30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...
30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...
30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...
30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...
30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...
30 CFR 716.5 - Anthracite coal mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...
30 CFR 716.5 - Anthracite coal mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...
30 CFR 716.5 - Anthracite coal mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...
30 CFR 716.5 - Anthracite coal mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...
30 CFR 716.5 - Anthracite coal mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro
1994-12-31
In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties ofmore » the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.« less
Electrolytic oxidation of anthracite
Senftle, F.E.; Patton, K.M.; Heard, I.
1981-01-01
An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.
Zhang, Y.; Liu, Gaisheng; Chou, C.-L.; Wang, L.; Kang, Y.
2007-01-01
Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 ??g/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. ?? 2007 Zhang et al; licensee BioMed Central Ltd.
Li, X G; Lv, Y; Ma, B G; Jian, S W; Tan, H B
2011-10-01
The thermal behavior of high-ash anthracite coal, tobacco residue and their blends during combustion processes was investigated by means of thermogravimetric analysis (20 K min(-1), ranging from ambient temperature to 1273 K). Effects of the mixed proportion between coal and tobacco residue on the combustion process, ignition and burnout characteristics were also studied. The results indicated that the combustion of tobacco residue was controlled by the emission of volatile matter; the regions were more complex for tobacco residue (four peaks) than for coal (two peaks). Also, the blends had integrative thermal profiles that reflected both tobacco residue and coal. The incorporation of tobacco residue could improve the combustion characteristics of high-ash anthracite coal, especially the ignition and burnout characteristics comparing with the separate burning of tobacco residue and coal. It was feasible to use the co-combustion of tobacco residue and high-ash anthracite coal as fuel. Copyright © 2011 Elsevier Ltd. All rights reserved.
20 CFR 725.101 - Definition and use of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the surface of such land by any person, used in, or to be used in, or resulting from, the work of... means or method, and in the work of preparing the coal so extracted, and includes custom coal..., mixing, storing and loading of bituminous coal, lignite or anthracite, and such other work of preparing...
Hydroseeding on anthracite coal-mine spoils
Miroslaw M. Czapowskyj; Ross Writer
1970-01-01
A study was made of the performance of selected species of legumes, grasses, and trees hydroseeded on anthracite coal-mine spoils in a slurry of lime, fertilizer, and mulch. Hydroseeding failed on coal-breaker refuse, but was partially successful on strip-mine spoils.
Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction
Heard, I.; Senftle, F.E.
1984-01-01
Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH < 1.5). After acid demineralization, samples of the same anthracite underwent a significant enhancement of oxidation in both acid and alkaline solutions (pH = 0.4-11.5). As all the iron had been removed from the surface and the reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
30 CFR 75.381 - Escapeways; anthracite mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
....381 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.381 Escapeways; anthracite... by 5 feet high. If the pitch or thickness of the coal seam does not permit these dimensions to be...
Estimation and modeling of coal pore accessibility using small angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rui; Liu, Shimin; Bahadur, Jitendra
Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less
Estimation and modeling of coal pore accessibility using small angle neutron scattering
Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...
2015-09-04
Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less
30 CFR 75.404 - Exemption of anthracite mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemption of anthracite mines. 75.404 Section 75.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting...
30 CFR 75.404 - Exemption of anthracite mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of anthracite mines. 75.404 Section 75.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting...
30 CFR 75.404 - Exemption of anthracite mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of anthracite mines. 75.404 Section 75.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting...
30 CFR 75.404 - Exemption of anthracite mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of anthracite mines. 75.404 Section 75.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting...
30 CFR 75.404 - Exemption of anthracite mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of anthracite mines. 75.404 Section 75.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting...
Ruppert, L.F.; Hower, J.C.; Ryder, R.T.; Levine, J.R.; Trippi, M.H.; Grady, W.C.
2010-01-01
Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin were determined by compiling and contouring published and unpublished vitrinite reflectance (VR) measurements. VR isograd values range from 0.6% in eastern Ohio and eastern Kentucky (western side of the East Kentucky coal field) to greater than 5.5% in eastern Pennsylvania (Southern Anthracite field, Schuylkill County), corresponding to ASTM coal rank classes of high volatile C bituminous to meta-anthracite. VR isograds show that thermal maturity of Pennsylvanian coals generally increases from west to east across the basin. The isograds patterns, which are indicative of maximum temperatures during burial, can be explained by variations in paleodepth of burial, paleogeothermal gradient, or a combination of both. However, there are at least four areas of unusually high-rank coal in the Appalachian basin that depart from the regional trends and are difficult to explain by depth of burial alone: 1) a west-northwestward salient centered in southwestern Pennsylvania; 2) an elliptically-shaped, northeast-trending area centered in southern West Virginia and western Virginia; 3) the eastern part of Black Warrior coal field, Alabama; and 4) the Pennsylvania Anthracite region, in eastern Pennsylvania. High-rank excursions in southwest Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland, associated with Alleghanian deformation. In addition to higher heat flow from fluids, the Pennsylvania Anthracite region also experienced greater depth of burial. The high-rank excursion in southwest Virginia was probably primarily controlled by overburden thickness, but may also have been influenced by higher geothermal gradients.
Hybrid poplar on two anthracite coal-mine spoils: 10-year results
Miroslaw M. Czapowskyj
1978-01-01
Unrooted dormant cuttings of 28 hybrid poplar clones were planted on two graded anthracite coal-mine spoils derived from sandstone or from glacial till. Ten-year results show that the plantation survived very well (82 percent), but that growth was extremely varied. Spoil Characteristics and performance of individual clones are presented.
Rank of coal beds of the Narragansett basin, Massachusetts and Rhode Island
Lyons, P.C.; Chase, H.B.
1981-01-01
Coal of the Narragansett basin generally has been considered to be anthracite and/or meta-anthracite. However, no single reliable method has been used to distinguish these two ranks in this basin. Three methods - chemical, X-ray, and petrographic - have been used with some degree of success on coal of the Narragansett basin, but too often the results are in conflict. Chemical methods have been limited by inadequate sampling on a coal-bed-by-coal-bed basis and by a lack of analyses made according to (American Society for Testing and Materials, 1974) standard specifications. In addition, when corrections are made by using the Parr formulas, as required by the ASTM (1974) procedures, the generally high to very high ash content of coal from the Narragansett basin causes the fixed-carbon content to appear higher than it actually is. X-ray methods using the degree of graphitization as a measure of rank are not reliable because some of the graphite is related to shearing and brecciation associated with folding and faulting. Petrographic methods using reflectance on vitrinite give results that are generally consistent with results from chemical determinations. However, it is not clear whether the mean maximum reflectance or mean bireflectance is a better indicator of similar rank of such high-rank coals that have been structurally deformed. Coal from the Cranston Mine, RI, is probably meta-anthracite and coal from the Portsmouth Mine is probably anthracite. These ranks are based on chemical,X-ray, and petrographic data and are supported by associated metamorphic mineral assemblages that indicate that the Cranston Mine is in a higher metamorphic zone than the zone containing the Porthmouth Mine. Interpretation of the rank of Mansfield, MA, coal on the basis of extant chemical data is difficult because it is an impure coal with an ash content of 33 to 50%. Reflectance data indicate that the Mansfield, Foxborough, and Plainville coals in the northern part of the Narragansett basin are meta-anthracite but this is in disagreement with the rank suggested by the low degree of metamorphism of the associated rocks. ?? 1981.
Sorption of PAHs and PCBs to activated carbon: coal versus biomass-based quality.
Amstaetter, Katja; Eek, Espen; Cornelissen, Gerard
2012-04-01
The addition of activated carbon (AC) is an increasingly popular method for pollutant immobilization, and the AC material can be made of biomass or coal/fossil feedstock. The aim of the present study was to investigate whether there are differences between pollutant sorption to biomass and coal-based AC in the presence and absence of sediment. Through N(2) and CO(2) adsorption to probe surface area and pore size it was shown that the biomass-based AC had a stronger dominance of narrow pores in the size range 3.5-15Šthan the anthracite-based material. In the absence of sediment, sorption isotherms for the probe compounds pyrene and PCB-101 showed stronger sorption for the biomass-based AC (logarithmic Freundlich coefficients 8.15 for pyrene; 9.91 for PCB-101) than for the anthracite-based one (logarithmic Freundlich coefficients 7.20 and 9.70, respectively). In the presence of sediment, the opposite trend was observed, with the stronger sorption for anthracite-based AC. Thus, the presence of competing and/or pore-blocking sediment constituents reduces sorption to a larger extent for biomass-derived AC (factor of 5 for pyrene to almost 100 for PCB-101) than for anthracite-based AC (no reduction for pyrene to factor of 5 for PCB-101). This difference is tentatively attributed to the difference in pore size distribution, narrow pores being more prone to clogging, and could have implications for remediation feasibility with AC from different sources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of air-staging on anthracite combustion and NOx formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidong Fan; Zhengchun Lin; Youyi Li
Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the moremore » NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.« less
Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis
Kotarba, M.J.; Lewan, M.D.
2004-01-01
To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.
Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang
2016-04-01
The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
Lime retention in anthracite coal-breaker refuse
Miroslaw M. Czapowskyj; Edward A. Sowa
1973-01-01
Hydrated lime was applied to extremely acid anthracite coal-breaker refuse at rates of 2.5 and 5.0 tons per acre. The lime raised the pH to neutral range, and this range was still in evidence 7 years after treatment. The pH readings decreased with the depth of the refuse profile, and below 9 inches they approximated those of the control plots. The 2.5-tons-of-lime-per-...
Ruppert, Leslie F.; Trippi, Michael H.; Hower, James C.; Grady, William C.; Levine, Jeffrey R.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin and part of the Black Warrior basin were determined by compiling previously published and unpublished percent-vitrinite-reflectance (%R0) measurements and preparing isograd maps on the basis of the measurements. The isograd values range from 0.6 %R0 in Ohio and the western side of the Eastern Kentucky coal field to 5.5 %R0 in the Southern field in the Pennsylvania Anthracite region, Schuylkill County, Pa. The vitrinite-reflectance values correspond to the American Society of Testing Materials (ASTM) coal-rank classes of high-volatile C bituminous to meta-anthracite, respectively. In general, the isograds show that thermal maturity patterns of Pennsylvanian coals within the Appalachian basin generally decrease from east to west. In the Black Warrior basin of Alabama, the isograds show a circular pattern with the highest values (greater than 1.6 %R0) centered in Jefferson County, Ala. Most of the observed patterns can be explained by variations in the depth of burial, variations in geothermal gradient, or a combination of both; however, there are at least four areas of higher ranking coal in the Appalachian basin that are difficult to explain by these two processes alone: (1) a set of west- to northwest-trending salients centered in Somerset, Cambria, and Fayette Counties, Pa.; (2) an elliptically shaped, northeast-trending area centered in southern West Virginia and western Virginia; (3) the Pennsylvania Anthracite region in eastern Pennsylvania; and (4) the eastern part of the Black Warrior coal field in Alabama. The areas of high-ranking coal in southwestern Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland associated with Alleghanian deformation. In addition to the higher heat flow from these fluids, the Pennsylvania Anthracite region also was buried more deeply than other parts of the Appalachian basin. The area of high rank coal in southwestern Virginia probably was controlled primarily by overburden thickness, but may also have been influenced by higher geothermal gradients.
Create a Consortium and Develop Premium Carbon Products from Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank Rusinko; John Andresen; Jennifer E. Hill
2006-01-01
The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuelmore » industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.« less
Response of crownvetch planted on anthracite breaker refuse
Miroslaw M. Czapowskyj; John P. Mikulecky; Edward A. Sowa
1968-01-01
Lime applications were essential to establishment of crownvetch (Coronilla vuria L.) on coal breaker refuse in the Pennsylvania Anthracite Region, and mulch treatments were highly beneficial. Fertilizer applications had only slight effect on either establishment or growth.
Distribution of potentially hazardous trace elements in coals from Shanxi province, China
Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.
2004-01-01
Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.
ANALYSIS OF RESIDENTIAL COAL STOVE EMISSIONS
The report gives results of an evaluation, in cooperation with the State of Vermont's Agency of Environmental Conservation, of emissions generated by anthracite and bituminous coal used for residential heating. A residential coal stove was operated with both coals, while comparin...
Study of flame combustion of off-design binary coal blends in steam boilers
NASA Astrophysics Data System (ADS)
Kapustyanskii, A. A.
2017-07-01
Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which proves the existence of the synergetic effect in the processes of cocombustion of coals of various grades.
Rodgers, Billy R.; Edwards, Michael S.
1977-01-01
Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.
Guo, Feihong; Zhong, Zhaoping
2018-08-01
This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nanodiamond Formation at the Lithogenesis and Low-Stages of Regional Metamorphism
NASA Astrophysics Data System (ADS)
Simakov, S. K.; Melnik, N. N.; Vyalov, V. I.
2018-02-01
Samples of gilsonite from Adzharia, anthraxolite and graphite of coal from Taimyr, shungite from Karelia, and anthracite from Donbass are studied using Raman spectroscopy. Peaks at 1600 cm-1, indicating the presence of nanographite, are recorded in all samples. The anthracite sample from Donbass, 1330 cm-1, corresponds to the sp 3-line of carbon hybridization conforming to a nanodiamond. It is concluded that in nature diamonds can be formed at late stages of lithogenesis (catagensis, metagenesis), and for coals, it can occur at the zeolite stage of regional metamorphism of rocks, before the green schist stage.
Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen
2011-11-01
Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. Copyright © 2011 Elsevier Ltd. All rights reserved.
Organic emissions from coal pyrolysis: mutagenic effects.
Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F
1987-01-01
Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724
Appalachian coal assessment: Defining the coal systems of the Appalachian basin
Milici, R.C.
2005-01-01
The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.
Coal char oxidation kinetics in air medium
NASA Astrophysics Data System (ADS)
Slyusarskiy, K. V.; Jankovskiy, S. A.; Korotkikh, A. G.; Sorokin, I. V.
