia (Aronia melanocarpa, Aronia prunifolia, and Aronia arbutifolia) and 'Viking' (Aronia mitschurinii) berries were characterized. Anthocyanin and nonanthocyanin flavonoids were quantitated by UHPLC-DAD-MS and proanthocyanidins by normal-phase HPLC. On a dry weight basis, anthocyanins were mainly cyanidin-3-galactoside, highest in black aronia (3.4-14.8 mg/g) and lowest in red aronia (0.5-0.8 mg/g) as cyandin-3-galactoside equivalents. Berries from 'Viking' and the red accession UC021 had substantially more proanthocyanidins than the other accessions, with 3.3 and 3.8 mg catechin equiv/g, respectively. Chlorogenic acids and quercetin glycosides were most abundant in purple UC047 berries, at 17.3 and 1.3 mg/g, respectively. In contrast to anthocyanin content, total phenol values were highest in berries from red and purple accessions and attributed to phenolic acid and proanthocyanin content. Thus, red, purple, and black aronia berries are rich sources of polyphenols with various levels of polyphenol classes.

  18. Anthocyanins Present in Some Tropical Fruits.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many tropical fruits are rich in anthocyanins, though limited information is available about the characterization and quantification of these anthocyanins. The identification of anthocyanin pigments in four tropical fruits was determined by ion trap mass spectrometry. Fruits studied included acero...

  19. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    PubMed

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

  20. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to “accelerated aging.” One such scenario is exposure to space radiation, consisting of high-energy and -charge par...

  1. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems.

    PubMed

    Krenn, L; Steitz, M; Schlicht, C; Kurth, H; Gaedcke, F

    2007-11-01

    The fundamental nutritional benefit of fruit and vegetables in the prevention of degenerative diseases--especially in the light of the current "anti-aging wave"--has directed the attention of scientists and consumers to a variety of berry fruits and their constituents. Many of these fruits, e.g. blueberries, elderberries or cranberries, have a long tradition in European and North American folk medicine. Based on these experiences and due to the growing interest the number of food supplements on the market containing fruit powders, juice concentrates or extracts of these fruits has increased considerably. Advertising for these products mainly focusses on the phenolic compounds, especially the anthocyanins and proanthocyanidins and their preventive effects. Most of the preparations are combinations, e.g. of extracts of different fruits with vitamins and trace elements, etc. which are labelled in a way which does not allow a comparison of the products. Typically, information on the extraction solvent, the drug: extract ratio and the content of anthocyanins and proanthocyanidins is missing. Besides that, the analysis of these polyphenols causes additional problems. Whereas the quality control of herbal medicinal products is regulated in detail, no uniform requirements for food supplements are existing. A broad spectrum of methods is used for the assay of the constituents, leading to differing, incomparable results. In addition to that, the methods are quite interference-prone and consequently lead to over- or underestimation of the contents. This publication provides an overview of some selected berries (lingonberry, cranberry, black elderberry, black chokeberry, black currant, blueberry), their constituents and use. The analytical methods currently used for the identification and quantification of the polyphenols in these berries are described, including an evaluation of their advantages and disadvantages.

  2. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation.

    PubMed

    Su, Nana; Wu, Qi; Liu, Yuanyuan; Cai, Jiangtao; Shen, Wenbiao; Xia, Kai; Cui, Jin

    2014-07-09

    The aims of the study were to investigate whether hydrogen gas (H2) was involved in regulation of anthocyanin biosynthesis in two contrasting radish (Raphanus sativus L.) varieties (low [LA] and high [HA] level of anthocyanin) under UV irradiation. The results showed that hydrogen-rich water (HRW) significantly blocked the UV-A-induced increase of H2O2 and O2(•-) accumulation, and enhanced the UV-A-induced increase of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities in LA and HA. Furthermore, UV-A-induced increase of anthocyanin and total phenols was further enhanced only in HA sprouts cotreated with HRW. LC-MS/MS analysis showed that five anthocyanidins existed in HA sprouts, but only two in LA sprouts. Meanwhile, the cyanidin was the most abundant anthocyanidin in HA, and the cyanidin was 2-fold higher cotreated with HRW than UV-A. Molecular analyses showed that the anthocyanin biosynthesis-related genes were upregulated significantly in both HA (in particular) and LA sprouts treated with HRW plus UV-A. These data imply that HRW reestablishes reactive oxygen species homeostasis in both LA and HA, but exerts different effects on anthocyanin accumulation between them under UV-A.

  3. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet.

    PubMed

    Han, Kyu-Ho; Matsumoto, Asami; Shimada, Ken-ichiro; Sekikawa, Mitsuo; Fukushima, Michihiro

    2007-11-01

    We examined the antioxidant effects of polyphenol/anthocyanin-rich potato (Solanum tuberosum cv. Shadow-Queen) flakes in male rats fed a high-cholesterol diet. The rats were served either a high-cholesterol (0.5% cholesterol plus 0.125% sodium cholate) diet, or a high-cholesterol diet containing a mixture of 243 g alpha-maize starch/kg supplemented with one of the following (per kg diet): 300 g medium purple potato (Shadow-Queen), 300 g white potato (Solanum tuberosum cv. Toyoshiro) or 300 g dark purple sweet potato (Ipomoea batatas cv. Ayamurasaki) flakes for 28 d. We analysed thiobarbituric acid reactive substance (TBARS) levels in the serum and liver, and antioxidant enzyme activities in the liver. At this dosage, TBARS levels in the serum and liver of the Shadow-Queen and Ayamurasaki groups were significantly lower than those in the control and Toyoshiro groups. The serum urate levels in all the flake groups were significantly lower than that in the control group. The hepatic glutathione levels in the Shadow-Queen and Ayamurasaki groups were significantly higher than in the control and Toyoshiro groups. The activities of hepatic glutathione reductase and glutathione S-transferase in the Shadow-Queen and Ayamurasaki groups were significantly greater than those in the control group. These results show that modulation of antioxidant enzymes and oxidative status in the serum and liver by the purple potato flake diet (Shadow-Queen) containing polyphenols/anthocyanins may play an important role in the protection against adverse effects related to oxidative damage in rats fed a high-cholesterol diet.

  4. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  5. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice.

    PubMed

    Mauray, A; Felgines, C; Morand, C; Mazur, A; Scalbert, A; Milenkovic, D

    2012-01-01

    Intake of anthocyanin-rich foods has been associated with a reduced risk of cardiovascular diseases. We recently reported that a nutritional supplementation with a bilberry anthocyanin-rich extract (BE) attenuates atherosclerotic lesion development in apolipoprotein E-deficient (apoE⁻/⁻) mice. However, the mechanism(s) of their preventive action are not completely understood. Anthocyanins may alter mRNA levels of genes related to atherosclerosis in cultured macrophages and endothelial cells, but in vivo studies remain scarce. The aim of the present study was to explore the in vivo mechanisms of action of the same bilberry extract, administered by supplementation at a nutritional level, in the aorta of apo E⁻/⁻ mice using a global transcriptomic approach. This study focused on the early stage of atherosclerosis development for better assessment of BE action on initiation mechanisms of this pathology. After a two week period, plasma lipid and antioxidant capacity were evaluated and the global genomic analysis was carried out using pangenomic microarrays. BE supplementation significantly improved hypercholesterolemia whereas the plasmatic antioxidant status remained unchanged. Nutrigenomic analysis identified 1261 genes which expression was modulated by BE in the aorta. Bioinformatic analysis revealed that these genes are implicated in different cellular processes such as oxidative stress, inflammation, transendothelial migration and angiogenesis, processes associated with atherosclerosis development/protection. Some of the most significantly down-regulated genes included genes coding for AOX1, CYP2E1 or TXNIP implicated in the regulation of oxidative stress, JAM-A coding for adhesion molecules or VEGFR2 implicate in regulation of angiogenesis. Other genes were up-regulated, such as CRB3, CLDN14 or CDH4 potentially associated with increased cell-cell adhesion and decreased paracellular permeability. These results provide a global integrated view of the

  6. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    PubMed

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.

  7. Removal of off-flavours from radish (Raphanus sativus L.) anthocyanin-rich pigments using chitosan and its mechanism(s).

    PubMed

    Gao, Ruichang; Jing, Pu; Ruan, Siyu; Zhang, Yifan; Zhao, Shujuan; Cai, Zhan; Qian, Bingjun

    2014-03-01

    In this paper, we examined the role of chitosan in the removal of off-flavours from radish anthocyanin-rich pigments and studied the mechanisms of the process. Four radish glucosinolates (glucoraphenin, dehydroerucin, glucobrassicin, and glucoerucin) were identified by LC-MSn from root extracts and dehydroerucin was found to be the major glucosinolate in red radish roots. Application of chitosan with 76%, 83% or 89% deacetylation in radish extracts attributed to 26%, 35% or 43% adsorption rate for glucosinolates, and 28%, 26% or 22% for anthocyanins, respectively. HS-SPME/GC-MS analysis demonstrated that the concentration of volatile compounds decreased by 70%, resulting in the loss of odorous compounds. The changes in chitosan spectra before/after adsorption and after desorption at 1590 and 3360cm(-1) and at broad bands from 2600 to 2000cm(-1) suggest that the dominant adsorption mechanisms of glucosinolates on chitosan may be electrostatic attractions, including hydrogen bonds and charge neutralisation.

  8. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers.

    PubMed

    Mertens-Talcott, Susanne U; Rios, Jolian; Jilma-Stohlawetz, Petra; Pacheco-Palencia, Lisbeth A; Meibohm, Bernd; Talcott, Stephen T; Derendorf, Hartmut

    2008-09-10

    The acai berry is the fruit of the acai palm and is traditionally consumed in Brazil but has gained popularity abroad as a food and functional ingredient, yet little information exists on its health effect in humans. This study was performed as an acute four-way crossover clinical trial with acai pulp and clarified acai juice compared to applesauce and a non-antioxidant beverage as controls. Healthy volunteers (12) were dosed at 7 mL/kg of body weight after a washout phase and overnight fast, and plasma was repeatedly sampled over 12 h and urine over 24 h after consumption. Noncompartmental pharmacokinetic analysis of total anthocyanins quantified as cyanidin-3-O-glucoside showed Cmax values of 2321 and 1138 ng/L at t max times of 2.2 and 2.0 h, and AUC last values of 8568 and 3314 ng h L(-1) for pulp and juice, respectively. Nonlinear mixed effect modeling identified dose volume as a significant predictor of relative oral bioavailability in a negative nonlinear relationship for acai pulp and juice. Plasma antioxidant capacity was significantly increased by the acai pulp and applesauce. Individual increases in plasma antioxidant capacity of up to 2.3- and 3-fold for acai juice and pulp, respectively were observed. The antioxidant capacity in urine, generation of reactive oxygen species, and uric acid concentrations in plasma were not significantly altered by the treatments. Results demonstrate the absorption and antioxidant effects of anthocyanins in acai in plasma in an acute human consumption trial.

  9. The colour degradation of anthocyanin-rich extract from butterfly pea (Clitoria ternatea L.) petal in various solvents at pH 7.

    PubMed

    Marpaung, Abdullah Muzi; Andarwulan, Nuri; Hariyadi, Purwiyatno; Nur Faridah, Didah

    2017-03-17

    A spectroscopic study was conducted to evaluate the colour degradation mechanism of anthocyanin-rich extract from butterfly pea petal. The extract was diluted in four different solvent systems, which were buffer solution pH 7 (AQ7) and the mixture of organic solvent with buffer solution pH 7 (4:1 v/v). The organic cosolvent involved were methanol (ME7), ethanol (ET7) and acetone (AC7). The samples were stored in containers with 0% and 50% headspace, and their colour intensity, total anthocyanin and hypsochromic shift were evaluated periodically. The rank of colour and anthocyanin degradation from the biggest was AQ7 > ME7 > ET7 > AC7. The longest hypsochromic shift was AQ7 > ME7 > ET7, while in AC7 the shift was absent. There was evidence that the volume of package headspace provoked colour stability. The colour degradation in AC7 was proposed to occur through hydrophobic interaction unfolding, and in AQ7 was through the deacylation, while in ME7 and ET7 was due to both mechanisms.

  10. An anthocyanin-rich extract from Hibiscus sabdariffa linnaeus inhibits N-nitrosomethylurea-induced leukemia in rats.

    PubMed

    Tsai, Tsung-Chang; Huang, Hui-Pei; Chang, Yun-Ching; Wang, Chau-Jong

    2014-02-19

    A previous study reported that anthocyanins from roselle (Hibiscus sabdariffa L.) showed significant anticancer activity in human promyelocytic leukemia cells. To explore the antitumor effect of anthocyanin, a roselle bioactive polyphenol in a rat model of chemical-induced leukemia was assayed. Anthocyanin extract of roselle (Hibiscus anthocyanins, HAs) was supplemented in the diet (0.1 and 0.2%). This study was carried out to evaluate the protective effect of HAs on N-nitrosomethylurea (NMU)-induced leukemia of rats. The study employed male Sprague-Dawley rats (n = 48), and leukemia was induced by intravenous injection of 35 mg kg(-1) body weight of NMU dissolved in physiologic saline solution. The rats were divided into four groups (n = 12): control, NMU only, and HAs groups that received different doses of HAs (0.1 and 0.2%) daily, orally, after NMU injection. After 220 days, the animals were killed, and the following parameters were assessed: morphological observation, hematology examination, histopathological assessment, and biochemical assay. When compared with the NMU-only group, HAs significantly prevented loss of organ weight and ameliorated the impairment of morphology, hematology, and histopathology. Treatment with HAs caused reduction in the levels of AST, ALT, uric acid, and MPO. Also, the results showed that oral administration of HAs (0.2%) remarkably inhibited progression of NMU-induced leukemia by approximately 33.3% in rats. This is the first report to demonstrate that the sequential administration of HAs followed by NMU resulted in an antileukemic activity in vivo.

  11. Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia.

    PubMed

    Lago, Chiara; Landoni, Michela; Cassani, Elena; Cantaluppi, Enrico; Doria, Enrico; Nielsen, Erik; Giorgi, Annamaria; Pilu, Roberto

    2015-01-01

    In the second half of the last century, the American dent hybrids began to be widely grown, leading to the disappearance or marginalization of the less productive traditional varieties. Nowadays the characterization of traditional landraces can help breeders to discover precious alleles that could be useful for modern genetic improvement and allow a correct conservation of these open pollinated varieties (opvs). In this work we characterized the ancient coloured cultivar "Millo Corvo" typical of the Spanish region of Galicia. We showed that this cultivar accumulates high amounts of anthocyanins (83.4 mg/100g flour), and by TLC (Thin Layer Chromatography) and HPLC (High Pressure Liquid Chromatography) analysis, we demonstrated that they mainly consisted of cyanidin. Mapping and sequencing data demonstrate that anthocyanin pigmentation is due to the presence of the red color1 gene(r1), a transcription factor driving the accumulation of this pigment in the aleurone layer. Further chemical analysis showed that the kernels are lacking in carotenoids, as confirmed by genetic study. Finally a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging ability test showed that Millo Corvo, even though lacking carotenoids, has a high antioxidant ability, and could be considered as a functional food due to the presence of anthocyanins.

  12. Study and Characterization of an Ancient European Flint White Maize Rich in Anthocyanins: Millo Corvo from Galicia

    PubMed Central

    Lago, Chiara; Landoni, Michela; Cassani, Elena; Cantaluppi, Enrico; Doria, Enrico; Nielsen, Erik; Giorgi, Annamaria; Pilu, Roberto

    2015-01-01

    In the second half of the last century, the American dent hybrids began to be widely grown, leading to the disappearance or marginalization of the less productive traditional varieties. Nowadays the characterization of traditional landraces can help breeders to discover precious alleles that could be useful for modern genetic improvement and allow a correct conservation of these open pollinated varieties (opvs). In this work we characterized the ancient coloured cultivar “Millo Corvo” typical of the Spanish region of Galicia. We showed that this cultivar accumulates high amounts of anthocyanins (83.4 mg/100g flour), and by TLC (Thin Layer Chromatography) and HPLC (High Pressure Liquid Chromatography) analysis, we demonstrated that they mainly consisted of cyanidin. Mapping and sequencing data demonstrate that anthocyanin pigmentation is due to the presence of the red color1 gene(r1), a transcription factor driving the accumulation of this pigment in the aleurone layer. Further chemical analysis showed that the kernels are lacking in carotenoids, as confirmed by genetic study. Finally a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging ability test showed that Millo Corvo, even though lacking carotenoids, has a high antioxidant ability, and could be considered as a functional food due to the presence of anthocyanins. PMID:25961304

  13. AnthocyaninRich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    PubMed Central

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (P<0.05) increase in creatinine, uric acid, urea, and blood urea nitrogen (BUN) levels as well as kidney malondialdehyde (MDA) content, with concomitant decrease in kidney vitamin C and GSH contents. Furthermore, activities of kidney antioxidant enzymes such as, SOD, Catalase, and GST were significantly (P<0.05) altered in cisplatin administered rats. However, consumption of diets supplemented with the dye for 20 days prior to cisplatin administration protected the kidney and attenuates oxidative stress through modulation of in vivo antioxidant status. The determined anthocyanin content of the dye is 121.5 mg Cyanidin-3-rutinoside equivalent/100 g, thus, the observed nephroprotective effect of H. sabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  14. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    PubMed

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  15. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells.

    PubMed

    Poulose, Shibu M; Fisher, Derek R; Larson, Jessica; Bielinski, Donna F; Rimando, Agnes M; Carey, Amanda N; Schauss, Alexander G; Shukitt-Hale, Barbara

    2012-02-01

    Age-related diseases of the brain compromise memory, learning, and movement and are directly linked with increases in oxidative stress and inflammation. Previous research has shown that supplementation with berries can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of their high polyphenolic content, fruit pulp fractions of açai ( Euterpe oleracea Mart.) were explored for their protective effect on BV-2 mouse microglial cells. Freeze-dried açai pulp was fractionated using solvents with different polarities and analyzed using HPLC for major anthocyanins and other phenolics. Fractions extracted using methanol (MEOH) and ethanol (ETOH) were particularly rich in anthocyanins such as cyanidin, delphinidin, malvidin, pelargonidin, and peonidin, whereas the fraction extracted using acetone (ACE) was rich in other phenolics such as catechin, ferulic acid, quercetin, resveratrol, and synergic and vanillic acids. Studies were conducted to investigate the mitigating effects of açai pulp extracts on lipopolysaccharide (LPS, 100 ng/mL) induced oxidative stress and inflammation; treatment of BV-2 cells with acai fractions resulted in significant (p < 0.05) decreases in nitrite production, accompanied by a reduction in inducible nitric oxide synthase (iNOS) expression. The inhibition pattern was emulated with the ferulic acid content among the fractions. The protection of microglial cells by açai pulp extracts, particularly that of MEOH, ETOH, and ACE fractions, was also accompanied by a significant concentration-dependent reduction in cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (p38-MAPK), tumor necrosis factor-α (TNFα), and nuclear factor κB (NF-κB). The current study offers valuable insights into the protective effects of açai pulp fractions on brain cells, which could have implications for improved cognitive and motor functions.

  16. Anthocyanin-rich Phytochemicals from Aronia Fruits Inhibit Visceral Fat Accumulation and Hyperglycemia in High-fat Diet-induced Dietary Obese Rats.

    PubMed

    Takahashi, Azusa; Shimizu, Hisae; Okazaki, Yukako; Sakaguchi, Hirohide; Taira, Toshio; Suzuki, Takashi; Chiji, Hideyuki

    2015-01-01

    Aronia fruits (chokeberry: Aronia melanocarpa E.) containing phenolic phytochemicals, such as cyanidin 3-glycosides and chlorogenic acid, have attracted considerable attention because of their potential human health benefits in humans including antioxidant activities and ability to improved vision. In the present study, the effects of anthocyanin-rich phytochemicals from aronia fruits (aronia phytochemicals) on visceral fat accumulation and fasting hyperglycemia were examined in rats fed a high-fat diet (Experiment 1). Total visceral fat mass was significantly lower in rats fed aronia phytochemicals than that in both the control group and bilberry phytochemicals-supplemented rats (p < 0.05). Moreover, perirenal and epididymal adipose tissue mass in rats fed aronia phytochemicals was significantly lower than that in both the control and bilberry phytochemicals group. Additionally, the mesenteric adipose tissue mass in aronia phytochemicals-fed rats was significantly low (p < 0.05). Furthermore, the fasting blood glucose levels significantly decreased in rats fed aronia phytochemicals for 4 weeks compared to that in the control rats (p < 0.05). Therefore, we investigated the effects of phytochemicals on postprandial hyperlipidemia after corn oil loading in rats, pancreatic lipase activity in vitro, and the plasma glycemic response after sucrose loading in order to elucidate the preventive factor of aronia phytochemical on visceral fat accumulation. In the oral corn oil tolerance tests (Experiment 2), aronia phytochemicals significantly inhibited the increases in plasma triglyceride levels, with a half-maximal inhibitory concentration (IC(50)) of 1.50 mg/mL. However, the inhibitory activity was similar to that of bilberry and tea catechins. In the sucrose tolerance tests (Experiment 3), aronia phytochemicals also significantly inhibited the increases in blood glucose levels that were observed in the control animals (p < 0.05). These results suggest that anthocyanin-rich

  17. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis.

    PubMed

    Li, Li; Wang, Liyan; Wu, Zhiqin; Yao, Lijun; Wu, Yonghou; Huang, Lian; Liu, Kan; Zhou, Xiang; Gou, Deming

    2014-08-29

    Edible berries have a broad spectrum of biomedical functions, including improving immune responses and reducing risk for chronic diseases. In this study, the anti-inflammatory activities of crude extracts (CEs), anthocyanin-rich fractions (ARFs), and des-anthocyanin fractions (DAFs) from seven berries were evaluated based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)/IFN-γ-activated RAW264.7 macrophages. ARFs from red raspberries (RR-ARFs) exhibited the highest efficiency in suppressing NO synthesis. The anti-inflammatory properties were also demonstrated by reducing the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β) and IL-6 in RAW264.7 cells. The luciferase reporter assay demonstrated that the activities of NF-κB and AP-1 signaling pathways were significantly suppressed by RR-ARFs. Further studies showed that RR-ARFs decreased the phosphorylation of IKK, IκBα, p65 and JNK and the nuclear translocation of p65 in LPS/IFN-γ-stimulated RAW264.7 cells. In a mouse colitis model, dextran sulfate sodium (DSS)-induced weight loss and histological damage were significantly ameliorated by RR-ARFs treatment. Taken together, our results indicate that RR-ARFs attenuate inflammation both in vitro and in vivo primarily by inhibiting the activation of NF-κB and MAPKs. The anti-inflammatory of RR-ARFs could be harnessed and applied in animal agriculture, drug and food industries.

  18. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis

    PubMed Central

    Li, Li; Wu, Zhiqin; Yao, Lijun; Wu, Yonghou; Huang, Lian; Liu, Kan; Zhou, Xiang; Gou, Deming

    2014-01-01

    Edible berries have a broad spectrum of biomedical functions, including improving immune responses and reducing risk for chronic diseases. In this study, the anti-inflammatory activities of crude extracts (CEs), anthocyanin-rich fractions (ARFs), and des-anthocyanin fractions (DAFs) from seven berries were evaluated based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)/IFN-γ-activated RAW264.7 macrophages. ARFs from red raspberries (RR-ARFs) exhibited the highest efficiency in suppressing NO synthesis. The anti-inflammatory properties were also demonstrated by reducing the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β) and IL-6 in RAW264.7 cells. The luciferase reporter assay demonstrated that the activities of NF-κB and AP-1 signaling pathways were significantly suppressed by RR-ARFs. Further studies showed that RR-ARFs decreased the phosphorylation of IKK, IκBα, p65 and JNK and the nuclear translocation of p65 in LPS/IFN-γ-stimulated RAW264.7 cells. In a mouse colitis model, dextran sulfate sodium (DSS)-induced weight loss and histological damage were significantly ameliorated by RR-ARFs treatment. Taken together, our results indicate that RR-ARFs attenuate inflammation both in vitro and in vivo primarily by inhibiting the activation of NF-κB and MAPKs. The anti-inflammatory of RR-ARFs could be harnessed and applied in animal agriculture, drug and food industries. PMID:25167935

  19. Low Concentrations of Flavonoid - Rich Fraction of Shallot Extract Induce Delayed - Type Hypersensitivity and TH1 Cytokine IFNγ Expression in BALB/c Mice.

    PubMed

    Farhadi, Leila; Mohammadi-Motlagh, Hamid-Reza; Seyfi, Parivash; Mostafaie, Ali

    2014-01-01

    Flavonoids are potentially immunomodulatory factors and it may be inferred that these phytochemicals contribute to immunomodulatory properties of the Allium family. In the present study, we investigated the potential mechanism underlying the immunomodulatory effect of shallot and its ethyl acetate (EA) fraction as flavonoid-rich sources. Ex vivo, effects of a hydroalcoholic extract of shallot, its fractions and quercetin on lymphocyte viability were evaluated. The proliferative effects of the fractions were examined using naive mouse lymphocytes to determine the fraction with highest impact/ activity. In addition, in a mouse model, both delayed- type hypersensitivity (DTH) responses and production of a key cytokine (interferon [IFN]-ᵧ) were evaluated. Both the shallot extract and its fractions inhibited lymphocytes cell growth and survival in a concentration- dependent manner. The findings also showed that the extract and especially the ethyl acetate (EA) fraction could induce lymphocyte proliferation. The evaluation of the extract and its EA fraction on DTH responses indicated that both caused a significant increase in DTH response. Furthermore, they triggered significant increases in IFNγ and decreases in interleukin (IL)-4 production by splenic mononuclear cells. Because of the significant immunomodulatory activity displayed in these studies, it is plausible that shallot could have a potential use as an immunomodulatory agent in clinical settings.

  20. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model

    PubMed Central

    Pereira, Sónia R.; Pereira, Rita; Figueiredo, Isabel; Freitas, Victor; Dinis, Teresa C. P.; Almeida, Leonor M.

    2017-01-01

    Despite the actual therapeutic approaches for inflammatory bowel disease (IBD), efficient and secure alternative options remain a research focus. In this context, anthocyanins seem promising natural anti-inflammatory agents, but their action mechanisms and efficacy as compared with established drugs still require more clarification. The main aim of this study was to compare the anti-inflammatory action of a chemically characterized anthocyanin-rich fraction (ARF), obtained from Portuguese blueberries (Vaccinium corymbosum L.), with that of 5-aminosalicylic acid (5-ASA), a first-line drug in IBD, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model. Such fraction showed a high content and great molecular diversity of anthocyanins, with malvidin-3-galactoside and petunidin-3-arabinoside in the highest concentrations. After daily administration by intragastric infusion for 8 days, ARF, at a molar anthocyanin concentration about 30 times lower than 5-ASA, showed a higher effectiveness in counteracting the intestinal inflammation, as assessed by i) body weight variation and colon damage score, ii) reduction in leukocyte infiltration, iii) increase in antioxidant defenses and iv) by downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon tissue homogenates. The strong inhibition of COX-2 expression seems to be a crucial anti-inflammatory mechanism common to both ARF and 5-ASA, but the additional higher abilities of anthocyanins to downregulate iNOS and to decrease leukocytes infiltration and to increase antioxidant defenses in colon may account for the much higher anti-inflammatory action of anthocyanins. These data may contribute to the development of a promising natural approach in IBD management. PMID:28329021

  1. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans.

    PubMed

    Alvarez-Suarez, José M; Giampieri, Francesca; Tulipani, Sara; Casoli, Tiziana; Di Stefano, Giuseppina; González-Paramás, Ana M; Santos-Buelga, Celestino; Busco, Franco; Quiles, Josè L; Cordero, Mario D; Bompadre, Stefano; Mezzetti, Bruno; Battino, Maurizio

    2014-03-01

    Strawberries are an important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to exert beneficial effects in human health. Healthy volunteers were supplemented daily with 500 g of strawberries for 1 month. Plasma lipid profile, circulating and cellular markers of antioxidant status, oxidative stress and platelet function were evaluated at baseline, after 30 days of strawberry consumption and 15 days after the end of the study. A high concentration of vitamin C and anthocyanins was found in the fruits. Strawberry consumption beneficially influenced the lipid profile by significantly reducing total cholesterol, low-density lipoprotein cholesterol and triglycerides levels (-8.78%, -13.72% and -20.80%, respectively; P<.05) compared with baseline period, while high-density lipoprotein cholesterol remained unchanged. Strawberry supplementation also significant decreased serum malondialdehyde, urinary 8-OHdG and isoprostanes levels (-31.40%, -29.67%, -27.90%, respectively; P<.05). All the parameters returned to baseline values after the washout period. A significant increase in plasma total antioxidant capacity measured by both ferric reducing ability of plasma and oxygen radical absorbance capacity assays and vitamin C levels (+24.97%, +41.18%, +41.36%, respectively; P<.05) was observed after strawberry consumption. Moreover, the spontaneous and oxidative hemolysis were significant reduced (-31.7% and -39.03%, respectively; P<.05), compared to the baseline point, which remained stable after the washout period. Finally, strawberry intake significant decrease (P<.05) the number of activated platelets, compared to both baseline and washout values. Strawberries consumption improves plasma lipids profile, biomarkers of antioxidant status, antihemolytic defenses and platelet function in healthy subjects, encouraging further evaluation on a population with higher cardiovascular disease risk.

  2. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    NASA Astrophysics Data System (ADS)

    Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to ;accelerated aging.; One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  3. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of (56)Fe particles.

    PubMed

    Poulose, Shibu M; Rabin, Bernard M; Bielinski, Donna F; Kelly, Megan E; Miller, Marshall G; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as (56)Fe, within 24-48h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to (56)Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to (56)Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that (56)Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  4. Anthocyanin content of wild black raspberry germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of its intense anthocyanin pigments, black raspberry (Rubus occidentalis L.) has a long history of use as a natural colorant and dye. Recent studies showing black raspberries to be a rich source of anthocyanins and other dietary phytochemicals have led to renewed interest in breeding better ...

  5. Anthocyanin bioavailability: Past progress and current challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are the red, blue, and purple pigments present throughout nature. Foods rich in anthocyanins include berries, red cabbage, radish, eggplant, blue corn, and purple carrots, as well as many other red, purple, and blue fruits, vegetables, and legumes. Evidence continues to accumulate sugg...

  6. Susceptibility of anthocyanins to ex vivo degradation in human saliva

    PubMed Central

    Kamonpatana, Kom; Giusti, M. Mónica; Chitchumroonchokchai, Chureeporn; MorenoCruz, Maria; Riedl, Ken M.; Kumar, Purnima; Failla, Mark L.

    2013-01-01

    Some fruits and their anthocyanin-rich extracts have been reported to exhibit chemopreventive activity in the oral cavity. Insights regarding oral metabolism of anthocyanins remain limited. Anthocyanin-rich extracts from blueberry, chokeberry, black raspberry, red grape, and strawberry were incubated ex vivo with human saliva from 14 healthy subjects. All anthocyanins were partially degraded in saliva. Degradation of chokeberry anthocyanins in saliva was temperature dependent and decreased by heating saliva to 80 °C and after removal of cells. Glycosides of delphinidin and petunidin were more susceptible to degradation than those of cyanidin, pelargonidin, peonidin and malvidin in both intact and artificial saliva. Stability of di- and tri-saccharide conjugates of anthocyanidins slightly, but significantly, exceeded that of monosaccharide compounds. Ex vivo degradation of anthocyanins in saliva was significantly decreased after oral rinsing with antibacterial chlorhexidine. These results suggest that anthocyanin degradation in the mouth is structure-dependent and largely mediated by oral microbiota. PMID:22868153

  7. Anthocyanin kinetics are dependent on anthocyanin structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetics of anthocyanin metabolism was investigated in a human feeding trial. Volunteers (n=12) consumed purple carrots containing five different anthocyanin forms: cyanidin-3-(2”-xylose-6”-glucose-galactoside), cyanidin-3-(2”-xylose-galactoside), cyanidin-3-(2”-xylose-6”-sinapoyl-glucose-galac...

  8. The bioavailability and absorption of anthocyanins: towards a better understanding.

    PubMed

    McGhie, Tony K; Walton, Michaela C

    2007-06-01

    Evidence that anthocyanin compounds have beneficial effects for health are increasingly being reported in the scientific literature and these compounds are now widely recognised as potential therapeutic compounds. Berry fruit are rich sources of anthocyanins and berry fruit products or derived beverages can provide 10s to 100s of milligrams of anthocyanins in a single serve. Anthocyanins exhibit complex chemical behaviours in vitro and this will result in complex behaviour in vivo. This review attempts to summarize some aspects of anthocyanin biochemistry and discusses these in the context of what is currently known about bioavailability and absorption. Compared with other flavonoid groups, such as flavonols, relatively little is known about details and mechanisms of anthocyanin absorption and transport and much remains to be discovered.

  9. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis).

    PubMed

    Zhang, Yanjie; Chen, Guoping; Dong, Tingting; Pan, Yu; Zhao, Zhiping; Tian, Shibing; Hu, Zongli

    2014-12-24

    Bok choy (Brassica rapa var. chinensis) is an important dietary vegetable cultivated and consumed worldwide for its edible leaves. The purple cultivars rich in health-promoting anthocyanins are usually more eye-catching and valuable. Fifteen kinds of anthocyanins were separated and identified from a purple bok choy cultivar (Zi He) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms underlying anthocyanin accumulation in bok choy, the expression profiles of anthocyanin biosynthetic and regulatory genes were analyzed in seedlings and leaves of the purple cultivar and the green cultivar (Su Zhouqing). Compared with the other tissues, BrTT8 and most of the anthocyanin biosynthetic genes were significantly up-regulated in the leaves and light-grown seedlings of Zi He. The results that heterologous expression of BrTT8 promotes the transcription of partial anthocyanin biosynthetic genes in regeneration shoots of tomato indicate that BrTT8 plays an important role in the regulation of anthocyanin biosynthesis.

  10. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice.

    PubMed

    Afaq, Farrukh; Saleem, Mohammad; Krueger, Christian G; Reed, Jess D; Mukhtar, Hasan

    2005-01-20

    Chemoprevention has come of age as an effective cancer control modality; however, the search for novel agent(s) for the armamentarium of cancer chemoprevention continues. We argue that agents capable of intervening at more than one critical pathway in the carcinogenesis process will have greater advantage over other single-target agents. Pomegranate fruit extract (PFE) derived from the tree Punica granatum possesses strong antioxidant and antiinflammatory properties. Pomegranate fruit was extracted with acetone and analyzed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and found to contain anthocyanins, ellagitannins and hydrolyzable tannins. We evaluated whether PFE possesses antitumor-promoting effects. We first determined the effect of topical application of PFE to CD-1 mice against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced conventional markers and other novel markers of skin tumor promotion. We found that topical application of PFE (2 mg/mouse) 30 min prior to TPA (3.2 nmole/mouse) application on mouse skin afforded significant inhibition, in a time-dependent manner, against TPA-mediated increase in skin edema and hyperplasia, epidermal ornithine decarboxylase (ODC) activity and protein expression of ODC and cyclooxygenase-2. We also found that topical application of PFE resulted in inhibition of TPA-induced phosphorylation of ERK1/2, p38 and JNK1/2, as well as activation of NF-kappaB and IKKalpha and phosphorylation and degradation of IkappaBalpha. We next assessed the effect of skin application of PFE on TPA-induced skin tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated CD-1 mouse. The animals pretreated with PFE showed substantially reduced tumor incidence and lower tumor body burden when assessed as total number of tumors per group, percent of mice with tumors and number of tumors per animal as compared to animals that did not receive PFE. In TPA-treated group, 100% of the mice developed tumors at

  11. Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes.

    PubMed

    Cai, Zhan; Qu, Ziqian; Lan, Yu; Zhao, Shujuan; Ma, Xiaohua; Wan, Qiang; Jing, Pu; Li, Pingfan

    2016-04-15

    Purple sweet potatoes (PSPs) are rich in anthocyanins. In this study, we investigated the extraction efficiency of anthocyanins from PSPs using conventional extraction (CE), ultrasound-assisted extraction (UAE), and accelerated-solvent extraction (ASE). Additionally, the effects of these extraction methods on antioxidant activity and anthocyanin composition of PSP extracts were evaluated. In order of decreasing extraction efficiency, the extraction methods were ASE>UAE>CE for anthocyanins (218-244 mg/100 g DW) and CE>UAE>ASE for total phenolics (631-955 mg/100 g DW) and flavonoids (28-40 mg/100 g DW). Antioxidant activities of PSP extracts were CE≈UAE>ASE for ORAC (766-1091 mg TE/100 g DW) and ASE>CE≈UAE for FRAP (1299-1705 mg TE/100 g DW). Twelve anthocyanins were identified. ASE extracts contained more diacyl anthocyanins and less nonacyl and monoacyl anthocyanins than CE and ASE extracts (P<0.05).

  12. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis).

    PubMed

    He, Qiong; Zhang, Zhanfeng; Zhang, Lugang

    2016-01-13

    Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.

  13. Photocontrol of Anthocyanin Synthesis

    PubMed Central

    Ku, Ping-Kaung; Mancinelli, Alberto L.

    1972-01-01

    Red far red reversibility (phytochrome control) of anthocyanin synthesis can be easily demonstrated for the response induced by short (5 minutes) and relatively short (4 hours) irradiation. Red far red reversibility of the response induced by longer irradiations can be demonstrated by the use of cyclic irradiations alternating short exposures to red and far red light. The level of anthocyanin formed during the dark incubation period following exposure to light depends upon the duration of the irradiation and becomes proportionally smaller as the length of the irradiation increases. Production of anthocyanins under cyclic irradiations depends upon the total energy applied and upon the length of the dark interval between successive irradiations. The relative efficiencies of radiations in various spectral ranges change with changes in the length of the irradiations. PMID:16657927

  14. Variation in Anthocyanin Content of Wild Black Raspberry for Breeding Improved Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of its intense anthocyanin pigments, black raspberry (Rubus occidentalis L.) has a long history of use as a natural colorant and dye. Recent studies showing black raspberries to be a rich source of anthocyanins and other dietary phytochemicals has led to renewed interest in breeding new, bet...

  15. Anthocyanins. Plant pigments and beyond.

    PubMed

    Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor

    2014-07-23

    Anthocyanins are plant pigments widespread in nature. They play relevant roles in plant propagation and ecophysiology and plant defense mechanisms and are responsible for the color of fruits and vegetables. A large number of novel anthocyanin structures have been identified, including new families such as pyranoanthocyanins or anthocyanin oligomers; their biosynthesis pathways have been elucidated, and new plants with "a la carte" colors have been created by genetic engineering. Furthermore, evidence about their benefits in human health has accumulated, and processes of anthocyanin absorption and biotransformation in the human organism have started to be ascertained. These advances in anthocyanin research were revised in the Seventh International Workshop on Anthocyanins that took place in Porto (Portugal) on September 9-11, 2013. Some selected papers are collected in this special issue, where aspects such as anthocyanin accumulation in plants, relationship with color expression, stability in plants and food, and bioavailability or biological activity are revised.

  16. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors.

    PubMed

    Bimpilas, Andreas; Panagopoulou, Marilena; Tsimogiannis, Dimitrios; Oreopoulou, Vassiliki

    2016-04-15

    Copigmentation of anthocyanins accounts for over 30% of fresh red wine color, while during storage, the color of polymeric pigments formed between anthocyanins and proanthocyanidins predominates. Rosmarinic acid and natural extracts rich in hydroxycinnamic acids, obtained from aromatic plants (Origanum vulgare and Satureja thymbra), were examined as cofactors to fresh Merlot wine and the effect on anthocyanin copigmentation and wine color was studied during storage for 6months. An increase of the copigmented anthocyanins that enhanced color intensity by 15-50% was observed, confirming the ability of complex hydroxycinnamates to form copigments. The samples with added cofactors retained higher percentages of copigmented anthocyanins and higher color intensity, compared to the control wine, up to 3 months. However, the change in the equilibrium between monomeric and copigmented anthocyanins that was induced by added cofactors, did not affect the rate of polymerization reactions during storage.

  17. New Anthocyanin-Human Salivary Protein Complexes.

    PubMed

    Ferrer-Gallego, Raúl; Soares, Susana; Mateus, Nuno; Rivas-Gonzalo, Julián; Escribano-Bailón, M Teresa; de Freitas, Victor

    2015-08-04

    The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.

  18. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  19. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants.

    PubMed

    Qi, Xiwu; Shuai, Qin; Chen, Hu; Fan, Li; Zeng, Qiwei; He, Ningjia

    2014-10-01

    Anthocyanins are natural food colorants produced by plants that play important roles in their growth and development. Mulberry fruits are rich in anthocyanins, which are the most important active components of mulberry and have many potentially beneficial effects on human health. The study of anthocyanin biosynthesis will bring benefits for quality improvement and industrial exploration of mulberry fruits. In the present study, nine putative genes involved in anthocyanin biosynthesis in mulberry plants were identified and cloned. Sequence analysis revealed that the mulberry anthocyanin biosynthetic genes were conserved and had counterparts in other plants. Spatial transcriptional analysis showed detectable expression of eight of these genes in different tissues. The results of expression and UPLC analyses in two mulberry cultivars with differently colored fruit indicated that anthocyanin concentrations correlated with the expression levels of genes associated with anthocyanin biosynthesis including CHS1, CHI, F3H1, F3'H1, and ANS during the fruit ripening process. The present studies provide insight into anthocyanin biosynthesis in mulberry plants and may facilitate genetic engineering for improvement of the anthocyanin content in mulberry fruit.

  20. Anthocyanins as Functional Food Colors

    NASA Astrophysics Data System (ADS)

    Motohashi, Noboru; Sakagami, Hiroshi

    Anthocyanins, a proanthocyanidin-type of flavonoid, contain an abundance of functional phytochemicals and occur in fruits such as cranberry, blueberry, orange, apple and in vegetables such as tomato, sweet pepper, spinach, and radishes. Functional and essential diets have been ingested in daily life since the primitive era of history. When anthocyanins are coupled with some water-soluble sugar molecules, their color becomes red, yellow, violet, or blue. It is very intriguing that anthocyanins provide the colorful variety of pigments for pansies, petunias, plums, and other diverse flowers. Chlorophyll in various fruits and vegetables is the main green phyto-component, while anthocyanins are probably the most important visible plant pigments in the natural kingdom having specific colors. Anthocyanins have been clinically used in many folklore medicines worldwide. Anthocyanins could provide health benefits for age-related diseases as well as other diseases. Anthocyanins have higher antioxidant capacity against oxidative stress induced by excess reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide, and thus the human body might be protected from oxidative injury by anthocyanins. On the basis of these facts, we review the synthesis of plant flavonoids and their ability to scavenge oxidants, inhibit or activate enzymes, and the safety of proanthocyanidins and anthocyanidins present in common foods.

  1. Isolation and Characterization of Anthocyanins from Hibiscus sabdariffa Flowers.

    PubMed

    Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria C; Barouh, Nathalie; Baréa, Bruno; Fernandes, Ana; de Freitas, Victor; Salas, Erika

    2016-07-22

    The intense red-colored Hibiscus sabdariffa flowers are an inexpensive source of anthocyanins with potential to be used as natural, innocuous, and health-beneficial colorants. An anthocyanin-rich extract from hibiscus flowers was obtained by ultrasound-assisted extraction. By a single-step process fractionation using a Sep-Pak C18 cartridge, the main hibiscus anthocyanins, delphinidin-3-O-sambubioside (Dp-samb) and cyanidin-3-O-sambubioside (Cy-samb), were separated and then characterized via NMR and HPLC-ESIMS data. Since Dp-samb was the most abundant anthocyanin identified in the extract, its colorant properties were studied by the pH jumps method, which allowed the calculation of the single acid-base equilibrium (pK'a 2.92), the acidity (pKa 3.70), and the hydration constants (pKh 3.02). Moreover, by using size-exclusion chromatography, new cyanidin-derived anthocyanins (with three or more sugar units) were successfully identified and reported for the first time in the hibiscus extract.

  2. Can anthocyanins improve maintenance therapy of Ph(+) acute lymphoblastic leukaemia?

    PubMed

    Köchling, Joachim; Schmidt, Manuel; Rott, Yvonne; Sagner, Michael; Ungefroren, Hendrik; Wittig, Burghard; Henze, Günter

    2013-04-01

    Chemotherapy and tyrosine kinase inhibitors provide high remission rates. However, prognosis of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia (Ph(+) ALL) still remains poor. Because most adults eventually relapse without allogeneic stem cell transplantation, which is not available for all patients, novel strategies are required for relapse prevention. As the integrity of the immune system is essential for the control of remaining leukaemia cells, we compared the efficacy of anthocyanins, imatinib and a DNA-based vaccine as non-immunosuppressant components with 6-mercaptopurine (6-MP) to control minimal residual disease in vitro and in vivo using different leukaemia cell lines and syngeneic mice. Proliferation of Ph(+) ALL was significantly better inhibited by anthocyanin-rich berry extract or imatinib compared with 6-MP. Although anthocyanins induced apoptosis in some leukaemia cell lines, the level of caspase-3, caspase-8 and caspase-9 was significantly lower compared with imatinib and 6-MP. When used as single components, anthocyanins and imatinib mesylate failed to eradicate pre-existing Ph(+) ALL in syngeneic mice, while 6-MP led to 10% and DNA vaccination to 56% survival. Intriguingly, only the combination of DNA vaccination with berry extract but not with the isolated anthocyanin, cyanidin-3-rutinoside or imatinib further increased leukaemia-free and overall survival, and 90% of lethally challenged mice survived. We suggest that induction and enhancement of a leukaemia-specific immunity by DNA vaccination and anthocyanin-rich berry extract can also decrease the relapse rate in patients with Ph(+) ALL. Furthermore, this approach may serve as strategy for maintenance therapy of other malignancies.

  3. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

    PubMed Central

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-01-01

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars. PMID:28345675

  4. Anthocyanin degradation of blueberry-aronia nectar in glass compared with carton during storage.

    PubMed

    Trost, K; Golc-Wondra, A; Prosek, M; Milivojevic, L

    2008-10-01

    Blueberry-aronia nectar is known as a rich source of anthocyanins, which are mostly destroyed during commercial storage of the product. The factors influencing the rate of degradation are connected to the oxygen protection offered by the packaging, as well as the type of anthocyanidin and the amount of glycosylated sugar. The current study was aimed to compare the stability of total anthocyanin between glass and carton packaging as well as to determine the stability of individual anthocyanin with respect to aglycone and glycosylated sugar. The degradation rate of total anthocyanin degradation rate was 22% higher in carton packaging than glass bottle. The ranking order of the stability of individual anthocyanin with respect to aglycone was as follows (from the most to least stable): cyanindin > peonidin > petunidin > malvidin = delphinidin. The ranking order of the stability of anthocyanins with respect to glycosylated sugars was as follows (from the most to least stable): glucose > galactose > arabinose. As individual anthocyanins have different degradation rates this study can be used to determine the most stable natural colorant and the most sensitive antioxidant among the anthocyanins tested.

  5. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review.

    PubMed

    Yousuf, Basharat; Gul, Khalid; Wani, Ali Abas; Singh, Preeti

    2016-10-02

    Anthocyanins are one of the six subgroups of large and widespread group of plant constituents known as flavonoids. These are responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers and some cereal grains. More than 600 structurally distinct anthocyanins have been identified in nature. Earlier, anthocyanins were only known for their coloring properties but now interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants, which help to prevent neuronal diseases, cardiovascular illnesses, cancer, diabetes, inflammation, and many such others diseases. Ability of anthocyanins to counter oxidants makes them atherosclerosis fighters. Therefore, anthocyanin-rich foods may help to boost overall health by offering an array of nutrients. However, the incorporation of anthocyanins into food and medical products is a challenging task due to their low stability toward environmental conditions during processing and storage. Encapsulation seems to be an efficient way to introduce such compounds into these products. Encapsulating agents act as a protector coat against ambient adverse conditions such as light, humidity, and oxygen. Encapsulated bioactive compounds are easier to handle and offer improved stability. The main objective of this review is to explore health benefits of anthocyanins and their extraction, characterization, encapsulation, and delivery.