2017-01-01
Research on oxidation in air medium process of three different coal chars with various carbon content was presented. The anthracite, T-grade bituminous coal and 2B-grade lignite char powders with particle size less than 80 µm were studied. The coal char oxidation was studied by isothermal method using coupled TG-DSC analyzer Netzsch STA 449 Jupiter F3 in the temperature range 1000-1200 °C. Experiments were carried out at ambient pressure. Volumetric flow rate of oxidation medium into analyzer chamber was 250 ml/min and consisted of oxygen and argon with volumetric ratio 24:1. Based on experimental data, the average rate of carbon oxidation reaction values were defined at each temperature. Kinetic constants (frequency factor and activation energy) of reaction were defined as well via 1st order Arrhenius equation. Activation energy values are in good agreement with the data presented in the literature. Activation energy values for anthracite char are 1.6-1.7 times higher than those for bituminous coal and lignite chars, respectively.
Comprehensive Fractal Description of Porosity of Coal of Different Ranks
Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing
2014-01-01
We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407
Coal liquefaction process using pretreatment with a binary solvent mixture
Miller, R.N.
1986-10-14
An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.
Coal liquefaction process using pretreatment with a binary solvent mixture
Miller, Robert N.
1986-01-01
An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.
Kolak, J.J.; Burruss, R.C.
2006-01-01
Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.
Catalysts for coal liquefaction processes
Garg, Diwakar
1986-01-01
Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.
Catalysts for coal liquefaction processes
Garg, D.
1986-10-14
Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.
Code of Federal Regulations, 2011 CFR
2011-07-01
... is located. (g) MRE instrument means the gravimetric dust sampler with a four channel horizontal... in the earth by any means or method, and the work of preparing the coal so extracted, including... bituminous coal, lignite, or anthracite from its natural deposits underground by any means or method, and the...
Catalytic coal liquefaction process
Garg, D.; Sunder, S.
1986-12-02
An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.
Catalytic coal liquefaction process
Garg, Diwakar; Sunder, Swaminathan
1986-01-01
An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.
Mercury capture by native fly ash carbons in coal-fired power plants
Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.
2013-01-01
The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466
Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun
2017-07-01
In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coal-mine spoil banks offer good potential for timber and wildlife production
Grant Davis; Walter H. Davidson
1968-01-01
More than 300,000 acres have been strip-mined for coal in the Anthracite and Bituminous Regions of Pennsylvaniaâmost of this since World War II. And an additional 10,000 to 15,000 acres are strip-mined each year. Since 1945 coal operators have been required to revegetate the areas disturbed by mining. Although the primary purpose of revegetation is to provide permanent...
Performance of red pine and Japanese larch planted on anthracite coal-breaker refuse
Miroslaw M. Czapowskyj
1973-01-01
Red pine (Pinus resinosa Ait.) and Japanese larch (Larix leptolepis (Sieb. and Zucc.) Gord.) seedlings were planted on coal-breaker refuse with all combinations of two levels of lime, two levels of fertilizer, and four mulch treatments. The site was highly unfavorable as a medium for tree growth, and the 4-year results show...
Coal desulfurization in a rotary kiln combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, J.T. Jr.
1991-04-22
The focus of our work during the first quarter of 1991 was on combustion tests at the PEDCO rotary kiln reactor at North American Rayon (NARCO) plant in Elizabethton, TN. The tests had essentially tow related objectives: (a) to obtain basic data on the combustion of anthracite culm in a rotary kiln reactor, and (b) upon the test results, determine how best to proceed with our own planned program at the Humphrey Charcoal kiln in Brookville, PA. The rationale for the tests at PEDCO arose from process analysis which posted red flags on the feasibility of burning low-grade, hard-to-burn fuelsmore » like anthracite culms, in the rotary kiln. The PEDCO unit afforded a unique opportunity to obtain some quick answers at low cost. Two different anthracite culm fuels were tested: a so-called Jeddo culm with an average heating value of 7000 Btu/lb, and a relatively poorer culm, and Emerald'' culm, with an average heating value of 5000 Btu/lb. An attempt was also made to burn a blend of the Emerald culm with bituminous coal in 75/25 percent proportions. This report describes the tests, their chronology, and preliminary results. As it turned out, the PEDCO unit is not configured properly for the combustion of anthracite culm. As a result, it proved difficult to achieve a sustained period of steady-state combustion operation, and combustion efficiencies were low even when supplemental fuel was used to aid combustion of the culm. 1 fig., 2 tabs.« less
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
30 CFR 820.11 - Performance standards: Anthracite mines in Pennsylvania.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pennsylvania. 820.11 Section 820.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-ANTHRACITE MINES IN PENNSYLVANIA § 820.11 Performance standards: Anthracite mines in Pennsylvania. Anthracite mines in Pennsylvania, as specified in section 529 of the Act, shall comply with its approved...
Milici, Robert C.
2004-01-01
The Carboniferous Coal-bed Gas Total Petroleum System, lies within the central and northern parts of the Appalachian coal field. It consists of five assessment units (AU): the Pocahontas Basin in southwestern Virginia, southern West Virginia, and eastern Kentucky, the Central Appalachian Shelf in Tennessee, eastern Kentucky and southern West Virginia, East Dunkard (Folded) in western Pennsylvania and northern West Virginia, West Dunkard (Unfolded) in Ohio and adjacent parts of Pennsylvania and West Virginia, and the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Of these, only the Pocahontas Basin and West Dunkard (Folded) AU were assessed quantitatively by the U.S. Geological survey in 2002 as containing about 3.6 and 4.8 Tcf of undiscovered, technically recoverable gas, respectively (Milici and others, 2003). In general, the coal beds of this Total Petroleum System, which are both the source rock and reservoir, were deposited together with their associated sedimentary strata in Mississippian and Pennsylvanian (Carboniferous) time. The generation of biogenic (microbial) gas probably began almost immediately as the peat deposits were first formed. Microbial gas generation is probably occurring at present to some degree throughout the basin, where the coal beds are relatively shallow and wet. With sufficient depth of burial, compaction, and coalification during the late Paleozoic and Early Mesozoic, the coal beds were heated sufficiently to generate thermogenic gas in the eastern part of the Appalachian basin. Trap formation began initially with the deposition of the paleopeat deposits during the Mississippian, and continued into the Late Pennsylvanian and Permian as the Appalachian Plateau strata were deformed during the Alleghanian orogeny. Seals are the connate waters that occupy fractures and larger pore spaces within the coal beds as well as the fine-grained siliciclastic sedimentary strata that are intercalated with the coal. The critical moment for the petroleum system occurred during this orogeny, when deformation created geologic structures in the eastern part of the basin that enhanced fracture porosity within the coal beds. In places, burial by thrust sheets (thrust loading) within the Appalachian fold-and-thrust belt may have resulted in additional generation of thermogenic CBM in the anthracite district of Pennsylvania and in the semianthracite deposits of Virginia and West Virginia.
Lime helps establish crownvetch on coal-breaker refuse
Miroslaw M. Czapowskyj; Edward A. Sowa
1976-01-01
A study was begun in 1965 to determine the effect of lime fertilizer, and mulch on the establishment and growth of crownvetch crowns planted on anthracite coal-breaker refuse. After 7 years the lime application had by far the strongest effect. Both 2.5 and 5.0 tons per acre increased survival and ground cover manyfold, and both treatments were equally beneficial from...
20 CFR 410.110 - General definitions and use of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... be used in, or resulting from, the work of extracting in such area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or method, and the work of preparing the coal... who performs the services, not only as to the result to be accomplished by the work but also as to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... old section 203(b) program (36 FR 20601, October 27, 1971), or under § 90.3 (Part 90 option; notice of... area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... old section 203(b) program (36 FR 20601, October 27, 1971), or under § 90.3 (Part 90 option; notice of... area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... old section 203(b) program (36 FR 20601, October 27, 1971), or under § 90.3 (Part 90 option; notice of... area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... old section 203(b) program (36 FR 20601, October 27, 1971), or under § 90.3 (Part 90 option; notice of... area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... old section 203(b) program (36 FR 20601, October 27, 1971), or under § 90.3 (Part 90 option; notice of... area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or...
Characterization of nickel laterite reduction from Pomalaa, Sulawesi Tenggara
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhamdani, Ahmad Rizky; Petrus, Himawan T. B. M., E-mail: bayu.petrus@ugm.ac.id; Fahrurrozi, Moh.
2015-12-29
The effect of using different reductors in the reduction process of nickel laterite was investigated. In this work, the author conducted the reduction of nickel laterite ores by anthracite coal, lamtoro charcoal, and carbon raiser, in air and CO{sub 2} atmosphere, within the temperature ranged from 800°C and 1000°C. The results indicate that at higher temperatures, the reduction reactions proceed more complete. According to the X-ray powder diffraction (XRD) analysis, the type of carbon used greatly influence the rate of the reduction of nickel laterite. The order of reactivity is anthracite coal, lamtoro charcoal, and carbon raiser, respectively. The reductionmore » atmospheric condition also greatly influences the reduction process. The reduction process in CO{sub 2} atmospheric condition gives a lot of significant decrease in hematite and magnetite presence, means that the reduction reactions proceed more complete compared to the reduction process in the air atmospheric condition.« less
Methane in the Upper Silesian Coal Basin (Poland) - problem of reserves and exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, A.J.
1995-08-01
The Upper Silesian Coal Basin (USCB) is the best recognized and the most productive coal basin in Poland. The USCB is primarily defined by the extent of Carboniferous coal-bearing formations. The sedimentary fill displays the stratigraphic record of major progressive inversion phases of the entire Moravo-Silesian basin during the late and post-geosynclinal period of the Variscan orogeny. According to the last estimates the coal reserves occurring above the depth limit of 1500 in are as follows: documented reserves - 58 billion tons, prognostic reserves - 46 billion tons, total - 104 billion tons. The coal type is predominantly vitrinitic, andmore » ash content is reported to be in the range of 11-17% and average sulphur content is 1.13%. The rank of USCB coal is largely controlled by complex coalification processes. It ranges from high volatile bituminous B, through medium volatile bituminous to high rank special coal semi anthracite and anthracite. The methane content of coal seams in USCB varies in a very broad range of 0-22 m{sup 3}/t coal (dry, ash free basis). The average gas content increases considerably within the depth range 600-1000 in from 0.99 to 4.68 m{sup 3}/t coal (daf). In deeper horizons it is more or less stable varying within the range of 4.7-7.0 m{sup 3}/t coal (daf). By this estimate, on average, the methane content is about 12,5 m{sup 3}/ton. There are several estimates of coal-bed methane resources in the USCB based on different methods. The resources are as follows: documented deposits in active mines to 1000 m: 370 BCM, undeveloped deposits to 1000 in: 340 BCM, deposit between 1000 and 1500 m: 590 BCM, total: 1300 BCM. The coalbed gas from this basin is primarily composed of saturated hydrocarbons and Nitrogen which amount to 97 volume percent. The rest is dominant by Carbon dioxide and Hydrogen.« less
Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.
2006-01-01
Introduction: The Republic of the Philippines has some 19 coal districts that contain coal deposits ranging from Eocene to Pleistocene in age. These coal districts include: (1) Catanduanes (Eocene); (2) Cebu, Zamboanga Sibuguey, Bukidnon, Maguindanao, Sarangani, and Surigao (Oligocene to Miocene); (3) Batan Island, Masbate, Semirara (including Mindoro), and Quezon-Polilio (lower-upper Miocene); (4) Davao, Negros, and Sorsogon (middle-upper Miocene); (5) Cotabato (lower Miocene-lower Pliocene), Cagayan-Isabella, and Quirino (upper Miocene-Pliocene); (6) Sultan Kudarat (upper Miocene-Pleistocene); and (7) Samar-Leyte (lower Pliocene-Pleistocene). In general, coal rank is directly related to the age of the deposits - for example, the Eocene coal is semi-anthracite and the Pliocene-Pleistocene coal is lignite. Total coal resources in these 19 coal districts, which are compiled by the Geothermal and Coal Resources Development Division (GCRDD) of the Department of Energy of the Philippines, are estimated at a minimum of 2,268.4 million metric tonnes (MMT) (approximately 2.3 billion metric tones). The largest resource (550 MMT) is the subbituminous coal in the Semirara (including Mindoro) coal district, and the smallest (0.7 MMT) is the lignite-subbituminous coal in the Quirino coal district. The combined lignite and subbituminous coal resources, using the classification by GCRDD and including Semirara and Surigao coal districts, are about 1,899.2 MMT, which make up about 84 percent of the total coal resources of the Philippines. The remaining resources are composed of bituminous and semi-anthracite coal. The subbituminous coal of Semirara Island in the Mindoro- Semirara coal district (fig. 2) is known to contain coalbed methane (CBM), with the coal being comparable in gas content and adsorption isotherms to the coal of the Paleocene Fort Union Formation in the Powder River Basin in Wyoming, USA (Flores and others, 2005). As a consequence, the presence of CBM in the Semirara coal led to the present study of determining the adsorption isotherms, or gas (CBM) holding or storage capacity, of coal beds of various ages from selected coal districts in the Philippines. Samples for the study were collected from the Batan Island, Catanduanes, Cagayan-Isabella, Cebu, Negros, Samar, Semirara, Cotabato, Surigao, and Malangas coalfield of the Zamboanga Sibuguey coal districts by five field geology teams from the GCRDD.
A study of mining-induced seismicity in Czech mines with longwall coal exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holub, K.
2007-01-15
A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.
Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels
Downward, George S.; Hu, Wei; Rothman, Nat; Reiss, Boris; Wu, Guoping; Wei, Fusheng; Xu, Jun; Seow, Wei Jie; Brunekreef, Bert; Chapman, Robert S.; Qing, Lan; Vermeulen, Roel
2015-01-01
Background Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China whose residents use a variety of solid fuels for cooking and heating including: bituminous and anthracite coal, and wood. Methods Measurements were taken over 2 consecutive 24 h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. Results PMabs measurements were higher in wood burning households (16.3 × 10−5 m−1) than bituminous and anthracite coal households (12 and 5.1 × 10−5 m−1 respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r= 0.49, p<0.01). Conclusion Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality and climate change contributions of domestic usage of solid fuels. PMID:26452237
Conifers growing on anthracite mine soils respond to fertilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, W.H.; Sowa, E.A.
1982-12-01
Anthracite mine soils will support vegetation. To confirm this one needs only to look at the sizeable number of acres revegetated since passage of the 1963 Pennsylvania Anthracite Strip Mine and Conservation Act. In spite of the large number of acres revegetated, many planted trees, particularly conifers, grow poorly on anthracite mine soils. It is not uncommon for trees of a single species to differ widely in growth, not only from one mine soil to another but even on the same one. Studies were conducted on anthracite mine soils and breaker refuse to examine the growth response of some plantedmore » conifers to 1) slow-release fertilizer and 2) granular fertilizer. Annual height growth was used to measure response. Japanese larch (Larix leptolepis) growing on mine soil responded to slow-release fertilizer in the first year. Red (Pinus resinosa), white (P. strobus), and Austrian (P. nigra) pines did not respond until the second year after treatment. The response lasted for 3 years. This fertilizer did not affect growth of white spruce (Picea glauca) on mine soil, but it had a significant effect for the full, 4 year term of the study on Austrian pine growing on coal breaker refuse. Red and Scotch (P. sylvestris) pines on breaker refuse did not respond to granular fertilizer until the third year and the response was short-lived. Even though significant growth responses were obtained with these treatments, the height differences were relatively small.« less
30 CFR 75.1314 - Sheathed explosive units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sheathed explosive units. 75.1314 Section 75.1314 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... damaged or deteriorated. (d) Except in anthracite mines, rock dust shall be applied to the roof, ribs and...
30 CFR 75.381 - Escapeways; anthracite mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... similar facilities where the escapeways cross over obstructions; and (4) Maintained at least 4 feet wide by 5 feet high. If the pitch or thickness of the coal seam does not permit these dimensions to be maintained other dimensions may be approved in the ventilation plan. (5) Provided with a continuous, durable...
NASA Astrophysics Data System (ADS)
Sun, Jianzhong; Zhi, Guorui; Hitzenberger, Regina; Chen, Yingjun; Tian, Chongguo; Zhang, Yayun; Feng, Yanli; Cheng, Miaomiao; Zhang, Yuzhe; Cai, Jing; Chen, Feng; Qiu, Yiqin; Jiang, Zhiming; Li, Jun; Zhang, Gan; Mo, Yangzhi
2017-04-01
Brown carbon (BrC) draws increasing attention due to its effects on climate and other environmental factors. In China, household coal burned for heating and cooking purposes releases huge amounts of carbonaceous particles every year; however, BrC emissions have rarely been estimated in a persuasive manner due to the unavailable emission characteristics. Here, seven coals jointly covering geological maturity from low to high were burned in four typical stoves as both chunk and briquette styles. The optical integrating sphere (IS) method was applied to measure the emission factors (EFs) of BrC and black carbon (BC) via an iterative process using the different spectral dependence of light absorption for BrC and BC and using humic acid sodium salt (HASS) and carbon black (CarB) as reference materials. The following results have been found: (i) the average EFs of BrC for anthracite coal chunks and briquettes are 1.08 ± 0.80 and 1.52 ± 0.16 g kg-1, respectively, and those for bituminous coal chunks and briquettes are 8.59 ± 2.70 and 4.01 ± 2.19 g kg-1, respectively, reflecting a more significant decline in BrC EFs for bituminous coals than for anthracites due to briquetting. (ii) The BrC EF peaks at the middle of coal's geological maturity, displaying a bell-shaped curve between EF and volatile matter (Vdaf). (iii) The calculated BrC emissions from China's residential coal burning amounted to 592 Gg (1 Gg = 109 g) in 2013, which is nearly half of China's total BC emissions. (iv) The absorption Ångström exponents (AAEs) of all coal briquettes are higher than those of coal chunks, indicating that the measure of coal briquetting increases the BrC / BC emission ratio and thus offsets some of the climate cooling effect of briquetting. (v) In the scenario of current household coal burning in China, solar light absorption by BrC (350-850 nm in this study) accounts for more than a quarter (0.265) of the total absorption. This implies the significance of BrC to climate modeling.
Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.
2015-11-01
In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.
Bituminous coal production in the Appalachian Basin; past, present, and future
Milici, R.C.
1999-01-01
This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.
NASA Astrophysics Data System (ADS)
Khatami Firoozabadi, Seyed Reza
This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi-anthracite and lignites mostly experienced heterogeneous ignition in either O2/N2 or O2/CO2 atmospheres in both flow conditions. Replacing the N2 by CO 2 slightly increased the ignition temperature (30--40K). Ignition temperatures increased with the enhancement of coal rank in either air or oxy-fuel combustion conditions. However, increasing oxygen mole fraction decreased the ignition temperature for all coals. The ignition delay of coal particles was prolonged in the slow-heating O2/CO2 atmospheres, relative to the faster-heating O2/N2 atmospheres, particularly at high-diluent mole fractions. At higher O2 mole fractions, ignition delays decreased in both environments. Higher rank fuels such as anthracite and semi-anthracite experienced higher ignition delays while lower rank fuels such as lignite and biomasses experienced lower igniton delay times. In combustion, fuel particles were observed to burn in different modes, such as two-mode, or in one-mode combustion, depending on their rank and the furnace conditions. Strong tendencies were observed for all fuels to burn in one-mode when N2 was replaced by CO2, and when O 2 mole fraction increased in both environments. Moreover, increasing the coal rank, from lignite to bituminous, enhanced the tendency of coal particles to exhibit a two-mode combustion behavior. Particle luminosity, fragmentation and deduced temperatures were higher in O2/N2 than in O2/CO2 atmospheres, and corresponding burnout times were shorter, at the same O2 mole fractions. Particle luminosity and temperatures increased with increasing O2 mole fractions in both N2 and in CO2 background gases, and corresponding burnout times decreased with increasing O2 mole fractions. Bituminous coal particles swelled, whereas sub-bituminous coal particles exhibited limited fragmentation prior to and during the early stages of combustion. Lignite coal particles fragmented extensively and burned in one-mode regardless of the O2 mole fraction and the background gas. The timing of fragmentation (prior or after ignition) and the number of fragments depended on the type of the lignite and on the particle shape. Temperatures and burnout times of particles were also affected by the combustion mode. In nearly all bituminous and biomass particles combustion, sooty envelope flames were formed around the particles. Replacement of background N 2 by CO2 gas decreased the average soot volume fraction, fv, whereas increasing O2 from 20% to 30--40% increased the fv and then further increasing O2 to 100% decreased the soot volume fraction drastically. bituminous coal particle flames generated lower soot volume fractions in the range 2x10 -5--9x10-5, depending on O2 mole fraction. Moreover, biomass particle flames were optically thin and of equal-sized at all O2 mole fractions. (Abstract shortened by UMI.).
The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.
Inyang, Mandu; Dickenson, Eric R V
2017-10-01
Bench- and pilot-scale sorption tests were used to probe the performance of several biochars at removing perfluoroalkyl acids (PFAA) from field waters, compared to granular activated carbon (GAC). Screening tests using organic matter-free water resulted in hardwood (HWC) (K d = 41 L g -1 ) and pinewood (PWC) (K d = 49 L g -1 ) biochars having the highest perfluorooctanoic acid (PFOA) removal performance that was comparable to bituminous coal GAC (K d = 41 L g -1 ). PWC and HWC had a stronger affinity for PFOA sorbed in Lake Mead surface water (K F = 11 mg (1-n) L n g -1 ) containing a lower (2 mg L -1 ) dissolved organic carbon (DOC) concentration than in a tertiary-filtered wastewater (K F = 8 mg (1-n) L n g -1 ) with DOC of 4.9 mg L -1 . A pilot-scale study was performed using three parallel adsorbers (GAC, anthracite, and HWC biochar) treating the same tertiary-filtered wastewater. Compared to HWC, and anthracite, GAC was the most effective in mitigating perfluoropentanoic acid (PFPnA), perfluorohexanoic acid (PHxA), PFOA, perfluorooctane sulfonic acid (PFOS), and DOC (45-67% removed at 4354 bed volumes) followed by HWC, and then anthracite. Based on bench- and pilot-scale results, shorter-chain PFAA [perfluorobutanoic acid (PFBA), PFPnA, or PFHxA] were more difficult to remove with both biochar and GAC than the longer-chain, PFOS and PFOA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particle and gas emissions from a simulated coal-burning household fire pit.
Tian, Linwei; Lucas, Donald; Fischer, Susan L; Lee, S C; Hammond, S Katharine; Koshland, Catherine P
2008-04-01
An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO2, total hydrocarbons, and NOx) were 2-4 times higherfor bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories.
Sequential solvent extraction for forms of antimony in five selected coals
Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.
2008-01-01
Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.
Nontraditional carbon reducing agents in smelting FMn78B ferromanganese and valuable manganese slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kravchenko; O.N. Sezonenko; O.L. Bespalov
The smelting of FeMn78B ferromanganese (0.7% P) by a flux-free method, with the production of valuable slag (36-38% Mn), is considered in the case where some of the coke nuts are replaced by anthracite and sometimes by long-flame coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.
2007-01-15
The experimental data are presented for the features of formation and manifestation of the acoustic-emission and deformation memory effects in specimens of anthracite at different stages of the triaxial cyclic deformation by the Karman scheme in the pre-limiting and post-limiting zones.
An overview of the Permian (Karoo) coal deposits of southern Africa
NASA Astrophysics Data System (ADS)
Cairncross, B.
2001-08-01
The coal deposits of southern Africa (Botswana, Malawi, Mozambique, Namibia, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe) are reviewed. The coal seams formed during two periods, the Early Permian (Artinskian-Kungurian) and the Late Permian (Ufimian-Kazanian). The coals are associated with non-marine terrestrial clastic sedimentary sequences, most commonly mudrock and sandstones, assigned to the Karoo Supergroup. The Early Permian coals are most commonly sandstone-hosted while the younger coals typically occur interbedded with mudstones. The sediments were deposited in varying tectono-sedimentary basins such as foreland, intracratonic rifts and intercratonic grabens and half-grabens. The depositional environments that produced the coal-bearing successions were primarily deltaic and fluvial, with some minor shoreline and lacustrine settings. Coals vary in rank from high-volatile bituminous to anthracite and characteristically have a relatively high inertinite component, and medium- to high-ash content. In countries where coal is mined, it is used for power generation, coking coal, synfuel generation, gasification and for (local) domestic household consumption.
Injury experience in coal mining, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, R.B.; Hugler, E.C.
1994-05-01
This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries,more » summary reference tabulations are included at the end of both the operator and the contractor sections of this report.« less
Injury experience in coal mining, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-01-01
This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries,more » summary reference tabulations are included at the end of both the operator and the contractor sections of this report.« less
Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application
NASA Astrophysics Data System (ADS)
Nayak, Subhadarshi; Agrawal, Jyoti
2012-03-01
ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.
Influence of high-energy impact on the physical and technical characteristics of coal fuels
NASA Astrophysics Data System (ADS)
Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.
2017-08-01
Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.
NASA Astrophysics Data System (ADS)
Vershinina, K. Yu.; Kuznetsov, G. V.; Strizhak, P. A.
2017-01-01
To enlarge the power raw material base, the processes of stable initiation of combustion of drops of organic watercoal fuels have been investigated. For the main components, we used filter cakes (coal processing waste), anthracite, bituminous and brown coals of brands D and B2, water, and spent machine, turbine, and transformer oils. We have established the influence of concentrations of components on the minimum (limiting) ignition temperatures of organic water-coal fuels and the ignition delay times of drops of fuel components with initial sizes of 0.25-1.5 mm. Investigations were carried out for oxidizer temperatures of 600-1100 K and its velocities of 0.5-5 m/s characteristic of units, aggregates, and large and small power plants. We have determined the characteristic differences of organic water-coal fuel from water-coal fuel and the close laws of the investigated processes for these fuels.
An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration
Kolak, Jonathan J.; Burruss, Robert A.
2003-01-01
Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.
Kelsey, D J; Nieto-Delgado, C; Cannon, F S; Brennan, R A
2015-07-01
To examine organic neem compounds for their effective growth inhibition of saprotrophic soft-rot fungi on anthracite bricks bound with collagen and lignin for use in iron foundry cupolas as an alternative fuel source. Azadirachtin, crude neem oil (NO), and clarified neem oil extract (CNO) were combined with copper to inhibit the growth of the soft-rot fungus, Chaetomium globosum. A synergistic interaction was observed between CNO and a low dose of copper on nutrient media (two-factor anova with triplicate replication: P < 0·05). Interaction was confirmed on lab-scale collagen-lignin-anthracite briquettes by measuring their unconfined compressive (UC) strength. The effective collagen strength of the briquettes was enhanced by applying CNO to their surface prior to inoculation: the room temperature UC strength of the briquettes was 28 ± 4·6% greater when CNO (0·4 mg cm(-2) ) was surface-applied, and was 43 ± 3·0% greater when CNO plus copper (0·14 μg cm(-2) ) were surface-applied. Surface application of CNO and copper synergistically prevents fungal growth on bindered anthracite briquettes and increases their room temperature strength. This novel organic fungicidal treatment may increase the storage and performance of anthracite bricks in iron foundries, thereby saving 15-20% of the energy used in conventional coke production. © 2015 The Society for Applied Microbiology.
Molecular simulation of methane adsorption characteristics on coal macromolecule
NASA Astrophysics Data System (ADS)
Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying
2018-02-01
In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.
The role of coal in industrialization: A case study of Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akarakiri, J.B.
1989-01-01
Coal is a mineral matter found in layers or beds in sedimentary rocks. It is a very highly variable substance. In addition to the variations from lignite to bituminous and anthracite, there are vast differences in its heating value, amount of volatiles, sulfur, moisture and so on. The chemical and physical properties of coal make it an important industrial raw material. There is proven 639 million tonnes of coal reserves in Nigeria. This paper examines the potential and current role of coal in the industrialization of Nigeria. Industries are now dependent on fuel oil as a source of fuel becausemore » of its economic and technological advantages over coal. Coal is a source of industrial energy for the future after the known oil reserves might have been exhausted. In the short term, coal can be used as a material for chemicals, iron and steel production as well as a substitute for wood energy in the process of industrialization.« less
Process for solvent refining of coal using a denitrogenated and dephenolated solvent
Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.
1984-01-01
A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.
NASA Astrophysics Data System (ADS)
Petrus, H. T. B. M.; Diga, A.; Rhamdani, A. R.; Warmada, I. W.; Yuliansyah, A. T.; Perdana, I.
2017-04-01
The performance and kinetic of nickel laterite reduction were studied. In this work, the reduction of nickel laterite ores by anthracite coal, representing the high-grade carbon content matter, and lamtoro charcoal, representing the bioreductor, were conducted in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. XRD analysis was applied to observe the performance of anthracite and lamtoro as a reductor. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that the type of reductant and the reduction atmosphere used greatly influence the kinetic parameters. The obtained values of activation energy vary in the range of 13.42-18.12 kcal/mol.
Lyons, P.C.; Palmer, C.A.; Bostick, N.H.; Fletcher, J.D.; Dulong, F.T.; Brown, F.W.; Brown, Z.A.; Krasnow, M.R.; Romankiw, L.A.
1989-01-01
A rank series consisting of twelve vitrinite concentrates and companion whole-coal samples from mined coal beds in the eastern United States, England, and Australia were analyzed for C, H, N, O, ash, and 47 trace and minor elements by standard elemental, instrumental neutron activation analysis (INAA), and direct-current-arc spectrographic (DCAS) techniques. The reflectance of vitrinite, atomic H:C and O:C, and ash-free carbon data were used to determine ranks that range from high-volatile C bituminous coal to meta-anthracite. A van Krevelen (atomic H:C vs. O:C) diagram of the vitrinite concentrates shows a smooth curve having its lowest point at H:C = 0.18 and O:C = 0.01. This improves the van Krevelen diagram by the addition of our vitrinite concentrate from meta-anthracite from the Narragansett basin of New England. Boron content (400-450 ppm) in two Illinois basin vitrinite concentrates was about an order of magnitude higher than B contents in other concentrates analyzed. We attribute this to marine origin or hydrothermal activity. The alkaline-earth elements Ca, Mg and Ba (DCAS) have higher concentrations in our vitrinite concentrates from bituminous coals of the Appalachian basin, than they do in vitrinite concentrates from the marine-roofed bituminous coals of the Illinois basin; therefore, a nonmarine origin for these alkaline-earth elements is postulated for the Appalachian basin coals. An ion-exchange mechanism due to high concentrations of these elements as ions in diagenetic water, but probably not recent ground water, may be responsible for the relatively high values of these elements in Appalachian concentrates. Higher concentrations of Ni and Cr in one of the English vitrinite concentrates and of Zr in the Australian concentrate probably indicate organic association and detrital influence, respectively. ?? 1989.
Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian
2014-12-01
Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppas, N.A.; Hill-Lievense, M.E.; Hooker, D.T. II
1981-01-01
Seven coal samples ranging from a lignite with 69.95% carbon to an anthracite with 94.17% carbon on a dry mineral matter-free (dmmf) basis were extracted with pyridine at its reflux temperature for two weeks. The coal matrices obtained were subjected to two degradation techniques, the Sternberg reductive alkylation technique and the Miyake alkylation technique. Gel permeation chromatographic analysis of pyridine-extracted liquids of the alkylated coal showed average molecular weights smaller than those of the original coal extracts. Electron impact mass spectrometry was used to obtain the mass spectra of these alkylated coal samples. Based on investigation of the recurring patternmore » of the peaks of the mass spectra of these products it was concluded that a cluster size of 126 to 130 is characteristic of the crosslinked structure of the coal studied. In addition, several chemical compounds in the range of m/e 78-191 were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelm, B.
1996-12-31
Information is presented on a 110 MWe atmospheric CFB located in the Czech Republic firing brown coal. The following topics are discussed: fuel analysis; boiler design parameters; CFB fluidizing nozzle; and project time schedule. Information is also given on a 200 MWe atmospheric CFB located in the Republic of Korea firing Korean anthracite. Data are presented on fuel specifications; predicted performance; and engineering and construction schedule.
NASA Technical Reports Server (NTRS)
Amato, R. V.; Russell, O. R.; Martin, K. R.; Wier, C. E.
1975-01-01
Remote sensing techniques were used to study coal mining sites within the Eastern Interior Coal Basin (Indiana, Illinois, and western Kentucky), the Appalachian Coal Basin (Ohio, West Virginia, and Pennsylvania) and the anthracite coal basins of northeastern Pennsylvania. Remote sensor data evaluated during these studies were acquired by LANDSAT, Skylab and both high and low altitude aircraft. Airborne sensors included multispectral scanners, multiband cameras and standard mapping cameras loaded with panchromatic, color and color infrared films. The research conducted in these areas is a useful prerequisite to the development of an operational monitoring system that can be peridically employed to supply state and federal regulatory agencies with supportive data. Further research, however, must be undertaken to systematically examine those mining processes and features that can be monitored cost effectively using remote sensors and for determining what combination of sensors and ground sampling processes provide the optimum combination for an operational system.
Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.
2010-01-01
The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment themore » high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.« less
30 CFR 800.70 - Bonding for anthracite operations in Pennsylvania.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pennsylvania. 800.70 Section 800.70 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... REGULATORY PROGRAMS § 800.70 Bonding for anthracite operations in Pennsylvania. (a) All of the provisions of... operations in Pennsylvania except that— (1) Specified bond limits shall be determined by the regulatory...
Thinning young oak stands for small mine timbers - at a profit
Stanley M. Filip
1949-01-01
Young red oak-white oak stands in the Anthracite Forest Region of Pennsylvania occupy nearly 3/4 million acres of land (fig. 1). At present they are a source of lagging, forepoles, and small props used in the coal mines. Under good cutting practice, a substantial quantity of these mine timbers could be produced by thinning these stands, which would at the same time...
Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu; Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Tol, Johan van
In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10{sup −4} T), g = 2.0023; and a narrow signal of peak tomore » peak width = 60 (10{sup −4} T), g = 2.003). The third defect center is Mn{sup 2+} ({sup 6}S{sub 5/2}, 3d{sup 5}) (signal width = 61 (10{sup −4} T), g = 2.0023, A{sub iso} = 93(10{sup −4} T)), and the fourth defect is identified as Cu{sup 2+} ({sup 2}D{sub 5/2}, 3d{sup 9}) (g{sub ⊥} = 2.048 and g{sub ‖} = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn{sup 2+} and two-carbon related signals, and no Cu{sup 2+} signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.« less
NASA Astrophysics Data System (ADS)
Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu
2016-12-01
Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.
Carbon dioxide emission factors for U.S. coal by origin and destination
Quick, J.C.
2010-01-01
This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.
Klein, Felix; Pieber, Simone M; Ni, Haiyan; Stefenelli, Giulia; Bertrand, Amelie; Kilic, Dogushan; Pospisilova, Veronika; Temime-Roussel, Brice; Marchand, Nicolas; El Haddad, Imad; Slowik, Jay G; Baltensperger, Urs; Cao, Junji; Huang, Ru-Jin; Prévôt, André S H
2018-03-06
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kg coal for bituminous coals and are below 0.1 g/kg coal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
21. Photocopy of photograph. Horgan, December 28, 1920. Negative #D ...
21. Photocopy of photograph. Horgan, December 28, 1920. Negative #D & H 21849 Original negative can be found in D & H collection of the Anthracite Heritage Museum, Scranton, Pennsylvania. INTERIOR VIEW OF BREAKER, MIDDLE FLOOR AREA, SHOWING DETAIL OF INSTALLATION OF FINE COAL SHAKERS AT TIME OF BREAKER CONSTRUCTION - Marvine Colliery, Breaker No. 2, West side Boulevard Avenue, between East Parker Street & Route 380, Scranton, Lackawanna County, PA
Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Trap formation began with the deposition of the peat deposits during the Mississippian and continued into the Late Pennsylvanian and Permian, when strata of the Appalachian Plateaus were deformed during the Alleghanian orogeny. The seals are the connate waters that occupy fractures and larger pore spaces within the coal beds, as well as the fine-grained, siliciclastic sedimentary strata that are intercalated with the coal. The critical moment for the petroleum system occurred during the Alleghanian orogeny, when deformation resulted in the geologic structures in the eastern part of the Appalachian basin that enhanced fracture porosity within the coal beds. In places, burial by thrust sheets (thrust loading) in the Valley and Ridge physiographic province may have resulted in the additional generation of thermogenic coalbed methane in the Pennsylvania Anthracite region and in the semianthracite deposits of Virginia and West Virginia, although other explanations have been offered.
Kolak, Jonathan J.; Burruss, Robert A.
2005-01-01
Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.
Water quality of the Swatara Creek Basin, PA
McCarren, Edward F.; Wark, J.W.; George, J.R.
1964-01-01
The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and recreation. In general, the quality of Swatara Creek improves after it mixes with water from the Upper Little and Lower Little Swatara Creeks, which converge with the main stream near Pine Grove. Jonestown is the first downstream location where Swatara Creek contains bicarbonate ion most of the time, and for the remaining downstream length of the stream, the concentration of bicarbonate progressively increases. Before the stream enters the Susquehanna River, chemical and diluting processes contributed by tributaries change the acidic calcium sulfate water, which characterizes the upper Swatara, to a calcium bicarbonate water.A major tributary to Swatara Creek is Quittapahilla Creek, which drains a limestone region and has alkaline characteristics. Effluents from a sewage treatment plant are discharged into this stream west of Lebanon. Adjacent to the Creek are limestone quarries and during the recovery of limestone, ground water seeps into the mining areas. This water is pumped to upper levels and flows over the land surface into Quittapahilla Creek. As compared with the 1940's, the quality of Swatara Creek is better today, and the water is suitable for more uses. In large part, this improvement is due to curtailment of anthracite coal mining and because of the controls imposed on new mines, stripping mines, and the related coal mining operations, by the Pennsylvania Sanitary Water Board. Thus, today (1962) smaller amounts of coal mine wastes are more effectively flushed and scoured away with each successive runoff during storms that affect the drainage basin. Natural processes neutralizing acid water in the stream by infiltration of alkaline ground water through springs and through the streambed are also indicated.
Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan
2016-05-01
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cravotta, C.A.
2008-01-01
Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.
Attfield, M D; Morring, K
1992-08-01
The National Study of Coal Workers' Pneumoconiosis (NSCWP) is a large, continuing epidemiologic study of the respiratory health of U.S. coal miners. By using information from the study, prevalence of coal workers' pneumoconiosis (CWP) was related to indexes of dust exposure obtained from research and compliance sampling data. Clear relationships between prevalences of both simple CWP and progressive massive fibrosis (PMF) and estimated dust exposure were seen. Additional effects independently associated with coal rank (% carbon) and age were also seen. Logistic model fitting indicated that between 2% and 12% of miners exposed to a 2-mg/m3 dust environment in bituminous coal mines would be expected to have Category 2 or greater CWP after a 40-yr working life; PMF would be expected for between 1.3% and 6.7%. The risks for anthracite miners appeared to be greater. There was a suggestion of a background level of abnormality, not associated with dust exposure, but increasing with age. Although there are certain weaknesses in the data used to derive these exposure estimates, the results are in general agreement with, but somewhat greater than, some recent findings for British coal miners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
High-performance super capacitors based on activated anthracite with controlled porosity
NASA Astrophysics Data System (ADS)
Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee
2015-02-01
Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.
Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process.
Zhou, Wei; Jiang, Jingkun; Duan, Lei; Hao, Jiming
2016-07-19
In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.
1986-02-01
Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer formmore » for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.« less
NASA Astrophysics Data System (ADS)
Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming
2016-01-01
Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.
Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming
2016-01-01
Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059
Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion.
Lei, Ming; Sun, Cen; Zou, Chan; Mi, Hang; Wang, Chunbo
2018-04-01
The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O 2 /H 2 O/CO 2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O 2 /N 2 and O 2 /CO 2 atmospheres, especially at low O 2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O 2 /CO 2 environments were less than those in the O 2 /N 2 environments, regardless of the O 2 concentration and the furnace temperature. Adding H 2 O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000 °C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH 3 ) generated by enhanced char-H 2 O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O 2 /CO 2 /H 2 O atmosphere were higher than those in O 2 /CO 2 atmosphere at a low O 2 concentration. However, as the O 2 concentration increased, the NO emissions in O 2 /CO 2 /H 2 O atmosphere became lower than those in O 2 /CO 2 atmosphere because the effect of H 2 O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.
NASA Astrophysics Data System (ADS)
Wang, Haiyang; Xu, Runsheng; Song, Tengfei; Zhang, Pengcheng
Semi coke, a byproduct in the chemical industry, is a new fuel for blast furnace injection in China. In this study, semi coke and bitumite were milled into different size, ranged from 0.147mm to under 0.074mm. The content of volatile matter and ash, which affect the combustibility of semi coke, were measured using muffle furnace. The mixture, in which the proportion of coal in different sizes changed, was blend by semi coke and bitumite with different size. Activation energy calculation and the comprehensive combustion characteristic index of all kinds of blends was also discussed. The result obtained by Thermogravimetry -Derivative Thermogravimetry curves indicates that the smaller the size of mixture is, the lower for the characteristic temperature, and the better for its combustibility, Semi coke can be a substitute for anthracite in blast furnace injection.