  6. Anthocyanins facilitate tungsten accumulation in Brassica

    SciTech Connect

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  7. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions.

  8. Anthocyanins in Cardiovascular Disease1

    PubMed Central

    Wallace, Taylor C.

    2011-01-01

    Anthocyanins are a group of abundant and widely consumed flavonoid constituents that occur ubiquitously in the plant kingdom, providing the bright red-orange to blue-violet colors present in many fruit- and vegetable-based food products. Their intake has been estimated to be up to 9-fold higher than that of other dietary flavonoids. Anthocyanins have become increasingly important to the food industry as their use as natural alternatives to artificial colors has become widespread and knowledge of their health-promoting properties has become more evident. Epidemiological studies suggest that increased consumption of anthocyanins lowers the risk of cardiovascular disease (CVD), the most common cause of mortality among men and women. Anthocyanins frequently interact with other phytochemicals, exhibiting synergistic biological effects but making contributions from individual components difficult to decipher. Over the past 2 decades, many peer-reviewed publications have demonstrated that in addition to their noted in vitro antioxidant activity, anthocyanins may regulate different signaling pathways involved in the development of CVD. This review summarizes the latest developments on the bioavailability/bioactivity and CVD preventative activities of anthocyanins, including results from in vitro cell culture and in vivo animal model systems as related to their multiple proposed mechanisms of action. Limited yet promising data from epidemiological studies and human clinical trials are also presented. Future studies aimed at enhancing the absorption of anthocyanins and characterizing their metabolic and/or breakdown products are necessary to ultimately evaluate their use for protection/prevention against the development of CVD. PMID:22211184

  9. Regulation of anthocyanin biosynthesis in red cabbages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The color of red cabbage is due to the accumulation of large quantity of anthocyanins. To investigate the general regulatory control of anthocyanin production in red cabbages, the expression of anthocyanin biosynthetic genes and regulators from eight commercial cultivars was examined. While the four...

  10. Characterization of a novel anthocyanin profile in wild black raspberry mutants: an opportunity for studying the genetic control of pigment and color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The type and amount of anthocyanins in raspberries, and other small fruits, has recently received increased attention. Black raspberry (Rubus occidentalis L.), in particular, has long been recognized as a rich source of anthocyanins and has been the focus of many recent studies examining their poten...

  11. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes.

    PubMed

    Viskelis, P; Rubinskiene, M; Jasutiene, I; Sarkinas, A; Daubaras, R; Cesoniene, L

    2009-03-01

    Amounts of total phenolics, anthocyanins, and ascorbic acid in 4 American cranberry varieties harvested at 4 stages of maturity were measured. The larger amount of phenolic compounds was found in berries of "Black Veil" cultivar (504 mg/100 g) at II stage of maturity. Significantly larger amounts of anthocyanins were determined in the overripe berries of the cultivars "Ben Lear" and "Black Veil." The amount of ascorbic acid in berries increased during ripening from I to III stage, and slightly decreased in the overripe berries. The biggest quantities of ascorbic acid were found in the ripe berries of "Ben Lear" cultivar (15.8 mg/100 g). The distribution of anthocyanins pigments was determined by HPLC-UV/MS in mature berries. The composition of individual anthocyanins in berries was quite similar in all the studied cranberry cultivars. While skins of cranberries are rich in anthocyanins and other phenolic compounds, the extracts of the by-products of cranberries juice-berry cakes, were analyzed and obtained results were compared with the properties of extracts made from whole berries. The anthocyanins and total phenolics content, radical scavenging activity, antimicrobial activity of the whole berries, and their press cakes extracts were measured. All investigated extracts from berries and their press cakes showed good radical scavenging activity and revealed antimicrobial properties. It was found that Bacillus cereus (ATCC 10876) and Micrococcus luteus (ATCC 9341) were the most sensitive among 10 tested Gram-negative and Gram-positive bacteria.

  12. Highly selective separation and purification of anthocyanins from bilberry based on a macroporous polymeric adsorbent.

    PubMed

    Yao, Lijuan; Zhang, Na; Wang, Chenbiao; Wang, Chunhong

    2015-04-08

    Powdered bilberry extract (United States Pharmacopoeia, USP35-NF30), which is prepared from ripe bilberry fruits (Vaccinium myrtillus L.), is the main ingredient of drugs alleviating visual fatigue and diabetic retinopathy because of the rich anthocyanins (purity of 36%). In this study, a method based on a macroporous polymeric adsorbent was established to obtain anthocyanin compounds from bilberry, in which the purity of the anthocyanins was improved to 96%, conducive to further pharmacological research and improvement of the efficiency of the drug. On the basis of the structure of anthocyanins, we designed a series of macroporous polymeric adsorbents based on the copolymerization of divinylbenzene (DVB) and ethylene glycol dimethyl acrylate (EGDMA). In this situation, EGDMA not only regulated the polarity of the adsorbent but also acted as the cross-linking agent to ensure the matrix structure of the adsorbent, which had a high specific surface area and could provide more interaction sites during adsorption with anthocyanins. Among the synthesized polymeric adsorbents with different contents of EGDMA, the one with 20% EGDMA content (DE-20) was demonstrated to exhibit optimal adsorption capacity and selectivity to anthocyanins compared to various commercial adsorbents through static adsorption and desorption experiments. In addition, the optimum condition of the dynamic adsorption-desorption experiment was further explored. The results indicated that the purity of anthocyanins after rinsing with 20% ethanol was determined to be approximately 96% at a desorption ratio of 83%, which was clearly higher than that in powdered bilberry extract. The established separation and purification method of anthocyanins with high purity is expected to be applied in industrial production.

  13. [Photoprotective mechanisms of leaf anthocyanins: research progress].

    PubMed

    Wang, Liang-Zai; Hu, Yan-Bo; Zhang, Hui-Hui; Xu, Nan; Zhang, Xiu-Li; Sun, Guang-Yu

    2012-03-01

    Anthocyanin is widely distributed in plant organs such as root, stem, leaf, flower and fruit, being a kind of secondary metabolites generated in plant morphogenesis or for stress response. Leaf anthocyanin has special chemical structure and spectral properties, playing important roles in plant photoprotection, and becomes a hotspot in plant photosynthetic physiological ecology. This paper summarized the recent research progress in the effects of leaf anthocyanin on plant photosynthesis, including the distribution of leaf anthocyanin, its spectral properties, and its relationships with photosynthetic pigments, with the focus on the potential mechanisms of anthocyanins photoprotection, including light absorption, antioxidation, and osmotic regulation. The further research directions on the effects of leaf anthocyanin on photoprotection were proposed.

  14. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  15. Anthocyanins of Hibiscus sabdiffera calyces from Sudan.

    PubMed

    Cahliková, Lucie; Ali, Badreldin H; Havliková, Lucie; Ločárek, Mirek; Siatka, Tomáš; Opletal, Lubomir; Blunden, Gerald

    2015-01-01

    Extracts of the calyces of Hibiscus sabdariffa are widely used in folk medicine to combat many illnesses. The active constituents of the extracts have been shown on several occasions to be anthocyanins. In our current studies the biological activities of an extract of H. sabdariffa calyces purchased in Oman, but grown in Sudan, are being compared with those of the anthocyanins isolated from them, and, for this, the anthocyanin profile of the extract needed to be ascertained. Although several anthocyanins were detected by UHPLC-ESI-MS/MS, delphinidin-3-sambubioside (major) and cyanidin-3-sambubioside were predominant.

  16. Structural identification of anthocyanins and analysis of concentrations during growth and flowering in buckwheat (Fagopyrum esculentum Moench) petals.

    PubMed

    Suzuki, Tatsuro; Kim, Sun-Ju; Mohamed, Zaidul Islam Sarker; Mukasa, Yuji; Takigawa, Shigenobu; Matsuura-Endo, Chie; Yamauchi, Hiroaki; Hashimoto, Naoto; Noda, Takahiro; Saito, Tatsuya

    2007-11-14

    The anthocyanin profiles and variety/breeding-line differences of anthocyanin concentrations in petals of common buckwheat flowers have been studied. Four anthocyanins, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-rhamnoside, and cyanidin 3-O-galactosyl-rhamnoside were isolated from the petals of common buckwheat (Fagopyrum esculentum Moench), separated using high performance liquid chromatography and identified using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry techniques. In every variety/breeding line tested, cyanidin 3-O-rutinoside was detected as the major anthocyanin and the next is cyanidin 3-O-glucoside whereas cyanidin 3-O-rhamnoside and cyanidin 3-O-galactosyl-rhamnoside were trace or not detectable in white and pink flowered buckwheat. Of all the varieties/breeding lines tested, Gan-Chao, a Chinese variety, contained the highest amount of anthocyanins. The largest part of cyanidin moiety was presented as a proanthocyanidin form (PAs-Cy). Anthocyanins and PAs-Cy in petals were increased along with increase of flower development stages. Therefore, fully developed petals of red flowered buckwheat, especially Gan-Chao, are promising as a new anthocyanin-rich material for food processing.

  17. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products.

    PubMed

    Hager, Tiffany J; Howard, Luke R; Prior, Ronald L

    2008-02-13

    Blackberries are a rich source of polyphenolics, particularly anthocyanins, that may contribute to the reduced risk of chronic disease; however, as with most berries, the fresh fruit are only seasonally available. With most of the blackberries consumed as frozen or in thermally processed forms after long-term storage, the purpose of this study was to evaluate the effects of processing and 6 months of storage on the anthocyanins and antioxidant capacity of blackberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Monomeric anthocyanins, percent polymeric color, and antioxidant capacity by oxygen radical absorbance capacity (ORAC FL) and photochemiluminescence (PCL) were determined postprocessing (1 day) and after 1, 3, and 6 months of storage. Processing resulted in increases in polymeric color values (up to 7%) and losses in monomeric anthocyanins (up to 65%). For most products, processing also resulted in losses in antioxidant capacity (by ORAC FL and PCL). Storage at 25 degrees C of all processed products resulted in dramatic losses in monomeric anthocyanins with as much as 75% losses of anthocyanins throughout storage, which coincided with marked increases of percent polymeric color values of these products over 6 months of storage. There were no changes in ORAC FL or PCL for processed products throughout long-term storage. No significant changes in antioxidant capacity or anthocyanin content were observed in IQF fruit during long-term storage at -20 degrees C.

  18. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran

    PubMed Central

    Devi, P. Suganya; Kumar, M. Saravana; Das, S. Mohan

    2012-01-01

    There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran. PMID:22400119

  19. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1).

    PubMed

    Ribnicky, David M; Roopchand, Diana E; Oren, Andrew; Grace, Mary; Poulev, Alexander; Lila, Mary Ann; Havenaar, Robert; Raskin, Ilya

    2014-01-01

    The TNO intestinal model (TIM-1) of the human upper gastrointestinal tract was used to compare intestinal absorption/bioaccessibility of blueberry anthocyanins under different digestive conditions. Blueberry polyphenol-rich extract was delivered to TIM-1 in the absence or presence of a high-fat meal. HPLC analysis of seventeen anthocyanins showed that delphinidin-3-glucoside, delphinidin-3-galactoside, delphinidin-3-arabinoside and petunidin-3-arabinoside were twice as bioaccessible in fed state, whilst delphinidin-3-(6″-acetoyl)-glucoside and malvidin-3-arabinoside were twice as bioaccessible under fasted conditions, suggesting lipid-rich matrices selectively effect anthocyanin bioaccessibility. TIM-1 was fed blueberry juice (BBJ) or blueberry polyphenol-enriched defatted soybean flour (BB-DSF) containing equivalent amounts of free or DSF-sorbed anthocyanins, respectively. Anthocyanin bioaccessibility from BB-DSF (36.0±10.4) was numerically, but not significantly, greater than that from BBJ (26.3±10.3). Ileal efflux samples collected after digestion of BB-DSF contained 2.8-fold more anthocyanins than same from BBJ, suggesting that protein-rich DSF protects anthocyanins during transit through upper digestive tract for subsequent colonic delivery/metabolism.

  20. The immunomodulation effect of Aronia extract lacks association with its antioxidant anthocyanins.

    PubMed

    Xu, Jin; Mojsoska, Biljana

    2013-04-01

    Polyphenols comprise a diverse group of molecules with antioxidative and anti-inflammatory activities. To compare the antioxidative and anti-inflammatory capacity of Aronia melanocarpa berries (chokeberries), recognized for their high content of anthocyanins, a noncytotoxic isolation method was developed to obtain high-purity anthocyanins in the extract. The antioxidative activity of the extract, the anthocyanin-rich fraction (AF) was determined by 1,1-diphenyl-2-picrylhydrazyl radical and ferric-reducing ability of plasma along with resveratrol as a reference. The immunomodulation properties were assessed in lipopolysaccharide (LPS)-stimulated human monocytes mono mac 6. The isolated AF, containing six different anthocyanins, exhibited a stronger antioxidative capacity compared to resveratrol. Resveratrol enhanced tumor necrosis factor-α and reduced interleukin-10 (IL-10) production by LPS, whereas AF only had a slight effect in reducing IL-10. These results demonstrated that there was no major relationship between the antioxidative effect and immunomodulation capacities of AF and resveratrol. The immunomodulatory activity of the extract is associated with bioactive compounds in Aronia other than its anthocyanins.

  1. The Effect of Anthocyanins on Blood Pressure

    PubMed Central

    Zhu, Yongjian; Bo, Yacong; Wang, Xi; Lu, Wenjie; Wang, Xule; Han, Zhanying; Qiu, Chunguang

    2016-01-01

    Abstract The findings of clinical studies concerning the association between anthocyanins supplementation and blood pressure (BP) are inconsistent. In order to provide a more precise estimate of the overall effect of anthocyanins on systolic blood pressure (SBP) and diastolic blood pressure (DBP), we conducted a meta-analysis of clinical trials about anthocyanins supplementation and BP. PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) (until October 2015) were searched to identify potential studies with information on anthocyanins extract supplementation and arterial BP. The weighted mean difference (WMD) and 95% confidence interval (CI) were used as a summary statistic. Net changes in SBP and DBP between anthocyanins supplementation and placebo groups were calculated by subtracting the values at end of follow-up from those at baseline. Meta regression was used to explore the potential moderators of effect size. The publication bias was assessed using Begger's Funnel plots and Egger's tests; P < 0.05 was considered to be statistically significant. Finally, 6 clinical studies with 472 participants for the effect of anthocyanins consumption on BP were included in the present meta-analysis. There is no significant effect on either SBP (WMD: 1.15 mm Hg, 95% CI: −3.17 to 5.47, I2 = 56%) or DBP (WMD: 1.06 mm Hg, 95% CI: −0.71 to 2.83, I2 = 0%) following supplementation with anthocyanins. In summary, results from this meta-analysis do not favor any clinical efficacy of supplementation with anthocyanins in improving blood pressure. Further well-designed large randomized controlled trials (RCTs) with long follow-up period are needed to verify the association of anthocyanins supplementation and blood pressure. PMID:27082604

  2. Anthocyanins in grapes and grape products.

    PubMed

    Mazza, G

    1995-07-01

    The types of anthocyanins occurring in grapes, wines, and juices are described and their distribution documented. Recent work on the evaluation of red wine color during storage and aging is reviewed. Molecular interactions between anthocyanins and some of the other red wine molecules are shown to be associated with development of new pigments whose formation explains the subtle color changes and stabilization occurring on aging of red wines. A detailed description of the recovery of anthocyanins from grape pomace and production of natural red colorants is also given.

  3. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells.

    PubMed

    Bunea, Andrea; Rugină, Dumitriţa; Sconţa, Zoriţa; Pop, Raluca M; Pintea, Adela; Socaciu, Carmen; Tăbăran, Flaviu; Grootaert, Charlotte; Struijs, Karin; VanCamp, John

    2013-11-01

    Blueberry consumption is associated with health benefits contributing to a reduced risk for cardiovascular disease, diabetes and cancer. The aim of this study was to determine the anthocyanin profile of blueberry extracts and to evaluate their effects on B16-F10 metastatic melanoma murine cells. Seven blueberry cultivars cultivated in Romania were used. The blueberry extracts were purified over an Amberlite XAD-7 resin and a Sephadex LH-20 column, in order to obtain the anthocyanin rich fractions (ARF). The antioxidant activity of the ARF of all cultivars was evaluated by ABTS, CUPRAC and ORAC assays. High performance liquid chromatography followed by electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to identify and quantify individual anthocyanins. The anthocyanin content of tested cultivars ranged from 101.88 to 195.01 mg malvidin-3-glucoside/100g fresh weight. The anthocyanin rich-fraction obtained from cultivar Torro (ARF-T) was shown to have the highest anthocyanin content and antioxidant activity, and inhibited B16-F10 melanoma murine cells proliferation at concentrations higher than 500 μg/ml. In addition, ARF-T stimulated apoptosis and increased total LDH activity in metastatic B16-F10 melanoma murine cells. These results indicate that the anthocyanins from blueberry cultivar could be used as a chemopreventive or adjuvant treatment for metastasis control.

  4. Anthocyanin rich black raspberries can be made even better

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research group has worked the last seven years on improving the phenological, vegetative, and phytochemical traits of U.S. grown black raspberries. We have been awarded USDA/NIFA-Specialty Crops Research Initiative (SCRI) funding to continue our project as a multi-region and international collab...

  5. The next generation of superfruits: enhancing anthocyanin rich black raspberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research group has worked the last seven years on developing black raspberries with improved disease resistance and phytochemical traits. We have been awarded USDA/NIFA-Specialty Crops Research Initiative (SCRI) funding to continue our project as a multi-region and international collaboration en...

  6. Anthocyanin rich black raspberries can be made even better

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research group has worked the last 7 years on improving the phenological, vegetative, and phytochemical traits of US grown black raspberries. We have been awarded USDA/NIFA-Specialty Crops Research Initiative (SCRI) funding to continue our project as a multi-region and international collaboratio...

  7. Recent Advances in Anthocyanin Analysis and Characterization

    PubMed Central

    Welch, Cara R.; Wu, Qingli; Simon, James E.

    2009-01-01

    Anthocyanins are a class of polyphenols responsible for the orange, red, purple and blue colors of many fruits, vegetables, grains, flowers and other plants. Consumption of anthocyanins has been linked as protective agents against many chronic diseases and possesses strong antioxidant properties leading to a variety of health benefits. In this review, we examine the advances in the chemical profiling of natural anthocyanins in plant and biological matrices using various chromatographic separations (HPLC and CE) coupled with different detection systems (UV, MS and NMR). An overview of anthocyanin chemistry, prevalence in plants, biosynthesis and metabolism, bioactivities and health properties, sample preparation and phytochemical investigations are discussed while the major focus examines the comparative advantages and disadvantages of each analytical technique. PMID:19946465

  8. Anthocyanin composition of wild bananas in Thailand.

    PubMed

    Kitdamrongsont, Kasipong; Pothavorn, Pongsagon; Swangpol, Sasivimon; Wongniam, Siripope; Atawongsa, Kanokporn; Svasti, Jisnuson; Somana, Jamorn

    2008-11-26

    Anthocyanins were isolated from male bracts of 10 wild species of bananas (Musa spp. and Ensete spp.) distributed in Thailand. Six major anthocyanin pigments were identified by high performance liquid chromatography (HPLC), mass spectrometry (MS), and tandem mass spectrometry (MS/MS). They are delphinidin-3-rutinoside (m/z 611.2), cyanidin-3-rutinoside (m/z 595.8), petunidin-3-rutinoside (m/z 624.9), pelargonidin-3-rutinoside (m/z 579.4), peonidin-3-rutinoside (m/z 608.7), and malvidin-3-rutinoside (m/z 638.8). On the basis of the types of pigment present, the wild bananas can be divided into 5 groups. The first group comprises M. itinerans, Musa sp. one, Musa sp. two, and M. acuminata accessions, which contain almost or all anthocyanin pigments except for pelargonidin-3-rutinoside, including both nonmethylated and methylated anthocyanins. The second group, M. acuminata subsp. truncata, contains only malvidin-3-rutinoside while the third group, M. coccinea, contains cyanidin-3-rutinoside and pelargonidin-3-rutinoside. The forth group, M. acuminata yellow bract and E. glaucum do not appear to contain any anthocyanin pigment. The fifth group consists of M. balbisiana, M. velutina, M. laterita, and E. superbum which contain only nonmethylated anthocyanin, delphinidin-3-rutinoside, and cyanidin-3-rutinoside. Total anthocyanin content in the analyzed bracts ranged from 0-119.70 mg/100 g bract fresh weight. The differences in the type of anthocyanin and variation in the amounts present indicate that wild bananas show biochemical diversity, which may be useful for identifying specific groups of bananas or for clarifying the evolution of flavonoid metabolism in each banana group.

  9. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study of the mass spectroscopic behaviors of anthocyanins in the negative ionization mode was reported and it can be used for differentiation anthocyanins from other non-anthocyanin polyphenols. For the study, an ultra-high performance liquid chromatography with high resolution mass spectrometry (...

  10. Anthocyanins influence tannin-cell wall interactions.

    PubMed

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present.

  11. [Advances in plant anthocyanin transport mechanism].

    PubMed

    Wang, Lu; Dai, Silan; Jin, Xuehua; Huang, He; Hong, Yan

    2014-06-01

    Anthocyanin biosynthesis is one of the thoroughly studied enzymatic pathways in biology, but little is known about the molecular mechanisms of its final stage: the transport of the anthocyanins into the vacuole. A clear picture of the dynamic trafficking of flavonoids is only now beginning to emerge. So far four different models have been proposed to explain the transport of anthocyanins from biosynthetic sites to the central vacuole, and four types of transporters have been found associated with the transport of anthocyanins: glutathione S-transferase, multidrug resistance-associated protein, multidrug and toxic compound extrusion, bilitranslocase-homologue. The functions of these proteins and related genes have also been studied. Although different models have been proposed, cellular and subcellular information is still lacking for reconciliation of different lines of evidence in various anthocyanin sequestration studies. According to the information available, through sequence analysis, gene expression analysis, subcellular positioning and complementation experiments, the function and location of these transporters can be explored, and the anthocyanin transport mechanism can be better understood.

  12. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.).

    PubMed

    Jiang, Mingmin; Ren, Li; Lian, Hongli; Liu, Yang; Chen, Huoying

    2016-08-01

    Eggplant is rich in anthocyanins, which are the major secondary metabolites and beneficial to human health. We discovered that the anthocyanin biosynthesis of eggplant cultivar 'Lanshan Hexian' was regulated by light. In this study, we isolated two blue light receptor genes, SmCRY1 and SmCRY2, and negative/positive anthocyanin regulatory factors SmCOP1 and SmHY5 from eggplant. In terms of transcript levels, SmCRY1, SmCRY2 and SmHY5 were up-regulated by light, while SmCOP1 was down-regulated. Subsequently, the four genes were functionally complemented in phenotype of corresponding mutants, indicating that they act as counterparts of Arabidopsis genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SmCRY1 and SmCRY2 interact with SmCOP1 in a blue-light-dependent manner. It also obtained the result that SmCOP1 interacts with SmHY5 and SmMYB1. Furthermore, using yeast one-hybrid assay, we found that SmHY5 and SmMYB1 both bind the promoters of anthocyanin biosynthesis structural genes (SmCHS and SmDFR). Taken together, blue-light-triggered CRY1/CRY2-COP1 interaction creates the condition that HY5 and MYB1 combine with the downstream anthocyanin synthesis genes (CHS and DFR) in eggplant. Our finding provides a new working model by which light controls anthocyanin accumulation in eggplant.

  13. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.).

    PubMed

    Zhang, Yanjie; Hu, Zongli; Chu, Guihua; Huang, Cheng; Tian, Shibing; Zhao, Zhiping; Chen, Guoping

    2014-04-02

    Eggplant (Solanum melongena L.) is an edible fruit vegetable cultivated and consumed worldwide. The purple eggplant is more eye-catching and popular for the health-promoting anthocyanins contained in the fruit skin. Two kinds of anthocyanin were separated and identified from purple cultivar (Zi Chang) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms of anthocyanin accumulation in eggplant, the transcripts of anthocyanin biosynthetic and regulatory genes were analyzed in the fruit skin and the flesh of the purple cultivar and the white cultivar (Bai Xue). Compared with the other tissues, SmMYB1 and all anthocyanin biosynthetic genes except PAL were dramatically upregulated in the fruit skin of the purple cultivar. Overexpression of SmMYB1 activated abundant anthocyanin accumulation in the regenerating shoots of eggplant. These results prove that transcriptional activation of SmMYB1 accounts for constitutive upregulation of most anthocyanin biosynthetic genes and the onset of anthocyanin biosynthesis in the purple cultivar.

  14. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts.

    PubMed

    Bae, Ji-Young; Lim, Soon Sung; Kim, Sun Ju; Choi, Jung-Suk; Park, Jinseu; Ju, Sung Mi; Han, Seoung Jun; Kang, Il-Jun; Kang, Young-Hee

    2009-06-01

    Fruits of bog blueberry (Vaccinium uliginosum L.) are rich in anthocyanins that contribute pigmentation. Anthocyanins have received much attention as agents with potentials preventing chronic diseases. This study investigated the capacity of anthocyanin-rich extract from bog blueberry (ATH-BBe) to inhibit photoaging in UV-B-irradiated human dermal fibroblasts. BBe anthocyanins were detected as cyanidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside, and delphinidin3-glucoside. ATH-BBe attenuated UV-B-induced toxicity accompanying reactive oxygen species (ROS) production and the resultant DNA damage responsible for activation of p53 and Bad. Preincubation of ATH-BBe markedly suppressed collagen degradation via blunting production of collagenolytic matrix metalloproteinases (MMP). Additionally, ATH-BBe enhanced UV-B-downregulated procollagen expression at transcriptional levels. We next attempted to explore whether ATH-BBe mitigated the MMP-promoted collagen degradation through blocking nuclear factor kappaB (NF-kappaB) activation and MAPK-signaling cascades. UV-B radiation enhanced nuclear translocation of NF-kappaB, which was reversed by treatment with ATH-BBe. The UV-B irradiation rapidly activated apoptosis signal-regulating kinase-1 (ASK-1)-signaling cascades of JNK and p38 mitogen-activated protein kinase (p38 MAPK), whereas ATH-BBe hampered phosphorylation of c-Jun, p53, and signal transducers and activators of transcription-1 (STAT-1) linked to these MAPK signaling pathways. ATH-BBe diminished UV-B augmented-release of inflammatory interleukin (IL)-6 and IL-8. These results demonstrate that ATH-BBe dampens UV-B-triggered collagen destruction and inflammatory responses through modulating NF-kappaB-responsive and MAPK-dependent pathways. Therefore, anthocyanins from edible bog blueberry may be protective against UV-induced skin photoaging.

  15. Identification of anthocyanin components of wild Chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries.

    PubMed

    Liu, Yixiang; Song, Xue; Han, Yong; Zhou, Feng; Zhang, Di; Ji, Baoping; Hu, Jimei; Lv, Yechun; Cai, Shengbao; Wei, Ying; Gao, Fengyi; Jia, Xiaonan

    2011-01-12

    Studies suggest that the consumption of berry fruits rich in anthocyanins may have beneficial effects on improving visual function. This study determined the total polyphenol and total anthocyanin contents in wild Chinese blueberries using the Folin-Ciocalteu reagent method and a pH differential method. Anthocyanin composition and quantity were characterized by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry coupled with mass selective detection. Total polyphenol and anthocyanin contents were 602.9 ± 9.2 and 177.8 ± 8.3 mg/100 g, respectively. Seventeen anthocyanins were discovered, and only 13 were tentatively identified in the wild blueberries. Anthocyanins of malvidin glycosylated with hexose or pentose accounted for >46% of total anthocyanin content. Furthermore, the effect of whole blueberries on retinal damage in pigmented rabbits upon light exposure was investigated, and the retinal functions were evaluated by electroretinogram (ERG). Pigmented rabbits were chosen for this experiment because of their large eyes, which facilitated the operative procedure and observation, and the similarity of their eyes to the human eye structure. Light-induced retinal damage was induced by exposure to white light at 15000 ± 1000 lx for 2 h. Feeding the rabbits with blueberries at a dosage of 1.2 or 4.9 g/kg/day for 4 weeks prior to light exposure effectively reduced photodamage to the retinas. This study adds to the growing body of data supporting the bioactivity of blueberries in improving mammal vision.

  16. Exploitation of the complexation reaction of ortho-dihydroxylated anthocyanins with aluminum(III) for their quantitative spectrophotometric determination in edible sources.

    PubMed

    Bernal, Freddy A; Orduz-Diaz, Luisa L; Coy-Barrera, Ericsson

    2015-10-15

    Anthocyanins are natural pigments known for their color and antioxidant activity. These properties allow their use in various fields, including food and pharmaceutical ones. Quantitative determination of anthocyanins had been performed by non-specific methods that limit the accuracy and reliability of the results. Therefore, a novel, simple spectrophotometric method for the anthocyanins quantification based on a formation of blue-colored complexes by the known reaction between catechol- and pyrogallol-containing anthocyanins and aluminum(III) is presented. The method demonstrated to be reproducible, repetitive (RSD<1.5%) and highly sensitive to ortho-dihydroxylated anthocyanins (LOD = 0.186 μg/mL). Compliance with Beer's law was also evident in a range of concentrations (2-16 μg/mL for cyanidin 3-O-glucoside). Good recoveries (98.8-103.3%) were calculated using anthocyanin-rich plant samples. The described method revealed direct correlation to pH differential method results for several common anthocyanin-containing fruits indicating its great analytical potential. The presented method was successfully validated.

  17. Effect of glucuronosylation on anthocyanin color stability.

    PubMed

    Osmani, Sarah Anne; Hansen, Esben Halkjaer; Malien-Aubert, Céline; Olsen, Carl-Erik; Bak, Søren; Møller, Birger Lindberg

    2009-04-22

    The effect of glucuronosylation on the color stability of anthocyanins was investigated using glucuronosylated anthocyanins isolated from the flower petals of the red daisy (Bellis perennis) or obtained by enzymatic in vitro synthesis using heterologously expressed red daisy glucuronosyltransferase BpUGT94B1. Color stability toward light and heat stress was assessed by monitoring CIELAB color coordinates and stability at pH 7.0 by A(550). Cyanidin-3-O-2''-O-glucuronosylglucoside showed improved color stability in response to light compared to both cyanidin 3-O-glucoside and cyanidin 3-O-2''-O-diglucoside. A similar increase in color stability was not observed following heat treatment. Glucuronosylation did not increase the stability of anthocyanins at pH 7.0 as determined by A(550). To test for a possible effect of glucuronosylation on the color stability of anthocyanins in plant extracts used for food coloration, an elderberry (Sambucus nigra) extract was glucuronosylated in vitro. Glucuronosylation of approximately 50% of total anthocyanins proceeded fast and resulted in increased color stability in response to both heat and light. The data show that glucuronosylation may be used to stabilize industrially used extracts of natural colorants.

  18. The interaction of anthocyanins with bilitranslocase.

    PubMed

    Passamonti, Sabina; Vrhovsek, Urska; Mattivi, Fulvio

    2002-08-23

    Bilitranslocase (TC 2.A.65.1.1) is an organic anion membrane carrier expressed at the sinusoidal domain of the liver plasma membrane and in epithelial cells of the gastric mucosa. Its substrates are sulfobromophthalein, bilirubin, and nicotinic acid. This work reports on the identification of a new class of bilitranslocase substrates, i.e., anthocyanins. Seventeen out thes 20 compounds tested behaved as competitive inhibitors of bilitranslocase transport activity (K(I)=1.4-22 microM). Their structure-activity relationship reveals that mono- and di-glucosyl anthocyanins, the anthocyanin species occurring in food, are better ligands than the corresponding aglycones. Moreover, the first interaction of anthocyanins with the carrier occurs through hydrophilic moieties, such as the 3-glucosyl moiety and the B ring for the monoglucosides, through the 5-glucosyl moiety and the A ring for the diglucosides, and through either the B or the A ring for the aglycones. These findings suggest that bilitranslocase could play a role in the bioavailability of anthocyanins.

  19. Light exclusion influence on grape anthocyanin.

    PubMed

    Lee, Jungmin

    2017-02-01

    This study contrasted the anthocyanins of investigational grape clusters that developed without light incidence (light-excluded), to those of control clusters that were shaded naturally beneath the vine canopy (control-shaded). Treatment grape clusters were light-excluded during ripening by opaque white polypropylene enclosures; temperature, vapor pressure deficit, and light intensity were measured continually. All 15 'Merlot' grape anthocyanins accrued in both groups, indicating no accumulations were terminated from light-exclusion during ripening. Light-excluded clusters had an overall lower anthocyanin concentration (98.1 mg/100 g of berries) than that of control clusters (162.0 mg/100 g of berries), but it was not significantly different. Light-excluded clusters showed altered concentrations of nine individual anthocyanins that were significantly higher in control-shaded clusters. Although the changes in anthocyanin composition could not be attributed solely to the elimination of light, as there were also deviations in berry temperature and vapor pressure deficit concurrent with preventing light from reaching the treatment clusters.

  20. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.

    PubMed

    Akhavan Mahdavi, Sahar; Jafari, Seid Mahdi; Assadpoor, Elham; Dehnad, Danial

    2016-04-01

    The barberry (Berberis vulgaris) extract which is a rich source of anthocyanins was used for spray drying encapsulation with three different wall materials, i.e., combination of maltodextrin and gum Arabic (MD+GA), maltodextrin and gelatin (MD+GE), and maltodextrin (MD). Response Surface Methodology (RSM) was applied for optimization of microencapsulation efficiency and physical properties of encapsulated powders considering wall material type as well as different ratios of core to wall materials as independent variables. Physical characteristics of spray-dried powders were investigated by further analyses of moisture content, hygroscopicity, degree of caking, solubility, bulk and absolute density, porosity, flowability and microstructural evaluation of encapsulated powders. Our results indicated that samples produced with MD+GA as wall materials represented the highest process efficiency and best powder quality; the optimum conditions of microencapsulation process for barberry anthocyanins were found to be the wall material content and anthocyanin load of 24.54% and 13.82%, respectively. Under such conditions, the microencapsulation efficiency (ME) of anthocyanins could be as high as 92.83%.

  1. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  2. Identification and quantification of anthocyanins in transgenic purple tomato.

    PubMed

    Su, Xiaoyu; Xu, Jianteng; Rhodes, Davina; Shen, Yanting; Song, Weixing; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2016-07-01

    Anthocyanins are natural pigments derived from the phenylpropanoid pathway. Most tomatoes produce little anthocyanins, but the transgenic purple tomato biosynthesizes a high level of anthocyanins due to expression of two transcription factors (Del and Ros1). This study was to identify and quantify anthocyanins in this transgenic tomato line. Seven anthocyanins, including two new anthocyanins [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside and malvidin-3-(feruloyl)-rutinoside-5-glucoside], were identified by LC-MS/MS. Petunidin-3-(trans-coumaroyl)-rutinoside-5-glucoside and delphinidin-3-(trans-coumaroyl)-rutinoside-5-glucoside were the most abundant anthocyanins, making up 86% of the total anthocyanins. Compared to undetectable anthocyanins in the wild type, the contents of anthocyanins in the whole fruit, peel, and flesh of the Del/Ros1-transgenic tomato were 5.2±0.5, 5.1±0.5, and 5.8±0.3g/kg dry matter, respectively. Anthocyanins were undetectable in the seeds of both wide-type and transgenic tomato lines. Such novel and high levels of anthocyanins obtained in this transgenic tomato may provide unique functional products with potential health benefits.

  3. Transcriptional regulation of anthocyanin biosynthesis in red cabbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The color of red cabbage (Brassica oleracea var. capitata) is due to anthocyanin accumulation. To investigate the regulatory control of anthocyanin production in red cabbage, the expression of anthocyanin biosynthetic and regulatory genes from eight commercial cultivars was examined. While the four ...

  4. Stabilization of cranberry anthocyanins in nutraceutical capsules.

    PubMed

    Bononi, Monica; Tateo, Fernando

    2007-03-01

    Anthocyanins can be considered spy-substances, useful in obtaining information regarding the shelf-life of food supplements containing cranberry juice or cranberry-derived extracts. The level of total anthocyanins, as evaluated by high-performance liquid chromatography-diode-array detector and analytically expressed as cyanidin aglycone, represents a 'quality index' useful for routine estimation of shelf-life. The objective of this work was to study the stability of anthocyanins in a commercial cranberry (Vaccinium macrocarpon) dried extract compared with the stability of the same extract contained in a food supplement enriched with alpha-tocopheryl succinate and ascorbic acid. The values obtained after exposure of the samples to natural light and to alternating hot and cold temperatures show considerable sensitivity of the commercial cranberry dried extract to the agents used for the same evaluation (time, temperature and light) and emphasize a positive effect of the enrichment of the derived preparation with alpha-tocopheryl succinate and ascorbic acid.

  5. Plant biochemistry: anthocyanin biosynthesis in roses.

    PubMed

    Ogata, Jun; Kanno, Yoshiaki; Itoh, Yoshio; Tsugawa, Hidehito; Suzuki, Masahiko

    2005-06-09

    Anthocyanin is the principal pigment in flowers, conferring intense red-to-blue cyanic colours on petals and helping to attract pollinators. Its biosynthesis involves glycosylation steps that are important for the stability of the pigment and for its aqueous solubility in vacuoles. Here we describe anthocyanin biosynthesis in roses (Rosa hybrida), which is unlike the pathway used in other flowers in that it relies on a single enzyme to achieve glycosylation at two different positions on the precursor molecule. Phylogenetic analysis also indicates that this previously unknown glucosyltransferase enzyme may be unique to roses, with glycosylation having apparently evolved into a single stabilizing step in other plants.

  6. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology.

    PubMed

    Celli, Giovana Bonat; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2015-11-01

    Haskap berries (Lonicera caerulea L.) are a rich source of bioactive molecules. As such, the extraction of anthocyanins is important for the development of many value-added products and functional food ingredients. In this paper, the ultrasound-assisted extraction (UAE) of anthocyanins from haskap berries was investigated. Significant independent variables were screened and optimized using Plackett-Burman (PB) and Box-Behnken (BB) designs, respectively. The mathematical model showed a high coefficient of determination (R(2)=0.9396) and the optimum conditions for the extraction were as follows: liquid/solid ratio 25:1 (mL/g), solvent composition of 80% ethanol, addition of 0.5% formic acid, ultrasound bath temperature of 35°C for 20 min. Under these conditions, the total anthocyanin content of 22.73 mg cyaniding 3-glucoside equivalents (C3G)/g dry weight (DW) was consistent with the predicted response of 22.45 mg C3G/g DW from the model (mean error of 1.28%). Five anthocyanins were identified in the optimized extract, namely cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, and peonidin 3-glucoside. Thus, UAE is a suitable technique for the extraction of anthocyanins from haskap berries.

  7. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men12

    PubMed Central

    Cassidy, Aedín; Bertoia, Monica; Chiuve, Stephanie; Flint, Alan; Forman, John; Rimm, Eric B

    2016-01-01

    Background: Although increased fruit intake reduces cardiovascular disease (CVD) risk, which fruits are most beneficial and what key constituents are responsible are unclear. Habitual intakes of flavonoids, specifically anthocyanins and flavanones, in which >90% of habitual intake is derived from fruit, are associated with decreased CVD risk in women, but associations in men are largely unknown. Objective: We examined the relation between habitual anthocyanin and flavanone intake and coronary artery disease and stroke in the Health Professionals Follow-Up Study. Design: We followed 43,880 healthy men who had no prior diagnosed CVD or cancer. Flavonoid intake was calculated with the use of validated food-frequency questionnaires. Results: During 24 y of follow-up, 4046 myocardial infarction (MI) and 1572 stroke cases were confirmed by medical records. Although higher anthocyanin intake was not associated with total or fatal MI risk, after multivariate adjustment an inverse association with nonfatal MI was observed (HR: 0.87; 95% CI: 0.75, 1.00; P = 0.04; P-trend = 0.098); this association was stronger in normotensive participants (HR: 0.81; 95% CI: 0.69, 0.96; P-interaction = 0.03). Anthocyanin intake was not associated with stroke risk. Although flavanone intake was not associated with MI or total stroke risk, higher intake was associated with a lower risk of ischemic stroke (HR: 0.78; 95% CI: 0.62, 0.97; P = 0.03, P-trend = 0.059), with the greatest magnitude in participants aged ≥65 y (P-interaction = 0.04). Conclusions: Higher intakes of fruit-based flavonoids were associated with a lower risk of nonfatal MI and ischemic stroke in men. Mechanistic studies and clinical trials are needed to unravel the differential benefits of anthocyanin- and flavanone-rich foods on cardiovascular health. PMID:27488237

  8. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins.

    PubMed

    Cui, Chun; Zhang, Shaomin; You, Lijun; Ren, Jiaoyan; Luo, Wei; Chen, Wenfen; Zhao, Mouming

    2013-08-15

    The anthocyanins in the fruits of Rhodomyrtus tomentosa (ACN) were extracted by 1% TFA in methanol, and then purified by X-5 resin column and C18 (SPE) cartridges. The purified anthocyanin extract (ART) from the fruits of R. tomentosa showed strong antioxidant activities, including DPPH radical-scavenging capacity, ABTS radical scavenging capacity, reducing power and oxygen radical absorbance capacity (ORAC). The purified anthocyanin extract was analyzed by high performance liquid chromatography (HPLC). The major anthocyanins were purified by semi-preparative HPLC and Sephadex LH-20 column chromatography, and were identified as cyanidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside, petunidin-3-O-glucoside, delphinidin-3-O-glucoside and pelargonidin-3-glucoside by HPLC-ESI/MS and nuclear magnetic resonance spectroscopy (NMR). Cyanidin-3-O-glucoside was considered as the most abundant anthocyanin, which was 29.4 mg/100 g dry weight of R. tomentosa fruits. Additionally, all the major anthocyanins were identified from R. tomentosa fruit for the first time.

  9. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women.

    PubMed

    Jennings, Amy; Welch, Ailsa A; Spector, Tim; Macgregor, Alex; Cassidy, Aedín

    2014-02-01

    Although laboratory data suggest that several flavonoid subclasses are involved in glucose metabolism, limited clinical and epidemiologic data are available. The current study examined associations between habitual intake of flavonoid subclasses, insulin resistance, and related inflammatory biomarkers. In a cross-sectional study of 1997 females aged 18-76 y, intakes of total flavonoids and their subclasses (flavanones, anthocyanins, flavan-3-ols, polymeric flavonoids, flavonols, flavones) were calculated from food frequency questionnaires using an extended USDA database. Fasting serum glucose, insulin, high-sensitivity C-reactive protein (hs-CRP; n = 1432), plasminogen activator inhibitor-1 (n = 843), and adiponectin (n = 1452) concentrations were measured. In multivariable analyses, higher anthocyanin and flavone intake were associated with significantly lower peripheral insulin resistance [homeostasis model assessment of insulin resistance; quintile 5 (Q5) to Q1 = -0.1, P-trend = 0.04 for anthocyanins and flavones] as a result of a decrease in insulin concentrations (Q5-Q1 = -0.7 μU/mL, P-trend = 0.02 anthocyanins; Q5-Q1 = -0.5 μU/mL, P-trend = 0.02 flavones). Higher anthocyanin intake was also associated with lower hs-CRP concentrations (Q5-Q1 = -0.3 mg/L, P-trend = 0.04), whereas those in the highest quintile of flavone intake had improved adiponectin concentrations (Q5-Q1 = 0.7 μg/L, P-trend = 0.01). Anthocyanin-rich foods were also associated with lower insulin and inflammation levels. No significant associations were observed for total or other flavonoid subclasses. Higher intakes of both anthocyanins and flavones were associated with improvements in insulin resistance and hs-CRP. These associations were found with intakes readily achieved in the diet. The observed reduction in insulin concentrations was similar to that reported previously for other lifestyle factors. Dose-response trials are needed to ascertain optimal intakes for the potential reduction

  10. Light exclusion influence on grape anthocyanin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study contrasted the anthocyanins of investigational grape clusters that developed without light incidence (light-excluded), to those of control clusters that were shaded naturally beneath the vine canopy (control-shaded). Treatment grape clusters were light-excluded during ripening by opaque w...

  11. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between t...

  12. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer, and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between...

  13. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer, and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between ...

  14. Grape anthocyanin altered by absolute sunlight exclusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was conducted to clarify anthocyanin accumulation within ‘Merlot’ grapes in response to microclimate, specifically to light incidence, temperature, and humidity. Treatment grape clusters were light-excluded during ripening by opaque white polypropylene enclosures, during which light in...

  15. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage.

    PubMed

    He, Bo; Ge, Jiao; Yue, Pengxiang; Yue, XueYang; Fu, Ruiyan; Liang, Jin; Gao, Xueling

    2017-04-15

    The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles.

  16. Performance and stability of low-cost dye-sensitized solar cell based crude and pre-concentrated anthocyanins: Combined experimental and DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Chaiamornnugool, Phrompak; Tontapha, Sarawut; Phatchana, Ratchanee; Ratchapolthavisin, Nattawat; Kanokmedhakul, Somdej; Sang-aroon, Wichien; Amornkitbamrung, Vittaya

    2017-01-01

    The low cost DSSCs utilized by crude and pre-concentrated anthocyanins extracted from six anthocyanin-rich samples including mangosteen pericarp, roselle, red cabbage, Thai berry, black rice and blue pea were fabricated. Their photo-to-current conversion efficiencies and stability were examined. Pre-concentrated extracts were obtained by solid phase extraction (SPE) using C18 cartridge. The results obviously showed that all pre-concentrated extracts performed on photovoltaic performances in DSSCs better than crude extracts except for mangosteen pericarp. The DSSC sensitized by pre-concentrated anthocyanin from roselle and red cabbage showed maximum current efficiency η = 0.71% while DSSC sensitized by crude anthocyanin from mangosteen pericarp reached maximum efficiency η = 0.97%. In addition, pre-concentrated extract based cells possess more stability than those of crude extract based cells. This indicates that pre-concentration of anthocyanin via SPE method is very effective for DSSCs based on good photovoltaic performance and stability. The DFT/TDDFT calculations of electronic and photoelectrochemical properties of the major anthocyanins found in the samples are employed to support the experimental results.

  17. A Root-Preferential DFR-Like Gene Encoding Dihydrokaempferol Reductase Involved in Anthocyanin Biosynthesis of Purple-Fleshed Sweet Potato

    PubMed Central

    Liu, Xiaoqiang; Xiang, Min; Fan, Yufang; Yang, Chunxian; Zeng, Lingjiang; Zhang, Qitang; Chen, Min; Liao, Zhihua

    2017-01-01

    Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase (IbDHKR) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway. PMID:28293252

  18. Green Tea Extract-induced Acute Hepatotoxicity in Rats.

    PubMed

    Emoto, Yuko; Yoshizawa, Katsuhiko; Kinoshita, Yuichi; Yuki, Michiko; Yuri, Takashi; Yoshikawa, Yutaka; Sayama, Kazutoshi; Tsubura, Airo

    2014-10-01

    Although green tea is considered to be a healthy beverage, hepatotoxicity associated with the consumption of green tea extract has been reported. In the present study, we characterized the hepatotoxicity of green tea extract in rats and explored the responsible mechanism. Six-week-old IGS rats received a single intraperitoneal (ip) injection of 200 mg/kg green tea extract (THEA-FLAN 90S). At 8, 24, 48 and 72 hrs and 1 and 3 months after exposure, liver damage was assessed by using blood-chemistry, histopathology, and immunohistochemistry to detect cell death (TUNEL and caspase-3) and proliferative activity (PCNA). Analyses of malondialdehyde (MDA) in serum and the liver and of MDA and thymidine glycol (TG) by immunohistochemistry, as oxidative stress markers, were performed. Placental glutathione S-transferase (GST-P), which is a marker of hepatocarcinogenesis, was also immunohistochemically stained. To examine toxicity at older ages, 200 mg/kg green tea extract was administered to 18-wk-old female rats. In 6-wk-old rats, 12% of males and 50% of females died within 72 hrs. In 18-wk-old rats, 88% died within 72 hrs. The serum levels of aspartate aminotransferase, alanine aminotransferase and/or total bilirubin increased in both males and females. Single-cell necrosis with positive signs of TUNEL and caspase-3 was seen in perilobular hepatocytes from 8 hrs onward in all lobular areas. PCNA-positive hepatocytes increased at 48 hrs. MDA levels in the serum and liver tended to increase, and MDA- and TG-positive hepatocytes were seen immunohistochemically. GST-P-positive hepatocellular altered foci were detected in one female rat at the 3-month time point. In conclusion, a single injection of green tea extract induced acute and severe hepatotoxicity, which might be associated with lipid peroxidation and DNA oxidative stress in hepatocytes.

  19. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  20. Anthocyanins: natural colorants with health-promoting properties.

    PubMed

    He, Jian; Giusti, M Monica

    2010-01-01

    Anthocyanins are flavonoids in fruits and vegetables that render them vivid red to blue. To date, there have been more than 635 anthocyanins identified in nature, featuring six common aglycones and various types of glycosylations and acylations. Dietary consumption of anthocyanins is high compared to other flavonoids, owing to their wide distribution in plant materials. Based upon many cell-line studies, animal models, and human clinical trials, it has been suggested that anthocyanins possess anti-inflammatory and anti-carcinogenic activity, cardiovascular disease prevention, obesity control, and diabetes alleviation properties, all of which are more or less associated with their potent antioxidant property. Evidence suggests that absorption of anthocyanins occurs in the stomach and small intestine. Epithelial tissue uptake seems to be highly efficient, yet transportation into circulation, tissue distribution, and urine excretion are very limited. The bioactivity of bioavailable anthocyanins should be a focus of future research regarding their putative health-promoting effects.

  1. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  2. Characterization and quantification of anthocyanins in red kiwifruit ( Actinidia spp.).

    PubMed

    Montefiori, Mirco; Comeskey, Daniel J; Wohlers, Mark; McGhie, Tony K

    2009-08-12

    Red-fleshed fruit occur in a small number of distantly related taxa in different sections of the genus Actinidia (kiwifruit). We describe and identify the anthocyanin profile of fruit of several Actinidia species. Differences in the relative amounts of cyanidin- and delphinidin-based anthocyanins determine whether the fruit appear red or purple. Cyanidin derivatives have been found in all Actinidia species that contain anthocyanins, whereas delphinidin derivatives are limited to two taxa: A. melanandra and A. arguta var. purpurea . The fruit of these not only contain a wider range of anthocyanins, but they also have greater concentrations. Anthocyanins of most Actinidia species are usually conjugated with either xylosyl-galactose or galactose, whereas A. deliciosa anthocyanins are conjugated with glucose and galactose.

  3. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells.

    PubMed

    Venancio, Vinicius P; Cipriano, Paula A; Kim, Hyemee; Antunes, Lusânia M G; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2017-01-25

    Cocoplum (Chrysobalanus icaco L.) (CP) is an anthocyanin-rich fruit found in tropical areas around the globe. CP polyphenols are associated with beneficial effects on health, including reduction of inflammation and oxidative stress. Due to its functional properties, the consumption of this fruit may be beneficial in the promotion of human health and reduce the risk for chronic diseases. The objective of this study was to assess the anti-inflammatory and anti-proliferative activities of anthocyanins extracted from CP (1.0 to 20.0 μg ml(-1) gallic acid equivalents [GAE]) in CCD-18Co non-malignant colonic fibroblasts and HT-29 colorectal adenocarcinoma cells. Tumor necrosis factor alpha (TNF-α, 10 ng mL(-1)) was used to induce inflammation in CCD-18Co cells. CP anthocyanins were identified and quantified using HPLC-ESI-MS(n). The chemical analysis of CP extract identified delphinidin, cyanidin, petunidin and peonidin derivatives as major components. Cell proliferation was suppressed in HT-29 cells at 10.0 and 20.0 μg ml(-1) GAE and this was accompanied by increased intracellular ROS production as well as decreased TNF-α, IL-1β, IL-6, and NF-κB1 expressions at 20.0 μg ml(-1) GAE. Within the same concentration range, there was no cytotoxic effect of CP anthocyanins in CCD-18Co cells and TNF-α-induced intracellular ROS-production was decreased by 17.3%. IL-1β, IL-6 and TNF-α protein expressions were also reduced in TNF-α-treated CCD-18Co cells by CP anthocyanins at 20.0 μg ml(-1) GAE. These results suggest that cocoplum anthocyanins possess cancer-cytotoxic and anti-inflammatory activities in both inflamed colon and colon cancer cells.

  4. Anthocyanins from red flower tea (Benibana-cha), Camellia sinensis.

    PubMed

    Terahara, N; Takeda, Y; Nesumi, A; Honda, T

    2001-02-01

    Three anthocyanins were isolated from the leaves of red flower tea (Benibana-cha), Camellia sinensis, and their structures were determined by means of chemical and spectroscopic analyses. Two are the anthocyanins, delphinidin and cyanidin 3-O-beta-D-galactosides, respectively. Whereas the third, delphinidin 3-0-beta-D-(6-(E)-p-coumaryl)galactopyranoside. The anthocyanins were also contained in the flowers of Benibana-cha in different compositions.

  5. Canna indica flower: New source of anthocyanins.

    PubMed

    Srivastava, Jyoti; Vankar, Padma S

    2010-12-01

    In this study the red flowers of Canna indica (Cannaceae) were extracted by using sonicator and isolation of anthocyanins have been carried out. Four anthocyanin pigments have been isolated apart from quercetin and lycopene. They are Cyanidin-3-O-(6''-O-α-rhamnopyranosyl)-β-glucopyranoside (1), Cyanidin-3-O-(6''-O-α-rhamnopyranosyl)-β-galactopyranoside (2), Cyanidin-3-O-β-glucopyranoside (3) and Cyanidin-O-β-galactopyranoside (4). These compounds were isolated by using HPLC and their structures were subsequently determined on the basis of spectroscopic analyses, i.e., (1)H NMR, (13)C NMR, HMQC, HMBC, ESI-MS, FTIR, UV-Visible etc. The isolated compounds showed good antioxidant activity thus makes it suitable for use in food coloration and as a nutraceutical. Thus it is a promising pigment source for food applications.

  6. Molybdenum sequestration in Brassica species. A role for anthocyanins?

    PubMed

    Hale, K L; McGrath, S P; Lombi, E; Stack, S M; Terry, N; Pickering, I J; George, G N; Pilon-Smits, E A

    2001-08-01

    To elucidate plant mechanisms involved in molybdenum (Mo) sequestration and tolerance, Brassica spp. seedlings were supplied with molybdate, and the effects on plant physiology, morphology, and biochemistry were analyzed. When supplied with (colorless) molybdate Indian mustard (Brassica juncea) seedlings accumulated water-soluble blue crystals in their peripheral cell layers. Energy dispersive x-ray analysis showed that Mo accumulated predominantly in the vacuoles of the epidermal cells. Therefore, the blue crystals are likely to be a Mo compound. The x-ray absorption spectrum of the plant-accumulated Mo was different than that for molybdate, indicating complexation with a plant molecule. Because the blue compound was water soluble and showed a pH-dependent color change, possible involvement of anthocyanins was investigated. An anthocyanin-less mutant of Brassica rapa ("fast plants") was compared with varieties containing normal or high anthocyanin levels. The anthocyanin-less mutant did not show accumulation of a blue compound when supplied with molybdate. In the anthocyanin-containing varieties, the blue compound colocalized with anthocyanins in the peripheral cell layers. Mo accumulation by the three B. rapa varieties was positively correlated with anthocyanin content. Addition of molybdate to purified B. rapa anthocyanin resulted in an in vitro color change from pink to blue. Therefore, Mo appears to be sequestered in vacuoles of the peripheral cell layers of Brassica spp. as a blue compound, probably a Mo-anthocyanin complex.

  7. Light-induced vegetative anthocyanin pigmentation in Petunia.

    PubMed

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Irving, Louis J; Jameson, Paula E; Davies, Kevin M

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris x (Petunia axillaris x Petunia hybrida cv. 'Rose of Heaven')]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (A(max)). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors.

  8. Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy.

    PubMed

    Santacruz, Liliana; Carriazo, José G; Almanza, Ovidio; Osorio, Coralia

    2012-02-15

    The qualitative and quantitative anthocyanin composition of four wild tropical fruits from Colombia was studied. Compounds of "mora pequeña" ( Rubus megalococcus Focke.), "uva de árbol" ( Myrciaria aff. cauliflora O. Berg), coral, and motilón ( Hyeronima macrocarpa Mull. Arg.) fruits were separately extracted with methanol-acetic acid (95:5, v/v). The anthocyanin-rich extracts (AREs) were obtained by selective adsorption on Amberlite XAD-7. Each extract was analyzed by HPLC-PDA and HPLC-HRESI-MS(n) with LCMS-IT-TOF equipment in order to characterize the anthocyanin pigments and the coinjection in HPLC using standards allowed identifying the major constituents in each extract. The antioxidant activity was measured by electron paramagnetic resonance (EPR) and UV-vis spectroscopy, using ABTS and DPPH free radicals. The ARE of motilón ( H. macrocarpa Müll. Arg) exhibited the highest radical scavenging activity in comparison to the other extracts. A second-order kinetic model was followed in all of the cases. These results suggested that the studied fruits are promising not only as source of natural pigments but also as antioxidant materials for food industry.

  9. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    PubMed

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  10. Anthocyanins as antimicrobial agents of natural plant origin.

    PubMed

    Cisowska, Agnieszka; Wojnicz, Dorota; Hendrich, Andrzej B

    2011-01-01

    Anthocyanins are particularly abundant in different fruits, especially in berries. The beneficial effects of these compounds for human health have been known from at least the 16th century. Despite the great number of papers devoted to the different biological effects exerted by anthocyanins only a limited number of studies is focused on the antimicrobial activity of these compounds. Anthocyanin content of berry fruits varies from 7.5 mg/100 mg fresh fruit in redcurrant (Ribes rubum) up to 460 mg/100 g fresh fruit in chokeberry (Aronia melanocarpa). After consumption, anthocyanins are intensively metabolized, mainly in the intestines and liver. Glucorination, methylation and sulfation are the most typical metabolic reactions. Antimicrobial activity of crude extracts of plant phenolic compounds against human pathogens has been intensively studied to characterize and develop new healthy food ingredients as well as medical and pharmaceutical products. However, there is very little information available about the antimicrobial activity of the pure anthocyanins. In the last part of this review we present the collection of papers describing the anthocyanin profiles of different fruits (mainly berries) and the antimicrobial properties of the identified compounds. Generally, anthocyanins are active against different microbes, however Gram-positive bacteria usually are more susceptible to the anthocyanin action than Gram-negative ones. Mechanisms underlying anthocyanin activity include both membrane and intracellular interactions of these compounds. Antimicrobial activity of berries and other anthocyanin-containing fruits is likely to be caused by multiple mechanisms and synergies because they contain various compounds including anthocyanins, weak organic acids, phenolic acids, and their mixtures of different chemical forms. Therefore, the antimicrobial effect of chemically complex compounds has to be critically analyzed.

  11. Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage.

    PubMed

    Aguilera, Yolanda; Mojica, Luis; Rebollo-Hernanz, Miguel; Berhow, Mark; de Mejía, Elvira González; Martín-Cabrejas, María A

    2016-12-01

    Anthocyanin-rich powders and aqueous extracts, with high antioxidant activities, were obtained from black bean seed coats and applied to colour a sport beverage. Idaho and Otomi bean coats were extracted in water-citric acid 2% (1/50, w/v), stirring for 4h at 40°C. Anthocyanins from Idaho and Otomi extracts (1.83mg and 1.02mg C3G/g, respectively) were applied to a commercially available sport beverage, with and without 2% β-cyclodextrin (βCD) under light and darkness conditions for 10days, and stored at 4°C and 25°C for 6weeks. At different light and storage conditions, anthocyanin degradation fitted a first-order reaction model. All bean coat anthocyanins combined with βCD showed extended half-life (up to 13months), higher D-values (up to 43months) and fewer differences in colourimetric properties (lightness, chroma and hue angle) under darkness and 4°C conditions. These black bean coat aqueous extracts and powders might represent natural alternatives to synthetic colorants, ecologically extracted, and with a high antioxidant potential.

  12. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro.

    PubMed

    Sriarj, Wannakorn; Aoki, Kazuhiro; Ohya, Keiichi; Takahashi, Mariko; Takagi, Yuzo; Shimokawa, Hitoyata

    2015-01-01

    Previously, we have demonstrated that the extracellular matrix from dentin affects osteoclastic activity in co-culture between osteoclast and osteoblast-rich fraction from mouse marrow cells. In the present study, we aimed to investigate the mechanisms of dentin matrix extract-induced osteoclastogenesis in mouse bone marrow macrophages (BMMs). Dentin proteins were extracted from bovine incisor root dentin using 0.6 M HCl. BMMs were cultured in α-MEM containing macrophage colony-stimulating factor/receptor activator of nuclear factor kappa-B ligand in the presence or absence of dentin matrix extract. Tartrate-resistant acid phosphatase (TRAP)-positive cell number, total TRAP activity, and the mRNA levels of osteoclast-related genes, assayed by real-time RT-PCR, were determined as markers of osteoclastogenesis. A neutralizing antibody against transforming growth factor-β1 (TGF-β1), SB431542, a TGF-β receptor inhibitor, and ELISA were used to determine the role of TGF-β1. We observed increases in TRAP-positive cell number, TRAP activity, and the mRNA levels of osteoclast-related genes of BMMs cultured with dentin extract. The use of a neutralizing antibody against TGF-β1 or SB431542 inhibited the inductive effect of dentin extract, suggesting TGF-β1 involvement. The addition of exogenous TGF-β1, but not bone morphogenic protein-2, also increased osteoclastogenesis, corresponding to the ELISA determination of TGF-β1 in the dentin extract. In conclusion, our results indicate that proteins from dentin matrix have an inductive effect in osteoclastogenesis, which is mediated, in part, by TGF-β1.

  13. Anthocyanin regulatory/structural gene expression in Phalaenopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial cDNA fragments of Myb, Myc, Wd, Chs and Dfr genes were generated by Reverse Transcription-PCR using total RNA isolated from flowers of P. amabilis (L.) Blume (anthocyanin-free) and P. schilleriana Rchb. f. (anthocyanin-containing) and cloned into a TOPO vector. RT-PCR revealed that the struc...

  14. Anthocyanins: Analysis and Distribution in Selected Medicinal Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are water soluble plant secondary metabolites responsible for the blue, purple, and red color of many plant tissues. They have been shown to be strong antioxidants, and may exert a wide range of health benefits through antioxidant or other mechanisms. Anthocyanins occur primarily as gly...

  15. Anthocyanins: analysis and distribution in selected medicinal plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are water soluble plant secondary metabolites responsible for the blue, purple, and red color of many plant tissues. They have been shown to be strong antioxidants, and may exert a wide range of health benefits through antioxidant or other mechanisms. Anthocyanins occur primarily as g...

  16. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    PubMed

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  17. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    NASA Astrophysics Data System (ADS)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  18. Blueberry estimated harvest from seven new cultivars: fruit and anthocyanins.

    PubMed

    Scalzo, Jessica; Stevenson, David; Hedderley, Duncan

    2013-08-15

    This study compares the yields, weights and anthocyanin contents of fruit from a group of seven new cultivars released from the New Zealand blueberry breeding programme and selected for the longest possible combined harvest season. The measured factors were primarily influenced by cultivar, and seasonal variations had relatively minor effects. The late-ripening cultivars 'Velluto Blue' and 'Centra Blue' had the highest fruit yields, anthocyanin contents and estimated total anthocyanin harvestable from a given area. 'Blue Moon' and 'Sky Blue' had the largest fruit sizes. The early-ripening cultivars 'Blue Bayou', 'Blue Moon' and 'Sunset Blue' had the lowest anthocyanin contents. The yield, fruit size and total anthocyanin content results obtained from any single year were highly correlated with the average of the three years, which makes pursuing the evaluation for these traits from a single year and at an early stage of plant development a practical proposition.

  19. Development of Table and Raisin Grapes With High Anthocyanins Using a Leaf Disk Assay.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are considered an excellent source of antioxidant phytochemicals for health benefits. The majority of wine, table and raisin grapes have anthocyanins only in their colored skin. Anthocyanin content of grapes would be increased if their flesh also contained anthocyanins. Rubired wine ...

  20. Metabolic engineering of anthocyanins in dark tobacco varieties.

    PubMed

    He, Xianzhi; Li, Yong; Lawson, Darlene; Xie, De-Yu

    2017-01-01

    In this study, we investigate the metabolic engineering of anthocyanins in two dark tobacco crops (Narrow Leaf Madole and KY171) and evaluate the effects on physiological features of plant photosynthesis. Arabidopsis PAP1 (production of anthocyanin pigment 1) gene (AtPAP1) encodes a R2R3-type MYB transcript factor that is a master component of regulatory complexes controlling anthocyanin biosynthesis. AtPAP1 was introduced to Narrow Leaf Madole and KY171 plants. Multiple transgenic plants developed red/purple pigmentation in different tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of six pathway genes were increased two- to eight-fold in AtPAP1 transgenic plants compared with vector control plants. Dihydroflavonol reductase and anthocyanidin synthase genes that were not expressed in wild-type plants were activated. Spectrophotometric measurement showed that the amount of anthocyanins in AtPAP1 transgenic plants were 400-800 µg g(-1) fresh weight (FW). High-performance liquid chromatography (HPLC) analysis showed that one main anthocyanin molecule accounted for approximately 98% of the total anthocyanins. Tandem MS/MS analysis using HPLC coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry identified the main anthocyanin as cyanidin 3-O-rutinoside, an important medicinal anthocyanin. Analysis of photosynthesis rate, chlorophylls and carotenoids contents showed no differences between red/purple transgenic and control plants, indicating that this metabolic engineering did not alter photosynthetic physiological traits. This study shows that AtPAP1 is of significance for metabolic engineering of anthocyanins in crop plants for value-added traits.

  1. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.).

    PubMed

    Schweiggert, Ralf M; Vargas, Ester; Conrad, Jürgen; Hempel, Judith; Gras, Claudia C; Ziegler, Jochen U; Mayer, Angelika; Jiménez, Víctor; Esquivel, Patricia; Carle, Reinhold

    2016-06-01

    Pigment profiles of yellow-, orange-, and red-peeled cashew (Anacardium occidentale L.) apples were investigated. Among 15 identified carotenoids and carotenoid esters, β-carotene, and β-cryptoxanthin palmitate were the most abundant in peels and pulp of all samples. Total carotenoid concentrations in the pulp of yellow- and red-peeled cashew apples were low (0.69-0.73 mg/100g FW) compared to that of orange-peeled samples (2.2mg/100g FW). The color difference between the equally carotenoid-rich yellow and red colored samples indicated the presence of a further non-carotenoid pigment type in red peels. Among four detected anthocyanins, the major anthocyanin was unambiguously identified as 7-O-methylcyanidin 3-O-β-D-galactopyranoside by NMR spectroscopy. Red and yellow peel color was chiefly determined by the presence and absence of anthocyanins, respectively, while the orange appearance of the peel was mainly caused by increased carotenoid concentrations. Thus, orange-peeled fruits represent a rich source of provitamin A (ca. 124 μg retinol-activity-equivalents/100g pulp, FW).

  2. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    PubMed Central

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  3. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus).

    PubMed

    Park, Nam Il; Xu, Hui; Li, Xiaohua; Jang, In Hyuk; Park, Suhyoung; Ahn, Gil Hwan; Lim, Yong Pyo; Kim, Sun Ju; Park, Sang Un

    2011-06-08

    Radish [Raphanus sativus (Rs)] is an important dietary vegetable in Asian countries, especially China, Japan, and Korea. To elucidate the molecular mechanisms of anthocyanin accumulation in radish, the gene expression of enzymes directly involved in anthocyanin biosynthesis was analyzed. These genes include phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS). RsDFR and RsANS were found to accumulate in the flesh or skin of two radish cultivars (Man Tang Hong and Hong Feng No.1). Radish skin contained higher CHS, CHI, and F3H transcript levels than radish flesh in all three cultivars. In the red radish, 16 anthocyanins were separated and identified by high-performance liquid chromatography (HPLC) and elctrospray ionization-tandem mass spectrometry (ESI-MS/MS). Some of them were acylated with coumaroyl, malonoyl, feruoyl, and caffeoyl moieties. Furthermore (-)-epicatechin and ferulic acid were also identified in the three cultivars.

  4. Major anthocyanins from purple asparagus (Asparagus officinalis).

    PubMed

    Sakaguchi, Yumi; Ozaki, Yukio; Miyajima, Ikuo; Yamaguchi, Masaatsu; Fukui, Yuko; Iwasa, Keiko; Motoki, Satoru; Suzuki, Takashi; Okubo, Hiroshi

    2008-05-01

    Two major anthocyanins (A1 and A2) were isolated from peels of the spears of Asparagus officinalis cv. Purple Passion. They were purified by column, paper and high-performance liquid chromatographic separations, and their structures were elucidated by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (HR-FT-ICR MS), 1H, 13C and two-dimensional NMR spectroscopic analyses and either acid or alkaline hydrolysis, respectively. A1 was identified as cyanidin 3-[3''-(O-beta-d-glucopyranosyl)-6''-(O-alpha-l-rhamnopyranosyl)-O-beta-d-glucopyranoside], whereas A2 was cyanidin 3-rutinoside, which is widely distributed in higher plants. Oxygen radical absorbance capacity (ORAC) assays proved their high antioxidant activities.

  5. Bleaching of the red anthocyanin induced by superoxide radical.

    PubMed

    Yamasaki, H; Uefuji, H; Sakihama, Y

    1996-08-01

    Red anthocyanin prepared from petals of Hibiscus rosa-sinensis L. was photobleached in the EDTA-riboflavin system. The rate of bleaching monitored at 565 nm depended on the light intensity and EDTA concentrations. Anaerobic conditions and/or addition of superoxide dismutase prevented the bleaching of anthocyanin, whereas mannitol and catalase did not. A similar bleaching was observed under dark conditions in the xanthine-xanthine oxidase system. The results indicate that anthocyanin is bleached by the nonenzymatic reaction with the superoxide radical and suggest that the pigment can function as an antioxidant. The antioxidative efficiency of cyanidin to superoxide was 10-fold higher than that of cyanidin-3-sophoroside as a Hibiscus anthocyanin.

  6. Anthocyanins and Human Health: An In Vitro Investigative Approach

    PubMed Central

    Lila, Mary Ann

    2004-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated ability to protect against a myriad of human diseases, yet they have been notoriously difficult to study with regard to human health. Anthocyanins frequently interact with other phytochemicals to potentiate biological effects, thus contributions from individual components are difficult to decipher. The complex, multicomponent structure of compounds in a bioactive mixture and the degradation of flavonoids during harsh extraction procedures obscure the precise assignment of bioactivity to individual pigments. Extensive metabolic breakdown after ingestion complicates tracking of anthocyanins to assess absorption, bioavailability, and accumulation in various organs. Anthocyanin pigments and other flavonoids that are uniformly, predictably produced in rigorously controlled plant cell culture systems can be a great advantage for health and nutrition research because they are quickly, easily isolated, lack interferences found in whole fruits, can be elicited to provoke rapid and prolific accumulation, and are amenable to biolabeling so that metabolic fate can be investigated after ingestion. PMID:15577194

  7. Metabolism of berry anthocyanins to phenolic acids in humans.

    PubMed

    Nurmi, Tarja; Mursu, Jaakko; Heinonen, Marina; Nurmi, Anna; Hiltunen, Raimo; Voutilainen, Sari

    2009-03-25

    We studied the metabolism of berry anthocyanins to phenolic acids in six human subjects by giving them bilberry-lingonberry puree with and without oat cereals. Puree + cereals contained 1435 micromol of anthocyanins and 339 micromol of phenolic acids. The urinary excretion of measured 18 phenolic acids increased 241 micromol during the 48 h follow-up after the puree + cereals supplementation. The excretion peak of dietary phenolic acids was observed at 4-6 h after the puree + cereals supplementation and 2 h earlier after the supplementation of the puree alone. Homovanillic and vanillic acids were the most abundant metabolites, and they were partly produced from anthocyanins. No gallic acid, a fragmentation product of delphinidin glycosides, was detected, and only a very low amount of malvidin glycosides was possibly metabolized to syringic acid. Although anthocyanins were partly fragmented to phenolic acids, still a large part of metabolites remained unknown.

  8. Investigation of the mechanisms of using metal complexation and cellulose nanofiber/sodium alginate layer-by-layer coating for retaining anthocyanin pigments in thermally processed blueberries in aqueous media.

    PubMed

    Jung, Jooyeoun; Cavender, George; Simonsen, John; Zhao, Yanyun

    2015-03-25

    This study investigated the mechanisms of anthocyanin pigment retention using Fe(3+)-anthocyanin complexation and cellulose nanofiber (CNF)/sodium alginate (SA) layer-by-layer (LBL) coatings on thermally processed blueberries in aqueous media. Anthocyanin pigments were polymerized through complexation with Fe(3+) but readily degraded by heat (93 °C for 7 min) in the aqueous media because of poor stability. CNF/SA LBL coating was successful to retain anthocyanin pigments in thermally processed blueberries. Fruits coated with CNF containing CaCl2 followed by treatment in a SA bath formed a second hydrogel layer onto the CNF layer (LBL coating system) through cross-linking between Ca(2+) and alginic acid. Methyl-cellulose-modified CNF improved the interactions between CNF, the fruit surface, and the SA layer. This study demonstrated that the CNF/SA LBL coating system was effective to retain anthocyanin pigments on thermally processed whole blueberries, whereas no combined benefit of complexation with coating was observed. Results explained the mechanisms of the new approaches for developing colorful and nutritionally enhanced anthocyanin-rich fruit products.

  9. Anthocyanin synthesis in native and wound periderms of potato.

    PubMed

    Fogelman, Edna; Tanami, Sivan; Ginzberg, Idit

    2015-04-01

    Skin color of red potatoes is due to accumulation of anthocyanins in the tuber periderm, a protective tissue that replaces the epidermis at an early stage of tuber development. The periderm consists of external layers of suberized phellem cells making up the skin, and internal layers of parenchyma-like phelloderm cells. Red pigmentation is an important marketing factor for red-skinned potatoes. However, injuries to the tuber surface, which are common in the potato industry, result in the development of a wound periderm that is devoid of the characteristic red coloration. To study the reason for these differences in anthocyanin accumulation, the expression level of anthocyanin biosynthesis genes and regulators was monitored in native and wound periderm using microarray analysis and quantitative polymerase chain reaction. We found significantly higher expression of the anthocyanin pathway in the phelloderm cells compared with the skin and tuber-flesh samples. However, in wound periderm, the anthocyanin pathway was strongly downregulated relative to the native periderm. This was true for two developmental stages of the native periderm--'immature', when the skin is prone to skinning injuries, and 'mature', following skin set--suggesting that anthocyanin synthesis continues postharvest. Wound-induced expression of steroidal glycoalkaloid glycosyltransferases, suberin-related 3-ketoacyl-CoA synthase and actin indicated that downregulation of the anthocyanin-specific pathway does not reflect global repression of the wound-periderm transcriptome. Loss of pigmentation may result from reduced expression of the Myb-bHLH-WD40 anthocyanin regulatory complex--a possible candidate might be the bHLH transcription factor JAF13.

  10. Six new acylated anthocyanins from red radish (Raphanus sativus).

    PubMed

    Tamura, Satoru; Tsuji, Kouji; Yongzhen, Piao; Ohnishi-Kameyama, Mayumi; Murakami, Nobutoshi

    2010-09-01

    Six new acylated anthocyanins (1-6) were isolated along with the three known congeners (7-9) from the fresh roots of red radishes (Raphanus sativus L.) cultivated by our group. Their chemical structures were elucidated by spectroscopic properties. Among the six new anthocyanins, the five constituents (1, 2, 4-6) were shown to contain the malonyl function at 6-OH in the glucopyranosyl residue linked to C-5 in the pelargonidin nucleus.

  11. Accumulation of anthocyanins in tomato skin extends shelf life.

    PubMed

    Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie

    2013-11-01

    Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life.

  12. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism

    PubMed Central

    Chanoca, Alexandra; Ueda, Takashi; Grotewold, Erich

    2015-01-01

    Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole. PMID:26342015

  13. Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L.).

    PubMed

    Phippen, W B; Simon, J E

    2000-01-01

    The instability of the purple pigments (anthocyanins) in purple basil varieties (Ocimum basilicum L.) limits their use as ornamental plants and as a potential anthocyanin source. Several self-pollinated generations of all purple plants were unsuccessful in stabilizing anthocyanin expression. In this study we investigated the inheritance and stability patterns of leaf traits using the Purple Ruffles variety. The results from the complete diallele crosses indicated anthocyanin expression in vegetative tissue is controlled by two dominant genes and ruffled leaf texture is controlled by a single recessive gene. Genes controlling leaf margin and leaf base structures were tightly linked to leaf texture. Essential oil production and oil constituents in leaves did not change as a result of the reversion in color. Color stability in cuttings was affected by the environment and the location where cuttings were taken. An accumulation of secondary metabolites (apigenin, genistein, and kaempferol) in green-reverted sectors on purple leaves was detected using reverse-phase high-performance liquid chromatography (HPLC) analysis; this suggested a potential block in the anthocyanin pathway. We hypothesize the reversion mutation is occurring in an anthocyanin regulatory gene.

  14. Methods of analysis for anthocyanins in plants and biological fluids.

    PubMed

    Mazza, G; Cacace, Juan E; Kay, Colin D

    2004-01-01

    Anthocyanins are the largest group of water-soluble pigments in the plant kingdom. They are responsible for most of the red, blue, and purple colors of fruits, vegetables, flowers, and other plant tissues or products. The analysis of anthocyanins is complex as a result of their ability to undergo structural transformations and complexation reactions. In addition, they are difficult to measure independently of other flavonoids, as they have similar structural and reactivity characteristics. Anthocyanins are generally extracted with weakly acidified alcohol-based solvents, followed by concentration (under vacuum), and purification of the pigments. Paper and/or thin-layer chromatography and UV-Vis spectroscopy have traditionally been used for the identification of anthocyanins. Capillary zone electrophoresis, a hybrid of chromatography and electrophoresis, is gaining popularity for the analysis of anthocyanins; however, liquid chromatography (LC) has become the standard method for identification and separation in most laboratories and may be used for both preparative and quantitative analysis. LC with mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are possibly the most powerful methods for the structural elucidation of anthocyanins available, to date. At present, the most satisfactory method for mixture analysis is the multistep method of separation, isolation, and quantification by LC with peak identification by MS and high-field NMR.

  15. Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins.

    PubMed

    Willemse, Chandré M; Stander, Maria A; Tredoux, Andreas G J; de Villiers, André

    2014-09-12

    Anthocyanins are naturally occurring plant pigments whose accurate analysis is hampered by their complexity and unique chromatographic behaviour associated with on-column conversion reactions. This paper reports the evaluation of off-line comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of anthocyanins. Hydrophilic interaction chromatography (HILIC) was used in the first dimension in combination with reversed phase liquid chromatography (RP-LC) in the second dimension. For the selective detection of anthocyanins, diode array detection was used, while high resolution quadrupole-time-of-flight mass spectrometry (Q-TOF) was used for compound identification. As application, the HILIC×RP-LC separation of diverse anthocyanins in blueberries, red radish, black beans, red grape skins and red cabbage is demonstrated. Off-line HILIC×RP-LC revealed information which could not be obtained by one-dimensional HPLC methods, while the structured elution order for the anthocyanins simplifies compound identification and facilitates the comparison of anthocyanin content of natural products by means of contour plots.

  16. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols

    PubMed Central

    Flamini, Riccardo; Mattivi, Fulvio; De Rosso, Mirko; Arapitsas, Panagiotis; Bavaresco, Luigi

    2013-01-01

    Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins) functions. The lack of expression of the enzyme flavonoid 3′,5′-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry. PMID:24084717

  17. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols.

    PubMed

    Flamini, Riccardo; Mattivi, Fulvio; De Rosso, Mirko; Arapitsas, Panagiotis; Bavaresco, Luigi

    2013-09-27

    Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins) functions. The lack of expression of the enzyme flavonoid 3',5'-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry.

  18. A role for anthocyanin in determining wine tannin concentration in Shiraz.

    PubMed

    Kilmister, Rachel L; Mazza, Marica; Baker, Nardia K; Faulkner, Peta; Downey, Mark O

    2014-01-01

    Four wines were made to investigate the effect of different anthocyanin and tannin fruit concentrations on wine phenolics and colour. Wines that were made from fruit with high anthocyanin concentration had high tannin concentrations regardless of the concentration of tannin in fruit, while wines made from fruit with low anthocyanin also had low tannin concentration. It was found that fruit anthocyanin concentration correlated with wine tannin concentration, wine colour and polymeric pigment formation. Anthocyanin concentration might be a key component for increasing tannin solubility and extraction into wine and the formation of polymeric pigments. Industry implications include managing tannin and anthocyanin fruit concentration for targeting tannin extraction and polymeric pigment formation in wine.

  19. Expression of Genes Involved in Anthocyanin Biosynthesis in Relation to Anthocyanin, Proanthocyanidin, and Flavonol Levels during Bilberry Fruit Development1

    PubMed Central

    Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja

    2002-01-01

    The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented. PMID:12376640

  20. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development.

    PubMed

    Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja

    2002-10-01

    The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.

  1. A new acylated anthocyanin from the red flowers of Camellia hongkongensis and characterization of anthocyanins in the section Camellia species.

    PubMed

    Li, Jian-Bin; Hashimoto, Fumio; Shimizu, Keiichi; Sakata, Yusuke

    2009-06-01

    Twelve anthocyanins (1-12) were isolated from the red flowers of Camellia hongkongensis Seem. by chromatography using open columns. Their structures were elucidated on the basis of spectroscopic analyses, that is, proton-nuclear magnetic resonance, carbon 13-nuclear magnetic resonance, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, high resolution electrospray ionization mass and ultraviolet visible spectroscopies. Out of these anthocyanins, a novel acylated anthocyanin, cyanidin 3-O-(6-O-(Z)-p-coumaroyl)-beta-galactopyranoside (6), two known acylated anthocyanins, cyanidin 3-O-(6-O-(E)-p-coumaroyl)-beta-galactopyranoside (7) and cyanidin 3-O-(6-O-(E)-caffeoyl)-beta-galactopyranoside (8), and three known delphinidin glycosides (10-12) were for the first time isolated from the genus Camellia. Furthermore, pigment components in C. japonica L., C. chekiangoleosa Hu and C. semiserrata Chi were studied. The results indicated that the distribution of anthocyanins was differed among these species. Delphinidin glycoside was only detected in the flowers of C. hongkongensis, which is a special and important species in the section Camellia. Based on the characterization of anthocyanins in the section Camellia species, there is a close relationship among these species, and C. hongkongensis might be an important parent for creating new cultivars with bluish flower color.

  2. Anthocyanin contribution to chlorophyll meter readings and its correction.

    PubMed

    Hlavinka, Jan; Nauš, Jan; Špundová, Martina

    2013-12-01

    Leaf chlorophyll content is an important physiological parameter which can serve as an indicator of nutritional status, plant stress or senescence. Signals proportional to the chlorophyll content can be measured non-destructively with instruments detecting leaf transmittance (e.g., SPAD-502) or reflectance (e.g., showing normalized differential vegetation index, NDVI) in red and near infrared spectral regions. The measurements are based on the assumption that only chlorophylls absorb in the examined red regions. However, there is a question whether accumulation of other pigments (e.g., anthocyanins) could in some cases affect the chlorophyll meter readings. To answer this question, we cultivated tomato plants (Solanum lycopersicum L.) for a long time under low light conditions and then exposed them for several weeks (4 h a day) to high sunlight containing the UV-A spectral region. The senescent leaves of these plants evolved a high relative content of anthocyanins and visually revealed a distinct blue color. The SPAD and NDVI data were collected and the spectra of diffusive transmittance and reflectance of the leaves were measured using an integration sphere. The content of anthocyanins and chlorophylls was measured analytically. Our results show that SPAD and NDVI measurement can be significantly affected by the accumulated anthocyanins in the leaves with relatively high anthocyanin content. To describe theoretically this effect of anthocyanins, concepts of a specific absorbance and a leaf spectral polarity were developed. Corrective procedures of the chlorophyll meter readings for the anthocyanin contribution are suggested both for the transmittance and reflectance mode.

  3. Topical treatment of oral lichen planus with anthocyanins

    PubMed Central

    Di Fabio, Amanda; Salomón, Susana; Lanfranchi, Héctor

    2014-01-01

    Background: Oxidative stress is involved in oral lichen planus (OLP) pathogenesis; meanwhile anthocyanins are natural antioxidants present in grapes skin. Objectives: The aim of this research was to verify the utility of anthocyanins, extracted from grapes skin, for the local treatment of oral lichen planus and to compare it with clobetasol propionate- neomycin -nystatin cream (CP-NN). Study Design: Prospective, non-randomized study, with control group. Fifty-two patients with OLP were included. We divided patients into two categories: erosive oral lichen planus (EOLP) and non erosive oral lichen planus (NEOLP). 38 had EOLP (17 cases and 21 controls) and 14 presented NEOLP types (9 cases and 5 controls).Cases received local treatment with anthocyanins from grapes and controls, were treated with CP-NN. The clinical evolution of patients was followed up during six months. Results: The patients had a therapeutic response with anthocyanins. This was better than CP-NN treatment for patients with EOLP, in improving the involvement score of the oral mucosa and in the morphometric study of the affected areas. In EOLP there were no statistically significant differences in: therapeutic response time, the evolution of pain, or the relapse rate between the two groups. With respect to the treatment of NEOLP there was improved pain relief in the group treated with anthocyanins. This was not observed with CP-NN. The resting analized variables showed no significant difference with both treatments. Conclusions: OLP has a favorable response to local treatment with anthocyanins from grapes. We found an equal to or better response than with CP-NN treatment. Many of our patients have systemic diseases, which may contraindicate the use of steroids. With regard to this particular group, the use of this natural antioxidant present in the diet is considered advantageous. Key words:Anthocyanins, antioxidants, chemoprevention, morphometry, oral lichen, oxidative stress. PMID:24880442

  4. Synergistic inhibition of interleukin-6 production in adipose stem cells by tart cherry anthocyanins and atorvastatin.

    PubMed

    Zhou, Zhou; Nair, Muraleedharan G; Claycombe, Kate J

    2012-07-15

    Studies have shown positive correlations between inflammatory cytokines such as interleukin-6 (IL-6) and the development of chronic diseases including cardiovascular disease by activating C-reactive protein (CRP). Both atorvastatin calcium (lipitor) as well as flavonoid rich fruit such as tart cherry demonstrate potent anti-inflammatory effects on IL-6 secretion. In this study, we investigated whether tart cherry extract or specific anthocyanins contained in the tart cherry show synergistic anti-inflammatory effects with lipitor. Results showed that LPS-induced adipose stem cell secretion of IL-6 reduced with the addition of tart cherry extract, a mixture of tart cherry anthocyanins, and pure tart cherry cyanidin-3-O-glucoside (C3G) in a dose-dependent manner. Furthermore, lipitor and C3G exhibited synergistic effects in reducing LPS-induced IL-6 secretion from adipose stem cells. In conclusion, these results support potential benefits of using dietary phytochemicals in conjunction with pharmacological therapies to decrease adipose inflammation, drug doses, and ultimately, drug-induced adverse effects.

  5. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process.

    PubMed

    Liu, Yixiang; Zhang, Di; Wu, Yongpei; Wang, Dan; Wei, Ying; Wu, Jiulin; Ji, Baoping

    2014-06-01

    Numerous studies have shown that anthocyanins usually have better in vitro bioactivity than in vivo bioactivity. This may be due to physiochemical degradation during gastrointestinal digestion and their poor bioavailability in in vivo studies. Therefore, this study aims to investigate the effects of anthocyanin structure on their stability under simulated gastrointestinal digestion and to assess their absorption in the intestines using Caco-2 human intestinal cell monolayers. The results show that gastric digestion does not significant affect blueberry anthocyanins in terms of composition and antioxidative activity. However, approximately 42% of the total anthocyanin and 29% of the antioxidative activity were lost during intestinal digestion. Structural analysis indicated that fewer free hydroxyl groups and more methoxy groups in the B-ring improve anthocyanin stability. The absorption trials demonstrated that more hydrophobic anthocyanins have better absorption efficiency than more hydrophilic anthocyanins. Furthermore, the glycoside structure also determines the absorption efficiency of anthocyanins.

  6. Photocontrol of Anthocyanin Synthesis: VII. Factors Affecting the Spectral Sensitivity of Anthocyanin Synthesis in Young Seedlings.

    PubMed

    Mancinelli, A L; Walsh, L

    1979-05-01

    Light-dependent anthocyanin synthesis is a typical high irradiance response (HIR) of plant photomorphogenesis. The spectral sensitivity of this response in young seedlings of cabbage and tomato is strongly affected by the length and mode of application of the light treatments. This observation suggests that the different experimental conditions, used in different action spectroscopy studies, might have been responsible, at least in part, for some of the reported differences in the characteristics of the HIR action spectra of different response-system combinations. In both cabbage and tomato, the values of the far red/blue, far red/red, and blue/red action ratios increase with increasing durations of the light treatments; this finding is in agreement with hypotheses of K. M. Hartmann (1966, 1967) and E. Schäfer (1975) for phytochrome action in the HIR. The similarity in the trend of change of the values of the action ratios suggests the possibility that the photomorphogenic pigment system, involved in the photoregulation of anthocyanin synthesis, may be the same in cabbage and tomato, even though there are some differences in the spectral sensitivity of the response between the two species.

  7. Genetic Control and Evolution of Anthocyanin Methylation1[W

    PubMed Central

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P.; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-01-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins’ structural diversity. PMID:24830298

  8. Changes in Anthocyanin Production during Domestication of Citrus1[OPEN

    PubMed Central

    Garcia-Lor, Andrés; Licciardello, Concetta; Las Casas, Giuseppina; Ramadugu, Chandrika; Krueger, Robert; Fanciullino, Anne-Laure; Froelicher, Yann

    2017-01-01

    Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus. Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins. PMID:28196843

  9. Identification and quantification of anthocyanins in fruits from Neomitranthes obscura (DC.) N. Silveira an endemic specie from Brazil by comparison of chromatographic methodologies.

    PubMed

    Gouvêa, Ana Cristina M S; Melo, Armindo; Santiago, Manuela C P A; Peixoto, Fernanda M; Freitas, Vitor; Godoy, Ronoel L O; Ferreira, Isabel M P L V O

    2015-10-15

    Neomitranthes obscura (DC.) N. Silveira is a Brazilian fruit belonging to the Myrtaceae family that contains anthocyanins in the peel and was studied for the first time in this work. Delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-galactoside, peonidin-3-O-glucoside, cyanidin-3-O-xyloside were separated and identified by LC/DAD/MS and by co-elution with standards. Reliable quantification of anthocyanins in the mature fruits was performed by HPLC/DAD using weighted linear regression model from 0.05 to 50mg of cyaniding-3-O-glucoside L(-1) because it gave better fit quality than least squares linear regression. Good precision and accuracy were obtained. The total anthocyanin content of mature fruits was 263.6 ± 8.2 mg of cyanidin-3-O-glucoside equivalents 100 g(-1) fresh weight, which was in the same range found in literature for anthocyanin rich fruits.

  10. Genetic linkage facilitates cloning of Ert-m regulating plant architecture in barley and identified a strong candidate of Ant1 involved in anthocyanin biosynthesis.

    PubMed

    Zakhrabekova, Shakhira; Dockter, Christoph; Ahmann, Katharina; Braumann, Ilka; Gough, Simon P; Wendt, Toni; Lundqvist, Udda; Mascher, Martin; Stein, Nils; Hansson, Mats

    2015-08-01

    The erectoides-m anthocyanin-less 1 (ert-m ant1) double mutants are among the very few examples of induced double mutants in barley. From phenotypic observations of mutant plants it is known that the Ert-m gene product regulates plant architecture whereas the Ant1 gene product is involved in anthocyanin biosynthesis. We used a near-isogenic line of the cultivar Bowman, BW316 (ert-m.34), to create four F2-mapping populations by crosses to the barley cultivars Barke, Morex, Bowman and Quench. We phenotyped and genotyped 460 plants, allowing the ert-m mutation to be mapped to an interval of 4.7 cM on the short arm of barley chromosome 7H. Bioinformatic searches identified 21 candidate gene models in the mapped region. One gene was orthologous to a regulator of Arabidopsis thaliana plant architecture, ERECTA, encoding a leucine-rich repeat receptor-like kinase. Sequencing of HvERECTA in barley ert-m mutant accessions identified severe DNA changes in 15 mutants, including full gene deletions in ert-m.40 and ert-m.64. Both deletions, additionally causing anthocyanin deficiency, were found to stretch over a large region including two putative candidate genes for the anthocyanin biosynthesis locus Ant1. Analyses of ert-m and ant1 single- and double-deletion mutants suggest Ant1 as a closely linked gene encoding a R2R3 myeloblastosis transcription factor.

  11. Anthocyanin and antioxidant activity of snacks with coloured potato.

    PubMed

    Nemś, Agnieszka; Pęksa, Anna; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kita, Agnieszka; Drożdż, Wioletta; Hamouz, Karel

    2015-04-01

    Coloured-fleshed potatoes of four varieties were used as raw material for coloured flour and fried snack production. The effects of thermal processes traditionally used in dried potato processing and in snack pellet manufacturing on anthocyanin profiles, total polyphenols and antioxidant properties of obtained half- and ready products were studied. There was a significant influence of potato variety on the experimental flour and snack properties. Flours with the highest antioxidant activities were obtained from Salad Blue and Herbie 26 potatoes; however, the flour prepared from the Blue Congo exhibited a much higher total polyphenol and anthocyanin content. Snacks produced with coloured flour had 2-3 times higher antioxidant activities, 40% higher contents of polyphenols, attractive colour and better expansion compared to control samples. The lowest losses of anthocyanins during snack processing were in snacks with flour from the purple-fleshed Blue Congo and red-fleshed Herbie 26.

  12. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis

    PubMed Central

    Gottier, Claudia; Biedermann, Luc; Zeitz, Jonas; Lang, Silvia; Weber, Achim; Rogler, Gerhard; Scharl, Michael

    2016-01-01

    Background/Aims We previously demonstrated that anthocyanin-rich bilberry extract (ARBE) inhibits IFN-γ-induced signalling and downstream effects in human monocytic cells and ameliorates disease activity in ulcerative colitis (UC) patients. Here, we studied the molecular mechanisms of ARBE-mediated effects in vitro and by analysing colonic tissue and serum samples of UC patients treated with an oral anthocyanin-rich bilberry preparation during an open label clinical trial. Methods Colon specimens obtained during an open pilot study using ARBE for the treatment of mild-to-moderate UC were analyzed by immunohistochemistry. Cytokine levels in patients’ serum were quantified by ELISA. Cell culture experiments were performed using THP-1 monocytic cells. Results ARBE treatment inhibited the expression of IFN-γ-receptor 2 in human THP-1 monocytic cells. Colon biopsies of UC patients who responded to the 6-week long ARBE treatment revealed reduced amounts of the pro-inflammatory cytokines IFN-γ and TNF-α. Levels of phosphorylated (activated) p65-NF-κB were reduced in these patients. Further, patients with successful ARBE treatment featured enhanced levels of Th17-cell specific cytokine IL-22 and immunoregulatory cytokine IL-10 as well as reduced serum levels of TNF-α and MCP-1, but enhanced levels of IL-17A, in contrast to patients that did not reach remission after ARBE treatment. Conclusions Our data suggest a molecular mechanism underlying the anti-inflammatory effects of ARBE treatment in UC patients by modulating T-cell cytokine signalling and inhibiting IFN-γ signal transduction. These data are of particular interest, since ARBE is a promising therapeutic approach for the treatment of IBD. PMID:27152519

  13. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.