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reitz
1942-10-12
A 1.5 liter sump oven, without stirrer, was used for preparation of Rhein coal with different grinding oils. Partial neutralization of the coal, by mixing sulfuric acid or sulfates with wet coal before drying, was sought. Oven precipitation was reduced by addition of street tar (high middle oil content) and Bruex tar (up to 350/sup 0/C) as well as by a mixture of Estonian slate tar oil and anthracitic tar oil in ratio of 80:20, but there was chalk-coke residue similar to caviar found when the oven was disassembled. Fifty percent neutralization of the coal by sulfuric acid as opposedmore » to untreated coal gave some reduced vaporization and lower asphalt content. Iron sulfate catalyst also gave good results; magnesium sulfate, somewhat less. Though not unequivocally, H/sub 2/SO/sub 4/ and FeSO/sub 4/ both apparently reduced precipitants. A mixture of magnesium sulfate with iron sulfate gave less favorable results over all. Untreated coal with the previous catalysts produced the undesirable caviar-precipitants. The results of the tests were questionable since exactness in components, viscosity, and other problems hindered reproducing the tests consistently. 2 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-02-01
This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is givenmore » for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.« less
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabel Surez-Ruiz; Jose B. Parra
2007-08-15
In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and Fmore » (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.« less
Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.
Noll, James D; Birch, Eileen
2004-12-01
In a previous study, the efficacy of commercial and prototype impactors for sampling diesel particulate matter (DPM) in coal mines was investigated. Laboratory and field samples were collected on quartz-fiber filters and analyzed for organic and elemental carbon. Coal dust contributed a minimal amount of elemental carbon when commercial cascade impactors and prototype impactors, designed by the University of Minnesota (UMN) and the US Bureau of Mines (BOM), were used to collect submicrometer dust fractions. Other impactors were not as effective at excluding coal dust. The impactors evaluated in that study were either not commercially available or were multi-stage, expensive, and difficult to use for personal measurements. A commercial version of the BOM impactor, called the DPM Cassette, was recently introduced by SKC. Tests were conducted to evaluate the performance of the DPM Cassette for measuring diesel-source elemental carbon in the presence of coal dust. Bituminous coals from three mines in two different coal provinces were examined. The dust particle diameters were small and the coal dust contained a high percentage of carbon, thereby giving a worst-case condition for non-anthracite coal mines. Results for the DPM Cassette were essentially identical to those obtained by the BOM impactors in a previous study. At a respirable coal dust concentration of 5.46 mg m(-3), which is 3.8 times the regulatory limit, the DPM Cassette collected only 34 microg m(-3) of coal-source elemental carbon.
Coalbed methane resource potential and current prospects in Pennsylvania
Markowski, A.K.
1998-01-01
Coalbed methane gas content analyses from exploratory coal cores and existing data indicate that gas content generally increases with increasing depth and rank. The coal beds studied are from the Main Bituminous field of Pennsylvania (which currently contains 24 coalbed methane pools) and the Northern and Southern Anthracite coal fields. They range from the Middle Pennsylvanian Allegheny Group to the Late Pennsylvanian-Early Permian Dunkard Group. Previous US Bureau of Mines studies revealed gas contents from 0.4 to 13.8 cm3/g at depths of 99 to 432 m for the bituminous coal beds of the Allegheny Group. More recent core data from the Allegheny Group yielded gas contents from 2.2 to 8.9 cm3/g at depths from 167 to 387 m. In the Anthracite region of eastern Pennsylvania, the little data that are available show that gas content is anomalously high or low. Gas yields from test holes in eastern Pennsylvania are low with or without artificial stimulation mainly due to the lack of a good cleat system. Overall estimates of coalbed methane resources indicate there may be 1.7 Tm3 (61 Tcf) of gas-in-place contained in the Northern Appalachian coal basin. The amount of technically recoverable coalbed methane resources is projected by the US Geological Survey National Oil and Gas Resource Assessment Team [US Geological Survey National Oil and Gas Resource Assessment Team, 1996. 1995 National assessment of United States oil and gas resources-results, methodology, and supporting data, US Geological Survey Digital Data Series DDS-30, CD-ROM, Denver, CO, 80 pp.] and Lyons [Lyons, P.C., 1997. Central-northern Appalachian coalbed methane flow grows. Oil and Gas Journal 95 (27) 76-79] at 0.3 Tm3 (11.48 Tcf). This includes portions of Pennsylvania, Ohio, West Virginia, and a small part of Maryland. Consequently, a mapping investigation was conducted to evaluate the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval of southwestern Pennsylvania. Phase II focused on a stratigraphic delineation and evaluation of Allegheny Group coal beds and associated sandstones. Several prospective coal beds and associated facies relationships with channel-fill sandstones were determined. Possible non-coal scenarios for coalbed methane include erosional contacts between coal beds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden, and are also potential coalbed methane targets. Additional Pennsylvania Geological Survey drilling/coalbed methane sampling occurred in Armstrong, Beaver, Cambria, Greene, Lawrence, Somerset, and Washington Counties. Raw coalbed methane desorption data tables/graphical displays of gas contents versus depth, thickness, and time, and average composition and heating values from coal beds of the Allegheny Group to the Dunkard Group are available at the Pennsylvania Geological Survey. Further information on cross-sections, isopleth maps, isopach maps, raw drillhole data, and ownership issues can also be obtained from the same source.A mapping of the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania reveal several prospective coal beds and associated facies relationships with channel-fill sandstones. Possible non-coal scenarios for coalbed methane include erosional contacts between coalbeds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden. and are also potential coalbed methane targets.
Derickson, A
1991-06-01
This study examines the early efforts of the United Mine Workers of America to illuminate the problem of occupational respiratory diseases in the coal fields. The union used the hearings of the US Anthracite Coal Strike Commission of 1902-3 to draw public attention to "miners' asthma." In 1915, it began to agitate for the provision of workers' compensation benefits for victims of this disorder. Throughout the 1950s and 1960s, the union's Welfare and Retirement Fund disseminated information on advances in understanding chronic pulmonary diseases of mining. In particular, the miners' fund promoted the British conceptualization of a distinctive coal workers' pneumoconiosis. At the same time, the staff of the union health plan pressed the US Public Health Service and the Pennsylvania Department of Health to investigate the prevalence of occupational respiratory diseases among bituminous miners. Taken together, these endeavors contributed significantly to growing recognition of the severity and extent of this important public health problem and thus helped lay the foundation for the Federal Coal Mine Health and Safety Act of 1969.
Derickson, A
1991-01-01
This study examines the early efforts of the United Mine Workers of America to illuminate the problem of occupational respiratory diseases in the coal fields. The union used the hearings of the US Anthracite Coal Strike Commission of 1902-3 to draw public attention to "miners' asthma." In 1915, it began to agitate for the provision of workers' compensation benefits for victims of this disorder. Throughout the 1950s and 1960s, the union's Welfare and Retirement Fund disseminated information on advances in understanding chronic pulmonary diseases of mining. In particular, the miners' fund promoted the British conceptualization of a distinctive coal workers' pneumoconiosis. At the same time, the staff of the union health plan pressed the US Public Health Service and the Pennsylvania Department of Health to investigate the prevalence of occupational respiratory diseases among bituminous miners. Taken together, these endeavors contributed significantly to growing recognition of the severity and extent of this important public health problem and thus helped lay the foundation for the Federal Coal Mine Health and Safety Act of 1969. Images p784-a p787-a PMID:1827571
Comparative assessment of ceramic media for drinking water biofiltration.
Sharma, Dikshant; Taylor-Edmonds, Liz; Andrews, Robert C
2018-01-01
Media type is a critical design consideration when implementing biofiltration for drinking water treatment. Granular activated carbon (GAC) has been shown to provide superior performance when compared to a wide range of media types, largely due to its higher surface area. Engineered ceramic media is an attractive alternative to GAC as it has a similar surface area but at a lower cost. This pilot-scale biofiltration study compared the performance of GAC, anthracite and two different effective sizes of ceramic (CER) media (1.0 mm and 1.2 mm), in terms of dissolved organic carbon (DOC), head loss, turbidity, and disinfection by-product formation potential (DBPFP). Biological acclimation was monitored using adenosine tri-phosphate (ATP) measurements; biomass was further examined using laccase and esterase enzyme activity assays. When compared to other media types examined, biological GAC had higher (p > 0.05) removals of DOC (9.8 ± 3.8%), trihalomethane formation potential (THMFP, 26.3 ± 10.2%), and haloacetic acid formation potential (HAAFP, 27.2 ± 14.0%). CER media required 6-7 months to biologically acclimate, while filters containing GAC and anthracite were biologically active (>100 ng of ATP/g media) following 30-45 days of operation. Once acclimated, ATP values of 243 and 208 ng/g attained for CER 1.0 and 1.2, respectively, were statistically comparable to GAC (244 ng/g) and higher than anthracite (110 ng/g), however this did not translate into greater organics removal. Esterase and laccase enzyme kinetics were highest for GAC, while CER was shown to have greater biodegradation potential than anthracite. The four media types attained similar turbidity reduction (p > 0.05), however ceramic media filters were observed to have run times which were 1.5-2.3 times longer when compared to anthracite, which could represent potential cost savings in terms of energy for pumping and backwash requirements. Overall, ceramic media was shown to be a potential alternative to anthracite when considering biofiltration, especially during cold water conditions (T < 10 °C). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.
2013-12-01
Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.
Chapman, Robert S; Silverman, Debra T; He, Xinghzhou; Hu, Wei; Vermeulen, Roel; Ning, Bofu; Fraumeni, Joseph F; Rothman, Nathaniel; Lan, Qing
2012-01-01
Objective To estimate the risk of lung cancer associated with the use of different types of coal for household cooking and heating. Setting Xuanwei County, Yunnan Province, China. Design Retrospective cohort study (follow-up 1976-96) comparing mortality from lung cancer between lifelong users of “smoky coal” (bituminous) and “smokeless coal” (anthracite). Participants 27 310 individuals using smoky coal and 9962 individuals using smokeless coal during their entire life. Main outcome measures Primary outcomes were absolute and relative risk of death from lung cancer among users of different types of coal. Unadjusted survival analysis was used to estimate the absolute risk of lung cancer, while Cox regression models compared mortality hazards for lung cancer between smoky and smokeless coal users. Results Lung cancer mortality was substantially higher among users of smoky coal than users of smokeless coal. The absolute risks of lung cancer death before 70 years of age for men and women using smoky coal were 18% and 20%, respectively, compared with less than 0.5% among smokeless coal users of both sexes. Lung cancer alone accounted for about 40% of all deaths before age 60 among individuals using smoky coal. Compared with smokeless coal, use of smoky coal was associated with an increased risk of lung cancer death (for men, hazard ratio 36 (95% confidence interval 20 to 65); for women, 99 (37 to 266)). Conclusions In Xuanwei, the domestic use of smoky coal is associated with a substantial increase in the absolute lifetime risk of developing lung cancer and is likely to represent one of the strongest effects of environmental pollution reported for cancer risk. Use of less carcinogenic types of coal could translate to a substantial reduction of lung cancer risk. PMID:22936785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-06-01
This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. Themore » complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less
Laser Induced Hydrogen Generation from Coal in Water
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Kholikov, Khomidkhodzha; Er, Ali
We report an alternative way of obtaining hydrogen using nanosecond laser pulses and various ranks of coal and coke. SEM-EDS analysis shows the atomic concentrations of elements on each of the powders which also is in good agreement with calorimeter analysis. Coal and coke powders were irradiated with 1064nm IR and 532 nm green Nd:YAG pulsed laser beam for 45 minutes. The volume of the total gas generated after irradiation of each rank was measured using the water displacement method. The amount of gas generated increased when using 532 nm compared to 1064 nm. Post-irradiation SEM images show structural differences with samples before irradiation. The amount of gas generation with respect to laser energy density shows nonlinear correlation. Generated gas concentrations were then analyzed using gas chromatography (GC). Hydrogen and carbon monoxide were the two most highly generated gases, and the efficiency of each rank of coal was determined by analyzing the hydrogen to carbon monoxide ratio. The highest efficiency rank was anthracite, with hydrogen to carbon monoxide ratio of 1.4. GC analysis also showed that the maximum hydrogen generation occurs at 100 mJ/pulse laser energy. The efficiency of each rank of coal was observed to correlate with carbon content. American Chemical Society Petroleum Research Fund.
Household air pollution and lung cancer in China: a review of studies in Xuanwei.
Seow, Wei Jie; Hu, Wei; Vermeulen, Roel; Hosgood Iii, H Dean; Downward, George S; Chapman, Robert S; He, Xingzhou; Bassig, Bryan A; Kim, Christopher; Wen, Cuiju; Rothman, Nathaniel; Lan, Qing
2014-10-01
Over half of the world's population is exposed to household air pollution from the burning of solid fuels at home. Household air pollution from solid fuel use is a leading risk factor for global disease and remains a major public health problem, especially in low- and mid-income countries. This is a particularly serious problem in China, where many people in rural areas still use coal for household heating and cooking. This review focuses on several decades of research carried out in Xuanwei County, Yunnan Province, where household coal use is a major source of household air pollution and where studies have linked household air pollution exposure to high rates of lung cancer. We conducted a series of case-control and cohort studies in Xuanwei to characterize the lung cancer risk in this population and the factors associated with it. We found lung cancer risk to vary substantially between different coal types, with a higher risk associated with smoky (i.e., bituminous) coal use compared to smokeless (i.e., anthracite) coal use. The installation of a chimney in homes resulted in a substantial reduction in lung cancer incidence and mortality. Overall, our research underscores the need among existing coal users to improve ventilation, use the least toxic fuel, and eventually move toward the use of cleaner fuels, such as gas and electricity.