    PubMed

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting wine anthocyanin concentration and composition and pigmented polymer formation were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. Vine vigor parameters were used to designate vigor zones within two vineyard sites (A and B) to produce research wines (2003 and 2004) and conduct a model extraction experiment (2004 only) to investigate the vine-fruit-wine continuum. Wines and model extracts were analyzed by HPLC and UV-vis spectrophotometry. For the model extractions, there were no differences between sites for pomace weight, whereas juice volume was higher for site A. This was not related to a larger berry size. Site A had a higher anthocyanin concentration (milligrams per liter) in the model extracts than site B specifically for the medium- and low-vigor zones. For anthocyanin composition in the model extraction, site B had a greater proportion of malvidin-3-O-glucoside and less of the remaining anthocyanin glucosides (delphinidin, cyanidin, petunidin, and peonidin) compared to site A. In the wines, there was a vintage effect, with the 2003 wines having a higher anthocyanin concentration (milligrams per liter) than the 2004 wines. This appears to have been primarily due to a greater accumulation of anthocyanins in the fruit. In general, the medium-vigor zone wines had higher anthocyanin concentrations than either the high- or low-vigor zone wines. There was also vintage variation related to anthocyanin composition, with the 2003 wines having a higher proportion of delphinidin and petunidin glucosides and lower malvidin-3-O-glucoside compared to 2004. In both years, there were higher proportions of delphinidin and petunidin glucosides in wines made from low-vigor-zone fruit. Wines made from low-vigor zones showed a greater propensity to form vitisin A as well as pigmented polymers. Low

  14. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts.

    PubMed

    Wang, Yuehua; Zhu, Jinyan; Meng, Xianjun; Liu, Suwen; Mu, Jingjing; Ning, Chong

    2016-04-15

    Four varieties of Lonicera caerulea berries--'Wild', 'Beilei', 'No. 1', and 'No. 2'--were compared with respect to extraction yield, fruit weight, total soluble solids, polyphenol and anthocyanin contents, oxygen radical absorbance capacity (ORAC), and anthocyanin composition. Sixteen individual anthocyanins were identified in the selected varieties. Acylated anthocyanins, cyanidin 3-acetylhexoside and peonidin 3-acetylhexoside, were identified in L. caerulea berries for the first time. Cyanidin-3-glucoside was the most prominent anthocyanin in all four tested varieties. Wild type of L. caerulea fruit ('Wild'), with the highest polyphenol content, contained 14 anthocyanins and the highest ORAC value. Eleven anthocyanins were found in 'Beilei' berries, which had a higher ORAC value than 'No. 1' and 'No. 2'. The highest total soluble solid content and extraction yield were found in 'No. 2' and 'Wild' berries, respectively.

  15. An extract of chokeberry attenuates weight gain and modulates multiple signaling pathways in epididymal adipose tissue of rats fed a fructose-rich diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chokeberries are a rich source of anthocyanins, which may contribute to the prevention of obesity and metabolic syndrome. The aim of this study was to determine if an extract from chokeberries would reduce weight gain in rats fed a fructose-rich diet, and to explore the potential mechanisms related...

  16. Dietary anthocyanin intake and age-related decline in lung function: longitudinal findings from the VA Normative Aging Study123

    PubMed Central

    Mehta, Amar J; Cassidy, Aedín; Litonjua, Augusto A; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Background: It is unknown whether habitual intake of dietary flavonoids, known for their antioxidative and anti-inflammatory properties, affects longitudinal change in lung function. Objective: We investigated whether different flavonoid subclasses present in the habitual diet were associated with beneficial changes in lung function over time in the elderly. Design: This longitudinal analysis included 839 participants from the VA (Veterans Affairs) Normative Aging Study whose lung function [forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)] was measured at 2 and up to 5 visits between 1992 and 2008 (n = 2623 measurements). Yearly average intake of major flavonoid subclasses (anthocyanins, flavanones, flavan-3-ols, flavonols, flavones, and polymers) was calculated from food-frequency questionnaires at each visit. We estimated adjusted differences in annual change in lung function associated with each flavonoid subclass, categorized into quartiles, in linear mixed-effects regression models after adjustment for lifestyle and dietary confounders. Results: Strong inverse associations were found between anthocyanin intake and age-related decline in lung function. Independent of dietary and nondietary risk factors, slower rates of FEV1 and FVC decline by 23.6 (95% CI: 16.6, 30.7) and 37.3 (95% CI: 27.8, 46.8) mL/y, respectively, were observed in participants in the fourth quartile of intake compared with participants in the first quartile (P-trend < 0.0001). The protective associations observed for anthocyanin intake were present in both current/former and never smokers. Compared with no or very low intakes, an intake of ≥2 servings of anthocyanin-rich blueberries/wk was associated with slower decline in FEV1 and FVC by 22.5 (95% CI: 10.8, 34.2) and 37.9 (95% CI: 22.1, 53.7) mL/y, respectively. To a lesser extent, higher flavan-3-ol intake was also associated with slower lung function decline. Conclusions: An attenuation of age-related lung function

  17. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    PubMed Central

    Overall, John; Bonney, Sierra A.; Wilson, Mickey; Beermann, Arnold; Grace, Mary H.; Esposito, Debora; Lila, Mary Ann; Komarnytsky, Slavko

    2017-01-01

    Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content) on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins), black raspberry (acylated mono-glycosylated cyanidins), blackcurrant (mono- and di-glycosylated cyanidins and delphinidins), maqui berry (di-glycosylated delphinidins), Concord grape (acylated mono-glycosylated delphinidins and petunidins), and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins) showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health. PMID:28212306

  18. Analysis of anthocyanins in pomegranates using LC/MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins consist of a 2-phenylbenzopyrylium moiety with a variety of polyhydroxyl, polymethoxyl, and glycosylated substituents. Their presence is responsible for the red to purplish colors associated with fresh fruits and berries. There is currently a strong interest in these compounds because o...

  19. Characterization of anthocyanins in blueberries using LC/MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins consist of a 2-phenylbenzopyrylium moiety with a variety of polyhydroxyl, polymethoxyl, and glycosolated substituents. Their presence is responsible for the red to purplish colors associated with fresh fruits and berries. There is currently a strong interest in these compounds because...

  20. Comparison of minor anthocyanins in different varieties of blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins consist of a 2-phenylbenzopyrylium moiety with a variety of polyhydroxyl, polymethoxyl, and glycosolated substituents. Their presence is responsible for the red to purplish colors associated with fresh fruits and berries. There is currently a strong interest in these compounds because...

  1. Anthocyanin excretion increases linearly with increasing strawberry dose.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A clinical study was conducted to investigate the dose response and metabolism of strawberry anthocyanins. In a crossover study design, twelve healthy adults consumed each of three strawberry treatments. The treatments were 100 g, 200 g, and 400 g of pureed strawberries, delivering 15 micromol, 30 m...

  2. Anthocyanin Content in Seeds, Leaves and Flowers of Lablab Purpureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lablab purpureus contain bioactive phytochemicals and with potential to be utilized in the pharmaceutical and nutraceutical markets. Ninety four Lablab purpureus accessions are conserved at the USDA, ARS, Plant Genetic Resources Conservation Unit in Griffin, GA. Anthocyanins are present in flowers...

  3. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...

  4. New anthocyanins from purple pods of pea (Pisum spp.).

    PubMed

    Terahara, N; Honda, T; Hayashi, M; Ishimaru, K

    2000-12-01

    Two new anthocyanins were isolated from purple pods of pea (Pisum spp.). Their structures were identified as delphinidin 3-xylosylgalactoside-5-acetylglucoside and its deacetylated derivative by the usual chemical degradation methods and by spectroscopic methods such as UV-VIS, MS and NMR. Both pigments showed moderate stability and antioxidative activity in a neutral aqueous solution.

  5. An Analysis of Phytochrome-mediated Anthocyanin Synthesis

    PubMed Central

    Lange, H.; Shropshire, W.; Mohr, H.

    1971-01-01

    Phytochrome (far red form) alone can mediate anthocyanin synthesis in the mustard seedling (Sinapis alba L.). Complete photoreversibility and reciprocity, for both red and far red light exposures over a period of at least 5 minutes, demonstrate this phytochrome involvement. The duration of the initial lag-phase is constant (about 3 hours at 25 C) for seedlings more than 30 hours old and is specific for the system, being independent of the dose or quality of light. Since a complete reversal by far red of a red light induction is possible only during a 5 minute period, phytochrome (far red form) obviously mediates anthocyanin synthesis during the lag-phase although the actual synthesis of pigment can proceed only after the lag-phase is overcome. We suggest that phytochrome (far red form) exerts a double function during the initial lag-phase. It mediates both the build up of a biosynthetic potential (“capacity”) and anthocyanin synthesis. However, the sequence of events leading to anthocyanin is arrested at some intermediate stage until this “capacity” is built up after 3 hours. Once “capacity” is achieved it does not decay readily. Therefore, no significant “secondary lag-phase” occurs if the seedling, under appropriate conditions, is reirradiated after an intervening dark period. The rate or extent of synthesis for both anthocyanin and lipoxygenase, previously reported (32), are functions of the amount of phytochrome (far red form). No “phytochrome paradoxes,” i.e., nonrational relationships between the amount of phytochrome (far red form) and rate or extent of response, were detected. This fact suggests that the mustard seedling is especially well suited for investigating the biophysical and molecular mechanisms of phytochrome action. PMID:16657678

  6. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    PubMed

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  7. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage.

    PubMed

    Veberic, Robert; Stampar, Franci; Schmitzer, Valentina; Cunja, Vlasta; Zupan, Anka; Koron, Darinka; Mikulic-Petkovsek, Maja

    2014-07-23

    The aim of this study was to evaluate the effect of fast and slow freezing and frozen storage on the metabolite content of six blackberry cultivars. The content of metabolites determined with HPLC RI/PDA-MS in stored blackberries was compared with the initial content of the fruit. During frozen storage of fruits a loss of vitamin C up to 80% has been recorded along with changes of color values, which shifted to blue and yellow hues. The color changes were accompanied with increased pH levels and content of anthocyanins. Most of the phenolic groups, sugars, and organic acids showed a better extraction after storage, especially in the slow freezing treatment due to a higher degree of tissue damage by freezing. The 'Thornless Evergreen' cultivar was especially rich in sugars, vitamin C, and phenolic compounds, but the highest levels of anthocyanins were determined in 'Loch Ness' cultivar.

  8. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit.

    PubMed

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting fruit anthocyanin accumulation and composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved assigning vigor zones in two vineyard sites based upon differences in vine growth. Fruits and wines were analyzed by HPLC from designated vigor zones in 2003 and 2004. Average berry weight (grams), average dry skin weight (milligrams), degrees Brix, and pH were higher and titratable acidity (grams per liter) was lower in 2003 compared to 2004. In 2003, only the highest and lowest vigor zones had differences in berry weight, whereas there were no differences in 2004. In both years, high vigor zones had lower degrees Brix and higher titratable acidity (milligrams per liter). Accumulation of anthocyanins (milligrams per berry) was greater in 2003 compared to 2004. There was a trend for lower anthocyanin concentration (milligrams per berry) in high vigor zones in both years. In 2004 compared to 2003, there was a higher proportion of malvidin-3-O-glucoside and lower proportions of the other four anthocyanins (delphinidin-, cyanidin-, petunidin-, and peonidin-3-O-glucosides) found in Pinot Noir. In both years, site A had proportionally higher peonidin-3-O-glucoside and lower malvidin-3-O-glucoside than site B. Some of these differences may be related to the higher exposure and temperatures found in site B compared to site A and also in the low vigor zones.

  9. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species.

    PubMed

    Hughes, Nicole M; Morley, Christianna B; Smith, William K

    2007-01-01

    Juvenile leaves in high-light environments commonly appear red as a result of anthocyanin pigments, which play a photoprotective role during light-sensitive ontogenetic stages. The loss of anthocyanin during leaf development presumably corresponds to a decreased need for photoprotection, as photosynthetic maturation allows leaves to utilize higher light intensities. However, the relationship between photosynthetic development and anthocyanin decline has yet to be quantitatively described. In this study, anthocyanin concentration was measured against photopigment content, lamina thickness, anatomical development, and photosynthetic CO(2) exchange in developing leaves of three deciduous tree species. In all species, anthocyanin disappearance corresponded with development of c. 50% mature photopigment concentrations, c. 80% lamina thickness, and differentiation of the mesophyll into palisade and spongy layers. Photosynthetic gas exchange correlated positively with leaf thickness and chlorophyll content, and negatively with anthocyanin concentration. Species with more rapid photosynthetic maturation lost anthocyanin earliest in development. Chlorophyll a/b ratios increased with leaf age, and were lower than those of acyanic species, consistent with a shading effect of anthocyanin. These results suggest that anthocyanin reassimilation is linked closely with chloroplast and whole-leaf developmental processes, supporting the idea that anthocyanins protect tissues until light processing and carbon fixation have matured to balance energy capture with utilization.

  10. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin.

    PubMed

    Kim, Moonjung; Yoon, Suk Hoo; Jung, Munyhung; Choe, Eunok

    2010-09-30

    This study investigated the stability of meoru (wild vine grape) anthocyanins in the aqueous solution under singlet oxygen. Freeze-dried meoru (1 kg) contained 179.98 mg anthocyanins including delphinidin-3-glucoside, malvidin-3,5-diglucoside, cyanidin-3,5-diglucoside, malvidin-3-glucoside, and cyanidin-3-glucoside. Malvidin-3,5-diglucoside and cyanidin-3-glucoside were the meoru anthocyanins at the highest and the lowest concentration, respectively. Little decrease in total anthocyanins in the aqueous solution was observed in the dark with or without riboflavin, or with light without riboflavin. Singlet oxygen degraded the meoru anthocyanins in the aqueous solution, which suggested chemical quenching of singlet oxygen by the anthocyanins. Degradation of the meoru anthocyanins was structure-dependent; diglucoside anthocyanins were more stable than monoglucoside. And malvidin glucoside was more stable than delphinidin or cyanidin glucoside, which suggested the number of hydroxy groups in the structure was partly related with the anthocyanin stability under singlet oxygen. This is the first report on anthocyanins stability affected by its structure under singlet oxygen.

  11. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.).

    PubMed

    Flanigan, Patrick M; Niemeyer, Emily D

    2014-12-01

    In this study, we determined the effect of cultivar on total and individual anthocyanin concentrations and phenolic acid levels in eight purple basil varieties and examined the relationship between anthocyanin content, phenolic acid composition, and antioxidant properties. Cultivar had a significant influence on total anthocyanin concentrations as well as individual anthocyanin composition. The four major basil anthocyanins (labelled A-D) were quantified and cultivar had a statistically significant effect on anthocyanins B (p<0.01), C (p<0.01), and D (p<0.01), but not on anthocyanin A (p=0.94). Cultivar did not have a significant effect on total phenolic levels, although it did influence the concentration of some individual phenolic acids, including caftaric (p=0.03) and chicoric (p=0.04) acids. Although total phenolic and anthocyanin levels correlated with measured FRAP antioxidant capacities, for some cultivars the individual phenolic acid and anthocyanin composition was also an important factor affecting the antioxidant properties.

  12. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation

    PubMed Central

    Zou, Bo; Wan, Dongli; Li, Ruili; Han, Xiaomin; Li, Guojing; Wang, Ruigang

    2017-01-01

    Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g. PMID:28253311

  13. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    NASA Astrophysics Data System (ADS)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  14. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    PubMed

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-28

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  15. Photoregulation of Anthocyanin Synthesis : VIII. Effect of Light Pretreatments.

    PubMed

    Mancinelli, A L

    1984-06-01

    A comparative study of the spectral sensitivity of anthocyanin production in dark-grown and light-pretreated systems was carried out in Brassica oleracea L., Lycopersicon esculentum Mill., Secale cereale L. and Spirodela polyrrhiza L. Light pretreatments bring about an enhancement of the inductive, red-far red reversible response in all systems, a decrease of the continuous irradiation response in cabbage, rye, and tomato seedlings, and an enhancement of the continuous irradiation response in cabbage leaf disks. Light pretreatments also bring about a marked change in the spectral sensitivity of the continuous irradiation response. The different effect of light pretreatments on the photosensitivity of the response to short and long wavelength irradiations suggests that two photoreceptors, phytochrome and cryptochrome, may be involved in the photoregulation of anthocyanin production.

  16. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  17. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins.

    PubMed

    Jing, Pu; Noriega, Victor; Schwartz, Steven J; Giusti, M Mónica

    2007-10-17

    Purple corn ( Zea mays L.) has been used for centuries as a natural food colorant in South America and, more recently, in Asia and Europe. However, limited information is available on the factors affecting their anthocyanin concentration and profiles. In this study, 18 purple corn samples grown under different conditions in Peru were evaluated for quantitative and qualitative anthocyanin composition as well as total phenolics. High variability was observed on monomeric anthocyanin and phenolic contents with yields ranging from 290 to 1333 mg/100 g dry weight (DW) and from 950 to 3516 mg/100 g DW, respectively, while 30.5-47.1% of the total phenolics were anthocyanins. The major anthocyanins present were cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-maloylglucoside, pelargonidin-3-maloylglucoside, and peonidin-3-maloylglucoside, and 35.6-54.0% of the anthocyanins were acylated. Potassium sources/concentrations on the soil and seedling density did not significantly affect anthocyanin composition. The growing location affected anthocyanin levels and the percentage of anthocyanins to total phenolics ( p < 0.01) and should be taken into account when choosing a material for color production.

  18. Regularities of Anthocyanins Retention in RP HPLC for “Water–Acetonitrile–Phosphoric Acid” Mobile Phases

    PubMed Central

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.

    2015-01-01

    The influence of exchange of HCOOH (System 2) by phosphoric acid (System 1) for acidification of the “acetonitrile–water” mobile phases for reversed-phase HPLC of anthocyanins was investigated in the framework of relative retention analysis. The differences and similarities of anthocyanins separation were revealed. It has been shown that some common features of the quantitative relationships may be used for preliminary anthocyanins structure differentiation, according to the number of OH-groups in anthocyanidin backbone as well as to a number of saccharide molecules in glycoside radicals in position 3 of the anthocyanin without MS detection. PMID:25692073

  19. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40.

    PubMed

    Xu, Jianteng; Su, Xiaoyu; Lim, Soyoung; Griffin, Jason; Carey, Edward; Katz, Benjamin; Tomich, John; Smith, J Scott; Wang, Weiqun

    2015-11-01

    Purple-fleshed sweet potato P40 has been shown to prevent colorectal cancer in a murine model. This study is to identify anthocyanins by using HPLC/MS-MS and assess the stability during various cooking conditions. P40 possesses a high content of anthocyanins up to 14 mg/g dry matter. Total 12 acylated anthocyanins are identified. Top three anthocyanins, e.g., cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, peonidin 3-caffeoyl sophoroside-5-glucoside, and cyanidin 3-(6"-caffeoyl-6"-feruloylsophoroside)-5-glucoside, account for half of the anthocyanin contents. Over 80% of anthocyanins measured by acid hydrolysis were cyanidin derivatives, indicating P40 is unique when compared with other purple-fleshed sweet potatoes that usually contain more peonidin than cyanidin. Steaming, pressure cooking, microwaving, and frying but not baking significantly reduced 8-16% of total anthocyanin contents. Mono-acylated anthocyanins showed a higher resistance against heat than di- and non-acylated. Among of which, cyanidin 3-p-hydroxybenzoylsophoroside-5-glucoside exhibited the best thermal stability. The stable acylated and cyanidin-predominated anthocyanins in P40 may provide extra benefits for cancer prevention.

  20. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    PubMed

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  1. Fluorescence of anthocyanin pigments in plant extracts at various pH

    NASA Astrophysics Data System (ADS)

    Pliszka, Barbara; Olszewska, Teresa; Drabent, Regina

    2001-07-01

    The fluorescence properties of anthocyanin pigments in extracts of red cabbage, Brassica oleracea, have been studied. The fluorescence spectra and fluorescence excitation spectra have been measured with absorption spectra of anthocyanins in extracts at pH 2 and pH 7. The results of the researches show that kinds of fluorescent anthocyanins (or/and other compounds) depend on pH conditions of red cabbage extracts. The properly chosen parameters of fluorescence measurement allow to distinguish spectrally two different fluorescent anthocyanin compounds in extract at pH 2 in comparison to pH 7, where three fluorescent compounds have been found.

  2. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits.

    PubMed

    Kadomura-Ishikawa, Yasuko; Miyawaki, Katsuyuki; Noji, Sumihare; Takahashi, Akira

    2013-11-01

    Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.

  3. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex.

    PubMed

    Lin-Wang, Kui; Micheletti, Diego; Palmer, John; Volz, Richard; Lozano, Lidia; Espley, Richard; Hellens, Roger P; Chagnè, David; Rowan, Daryl D; Troggio, Michela; Iglesias, Ignasi; Allan, Andrew C

    2011-07-01

    The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus × domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.

  4. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    PubMed Central

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2, and UGFT2. Moreover, the transcript abundance of MYBA1-1 and MYB5-1, the genes encoding an important component of MYB–bHLH–WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis. PMID:28344589

  5. Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins.

    PubMed

    Ferreira da Silva, Palmira; Lima, João C; Freitas, Adilson A; Shimizu, Karina; Maçanita, Antonio L; Quina, Frank H

    2005-08-18

    Color intensification of anthocyanin solutions in the presence of natural polyphenols (copigmentation) is re-interpreted in terms of charge transfer from the copigment to the anthocyanin. Flavylium cations are shown to be excellent electron acceptors (E(red) approximately -0.3 V vs SCE). It is also demonstrated, for a large series of anthocyanin-copigment pairs, that the standard Gibbs free energy of complex formation decreases linearly with EA(Anthoc) - IP(Cop), the difference between the electron affinity of the anthocyanin, EA(Anthoc), and the ionization potential of the copigment, IP(Cop). Based on this correlation, copigmentation strengths of potential candidates for copigments can be predicted.

  6. PH-dependent forms of red wine anthocyanins as antioxidants.

    PubMed

    Lapidot, T; Harel, S; Akiri, B; Granit, R; Kanner, J

    1999-01-01

    Anthocyanins are one of the main classes of flavonoids in red wines, and they appear to contribute significantly to the powerful antioxidant properties of the flavonoids. In grapes and wines the anthocyanins are in the flavylium form. However, during digestion they may reach higher pH values, forming the carbinol pseudo-base, quinoidal-base, or the chalcone, and these compounds appear to be absorbed from the gut into the blood system. The antioxidant activity of these compounds, in several metal-catalyzed lipid oxidation model systems, was evaluated in comparison with other antioxidants. The pseudo-base and quinoidal-base malvidin 3-glucoside significantly inhibited the peroxidation of linoleate by myoglobin. Both compounds were found to work better than catechin, a well-known antioxidant. In a membrane lipid peroxidation system, the effectiveness of the antioxidant was dependent on the catalyst: In the presence of H(2)O(2)-activated myoglobin, the inhibition efficiency of the antioxidant was malvidin 3-glucoside > catechin > malvidin > resveratrol. However, in the presence of an iron redox cycle catalyzer, the order of effectiveness was resveratrol > malvidin 3-glucoside = malvidin > catechin. The pH-transformed forms of the anthocyanins remained effective antioxidants in these systems, and their I(50) values were between 0.5 and 6.2 microM.

  7. Anti-inflammatory and anti-periductal fibrosis effects of an anthocyanin complex in Opisthorchis viverrini-infected hamsters.

    PubMed

    Intuyod, Kitti; Priprem, Aroonsri; Limphirat, Wanwisa; Charoensuk, Lakhanawan; Pinlaor, Porntip; Pairojkul, Chawalit; Lertrat, Kamol; Pinlaor, Somchai

    2014-12-01

    The pharmacological activities of herbal extracts can be enhanced by complex formation. In this study, we manipulated cyanidin and delphinidin-rich extracts to form an anthocyanin complex (AC) with turmeric and evaluated activity against inflammation and periductal fibrosis in Opisthorchis viverrini-infected hamsters. The AC was prepared from anthocyanins extracted from cobs of purple waxy corn (70%), petals of blue butterfly pea (20%) and turmeric extract (10%), resulting in an enhanced free-radical scavenging capacity. Oral administration of AC (175 and 700 mg/kg body weight) every day for 1 month to O. viverrini-infected hamsters resulted in reduced inflammatory cells and periductal fibrosis. Fourier transform infrared spectroscopy and partial least square discriminant analysis suggested nucleic acid changes in the O. viverrini-infected liver samples, which were partially prevented by the AC treatment. AC reduced 8-oxodG formation, an oxidative DNA damage marker, significantly decreased levels of nitrite in the plasma and alanine aminotransferase activity and increased the ferric reducing ability of plasma. AC also decreased the expression of oxidant-related genes (NF-κB and iNOS) and increased the expression of antioxidant-related genes (CAT, SOD, and GPx). Thus, AC increases free-radical scavenging capacity, decreases inflammation, suppresses oxidative/nitrative stress, and reduces liver injury and periductal fibrosis in O. viverrini-infected hamsters.

  8. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  9. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    PubMed

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased.

  10. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm – 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  11. Effect of calcium on strawberry fruit flavonid gene expression and anthocyanins accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberry fruit contain phenolic compounds such as anthocyanins, which have beneficial effects against oxidative stress mediated diseases. Two diploid strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit) and YW5AF7 (yellow fruit) were used to study the regulation of anthocyanin biosynt...

  12. Content and color stability of anthocyanins isolated from Schisandra chinensis fruit.

    PubMed

    Ma, Chunhui; Yang, Lei; Yang, Fengjian; Wang, Wenjie; Zhao, Chunjian; Zu, Yuangang

    2012-11-05

    In this work, a multivariate study based on Box-Behnken Design was used to evaluate the influence of three major variables affecting the performance of the extraction process of Schisandra chinensis anthocyanins. The optimum parameters were 5.5 h extraction time; 1:19 solid-liquid ratio and 260 r/min stirring rate, respectively. The extraction yield of anthocyanins was 29.06 mg/g under the optimum conditions. Moreover, many factors on the impact of heating, ultrasound, microwave treatment and ultraviolet irradiation on content and color stability of anthocyanins from Schisandra chinensis fruit were investigated. The results show that thermal degradation reaction of anthocyanins complies with the first order reaction kinetics, and the correlation coefficient is greater than 0.9950 at 40-80°C. Ultrasound and microwave treatment has little effect on the stability of anthocyanins, and the extraction time of ultrasound and microwave should be no more than 60 min and 5 min, respectively. The anthocyanins degradation effect of UVC ultraviolet radiation is greater than UVA and UVB; after 9 h ultraviolet radiation, the anthocyanins content degradation of UVC is 23.9 ± 0.7%, and the ∆E* was changed from 62.81 to 76.52 ± 2.3. Through LC-MS analysis, the major composition of Schisandra chinensis anthocyanins was cyanidin-3-O-xylosylrutinoside.

  13. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry) dietary supplements and food products (total n=74) were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples) o...

  14. Content and Color Stability of Anthocyanins Isolated from Schisandra chinensis Fruit

    PubMed Central

    Ma, Chunhui; Yang, Lei; Yang, Fengjian; Wang, Wenjie; Zhao, Chunjian; Zu, Yuangang

    2012-01-01

    In this work, a multivariate study based on Box-Behnken Design was used to evaluate the influence of three major variables affecting the performance of the extraction process of Schisandra chinensis anthocyanins. The optimum parameters were 5.5 h extraction time; 1:19 solid-liquid ratio and 260 r/min stirring rate, respectively. The extraction yield of anthocyanins was 29.06 mg/g under the optimum conditions. Moreover, many factors on the impact of heating, ultrasound, microwave treatment and ultraviolet irradiation on content and color stability of anthocyanins from Schisandra chinensis fruit were investigated. The results show that thermal degradation reaction of anthocyanins complies with the first order reaction kinetics, and the correlation coefficient is greater than 0.9950 at 40–80 °C. Ultrasound and microwave treatment has little effect on the stability of anthocyanins, and the extraction time of ultrasound and microwave should be no more than 60 min and 5 min, respectively. The anthocyanins degradation effect of UVC ultraviolet radiation is greater than UVA and UVB; after 9 h ultraviolet radiation, the anthocyanins content degradation of UVC is 23.9 ± 0.7%, and the ΔE* was changed from 62.81 to 76.52 ± 2.3. Through LC-MS analysis, the major composition of Schisandra chinensis anthocyanins was cyanidin-3-O-xylosylrutinoside. PMID:23203065

  15. Effects of Growth Temperature and Postharvest Cooling on Anthocyanin Profiles in Juvenile and Mature Brassica oleracea.

    PubMed

    Socquet-Juglard, Didier; Bennett, Alexandra A; Manns, David C; Mansfield, Anna Katharine; Robbins, Rebecca J; Collins, Thomas M; Griffiths, Phillip D

    2016-02-24

    The effects of growth temperatures on anthocyanin content and profile were tested on juvenile cabbage and kale plants. The effects of cold storage time were evaluated on both juvenile and mature plants. The anthocyanin content in juvenile plants ranged from 3.82 mg of cyanidin-3,5-diglucoside equivalent (Cy equiv)/g of dry matter (dm) at 25 °C to 10.00 mg of Cy equiv/g of dm at 16 °C, with up to 76% diacylated anthocyanins. Cold storage of juvenile plants decreased the total amount of anthocyanins but increased the diacylated anthocyanin content by 3-5%. In mature plants, cold storage reduced the total anthocyanin content from 22 to 12.23 mg/g after 5 weeks of storage in red cabbage, while the total anthocyanin content increased after 2 weeks of storage from 2.34 to 3.66 mg of Cy equiv/g of dm in kale without having any effect on acylation in either morphotype. The results obtained in this study will be useful for optimizing anthocyanin production.

  16. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn.

    PubMed

    Gould, K S; Markham, K R; Smith, R H; Goris, J J

    2000-06-01

    The protective functions that have been ascribed to anthocyanins in leaves can be performed as effectively by a number of other compounds. The possibility that anthocyanins accumulate most abundantly in leaves deficient in other phytoprotective pigments has been tested. Pigment concentrations and their histological distribution were surveyed for a sample of 1000 leaves from a forest population of Quintinia serrata, which displays natural polymorphism in leaf colour. Eight leaf phenotypes were recognized according to their patterns of red coloration. Anthocyanins were observed in almost all combinations of every leaf tissue, but were most commonly located in the vacuoles of photosynthetic cells. Red leaves contained two anthocyanins (Cy-3-glc and Cy-3-gal), epicuticular flavones, epidermal flavonols, hydroxycinnamic acids, chlorophylls, and carotenoids. Green leaves lacked anthocyanins, but had otherwise similar pigment profiles. Foliar anthocyanin levels varied significantly between branches and among trees, but were not correlated to concentrations of other pigments. Anthocyanins were most abundant in older leaves on trees under canopies with south-facing gaps. These data indicate that anthocyanins are associated with photosynthesis, but do not serve an auxiliary phytoprotective role. They may serve to protect shade-adapted chloroplasts from brief exposure to high intensity sunflecks.

  17. LC-PDA-EIS/MSn identification of new anthocyanins in purple radish (Raphanus sativus L. variety)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An LC-PDA-ESI/MSn profiling method was used for a comprehensive study of the anthocyanins of purple Bordeaux radish. This study identified 57 anthocyanins: 23 acylated cyanidin 3-sophoroside-5-diglucosides, 12 acylated cyanidin 3-(glucosylacyl) acylsophoroside-5-diglucosides, and 22 acylated cyanid...

  18. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweetpotato genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of anthocyanins responsible for the purple flesh color is important for breeding programs and development of value-added products. This study aimed to optimize the conditions for anthocyanin extraction from purple-fleshed sweet potatoes (PFSP) using pressurized-liquid extraction (PLE) metho...

  19. Identification of Anthocyanins in the Liver, Eye, and Brain of Blueberry-fed Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary intervention with anthocyanins may confer benefits in brain function, including vision. Research to date indicates that animals have only a limited capacity to absorb anthocyanins, compared to other types of flavonoids. Pigs, which are a suitable model for human digestive absorption, were us...

  20. Genetic analyses of anthocyanin concentrations and the intensity of red color in onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher concentrations of anthocyanins in vegetables are important for attractive appearance and may offer health benefits for consumers. The red color of onion bulbs is due primarily to the accumulation of anthocyanins. Segregating haploid plants from the cross of yellow and red inbreds were asexual...

  1. Understanding optimal anthocyanin accumulation of ‘Merlot’ grapes – influence of light exclusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are important components to all red colored fruit, but are absolutely crucial for red wine grapes. Despite a century of research, we still have no concrete understanding of how light and temperature impart their effects on anthocyanin accumulation and composition. Our aim was to elucida...

  2. Is solar radiation a key to good red wine grape anthocyanin?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Viti...

  3. Small differences in temperature interact with solar radiation to alter anthocyanin in grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Viti...

  4. Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation.

    PubMed

    Curtin, Chris; Zhang, Wei; Franco, Chris

    2003-07-01

    Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g(-1) dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g(-1) DCW, in response to treatment with jasmonic acid, and comprising approximately 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g(-1) DCW which made up approximately 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g(-1) DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g(-1) DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g(-1) DCW, but there was no change in the anthocyanin composition.

  5. Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of anthocyanins, phenolic compounds and antioxidant activities in kernels of 20 genotypes of waxy corn were investigated at two maturation stages, namely milky and mature. The levels of anthocyanins increased throughout the development of each genotype of corn, while phenolic compound...

  6. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.

    PubMed

    Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S

    2016-12-01

    Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τm ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.

  7. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment.

    PubMed

    Shaked-Sachray, Liat; Weiss, David; Reuveni, Moshe; Nissim-Levi, Ada; Oren-Shamir, Michal

    2002-04-01

    Temperature is one of the main external factors affecting anthocyanin accumulation in plant tissues: low temperatures cause an increase and elevated temperatures cause a decrease in anthocyanin concentration. Several metals have been shown to increase the half-life time of anthocyanins, by forming complexes with them. We studied the combined effect of elevated temperatures and increased metal concentrations on the accumulation of anthocyanins in aster 'Sungal' flowers. It has been found that magnesium treatment of aster plants or detached flower buds, partially prevents colour fading at elevated temperatures. Anthocyanin concentration of aster 'Sungal' flowers grown at 29 degrees C/21 degrees C day/night, respectively, was about half that of flowers grown at 17 degrees C/9 degrees C. The activity of phenylalanine ammonia-lyase (PAL) and chalcone isomerase (CHI) decreased as the temperature increased. Treatment of both whole plants and detached flower buds grown at elevated temperatures in the presence of magnesium salts, increased flower anthocyanin concentration by up to 80%. Measurement of magnesium following these treatments revealed an increased level of the metal in the petals, suggesting a direct effect. Magnesium treatment does not seem to cause increased synthesis of anthocyanin through a stress-related reaction, since the activities of both PAL and CHI did not increase due to this treatment. The results of this study show that increasing magnesium levels in aster petals prevents the deleterious effect of elevated temperatures on anthocyanin accumulation, thus enhancing flower colour.

  8. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower, fruit, and vegetable host tissues with hues of predominantly red, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the cor...

  9. Issues with fruit dietary supplements in the US - authentication by anthocyanin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current fruit-based dietary supplements in the US marketplace have no obligation to meet any fruit-component concentration requirement. For example, berry supplements might be promoted for their high anthocyanin content, but they actually have no standard or minimum anthocyanin threshold for legal s...

  10. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats.

    PubMed

    Kirakosyan, Ara; Seymour, E Mitchell; Wolforth, Janet; McNish, Robert; Kaufman, Peter B; Bolling, Steven F

    2015-03-15

    Our aim was to confirm and identify the presence of tart cherry anthocyanins in several target tissues of healthy rats. Liquid chromatography-mass spectrometry analysis was employed for detection and characterisation of anthocyanin metabolites. It was shown that four native anthocyanins, namely cyanidin 3-glucosylrutinoside, cyanidin 3-rutinoside, cyanidin 3-rutinoside 5-β-D-glucoside, and peonidin 3-rutinoside were differentially distributed among targeted tissues of rats. Bladder and kidney contained more total anthocyanins than all other tissues analysed. It was also revealed that the bioavailability pattern of these native anthocyanins among tissues is varied. The highest concentration of individual anthocyanin cyanidin 3-glucosylrutinoside (2339 picograms/gram of tissue) was detected in bladder, followed by cyanidin 3-rutinoside 5-β-d-glucoside (916 picograms/gram) in the liver of rats. Although the diverse distribution of tart cherry anthocyanins in different rat tissues still requires further explanation, it may provide an evidentiary link between tissue bioavailability and health-enhancing properties of anthocyanins at target sites.

  11. Carbohydrate accumulation may be the proximate trigger of anthocyanin biosynthesis under autumn conditions in Begonia semperflorens.

    PubMed

    Zhang, K M; Li, Z; Li, Y; Li, Y H; Kong, D Z; Wu, R H

    2013-11-01

    Many plant leaves appear red in the autumn, and many papers have focused on the environmental factors and role of anthocyanin in this process. However few papers have examined the substances that are induced during this process. We hypothesised that excess sugar accumulation directly induces anthocyanin accumulation under autumn conditions. Using two methods (restricting phloem movement and exogenous sucrose feeding), we found that both surplus photosynthate and exogenous sucrose could induce anthocyanin biosynthesis, corresponding to up-regulation of several enzymes involved in anthocyanin biosynthesis (phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol 4-reductase and flavonoid 3-O-glucosyl transferase) and in transport (glutathione S-transferase). Our results suggest that excess carbohydrate may be the proximate trigger for induction of anthocyanin biosynthesis in autumn, but only when carbohydrates are accumulated for storage.

  12. Calf thymus DNA-binding ability study of anthocyanins from purple sweet potatoes ( Ipomoea batatas L.).

    PubMed

    Wang, Dan; Wang, Xirui; Zhang, Chao; Ma, Yue; Zhao, Xiaoyan

    2011-07-13

    A total of 10 anthocyanin compounds were identified from five purple sweet potato ( Ipomoea batatas L.) varieties, Qunzi, Zishu038, Ji18, Jingshu6, and Ziluolan, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to assess their calf thymus DNA-binding ability in vitro. The interaction between anthocyanins and calf thymus DNA in Tris-HCl buffer solution (pH 6.9) was evaluated by fluorescence spectroscopy. Using ethidium bromide (EB) as a fluorescence probe, fluorescence quenching of the emission peak was seen in the DNA-EB system when anthocyanins were added, indicating that the anthocyanins bound with DNA. The acylated groups influenced the ability of the interaction with DNA. Anthocyanins from purple sweet potato with more acylated groups in sorphorose have a stronger binding ability with DNA.

  13. Anthocyanins from flowers of the orchids Dracula chimaera and D. cordobae.

    PubMed

    Fossen, Torgils; Øvstedal, Dag Olav

    2003-08-01

    The main anthocyanins from flowers of the orchids Dracula chimaera and D. cordobae were isolated from a purified methanolic extract by preparative HPLC. Their structures were determined to be cyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), cyanidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside), cyanidin 3-O-beta-glucopyranoside, peonidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside) and peonidin 3-O-(6"-O-malonyl-beta-glucopyranoside). The structure determinations were mainly based on extensive use of 2D and 1D NMR spectroscopy, UV-vis spectroscopy and MS. The anthocyanin contents of species belonging to the subtribe Pleurothallidinae including genus Dracula Luer (Orchidaceae) have previously not been determined. The high content of anthocyanin rutinosides found in D. chimaera and D. cordobae (78 and 28% of the total anthocyanin content, respectively) differs from previously analysed orchid species, in which glucose is found as the only anthocyanin sugar moiety.

  14. Anthocyanin Profile in Berries of Wild and Cultivated Vaccinium spp. along Altitudinal Gradients in the Alps.

    PubMed

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-10-07

    Vaccinium spp. berries provide some of the best natural sources of anthocyanins. In the wild bilberry (Vaccinium myrtillus L.), a clear increasing trend in anthocyanin biosynthesis has been reported toward northern latitudes of Europe, but studies related to altitude have given contradictory results. The present study focused on the anthocyanin composition in wild bilberries and highbush blueberry (Vaccinium corymbosum L. cv. Brigitta Blue) growing along altitudinal gradients in the Alps of northern Italy. Our results indicate an increasing accumulation of anthocyanins in bilberries along an altitudinal gradient of about 650 m. The accumulation was due to a significant increase in delphinidin and malvidin glycosides, whereas the accumulation of cyanidin and peonidin glycosides was not affected by altitude. Seasonal differences, especially temperature, had a major influence on the accumulation of anthocyanins in blueberries.

  15. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

    PubMed

    de Rosas, Inés; Ponce, María Teresa; Malovini, Emiliano; Deis, Leonor; Cavagnaro, Bruno; Cavagnaro, Pablo

    2017-05-01

    Malbec and Bonarda are the two most widely cultivated grape varieties in Argentina, and their derived red wines are recognized worldwide, being their intense color a major quality trait. The temperature during fruit ripening conditions berries color intensity. In the main viticulture region of Malbec and Bonarda a 2-3°C increase in temperature has been predicted for the upcoming years as consequence of the global climate change. In the present study, this predicted temperature raise was simulated under field-crop conditions, and its effect on anthocyanin pigmentation in berries of Malbec and Bonarda was monitored by HPLC analysis throughout the ripening process, in two growing seasons. Additionally, expression levels of regulatory (MYBA1 and MYB4) and structural (UFGT and Vv3AT) anthocyanin genes were monitored in Malbec berry skins. Although cultivar-dependent time-course variation was observed for total anthocyanin content, in general, the berries of both cultivars grown under high temperature (HT) conditions had significantly lower total anthocyanins (∼28-41% reduction), and a higher proportion of acylated anthocyanins, than their respective controls. Expression of MYBA1 and UFGT, but not MYB4, was correlated with anthocyanin pigmentation at half ripening and harvest, whereas overexpression of the acyltransferase gene Vv3AT was associated with higher anthocyanin acylation in HT berries. These results suggest that color development and pigment modifications in Malbec berries under HT are regulated at transcriptional level by MYBA1, UFGT, and Vv3AT genes. These data contribute to the general understanding on the effect of high temperatures on anthocyanin biochemistry and genetic regulation, and may have direct implications in the production of high-quality wines from Malbec and Bonarda.

  16. Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains.

    PubMed

    Abdel-Aal, El-Sayed M; Akhtar, Humayoun; Rabalski, Iwona; Bryan, Michael

    2014-02-01

    Anthocyanins are important dietary components with diverse positive functions in human health. This study investigates effects of accelerated solvent extraction (ASE) and microwave-assisted extraction (MAE) on anthocyanin composition and extraction efficiency from blue wheat, purple corn, and black rice in comparison with the commonly used solvent extraction (CSE). Factorial experimental design was employed to study effects of ASE and MAE variables, and anthocyanin extracts were analyzed by spectrophotometry, high-performance liquid chromatography-diode array detector (DAD), and liquid chromatography-mass spectrometry chromatography. The extraction efficiency of ASE and MAE was comparable with CSE at the optimal conditions. The greatest extraction by ASE was achieved at 50 °C, 2500 psi, 10 min using 5 cycles, and 100% flush. For MAE, a combination of 70 °C, 300 W, and 10 min in MAE was the most effective in extracting anthocyanins from blue wheat and purple corn compared with 50 °C, 1200 W, and 20 min for black rice. The anthocyanin composition of grain extracts was influenced by the extraction method. The ASE extraction method seems to be more appropriate in extracting anthocyanins from the colored grains as being comparable with the CSE method based on changes in anthocyanin composition. The method caused lower structural changes in anthocaynins compared with the MAE method. Changes in blue wheat anthocyanins were lower in comparison with purple corn or black rice perhaps due to the absence of acylated anthocyanin compounds in blue wheat. The results show significant differences in anthocyanins among the 3 extraction methods, which indicate a need to standardize a method for valid comparisons among studies and for quality assurance purposes.

  17. Active anthocyanin degradation in Brunfelsia calycina (yesterday--today--tomorrow) flowers.

    PubMed

    Vaknin, Hila; Bar-Akiva, Ayelet; Ovadia, Rinat; Nissim-Levi, Ada; Forer, Izhak; Weiss, David; Oren-Shamir, Michal

    2005-09-01

    Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants.

  18. Isolation and structural characterization of anthocyanin-furfuryl pigments.

    PubMed

    Sousa, André; Mateus, Nuno; Silva, Artur Manuel Soares; Vivas, Nicolas; Nonier, Marie-Françoise; Pianet, Isabelle; de Freitas, Victor

    2010-05-12

    Condensation reactions of malvidin-3-glucoside with two representative oak wood furanic aldehydes (furfural and methylfurfural) were conducted in wine-like model solutions. Methylfurfural led to the formation of malvidin-3-glucoside-methylfurfural (603 m/z), whereas furfural led to the formation of malvidin-3-glucoside-furfural (589 m/z). The latter was structurally characterized by 1D and 2D NMR, allowing an elucidation of the formation mechanism of these anthocyanin-furanic aldehyde adducts in the absence of flavanols.

  19. Wheat sprout extract-induced apoptosis in human cancer cells by proteasomes modulation.

    PubMed

    Bonfili, Laura; Amici, Manila; Cecarini, Valentina; Cuccioloni, Massimiliano; Tacconi, Rosalia; Angeletti, Mauro; Fioretti, Evandro; Keller, Jeffrey N; Eleuteri, Anna Maria

    2009-09-01

    Natural occurring modulators of proteasome functionality are extensively investigated for their implication in cancer therapy. On the basis of our previous evidences both on proteasomal inhibition by monomeric polyphenols, and on the characterization of wheat sprout hydroalcoholic extract, herein we thoroughly report on a comparative study of the effect of wheat sprout extract on both normal and tumour cells. Treatment of isolated 20S proteasomes with wheat sprout extracts induced a gradual inhibition of all proteasome activities. Next, two wheat sprout extract components were separated: a polyphenol and a protein fraction. Both components exerted an in vitro inhibitory effect on proteasome activity. HeLa tumour cells and FHs 74 Int normal cells were exposed to both fractions, resulting in different rates of proteasome inhibition, with tumour cells showing a significantly higher degree of proteasome impairment and apoptosis induction. Furthermore, a decrease in proteasome activities and in cell survival of the human plasmacytoma RPMI 8226 cell line, upon the same treatments, was observed. Collectively, our results provide additional evidences supporting the possible use of natural extracts as coadjuvants in cancer treatments.

  20. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells

    PubMed Central

    LANGE, INGO; MOSCHNY, JULIA; TAMANYAN, KAMILLA; KHUTSISHVILI, MANANA; ATHA, DANIEL; BORRIS, ROBERT P.; KOOMOA, DANA-LYNN

    2016-01-01

    Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB. PMID:26848085

  1. Novel extraction induced by microemulsion breaking: a model study for Hg extraction from Brazilian gasoline.

    PubMed

    Vicentino, Priscila O; Cassella, Ricardo J

    2017-01-01

    This paper proposes a novel approach for the extraction of Hg from Brazilian gasoline samples: extraction induced by microemulsion breaking (EIMB). In this approach, a microemulsion is formed by mixing the sample with n-propanol and HCl. Afterwards, the microemulsion is destabilized by the addition of water and the two phases are separated: (i) the top phase, containing the residual gasoline and (ii) the bottom phase, containing the extracted analyte in a medium containing water, n-propanol and the ethanol originally present in the gasoline sample. The bottom phase is then collected and the Hg is measured by cold vapor atomic absorption spectrometry (CV-AAS). This model study used Brazilian gasoline samples spiked with Hg (organometallic compound) to optimize the process. Under the optimum extraction conditions, the microemulsion was prepared by mixing 8.7mL of sample with 1.2mL of n-propanol and 0.1mL of a 10molL(-1) HCl solution. Emulsion breaking was induced by adding 300µL of deionized water and the bottom phase was collected for the measurement of Hg. Six samples of Brazilian gasoline were spiked with Hg in the organometallic form and recovery percentages in the range of 88-109% were observed.

  2. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro

    PubMed Central

    Kuntz, Sabine; Kunz, Clemens; Domann, Eugen; Würdemann, Nora; Unger, Franziska; Römpp, Andreas; Rudloff, Silvia

    2016-01-01

    The anti-inflammatory effects of anthocyanins (ACNs) on vascular functions are discussed controversially because of their low bioavailability. This study was performed to determine whether microorganism (MO)-fermented ACNs influence vascular inflammation in vitro. Therefore, MO growth media were supplemented with an ACN-rich grape/berry extract and growth responses of Escherichia coli, E. faecalis and H. alvei, as well as ACN fermentation were observed. MO supernatants were used for measuring the anti-inflammatory effect of MO-fermented ACNs in an epithelial-endothelial co-culture transwell system. After basolateral enrichment (240 min), endothelial cells were stimulated immediately or after 20 h with TNF-α. Afterwards, leukocyte adhesion, expression of adhesion molecules and cytokine release were measured. Results indicate that E. coli, E. faecalis and H. alvei utilized ACNs differentially concomitant with different anti-inflammatory effects. Whereas E. coli utilized ACNs completely, no anti-inflammatory effects of fermented ACNs were observed on activated endothelial cells. In contrast, ACN metabolites generated by E. faecalis and H. alvei significantly attenuated low-grade stimulated leukocyte adhesion, the expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine secretion (IL-8 and IL-6), as well as NF-κB mRNA expression with a more pronounced effect of E. faecalis than H. alvei. Thus, MO-fermented ACNs have the potential to reduce inflammation. PMID:27384582

  3. Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells.

    PubMed

    Kang, Soo-Young; Seeram, Navindra P; Nair, Muraleedharan G; Bourquin, Leslie D

    2003-05-08

    Anthocyanins, which are bioactive phytochemicals, are widely distributed in plants and especially enriched in tart cherries. Based on previous observations that tart cherry anthocyanins and their respective aglycone, cyanidin, can inhibit cyclooxygenase enzymes, we conducted experiments to test the potential of anthocyanins to inhibit intestinal tumor development in Apc(Min) mice and growth of human colon cancer cell lines. Mice consuming the cherry diet, anthocyanins, or cyanidin had significantly fewer and smaller cecal adenomas than mice consuming the control diet or sulindac. Colonic tumor numbers and volume were not significantly influenced by treatment. Anthocyanins and cyanidin also reduced cell growth of human colon cancer cell lines HT 29 and HCT 116. The IC(50) of anthocyanins and cyanidin was 780 and 63 microM for HT 29 cells, respectively and 285 and 85 microM for HCT 116 cells, respectively. These results suggest that tart cherry anthocyanins and cyanidin may reduce the risk of colon cancer.

  4. Estimation of Anthocyanin Content of Berries by NIR Method

    SciTech Connect

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-21

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  5. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana.

    PubMed Central

    Deikman, J.; Hammer, P. E.

    1995-01-01

    Arabidopsis thaliana plants treated with exogenous cytokinins accumulate anthocyanin pigments. We have characterized this response because it is potentially useful as a genetic marker for cytokinin responsiveness. Levels of mRNAs for four genes of the anthocyanin biosynthesis pathway, phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) were shown to increase coordinately in response to benzyladenine (BA). However, nuclear run-on transcription experiments suggested that although CHS and DFR are controlled by BA at the transcriptional level, PAL1 and CHI are controlled by BA posttranscriptionally. CHS mRNA levels increased within 2 h of BA spray application, and peaked by 3 h. Levels of PAL1 mRNA did not increase within 6 h of BA spray. We also showed that PAL1, CHS, CHI, and DFR mRNA levels fluctuate during a 24-h period and appear to be controlled by a circadian clock. The relation between cytokinin regulation and light regulation of CHS gene transcription is discussed. PMID:12228453

  6. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review.

    PubMed

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-09-08

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.

  7. The Arabidopsis ANGUSTIFOLIA3-YODA Gene Cascade Induces Anthocyanin Accumulation by Regulating Sucrose Levels

    PubMed Central

    Meng, Lai-Sheng; Li, Ying-Qiu; Liu, Meng-Qian; Jiang, Ji-Hong

    2016-01-01

    Anthocyanin accumulation specifically depends on sucrose (Suc) signaling/levels. However, the gene cascades specifically involved in the Suc signaling/level-mediated anthocyanin biosynthetic pathway are still unknown. Arabidopsis ANGUSTIFOLIA3 (AN3), a transcription coactivator, is involved in the regulation of leaf shape and drought tolerance. Recently, an AN3-CONSTITUTIVE PHOTOMORPHOGENIC 1 gene cascade has been reported to regulate the light signaling-mediated anthocyanin accumulation. Target gene analysis indicates that AN3 is associated with the YODA (YDA) promoter, a mitogen-activated protein kinase kinase kinase, in vivo for inducing anthocyanin accumulation. Indeed, loss-of-function mutants of YDA showed significantly increased anthocyanin accumulation. YDA mutation can also suppress the decrease in an3-4 anthocyanin accumulation. Further analysis indicates that the mutations of AN3 and YDA disrupt the normal Suc levels because of the changes of invertase activity in mutants of an3 or yda, which in turn induces the alterations of anthocyanin accumulation in mutants of an3 or yda via unknown regulatory mechanisms. PMID:27920784

  8. Comparative Transcriptome Analysis Reveals Effects of Exogenous Hematin on Anthocyanin Biosynthesis during Strawberry Fruit Ripening

    PubMed Central

    Li, Huayin; Li, Jingjuan; Zhang, Yihui

    2016-01-01

    Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher anthocyanin content, compared to the control group. Among all treatments, 5 μM of hematin was the optimal condition to promote color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction, phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information for regulating fruit color via anthocyanin biosynthesis in strawberries. PMID:28074176

  9. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes

    PubMed Central

    Albert, Nick W.

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis. PMID:26779194

  10. Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods.

    PubMed

    Cui, Baolu; Hu, Zongli; Zhang, Yanjie; Hu, Jingtao; Yin, Wencheng; Feng, Ye; Xie, Qiaoli; Chen, Guoping

    2016-06-01

    Lablab pods, as dietary vegetable, have high nutritional values similar to most of edible legumes. Moreover, our studies confirmed that purple lablab pods contain the natural pigments of anthocyanins and flavonols. Compared to green pods, five kinds of anthocyanins (malvidin, delphinidin and petunidin derivatives) were found in purple pods by HPLC-ESI-MS/MS and the major contents were delphinidin derivatives. Besides, nine kinds of polyphenol derivatives (quercetin, myricetin, kaempferol and apigenin derivatives) were detected by UPLC-ESI-MS/MS and the major components were quercetin and myricetin derivatives. In order to discover their molecular mechanism, expression patterns of biosynthesis and regulatory gens of anthocyanins and flavonols were investigated. Experimental results showed that LpPAL, LpF3H, LpF3'H, LpDFR, LpANS and LpPAP1 expressions were significantly induced in purple pods compared to green ones. Meanwhile, transcripts of LpFLS were more abundant in purple pods than green or yellow ones, suggestind that co-pigments of anthocyanins and flavonols are accumulated in purple pods. Under continuously dark condition, no anthocyanin accumulation was detected in purple pods and transcripts of LpCHS, LpANS, LpFLS and LpPAP1 were remarkably repressed, indicating that anthocyanins and flavonols biosynthesis in purple pods was regulated in light-dependent manner. These results indicate that co-pigments of anthocyanins and flavonols contribute to purple pigmentations of pods.

  11. Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves

    PubMed Central

    Tian, Ji; Jin, Kaina; Yao, Yuncong

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes. PMID:24914811

  12. Low medium pH value enhances anthocyanin accumulation in Malus crabapple leaves.

    PubMed

    Zhang, Yanchen; Zhang, Jie; Song, Tingting; Li, Jinyan; Tian, Ji; Jin, Kaina; Yao, Yuncong

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes.

  13. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes.

    PubMed

    Albert, Nick W

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis.

  14. A study of controlled uptake and release of anthocyanins by oxidized starch microgels.

    PubMed

    Wang, Zhaoran; Li, Yuan; Chen, Liang; Xin, Xiulan; Yuan, Qipeng

    2013-06-19

    Anthocyanins are well-known antioxidants, but they are sensitive to environmental conditions. Herein we used oxidized starch microgel to prevent their early degradation and deliver them to the target place. The aim of this study was to investigate the uptake and the release ability of anthocyanins by the oxidized starch microgels and measure their in vitro gastrointestinal release. The gels were made of oxidized potato starch polymers, which were chemically cross-linked by sodium trimetaphosphate (STMP). In this study, the uptake and release behaviors of anthocyanins by starch microgel were investigated under various pH and salt concentrations. The microgel of high degree of oxidation and high cross-link density had a high uptake capacity for anthocyanins at low pH and salt concentration; 62 mg anthocyanins had been absorbed per gram of dry DO100% (degree of oxidation 100%) microgel at pH 3 with ionic strength 0.05M. The in vitro study of the release was investigated under stimulated gastrointestinal fluid. The anthocyanins were identified and quantified by UV/vis detection. The results indicated that the oxidized starch microgels had a potential for being a carrier system for protecting anthocyanins from degradation in the upper gastric tract and for delivering them to the intestine. This paper provides a good reference for an intestinal-targeted delivery system of vulnerable functional ingredients by oxidized starch microgel.

  15. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    PubMed Central

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977

  16. Solvent optimization for anthocyanin extraction from Syzygium cumini L. Skeels using response surface methodology.

    PubMed

    Chaudhary, Bratati; Mukhopadhyay, Kunal

    2013-05-01

    Anthocyanins are plant pigments that are potential candidates for use as natural food colourant. In this study, Syzygium cumini fruit skin has been used as anthocyanin source. All the six major types of anthocyanins were identified in the sample by ultra performance liquid chromatography studies, and the antioxidant activity was found to be 4.34 ± 0.26 Fe(2+)g(- 1) in the sample with highest anthocyanin content. Optimization of conditions for extracting high amounts of anthocyanin from the fruit peels was investigated by response surface methodology. The results suggested that highest anthocyanin yield (763.80 mg; 100 ml(- 1)), highest chroma and hue angle in the red colour range could be obtained when 20% ethanol was used in combination with 1% acetic acid. Methanol was replaced with ethanol for the extraction of pigments due to its less toxicity and being safe for human consumption. The optimized solvent can be used to extract anthocyanins from the S. cumini fruits and used as natural colourants in the food industries.

  17. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.

    PubMed

    Sasaki, Nobuhiro; Nakayama, Toru

    2015-01-01

    Genetic engineering of roses and other plants of floricultural importance to give them a truly blue petal color is arguably one of the holy grails of plant biotechnology. Toward this goal, bluish carnations and roses were previously engineered by establishing an exclusive accumulation of delphinidin (Dp)-type anthocyanins in their petals via the heterologous expression of a flavonoid 3',5'-hydroxylase gene. Very recently, purple-blue varieties of chrysanthemums were also genetically engineered via a similar biochemical strategy. Although the floral colors of these transgenic plants still lack a true blue color, the basis for the future molecular breeding of truly blue flowers is via the engineering of anthocyanin pathways. Anthocyanins with multiple aromatic acyl groups (often referred to as polyacylated anthocyanins) in the 3'- or 7-position tend to display a more stable blue color than non-acylated anthocyanins. The 7-polyacylation process during the biosynthesis of purple-blue anthocyanins in delphinium (Delphinium grandiflorum) was found to occur in vacuoles using acyl-glucose as both the glucosyl and acyl donor. Glucosyltransferases and acyltransferases involved in anthocyanin 7-polyacylation in delphinium are vacuolar acyl-glucose-dependent enzymes belonging to the glycoside hydrolase family 1 and serine carboxypeptidae-like protein family, respectively. The 7-polyacylation proceeds through the alternate glucosylation and p-hydroxybenzoylation catalyzed by these enzymes. p-Hydroxybenzoyl-glucose serves as the p-hydroxybenzoyl and glucosyl donor to produce anthocyanins modified with a p-hydroxybenzoyl-glucose concatemer at the 7-position. This novel finding has provided a potential breakthrough for the genetic engineering of truly blue flowers, where polyacylated Dp-type anthocyanins are accumulated exclusively in the petals.

  18. Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach1[C][W

    PubMed Central

    Cheng, Jun; Wei, Guochao; Zhou, Hui; Gu, Chao; Vimolmangkang, Sornkanok; Liao, Liao; Han, Yuepeng

    2014-01-01

    Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants. PMID:25106821

  19. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato.

    PubMed

    Gomez Roldan, Maria Victoria; Outchkourov, Nikolay; van Houwelingen, Adèle; Lammers, Michiel; Romero de la Fuente, Irene; Ziklo, Noa; Aharoni, Asaph; Hall, Robert D; Beekwilder, Jules

    2014-11-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins.

  20. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  1. Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking.

    PubMed

    Robaina, Nicolle F; Feiteira, Fernanda N; Cassella, Alessandra R; Cassella, Ricardo J

    2016-08-05

    The present paper reports on the development of a novel extraction induced by emulsion breaking (EIEB) method for the determination of chloride in crude oils. The proposed method was based on the formation and breaking of oil-in-water emulsions with the samples and the consequential transference of the highly water-soluble chloride to the aqueous phase during emulsion breaking, which was achieved by centrifugation. The determination of chloride in the extracts was performed by ion chromatography (IC) with conductivity detection. Several parameters (oil phase:aqueous phase ratio, crude oil:mineral oil ratio, shaking time and type and concentration of surfactant) that could affect the performance of the method were evaluated. Total extraction of chloride from samples could be achieved when 1.0g of oil phase (0.5g of sample+0.5g of mineral oil) was emulsified in 5mL of a 2.5% (m/v) solution of Triton X-114. The obtained emulsion was shaken for 60min and broken by centrifugation for 5min at 5000rpm. The separated aqueous phase was collected, filtered and diluted before analysis by IC. Under these conditions, the limit of detection was 0.5μgg(-1) NaCl and the limit of quantification was 1.6μgg(-1) NaCl. We applied the method to the determination of chloride in six Brazilian crude oils and the results did not differ statistically from those obtained by the ASTM D6470 method when the paired Student-t-test, at 95% confidence level, was applied.

  2. Purification of anthocyanins from species of Banksia and Acacia using high-voltage paper electrophoresis.

    PubMed

    Asenstorfer, Robert E; Morgan, Anne L; Hayasaka, Yoji; Sedgley, Margaret; Jones, Graham P

    2003-01-01

    A new method has been developed for the isolation and rapid identification of anthocyanins from two floricultural crops based on the use of high-voltage paper electrophoresis with bisulphite buffer. Using this method, anthocyanin pigments were successfully purified as their negatively charged bisulphite-addition compounds from crude extracts of plant tissue. In conjunction with liquid chromatography-electrospray mass spectrometry, the method enabled the anthocyanins from the flowers of two Banksia species and the leaves of two Acacia species to be identified. The Banksia flowers contained both cyanidin and peonidin-based pigments, while the Acacia leaves contained cyanidin and delphinidin derivatives.

  3. Bioavailability of cyanidin glycosides from natural chokeberry (Aronia melanocarpa) juice with dietary-relevant dose of anthocyanins in humans.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Ewa; Piskula, Mariusz K

    2010-12-08

    The aim of this study was to investigate the bioavailability of anthocyanins from chokeberry juice with a dietary-relevant dose of anthocyanins. Thirteen healthy volunteers consumed chokeberry juice providing 0.8 mg of anthocyanins/kg of body weight. Before and after juice consumption, blood and urine were collected. Concentration of anthocyanins was measured with HPLC-PDA-MS-ESI. Cyanidin-3-galactoside comprised 66% of total chokeberry anthocyanins. Eight cyanidin derivatives were found in blood and urine after juice consumption. The maximum plasma anthocyanin concentration of 32.7 ± 2.9 nmol/L was reached at 1.3 ± 0.1 h after juice consumption. The anthocyanins' urine excretion rate (62.9 ± 5.0 nmol/h) was the highest within the first 2 h. In total, 0.25 ± 0.02% of the ingested anthocyanins was excreted by the renal route during 24 h, mainly as metabolites of cyanidin. According to these observations, after consumption of a dietary-relevant dose of anthocyanins as natural chokeberry juice, anthocyanins and their metabolites were present in plasma and urine of volunteers.

  4. Anthocyanin metabolites are abundant and persistent in human urine.

    PubMed

    Kalt, Wilhelmina; Liu, Yan; McDonald, Jane E; Vinqvist-Tymchuk, Melinda R; Fillmore, Sherry A E

    2014-05-07

    LC-MS/MS revealed that metabolites of anthocyanins (Acn) were abundant in human urine (n = 17) even after 5 days with no dietary Acn. After intake of 250 mL of blueberry juice, parent Acn were 4% and Acn metabolites were 96% of the total urinary Acn for the following 24 h. Multiple reaction monitoring revealed 226 combinations of mass transition × retention times for known Acn and predicted Acn metabolites. These were dominated by aglycones, especially aglycone glucuronides. The diversity of Acn metabolites could include positional isomers of Acn conjugates and chalcones. The persistence of Acn metabolites suggested enterohepatic recycling leading to prolonged residence time. The prevalence of Acn metabolites based on pelargonidin, which is not present in blueberry juice, may reflect ongoing dehydroxylation and demethylation of other Acn via xenobiotic and colonic bacterial action. The results suggest that exposure to Acn-based flavonoid moieties is substantially greater than suggested by earlier research.

  5. Anthocyanins from the scarlet flowers of Anemone coronaria.

    PubMed

    Toki, K; Saito, N; Shigihara, A; Honda, T

    2001-04-01

    Three acylated anthocyanins were isolated from the scarlet flowers of Anemone coronaria 'St. Brigid Red' along with a known pigment, pelargonidin 3-lathyroside. The structures of the acylated pigments were based on a pelargonidin 3-lathyroside skeleton acylated at different positions with malonic acid. The first pigment was identified as pelargonidin 3-O-[2-(beta-D-xylopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside], the second was pelargonidin 3-O-[2-O-(beta-D-xylopyranosyl)-6-O-(methyl-malonyl)-beta-D-galactopyranoside], and the third was (6''-O-(pelargonidin 3-O-[2''-O-(beta-D-xylopyranosyl)-beta-D-galactopyranosyl]))((4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-O-tartatryl)malonate.

  6. Impact of Frozen Storage on the Anthocyanin and Polyphenol Contents of American Elderberry Fruit Juice.

    PubMed

    Johnson, Mitch C; Thomas, Andrew L; Greenlief, C Michael

    2015-06-17

    The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic (TP) and total monomeric anthocyanin (TMA) contents with spectrophotometric methods. The individual anthocyanin content (IAC) of the juice was tested by coupling solid phase extraction with ultraperformance liquid chromatography-tandem mass spectrometry. Juice samples were tested initially upon harvest and then again after 3, 6, and 9 months of frozen storage. Juice from the three different genotypes had significantly different TP, TMA, and IAC profiles initially (p < 0.05). The TP, TMA, and IAC contents of the juice from different genotypes were significantly affected (p < 0.05) by the frozen storage time, suggesting that both genotype and length of frozen storage time can affect the anthocyanin content of elderberry fruit juice.

  7. Utilization of capillary electrophoresis/mass spectrometry (CE/MSn) for the study of anthocyanin dyes.

    PubMed

    Bednár, Petr; Papousková, Barbora; Müller, Lukás; Barták, Petr; Stávek, Jan; Pavlousek, Pavel; Lemr, Karel

    2005-08-01

    Hyphenation of capillary electrophoresis with electrospray ionization mass spectrometry was utilized for the monitoring of anthocyanins in wine and wine musts. CE/MS was performed in two electrolytes: 1) an acidic one (chloroacetate-ammonium, pH 2) and 2) a basic one with high selectivity towards derivatives containing vicinal hydroxy groups (borate-ammonium, pH 9). The setup of MS was optimized and the fragmentation of common anthocyanins was studied in detail. Attention was also focused on the fragmentation of anthocyanidin skeleton. The anthocyanidins substituted with hydroxy groups fragment via a cascade of neutral losses of water and carbon monoxide. Fragmentation of anthocyanidins containing a methoxy group on their B-ring starts with the cleavage of methane and/or methyl radical. The optimized method was utilized for the monitoring of changes in anthocyanin profile in red wines as well as the process of release of anthocyanins to wine must.

  8. Photosynthetic Independence of Light-induced Anthocyanin Formation in Zea Seedlings 1

    PubMed Central

    Duke, Stephen O.; Fox, Sue B.; Naylor, Aubrey W.

    1976-01-01

    Results are reported which support the view that the photosynthetic photosystems are not involved in the high irradiance response (HIR) phenomenon of light-dependent anthocyanin biosynthesis in dark-grown Zea mays L. seedlings. A negative correlation between change in greening rates and change in light-dependent anthocyanin accumulation rates with age was demonstrated. Lack of chlorophyll synthesis in a strain of maize possessing a temperature-sensitive lesion for chlorophyll synthesis could not be correlated with light-induced anthocyanin accumulation. Furthermore, seedlings totally lacking photosynthetic capabilities, either due to a genetic lesion or to excision of all photosynthetic tissue, had an enhanced rate of photoinduced anthocyanin formation. This evidence indicates that the HIR results in the initiation of processes that are in competition with chloroplast development for substrate in normal, intact seedlings. PMID:16659449

  9. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  10. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

    PubMed

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-Del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-07-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

  11. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles.

    PubMed

    Dia, Vermont P; Wang, Zhaoqin; West, Megan; Singh, Vijay; West, Leslie; de Mejia, Elvira Gonzalez

    2015-04-01

    Anthocyanins are water-soluble pigments with health benefits and potential use as food colorants. The objectives of this work were to (1) determine optimum parameters for the extraction of anthocyanins from dried distillers grain with solubles (DDGS), (2) develop a method of anthocyanin extraction from DDGS, (3) quantify and identify the extracted anthocyanins, and (4) determine the effect of processing methods and corn cultivars on anthocyanin concentration. DDGS samples were prepared from purple (PC) and dark (DC) corn and processed using conventional enzymes (C) and granular starch hydrolyzing enzymes (GC). Three independent variables (ethanol concentration (0, 12.5, and 25%); liquid-to-solid ratio (30:1, 40:1, 50:1 mL/g); and extraction temperature (4, 22, and 40 °C)) and two dependent variables (anthocyanin concentration and a-value (redness)) were used. Results showed that dark corn DDGS gave anthocyanin concentration higher than that of purple corn. The GC process showed total anthocyanin concentration higher than that of the conventional method of DDGS production. The maximum anthocyanin concentration was obtained at 12.5% ethanol, 40:1 liquid-to-solid ratio, and 22 °C for C-PC [321.0 ± 37.3 μg cyanidin-3 glucoside (C3G) equivalent/g DDGS]. For GC-PC, 25% ethanol, 30:1 liquid-to-solid ratio, and 22 °C gave 741.4 ± 12.8 μg C3G equivalent/g DDGS. For GC-DC, 12.5% ethanol, 40:1 liquid-to-solid ratio, and 40 °C extraction gave 1573.4 ± 84.0 μg C3G equivalent/g DDGS. LC/MS-MS analysis showed that the major anthocyanins were cyanidin-3-glucoside, cyanidin-3-(6″-malonyl) glucoside, and peonidin-3-(6″malonyl) glucoside. In conclusion, anthocyanin extraction from colored corn DDGS can be optimized using 12.5% ethanol, 40:1 mL/g ratio, and 22 °C.

  12. An Intracellular Laccase Is Responsible for Epicatechin-Mediated Anthocyanin Degradation in Litchi Fruit Pericarp.

    PubMed

    Fang, Fang; Zhang, Xue-lian; Luo, Hong-hui; Zhou, Jia-jian; Gong, Yi-hui; Li, Wen-jun; Shi, Zhao-wan; He, Quan; Wu, Qing; Li, Lu; Jiang, Lin-lin; Cai, Zhi-gao; Oren-Shamir, Michal; Zhang, Zhao-qi; Pang, Xue-qun

    2015-12-01

    In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning.

  13. A Candidate-Gene Association Study for Berry Colour and Anthocyanin Content in Vitis vinifera L.

    PubMed Central

    Cardoso, Silvana; Lau, Winston; Eiras Dias, José; Fevereiro, Pedro; Maniatis, Nikolas

    2012-01-01

    Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA) concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin) descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYCB were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYCB, UFGT, MRP, DFR, LDOX, CHI and GST). Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYCB, MYCA, UFGT, MRP, GST, DFR, LDOX, CHI and CHSA). Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYCB. SNPs within LDOX interacted with MYB11 and MYCB, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies. PMID:23029369

  14. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples.

    PubMed

    Takos, Adam M; Jaffé, Felix W; Jacob, Steele R; Bogs, Jochen; Robinson, Simon P; Walker, Amanda R

    2006-11-01

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of flowers and fruits. In apples (Malus domestica Borkh.), several steps of the anthocyanin pathway are coordinately regulated, suggesting control by common transcription factors. A gene encoding an R2R3 MYB transcription factor was isolated from apple (cv Cripps' Pink) and designated MdMYB1. Analysis of the deduced amino acid sequence suggests that this gene encodes an ortholog of anthocyanin regulators in other plants. The expression of MdMYB1 in both Arabidopsis (Arabidopsis thaliana) plants and cultured grape cells induced the ectopic synthesis of anthocyanin. In the grape (Vitis vinifera) cells MdMYB1 stimulated transcription from the promoters of two apple genes encoding anthocyanin biosynthetic enzymes. In ripening apple fruit the transcription of MdMYB1 was correlated with anthocyanin synthesis in red skin sectors of fruit. When dark-grown fruit were exposed to sunlight, MdMYB1 transcript levels increased over several days, correlating with anthocyanin synthesis in the skin. MdMYB1 gene transcripts were more abundant in red skin apple cultivars compared to non-red skin cultivars. Several polymorphisms were identified in the promoter of MdMYB1. A derived cleaved amplified polymorphic sequence marker designed to one of these polymorphisms segregated with the inheritance of skin color in progeny from a cross of an unnamed red skin selection (a sibling of Cripps' Pink) and the non-red skin cultivar Golden Delicious. We conclude that MdMYB1 coordinately regulates genes in the anthocyanin pathway and the expression level of this regulator is the genetic basis for apple skin color.

  15. Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study.

    PubMed

    Kuntz, Sabine; Kunz, Clemens; Herrmann, Johannes; Borsch, Christian H; Abel, Georg; Fröhling, Bettina; Dietrich, Helmut; Rudloff, Silvia

    2014-09-28

    Anthocyanins (ACN) can exert beneficial health effects not only through their antioxidative potential but also through modulation of inflammatory parameters that play a major role in CVD. A randomised cross-over study was carried out to investigate the effects of ACN-rich beverage ingestion on oxidation- and inflammation-related parameters in thirty healthy female volunteers. The participants consumed 330 ml of beverages (placebo, juice and smoothie with 8·9 (SD 0·3), 983·7 (SD 37) and 840·9 (SD 10) mg/l ACN, respectively) over 14 d. Before and after each intervention, blood and 24 h urine samples were collected. Plasma superoxide dismutase (SOD) and catalase activities increased significantly after ACN-rich beverage ingestion (P<0·001), whereas after placebo juice ingestion no increase could be observed. Plasma glutathione peroxidase and erythrocyte SOD activities were not affected. An increase in Trolox equivalent antioxidant capacity could also be observed after juice (P<0·001) and smoothie (P<0·01) ingestion. The plasma and urinary concentrations of malondialdehyde decreased after ACN-rich beverage ingestion (P<0·001), whereas those of 8-OH-2-deoxyguanosine as well as inflammation-related parameters (IL-2, -6, -8 and -10, C-reactive peptide, soluble cluster of differentiation 40 ligand, TNF-α, monocyte chemoattractant protein-1 and soluble cell adhesion molecules) were not affected. Thus, ingestion of ACN-rich beverages improves antioxidant enzyme activities and plasma antioxidant capacity, thus protecting the body against oxidative stress, a hallmark of ongoing atherosclerosis.

  16. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.

    PubMed

    Misyura, Maksym; Colasanti, Joseph; Rothstein, Steven J

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.

  17. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens.

    PubMed

    Yamazaki, Mami; Nakajima, Jun-ichiro; Yamanashi, Mutsuki; Sugiyama, Mitsuyo; Makita, Yukiko; Springob, Karin; Awazuhara, Motoko; Saito, Kazuki

    2003-03-01

    We have investigated metabolite profiles and gene expression in two chemo-varietal forms, red and green forms, of Perilla frutescens var. crispa. Striking difference in anthocyanin content was observed between the red and green forms. Anthocyanin, mainly malonylshisonin, was highly accumulated in the leaves of the red form but not in the green form. Less obvious differences were also observed in the stems. However, there was no remarkable difference in the contents and patterns of flavones and primary metabolites such as inorganic anions, organic anions and amino acids. These results suggest that only the regulation of anthocyanin production, but not that of other metabolites, differs in red and green forms. Microscopic observation and immunohistochemical studies indicated that the epidermal cells of leaves and stems are the sites of accumulation of anthocyanins and localization of anthocyanidin synthase protein. By differential display of mRNA from the leaves of red and green forms, we could identify several genes encoding anthocyanin-biosynthetic enzymes and presumptive regulatory proteins. The possible regulatory network leading to differential anthocyanin accumulation in a form-specific manner is discussed.

  18. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    PubMed Central

    Fan, Zi-Luan; Wang, Zhen-Yu; Zuo, Li-Li; Tian, Shuang-Qi

    2012-01-01

    There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB) are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05) enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN) in bone marrow polychromatic erythrocytes (PCEs). These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation. PMID:23249859

  19. Influence of temperature and preserving agents on the stability of cornelian cherries anthocyanins.

    PubMed

    Moldovan, Bianca; David, Luminiţa

    2014-06-17

    Cornelian cherry (Cornus mas L.) fruits are known for their significant amounts of anthocyanins which can be used as natural food colorants. The storage stability of anthocyanins from these fruit extracts, at different temperatures (2 °C, 25 °C and 75 °C), pH 3.02, in the presence of two of the most widely employed food preserving agents (sodium benzoate and potassium sorbate) was investigated. The highest stability was exhibited by the anthocyanin extract stored at 2 °C without any added preservative, with half-life and constant rate values of 1443.8 h and 0.48 × 10(-3) h(-1), respectively. The highest value of the degradation rate constant (82.76 × 10(-3)/h) was obtained in the case of anthocyanin extract stored at 75 °C without any added preservative. Experimental results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under each of the investigated conditions. In aqueous solution, the food preservatives used were found to have a slight influence on the anthocyanins' stability.

  20. Increased Sucrose in the Hypocotyls of Radish Sprouts Contributes to Nitrogen Deficiency-Induced Anthocyanin Accumulation

    PubMed Central

    Su, Nana; Wu, Qi; Cui, Jin

    2016-01-01

    Effects of nitrogen (N) deficiency and sucrose (Suc) addition on regulation of anthocyanin biosynthesis and their relationship were investigated in this study. Radish sprouts subjected to N deficiency had 50% higher anthocyanin accumulation than when grown in Hoagland solution (a nutrient medium with all macronutrients). The contents of endogenous soluble sugars (Suc, fructose, and glucose) in the hypocotyls were also markedly increased by N limitation, with Suc showing the highest increase. Inhibition of carbohydrate biosynthesis by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) also eliminated N deficiency-induced anthocyanin accumulation. The latter was further supported by the expression of anthocyanin biosynthesis related genes and decreased activities of nitrate reductase in the presence of Suc. Together our results indicate that N deficiency-induced anthocyanin accumulation was, at least partly, dependent on the increase of the soluble sugar, especially Suc. This work is the first comprehensive study on relationship between N deficiency and sugar content on anthocyanin accumulation in the hypocotyls of radish sprouts. PMID:28083009

  1. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions

    PubMed Central

    Rothstein, Steven J.

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested. PMID:23162120

  2. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?

    PubMed

    Martínez, Ana

    2009-04-09

    Psittacofulvins represent an unusual class of pigments (noncarotenoid lipochromes), which are found only in the red, orange, and yellow plumage of parrots. Anthocyanins are flavonoids, and they are one of the primary types of colorants found in plants. Blue butterflies acquire blue and UV hues on their wings, owing to the presence of flavonoids. It is assumed that these natural pigments are valuable antioxidants because they are able to scavenge free radicals. The aim of this investigation is to rationalize the scavenging activity of psittacofulvins and anthocyanins, in terms of the one electron transfer mechanism, taking into account that to prevent oxidative stress, substances must either donate or accept electrons. Density functional approximation calculations are used to obtain ionization potentials, electron affinities, electrodonating, and electroaccepting power indexes. Taking these values, a donator acceptor map (DAM) was constructed, indicating that anthocyanins are good electron donors, whereas psittacofulvins are good electron acceptors. Anthocyanins and vitamins are antioxidants, whereas psittacofulvins and carotenoids are antireductants (oxidants). In terms of solvent effects, animal pigments (carotenoids, psittacofulvins, and anthocyanins) are much better electron acceptors in water than in either the gas phase or benzene. Solvent effects do not alter the electron donor capacity of vitamins, but anthocyanins become effective electron acceptors in water, rather than effective electron donors. The information presented here may also be valuable for the design and analysis of further experiments.

  3. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia

    PubMed Central

    Du, Hui; Wu, Jie; Ji, Kui-Xian; Zeng, Qing-Yin; Bhuiya, Mohammad-Wadud; Su, Shang; Shu, Qing-Yan; Ren, Hong-Xu; Liu, Zheng-An; Wang, Liang-Sheng

    2015-01-01

    Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp. PMID:26208646

  4. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry.

    PubMed

    Hornedo-Ortega, Ruth; Álvarez-Fernández, M Antonia; Cerezo, Ana B; Garcia-Garcia, Isidoro; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2017-02-01

    Anthocyanins are the major polyphenolic compounds in strawberry fruit responsible for its color. Due to their sensitivity, they are affected by food processing techniques such as fermentation that alters both their chemical composition and organoleptic properties. This work aims to evaluate the impact of different fermentation processes on individual anthocyanins compounds in strawberry wine and vinegar by UHPLC-MS/MS Q Exactive analysis. Nineteen, 18, and 14 anthocyanin compounds were identified in the strawberry initial substrate, strawberry wine, and strawberry vinegar, respectively. Four and 8 anthocyanin compounds were tentatively identified with high accuracy for the 1st time to be present in the beverages obtained by alcoholic fermentation and acetic fermentation of strawberry, respectively. Both, the total and the individual anthocyanin concentrations were decreased by both fermentation processes, affecting the alcoholic fermentation to a lesser extent (19%) than the acetic fermentation (91%). Indeed, several changes in color parameters have been assessed. The color of the wine and the vinegar made from strawberry changed during the fermentation process, varying from red to orange color, this fact is directly correlated with the decrease of anthocyanins compounds.

  5. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts.

    PubMed

    Sun, Yi; Li, Hong; Huang, Ji-Rong

    2012-03-01

    Anthocyanins are synthesized in the cytosolic surface of the endoplasmic reticulum (ER) but dominantly accumulate in the vacuole. Little is known about how anthocyanins are transported from the ER to the vacuole. Here, we provide evidence supporting that Transparent Testa 19 (TT19), a glutathione S-transferase (GST), functions as a carrier to transport cyanidin and/or anthocyanins to the tonoplast. We identified a novel tt19 mutant (tt19-7), which barely accumulates anthocyanins but produces a 36% higher level of flavonol than the wild-type (WT), from ethyl methanesulfonate mutagenized seeds. Expressing TT19-fused green fluorescence protein (GFP) in tt19-7 rescues the mutant phenotype in defective anthocyanin biosynthesis, indicating that TT19-GFP is functional. We further showed that TT19-GFP is localized not only in the cytoplasm and nuclei, but also on the tonoplast. The membrane localization of TT19-GFP was further ascertained by immunoblot analysis. In vitro assay showed that the purified recombinant TT19 increases water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G). Compared with C3G, Cya can dramatically quench the intrinsic tryptophan fluorescence of TT19 to much lower levels, indicating a higher affinity of TT19 to Cya than to C3G. Isothermal titration calorimetry analysis also confirmed physical interaction between TT19 and C3G. Taken together, our data reveal molecular mechanism underlying TT19-mediated anthocyanin transportation.

  6. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    PubMed

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis.

  7. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat.

    PubMed

    Tall, Jill M; Seeram, Navindra P; Zhao, Chengshui; Nair, Muraleedharan G; Meyer, Richard A; Raja, Srinivasa N

    2004-08-12

    The use of complementary and alternative medicine (CAM) has increased in the United States and more patients are seeking CAM therapies for control of pain. The present investigation tested the efficacy of orally administered anthocyanins extracted from tart cherries on inflammation-induced pain behavior in rats. Paw withdrawal latency to radiant heat and paw withdrawal threshold to von Frey probes were measured. The first set of experiments examined the effects of tart cherry anthocyanins (400 mg/kg) on the nociceptive behaviors and edema associated with inflammation induced by intraplantar injection of 1% carrageenan. These studies also included tests of motor coordination. The second set of experiments determined if tart cherry anthocyanins (15, 85, and 400 mg/kg) dose-dependently affected the inflammation induced by intraplantar injection of 25% complete Freund's adjuvant. We found that tart cherry extracts reduce inflammation-induced thermal hyperalgesia, mechanical hyperalgesia and paw edema. The suppression of thermal hyperalgesia was dose-dependent and the efficacy of highest dose (400 mg/kg) was similar to indomethacin (5 mg/kg). The highest dose anthocyanin (400 mg/kg) had no effects on motor function. These data suggest that tart cherry anthocyanins may have a beneficial role in the treatment of inflammatory pain. The antihyperalgesic effects may be related to the anti-inflammatory and antioxidant properties of anthocyanins. A better understanding of the modulatory role of dietary constituents and phytonutrients on pain will offer further therapeutic options for treating patients with persistent and chronic pain conditions.

  8. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients.

  9. Improved stability of chokeberry juice anthocyanins by β-cyclodextrin addition and refrigeration.

    PubMed

    Howard, Luke R; Brownmiller, Cindi; Prior, Ronald L; Mauromoustakos, Andy

    2013-01-23

    Chokeberry anthocyanins are susceptible to degradation during processing and storage of processed products. This study determined the effects of three pH levels (2.8, 3.2, and 3.6) and four β-cyclodextrin (BCD) concentrations (0, 0.5, 1, and 3%) alone and in combination on the stability of chokeberry juice anthocyanins before and after pasteurization and over 8 months of storage at 4 and 25 °C. Lowering the pH from 3.6 to 2.8 in the absence of BCD provided marginal protection against anthocyanin losses during processing and storage. Addition of 3% BCD at the natural chokeberry pH of 3.6 resulted in excellent protection of anthocyanins, with 81 and 95% retentions after 8 months of storage at 25 and 4 °C, respectively. The protective effect of BCD was lessened with concentrations <3% and reduction in pH, indicating changes in anthocyanin structure play an important role in BCD stabilization of anthocyanins.

  10. Degradation of anthocyanins and anthocyanidins in blueberry jams/stuffed fish.

    PubMed

    Queiroz, Filipa; Oliveira, Carla; Pinho, Olívia; Ferreira, Isabel M P L V O

    2009-11-25

    This study examined the effects of cooking on the degradation of anthocyanins and anthocyanidins of blueberries (Vaccinium corymbosum L.) from cultivar Bluecrop. Fruits were used to prepare jams with different degrees Brix and stuffed fish. A systematic evaluation of the degradation of anthocyanins and anthocyanidins of blueberries was performed; for that purpose an HPLC/DAD method was used to determine anthocyanin profile and anthocyanidin contents in fresh and cooked blueberries and in jams. Ten anthocyanins were separated and monitored in methanolic extracts. Of the six common anthocyanidins, four were identified in the hydrolysates, namely, delphinidin, cyanidin, petunidin and malvidin. Percentage of degradation of anthocyanins and anthocyanidins in jams is highly dependent on degrees Brix: 64-76 degrees Brix led to 20-30% degradation, whereas 80 degrees Brix resulted in degradation between 50 and 60%. Percentage of degradation of anthocyanins in whole blueberries cooked in stuffed fish ranged between 45 and 50%, however, for anthocyanidins, the percentage of degradation was significantly lower, between 12 and 30%, indicating that this cooking procedure can preserve anthocyanidin degradation.

  11. [Effect of homogeneity on cell growth and anthocyanin biosynthesis in suspension cultures of Vitis vinifera].

    PubMed

    Qu, Jun-Ge; Zhang, Wei; Jin, Mei-Fang; Yu, Xing-Ju

    2006-09-01

    The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. To understand the instability, the investigation of anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, has been initiated in our laboratory. Suspension culture of a relatively homogeneous cell line E of V. vinifera, was established by long-term cell line selection by anthocyanin content differentiation. The aggregate size of E was smaller than that of other cell lines obtained by routine screening method. The variation coefficients of anthocyanin content in suspension cultures of E were 8.7% in long-term subcultures and 5% in repeated flasks, respectively. The effects of elicitor, precursor feeding and light irridiation on biomass and anthocyanin accumulation in suspension cultures of E had been investigated and the results showed that all the variation coefficients were lower than 12% and this indicated the importance of homogeneity on stable production in plant cell culture. With the combination treatment of 30micromol/L phenylalanine and 218micromol/L methyl jasmonate in the dark in suspension cultures of E, the anthocyanin content and production in suspension culture of E was 5.89-fold and 4.30-fold of the controls, respectively, and all the variation coefficients of biomass and anthocyanin accumulation were lower than those of the controls in 5 successive subcultures.

  12. Protective effect of anthocyanins from lingonberry on radiation-induced damages.

    PubMed

    Fan, Zi-Luan; Wang, Zhen-Yu; Zuo, Li-Li; Tian, Shuang-Qi

    2012-12-18

    There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB) are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05) enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN) in bone marrow polychromatic erythrocytes (PCEs). These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  13. Functional Characterization of Dihydroflavonol-4-Reductase in Anthocyanin Biosynthesis of Purple Sweet Potato Underlies the Direct Evidence of Anthocyanins Function against Abiotic Stresses

    PubMed Central

    Wang, Hongxia; Fan, Weijuan; Li, Hong; Yang, Jun; Huang, Jirong; Zhang, Peng

    2013-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions. PMID:24223813

  14. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid.

    PubMed

    Peiffer, Daniel S; Zimmerman, Noah P; Wang, Li-Shu; Ransom, Benjamin W S; Carmella, Steven G; Kuo, Chieh-Ti; Siddiqui, Jibran; Chen, Jo-Hsin; Oshima, Kiyoko; Huang, Yi-Wen; Hecht, Stephen S; Stoner, Gary D

    2014-06-01

    Diets containing either freeze-dried black raspberries (BRBs) or their polyphenolic anthocyanins (ACs) have been shown to inhibit the development of N-nitrosomethylbenzylamine (NMBA)-induced esophageal cancer in rats. The present study was conducted to determine whether PCA, a major microbial metabolite of black raspberry (BRB) ACs, also prevents NMBA-induced esophageal cancer in rats. F344 rats were injected with NMBA three times a week for 5 weeks and then fed control or experimental diets containing 6.1% BRBs, an anthocyanin (AC)-enriched fraction derived from BRBs, or protocatechuic acid (PCA). Animals were exsanguinated at weeks 15, 25, and 35 to quantify the development of preneoplastic lesions and tumors in the esophagus, and to relate this to the expression of inflammatory biomarkers. At weeks 15 and 25, all experimental diets were equally effective in reducing NMBA-induced esophageal tumorigenesis, as well as in reducing the expression of pentraxin-3 (PTX3), a cytokine produced by peripheral blood mononuclear cells in response to interleukin (IL)-1β and TNF-α. All experimental diets were also active at reducing tumorigenesis at week 35; however, the BRB diet was significantly more effective than the AC and PCA diets. Furthermore, all experimental diets inhibited inflammation in the esophagus via reducing biomarker (COX-2, iNOS, p-NF-κB, and sEH) and cytokine (PTX3) expression. Overall, our data suggest that BRBs, their component ACs, and PCA inhibit NMBA-induced esophageal tumorigenesis, at least in part, by their inhibitory effects on genes associated with inflammation.

  15. Short-day signals are crucial for the induction of anthocyanin biosynthesis in Begonia semperflorens under low temperature condition.

    PubMed

    Zhang, Kai Ming; Wang, Jia Wan; Guo, Mei Li; Du, Wen Li; Wu, Rong Hua; Wang, Xian

    2016-10-01

    The leaves of Begonia semperflorens accumulate anthocyanins and turn red in autumn in sub-temperate areas. This induction of anthocyanin biosynthesis in autumn has been attributed to the effects of low temperature, but the effects of different light regimes on this process are still being debated. In the present work, short days were found to be necessary for anthocyanin biosynthesis at low temperature. Under the same low-temperature conditions, Begonia seedlings grown under the short-day condition accumulated more carbohydrates and abscisic acid (ABA), which both induce anthocyanin biosynthesis. However, fewer carbohydrates and more gibberellin (GA) accumulated under the long-day conditions to maintain growth, which blocked anthocyanin biosynthesis and resulted in a lack of increases in the activities of dihydroflavonol 4-reductase (DFR) and flavonoid-3-O-glucosyl transferase (UFGT). Consequently, carbon flux, which was altered due to the blockade of anthocyanin synthesis, was channelled into the production of quercetin and phenolic acids but not lignin.

  16. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion.

    PubMed

    Pineda-Vadillo, Carlos; Nau, Françoise; Guerin-Dubiard, Catherin; Jardin, Julien; Lechevalier, Valérie; Sanz-Buenhombre, Marisa; Guadarrama, Alberto; Tóth, Tamás; Csavajda, Éva; Hingyi, Hajnalka; Karakaya, Sibel; Sibakov, Juhani; Capozzi, Francesco; Bordoni, Alessandra; Dupont, Didier

    2017-01-01

    The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract.

  17. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams.

    PubMed

    Bursać Kovačević, Danijela; Putnik, Predrag; Dragović-Uzelac, Verica; Vahčić, Nada; Babojelić, Martina Skendrović; Levaj, Branka

    2015-08-15

    The objective of this study was to detect influences of cultivar, cultivation and processing on anthocyanin content and color in purees and low-sugar jams produced from strawberry cultivars (Elsanta, Maya, Marmolada, Queen Elisa), grown under conventional and organic cultivation. Color was determined by CIELab values while anthocyanins were quantified by HPLC-UV/VIS-PDA. Queen Elisa was the best cultivar for processing as it had highest total anthocyanin content (TAC) that was well preserved in processing. On average, processing purees to jams decreased TAC for 28% where pelargonidin-3-glucoside revealed most noticeable loss (53%) and cyanidin-3-rutinoside was best preserved in processing. Obtained results indicated that measurement of colorimetric parameters are strongly correlated with content of anthocyanins. In other words, loss of anthocyanins during processing was accompanied by noticeable decrease in lightness, red/yellow color and total color change. Results showed that change of color is useful predictor for estimating anthocyanins in strawberry purees and jams.