Force Time History During the Impact of a Barge Train with a Lock Approach Wall Using Impact_Force
2010-06-01
anthracite coal and a simply supported, long-span precast impact beam allows for an evaluation of the conserva- tiveness of the simplified Equation...is a precast , prestressed hollow beam (i.e., flexible structure) with a length of 117 feet 7 3/4 inches. A cross-section of the hollow beam is shown...XGlobal mbarge train Flexible Approach wall Flexible Beam deformation at time t time (secs) F n or m al -w al l (k ip s) 0 0.5 1 1.5 2 2.5 3 3.5 4 0
Chaplin, Jeffrey J.
2005-01-01
More than 100 years of anthracite coal mining has changed surface- and ground-water hydrology and contaminated streams draining the Southern Anthracite Coal Field in east-central Pennsylvania. Bear Creek drains the western prong of the Southern Anthracite Coal Field and is affected by metals in drainage from abandoned mines and streamwater losses. Total Maximum Daily Loads (TMDL) developed for dissolved iron of about 5 lb/d (pounds per day) commonly are exceeded in the reach downstream of mine discharges. Restoration of Bear Creek using aerobic ponds to passively remove iron in abandoned mine drainage is under consideration (2004) by the Dauphin County Conservation District. This report, prepared in cooperation with the Dauphin County Conservation District, evaluates chemical and hydrologic data collected in Bear Creek and its receiving waters prior to implementation of mine-drainage treatment. The data collected represent the type of baseline information needed for documentation of water-quality changes following passive treatment of mine drainage in Pennsylvania and in other similar hydrogeologic settings. Seven surface-water sites on Bear Creek and two mine discharges were monitored for nearly three years to characterize the chemistry and hydrology of the following: (1) Bear Creek upstream of the mine discharges (BC-UMD), (2) water draining from the Lykens-Williamstown Mine Pool at the Lykens Water-Level Tunnel (LWLT) and Lykens Drift (LD) discharges, (3) Bear Creek after mixing with the mine discharges (BC-DMD), and (4) Bear Creek prior to mixing with Wiconisco Creek (BCM). Two sites on Wiconisco Creek, upstream and downstream of Bear Creek (WC-UBC and WC-DBC, respectively), were selected to evaluate changes in streamflow and water quality upon mixing with Bear Creek. During periods of below-normal precipitation, streamwater loss was commonly 100 percent upstream of site BC-UMD (streamflow range = 0 to 9.7 ft3/s (cubic feet per second)) but no loss was detected downstream owing to sustained mine water drainage from the Lykens Water-Level Tunnel (range = 0.41 to 3.7 ft3/s), Lykens Drift (range = 0.40 to 6.1 ft3/s), and diffuse zones of seepage. Collectively, mine water inputs contributed about 84 percent of base flow and 53 percent of stormflow measured in the downstream reach. An option under consideration by the Dauphin County Conservation District for treatment of the discharge from the LWLT requires the source of the discharge to be captured and rerouted downstream, bypassing approximately 1,000 feet of stream channel. Because streamwater loss upstream of the tunnel was commonly 100 percent, rerouting the discharge from the LWLT may extend the reach of Bear Creek that is subject to dryness. Differences in the chemistry of water discharging from the LWLT compared to the LD suggest that the flow path through the Lykens-Williamstown Mine Pool to each mine discharge is unique. The LWLT is marginally alkaline (median net acid neutralizing capacity (ANC) = 9 mg/L (milligrams per liter) as CaCO3; median pH = 5.9), commonly becomes acidic (minimum net ANC = -74 mg/L as CaCO3) at low flow, and may benefit from alkaline amendments prior to passive treatment. Water discharging from the LD provides excess ANC (median net ANC = 123 mg/L as CaCO3; median pH = 6.5) to the downstream reach and is nearly anoxic at its source (median dissolved oxygen = 0.5 mg/L). Low dissolved oxygen water with relatively high ANC and metals concentrations discharging from the LD is characteristic of a deeper flow path and longer residence time within the mine pool than the more acidic, oxygenated water discharging from the LWLT. TMDLs for iron have been developed for dissolved species only. Consequently, distinguishing between dissolved and suspended iron in Bear Creek is important for evaluating water-quality improvement through TMDL attainment. Median total iron concentration increased from 550 mg/L (micrograms per liter) at site BC-UM
Shirey, T B; Thacker, R W; Olson, J B
2012-06-01
Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
The petrology of some Indians coals
NASA Astrophysics Data System (ADS)
Daulay, Bukin; Cook, Alan C.
Samples from coal seams from all of the major Indonesian coalfields, were examined using reflected white light and reflected flourescence mode microscopy techniques. The coals are rich in vitrinite and have variable, commonly high, contents of liptinite. Inertinite is rare to sparse, with the exception of a few (typically Neogene) coals. Overall, no major differences in coal type exist bewteen Paleogene and Neogene coals. Most of the coals are low in rank ( vitrinite reflectanceoverlineRvmax, 0.30% to 0.57% ). The Neogene coals are typically much lower in rank than the Paleogene coals, and this tendency is most clearly seen within the Kalimantan occurences ( PaleogeneoverlineRvmax 0.53% to 0.67%; Neogene 0.30% to 0.57% ). In Sumatera at Bukit Asam, contact alteration from intrusions causes a marked rise in overlineRv max from the range 0.30% to 0.53% overlineRv max to semi-anthracite (2.6%). Near the intrusions, very high lateral and vertical rank gradients are present. At Ombilin in central west Sumatera, regional rank is relatively high ( overlineRvmax 0.55% to 0.77% ), and similar effects from contact alteration ( overlineRvmax up to 4.6% ) can again be detected. The coals are suitable for power generation. Grindability characteristics should be generally favourable, but the rank of the coals is typically sufficiently low for spontaneous combusion to be a significant problem. The rank of the coals is generally too low for use as a single component charge in conventional coke ovens. Significant reverses exist of coals that could be added as a minor component to imported strongly coals to decrease the foreign exchange cost of coke. The rank and type indicate that yield characteristics should be good for most liquefaction and gasification processes. The coals, and to a lesser extent associated dispersed organic matter, form important source rocks for some of the major natural oil accumulations in Indonesians sedimentary basins.
Wang, Teresa W.; Vermeulen, Roel C.H.; Hu, Wei; Liu, Gang; Xiao, Xiaohui; Alekseyev, Yuriy; Xu, Jun; Reiss, Boris; Steiling, Katrina; Downward, George S.; Silverman, Debra T.; Wei, Fusheng; Wu, Guoping; Li, Jihua; Lenburg, Marc E.; Rothman, Nathaniel; Spira, Avrum; Lan, Qing
2015-01-01
In China’s rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the world. While the elevated disease risk in this population has been linked to the usage of smoky (bituminous) coal as compared to smokeless (anthracite) coal, the underlying molecular changes associated with this exposure remains unclear. To understand the physiologic effects of smoky coal exposure, we analyzed the genome-wide gene-expression profiles in buccal epithelial cells collected from healthy, non-smoking female residents of Xuanwei and Fuyuan who burn smoky (n = 26) and smokeless (n = 9) coal. Gene-expression was profiled via microarrays, and changes associated with coal type were correlated to household levels of fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Expression levels of 282 genes were altered with smoky versus smokeless coal exposure (P < 0.005), including the 2-fold increase of proinflammatory IL8 and decrease of proapoptotic CASP3. This signature was more correlated with carcinogenic PAHs (e.g. Benzo[a]pyrene; r = 0.41) than with non-carcinogenic PAHs (e.g. Fluorene; r = 0.08) or PM2.5 (r = 0.05). Genes altered with smoky coal exposure were concordantly enriched with tobacco exposure in previously profiled buccal biopsies of smokers and non-smokers (GSEA, q < 0.05). This is the first study to identify a signature of buccal epithelial gene-expression that is associated with smoky coal exposure, which in part is similar to the molecular response to tobacco smoke, thereby lending biologic plausibility to prior epidemiological studies that have linked this exposure to lung cancer risk. PMID:26468118
Wang, Teresa W; Vermeulen, Roel C H; Hu, Wei; Liu, Gang; Xiao, Xiaohui; Alekseyev, Yuriy; Xu, Jun; Reiss, Boris; Steiling, Katrina; Downward, George S; Silverman, Debra T; Wei, Fusheng; Wu, Guoping; Li, Jihua; Lenburg, Marc E; Rothman, Nathaniel; Spira, Avrum; Lan, Qing
2015-12-01
In China's rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the world. While the elevated disease risk in this population has been linked to the usage of smoky (bituminous) coal as compared to smokeless (anthracite) coal, the underlying molecular changes associated with this exposure remains unclear. To understand the physiologic effects of smoky coal exposure, we analyzed the genome-wide gene-expression profiles in buccal epithelial cells collected from healthy, non-smoking female residents of Xuanwei and Fuyuan who burn smoky (n = 26) and smokeless (n = 9) coal. Gene-expression was profiled via microarrays, and changes associated with coal type were correlated to household levels of fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Expression levels of 282 genes were altered with smoky versus smokeless coal exposure (P < 0.005), including the 2-fold increase of proinflammatory IL8 and decrease of proapoptotic CASP3. This signature was more correlated with carcinogenic PAHs (e.g. Benzo[a]pyrene; r = 0.41) than with non-carcinogenic PAHs (e.g. Fluorene; r = 0.08) or PM2.5 (r = 0.05). Genes altered with smoky coal exposure were concordantly enriched with tobacco exposure in previously profiled buccal biopsies of smokers and non-smokers (GSEA, q < 0.05). This is the first study to identify a signature of buccal epithelial gene-expression that is associated with smoky coal exposure, which in part is similar to the molecular response to tobacco smoke, thereby lending biologic plausibility to prior epidemiological studies that have linked this exposure to lung cancer risk. Published by Oxford University Press 2015.
Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng
2014-01-01
Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649
The aspen-gray birch forests of the Anthracite Region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
This paper is a progress report of forest research in the Anthracite Region by personnel of the Station's branch at Kingston, Pa. It is the fourth in a series of seven reports dealing with the principal forest types in the Anthracite Region.
Microfilming maps of abandoned anthracite mines: mines in the southern anthracite field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gait, G.B.
1978-01-01
This report is the fifth in a series concerning the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region. A catalog of the microfilmed maps of 47 of 49 major mines and 18 independent mines in the Southern field is presented. Previous reports included catalogs of microfilmed maps of mines in the Eastern Middle field, the Wyoming and Lackawanna Basins of the Northern field, and the Western Middle anthracite field.
NASA Astrophysics Data System (ADS)
Pham, John Dinh Chuong
In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.
Evaluation of the mechanical properties of class-F fly ash.
Kim, Bumjoo; Prezzi, Monica
2008-01-01
Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.
Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, Xudong
2008-01-01
The mineralogy and geochemistry of a superhigh-organic-sulfur (SHOS) coal of Late Permian age from the Yanshan Coalfield, Yunnan Province, southwestern China, have been studied using optical microscope, low-temperature ashing plus X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, a sequential chemical extraction procedure, and inductively coupled plasma mass spectrometry. The M9 Coal from the Yanshan Coalfield is a SHOS coal that has a total sulfur content of 10.12%-11.30% and an organic sulfur content of 8.77%-10.30%. The minerals in the coal consist mainly of high-temperature quartz, sanidine, albite, muscovite, illite, pyrite, and trace amounts of kaolinite, plagioclase, akermanite, rutile, and dawsonite. As compared with ordinary worldwide (bituminous coals and anthracite) and Chinese coals, the M9 Coal is remarkably enriched in B (268????g/g), F (841????g/g), V (567????g/g), Cr (329????g/g), Ni (73.9????g/g), Mo (204????g/g), and U (153????g/g). In addition, elements including Se (25.2????g/g), Zr (262????g/g), Nb (20.1????g/g), Cd (2.07????g/g), and Tl (2.03????g/g) are also enriched in the coal. Occurrence of high-temperature quartz, sanidine, muscovite, and illite in the M9 Coal is evidence that there is a volcanic ash component in the coal that was derived from acid volcanic ashes fallen into the swamp during peat accumulation. Occurrence of albite and dawsonite in the coal and strong enrichment of some elements, including F, S, V, Cr, Ni, Mo and U, are attributed to the influence by submarine exhalation which invaded along with seawater into the anoxic peat swamp. Abundances of lithophile elements, including rare earth elements, Nb, Y, Zr, and TiO2, indicate that the silicate minerals in the coal were derived from the northern Vietnam Upland to the south of the basin. ?? 2008 Elsevier B.V. All rights reserved.
Palmer, C.A.; Lyons, P.C.
1990-01-01
Twelve hand-picked vitrinite concentrates and companion whole-coal samples were analyzed for trace and minor elements by instrumental neutron activation analysis (INAA) and direct-current-arc spectrographic techniques (DCAS). The vitrinite concentrates contained 94 to nearly 100 vol.% vitrinite compared to 71-95 vol.% in the companion whole coals. The ash contents of the vitrinite concentrates were 2 to more than 190 times less than the ash contents of the companion whole coals. Organic and inorganic affinities were determined by comparing the elemental concentrations in the vitrinite concentrates to the concentrations in the companion whole coals. The ratios of these concentrations for 33 selected elements are shown in Figure 1. Ratios greater than 1 indicate organic affinity, and ratios less than 1 indicate inorganic affinity. Br and W generally showed organic affinity in all samples in this study. In the nine samples from the eastern United States (Fig. 1A-C) less than one-fourth of the trace elements show organic affinity compared to nearly one-half for the three English and Australian samples (Fig. 1D). The elements that generally show organic affinity in the non-U.S.A. samples studied include As, Cs, Hf, and Ni, which have generally inorganic affinities in the U.S.A. samples, and Cr, Sb, Se, and U, which have mixed (both organic and inorganic) affinities, in the U.S.A. coals studied, has an inorganic affinity in the English coals studied. B shows organic affinity in the samples from the Illinois basin (Fig. 1C). For the samples studied, Ba shows organic affinity in the Appalachian basin bituminous coals (Fig. 1B), inorganic affinity in the Illinois basin coals, and overall mixed affinities. In all the samples studied, Cu, Mn, Na, Sr, Ta, V, and Zn show mixed affinities, and A1, Co, Eu, Fe, Ga, K, La, Mg, Sc, Si, Th, Ti, and Ub have generally inorganic affinity. ?? 1990.
Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler
NASA Astrophysics Data System (ADS)
Wang, Zhiwei; Yu, Wugao; Bo, Shi
The first 100MW CFB boiler, designed by the Thermal Power Research Institute and manufactured by Harbin Boiler Company Limited, has been successfully running in Jiangxi Fenyi Power Plant since 2003. Local high ash content anthracite and lean coal that are very difficult to burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and startup with two under bed burners, and the boiler efficiency higher than 88% can be got after the combustion modification test. The CFB boiler can be operated with full load and reaches design parameters. The emissions of NO, N2O and CO are less than 7Omg/m3, 30mg/m3, and 125mg/m3, respectively, and SO2 less than 400mg/m3 after limestone injection. The bottom ash temperature from bed ash coolers is less than 120°C after its modification. Coal blockage at the coal storage silo is the main problem influencing the CFB boiler continuous operation. The running experiences for 5 years proved that the CFB boiler performance is successful, and the results were applied in 210 MW and 330 MW CFB Boiler design of Fenyi Power Plant.
Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter
2004-02-01
In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included.
Collection, chemical analysis, and evaluation of coal samples in 1975
Swanson, Vernon Emanuel; Medlin, J.H.; Hatch, J.R.; Coleman, S.L.; Wood, G.H.; Woodruff, S.D.; Hildebrand, R.T.
1976-01-01
During 1975, the U.S. Geological Survey, in cooperation with other Federal and State agencies, university groups, and private companies, continued its program to augment and refine information on the composition of coal in the United States. This report includes all analytical data on 799 channel samples of coal beds from major operating mines and core holes in 28 States, collected mainly by State Geological Surveys under a cooperative program funded largely by the U.S. Energy Research and Development Administration. For each sample, the U.S. Geological Survey has quantitatively determined the amounts of 24 major, minor, and trace elements (including AI, As, Cd, Cu, F, Hg, Mn, Na, Pb, Se, U, and Zn), and has semiquantitatively determined the concentrations of 15 to 20 additional trace elements (including B, Be, Cr, Ge, Mo, Ni, and V). In addition, the U.S. Bureau of Mines has provided proximate and ultimate analyses, and Btu and forms-of-sulfur determinations on 488 of the samples. Statistical summaries of the data are given for all coal samples in the United States, for coal divided by rank (53 anthracite, 509 bituminous coal, 183 subbituminous coal, and 54 lignite samples), and the arithmetic means, ranges, and geometric means and deviations are given for the coal in each of seven different major coal areas in the United States. For example, the average coal in the United States contains 11.3 percent ash, 10.0 percent moisture, 2.0 percent sulfur, and has 11,180 Btu per pound; of the 10 major oxides determined on the 525?C ash, the average SiO2 content is 38 percent, Al2O3 20 percent, and Na2O 0.67 percent; the average Cd content is 7.3 ppm, Pb 114 ppm, and Zn 151 ppm (range 1 ppm to 6.0 percent). As determined on the raw coal, the average Hg content is 0.18 ppm (range <0.01 to 63.0 ppm), the Se content 4.1 ppm (range <0.1 to 150 ppm), and the U content 1.8 ppm (range <0.2 to 42.9 ppm).
Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.
Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D
2003-01-01
Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virr, M.J.
Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables amore » three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.« less
Reduction of phosphate ores by carbon: Part I. Process variables for design of rotary kiln system
NASA Astrophysics Data System (ADS)
Mu, Jacob; Leder, Frederic; Park, Won C.; Hard, Robert A.; Megy, Joseph; Reiss, Howard
1986-12-01
Feasibility is established for the reduction of phosphate ores in a rotary kiln, avoiding electric submerged arc furnace technology. This represents a totally new approach to phosphoric acid. Reduction rates of phosphate ore-silica mixtures by carbon in the temperature range of 1100 to 1500 °C under several CO partial pressures in nitrogen were measured in thermogravimetric analyzers. Parameters such as carbon and silica contents, particle and pellet sizes, and gas flow rate were also evaluated with various domestic and foreign phosphate ores. Furthermore, a variety of carbon sources such as subbituminous coals, bituminous coals, anthracite, petroleum coke, and metallurgical coke were tested as reducing agents. Thermodynamic considerations elucidate the temperature dependence of overall conversion as well as the role of excess silica in establishing equilibrium pressure. These findings provide the background for analysis of the kinetics of conversion in Part II of this work. These studies, in conjunction with a previously published work, indicate the importance of intergranular melt phases in the kinetics of otherwise solid state reactions.
NASA Astrophysics Data System (ADS)
Li, Weifeng; Zhan, Jing; Fan, Yanqing; Wei, Chang; Zhang, Chuanfu; Hwang, Jiann-Yang
2017-04-01
A pyrometallurgical process for the direct reduction of molten high-lead smelting slag obtained by the Shuikoushan (SKS) method was reported in this article using solid anthracite as the fuel and reductant. The chemical composition, the lead phase composition, and the physical properties of the molten high-lead slag were examined. The effects of the process parameters on the recovery rate of valued metals were investigated in the laboratory. According to the experimental results, a new efficient bottom blow reduction furnace was employed in the pilot-scale test for high-lead slag reduction. The results showed the average recovery rate of lead was more than 96.0% with lower Pb and high Zn content of the reducing slag under the condition of reduction temperature 1100-1200°C, coal ratio 5.5-7.5%, reduction time 90-150 min, CaO/SiO2 ratio 0.35-0.45, and FeO/SiO2 ratio 1.4-1.55. Moreover, nearly 250 kg of standard coal per ton of crude Pb output was reduced compared with the blast furnace reduction process.
Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.
The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.
Study of coal and graphite specimens by means of Raman and cathodoluminescence.
Kostova, Irena; Tormo, Laura; Crespo-Feo, Elena; Garcia-Guinea, Javier
2012-06-01
The weak luminescence shown by coals has been attributed to accessorial minerals and poly-nuclear aromatic hydrocarbons, such as exinite, vitrinite or inertinite, while the luminescence quenching has been found in asphaltenes produced by coal hydrogenation or in pyridine extracts. Nowadays, the spatial resolution and the improved luminescence efficiency of the modern spectrometers allow some details of the luminescent emission centers to be explained. We have selected museum historical coal specimens with different rank, i.e., peat, lignite, sub-bituminous, bituminous, and anthracite to be analyzed by their spectra from cathodoluminescence probe (CL) of an environmental scanning electron microscopy (ESEM), with an energy dispersive spectrometry analyzer (EDS). Additional analytical controls were also performed by X-ray diffraction (XRD), X-ray fluorescence (XRF) and Raman spectrometries. We conclude that coals may display different luminescence emission features coming from several different sources, as follows: (i) broadband of intense luminescence from polynuclear aromatic hydrocarbons, (ii) weakly visible broadband luminescence attributed to band-tail states caused by variations in the energy gap of individual sp(2) carbon clusters, which are different in size and/or shape, (iii) silicate impurities causing the common luminescence peak at 325 nm observed in coals. This peak is due to non-bridging oxygen hole centres (≡Si-O·) probably generated by precursor Si-O-C species formed by ≡Si-O· defects and carbon atoms; (iv) a 710 nm CL emission commonly detected also in wood and ivory, which has been correlated with hydrocarbon groups of chlorophyll or lignine. Coals are very complex rocks, composed by both organic and inorganic phases with variable and complex spectra. More analyses are necessary and carbonaceous standards of graphite, silicon carbide, stuffed carbon silica and diamond at variable experimental conditions have to be developed. Copyright © 2012 Elsevier B.V. All rights reserved.
Ding, Xiao-Kai; Zhang, Lu-Lu; Yang, Xue-Lin; Fang, Hui; Zhou, Ying-Xian; Wang, Ji-Qing; Ma, Di
2017-12-13
In this study, low cost anthracite-derived dual-phase carbon-coated Li 3 V 2 (PO 4 ) 3 composites have been successfully prepared via a traditional solid-phase method. XRD results show that the as-prepared samples have high crystallinity and anthracite introduction has no influence on the LVP crystal structure. The LVP/C particles are uniformly covered with a dual-phase carbon layer composed of amorphous carbon and graphitic carbon. The effect of the amount of anthracite on the battery performance of LVP as a cathode material has also been studied. The LVP/C composite obtained with 10 wt % anthracite (LVP/C-10) delivers the highest initial charge/discharge capacities of 186.1/168.2 mAh g -1 at 1 C and still retains the highest discharge capacity of 134.0 mAh g -1 even after 100 cycles. LVP/C-10 also displays an outstanding average capacity of 140.8 mAh g -1 at 5 C. The superior rate capability and cycling stability of LVP/C-10 is ascribed to the reduced particle size, decreased charge-transfer resistance, and improved lithium ion diffusion coefficient. Our results demonstrate that using anthracite as a carbon source opens up a new strategy for larger-scale synthesis of LVP and other electrode materials with poor electronic conductivity for lithium ion batteries.
Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Massey Simonich, Staci L.
2012-01-01
Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EFRET) from 11 crop residues, 27 firewood and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EFRET varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EFRET for pine (0.34±0.08 mg/kg) and larch (0.29±0.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.081±0.058 mg/kg). However, EFRET for crop residues varied from 0.048±0.008 to 0.37±0.14 mg/kg and were not significantly lower than those for softwood (0.074±0.026 to 0.34±0.08 mg/kg). The EFRET for coal were very high and ranged from 2.2±1.5 (anthracite briquette) to 187±113 mg/kg (raw bituminous chunk). EFRET was positively correlated with EFs of co-emitted particulate matter (EFPM) and phenanthrene (EFPHE) for crop residue and coal, but not for wood. In addition, the ratios of EFPHE/EFRET and EFPM/EFRET for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486
Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.
2010-01-01
Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.
30 CFR 75.302 - Main mine fans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...
30 CFR 75.302 - Main mine fans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...
30 CFR 75.302 - Main mine fans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...
30 CFR 75.302 - Main mine fans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...
30 CFR 75.302 - Main mine fans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...
Dai, S.; Chou, C.-L.; Yue, M.; Luo, K.; Ren, D.
2005-01-01
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr =2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 ??C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed. The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 ??g/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 ??g/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 ??g/g Pd, 1.23 ??g/g Pt, and 0.05 ??g/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids. ?? 2004 Elsevier B.V. All rights reserved.
Growth, cull, and, mortality as factors in managing timber in the Anthracite Region
Miles J. Ferree
1948-01-01
Timberland owners in the Anthracite Region of Pennsylvania frequently ask: What tree species grow best in the region? How large should they be grown? How should we treat them to get the most out of them?
Kuhn, D C; Griffith, J W; Stauffer, J L; Riling, S; Demers, L M
1993-09-01
The relative activation of eicosanoid production which results from the exposure of the alveolar macrophage (AM) to mineral dusts is thought to be a key factor in the pathophysiology of occupational lung disease. We compared in vitro basal and silica-stimulated production of prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) by AM from normal humans and non-human primates (Macaca nemestrina). In addition, we instilled mineral dusts directly into one lung of the non-human primate and evaluated AM eicosanoid production at two week intervals following dust instillation. Unstimulated AM from humans produce more PGE2 and TXA2 than do AM from M. nemestrina. However, in vitro exposure of AM from both species to silica dust produced a qualitatively similar increase in TXA2 production accompanied by no change in PGE2 production. Sequential analysis of AM eicosanoid production following a single bolus exposure to bituminous or anthracite coal dusts, titanium dioxide (TiO2) dust or crystalline silica showed marked variability among individual non-human primates in qualitative and quantitative aspects of dust-induced eicosanoid production. However, the rank order of potency of the different dusts (silica > anthracite > bituminous) correlated with epidemiological evidence relating the type of dust mined to the incidence of pneumoconiosis. These studies suggest that the non-human primate may serve as a model for the study of both the role of eicosanoids in the etiology of dust-induced occupational lung disease and the biochemical basis for individual variability in the response of lung cells to mineral dust exposure.
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Theoretical analysis and experiments for the carburization of vanadium-bearing hot metal
NASA Astrophysics Data System (ADS)
Ma, Deng; Wu, Wei; Dai, Shifan; Liu, Zhibin
2018-01-01
In this study, the feasibility of the carburization of vanadium-bearing hot metal was first investigated by thermodynamic analysis. Next, three carburizers, namely a low-nitrogen carburizer, anthracite, and coke, were used for carburization of 500 g of vanadium-bearing hot metal at 1450 °C, 1500 °C, and 1550 °C, respectively. The carbon increments for the low-nitrogen carburizer, anthracite and coke followed decreasing order in the temperature range from 1450 °C to 1550 °C. Anthracite was the most cost-effective carburizer. Hence, anthracite is used in pilot-scale experiments of the vanadium-bearing hot metal (100 kg and 200 kg). Finally, vanadium extraction experiments of the vanadium-bearing hot metal were carried out in a top-bottom-combined blowing induction furnace. It is proved that the average superheat degree of semi-steel increases from 100 °C to 198 °C by the carburization of vanadium-containing hot metal. Foundation Item: Item Sponsored by National Science Foundation of China (51674092)
Postcombustion and its influences in 135 MWe CFB boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaohua Li; Hairui Yang; Hai Zhang
2009-09-15
In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile,more » and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan
2016-09-01
Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.
Lewan, Michael; Kotarba, M.J.
2014-01-01
Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.
Second stage gasifier in staged gasification and integrated process
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang
2015-10-06
A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.
Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...