  18. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    SciTech Connect

    Tarmizi, Ermiziar E-mail: ermitarmizi@gmail.com; Saragih, Raskita; Lalasari, Latifa Hanum E-mail: lati003@lipi.go.id

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  19. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way

    PubMed Central

    Zhang, Na; Qi, Yan; Zhang, Hai-Jun; Wang, Xiaoyun; Li, Hongfei; Shi, Yantong; Guo, Yang-Dong

    2016-01-01

    Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage. PMID:27990149

  20. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    NASA Astrophysics Data System (ADS)

    Tarmizi, Ermiziar; Lalasari, Latifa Hanum; Saragih, Raskita

    2015-12-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet-Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  1. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  2. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    PubMed

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  3. [Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification].

    PubMed

    Qu, Jun-Ge; Yu, Xing-Ju; Zhang, Wei; Jin, Mei-Fang

    2006-03-01

    The low-production is a ubiquitous problem and has prevented the commercialization of secondary metabolite production in plant cell culture. In order to examine the effective approaches to improvement of secondary metabolite production in plant cell culture, the investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, had been initiated in our laboratory. In this present research, various elicitors and the precursor of phenylalanine were used in combination to enhance the anthocyanins production in suspension cultures of Vitis vinifera. And an integrated process with the combination of elicitation, precursor feeding and light irradiation was reported for rational bioprocess design. Among the combination treatment of phenylalanine feeding and several elicitors (methyl-beta-cyclodextrin, dextran T-40, methyl jasmonate, extracts of Aspergillus niger and Fusarium orthoceras), the combination with methyl jasmonate gave the highest anthocyanins production in suspension cultures of Vitis vinifera. When compared to the controls, the anthocyanins content (CV/g, FCW) and production (CV/L) increased by 2.7-fold and 3.4-fold, respectively. The optimum time for the addition of phenylalanine and methyl jasmonate was 4 days after inoculation. Two cell lines with different anthocyanins-producing capacity responded differently to the optimum combination treatment of 30 micromol/L phenylalanine feeding, 218 micromol/L methyl jasmonate elicitation and 3000 to approximately 4000 1x light illumination. The high-and low-anthocyanins-producing cell lines of VV05 and VV06 produced the maximum of 2975 and 4090 CV/L of anthocyanins that were 2.5- and 5.2-fold of the controls, respectively.

  4. Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins.

    PubMed

    Buchweitz, M; Speth, M; Kammerer, D R; Carle, R

    2013-12-01

    The objective of the present study was to evaluate the effects of different pectins on strawberry anthocyanins in viscous model solutions at pH 3.0. For this purpose, low esterified amidated, low and high methyl esterified citrus and apple pectins, and a sugar beet pectin (SBP), respectively, were added to strawberry extracts. The latter were predominantly composed of pelargonidin-glycosides, containing either reduced (E-1) or original amounts of non-anthocyanin phenolics (E-2). Model systems were stored for 18 weeks at 20±0.5 °C protected from light, and anthocyanins were quantitated in regular intervals by HPLC-DAD analyses. Half-life (t1/2) and destruction (D) values were calculated based on first-order kinetics. Generally, significant differences in pigment retention could be ascribed to differing pectin sources, while variation in the degree of esterification and amidation, respectively, had negligible effects. Compared to systems without added pectin, apple pectins and SPB enhanced anthocyanin stability moderately, while stabilising effects of citrus pectins were poor or even imperceptible. Generally, the amount of non-anthocyanin phenolics and the addition of citrate did not markedly affect anthocyanin stability. However, pectins had no influence on total phenolic contents (Folin-Ciocalteu assay) and antioxidant capacities (FRAP and TEAC assay) of strawberry phenolics over time. For pelargonidin-3-glucoside and -rutinoside largely consistent stabilities were found in all model systems. In contrast, pelargonidin-3-malonylglucoside was less stable in the blank, and stabilisation by pectins was always negligible. The findings of the present study are contrary to results reported previously for the stabilisation of cyanidin- and delphinidin-glycosides in similar model systems prepared with black currant extracts, indicating a high impact of the number of hydroxyl groups in the anthocyanin B-ring.

  5. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.

    PubMed Central

    Alfenito, M R; Souer, E; Goodman, C D; Buell, R; Mol, J; Koes, R; Walbot, V

    1998-01-01

    Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last genetically defined step of the maize anthocyanin pigment pathway. This step is the conjugation of glutathione to cyanidin 3-glucoside (C3G). Glutathionated C3G is transported to the vacuole via a tonoplast Mg-ATP-requiring glutathione pump (GS-X pump). Genetically, the comparable step in the petunia anthocyanin pathway is controlled by the Anthocyanin9 (An9) gene. An9 was cloned by transposon tagging and found to encode a type I plant GST. Bz2 and An9 have evolved independently from distinct types of GSTs, but each is regulated by the conserved transcriptional activators of the anthocyanin pathway. Here, a phylogenetic analysis is presented, with special consideration given to the origin of these genes and their relaxed substrate requirements. In particle bombardment tests, An9 and Bz2 functionally complement both mutants. Among several other GSTs tested, only soybean GmGST26A (previously called GmHsp26A and GH2/4) and maize GSTIII were found to confer vacuolar sequestration of anthocyanin. Previously, these genes had not been associated with the anthocyanin pathway. Requirements for An9 and Bz2 gene function were investigated by sequencing functional and nonfunctional germinal revertants of an9-T3529, bz2::Ds, and bz2::Mu1. PMID:9668133

  6. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    PubMed Central

    Szalóki-Dorkó, Lilla; Ladányi, Márta; Ficzek, Gitta; Stéger-Máté, Mónika

    2015-01-01

    Summary Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3) were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C) for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L) than Kántorjánosi 3 juice (513 mg/L). The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18%, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19% were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2) of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L) than cyanidin-3-rutinoside (177 and 121 mg/L) before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production. PMID:27904369

  7. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins.

    PubMed

    Ludwig, Iziar A; Mena, Pedro; Calani, Luca; Borges, Gina; Pereira-Caro, Gema; Bresciani, Letizia; Del Rio, Daniele; Lean, Michael E J; Crozier, Alan

    2015-12-01

    Red raspberries, containing ellagitannins and cyanidin-based anthocyanins, were fed to volunteers and metabolites appearing in plasma and urine were analysed by UHPLC-MS. Anthocyanins were not absorbed to any extent with sub nmol/L concentrations of cyanidin-3-O-glucoside and a cyanidin-O-glucuronide appearing transiently in plasma. Anthocyanins excreted in urine corresponded to 0.007% of intake. More substantial amounts of phase II metabolites of ferulic acid and isoferulic acid, along with 4'-hydroxyhippuric acid, potentially originating from pH-mediated degradation of cyanidin in the proximal gastrointestinal tract, appeared in urine and also plasma where peak concentrations were attained 1-1.5h after raspberry intake. Excretion of 18 anthocyanin-derived metabolites corresponded to 15.0% of intake, a figure substantially higher than obtained in other anthocyanin feeding studies. Ellagitannins pass from the small to the large intestine where the colonic microbiota mediate their conversion to urolithins A and B which appeared in plasma and were excreted almost exclusively as sulfate and glucuronide metabolites. The urolithin metabolites persisted in the circulatory system and were excreted in urine for much longer periods of time than the anthocyanin metabolites although their overall urinary recovery was lower at 7.0% of intake. It is events originating in the proximal and distal gastrointestinal tract, and subsequent phase II metabolism, that play an important role in the bioavailability of both anthocyanins and ellagitannins and it is their metabolites which appear in the circulatory system, that are key to elucidating the mode of action(s) underlying the protective effects of these compounds on human health.

  8. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.).

    PubMed

    Jin, Wanmei; Wang, Hua; Li, Maofu; Wang, Jing; Yang, Yuan; Zhang, Xiaoming; Yan, Guohua; Zhang, Hong; Liu, Jiashen; Zhang, Kaichun

    2016-11-01

    Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.

  9. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    PubMed Central

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  10. Inhibitory effect of Gardenblue blueberry (Vaccinium ashei Reade) anthocyanin extracts on lipopolysaccharide-stimulated inflammatory response in RAW 264.7 cells*

    PubMed Central

    Xu, Wei; Zhou, Qing; Yao, Yong; Li, Xing; Zhang, Jiu-liang; Su, Guan-hua; Deng, Ai-ping

    2016-01-01

    Blueberries are a rich source of anthocyanins, which are associated with health benefits contributing to a reduced risk for many diseases. The present study identified the functional Gardenblue blueberry (Vaccinium ashei Reade) anthocyanin extracts (GBBAEs) and evaluated their capacity and underlying mechanisms in protecting murine RAW 264.7 cells from lipopolysaccharide (LPS)-stimulated inflammation in vitro. Enzyme-linked immunosorbent assay (ELISA) kit results showed that GBBAEs significantly inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), IL-1β, and interferon-γ (INF-γ). Real-time polymerase chain reaction (PCR) analysis indicated that the mRNA expression levels of IL-6, IL-1β, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and cyclooxygenase 2 (COX-2) were suppressed in LPS-stimulated RAW 264.7 cells. Additionally, Western blot analysis was used to evaluate the relative protein expression levels of COX-2 and nuclear factor-κB p65 (NF-κBp65). All these results suggested the potential use of GBBAEs as a functional food for the treatment of inflammatory diseases. PMID:27256676

  11. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    PubMed

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics.

  12. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses

    PubMed Central

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A.; Rothstein, Steven J.

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX) and positive regulatory (TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions. PMID:27790239

  13. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    PubMed Central

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression. PMID:28255171

  14. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests

    PubMed Central

    Fernández-Marín, Beatriz; Esteban, Raquel; Míguez, Fátima; Artetxe, Unai; Castañeda, Verónica; Pintó-Marijuan, Marta; Becerril, José María; García-Plazaola, José Ignacio

    2015-01-01

    Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout. PMID:25922298

  15. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing.

    PubMed

    Gachovska, Tanya; Cassada, David; Subbiah, Jeyamkondan; Hanna, Milford; Thippareddi, Harshavardhan; Snow, Daniel

    2010-08-01

    This study was conducted to evaluate the effect of pulsed electric field (PEF) treatment on anthocyanin extraction from red cabbage using water as a solvent. Mashed cabbage was placed in a batch treatment chamber and subjected to PEF (2.5 kV/cm electric field strength; 15 micros pulse width and 50 pulses, specific energy 15.63 J/g). Extracted anthocyanin concentrations (16 to 889 microg/mL) were determined using HPLC. Heat and light stabilities of the control and PEF-treated samples, having approximately the same initial concentrations, were studied. PEF treatments enhanced total anthocyanin extraction in water from red cabbage by 2.15 times with a higher proportion of nonacylated forms than the control (P < 0.05). The heat and light stabilities of the PEF-treated samples and control samples were not significantly different (P > 0.05). Practical Application: An innovative pretreatment technology, pulsed electric field processing, enhanced total anthocyanin extraction in water from red cabbage by 2.15 times. Manufacturers of natural colors can use this technology to extract anthocyanins from red cabbage efficiently.

  16. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    PubMed

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  17. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests.

    PubMed

    Fernández-Marín, Beatriz; Esteban, Raquel; Míguez, Fátima; Artetxe, Unai; Castañeda, Verónica; Pintó-Marijuan, Marta; Becerril, José María; García-Plazaola, José Ignacio

    2015-04-28

    Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout.

  18. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives.

    PubMed

    Guo, Honghui; Ling, Wenhua

    2015-03-01

    With the dramatically increasing prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide, there is an urgent need for new strategies to combat the growing epidemic of these metabolic diseases. Diet is an essential factor affecting the development of and risk for obesity and T2DM and it can either help or hurt. In searching for preventative and therapeutic strategies, it is therefore advantageous to consider the potential of certain foods and their bioactive compounds to reverse or prevent the pathogenic processes associated with metabolic disease. Anthocyanins are naturally occurring polyphenolic compounds abundant in dark-colored fruits, vegetables and grains. Epidemiological studies suggest that increased consumption of anthocyanins lowers the risk of T2DM. Many in vitro and in vivo studies also reveal an array of mechanisms through which anthocyanins could prevent or reverse obesity- and T2DM-related pathologies including promotion of antioxidant and anti-inflammatory activities, improvement of insulin resistance, and hypolipidemic and hypoglycemic actions. Here, we summarize the data on anthocyanin-mediated protection against obesity and T2DM and the underlying mechanisms. Further population-based and long-term human intervention studies are necessary to ultimately evaluate the use of anthocyanins for protection/prevention against the development of obesity and T2DM.

  19. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  20. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index.

  1. The Dark-Purple Tea Cultivar 'Ziyan' Accumulates a Large Amount of Delphinidin-Related Anthocyanins.

    PubMed

    Lai, Yun-Song; Li, Sha; Tang, Qian; Li, Huan-Xiu; Chen, Shen-Xiang; Li, Pin-Wu; Xu, Jin-Yi; Xu, Yan; Guo, Xiang

    2016-04-06

    Recently, we developed a novel tea cultivar 'Ziyan' with distinct purple leaves. There was a significant correlation between leaf color and anthocyanin pigment content in the leaves. A distinct allocation of metabolic flow for B-ring trihydroxylated anthocyanins and catechins in 'Ziyan' was observed. Delphinidin, cyanidin, and pelargonidin (88.15 mg/100 g FW in total) but no other anthocyanin pigments were detected in 'Ziyan', and delphinidin (70.76 mg/100 g FW) was particularly predominant. An analysis of the catechin content in 'Ziyan' and eight other cultivars indicated that 'Ziyan' exhibits a preference for synthesizing B-ring trihydroxylated catechins (with a proportion of 74%). The full-length cDNA sequences of flavonoid pathway genes were isolated by RNA-Seq coupled with conventional TA cloning, and their expression patterns were characterized. Purple-leaved cultivars had lower amounts of total catechins, polyphenols, and water extract than ordinary non-anthocyanin cultivars but similar levels of caffeine. Because dark-purple-leaved Camellia species are rare in nature, this study provides new insights into the interplay between the accumulations of anthocyanins and other bioactive components in tea leaves.

  2. Bioavailability of anthocyanins and colonic polyphenol metabolites following consumption of aronia berry extract.

    PubMed

    Xie, Liyang; Lee, Sang Gil; Vance, Terrence M; Wang, Ying; Kim, Bohkyung; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W

    2016-11-15

    A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption.

  3. Molecular characterization and expression analyses of an anthocyanin synthase gene from Magnolia sprengeri Pamp.

    PubMed

    Shi, Shou-Guo; Li, Shan-Ju; Kang, Yong-Xiang; Liu, Jian-Jun

    2015-01-01

    Anthocyanin synthase (ANS), which catalyzes the conversion of colorless leucoanthocyanins into colored anthocyanins, is a key enzyme in the anthocyanin biosynthetic pathway. It plays important roles in plant development and defense. An ANS gene designated as MsANS was cloned from Magnolia sprengeri using rapid amplification of complementary DNA (cDNA) ends technology. The full-length MsANS is 1171-bp long and contains a 1080-bp open reading frame encoding a 360 amino acid polypeptide. In a sequence alignment analysis, the deduced MsANS protein showed high identity to ANS proteins from other plants: Prunus salicina var. cordata (74 % identity), Ampelopsis grossedentata (74 % identity), Pyrus communis (73 % identity), and Prunus avium (73 % identity). A structural analysis showed that MsANS belongs to 2-oxoglutarate (2OG)- and ferrous iron-dependent oxygenase family because it contains three binding sites for 2OG. Real-time quantitative polymerase chain reaction analyses showed that the transcript level of MsANS was 26-fold higher in red petals than in white petals. The accumulation of anthocyanins in petals of white, pink, and red M. sprengeri flowers was analyzed by HPLC. The main anthocyanin was cyanidin-3-o-glucoside chloride, and the red petals contained the highest concentration of this pigment.

  4. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds.

    PubMed

    Viljanen, Kaarina; Kivikari, Riitta; Heinonen, Marina

    2004-03-10

    Oxidation of bovine serum albumin, casein, and lactalbumin and the effect of different procyanidins, anthocyanins, and their aglycons (10 and 20 microM) on lactalbumin oxidation were investigated in a liposome system. Samples were incubated in the dark at 37 degrees C with copper, and the extent of oxidation was measured by determining the loss of tryptophan fluorescence and the formation of protein carbonyls, conjugated diene hydroperoxides, and hexanal. The correlation between different protein and lipid oxidation measurements was good and statistically significant. Casein was the most stable protein in the liposome model, and it was also the best inhibitor of liposome oxidation. All tested anthocyanins and other phenolic compounds inhibited both lipid and protein oxidation. There were no systematic differences with anthocyanins and their aglycons in relation to the concentrations used or glycosylation with either glucose or rutinose. Procyanidins B1 and B2 and ellagic acid were potentially better antioxidants than anthocyanins due to their several hydroxyl groups as measured by both protein and lipid oxidation. In conclusion, oxidative deterioration of liposomes due to protein-lipid interaction is inhibited by anthocyanins, procyanidins, and ellagitannin present, for example, in berries.

  5. Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate.

    PubMed

    Park, Woo Tae; Kim, Yeon Bok; Seo, Jeong Min; Kim, Sun-Ju; Chung, Eunsook; Lee, Jai-Heon; Park, Sang Un

    2013-05-01

    Radish (Raphanus sativus) sprouts have received attention as an important dietary vegetable in Asian countries. The flavonoid pathway leading to anthocyanin biosynthesis in radishes is induced by multiple regulatory genes as well as various developmental and environmental factors. This study investigated anthocyanin accumulation and the transcript level of associated genes in radish sprouts exposed to light and methyl jasmonate (MeJA). The anthocyanin content of sprouts exposed to light and treated with MeJA was higher than that of sprouts grown under dark conditions without MeJA, and the highest anthocyanin content was observed within 6-9 days after sowing (DAS). Transcript levels of almost all genes were increased in radish sprouts grown in light conditions with 100 μM MeJA relative to sprouts grown under dark conditions with or without MeJA treatment, especially at 3 DAS. The results suggest that light and MeJA treatment applied together during radish seedling development enhance anthocyanin accumulation.

  6. Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods.

    PubMed

    Blando, Federica; Gerardi, Carmela; Nicoletti, Isabella

    2004-01-01

    In the recent years many studies on anthocyanins have revealed their strong antioxidant activity and their possible use as chemotherapeutics. The finding that sour cherries (Prunus cerasus L) (also called tart cherries) contain high levels of anthocyanins that possess strong antioxidant and anti-inflammatory properties has attracted much attention to this species. Here we report the preliminary results of the induction of anthocyanin biosynthesis in sour cherry callus cell cultures. The evaluation and characterization of the in vitro produced pigments are compared to those of the anthocyanins found in vivo in fruits of several sour cherry cultivars. Interestingly, the anthocyanin profiles found in whole fruit extracts were similar in all tested genotypes but were different with respect to the callus extract. The evaluation of antioxidant activity, performed by ORAC and TEAC assays, revealed a relatively high antioxidant capacity for the fruit extracts (from 1145 to 2592 $\\mu $ mol TE/100 g FW) and a lower one for the callus extract (688 $\\mu $ mol TE/100 g FW).

  7. Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods

    PubMed Central

    Blando, Federica

    2004-01-01

    In the recent years many studies on anthocyanins have revealed their strong antioxidant activity and their possible use as chemotherapeutics. The finding that sour cherries (Prunus cerasus L) (also called tart cherries) contain high levels of anthocyanins that possess strong antioxidant and anti-inflammatory properties has attracted much attention to this species. Here we report the preliminary results of the induction of anthocyanin biosynthesis in sour cherry callus cell cultures. The evaluation and characterization of the in vitro produced pigments are compared to those of the anthocyanins found in vivo in fruits of several sour cherry cultivars. Interestingly, the anthocyanin profiles found in whole fruit extracts were similar in all tested genotypes but were different with respect to the callus extract. The evaluation of antioxidant activity, performed by ORAC and TEAC assays, revealed a relatively high antioxidant capacity for the fruit extracts (from 1145 to 2592 μmol TE/100 g FW) and a lower one for the callus extract (688 μmol TE/100 g FW). PMID:15577186

  8. The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as Natural Dye for Dye- Sensitized Solar Cells (DSSC)

    NASA Astrophysics Data System (ADS)

    Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.

    2016-02-01

    Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.

  9. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple

    PubMed Central

    Hu, Da-Gang; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976

  10. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    PubMed

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches.

  11. Transcriptional activation of a MYB gene controls the tissue-specific anthocyanin accumulation in a purple cauliflower mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...

  12. Total anthocyanins, total carotenoids, hydrophilic- and lipophilic-ORAC levels in diverse clones and breeding lines over six field environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven specialty clones were grown in six field locations and tuber samples were analyzed for total carotenoids, total anthocyanins, hydrophilic_Oxygen Radical Absorbance Capacity (ORAC), and lipophilic (ORAC). Four of the genotypes had red or purple pigmented flesh. The highest total anthocyanins ...

  13. The beet Y locus encodes an anthocyanin-MYB-like protein that activates the betalain red pigment pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almost all flowering plants produce red/violet, phenylalanine-based, anthocyanin pigments. A single order, the Caryophyllales, contains families that replace anthocyanins with tyrosine-based red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betala...

  14. Genetic analyses of anthocyanin concentrations and intensity of red bulb color among segregating haploid progenies of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher concentrations of anthocyanins in vegetables are important for attractive appearance and may offer health benefits for consumers. The red color of onion bulbs is due primarily to the accumulation of anthocyanins. The goals of this study were to identify chromosome regions that condition yello...

  15. Blueberry juice and anthocyanins modulate obesity, leptin and beta cell function in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are the components responsible for the red and blue colors found in many fruits and berries. Consumption of purified blueberry (BB) anthocyanins but not whole BB in the diet has been shown to prevent the development of obesity in mice fed high-fat diets (JAFC 56:647, 2008). The o...

  16. Paper Chromatography and UV-Vis Spectroscopy to Characterize Anthocyanins and Investigate Antioxidant Properties in the Organic Teaching Laboratory

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery; Novak, Michael

    2015-01-01

    A variety of fruits and vegetables, including raspberries, blueberries, Concord grapes, blackberries, strawberries, peaches, eggplant, red cabbage, and red onions, contain flavonoid compounds known as anthocyanins that are responsible for the blue-red color and the astringent taste associated with such foods. In addition, anthocyanins exhibit a…

  17. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.

  18. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway.

    PubMed

    Hatlestad, Gregory J; Akhavan, Neda A; Sunnadeniya, Rasika M; Elam, Lee; Cargile, Scott; Hembd, Austin; Gonzalez, Antonio; McGrath, J Mitchell; Lloyd, Alan M

    2015-01-01

    Nearly all flowering plants produce red/violet anthocyanin pigments. Caryophyllales is the only order containing families that replace anthocyanins with unrelated red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betalains might be regulated by a conserved anthocyanin-regulating transcription factor complex consisting of a MYB, a bHLH and a WD repeat-containing protein (the MBW complex). Here we show that a previously uncharacterized anthocyanin MYB-like protein, Beta vulgaris MYB1 (BvMYB1), regulates the betalain pathway in beets. Silencing BvMYB1 downregulates betalain biosynthetic genes and pigmentation, and overexpressing BvMYB1 upregulates them. However, unlike anthocyanin MYBs, BvMYB1 will not interact with bHLH members of heterologous anthocyanin MBW complexes because of identified nonconserved residues. BvMYB1 resides at the historic beet pigment-patterning locus, Y, required for red-fleshed beets. We show that Y and y express different levels of BvMYB1 transcripts. The co-option of a transcription factor regulating anthocyanin biosynthesis would be an important evolutionary event allowing betalains to largely functionally replace anthocyanins.

  19. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent.

  20. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose.

    PubMed

    Lu, Xiaoling; Zhou, Yanhua; Wu, Tao; Hao, Lei

    2014-11-01

    This study investigated the ameliorative effect of black rice anthocyanin (BACN) in senescent mice induced by D-galactose. The male mice were randomly divided into five groups, namely, the normal group, the model group and dosage groups (15, 30 and 60 mg kg(-1) of BACN). The model group and three dosage groups were continuously injected subcutaneously with D-galactose. The results suggested that superoxide dismutase (SOD) and catalase (CAT) were significantly increased upon black rice anthocyanin treatment, while MDA and the activity of monoamine oxidase (MAO) significantly decreased. The expressions of superoxide dismutase genes (SOD1 and SOD2) in liver were up-regulated in black rice anthocyanin group, while the expression of the MAO-B gene was down-regulated. These findings demonstrated that the ameliorative effect of BACN might be achieved partly by altering endogenous antioxidant enzymatic and aging-related enzymatic activities and regulating SOD1, SOD2 and MAO-B gene expressions.

  1. Bilberry adulteration: identification and chemical profiling of anthocyanins by different analytical methods.

    PubMed

    Gardana, Claudio; Ciappellano, Salvatore; Marinoni, Laura; Fachechi, Christian; Simonetti, Paolo

    2014-11-12

    Extracts of the bilberry fruit have protective effects against retinopathy and vascular complications; therefore, they are important ingredients in food supplements. Recently, there have been several reported cases of adulteration. Thus, to characterize the anthocyanin profile, and the relative percentages of these pigments, this study analyzed bilberry fruits from different countries by liquid chromatography coupled to a diode array detector and a mass spectrometer detector. A total of 15 anthocyanins were identified, and a fingerprint profile was used for the quality control of the target material. Fourteen bilberry extracts and 12 finished products labeled as bilberry from different marketing manufacturers were analyzed. Approximately 50% of these extracts differed significantly from the reference bilberry, suggesting possible adulteration. Approximately 60% of the extracts and 33% of the food supplements presented a lower anthocyanin content than declared. The adulterations were observed mainly with extracts of mulberry and chokeberry.

  2. Light and developmental regulation of the Anp-controlled anthocyanin phenotype of bean pods.

    PubMed

    Gantet, P; Bettini, P; Dron, M

    1993-10-01

    In the presence of the dominant allele of the Anp gene, bean pods present a purple-mottled phenotype. The purple pigmentation is variable from cell to cell in the pod epidermal layer and develops as a random mosaic. Three anthocyanidins, delphinidin, petunidin and malvidin, are involved in this purple pigmentation. Anthocyanins accumulated in vacuoles; anthocyanoplasts and cristal bodies were also observed occasionally. A developmental switch is a prerequisite for anthocyanin accumulation in the pods. This does not occur before day 4 after pollination and is controlled by light in competent pods. mRNAs for PAL, CHS, CHI, DFR and UFGT are induced in the pods, indicating that the general anthocyanin biosynthetic pathway is well conserved at both the biochemical and molecular levels in this species. mRNA steady-state level studies of PAL and CHS suggest that the light regulation occurs at the transcriptional level.

  3. Ultrasonic extraction of anthocyanin from Clitoria ternatea flowers using response surface methodology.

    PubMed

    Chong, Fui Chin; Gwee, Xian Fu

    2015-01-01

    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.

  4. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells

    PubMed Central

    Huang, Wuyang; Zhu, Yunming; Li, Chunyang

    2016-01-01

    The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress. PMID:27034731

  5. Nature's Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves

    PubMed Central

    Gould, Kevin S.

    2004-01-01

    Anthocyanins, the pigments responsible for spectacular displays of vermilion in the leaves of deciduous trees, have long been considered an extravagant waste of a plant's resources. Contemporary research, in contrast, has begun to show that the pigments can significantly influence the way a leaf responds to environmental stress. Anthocyanins have been implicated in tolerance to stressors as diverse as drought, UV-B, and heavy metals, as well as resistance to herbivores and pathogens. By absorbing high-energy quanta, anthocyanic cell vacuoles both protect chloroplasts from the photoinhibitory and photooxidative effects of strong light, and prevent the catabolism of photolabile defence compounds. Anthocyanins also mitigate photooxidative injury in leaves by efficiently scavenging free radicals and reactive oxygen species. Far from being a useless by-product of the flavonoid pathway, these red pigments may in some instances be critical for plant survival. PMID:15577195

  6. Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors.

    PubMed

    Szymanowska, Urszula; Złotek, Urszula; Karaś, Monika; Baraniak, Barbara

    2015-04-01

    This paper investigates changes in the anti-inflammatory and antioxidative activity of anthocyanins from purple basil (Ocimum basilicum L.) leaves induced by arachidonic acid (AA), jasmonic acid (JA) and β-aminobutyric acid (BABA). The anthocyanins content was significantly increased by all elicitors used in this study; however, no increase was observed in the antioxidant activity of the analyzed extracts. Additionally, a significant decrease by about 50% in the ability to chelate Fe(II) was noted. Further, an increase in the potential anti-inflammatory activity of basil anthocyanins was observed after treatment with each the abiotic elicitor. The IC50 value for lipoxygenase inhibition was almost twice as low after elicitation as that of the control. Also, cyclooxygenase inhibition by anthocyanins was stimulated by abiotic elicitors, except for JA-sample. Additionally, HPLC-analysis indicated that elicitation with AA, JA and BABA caused increases in content most of all anthocyanin compounds.

  7. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC-DAD-ESI-MSn.

    PubMed

    Schütz, Katrin; Persike, Markus; Carle, Reinhold; Schieber, Andreas

    2006-04-01

    The anthocyanin pattern of artichoke heads (Cynara scolymus L.) has been investigated by high-performance liquid chromatography-electrospray ionization mass spectrometry. For this purpose a suitable extraction and liquid chromatographic method was developed. Besides the main anthocyanins-cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3,5-malonyldiglucoside, cyanidin 3-(3''-malonyl)glucoside, and cyanidin 3-(6''-malonyl)glucoside-several minor compounds were identified. Among these, two peonidin derivatives and one delphinidin derivative were characterized on the basis of their fragmentation patterns. To the best of our knowledge this is the first report on anthocyanins in artichoke heads consisting of aglycones other than those of cyanidin. Quantification of individual compounds was performed by external calibration. Cyanidin 3-(6''-malonyl)glucoside was found to be the major anthocyanin in all the samples analyzed. Total anthocyanin content ranged from 8.4 to 1,705.4 mg kg(-1) dry mass.

  8. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars.

    PubMed

    Deng, Jiao; Chen, Sha; Yin, Xiaojian; Wang, Kun; Liu, Yanling; Li, Shaohua; Yang, Pingfang

    2013-08-15

    Petal colour is one of the major characteristics that determine the ornamental value of lotus. To assess the contribution of different flavonoids to this character, composition and content of anthocyanins, flavones and flavonols were analysed through high performance liquid chromatography coupled with photodiode array detection tandem electrospray ionisation triple quad mass spectrometry in 108 lotus cultivars with red, pink, yellow, white and red/white pied petal colours. Totally, five anthocyanins and fourteen flavones and flavonols were detected and quantified. In general, the yellow, white and pied species hardly contained any anthocyanins; red cultivars contain more than pink cultivars. Among the five anthocyanins, malvidin 3-O-glucoside was the most abundant one in all the cultivars that contain anthocyanin. The fourteen flavones and flavonols belonged to four groups based on their aglycones. Except for the yellow cultivars, kaempferol-derivatives were the most abundant one. These data might be helpful in lotus breeding for different colours.

  9. Varietal differences among the anthocyanin profiles of 50 red table grape cultivars studied by high performance liquid chromatography.

    PubMed

    Pomar, F; Novo, M; Masa, A

    2005-11-11

    In order to develop a method that allows to distinguish between grape cultivars, the anthocyanin profiles of 50 accessions from the "Misión Biológica de Galicia" germplasm collection were studied by high performance liquid chromatography (HPLC). Nineteen anthocyanins were totally or partly identified and significant quantitative differences between the studied anthocyanin markers were found. With this method all 50 cultivars examinated could be easily distinguished from each other. In addition, the HPLC fingerprints and the relative-area anthocyanins plot for every cultivar has been elaborated and stored in a database. To test the validity of this method, several unknown samples have been analysed comparing their anthocyanin profile with the fingerprint database, and we may conclude that this has been proved to be of great value for grape cultivar recognition.

  10. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals.

    PubMed

    Shikov, Vasil; Kammerer, Dietmar R; Mihalev, Kiril; Mollov, Plamen; Carle, Reinhold

    2008-09-24

    Thermal degradation and color changes of purified strawberry anthocyanins in model solutions were studied upon heating at 85 degrees C by HPLC-DAD analyses and CIELCh measurements, respectively. The anthocyanin half-life values increased significantly due to the addition of rose (Rosa damascena Mill.) petal extracts enriched in natural copigments. Correspondingly, the color stability increased as the total color difference values were smaller for anthocyanins upon copigment addition, especially after extended heating. Furthermore, the stabilizing effect of rose petal polyphenols was compared with that of well-known copigments such as isolated kaempferol, quercetin, and sinapic acid. The purified rose petal extract was found to be a most effective anthocyanin-stabilizing agent at a molar pigment/copigment ratio of 1:2. The results obtained demonstrate that the addition of rose petal polyphenols slows the thermal degradation of strawberry anthocyanins, thus resulting in improved color retention without affecting the gustatory quality of the product.

  11. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    PubMed Central

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  12. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    PubMed

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  13. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat.) Flower.

    PubMed

    Park, Chang Ha; Chae, Soo Cheon; Park, Soo-Yun; Kim, Jae Kwang; Kim, Yong Joo; Chung, Sun Ok; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-06-15

    The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS). The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g) and cyanidin 3-(3"-malonoyl) glucoside (C3mg) and the following carotenoids: lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, α-carotene, trans-β-carotene, and 9-cis-β-carotene. The cultivar "Magic" showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar "Il Weol". The cultivar "Anastasia" contained the highest amount of carotenoids such as trans-β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. The highest accumulation of β-cryptoxanthin and α-carotene was noted in the cultivar "Anastasia" and "Il Weol". Our results suggested that 'Magic", "Angel" and "Relance' had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas "Il Weol', "Popcorn Ball' and "Anastasia" produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, "Green Pang Pang", which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. "Kastelli", had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal's colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.

  14. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    PubMed

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.

  15. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Lu, Yan; Bo, Yacong

    2016-01-01

    Background Dyslipidemia was present in most of the patients with coronary heart disease. Epidemiological evidence suggests that anthocyanin has some effects on the serum lipid. However, these results are controversial. This study aimed at collecting current clinical evidence and evaluating the effects of anthocyanin supplementation on total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in dialysis patients. Methods The search included PubMed, Web of Science, MEDLINE, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database (up to July 2015) to identify randomized controlled trials (RCTs) on the association between anthocyanin and serum lipids. RevMan (version 5.2) was used for Meta-analysis. Meta-regression analysis, sensitivity analysis and Egger’s weighted regression tests were performed by using STATA software (version 12.0; StatCorp, College Station, TX, USA). Results Six studies (seven arms) involving 586 subjects were included in this meta-analysis. The results showed that anthocyanin supplementation has significant effects on TC [MD = -24.06, 95% CI(-45.58 to -2.64) mg/dL, I2 = 93%], TG [MD = -26.14, 95%CI(-40.20 to -3.08) mg/dL, I2 = 66%1], LDL-C [MD = -22.10, 95% CI (-34.36 to -9.85) mg/dL, I2 = 61%], and HDL-C(MD = 5.58, 95% CI (1.02 to 10.14) mg/dL;I2 = 90%). Conclusion Anthocyanin supplementation significantly reduces serum TC, TG, and LDL-C levels in patients with dyslipidemia, and increases HDL-C. Further rigorously designed RCTs with larger sample sizes are needed to confirm the effectiveness of anthocyanin supplementation for dyslipidemia, especially hypo high density lipoprotein cholesterolemia. PMID:27589062

  16. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS.

    PubMed

    Chandra, A; Rana, J; Li, Y

    2001-08-01

    A method has been established and validated for identification and quantification of individual, as well as total, anthocyanins by HPLC and LC/ES-MS in botanical raw materials used in the herbal supplement industry. The anthocyanins were separated and identified on the basis of their respective M(+) (cation) using LC/ES-MS. Separated anthocyanins were individually calculated against one commercially available anthocyanin external standard (cyanidin-3-glucoside chloride) and expressed as its equivalents. Amounts of each anthocyanin calculated as external standard equivalent were then multiplied by a molecular-weight correction factor to afford their specific quantities. Experimental procedures and use of a molecular-weight correction factors are substantiated and validated using Balaton tart cherry and elderberry as templates. Cyanidin-3-glucoside chloride has been widely used in the botanical industry to calculate total anthocyanins. In our studies on tart cherry and elderberry, its use as external standard followed by use of molecular-weight correction factors should provide relatively accurate results for total anthocyanins, because of the presence of cyanidin as their major anthocyanidin backbone. The method proposed here is simple and has a direct sample preparation procedure without any solid-phase extraction. It enables selection and use of commercially available anthocyanins as external standards for quantification of specific anthocyanins in the sample matrix irrespective of their commercial availability as analytical standards. It can be used as a template and applied for similar quantification in several anthocyanin-containing raw materials for routine quality control procedures, thus providing consistency in analytical testing of botanical raw materials used for manufacturing efficacious and true-to-the-label nutritional supplements.

  17. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    PubMed Central

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes. PMID:24466010

  18. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries.

    PubMed

    Wang, H; Nair, M G; Strasburg, G M; Chang, Y C; Booren, A M; Gray, J I; DeWitt, D L

    1999-02-01

    The anthocyanins (1-3) and cyanidin isolated from tart cherries exhibited in vitro antioxidant and antiinflammatory activities comparable to commercial products. The inhibition of lipid peroxidation of anthocyanins 1-3 and their aglycon, cyanidin, were 39, 70, 75, and 57%, respectively, at 2-mM concentrations. The antioxidant activities of 1-3 and cyanidin were comparable to the antioxidant activities of tert-butylhydroquinone and butylated hydroxytoluene and superior to vitamin E at 2-mM concentrations. In the antiinflammatory assay, cyanidin gave IC50 values of 90 and 60 mM, respectively, for prostaglandin H endoperoxide synthase-1 and prostaglandin H endoperoxide synthase-2 enzymes.

  19. Evaluation of polyphenols and anthocyanins contents in black chockeberry--Photinia melanocarpa (Michx.) fruits extract.

    PubMed

    Symonowicz, Marzena; Sykuła-Zajac, Anna; Łodyga-Chruścińska, Elzbieta; Rumora, Ivana; Straukas, Martinas

    2012-01-01

    An evaluation of total polyphenols and anthocyanins contents in dietary supplements is important analysis in medical aspect of human and animal diets. The content of the mentioned compounds should be higher in 100 g of solid extracts than in 100 g of fruits. Thus, the presented work concerns the evaluation of total polyphenols and anthocyanins contents in black chockeberry--Photinia melanocarpa (Michx.) extract--dietary supplement (DS) available on market. The spectrophotometric analysis of DS were performed. The usage of certain conditions of measurements such as dilution factor, storage conditions and filtration, has the significance in the determination of the analyzed compounds in the extract.

  20. Blue flower color development by anthocyanins: from chemical structure to cell physiology.

    PubMed

    Yoshida, Kumi; Mori, Mihoko; Kondo, Tadao

    2009-07-01

    Blue flower colors are primarily due to anthocyanin, a flavonoid pigment. Anthocyanin itself is purple in neutral aqueous solutions, ans its color is very unstable and quickly fades. Therefore, the mechanism of blue color development in living flower petals is one of the most intriguing problems in natural product chemistry. Much progress has been made in understanding blue flower coloration since the comprehensive review by Goto and Kondo in 1991. This review focuses on the advances in the last 15 years, and cites 149 references.

  1. Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure.

    PubMed

    Bakircioglu, Dilek; Topraksever, Nukte; Kurtulus, Yasemin Bakircioglu

    2014-05-15

    A new procedure using extraction induced by emulsion breaking (EIEB) procedure has been developed for extraction/preconcentration of zinc in various edible oils (canola oil, corn oil, hazelnut oil, olive oil, and sunflower oil) prior to its determination by the single line flow injection (FI) flame atomic absorption spectrometry (FAAS). Several parameters affecting the extraction efficiency of the procedure were investigated including the type and concentrations of surfactant, the concentration of HNO3, and the other operational conditions (emulsion breaking time and temperature). The limits of detection of 1.1 and 1.0 μg L(-1) were observed for zinc when aqueous standard and oil-based standards were added to the emulsions for calibration, respectively. The proposed procedure of combining EIEB and single line FI-FAAS can be regarded as a new procedure for the determination of zinc in edible oil samples.

  2. Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice.

    PubMed

    Türkyılmaz, Meltem; Yemiş, Oktay; Ozkan, Mehmet

    2012-09-15

    Black carrots (BCs) are a rich source of stable anthocyanins (ACNs). The purpose of this study was to evaluate the effects of clarification and pasteurisation on ACNs of black carrot juice (BCJ). Monomeric ACNs, ACN profile and percent polymeric colour were determined during processing of BCJ. While depectinisation and bentonite treatments resulted in 7% and 20% increases in monomeric ACN content of BCJ, respectively, gelatine-kieselsol treatment and pasteurisation resulted in 10% and 3-16% reduction. Percent polymeric colour decreased after clarification, but substantially increased in samples subjected to heat. ACNs of BCJ samples were identified by HPLC-MS. Unclarified BCJ contained cyanidin-3-galactoside-xyloside-glucoside-ferulic acid as the major ACN, followed by cyanidin-3-galactoside-xyloside-glucoside-coumaric acid, and cyanidin-3-galactoside-xyloside-glucoside. After depectinisation, two more ACNs (cyanidin-3-galactoside-xyloside and cyanidin-3-galactoside-xyloside-glucoside-sinapic acid) were also identified. These results indicated that depectinisation and bentonite treatment had positive effect on the colour of BCJ, while gelatin-kieselsol treatment and pasteurisation had negative effect.

  3. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    PubMed

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways.

  4. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  5. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  6. Research: Rags to Rags? Riches to Riches?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2004-01-01

    Everyone has read about what might be called the "gold gap"--how the rich in this country are getting richer and controlling an ever-larger share of the nation's wealth. The Century Foundation has started publishing "Reality Check", a series of guides to campaign issues that sometimes finds gaps in these types of cherished delusions. The guides…

  7. Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques.

    PubMed

    Oliveira, Joana; Alhinho da Silva, Mara; Teixeira, Natércia; De Freitas, Victor; Salas, Erika

    2015-09-09

    Two phenolic extracts were made from a red wine grape pomace (GP) and fractionated first by sequential liquid-liquid extraction with organic solvents. The aqueous fraction was fractionated by low-pressure chromatography on Toyopearl HW-40 gel and on C18. Different fractions were obtained by sequential elution with aqueous/organic solvents, and then analyzed by liquid chromatography and mass spectrometry (LC-DAD/MS and MALDI-TOF). Over 50 anthocyanin-based pigments were detected by LC-DAD/MS in GP, mainly pyranoanthocyanins including A- and B-type vitisins and methylpyranoanthocyanins. The presence of oligomeric malvidin-3-O-coumaroylglucoside-based anthocyanins was also detected in GP using both LC-DAD/MS and MALDI-TOF.

  8. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.

    PubMed

    Fadda, Paola; Robinson, Lianne; Fratta, Walter; Pertwee, Roger G; Riedel, Gernot

    2004-12-01

    Cannabinoid receptors in the brain (CB(1)) take part in modulation of learning, and are particularly important for working and short-term memory. Here, we employed a delayed-matching-to-place (DMTP) task in the open-field water maze and examined the effects of cannabis plant extracts rich in either Delta(9)-tetrahydrocannabinol (Delta(9)-THC), or rich in cannabidiol (CBD), on spatial working and short-term memory formation in rats. Delta(9)-THC-rich extracts impaired performance in the memory trial (trial 2) of the DMTP task in a dose-dependent but delay-independent manner. Deficits appeared at doses of 2 or 5 mg/kg (i.p.) at both 30 s and 4 h delays and were similar in severity compared with synthetic Delta(9)-THC. Despite considerable amounts of Delta(9)-THC present, CBD-rich extracts had no effect on spatial working/short-term memory, even at doses of up to 50 mg/kg. When given concomitantly, CBD-rich extracts did not reverse memory deficits of the additional Delta(9)-THC-rich extract. CBD-rich extracts also did not alter Delta(9)-THC-rich extract-induced catalepsy as revealed by the bar test. It appears that spatial working/short-term memory is not sensitive to CBD-rich extracts and that potentiation and antagonism of Delta(9)-THC-induced spatial memory deficits is dependent on the ratio between CBD and Delta(9)-THC.

  9. Rapid quantitative analysis of individual anthocyanin content based on high-performance liquid chromatography with diode array detection with the pH differential method.

    PubMed

    Wang, Huayin

    2014-09-01

    A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high-performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, petunidin 3-glucoside, petunidin 3-rutinoside, and malvidin 3-rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high-performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high-performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10-5500 mg/L. The correlation coefficients (r(2)) all exceeded 0.9972, and the limits of detection were in the range of 1-4 mg/L at a signal-to-noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4-103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents.

  10. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87) Cell Line

    PubMed Central

    Atnip, Allison A.; Sigurdson, Gregory T.; Bomser, Joshua; Giusti, M. Mónica

    2017-01-01

    Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87) has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h), concentration (50–1500 µM), and pH (3.0, 5.0, 7.4) on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0. PMID:28218720

  11. Evaluation of the influence of white grape seed extracts as copigment sources on the anthocyanin extraction from grape skins previously classified by near infrared hyperspectral tools.

    PubMed

    Nogales-Bueno, Julio; Baca-Bocanegra, Berta; Jara-Palacios, María José; Hernández-Hierro, José Miguel; Heredia, Francisco José

    2017-04-15

    Hyperspectral imaging has been used to classify red grapes (Vitis vinifera L.) according to their predicted extractable total anthocyanin content (i.e. extractable total anthocyanin content determined by a hyperspectral method). Low, medium and high levels of predicted extractable total anthocyanin content were established. Then, grape skins were split into three parts and each part was macerated into a different model wine solution for a three-day period. Wine model solutions were made up with different concentration of copigments coming from white grape seeds. Aqueous supernatants were analyzed by HPLC-DAD and extractable anthocyanin contents were obtained. Principal component analyses and analyses of variance were carried out with the aim of studying trends related to the extractable anthocyanin contents. Significant differences were found among grapes with different levels of predicted extractable anthocyanin contents. Moreover, no significant differences were found on the extractable anthocyanin contents using different copigment concentrations in grape skin macerations.

  12. Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves

    PubMed Central

    Outchkourov, Nikolay S.; Carollo, Carlos A.; Gomez-Roldan, Victoria; de Vos, Ric C. H.; Bosch, Dirk; Hall, Robert D.; Beekwilder, Jules

    2014-01-01

    Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors (TFs). In this study we introduced Rosea1 (ROS1, a MYB type) and Delila (DEL, a bHLH type), into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized TFs from Snapdragon (Antirrhinum majus), which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamiana, robust induction of a single anthocyanin, delphinidin-3-rutinoside (D3R) was observed after expression of both ROS1 and DEL. Surprisingly in addition to D3R, a range of additional metabolites were also strongly and specifically up-regulated upon expression of ROS1 and DEL. Except for the D3R, these induced compounds were not derived from the flavonoid pathway. Most notable among these are nornicotine conjugates with butanoyl, hexanoyl, and octanoyl hydrophobic moieties, and phenylpropanoid-polyamine conjugates such as caffeoyl putrescine. The defensive properties of the induced molecules were addressed in bioassays using the tobacco specialist lepidopteran insect Manduca sexta. Our study showed that the effect of ROS1 and DEL expression in N. benthamiana leaves extends beyond the flavonoid pathway. Apparently the same transcription factor may regulate different secondary metabolite pathways in different plant species. PMID:25339964

  13. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products.

  14. Detection of non-coloured anthocyanin-flavanol derivatives in Rioja aged red wines by liquid chromatography-mass spectrometry.

    PubMed

    Sánchez-Ilárduya, María Belén; Sánchez-Fernández, Cristina; Garmón-Lobato, Sergio; Abad-García, Beatriz; Berrueta, Luis Angel; Gallo, Blanca; Vicente, Francisca

    2014-04-01

    Anthocyanins, responsible for wine colour, are involved in many reactions during wine ageing. Anthocyanin-flavanol associations give rise to derivatives in flavylium form that provide blue hues, but also derivatives that do not directly influence wine colour. These colourless derivatives remain mostly unknown but their roles during wine ageing are important for controlling wine quality. Colourless anthocyanin-flavanol derivatives formed during wine ageing have been studied in three aged red wines from Rioja using a combined method with Column Chromatography (CC) and High Performance Liquid Chromatography with Diode Array and Mass Spectrometric detections (HPLC-DADMS). Twenty-six compounds have been detected: 17 dimers with the anthocyanin in flavene form with possible anthocyanin-flavanol (type 1) and flavanol-anthocyanin (type 2) structures, and 9 with an A-type bicyclic anthocyanin-flavanol structure (type 3). Although some of malvidin derivatives have been previously reported, this is the first time that these derivatives (including different isomers) have also been detected for delphinidin, petunidin and peonidin.

  15. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    PubMed

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O-methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  16. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    PubMed

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.

  17. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage

    PubMed Central

    Zhang, Na; Sun, Qianqian; Li, Hongfei; Li, Xingsheng; Cao, Yunyun; Zhang, Haijun; Li, Shuangtao; Zhang, Lei; Qi, Yan; Ren, Shuxin; Zhao, Bing; Guo, Yang-Dong

    2016-01-01

    In this work, we found, that exogenous melatonin pretreatment improved anthocyanin accumulation (1- to 2-fold) in cabbage. To verify the relationship with melatonin and anthocyanin, an Arabidopsis mutant, snat, which expresses a defective form of the melatonin biosynthesis enzyme SNAT (Serotonin N-acetyl transferase), was employed. Under cold conditions, the foliage of wild-type Arabidopsis exhibited a deeper red color than the snat mutant. This finding further proved, that exogenous melatonin treatment was able to affect anthocyanin accumulation. To gain a better understanding of how exogenous melatonin upregulates anthocyanin, we measured gene expression in cabbage samples treated with melatonin and untreated controls. We found that the transcript levels of anthocyanin biosynthetic genes were upregulated by melatonin treatment. Moreover, melatonin treatment increased the expression levels of the transcription factors MYB, bHLH, and WD40, which constitute the transcriptional activation complex responsible for coordinative regulation of anthocyanin biosynthetic genes. We found, that free radical generation was downregulated, whereas the osmotic adjustment and antioxidant capacities were upregulated in exogenous melatonin-treated cabbage plants. We concluded, that melatonin increases anthocyanin production and benefits cabbage growth. PMID:27047496

  18. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  19. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night.

    PubMed

    Kondo, Satoru; Tomiyama, Hiroyuki; Rodyoung, Abhichartbut; Okawa, Katsuya; Ohara, Hitoshi; Sugaya, Sumiko; Terahara, Norihiko; Hirai, Nobuhiro

    2014-06-15

    The effects of blue and red light irradiation at night on abscisic acid (ABA) metabolism and anthocyanin synthesis were examined in grape berries. The expressions of VlMYBA1-2, VlMYBA2, UDP-glucose-flavonoid 3-O-glucosyltransferase (VvUFGT), 9-cis-epoxycarotenoid dioxygenase (VvNCED1), and ABA 8'-hydroxylase (VvCYP707A1) were also investigated. Endogenous ABA, its metabolite phaseic acid (PA), and the expressions of VvNCED1 and VvCYP707A1 were highest in red light-emitting diode (LED)-treated skin. In contrast, anthocyanin concentrations were highest in blue LED-treated skin, followed by red LED treatment. However, the expressions of VlMYBA1-2, VlMYBA2, and VvUFGT did not necessarily coincide with anthocyanin concentrations. The quality of coloring may depend on the amount of malvidin-based anthocyanin, which increased toward harvest in blue and red LED-treated skin, unlike in untreated controls. An increase in sugars was also observed in blue and red LED-treated skin. These results suggest that blue LED irradiation at night may be effective in increasing anthocyanin and sugar concentrations in grape berries. However, there is evidence that another factor may influence anthocyanin concentrations in grape berry skin significantly more than endogenous ABA: ABA concentrations were highest in red LED-treated skin, which had lower anthocyanin concentrations than blue LED-treated skin.

  20. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p < 0.05) decreases in each antioxidant compound a...

  1. Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging.

    PubMed

    Chen, Shanshan; Zhang, Fangfang; Ning, Jifeng; Liu, Xu; Zhang, Zhenwen; Yang, Shuqin

    2015-04-01

    The aim of this study was to demonstrate the capability of hyperspectral imaging in predicting anthocyanin content changes in wine grapes during ripening. One hundred twenty groups of Cabernet Sauvignon grapes were collected periodically after veraison. The hyperspectral images were recorded by a hyperspectral imaging system with a spectral range from 900 to 1700 nm. The anthocyanin content was measured by the pH differential method. A quantitative model was developed using partial least squares regression (PLSR) or support vector regression (SVR) for calculating the anthocyanin content. The best model was obtained using SVR, yielding a coefficient of validation (P-R(2)) of 0.9414 and a root mean square error of prediction (RMSEP) of 0.0046, higher than the PLSR model, which had a P-R(2) of 0.8407 and a RMSEP of 0.0129. Therefore, hyperspectral imaging can be a fast and non-destructive method for predicting the anthocyanin content of wine grapes during ripening.

  2. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying.

    PubMed

    Jafari, Seid-Mahdi; Mahdavi-Khazaei, Katayoun; Hemmati-Kakhki, Abbas

    2016-04-20

    In this research, encapsulation efficiency of cress seed gum (CSG) as a native hydrocolloid was compared with Arabic gum (AG) and maltodextrin (dextrose equivalent of 20 (M20), and 7 (M7)) for saffron (Crocus sativus) petal's extract by freeze drying method. Combinations of CSG-M20, AG-M20, and M7-M20 with ratios of 50:50 and M20 alone (100%) were used as wall materials. A mixture of 1:5 (based on dry matter) between core (concentrated anthocyanin extract of saffron petal) and wall materials were freeze dried and stability of encapsulated anthocyanins along with color parameters (a*, b*, L*, C, H° and TCD) of final powders were measured during 10 weeks of storage (at 35°C as an accelerated method). Total anthocyanins were determined through pH differential method every week. Four prepared formulations of encapsulated powders didn't show any significant differences (P>0.01) in terms of total anthocyanin content measured immediately after production and after 10 weeks storage. AG-M20 mixture and M20 alone showed the highest and lowest TCD, respectively. The mixture of CSG-M20 in comparison with AG-M20 and M20 had the same protecting effect (P<0.01) but showed a relatively high TCD (9.33).

  3. Evolution of Anthocyanin Biosynthesis in Maize Kernels: The Role of Regulatory and Enzymatic Loci

    PubMed Central

    Hanson, M. A.; Gaut, B. S.; Stec, A. O.; Fuerstenberg, S. I.; Goodman, M. M.; Coe, E. H.; Doebley, J. F.

    1996-01-01

    Understanding which genes contribute to evolutionary change and the nature of the alterations in them are fundamental challenges in evolution. We analyzed regulatory and enzymatic genes in the maize anthocyanin pathway as related to the evolution of anthocyanin-pigmented kernels in maize from colorless kernels of its progenitor, teosinte. Genetic tests indicate that teosinte possesses functional alleles at all enzymatic loci. At two regulatory loci, most teosintes possess alleles that encode functional proteins, but ones that are not expressed during kernel development and not capable of activating anthocyanin biosynthesis there. We investigated nucleotide polymorphism at one of the regulatory loci, c1. Several observations suggest that c1 has not evolved in a strictly neutral manner, including an exceptionally low level of polymorphism and a biased representation of haplotypes in maize. Curiously, sequence data show that most of our teosinte samples possess a promoter element necessary for the activation of the anthocyanin pathway during kernel development, although genetic tests indicate that teosinte c1 alleles are not active during kernel development. Our analyses suggest that the evolution of the purple kernels resulted from changes in cis regulatory elements at regulatory loci and not changes in either regulatory protein function nor the enzymatic loci. PMID:8807310

  4. The influence of clay surface modification with berberine on the sorption of anthocyanins

    NASA Astrophysics Data System (ADS)

    Chulkov, A. N.; Deineka, V. I.; Tikhova, A. A.; Vesentzev, A. I.; Deineka, L. A.

    2012-03-01

    The influence of preliminary sorption of berberine on the sorption of anthocyanins by bentonite clay was studied. The cation exchange sorption mechanism was found to be replaced by hydrophobic sorption of these compounds after clay modification with berberine. The enthalpy of sorption along the initial isotherm part changed from endothermic to exothermic.

  5. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries contain an array of phytochemicals that may decrease both inflammatory and oxidative stress. We determined if pterostilbene, resveratrol, and two anthocyanins commonly found in blueberries, delphinidin-3-O-glucoside and malvidin-3-O-glucoside, would be efficacious in protecting microglia...

  6. Looking for the physiological role of anthocyanins in the leaves of Coffea arabica.

    PubMed

    Domingues Júnior, Adilson Pereira; Shimizu, Milton Massao; Moura, Jullyana Cristina Magalhães Silva; Catharino, Rodrigo Ramos; Ramos, Rômulo Augusto; Ribeiro, Rafael Vasconcelos; Mazzafera, Paulo

    2012-01-01

    The aim of this study was to determine which anthocyanins are related to the purple coloration of young leaves in Coffea arabica var. Purpurascens and assess their impact on photosynthesis as compared to C. arabica var. Catuaí, with green leaves. Two delphinidin glicosides were identified and histological cross-sections showed they were located throughout the adaxial epidermis in young leaves, disappearing as the leaves mature. Regardless the irradiance level, the photosynthetic performance of Purpurascens leaves did not differ from that observed in leaves of the Catuaí variety, providing no evidence that anthocyanins improve photosynthetic performance in coffee plants. To analyze the photoprotective action of anthocyanins, we evaluated the isomerization process for chlorogenic acids (CGAs) in coffee leaves exposed to UV-B radiation. No differences were observed in the total concentration of phenolic compounds in either variety before or after the UV treatment; however, we observed less degradation of CGA isomers in the Purpurascens leaves and a relative increase of cis-5-caffeoylquinic acid, a positional isomer of one of the most abundant form of CQA in coffee leaves, trans-5-caffeoylquinic acid, suggesting a possible protective role for anthocyanins in this purple coffee variety.

  7. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  8. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L.

    PubMed

    Lightbourn, Gordon J; Griesbach, Robert J; Novotny, Janet A; Clevidence, Beverly A; Rao, David D; Stommel, John R

    2008-01-01

    Shades ranging from violet to black pigmentation in pepper (Capsicum annuum L.) are attributed to anthocyanin accumulation. High-performance liquid chromatography and mass spectrometry analysis of violet and black fruit tissue identified a single anthocyanin that was determined to be delphinidin-3-p-coumaroyl-rutinoside-5-glucoside. Leaf tissue of a black-pigmented foliage genotype contained the same anthocyanin found in fruit but at a considerably higher concentration in comparison to violet and black fruit tissue. Fruit chlorophyll concentration was approximately 14-fold higher in black fruit in comparison to violet fruit that contained relatively little chlorophyll. Beta-carotene, lutein, violaxanthin, and neoxanthin carotenoid concentrations in black fruit were also significantly greater in comparison to violet fruit. High concentrations of delphinidin in combination with chlorophyll and accessory carotenoid pigments produced the characteristic black pigmentation observed in fruits and leaves of selected genotypes. Anthocyanins were accumulated in the outer mesocarp of violet and black fruit and in the palisade and mesophyll cells of black leaves. Consistent with chlorophyll content of respective genotypes, chloroplast density was greater in cells of black fruits. Utilizing Capsicum pigment variants, we determine the biochemical factors responsible for violet versus black-pigmented pepper tissue in the context of described pepper color genes.

  9. Extraction of anthocyanins from black bean canning wastewater with macroporous resins.

    PubMed

    Wang, Xiaoxi; Hansen, Conly; Allen, Karin

    2014-02-01

    This study investigated purification of anthocyanins from black bean canning wastewater by column chromatography with 5 types of macroporous resins (Diaion Hp20, Sepabeads Sp70, Sepabeads Sp207, Sepabeads Sp700, and Sepabeads Sp710). By-product of canned black beans was partially purified by filtration, in anticipation of higher performance during column chromatography. Equilibrium adsorption isotherms were measured and analyzed using Langmuir and Freundlich isotherm models. Both Langmuir (all R² ≥ 0.98) and Freundlich (all R² ≥ 0.97) models can describe the adsorption process of anthocyanins from black bean canning wastewater using the tested resins. The adsorption and desorption behaviors of anthocyanins were studied using a dynamic method on the 5 types of resins, and Sp700 presented the highest adsorption capacity (39 ± 4 mg/g; P < 0.05) as well as desorption capacity (19 ± 2%; P < 0.05), indicating that of the resins examined, Sp700 is a better candidate for purification of anthocyanins from black bean canning wastewater.

  10. Pre-heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins.

    PubMed

    de Aguiar Cipriano, Paula; Ekici, Lutfiye; Barnes, Ryan C; Gomes, Carmen; Talcott, Stephen T

    2015-08-01

    Purple sweet potatoes (PSP) have been used as a natural food colorant with high acylated anthocyanins concentrations. Commercially extracting pigments from PSP can be challenging due to firm texture and high polyphenol oxidase (PPO) content. These studies evaluated hot water immersions (30, 50, 70, and 90°C for 10 min) as pre-heating treatments and addition of PPO inhibitors (citric acid, oxalic acid, and sodium borate) to aqueous extraction solutions to aid pigment recovery. Predominant PSP anthocyanins included acylated cyanidin or peonidin derivatives. Non-pigmented cinnamates acted as oxidase substrates and induced co-oxidation reactions with anthocyanins. Pre-heating PSP significantly increased polyphenolic yields in a temperature-dependent manner, consistent with tissue softening and PPO inactivation. The use of solvent modifiers in the extraction solution associated with heat helped minimize enzyme action and increased polyphenolic recovery. Minimizing the impact of PPO with heat was critical to the extraction and recovery of PSP anthocyanins, suitable for food use.

  11. Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus.

    PubMed

    Robbins, Mark Paske; Paolocci, Francesco; Hughes, John-Wayne; Turchetti, Valentina; Allison, Gordon; Arcioni, Sergio; Morris, Phillip; Damiani, Francesco

    2003-01-01

    Anthocyanins and condensed tannins are major flavonoid end-products in higher plants. While the transactivation of anthocyanins by basic helix-loop-helix (bHLH) transcription factors is well documented, very little is known about the transregulation of the pathway to condensed tannins. The present study analyses the effect of over-expressing an Sn transgene in Lotus corniculatus, a model legume, with the aim of studying the regulation of anthocyanin and tannin end-products. Contrary to expectation, effects on anthocyanin accumulation were subtle and restricted to the leaf midrib, leaf base and petiole tissues. However, the accumulation of condensed tannin polymers was dramatically enhanced in the leaf blade and this increase was accompanied by a 50-fold increase in the number of tannin-containing cells in this tissue. A detailed analysis of selected lines indicated that this transactivational phenotype correlated with high steady-state transcript levels of the introduced transgene and the introduction of a single copy of the CaMV35S-Sn construct into these clonal genotypes. While the levels of condensed tannins in leaves were increased by up to 1% of the dry weight, other major secondary end-products (flavonols, lignins and inducible phytoalexins) were unaltered in transactivated lines. These results give an initial insight into the developmental and higher-order regulation of polyphenolic metabolism in Lotus and other higher plant species.

  12. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles.

    PubMed

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  13. Assessment of anthocyanin and agronomic trait variation in some commonly used medicinal legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several legumes including Canavalia ensiformis, Desmodium adscendens, Indigofera suffruticosa, Senna covesii, and S. occidentalis are currently used as medicinal plants. These species contain anthocyanins as well with potential to be used in the pharmaceutical markets. The USDA, ARS, Plant Genetic R...

  14. Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa).

    PubMed

    Fischer, Thilo C; Mirbeth, Beate; Rentsch, Judith; Sutter, Corina; Ring, Ludwig; Flachowsky, Henryk; Habegger, Ruth; Hoffmann, Thomas; Hanke, Magda-Viola; Schwab, Wilfried

    2014-01-01

    Strawberry (Fragaria × ananassa) is a fruit crop with a distinct biphasic flavonoid biosynthesis. Whereas, in the immature receptacle, high levels of proanthocyanidins accumulate, which are associated with herbivore deterrence and pathogen defense, the prominent color-giving anthocyanins are primarily produced in ripe 'fruits' helping to attract herbivores for seed dispersal. Here, constitutive experimental down-regulation of one branch of proanthocyanidin biosynthesis was performed. As a result, the proportion of epicatechin monomeric units within the proanthocyanidin polymer chains was reduced, but this was not the case for the epicatechin starter unit. Shortened chain lengths of proanthocyanidins were also observed. All enzymatic activities for the production of color-giving anthocyanins were already present in unripe fruits at levels allowing a striking red anthocyanin phenotype in unripe fruits of the RNAi silencing lines. An immediately recognizable phenotype was also observed for the stigmata of flowers, which is another epicatechin-forming tissue. Thus, the down-regulation of anthocyanidin reductase (ANR) induced a redirection of the proanthocyanidin pathway, leading to premature and ectopic anthocyanin biosynthesis via enzymatic glycosylation as the alternative pathway. This redirection is also seen in flavonol biosynthesis, which is paralleled by higher pollen viability in silencing lines. ANRi transgenic lines of strawberry provide a versatile tool for the study of the biological functions of proanthocyanidins.

  15. Variability in anthocyanin content among Abutilon theophrasti, and Urena lobata genetic resources .

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants contain bioactive phytochemicals and nutraceuticals to be utilized in the pharmaceutical and nutraceutical markets. Sixty-two accessions of Abutilon theophrasti, Basella alba, and Urena lobata are conserved at the USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA. Anthocyanins...

  16. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches.

    PubMed

    Han, Fu Liang; Li, Zheng; Xu, Yan

    2015-12-01

    Monomeric anthocyanin contributions to young red wine color were investigated using partial least square regression (PLSR) and aqueous alcohol solutions in this study. Results showed that the correlation between the anthocyanin concentration and the solution color fitted in a quadratic regression rather than linear or cubic regression. Malvidin-3-O-glucoside was estimated to show the highest contribution to young red wine color according to its concentration in wine, whereas peonidin-3-O-glucoside in its concentration contributed the least. The PLSR suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside under the same concentration resulted in a stronger color of young red wine compared with malvidin-3-O-glucoside. These estimates were further confirmed by their color in aqueous alcohol solutions. These results suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside were primary anthocyanins to enhance young red wine color by increasing their concentrations. This study could provide an alternative approach to improve young red wine color by adjusting anthocyanin composition and concentration.

  17. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues.

    PubMed Central

    Goff, S A; Klein, T M; Roth, B A; Fromm, M E; Cone, K C; Radicella, J P; Chandler, V L

    1990-01-01

    The C1, B and R genes regulating the maize anthocyanin biosynthetic pathway encode tissue-specific regulatory proteins with similarities to transcriptional activators. The C1 and R regulatory genes are usually responsible for pigmentation of seed tissues, and the B-Peru allele of B, but not the B-I allele, can substitute for R function in the seed. In this study, members of the B family of regulatory genes were delivered to intact maize tissues by high velocity microprojectiles. In colorless r aleurones or embryos, the introduction of the B-Peru genomic clone or the expressed cDNAs of B-Peru or B-I resulted in anthocyanin-producing cells. Luciferase produced from the Bronze1 anthocyanin structural gene promoter was induced 100-fold when co-introduced with the expressed B-Peru or B-I cDNAs. This quantitative transactivation assay demonstrates that the proteins encoded by these two B alleles are equally able to transactivate the Bronze1 promoter. Analogous results were obtained using embryogenic callus cells. These observations suggest that one major contribution towards tissue-specific anthocyanin synthesis controlled by the various alleles of the B and R genes is the differential expression of functionally similar proteins. Images Fig. 2. PMID:2369901

  18. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers.

    PubMed

    Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng

    2015-12-01

    The ornamental peach cultivar 'Hongbaihuatao (HBH)' can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene-regulator involved in anthocyanin transport (Riant)-which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers.

  19. Combining ability of sweetpotato germplasm for yield, dry matter content, and anthocyanin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the potential of sweetpotato (Ipomoea batatas) for the production of industrial products is increasing. As part of an effort to evaluate the potential of sweetpotatoes for starch and anthocyanin production in the southeastern United States, a 5 x 5 North Carolina mating design II (NCII m...

  20. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1), and showed by segrega...

  1. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.

    PubMed

    Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Sanchez-Rivera, Mirna M; Bello-Pérez, Luis A

    2016-11-15

    The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6″-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits.

  2. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles

    PubMed Central

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M.

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding. PMID:26909096

  3. Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins.

    PubMed

    Pricelius, Sina; Murkovic, Michael; Souter, Philip; Guebitz, Georg M

    2009-02-11

    Attractive color is one of the most important sensory characteristics of fruit and berry products, and elderberry juice is widely used as natural colorant. When pectinase preparations were used in the production of elderberry juice for clarification, a concomitant decrease of anthocyanins and thus a color loss were observed. This paper demonstrates that this is due to side glycosidase activities contained in commercial pectinase preparations from Aspergillus sp. Using LC-MS, sequential deglycosylation of cyanidin-3-sambubioside, cy-3-glucoside, cy-3-sambubioside-5-glucoside, and cy-3,5-diglucoside was found to be catalyzed by specific glycosidases contained in the pectinase preparations. There was no big difference in the deglycosylation rate between monoglucosidic or diglucosidic anthocyanins. However, the degradation rate was decreased when rutinose was attached to cyanidin, whereas the structure of the aglycone itself had almost no influence. Pure beta-glucosidases from Agrobacterium species and Aspergillus niger and the beta-glucosidase N188 from A. niger did not show any conversion of anthocyanins, indicating the presence of specific glycosidases. Thus, an activity gel based assay was developed to detect anthocyanin-specific glycosidase activity in enzyme preparations, and according to LC-MS peptide mass mapping of digested bands, homologies to a beta-glucosidase from Aspergillus kawachii were found.

  4. Red chicory (Cichorium intybus L. cultivar) as a potential source of antioxidant anthocyanins for intestinal health.

    PubMed

    D'evoli, Laura; Morroni, Fabiana; Lombardi-Boccia, Ginevra; Lucarini, Massimo; Hrelia, Patrizia; Cantelli-Forti, Giorgio; Tarozzi, Andrea

    2013-01-01

    Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar) has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant) in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  5. Antioxidant activity, phenolic and anthocyanin contents of various rhubarb (Rheum-spp.) varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antioxidant activity (ABTS assay), total phenolics, and total anthocyanins were determined in the petioles of fifteen rhubarb (Rheum spp.) varieties. Antioxidant activity ranged from 491 ± 60 (Victoria 574/27) to 1820 'mol Trolox/g DW (Valentine). The phenolic content varied from 673 ± 41 (Loher Blu...

  6. TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration

    NASA Astrophysics Data System (ADS)

    Ahmadian, Radin

    2010-09-01

    This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

  7. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells.

    PubMed

    Du, Chunyang; Shi, Yonghong; Ren, Yunzhuo; Wu, Haijiang; Yao, Fang; Wei, Jinying; Wu, Ming; Hou, Yanjuan; Duan, Huijun

    2015-01-01

    The dysregulation of cholesterol metabolism and inflammation plays a significant role in the progression of diabetic nephropathy (DN). Anthocyanins are polyphenols widely distributed in food and exert various biological effects including antioxidative, anti-inflammatory, and antihyperlipidemic effects. However, it remains unclear whether anthocyanins are associated with DN, and the mechanisms involved in the reciprocal regulation of inflammation and cholesterol efflux are yet to be elucidated. In this study, we evaluated the regulation of cholesterol metabolism and the anti-inflammatory effects exerted by anthocyanins (cyanidin-3-O-β-glucoside chloride [C3G] or cyanidin chloride [Cy]) and investigated the underlying molecular mechanism of action using high-glucose (HG)-stimulated HK-2 cells. We found that anthocyanins enhanced cholesterol efflux and ABCA1 expression markedly in HK-2 cells. In addition, they increased peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptor alpha (LXRα) expression and decreased the HG-induced expression of the proinflammatory cytokines intercellular adhesion molecule-1 (ICAM1), monocyte chemoattractant protein-1 (MCP1), and transforming growth factor-β1 (TGFβ1), as well as NFκB activation. Incubation with the PPARα-specific inhibitor GW6471 and LXRα shRNA attenuated the anthocyanin-mediated promotion of ABCA1 expression and cholesterol efflux, suggesting that anthocyanins activated PPARα-LXRα-ABCA1-dependent cholesterol efflux in HK-2 cells. Moreover, the knockout of LXRα abrogated the anti-inflammatory effect of anthocyanins, whereas the PPARα antagonist GW6471 does not have this effect. Further investigations revealed that LXRα might interfere with anthocyanin-induced decreased ICAM1, MCP1, and TGFβ1 expression by reducing the nuclear translocation of NFκB. Collectively, these findings suggest that blocking cholesterol deposition and inhibiting the LXRα pathway-induced inflammatory response

  8. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo.

    PubMed

    Li, Xin; Xu, Jinmei; Tang, Xi; Liu, Yilun; Yu, Xiaoping; Wang, Zhi; Liu, Weihua

    2016-05-01

    Trastuzumab (Herceptin®) is a recombinant humanized monoclonal antibody that is targeted against the human epidermal growth factor receptor 2 (HER2) tyrosine kinase receptor. Trastuzumab has been successfully used to treat patients with HER2-positive breast cancer, which accounts for ~25% of invasive breast cancer. However, the majority of patients who initially respond to trastuzumab demonstrate disease progression within 1 year of treatment. Therefore, identifying alternative drugs that overcome trastuzumab resistance and target HER2 may increase the magnitude and duration of response. Through a high‑throughput screening approach, we previously identified numerous anthocyanins that exert activity in HER2‑positive human breast cancer cell lines. The present study aimed to evaluate the anti‑tumor properties of anthocyanins against parental HER2‑positive cells and derivative trastuzumab‑resistant cells in vitro and in vivo. Cell proliferation, western blotting, Annexin V staining, migration and invasion assays were used to determine the effects of anthocyanins in vitro. Cyanidin-3-glucoside and peonidin-3-glucoside were able to inhibit phosphorylation of HER2, induce apoptosis, suppress migration and invasion, and inhibit tumor cell growth. Coupled with the fact that anthocyanins have been used for decades as supplements for the treatment of various types of cancer in Asia, the present study may have established a framework for the development and testing of anthocyanins as a novel treatment paradigm used to overcome classical trastuzumab-resistance and to improve the outcome of this disease.

  9. Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony.

    PubMed

    Zhao, Da-Qiu; Wei, Meng-Ran; Liu, Ding; Tao, Jun

    2016-05-01

    Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora.

  10. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera.

    PubMed

    Kyparissis, A; Grammatikopoulos, G; Manetas, Y

    2007-06-01

    Prunus domestica L. has green leaves, whereas Prunus cerasifera Ehrh. var. atropurpurea has red leaves due to the presence of mesophyll anthocyanins. We compared morphological and photosynthetic characteristics of leaves of these species, which were sampled from shoots grafted in pairs on P. domestica rootstocks, each pair comprising one shoot of each species. Two hypotheses were tested: (1) anthocyanins protect red leaves against photoinhibition; and (2) red leaves display shade characteristics because of light attenuation by anthocyanins. Parameters were measured seasonally, during a period of increasing water stress, which caused a similar drop in shoot water potential in each species. As judged by predawn measurements of maximum PSII yield, chronic photoinhibition did not develop in either species and, despite the anthocyanic screen, the red leaves of P. cerasifera displayed lower light-adapted PSII yields and higher non-photochemical quenching than the green leaves of P. domestica. Thus, it appears that, in this system, anthocyanins afford little photoprotection. As predicted by the shade acclimation hypothesis, red leaves were thinner and had a lower stomatal frequency, area- based CO2 assimilation rate, apparent carboxylation efficiency and chlorophyll a:b ratio than green leaves. However, red leaves were similar to green leaves in conductivity to water vapor diffusion, dry-mass-based chlorophyll concentrations and carotenoid:chlorophyll ratios. The data for red leaves indicate adaptations to a green-depleted, red-enriched shade, rather than a neutral or canopy-like shade. Thus, green light attenuation by anthocyanins may impose a limitation on leaf thickness. Moreover, the selective depletion of light at wavelengths that are preferentially absorbed by PSII and chlorophyll b may lead to adjustments in chlorophyll pigment ratios to compensate for the uneven spectral distribution of internal light. The apparent photosynthetic cost associated with lost photons

  11. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    PubMed

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  12. Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals

    PubMed Central

    Schulz, Dietmar F.; Schott, Rena T.; Voorrips, Roeland E.; Smulders, Marinus J. M.; Linde, Marcus; Debener, Thomas

    2016-01-01

    Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related Fragaria and Prunus genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that

  13. Chemical taxonomy of red-flowered wild Camellia species based on floral anthocyanins.

    PubMed

    Li, Jian-Bin; Hashimoto, Fumio; Shimizu, Keiichi; Sakata, Yusuke

    2013-01-01

    This study uses anthocyanins in the red flowers of section Camellia as taxonomic markers to investigate the phenetic relationships among 33 wild species from China, Taiwan, and Japan. The 25 anthocyanins from section Camellia produced 38 pigment patterns that serve as phenetic markers. Principal Component Analysis (PCA) indicated that the attachment of one or two glucoses to the cyanidin-core structure at the 3- or the 3- and 5-positions, respectively, was the most influential pattern against the first factor, Z₁. In addition, two alternative pigment patterns, acylated or non-acylated, and the structural isomerism (cis- or trans-) of the p-coumaroyl group were relatively significant patterns. Ward's minimum-variance cluster analysis (WMVCA) produced a dendrogram that consisted of two sub-clusters. One sub-cluster (A) was constructed by species that have mainly two types of anthocyanins: 3,5-di-O-β-glucosides (Camellia saluenensis) and sambubioside of cyanidin (Camellia reticulata). The other sub-cluster (B) was made up of the 3-O-β-glucosides of cyanidin (Camellia japonica) and delphinidin (Camellia hongkongensis), with a higher proportion of the 3-O-β-galactosides (Camellia mairei and Camellia boreali-yunnanica). The former group showed a higher proportion of acylation, over 63%, but with the exception of Camellia azalea. The latter group showed less than 52% acylation, but with the exception of C. hongkongensis and C. boreali-yunnanica. PCA and WMVCA indicated that the greater the amount of di-O-glycosides and acylation, the more primitive anthocyanin traits the species possess. Based on these results, in conjunction with geographical and literary information, the data suggest that the Xinan district is the site/center of origin for the red-flowered Camellia species of which both C. saluenensis and C. reticulata have the most primitive anthocyanin traits.

  14. The Effect of Anthocyanin Supplementation on Body Composition, Exercise Performance and Muscle Damage Indices in Athletes

    PubMed Central

    Yarahmadi, Masoome; Askari, Gholamreza; Kargarfard, Mehdi; Ghiasvand, Reza; Hoseini, Mohsen; Mohamadi, Hajar; Asadi, Ali

    2014-01-01

    Background: Flavonoids consider as a large group of plant metabolites that 6,000 types of them have been identified till now. In some studies, it has been shown that they can increase aerobic performance and maximal oxygen consumption (VO2 max). The aim of this study was to evaluate the effect of anthocyanin (as one of the most important kind of flavonoids) supplementation on body composition, exercise performance and muscle damage indices in athletes. Methods: This double-blinded clinical trial involved 54 female and male athletes at Isfahan University of Medical Sciences with athletic history of at least 3 years. Body composition, exercise performance, creatine kinase, and lactate dehydrogenase were assessed. Individuals were selected by simple sampling method, they divided into two groups using permuted block randomization method. First group received 100 mg anthocyanin pills, and the second group received 100 mg placebo pills, daily for 6 weeks. Participants asked to continue their routine diet and physical activity during the study period, and they were followed through phone calls or text messages. Results: Soft lean mass, total body water and percent body fat were not changed significantly in the anthocyanin group after intervention but VO2 max increased significantly in the anthocyanin group (48.65 ± 4.73 vs. 52.62 ± 5.04) (P ≤ 0.0001), also a significant difference was observed between two studied groups (52.62 ± 5.04 for intervention group vs. 49.61 ± 5.33 for placebo) (P = 0.003). Conclusions: Our findings suggested that the supplementation with anthocyanin in athletes may improve some indices of performance such as VO2 max. PMID:25709796

  15. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    PubMed Central

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  16. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.

    PubMed

    Kitamura, Satoshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.

  17. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells

    PubMed Central

    Li, Yaming; Zhang, Ning; Dong, Lun; Sun, Mingjuan; Cun, Jinjing; Zhang, Yan; Lv, Shangge; Yang, Qifeng

    2015-01-01

    Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR)/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway. PMID:26134510

  18. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  19. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells.

    PubMed

    Jung, Il Lae; Lee, Ju Hye; Kang, Se Chan

    2015-09-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44-52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers.

  20. AOAC SMPR 2014.007: Authentication of selected Vaccinium species (Anthocyanins) in dietary ingredients and dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This AOAC Standard Method Performance Requirements (SMPR) is for authentication of selected Vaccinium species in dietary ingredients and dietary supplements containing a single Vaccinium species using anthocyanin profiles. SMPRs describe the minimum recommended performance characteristics to be used...

  1. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis[OPEN

    PubMed Central

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John

    2016-01-01

    Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015

  2. Correction: Cucurbit[7]uril inclusion complexation as a supramolecular strategy for color stabilization of anthocyanin model compounds.

    PubMed

    Held, Barbara; Tang, Hao; Natarajan, Palani; Silva, Cassio Pacheco da; Silva, Volnir de Oliveira; Bohne, Cornelia; Quina, Frank H

    2016-06-08

    Correction for 'Cucurbit[7]uril inclusion complexation as a supramolecular strategy for color stabilization of anthocyanin model compounds' by Barbara Held, et al., Photochem. Photobiol. Sci., 2016, DOI: 10.1039/c6pp00060f.

  3. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress.

    PubMed

    Jahantigh, Omolbanin; Najafi, Farzaneh; Badi, Hassanali Naghdi; Khavari-Nejad, Ramazan Ali; Sanjarian, Forough

    2016-06-01

    The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm(-1) of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.

  4. Reaction Kinetics of Monomeric Anthocyanin Conversion to Polymeric Pigments and Their Significance to Color in Interspecific Hybrid Wines.

    PubMed

    Burtch, Claire E; Mansfield, Anna Katharine; Manns, David C

    2017-02-15

    The color stability of red wines produced from interspecific hybrid grapes, which is partially dependent on anthocyanin diglucosides, is not well understood. In this study, the rate of decrease of monomeric anthocyanins as they polymerized to polymeric pigments due to the presence of excess catechin and acetaldehyde was measured in model wine using HPLC. Colorimetry was used to measure L*, a*, and b* values, hue angle, and change in color (ΔE). Concentrations of individual diglucosides decreased more slowly than monoglucosides. When monoglucosides and diglucosides were combined, the reaction rate of monoglucosides was slower than that of monoglucosides alone. Hue angles described transitions from red to red-orange, orange, or orange-yellow as anthocyanin-specific changes occurred. The evolution in color represents dynamic reactions between anthocyanins, catechin, and acetaldehyde. Consequently, wines containing high concentrations of diglucosides, such as those produced from interspecific hybrid grapes, will form less polymeric pigment than wines containing primarily monoglucosides.

  5. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.).

    PubMed

    Kalt, W; Ryan, D A; Duy, J C; Prior, R L; Ehlenfeldt, M K; Vander Kloet, S P

    2001-10-01

    Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.

  6. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars.

    PubMed

    Silva, Sara; Costa, Eduardo M; Coelho, Marta C; Morais, Rui M; Pintado, Manuela E

    2017-01-01

    Blueberries are widely recognised as one of the richest sources of bioactive compounds, among which are anthocyanins, though the ripeness of berries has been reported as affecting the phytochemical composition of fruits. Therefore, the present work aimed to evaluate the variation of anthocyanins, and other major phenolics, throughout five ripening stages in four blueberry cultivars. The results showed that the antioxidant capacity and anthocyanin content increased during ripening, reaching the highest values when the blueberries are collected from bunches comprised of 75% ripe blueberries. Antagonistically, the amount of phenolic acid decreases, while the quercetin-3-glucoside levels remain stable. Furthermore, Goldtraube blueberries appear to possess, systematically, higher amounts of phenolic compounds than the other cultivars studied. Thus, when seeking the highest yield of anthocyanins, the preferred harvest should occur in bunches that contain ca 75% of ripe blueberries and, considering the cultivars assayed, the Goldtraube cultivar appears to be the richest in phenolic compounds.

  7. Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait.) Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS)

    PubMed Central

    Liu, Guo-Ling; Guo, Hong-Hui; Sun, Yuan-Ming

    2012-01-01

    Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait.) Hassk var. Gangren) was optimized using response surface methodology (RSM). Using 60% ethanol containing 0.1% (v/v) hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g) were 15.7:1 (v/w) liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R2 = 0.9944). Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside. PMID:22754365

  8. Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (Ait.) Hassk and identification of anthocyanins in the extract using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS).

    PubMed

    Liu, Guo-Ling; Guo, Hong-Hui; Sun, Yuan-Ming

    2012-01-01

    Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait.) Hassk var. Gangren) was optimized using response surface methodology (RSM). Using 60% ethanol containing 0.1% (v/v) hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g) were 15.7:1 (v/w) liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R(2) = 0.9944). Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside.

  9. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.

    PubMed

    Villegas, Daniel; Handford, Michael; Alcalde, José Antonio; Perez-Donoso, Alonso

    2016-07-01

    Anthocyanins are secondary metabolites synthesized in grape berry skins via the phenylpropanoid pathway, with functions ranging from skin coloration to protection against pathogens or UV light. Accumulation of these compounds is highly variable depending on genetics, environmental factors and viticultural practices. Besides their biological functions, anthocyanins improve wine quality, as a high anthocyanin content in berries has a positive impact on the color, total phenolic concentration and, ultimately, the price of wine. The present work studies the effect of the pre-veraison application of pectin derived oligosaccharides (PDO) on the synthesis and accumulation of these compounds, and associates the changes observed with the expression of key genes in the phenylpropanoid pathways. To this end, pre-veraison Cabernet Sauvignon bunches were treated with PDO to subsequently determine total anthocyanin content, the anthocyanin profile (by HPLC-DAD) and gene expression (by qRT-PCR), using Ethrel and water treatments for comparison. The results show that PDO were as efficient as Ethrel in generating a significant rise in total anthocyanin content at 30 days after treatment (dat), compared with water treatments (1.32, 1.48 and 1.02 mg e.Mv-3G/g FW respectively) without any undesirable effect on berry size, soluble solids, tartaric acid concentration or pH. In addition, a significant alteration in the anthocyanin profile was observed. Specifically, a significant increase in the relative concentration of malvidin was observed for both PDO and Ethrel treatments, compared with water controls (52.8; 55.0 and 48.3%, respectively), with a significant rise in tri-hydroxylated forms and a fall in di-hydroxylated anthocyanins. The results of gene expression analyses suggest that the increment in total anthocyanin content is related to a short term increase in phenylalanine ammonia-lyase (PAL) expression, mediated by a decrease in MYB4A expression. A longer term increase in UDP

  10. Comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves in chrysanthemum.

    PubMed

    Hong, Yan; Yang, Li-Wen; Li, Meng-Ling; Dai, Si-Lan

    2016-06-01

    Light is one of the key environmental factors that affect anthocyanin biosynthesis. However, the underlying molecular mechanism remains unclear, and many problems regarding phenotypic change and corresponding gene regulation have not been solved. In the present study, comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves were performed in Chrysanthemum × morifolium 'Purple Reagan'. After contrasting the variations in the flower color phenotype and relative pigment content, as well as expression patterns of structural and regulator genes responsible for anthocyanin biosynthesis and photoreceptor between different plant organs under light and dark conditions, we concluded that (1) both the capitulum and foliage are key organs responding to light for chrysanthemum coloration; (2) compared with flavones, shading makes a greater decrease on the anthocyanins accumulation; (3) most of the structural and regulatory genes in the light-induced anthocyanin pathway specifically express in the ray florets; and (4) CmCHS, CmF3H, CmF3'H, CmANS, CmDFR, Cm3GT, CmMYB5-1, CmMYB6, CmMYB7-1, CmbHLH24, CmCOP1 and CmHY5 are key genes for light-induced anthocyanin biosynthesis in chrysanthemum ray florets, while on the transcriptional level, the expressions of CmPHYA, CmPHYB, CmCRY1a, CmCRY1b and CmCRY2 are insignificantly changed. Moreover, the inferred comprehensive effect of multiple signals on the accumulation of anthocyanins and transmission channel of light signal that exist between the leaves and ray florets were further discussed. These results further our understanding of the relationship between the gene expression and light-induced anthocyanin biosynthesis, and lay foundations for the promotion of the molecular breeding of novel flower colors in chrysanthemums.

  11. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    PubMed

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  12. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine.

    PubMed

    Romera-Fernández, M; Berrueta, L A; Garmón-Lobato, S; Gallo, B; Vicente, F; Moreda, J M

    2012-01-15

    The feasibility of using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) combined with Partial Least Squares Regression (PLS-R) for the determination of 12 anthocyanins (3-O-glucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin, as well as acetic acid esters and p-coumaric acid esters of petunidin, peonidin and malvidin and caffeic acid ester of malvidin) and three sums (sum of non-acylated anthocyanins, sum of acetylated anthocyanins and sum of coumaroylated anthocyanins), in red wines has been tested. Reference values of anthocyanin concentrations by reverse-phase High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) were used to calibrate the models. A Principal Component Analysis (PCA) was applied to these reference values and a differentiation of wine samples by wine type (young wines of 2005, young wines of 2004 and crianza and reserva wines) has been possible. A calibration model using PLS-R was built with 153 samples of Rioja wines and the prediction of the anthocyanin concentrations using this model was evaluated by internal and external validation sample sets. Most of the anthocyanins and their sums have been predicted with a Standard Error of Prediction (SEP) of 15-30% for young wines recently bottled. However, for young wines after one year of being bottled, and for crianza and reserva wines, these errors were unacceptable. The obtained results suggest that the model built for FT-IR instrument calibration is a useful tool for a quick determination of the anthocyanin content of young wines of the current vintage, but a careful robust external validated calibration of the technique is necessary in order to maintain the prediction errors within controlled limits.

  13. Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins.

    PubMed

    Mallery, Susan R; Budendorf, Deric E; Larsen, Matthew P; Pei, Ping; Tong, Meng; Holpuch, Andrew S; Larsen, Peter E; Stoner, Gary D; Fields, Henry W; Chan, Kenneth K; Ling, Yonghua; Liu, Zhongfa

    2011-08-01

    Our oral cancer chemoprevention trial data implied that patient-specific differences in local retention and metabolism of freeze-dried components of black raspberries (BRB) affected therapeutic responsiveness. Subsequent studies have confirmed that anthocyanins are key contributors to BRB's chemopreventive effects. Consequently, functional assays, immunoblotting, and immunohistochemical analyses to evaluate levels and distribution of BRB anthocyanin-relevant metabolic enzymes in human oral tissues were conducted. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) analyses of time course saliva samples collected following BRB rinses were conducted to assess local pharmacokinetics and compare the capacities of three different BRB rinse formulations to provide sustained intraoral levels of anthocyanins. Protein profiles showed the presence of key metabolic enzymes in all 15 oral mucosal tissues evaluated, whereas immunohistochemistry confirmed these enzymes were distributed within surface oral epithelia and terminal salivary ducts. β-Glucosidase assays confirmed that whole and microflora-reduced saliva can deglycosylate BRB anthocyanins, enabling generation of the bioactive aglycone, cyanidin. LC/MS-MS analyses showed retention of parent anthocyanins and their functional, stable metabolite, protocatechuic acid, in saliva for up to 4 hours after rinsing. Furthermore, postrinse saliva samples contained glucuronidated anthocyanin conjugates, consistent with intracellular uptake and phase II conversion of BRB anthocyanins into forms amenable to local recycling. Our data show that comparable to the small intestine, the requisite hydrolytic, phase II and efflux transporting enzymes necessary for local enteric recycling are present and functional in human oral mucosa. Notably, interpatient differences in anthocyanin bioactivation and capacities for enteric recycling would impact treatment as retention of bioactivated chemopreventives at the target site would sustain

  14. Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MSn.

    PubMed

    Alcalde-Eon, Cristina; Escribano-Bailón, María Teresa; Santos-Buelga, Celestino; Rivas-Gonzalo, Julián C

    2007-06-01

    High-pressure liquid chromatography-diode array detector-electrospray ionisation/ion trap mass spectrometry (HPLC-DAD-ESI/MS(n)) analyses carried out in red wine fractions revealed the existence of dimeric anthocyanins (A-A(+)), previously detected in grape skin, and allowed the detection and identification, for the first time, of other derived oligomers. The structure of these compounds was characterised according to their MS(n)(n = 1-4) fragmentation patterns. The newly detected oligomers consisted of a flavanol, (epi)catechin or (epi)gallocatechin, linked through its C(4) position to the nucleophilic positions of the upper unit of a dimeric anthocyanin (F-A-A(+)). All the compounds contained malvidin as one of the anthocyanin subunits, whereas the other anthocyanin moiety could be either delphinidin, cyanidin, petunidin, peonidin or malvidin. With the fractionation method employed, the dimeric anthocyanins eluted in the same fractions as the monomeric anthocyanins. However, the new F-A-A(+) oligomers were found in the same fractions as F-A(+) dimers, which might indicate a structural similarity between both types of compounds. ESI/MS(n) analyses, coupled or not to HPLC, showed to be a useful and powerful tool for detecting and identifying these oligomers in wines, which usually elute from reversed-phase columns as humps and/or are overlapped by the peaks of other compounds. The detection of these oligomeric pigments in wine has provided more information about the complex pigments responsible for the elevation of the base line observed in the chromatograms of wines and has also revealed that oligomeric anthocyanins can take part in the reactions usually undergone by monomeric anthocyanins.

  15. Practical application of flavonoid-poor menu meals to the study of the bioavailability of bilberry anthocyanins in human subjects.

    PubMed

    Sakakibara, Hiroyuki; Ichikawa, Yoko; Tajima, Sanae; Makino, Yoshie; Wakasugi, Yusuke; Shimoi, Kayoko; Kobayashi, Saori; Kumazawa, Shigenori; Goda, Toshinao

    2014-01-01

    Practical application of flavonoid-poor menus was evaluated on the bioavailability of anthocyanins as model flavonoids. Detectable amounts of flavonoids were not found in plasma and urine collected from 13 participants, who took the menus. After ingesting bilberry anthocyanins (919 μmol), average plasma AUC0-6h, Cmax, Tmax values and urinary recovery were 386.0 nmol h/mL, 139.1 nM, 1.31 h and 0.21%, respectively.

  16. An Intracellular Laccase Is Responsible for Epicatechin-Mediated Anthocyanin Degradation in Litchi Fruit Pericarp1[OPEN

    PubMed Central

    Fang, Fang; Zhang, Xue-lian; Gong, Yi-hui; Li, Wen-jun; Shi, Zhao-wan; He, Quan; Wu, Qing; Li, Lu; Jiang, Lin-lin; Cai, Zhi-gao; Oren-Shamir, Michal; Zhang, Zhao-qi

    2015-01-01

    In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning. PMID:26514808

  17. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation.

    PubMed

    Martínez-Lüscher, Johann; Sánchez-Díaz, Manuel; Delrot, Serge; Aguirreolea, Jone; Pascual, Inmaculada; Gomès, Eric

    2014-11-01

    UV-B radiation and water deficit may trigger flavonol and anthocyanin biosynthesis in plant tissues. In addition, previous research has showed strong qualitative effects on grape berry skin flavonol and anthocyanin profiles in response to UV-B and water deficit. The aim of this study is to identify the mechanisms leading to quantitative and qualitative changes in flavonol and anthocyanin profiles, in response to separate and combined UV-B and water deficit. Grapevines (Vitis vinifera L. cv. Tempranillo) were exposed to three levels of UV-B radiation (0, 5.98 and 9.66 kJ m(-2) day(-1)) and subjected to two water regimes. A strong effect of UV-B on flavonol and anthocyanin biosynthesis was found, resulting in an increased anthocyanin concentration and a change in their profile. Concomitantly, two key biosynthetic genes (FLS1 and UFGT) were up-regulated by UV-B, leading to increased flavonol and anthocyanin skin concentration. Changes in flavonol and anthocyanin composition were explained to a large extend by transcript levels of F3'H, F3'5'H and OMT2. A significant interaction between UV-B and water deficit was found in the relative abundance of 3'4' and 3'4'5' substituted flavonols, but not in their anthocyanin homologues. The ratio between 3'4'5' and 3'4' substituted flavonols was linearly related to the ratios of F3'5'H and FLS1 transcription, two steps up-regulated independently by water deficit and UV-B radiation, respectively. Our results indicate that changes in flavonol profiles in response to environmental conditions are not only a consequence of changes in the expression of flavonoid hydroxylases; but also the result of the competition of FLS, F3'5'H and F3'H enzymes for the same flavonol substrates.

  18. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    PubMed Central

    Mushtaq, Muhammad A.; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  19. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.).

    PubMed

    Li, Li; Ban, Zhao-Jun; Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. 'Wujiuxiang'), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in 'Wujiuxiang' pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in 'Wujiuxiang' pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants.

  20. Effects of Anthocyanins on CAG Repeat Instability and Behaviour in Huntington’s Disease R6/1 Mice

    PubMed Central

    Møllersen, Linda; Moldestad, Olve; Rowe, Alexander D.; Bjølgerud, Anja; Holm, Ingunn; Tveterås, Linda; Klungland, Arne; Retterstøl, Lars

    2016-01-01

    Background: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by CAG repeat expansions in the HTT gene. Somatic repeat expansion in the R6/1 mouse model of HD depends on mismatch repair and is worsened by base excision repair initiated by the 7,8-dihydroxy-8-oxoguanine-DNA glycosylase (Ogg1) or Nei-like 1 (Neil1). Ogg1 and Neil1 repairs common oxidative lesions. Methods: We investigated whether anthocyanin antioxidants added daily to the drinking water could affect CAG repeat instability in several organs and behaviour in R6/1 HD mice. In addition, anthocyanin-treated and untreated R6/1 HD mice at 22 weeks of age were tested in the open field test and on the rotarod. Results: Anthocyanin-treated R6/1 HD mice showed reduced instability index in the ears and in the cortex compared to untreated R6/1 mice, and no difference in liver and kidney. There were no significant differences in any of the parameters tested in the behavioural tests among anthocyanin-treated and untreated R6/1 HD mice. Conclusions: Our results indicate that continuous anthocyanin-treatment may have modest effects on CAG repeat instability in the ears and the cortex of R6/1 mice. More studies are required to investigate if anthocyanin-treatment could affect behaviour earlier in the disease course. PMID:27540492

  1. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    PubMed

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis.

  2. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products.

    PubMed

    Hager, A; Howard, L R; Prior, R L; Brownmiller, C

    2008-08-01

    This study evaluated the effects of processing and 6 mo of storage on total monomeric anthocyanins, percent polymeric color, and antioxidant capacity of black raspberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Total monomeric anthocyanins, percent polymeric color, and ORAC(FL) were determined 1 d postprocessing and after 1, 3, and 6 mo of storage. Thermal processing resulted in marked losses in total anthocyanins ranging from 37% in puree to 69% to 73% in nonclarified and clarified juices, respectively, but only the juices showed substantial losses (38% to 41%) in ORAC(FL). Storage at 25 degrees C of all thermally processed products resulted in dramatic losses in total anthocyanins ranging from 49% in canned-in-syrup to 75% in clarified juices. This coincided with marked increases in percent polymeric color values of these products over the 6-mo storage. ORAC(FL) values showed little change during storage, indicating that the formation of polymers compensated for the loss of antioxidant capacity due to anthocyanin degradation. Total anthocyanins and ORACFL of IQF berries were well retained during long-term storage at -20 degrees C.

  3. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    PubMed

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants.

  4. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology.

    PubMed

    Liu, Xingli; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang

    2013-12-01

    Aqueous two-phase extraction (ATPE) method was investigated for extraction of anthocyanins from purple sweet potatoes using response surface methodology (RSM). Results showed that the optimal conditions for anthocyanin extraction were that, 45:1 (mL/g) liquid-solid ratio, 25% (W/W) ethanol, 22% (W/W) concentration of ammonium sulphate and pH3.3; the anthocyanin yield and partition coefficient under the optimal conditions were 90.02% and 19.62, respectively. The result of HPLC-ESI-MS analysis revealed eight kinds of compounds, and the major anthocyanins as cyanidi-caffeoy-fumaroy-sophoroside-3-O-glucoside, peonidin-caffeoyl-hydroxybenzoyl-3-O-glucoside, peonidin-caffeoyl-sophoroside-3-O-glucoside, and peonidin-caffeoyl-fumaroyl-sophorosid-3-O-glucoside. Meanwhile, we found a compound as a dimer of galloyl procyanin. These results suggest that ATPE is efficient in extracting anthocyanins and has the potential to be used in natural anthocyanin extraction industry.

  5. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development.

    PubMed

    Sigurdson, Gregory T; Giusti, M Monica

    2014-07-23

    Use of artificial food colorants has declined due to health concerns and consumer demand, making natural alternatives a high demand. The effects of Al(3+) salt on food source anthocyanins were evaluated with the objective to better understand blue color development of metalloanthocyanins. This is one of the first known studies to evaluate the effects of food source anthocyanin structures, including acylation, with chelation of aluminum. Cyanidin and delphinidin derivatives from different plants were treated with factorial excess of Al(3+) in pH 3-6 and evaluated by spectrophotometry and colorimetry over 28 days. Anthocyanin concentration, salt ratio, and pH determined final color and intensity. Pyrogallol moieties on delphinidin showed furthest bathochromic shifts, whereas acylation promoted higher chroma. Blue color developed at lower pH when acylated anthocyanins reacted with Al(3+); hue ∼270 occurred with acylated delphinidin at pH ≥ 2.5. Highest chelate stability was found with AlCl3100-500× anthocyanin concentration. This investigation showed anthocyanin-metal chelation can produce a variety of intense violet to blue colors under acidic pH with potential for food use.

  6. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree.

    PubMed

    Hernández-Hierro, José Miguel; Quijada-Morín, Natalia; Martínez-Lapuente, Leticia; Guadalupe, Zenaida; Ayestarán, Belén; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa

    2014-03-01

    The relationship between cell wall composition and extractability of anthocyanins from red grape skins was assessed in Tempranillo grape samples harvested at three stages of ripening (pre-harvest, harvest and over-ripening) and three different contents of soluble solids (22, 24 and 26 °Brix) within each stage. Cell wall material was isolated and analysed in order to determine cellulose, lignin, non-cellulosic polysaccharides, protein, total polyphenols index and the degree of esterification of pectins. Results showed the influence of ripeness degree and contents of soluble solids on cell wall composition. Furthermore, principal components analysis was applied to the obtained data set in order to establish relationships between cell wall composition and extractability of anthocyanins. Total insoluble material exhibits the biggest opposition to anthocyanin extraction, while the highest amounts of cellulose, rhamnogalacturonans-II and polyphenols were positively correlated with anthocyanin extraction. Moreover, multiple linear regression was performed to assess the influence of the cell wall composition on the extraction of anthocyanin compounds. A model connecting cell wall composition and anthocyanin extractabilities was built, explaining 96.2% of the observed variability.

  7. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes

    PubMed Central

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  8. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    PubMed Central

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  9. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    PubMed

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  10. Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different Vaccinium Species in the Context of Statistical Models for Authentication.

    PubMed

    Heffels, Peter; Weber, Fabian; Schieber, Andreas

    2015-09-02

    Anthocyanins are frequently discussed as marker compounds for fruit product authenticity. Proper analysis including sample preparation for the determination of anthocyanin concentrations is crucial for the comparability of authenticity data. The present study determined the influence of accelerated solvent extraction (ASE) and ultrasound-assisted extraction (UAE), using two different solvent compositions on the anthocyanin profile of bilberries (Vaccinium myrtillus L.), lowbush blueberries (Vaccinium angustifolium Ait.), and American cranberries (Vaccinium macrocarpon Ait.). Besides differences in total anthocyanin concentrations in the extracts, significant deviations (p ≤ 0.05) in the individual anthocyanin concentration were observed, resulting in differing anthocyanin proportions. Linear discriminant analysis comparing the differences caused by the extraction method to the natural differences within a set of 26 bilberry and lowbush blueberry samples of different origins was conducted. It revealed that profile variations induced by the extraction methods are in a similar scale to profile variations as a result of geographic and climatic differences.

  11. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  12. Impact of different stages of juice processing on the anthocyanin, flavonol, and procyanidin contents of cranberries.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2011-05-11

    Juice is the most common form in which cranberries are consumed; however there is limited information on the changes of polyphenolic content of the berries during juice processing. This study investigated the effects of three different pretreatments (grinding plus blanching; only grinding; only blanching) for cranberry juice processing on the concentrations of anthocyanins, flavonols, and procyanidins throughout processing. Flavonols and procyanidins were retained in the juice to a greater extent than anthocyanins, and pressing resulted in the most significant losses in polyphenolics due to removal of the seeds and skins. Flavonol aglycones were formed during processing as a result of heat treatment. Drying of cranberry pomace resulted in increased extraction of flavonols and procyanidin oligomers but lower extraction of polymeric procyanidins. The results indicate that cranberry polyphenolics are relatively stable during processing compared to other berries; however, more work is needed to determine their fate during storage of juices.

  13. Identification and some properties of anthocyanin isolated from Zuiki, stalk of Colocasia esculenta.

    PubMed

    Terasawa, Naoko; Saotome, Ayako; Tachimura, Yuki; Mochizuki, Ayumi; Ono, Hiroshi; Takenaka, Makiko; Murata, Masatsune

    2007-05-16

    Zuiki, a stalk of taro (Colocasia esculenta), is a traditional vegetable in Japan. Raw zuiki is often boiled and vinegared to eat. The surface color of zuiki is reddish. Here, we isolated a red pigment from zuiki and identified it as cyanidin 3-rutinoside using instrumental analyses. The color of zuiki disappeared by boiling, but the zuiki turned red again in an acetic acid solution. It seems that the cyanidin 3-rutinoside that exists on the surface of zuiki elutes in boiling water and then, the pigment that seeps out from the inside of the zuiki is exposed to an acid solution, and its surface turns red again. The radical scavenging activity of purified zuiki anthocyanin was 114 mg equivalent to BHT/g. About half of the anthocyanin in fresh zuiki was washed out by boiling, and the radical scavenging activity of zuiki was definitely reduced.

  14. Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae).

    PubMed

    Skaar, Irene; Adaku, Christopher; Jordheim, Monica; Byamukama, Robert; Kiremire, Bernard; Andersen, Øyvind M

    2014-09-01

    The functional significance of anthocyanin colouration of lower (abaxial) leaf surfaces is not clear. Two anthocyanins, 5-O-methylcyanidin 3-O-(3″-(β-glucuronopyranosyl)-β-glucopyranoside) (1) and 5-O-methylcyanidin 3-O-β-glucopyranoside (2), were isolated from Hemigraphis colorata (Blume) (Acanthaceae) leaves with strong purple abaxial colouration (2.2 and 0.6mg/gfr.wt., respectively). The glycosyl moiety of 1, the disaccharide 3″-(β-glucuronopyranosyl)-β-glucopyranoside), has previously been reported to occur only in a triterpenoid saponin, lindernioside A. The structural assignment of the aglycone of 1 and 2 is the first complete characterisation of a natural 7-hydroxy-5-methoxyanthocyanidin. Compared to nearly all naturally occurring anthocyanidins, the 5-O-methylation of this anthocyanidin limits the type of possible quinoidal forms of 1 and 2 to be those forms with keto-function in only their 7- and 4'-positions.

  15. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables

    PubMed Central

    Marszałek, Krystian; Woźniak, Łukasz; Kruszewski, Bartosz; Skąpska, Sylwia

    2017-01-01

    Anthocyanins are a group of phenolic compounds responsible for red, blue and violet colouration of many fruits, vegetables and flowers. The high content of these pigments is important as it influences directly their health promoting properties as well as the sensory quality of the product; however they are prone to degradation by, inter alia, elevated temperature and tissue enzymes. The traditional thermal methods of food preservation cause significant losses of these pigments. Thus, novel non-thermal techniques such as high pressure processing, high pressure carbon dioxide and high pressure homogenization are under consideration. In this review, the authors attempted to summarize the current knowledge of the impact of high pressure techniques on the stability of anthocyanins during processing and storage of fruit and vegetable products. Furthermore, the effect of the activity of enzymes involved in the degradation of these compounds has been described. The conclusions including comparisons of pressure-based methods with high temperature preservation techniques were presented. PMID:28134807

  16. Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.

    PubMed

    Bechoff, Aurélie; Cissé, Mady; Fliedel, Geneviève; Declemy, Anne-Laure; Ayessou, Nicolas; Akissoe, Noel; Touré, Cheikh; Bennett, Ben; Pintado, Manuela; Pallet, Dominique; Tomlins, Keith I

    2014-04-01

    Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (p<0.05). Consumers (n=160) evaluated drink acceptability on a 9-point verbal hedonic scale. Three classes of behaviour were identified: (a) those who preferred syrup (43% of consumers); (b) those who preferred infusion (36%); and (c) those who preferred all of the samples (21%). Acceptability of 'syrup likers' was positively correlated to sweet taste, reducing sugar content and inversely correlated to acidic taste and titratable acidity (p<0.10). Acceptability of 'infusion likers' was positively correlated to the taste of Hibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes.

  17. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.

    PubMed

    Shimokawa, Satoshi; Iwashina, Tsukasa; Murakami, Noriaki

    2015-03-01

    One anthocyanin and four flavonols were detected from the petals of Hibiscus hamabo, H. tiliaceus and H. glaber. They were identified as cyanidin 3-0- sambubioside, gossypetin 3-O-glucuronide-8-O-glucoside, quercetin 7-O-rutinoside, gossypetin 3-O-glucoside and gossypetin 8-O-glucuronide by UV spectra, LC-MS, acid hydrolysis and HPLC. The flavonoid composition was essentially the same among the petals ofH. hamabo, H. tiliaceus and H. glaber, and there was little quantitative variation, except for cyanidin 3-O-sambubioside, the content of which in the petals ofH. tiliaceus and H. glaber was much higher than in that of H. hamabo. Flower colors of H. tiliaceus and H. glaber change from yellow to red, and that of H. hamabo changes from yellow to orange. These changes were caused by contents of anthocyanin and flavonols, which increased after flowering of H. hamabo, H. tiliaceus and H. glaber.

  18. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.

    PubMed

    Feng, Hui; Skinkis, Patricia A; Qian, Michael C

    2017-01-01

    The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine.

  19. Anthocyanins from Eugenia brasiliensis edible fruits as potential therapeutics for COPD treatment.

    PubMed

    Flores, Gema; Dastmalchi, Keyvan; Paulino, Sturlainny; Whalen, Kathleen; Dabo, Abdoulaye J; Reynertson, Kurt A; Foronjy, Robert F; D'Armiento, Jeanine M; Kennelly, Edward J

    2012-10-01

    Nine anthocyanins (1-9) from the edible fruits of Eugenia brasiliensis were identified by HPLC-PDA and LC-MS, and seven of these are described for the first time in this Brazilian fruit. Two of the major anthocyanins, delphinidin (8) and cyanidin (9), were studied for their inhibitory activity against chemokine interleukin-8 (IL-8) production before and after cigarette smoke extract (CSE) treatment of cells. In non-treated cells the amount of IL-8 was unchanged following treatment with cyanidin and delphinidin in concentrations 0.1-10 μM. Both delphinidin (8) and cyanidin (9) decreased the production of IL-8 in treated cells, at 1 and 10 μM, respectively. Delphinidin (8) demonstrated IL-8 inhibition in the CSE treated cells in a dose-dependent manner.

  20. Anthocyanins from Eugenia brasiliensis edible fruits as potential therapeutics for COPD treatment

    PubMed Central

    Flores, Gema; Dastmalchi, Keyvan; Paulino, Sturlainny; Whalen, Kathleen; Dabo, Abdoulaye J.; Reynertson, Kurt A.; Foronjy, Robert F.; D Armiento, Jeanine M.; Kennelly, Edward J.

    2012-01-01

    Nine anthocyanins (1–9) from the edible fruits of Eugenia brasiliensis were identified by HPLC-PDA and LC-MS, and seven of these are described for the first time in this Brazilian fruit. Two of the major anthocyanins, delphinidin (8) and cyanidin (9), were studied for their inhibitory activity against chemokine interleukin-8 (IL-8) production before and after cigarette smoke extract (CSE) treatment of cells. In non-treated cells the amount of IL-8 was unchanged following treatment with cyanidin and delphinidin in concentrations 0.1–10 M. Both delphinidin (8) and cyanidin (9) decreased the production of IL-8 in treated cells, at 1 M and 10 M, respectively. Delphinidin (8) demonstrated IL-8 inhibition in the CSE treated cells in a dose-dependent manner. PMID:25005941

  1. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables.

    PubMed

    Marszałek, Krystian; Woźniak, Łukasz; Kruszewski, Bartosz; Skąpska, Sylwia

    2017-01-27

    Anthocyanins are a group of phenolic compounds responsible for red, blue and violet colouration of many fruits, vegetables and flowers. The high content of these pigments is important as it influences directly their health promoting properties as well as the sensory quality of the product; however they are prone to degradation by, inter alia, elevated temperature and tissue enzymes. The traditional thermal methods of food preservation cause significant losses of these pigments. Thus, novel non-thermal techniques such as high pressure processing, high pressure carbon dioxide and high pressure homogenization are under consideration. In this review, the authors attempted to summarize the current knowledge of the impact of high pressure techniques on the stability of anthocyanins during processing and storage of fruit and vegetable products. Furthermore, the effect of the activity of enzymes involved in the degradation of these compounds has been described. The conclusions including comparisons of pressure-based methods with high temperature preservation techniques were presented.

  2. Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo.

    PubMed

    Kuntz, Sabine; Rudloff, Silvia; Asseburg, Heike; Borsch, Christian; Fröhling, Bettina; Unger, Franziska; Dold, Sebastian; Spengler, Bernhard; Römpp, Andreas; Kunz, Clemens

    2015-04-14

    The goal of eating five servings of fruits and vegetables a day has not yet been achieved. The intake of polyphenols such as anthocyanins (ACN) could be improved by consuming smoothies and juices that are increasingly popular, especially in children; however, bioavailability data concerning food matrix effects are scarce. Thus, we conducted a randomised, cross-over, bioavailability study (n 10) to determine the bioavailability of ACN and their metabolites from an ACN-rich grape/blueberry juice (841 mg ACN/litre) and smoothie (983 mg ACN/litre) in vivo, and the uptake of a corresponding grape/blueberry extract in vitro. After the intake of beverage (0·33 litres), plasma and fractionated urine samples were collected and analysed by ultra-performance liquid chromatography coupled to MS. The most abundant ACN found in plasma and urine were malvidin and peonidin as native ACN and as glucuronidated metabolites as well as 3,4-dihydroxybenzoic acid (3,4-DHB); minor ACN (delphinidin, cyanidin and petunidin) were only detected as native glycosides. Plasma pharmacokinetics and recoveries of urinary metabolites of ACN were not different for juice or smoothie intake; however, the phenolic acid 3,4-DHB was significantly better bioavailable from juice in comparison to smoothie. In vitro data with absorptive intestinal cells indicated that despite their weak chemical stability, ACN and 3,4-DHB could be detected at the basal side in their native forms. Whether smoothies as well as juices should be recommended to increase the intake of potentially health-promoting ACN and other polyphenols requires the consideration of other ingredients such as their relatively high sugar content.

  3. Dietary Consumption of Black Raspberries or Their Anthocyanin Constituents Alters Innate Immune Cell Trafficking in Esophageal Cancer.

    PubMed

    Peiffer, Daniel S; Wang, Li-Shu; Zimmerman, Noah P; Ransom, Benjamin W S; Carmella, Steven G; Kuo, Chieh-Ti; Chen, Jo-Hsin; Oshima, Kiyoko; Huang, Yi-Wen; Hecht, Stephen S; Stoner, Gary D

    2016-01-01

    Freeze-dried black raspberries (BRB), their component anthocyanins (AC), and a metabolite of BRB ACs, protocatechuic acid (PCA), inhibit the development of esophageal cancer in rats induced by the carcinogen, N-nitrosomethylbenzylamine (NMBA). All three components reduce inflammation in the esophagus and in plasma. The present study determined the relation of changes in inflammatory markers to infiltration of innate immune cells into NMBA-treated esophagus. Rats were injected with NMBA (0.35 mg/kg) for 5 weeks while on control diet. Following NMBA treatment, rats were fed diets containing 6.1% BRB powder, an AC-rich fraction of BRBs (3.8 μmol/g), or 500 ppm PCA. At weeks 15, 25, and 35, inflammatory biomarker expression in the plasma and esophagus was quantified, and infiltration of immune cells in the esophagus was examined. At all three time points, BRB, AC, and PCA similarly affected cytokine production in the esophagus and plasma of NMBA-treated rats, relative to the NMBA-only control. These included decreased expression of the proinflammatory cytokine IL1β and increased expression of the anti-inflammatory cytokine IL10. Moreover, all three diets also increased the expression of IL12, a cytokine that activates both cytolytic natural killer and CD8(+) T cells. In addition, the three diets also decreased infiltration of both macrophages and neutrophils into the esophagus. Overall, our results suggest that another mechanism by which BRBs, ACs, and PCA inhibit NMBA-induced esophageal tumorigenesis is by altering cytokine expression and innate immune cell trafficking into tumor tissues.

  4. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  5. Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation.

    PubMed

    Tattini, Massimiliano; Landi, Marco; Brunetti, Cecilia; Giordano, Cristiana; Remorini, Damiano; Gould, Kevin S; Guidi, Lucia

    2014-11-01

    The putative photoprotective role of foliar anthocyanins continues to attract heated debate. Strikingly different experimental set-ups coupled with a poor knowledge of anthocyanin identity have likely contributed to such disparate opinions. Here, the photosynthetic responses to 30 or 100% solar irradiance were compared in two cultivars of basil, the green-leafed Tigullio (TG) and the purple-leafed Red Rubin (RR). Coumaroyl anthocyanins in RR leaf epidermis significantly mitigated the effects of high light stress. In full sunlight, RR leaves displayed several shade-plant traits; they transferred less energy than did TG to photosystem II (PSII), and non-photochemical quenching was lower. The higher xanthophyll cycle activity in TG was insufficient to prevent inactivation of PSII in full sunlight. However, TG was the more efficient in the shade; RR was far less able to accommodate a large change in irradiance. Investment of carbon to phenylpropanoid biosynthesis was more in RR than in TG in the shade, and was either greatly enhanced in TG or varied little in RR because of high sunlight. The metabolic cost of photoprotection was lower whereas light-induced increase in biomass production was higher in RR than in TG, thus making purple basil the more light tolerant. Purple basil appears indeed to display the conservative resource-use strategy usually observed in highly stress tolerant species. We conclude that the presence of epidermal coumaroyl anthocyanins confers protective benefits under high light, but it is associated with a reduced plasticity to accommodate changing light fluxes as compared with green leaves.

  6. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers

    PubMed Central

    Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng

    2015-01-01

    The ornamental peach cultivar ‘Hongbaihuatao (HBH)’ can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene—regulator involved in anthocyanin transport (Riant)—which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers. PMID:26357885

  7. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    PubMed

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  8. Anthocyanins in callus induced from purple storage root of Ipomoea batatas L.

    PubMed

    Terahara, N; Konczak-Islam, I; Nakatani, M; Yamakawa, O; Goda, Y; Honda, T

    2000-08-01

    Two anthocyanins were isolated from the highly pigmented callus derived from the storage root of purple sweet potato (Ipomoea batatas L.) cultivar 'Ayamurasaki'. One was identified as cyanidin 3-O-sophoroside-5-O-glucoside, and the other as cyanidin 3-O-(2-O-(6-O-(E)-p-coumaroyl-beta-D-glucopyranosyl)-beta-D-glucop yranoside)-5-O-beta-D-glucopyranoside, by chemical and spectroscopic analysis.

  9. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits.

    PubMed

    Kalt, W; Forney, C F; Martin, A; Prior, R L

    1999-11-01

    Fresh strawberries (Fragaria x ananassa Duch.), raspberries (Rubus idaeus Michx.), highbush blueberries (Vaccinium corymbosum L.), and lowbush blueberries (Vaccinium angustifolium Aiton) were stored at 0, 10, 20, and 30 degrees C for up to 8 days to determine the effects of storage temperature on whole fruit antioxidant capacity (as measured by the oxygen radical absorbing capacity assay, Cao et al., Clin. Chem. 1995, 41, 1738-1744) and total phenolic, anthocyanin, and ascorbate content. The four fruit varied markedly in their total antioxidant capacity, and antioxidant capacity was strongly correlated with the content of total phenolics (0.83) and anthocyanins (0.90). The antioxidant capacity of the two blueberry species was about 3-fold higher than either strawberries or raspberries. However, there was an increase in the antioxidant capacity of strawberries and raspberries during storage at temperatures >0 degrees C, which was accompanied by increases in anthocyanins in strawberries and increases in anthocyanins and total phenolics in raspberries. Ascorbate content differed more than 5-fold among the four fruit species; on average, strawberries and raspberries had almost 4-times more ascorbate than highbush and lowbush blueberries. There were no ascorbate losses in strawberries or highbush blueberries during 8 days of storage at the various temperatures, but there were losses in the other two fruit species. Ascorbate made only a small contribution (0.4-9.4%) to the total antioxidant capacity of the fruit. The increase observed in antioxidant capacity through postharvest phenolic synthesis and metabolism suggested that commercially feasible technologies may be developed to enhance the health functionality of small fruit crops.

  10. Identification of antimutagenic properties of anthocyanins and other polyphenols from rose (Rosa centifolia) petals and tea.

    PubMed

    Kumar, Sanjeev; Gautam, Satyendra; Sharma, Arun

    2013-06-01

    Petals from different rose (Rosa centifolia) cultivars ("passion," "pink noblesse," and "sphinx") were assessed for antimutagenicity using Escherichia coli RNA polymerase B (rpoB)-based Rif (S) →Rif (R) (rifampicin sensitive to resistant) forward mutation assay against ethyl methanesulfonate (EMS)-induced mutagenesis. The aqueous extracts of rose petals from different cultivars exhibited a wide variation in their antimutagenicity. Among these, cv. "passion" was found to display maximum antimutagenicity. Upon further fractionation, the anthocyanin extract of cv. "passion" displayed significantly higher antimutagenicity than its phenolic extract. During thin-layer chromatography (TLC) analysis, the anthocyanin extract got resolved into 3 spots: yellow (Rf : 0.14), blue (Rf : 0.30), and pink (Rf : 0.49). Among these spots, the blue one displayed significantly higher antimutagenicity than the other 2. Upon high-performance liquid chromatography analysis, this blue spot further got resolved into 2 peaks (Rt : 2.7 and 3.8 min). The 2nd peak (Rt : 3.8 min) displaying high antimutagenicity was identified by ESI-IT-MS/MS analysis as peonidin 3-glucoside, whereas less antimutagenic peak 1 (Rt : 2.7) was identified as cyanidin 3, 5-diglucoside. The other TLC bands were also characterized by ESI-IT-MS/MS analysis. The least antimutagenic pink band (Rf : 0.49) was identified as malvidin 3-acetylglucoside-4-vinylcatechol, whereas non-antimutagenic yellow band (Rf : 0.14) was identified as luteolinidin anthocyanin derivative. Interestingly, the anthocyanin extracted from rose tea of cv. "passion" exhibited a similar antimutagenicity as that of the raw rose petal indicating the thermal stability of the contributing bioactive(s). The findings thus indicated the health protective property of differently colored rose cultivars and the nature of their active bioingredients.

  11. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    PubMed

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  12. Characterisation by liquid chromatography-electrospray tandem mass spectrometry of anthocyanins in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur.

    PubMed

    Montoro, Paola; Tuberoso, Carlo I G; Perrone, Angela; Piacente, Sonia; Cabras, Paolo; Pizza, Cosimo

    2006-04-21

    Anthocyanins in extracts of berries of Myrtus communis, prepared following a typical Sardinia myrtle liqueur recipe, were identified and quantified by HPLC coupled with electrospray/tandem mass spectrometry using, respectively, an ion trap and a triple quadrupole mass analyser. The fragmentation patterns of the anthocyanidins were dependent on the MS technique employed, and differed considerably from those previously reported. The anthocyanin profile of five anthocyanin glucosides and four anthocyanin arabinosides, the latter not previously identified in this specie, was specific for myrtle berry extracts. The quantitative compositions of extracts of myrtle berries derived from different geographical areas in Italy were compared.

  13. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    PubMed Central

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  14. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors.

  15. Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

    PubMed Central

    Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder

    2011-01-01

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724

  16. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  17. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum).

    PubMed

    Landi, Marco; Guidi, Lucia; Pardossi, Alberto; Tattini, Massimiliano; Gould, Kevin S

    2014-11-01

    Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.

  18. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content.

    PubMed

    Sahamishirazi, Samira; Moehring, Jens; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-01-01

    In this study assessment of total phenolic, individual anthocyanin and total sugar content (TSC) of wide range of plum cultivars was done in order to select cultivars with high health benefiting compounds for potential breeding purposes. Total phenolics varied between 38.45 and 841.50mg GAE 100g(-1) FW. Cyaniding-3-rutinoside, cyaniding-3- glucoside and its equivalents were identified in anthocyanin measurement by HPLC with different ranges. TSC differed between 9.63 and 29.47%. Besides, evaluation of the effect of cultivar and year on phenolic content of 23 randomly selected cultivars over two following years (2013 & 2014) showed significant effect of both factors on phenolic content of plum cultivars. Overall, cultivars "Cacaks Spaete" which had high amount of total phenolics with stability over time, as well as "Hohenheim breed 4894" as a cultivar which contained high amounts of total phenolics, anthocyanins and TSC were selected for further breeding purposes to provide high nutritional quality plum to consumers.

  19. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.

    PubMed

    Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D

    2016-03-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.

  20. Dietary anthocyanins and health: data from FLORA and ATHENA EU projects.

    PubMed

    Cerletti, Chiara; De Curtis, Amalia; Bracone, Francesca; Digesù, Cinzia; Morganti, Alessio G; Iacoviello, Licia; de Gaetano, Giovanni; Donati, Maria Benedetta

    2017-01-01

    Adherence to a 'Mediterranean diet' has been shown to be beneficial to human health. Fruit and vegetables represent some of the main components of the Mediterranean diet and their role has been increasingly considered in the process of preventing or reducing the risk of chronic degenerative diseases, such as cerebrovascular or coronary heart disorders, cancer and neurodegenerative diseases. To investigate the beneficial effect of these dietary compounds, two EU-funded projects were conducted during the last 10 years. Their results from experimental models suggest that dietary anthocyanin enrichment is beneficial against a number of ischemic and degenerative conditions. On the other hand, human studies demonstrated that anthocyanin supplementation can counteract the inflammatory response to stress conditions, such as a fatty meal. Moreover, an intervention trial in patients with breast cancer undergoing radiotherapy is presently testing the possible beneficial effect of the administration of a product enriched in anthocyanins on the inflammatory response to radiation and on its consequent skin toxicity, as well as on systemic low-grade inflammation reaction.

  1. Simple rain-shelter cultivation prolongs accumulation period of anthocyanins in wine grape berries.

    PubMed

    Li, Xiao-Xi; He, Fei; Wang, Jun; Li, Zheng; Pan, Qiu-Hong

    2014-09-17

    Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon) grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  2. Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles

    PubMed Central

    Klein, Theodore M.; Roth, Bradley A.; Fromm, Michael E.

    1989-01-01

    We have employed microprojectiles to deliver genes involved in anthocyanin biosynthesis to cells within intact aleurone and embryo tissues of maize. Clones of the A1 or Bz1 genes were introduced into aleurone tissue that lacked anthocyanins due to mutations of the endogenous A1 or Bz1 gene. Following bombardment, cells within the aleurone developed purple pigmentation, indicating that the mutation in the a1 or bz1 genotypes was corrected by the introduced gene. To analyze the expression of these genes in different genetic backgrounds, chimeric genes containing the 5′ and 3′ regions of the A1 or Bz1 genes fused to a luciferase coding region were constructed. These constructs were introduced into aleurones of genotypes carrying either dominant or recessive alleles of the C1 and R genes, which are known to regulate anthocyanin production. Levels of luciferase activity in permissive backgrounds (C1, R) were 30- to 200-fold greater than those detected in tissue carrying one or both of the recessive alleles (c1, r) of these genes. These results show that genes delivered to intact tissues by microprojectiles are regulated in a manner similar to the endogenous genes. The transfer of genes directly to intact tissues provides a rapid means for analyzing the genetic and tissue-specific regulation of gene expression. Images PMID:16594066

  3. In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato

    PubMed Central

    Zhao, Jin-Ge; Yan, Qian-Qian; Lu, Li-Zhen

    2013-01-01

    Anthocyanin from purple sweet potato (PSP) extracted by microwave baking (MB) and acidified electrolyzed water (AEW) exhibited antioxidant activity. After further purification by macroporous AB-8 resin, the color value of PSP anthocyanin (PSPA) reached 30.15 with a total flavonoid concentration of 932.5 mg/g. The purified extracts had more potent antioxidant activities than the crude extracts. After continuously administering the PSP extracts to 12-mo-old mice for 1 mo, the anti-aging index of the experimental group was not significantly different from that of 5-mo-old mice. To a certain degree, PSPA was also effective for controlling plasma glucose levels in male Streptozocin (STZ)-treated diabetic mice. In addition, the extracts inhibited Sarcoma S180 cell growth in ICR mice. Mice consuming the PSP extracts formed significantly fewer and smaller sarcomas than mice consuming the control diets. The highest inhibition rate was 69.03%. These results suggest that anthocyanin extracts from PSP not only exert strong antioxidant effects in vitro, but also had anti-aging, anti-hyperglycemic, and anti-tumor activities. PMID:24133614

  4. Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels.

    PubMed

    Banvolgyi, Szilvia; Savaş Bahçeci, K; Vatai, Gyula; Bekassy, Sandor; Bekassy-Molnar, Erika

    2016-12-01

    The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10-20 bar) and temperature (20-40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5-3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products - obtained by using various forms of reconstitution of the concentrated wine - had low alcohol content (4-6 % by volume) and their sensory attributes were similar to those of the original wine.

  5. Flavanols and Anthocyanins in Cardiovascular Health: A Review of Current Evidence

    PubMed Central

    de Pascual-Teresa, Sonia; Moreno, Diego A.; García-Viguera, Cristina

    2010-01-01

    Nowadays it is accepted that natural flavonoids present in fruits and plant-derived-foods are relevant, not only for technological reasons and organoleptic properties, but also because of their potential health-promoting effects, as suggested by the available experimental and epidemiological evidence. The beneficial biological effects of these food bioactives may be driven by two of their characteristic properties: their affinity for proteins and their antioxidant activity. Over the last 15 years, numerous publications have demonstrated that besides their in vitro antioxidant capacity, certain phenolic compounds, such as anthocyanins, catechins, proanthocyanidins, and other non coloured flavonoids, may regulate different signaling pathways involved in cell survival, growth and differentiation. In this review we will update the knowledge on the cardiovascular effects of anthocyanins, catechins and proanthocyanidins, as implied by the in vitro and clinical studies on these compounds. We also review the available information on the structure, distribution and bioavailability of flavanols (monomeric catechins and proanthocyanidins) and anthocyanins, data necessary in order to understand their role in reducing risk factors and preventing cardiovascular health problems through different aspects of their bioefficacy on vascular parameters (platelet agregation, atherosclerosis, blood pressure, antioxidant status, inflammation-related markers, etc.), myocardial conditions, and whole-body metabolism (serum biochemistry, lipid profile), highlighting the need for better-designed clinical studies to improve the current knowledge on the potential health benefits of these flavonoids to cardiovascular and metabolic health. PMID:20480037

  6. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying.

    PubMed

    Marquez, Ana; Dueñas, Montserrat; Serratosa, María P; Merida, Julieta

    2012-07-11

    This study evaluated the formation of anthocyanin-derived compounds during the production of sweet red wines from Merlot and Syrah grapes previously chamber-dried under controlled-temperature conditions. The musts from both grape varieties were found to contain pelargonidin-3-glucoside throughout the vinification process. Besides, HPLC-DAD-MS revealed the presence of pyranoanthocyanins in unfermented musts from the raisins. These compounds are adducts resulting from the cycloaddition of pyruvic acid (type A vitisins) and acetaldehyde (type B vitisins) to anthocyanin molecules. The analyses additionally revealed the presence of products of the condensation via a methylmethine bridge between anthocyanins and (epi)catechin, which requires the presence of acetaldehyde. The absence of pyruvic acid, acetaldehyde, and ethanol in the musts from fresh grapes and their presence in those from dried grapes support the idea that these compounds result from enzymatic transformations because the vinification of the musts involves no alcoholic fermentation. The drying process alters the permeability of grape membranes by the lipoxygenase activation effect (LOX), a switch to an anaerobic metabolism and the resulting triggering of the alcohol dehydrogenase enzyme (ADH). The activation of these and several other enzymes confirmed the occurrence of enzymatic transformations and the formation of vitisin A, acetylvitisin A, and the B vitisins of malvidin-3-glucoside, peonidin-3-glucoside, peonidin-3-acetylglucoside, and malvidin-3-acetylglucoside, as well as the adducts Pn-3-glc-methylmethine(epi)catechin, Mv-3-glc-methylmethine(epi) catechin, and Mv-3-acetylmethylmethine(epi)catechin.

  7. Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; Berretti, Serena; Amorati, Riccardo; De Nicola, Gina Rosalinda; Iori, Renato; Valgimigli, Luca

    2015-01-01

    Little is known on structure-activity relationships of antioxidant anthocyanins. Raphanus sativus cv Sango sprouts are among the richest sources (270 mg/100 g fresh weight). We isolated from sprouts' juice 9 acylated anthocyanins, including 4 new compounds. All comprise a cyanidin core bearing 3-4 glucose units, multiply acylated with malonic and phenolic acids (ferulic and sinapic). All compounds were equally effective in inhibiting the autoxidation of linoleic acid in aqueous micelles, with rate constant for trapping peroxyl radicals kinh=(3.8 ± 0.7) × 10(4)M(-1)s(-1) at 37 °C. In acetonitrile solution kinh varied with acylation: (0.9-2.1) × 10(5)M(-1)s(-1) at 30 °C. Each molecule trapped a number n of peroxyl radicals ranging from 4 to 7. Anthocyanins bearing sinapic acid were more effective than those bearing the ferulic moiety. Under identical settings, deacylated cyanin, ferulic and sinapic acids had kinh of 0.4 × 10(5), 0.3 × 10(5) and 1.6 × 10(5)M(-1)s(-1) respectively, with n ranging 2-3. Results show the major role of acylation on antioxidant performance.

  8. Oxovitisins: a new class of neutral pyranone-anthocyanin derivatives in red wines.

    PubMed

    He, Jingren; Oliveira, Joana; Silva, Artur M S; Mateus, Nuno; De Freitas, Victor

    2010-08-11

    A new class of stable yellowish pigments with similar unique spectral features, displaying only a pronounced broad band around 370 nm in the UV-vis spectrum, was detected in an aged Port wine fraction obtained by a combination of chromatography on TSK Toyopearl HW-40(s) and Polyamide resins. These compounds were identified by liquid chromatography-diode array detector/electrospray ionization mass spectrometry (LC-DAD/ESI/MS) and shown to be direct oxidative derivatives of carboxy-pyranoanthocyanins (vitisins A) by synthesis experiments performed in a wine model solution. Their structures were fully characterized by MS and NMR spectroscopy ((1)H, gCOSY, gHSQC, and gHMBC) and found to correspond to alpha-pyranone-anthocyanins (lactone or pyran-2-one-anthocyanins). Their formation involves first the nucleophilic attack of water into the positively charged C-10 position of vitisins, followed by decarboxylation, oxidation, and dehydration steps, yielding a new and neutral pyranone structure. The occurrence of these novel pigments in aged wines points to a new pathway involving anthocyanin secondary products (vitisins A) as precursors of new pigments in subsequent stages of wine aging that may contribute to its color evolution.

  9. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1

    PubMed Central

    Dreiseitel, A; Oosterhuis, B; Vukman, KV; Schreier, P; Oehme, A; Locher, S; Hajak, G; Sand, PG

    2009-01-01

    Background and purpose: Dietary anthocyanins hold great promise in the prevention of chronic disease but factors affecting their bioavailability remain poorly defined. Specifically, the role played by transport mechanisms at the intestinal and blood–brain barriers (BBB) is currently unknown. Experimental approach: In the present study, 16 anthocyanins and anthocyanidins were exposed to the human efflux transporters multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), using dye efflux, ATPase and, for BCRP, vesicular transport assays. Key results: All test compounds interacted with the BCRP transporter in vitro. Of these, seven emerged as potential BCRP substrates (malvidin, petunidin, malvidin-3-galactoside, malvidin-3,5-diglucoside, cyanidin-3-galactoside, peonidin-3-glucoside, cyanidin-3-glucoside) and 12 as potential inhibitors of BCRP (cyanidin, peonidin, cyanidin-3,5-diglucoside, malvidin, pelargonidin, delphinidin, petunidin, delphinidin-3-glucoside, cyanidin-3-rutinoside, malvidin-3-glucoside, pelargonidin-3,5-diglucoside, malvidin-3-galactoside). Malvidin, malvidin-3-galactoside and petunidin exhibited bimodal activities serving as BCRP substrates at low concentrations and, at higher concentrations, as BCRP inhibitors. Effects on MDR1, in contrast, were weak. Only aglycones exerted mild inhibitory activity. Conclusions and implications: Although the anthocyanidins under study may alter pharmacokinetics of drugs that are BCRP substrates, they are less likely to interfere with activities of MDR1 substrates. The present data suggest that several anthocyanins and anthocyanidins may be actively transported out of intestinal tissues and endothelia, limiting their bioavailability in plasma and brain. PMID:19922539

  10. High concentrations of anthocyanins in genuine cherry-juice of old local Austrian Prunus avium varieties.

    PubMed

    Schüller, Elisabeth; Halbwirth, Heidi; Mikulic-Petkovsek, Maja; Slatnar, Ana; Veberic, Robert; Forneck, Astrid; Stich, Karl; Spornberger, Andreas

    2015-04-15

    Antioxidant activity and polyphenols were quantified in vapour-extracted juice of nine Austrian, partially endemic varieties of sweet cherry (Prunus avium): cv. 'Spätbraune von Purbach', cv. 'Early Rivers', cv. 'Joiser Einsiedekirsche', cv. 'Große Schwarze Knorpelkirsche' and four unidentified local varieties. Additionally the effect of storage was evaluated for six of the varieties. A variety showing the highest antioxidant capacity (9.64 μmol Trolox equivalents per mL), total polyphenols (2747 mg/L) and total cyanidins (1085 mg/L) was suitable for mechanical harvest and its juice did not show any losses of antioxidant capacity and total anthocyanin concentration during storage. The juice of cv. 'Große Schwarze Knorpelkirsche' had also high concentrations of total anthocyanins (873 mg/L), but showed substantial losses through storage. The local Austrian sweet cherry varieties from the Pannonian climate zone are particularly suitable for the production of processed products like cherry juice with high content of anthocyanins and polyphenols.

  11. Thinking about "Rich" Tasks

    ERIC Educational Resources Information Center

    Box, Lorna; Watson, Anne

    2010-01-01

    This article presents an e-mail conversation between two teachers discussing how to have a "rich task" lesson in which they get to the heart of mathematical modeling and in which students are motivated into working on mathematics. One teacher emphasizes that the power of maths is in developing mathematical descriptions of situations by…

  12. From Rags to Riches

    ERIC Educational Resources Information Center

    Sweet, Colleen

    2008-01-01

    In this article, the author presents the "Rags to Riches" design project she introduced to her students. She assigned each of her students one item from an array to thrift store goods which included old scarves, sweaters, jackets, and even evening gowns. The design problem was to imagine what a clothing tag might look like if the assigned item…

  13. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'.

    PubMed

    Jiang, Yonghua; Liu, Cuihua; Yan, Dan; Wen, Xiaohong; Liu, Yanli; Wang, Haojie; Dai, Jieyu; Zhang, Yujie; Liu, Yanfei; Zhou, Bin; Ren, Xiaolin

    2017-03-06

    Coloration in apple (Malus×domestica) flesh is mainly caused by the accumulation of anthocyanin. Anthocyanin is biosynthesized through the flavonoid pathway and regulated by MYB, bHLH, and WD40 transcription factors (TFs). Here, we report that the HD-Zip I TF MdHB1 was also involved in the regulation of anthocyanin accumulation. MdHB1 silencing caused the accumulation of anthocyanin in 'Granny Smith' flesh, whereas its overexpression reduced the flesh content of anthocyanin in 'Ballerina' (red-fleshed apple). Moreover, flowers of transgenic tobacco (Nicotiana tabacum 'NC89') overexpressing MdHB1 showed a remarkable reduction in pigmentation. Transient promoter activation assays and yeast one-hybrid results indicated that MdHB1 indirectly inhibited expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT). Yeast two-hybrid and bimolecular fluorescence complementation determined that MdHB1 acted as a homodimer and could interact with MYB, bHLH, and WD40 in the cytoplasm, consistent with its cytoplasmic localization by green fluorescent protein fluorescence observations. Together, these results suggest that MdHB1 constrains MdMYB10, MdbHLH3, and MdTTG1 to the cytoplasm, and then represses the transcription of MdDFR and MdUFGT indirectly. When MdHB1 is silenced, these TFs are released to activate the expression of MdDFR and MdUFGT and also anthocyanin biosynthesis, resulting in red flesh in 'Granny Smith'.

  14. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    PubMed

    Li, P; Chen, X; Sun, F; Dong, H

    2017-03-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour.

  15. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel.

    PubMed

    Steyn, Willem J; Wand, Stephanie J E; Jacobs, Gerard; Rosecrance, Richard C; Roberts, Stephanie C

    2009-08-01

    The light requirement and low-temperature stimulation of anthocyanin synthesis in peel of apple (Malus domestica) and pears (Pyrus communis) and the presence of anthocyanins in immature fruits are not congruent with a visual function in dispersal. We hypothesized that anthocyanins afford photoprotection to peel during low-temperature-induced light stress and that the protection is not a fortuitous side-effect of light absorption by anthocyanin. The extent of photoinhibition at harvest and after light stress treatment in pear cultivars differing in redness decreased with increasing red color on the sun-exposed sides of fruits. Green-shaded sides of the pears showed comparable levels of photoinhibition indicating that pears did not differ in their inherent photosensitivi