Wang, Hai-Feng; Lu, Hai; Li, Jia; Sun, Guo-Hua; Wang, Jun; Dai, Xin-Hua
2014-02-01
The present paper reported the differential scanning calorimetry-thermogravimetry curves and the infrared (IR) absorption spectrometry under the temperature program analyzed by the combined simultaneous thermal analysis-IR spectrometer. The gas products of coal were identified by the IR spectrometry. This paper emphasized on the combustion at high temperature-IR absorption method, a convenient and accurate method, which measures the content of sulfur in coal indirectly through the determination of the content of sulfur dioxide in the mixed gas products by IR absorption. It was demonstrated, when the instrument was calibrated by varied pure compounds containing sulfur and certified reference materials (CRMs) for coal, that there was a large deviation in the measured sulfur contents. It indicates that the difference in chemical speciations of sulfur between CRMs and the analyte results in a systematic error. The time-IR absorption curve was utilized to analyze the composition of sulfur at low temperatures and high temperatures and then the sulfur content of coal sample was determined by using a CRM for coal with a close composition of sulfur. Therefore, the systematic error due to the difference in chemical speciations of sulfur between the CRM and analyte was eliminated. On the other hand, in this combustion at high temperature-IR absorption method, the mass of CRM and analyte were adjusted to assure the sulfur mass equal and then the CRM and the analyte were measured alternately. This single-point calibration method reduced the effect of the drift of the IR detector and improved the repeatability of results, compared with the conventional multi-point calibration method using the calibration curves of signal intensity vs sulfur mass. The sulfur content results and their standard deviations of an anthracite coal and a bituminous coal with a low sulfur content determined by this modified method were 0.345% (0.004%) and 0.372% (0.008%), respectively. The uncertainty (U, k =2) of sulfur contents of two coal samples was evaluated to be 0.019% and 0.021%, respectively. Two main modifications, namely the calibration using the coal CRM with a similar composition of low-temperature sulfur and high temperature sulfur, and the single-point calibration alternating CRM and analyte, endow the combustion at high temperature-IR absorption method with an accuracy obviously better than that of the ASTM method. Therefore, this modified method has a well potential in the analysis of sulfur content.
The white pine - oak forests of the anthracite region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The white pine - oak forests in the Anthracite Region occupy approximately one-fifth of the forested area. They occur chiefly in the central and southern counties of the region and are characteristic of the fairly fertile agricultural sections in the rolling foothills. Sixty-nine percent are located in these farming areas, another 23 percent are in less accessible...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... of Anthracite Capital, Inc., Auto Data Network Inc., Avenue Group, Inc., Ckrush, Inc., Clickable... securities of Auto Data Network Inc. because it has not filed any periodic reports since the period ended... accurate information concerning the securities of Avenue Group, Inc. because it has not filed any periodic...
NASA Astrophysics Data System (ADS)
Hadi Mosleh, M.; Turner, M.; Sedighi, M.; Vardon, P. J.
2017-01-01
This paper presents the design, development, and application of a laboratory setup for the experimental investigations of gas flow and reactions in a fractured rock. The laboratory facility comprises (i) a high pressure manometric sorption apparatus, where equilibrium and kinetic phenomena of adsorption and desorption can be examined, (ii) a high pressure triaxial core flooding system where the chemical reactive transport properties or processes can be explored, and (iii) an ancillary system including pure and mixed gas supply and analysis units. Underground conditions, in terms of pore pressure, confining pressure, and temperature, can be replicated using the triaxial core flooding system developed for depths up to 2 km. Core flooding experiments can be conducted under a range of gas injection pressures up to 20 MPa and temperatures up to 338 K. Details of the design considerations and the specification for the critical measuring instruments are described. The newly developed laboratory facility has been applied to study the adsorption of N2, CH4, and CO2 relevant to applications in carbon sequestration in coal and enhanced coalbed methane recovery. Under a wide range of pressures, the flow of helium in a core sample was studied and the evolution of absolute permeability at different effective stress conditions has been investigated. A comprehensive set of high resolution data has been produced on anthracite coal samples from the South Wales coalfield, using the developed apparatus. The results of the applications provide improved insight into the high pressure flow and reaction of various gas species in the coal samples from the South Wales coalfield.
The northern hardwood forests of the Anthracite Region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The northern hardwood type forest is found only in the northern counties of the Anthracite Region. It dominates the highlands from Sullivan County on the west, to Monroe County on the east. The early lumbermen back in the 1860's, according to Illick and Frontz, "found (some) valleys, hillsides and mountains covered with a dense growth of enormous white pine...
The red oak - white oak forests of the Anthracite Region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The red oak - white oak forests of the Anthracite Region occupy as substantial portion - 28.6 percent or 915,200 acres - of the region's 3,198,400 acres of forest land. These forests have been so heavily cut for lumber and mine timbers during the past 100 years and have been so badly ravaged by fire following these heavy cuttings that in their present condition...
The chestnut oak forests of the anthracite region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The chestnut oak forests occur mostly on poor sites along the tops and southern slopes of ridges in the central and southern parts of the Anthracite Region (see map). This forest type is not of much commercial value. It contains some saw timber and mine timber, but most of the chestnut oak stands are of seedling-and-sapling size. Furthermore, many of them are in...
Goode, Daniel J.; Cravotta, Charles A.; Hornberger, Roger J.; Hewitt, Michael A.; Hughes, Robert E.; Koury, Daniel J.; Eicholtz, Lee W.
2011-01-01
This report, prepared in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), the Eastern Pennsylvania Coalition for Abandoned Mine Reclamation, and the Dauphin County Conservation District, provides estimates of water budgets and groundwater volumes stored in abandoned underground mines in the Western Middle Anthracite Coalfield, which encompasses an area of 120 square miles in eastern Pennsylvania. The estimates are based on preliminary simulations using a groundwater-flow model and an associated geographic information system that integrates data on the mining features, hydrogeology, and streamflow in the study area. The Mahanoy and Shamokin Creek Basins were the focus of the study because these basins exhibit extensive hydrologic effects and water-quality degradation from the abandoned mines in their headwaters in the Western Middle Anthracite Coalfield. Proposed groundwater withdrawals from the flooded parts of the mines and stream-channel modifications in selected areas have the potential for altering the distribution of groundwater and the interaction between the groundwater and streams in the area. Preliminary three-dimensional, steady-state simulations of groundwater flow by the use of MODFLOW are presented to summarize information on the exchange of groundwater among adjacent mines and to help guide the management of ongoing data collection, reclamation activities, and water-use planning. The conceptual model includes high-permeability mine voids that are connected vertically and horizontally within multicolliery units (MCUs). MCUs were identified on the basis of mine maps, locations of mine discharges, and groundwater levels in the mines measured by PaDEP. The locations and integrity of mine barriers were determined from mine maps and groundwater levels. The permeability of intact barriers is low, reflecting the hydraulic characteristics of unmined host rock and coal. A steady-state model was calibrated to measured groundwater levels and stream base flow, the latter at many locations composed primarily of discharge from mines. Automatic parameter estimation used MODFLOW-2000 with manual adjustments to constrain parameter values to realistic ranges. The calibrated model supports the conceptual model of high-permeability MCUs separated by low-permeability barriers and streamflow losses and gains associated with mine infiltration and discharge. The simulated groundwater levels illustrate low groundwater gradients within an MCU and abrupt changes in water levels between MCUs. The preliminary model results indicate that the primary result of increased pumping from the mine would be reduced discharge from the mine to streams near the pumping wells. The intact barriers limit the spatial extent of mine dewatering. Considering the simulated groundwater levels, depth of mining, and assumed bulk porosity of 11 or 40 percent for the mined seams, the water volume in storage in the mines of the Western Middle Anthracite Coalfield was estimated to range from 60 to 220 billion gallons, respectively. Details of the groundwater-level distribution and the rates of some mine discharges are not simulated well using the preliminary model. Use of the model results should be limited to evaluation of the conceptual model and its simulation using porous-media flow methods, overall water budgets for the Western Middle Anthracite Coalfield, and approximate storage volumes. Model results should not be considered accurate for detailed simulation of flow within a single MCU or individual flooded mine. Although improvements in the model calibration were possible by introducing spatial variability in permeability parameters and adjusting barrier properties, more detailed parameterizations have increased uncertainty because of the limited data set. The preliminary identification of data needs includes continuous streamflow, mine discharge rate, and groundwater levels in the mines and adjacent areas. Data collected whe
Flotation and flocculation chemistry of coal and oxidized coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, P.
1990-01-01
The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniquesmore » capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying
2015-10-01
This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.
30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...
30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...
30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...
NASA Astrophysics Data System (ADS)
Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes
2017-03-01
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.
Temporal geochemical variations in above- and below-drainage coal mine discharge
Burrows, Jill E.; Peters, Stephen C.; Cravotta, Charles A.
2015-01-01
Water quality data collected in 2012 for 10 above- and 14 below-drainage coal mine discharges (CMDs), classified by mining or excavation method, in the anthracite region of Pennsylvania, USA, are compared with data for 1975, 1991, and 1999 to evaluate long-term (37 year) changes in pH, SO42−, and Fe concentrations related to geochemistry, hydrology, and natural attenuation processes. We hypothesized that CMD quality will improve over time because of diminishing quantities of unweathered pyrite, decreased access of O2 to the subsurface after mine closure, decreased rates of acid production, and relatively constant influx of alkalinity from groundwater. Discharges from shafts, slopes, and boreholes, which are vertical or steeply sloping excavations, are classified as below-drainage; these receive groundwater inputs with low dissolved O2, resulting in limited pyrite oxidation, dilution, and gradual improvement of CMD water quality. In contrast, discharges from drifts and tunnels, which are nearly horizontal excavations into hillsides, are classified as above-drainage; these would exhibit less improvement in water quality over time because the rock surfaces continue to be exposed to air, which facilitates sustained pyrite oxidation, acid production, and alkalinity consumption. Nonparametric Wilcoxon matched-pair signed rank tests between 1975 and 2012 samples indicate decreases in Fe and SO42− concentrations were highly significant (p < 0.05) and increases in pH were marginally significant (p < 0.1) for below-drainage discharges. For above-drainage discharges, changes in Fe and SO42−concentrations were not significant, and increases in pH were highly significant between 1975 and 2012. Although a greater proportion of above-drainage discharges were net acidic in 2012 compared to below-drainage discharges, the increase in pH between 1975 and 2012 was greater for above- (median pH increase from 4.4 to 6.0) compared to below- (median pH increase from 5.6 to 6.1) drainage discharges. For cases where O2 is limited, transformation of aqueous FeII species to FeIII may be kinetically limited. In contrast, where O2 is abundant, aqueous Fe concentrations may be limited by FeIIImineral precipitation; thus, trends in Fe may not follow those for SO42−. In either case, when the supply of alkalinity is sufficient to buffer decreased acidity, the pH could increase by a step trend from strongly acidic (3–3.5) to near neutral (6–6.5) values. Modeled equilibrium with respect to FeIII precipitates varies with pH and Fe and SO42−reconcentrations: increasing pH promotes the formation of ferrihydrite, while decreasing concentrations of Fe limit the formation of ferrihydrite, and decreasing Fe and SO42−concentrations limit the precipitation of schwertmannite and favor formation of FeIIIhydroxyl complexes and uncomplexed Fe2+ and Fe3+. The analysis of the long-term geochemical changes in CMDs in the anthracite field and the effect of the hydrologic setting on water quality presented in this paper can help prioritize CMD remediation and facilitate selection and design of the most appropriate treatment systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z.Y.; Hong, J.; Liu, Z.Y.
2009-07-01
To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...
30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...
30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...
30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...
30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 71.501 - Sanitary toilet facilities; maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 71.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface Coal Mines § 71.501 Sanitary...
Geomorphology of coal seam fires
NASA Astrophysics Data System (ADS)
Kuenzer, Claudia; Stracher, Glenn B.
2012-02-01
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mining operations. 772.12 Section 772.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... unsuitable for surface coal mining operations. (a) Exploration permit. Any person who intends to conduct coal...
30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...
30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...
30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...
Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals
NASA Astrophysics Data System (ADS)
Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz
2013-04-01
For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de Weireld, D. Prinz , K.-H.A.A. Wolf, "European inter-laboratory comparison of high pressure CO2 sorption isotherms. II: natural coals" IJCG, 2010, 84, 115-124 Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, D. Charriére, D. Li, B.M. Krooss, G. de Weireld, D. Prinz , K.-H.A.A. Wolf, "European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon" Carbon 47 ( 2009 ) 2958 -2969 Goodman, A.L., Busch, A., Duffy, G., Fitzgerald, J.E., Gasem, K.A.M., Gensterblum, Y., Krooss, B.M., Levy, J., Ozdemir, E., Pan, Z., Robinson, Jr., R.L., Schroeder, K., Sudibandriyo, M., White, C. (2004). An Inter-laboratory Comparison of CO2 Isotherms Measured on Argonne Premium Coal Samples. Energy and Fuels 18, 1175-1182. Goodman, A.L., Busch, A., Day, S., Duffy, G.J., Fitzgerald, J.E., Gasem, K.A.M., Gensterblum, Y., Hartman, C., Krooss, B.M., Pan, Z., Pratt, T., Robinson, Jr., R.L., Romanov, V., Sakurovs, R., Schroeder, K., Sudibandriyo, M., White, C.M. (2007) "Inter-laboratory Comparison II: CO2 Isotherms Measured on Moisture-Equilibrated Argonne Premium Coals at 55oC and 15 MPa", International Journal of Coal Geology 72, 153-164.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... for OMB Review; Comment Request; Ground Control Plans for Surface Coal Mines and Surface Work Areas of Underground Coal Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine Safety... Control Plans for Surface Coal Mines and Surface Work Areas of Underground Coal Mines,'' to the Office of...
Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen
2015-01-01
To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 773.4 - Requirements to obtain permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...
30 CFR 773.4 - Requirements to obtain permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...
30 CFR 773.4 - Requirements to obtain permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...
30 CFR 773.4 - Requirements to obtain permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
30 CFR 731.14 - Content requirements for program submissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...
30 CFR 731.14 - Content requirements for program submissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...
30 CFR 731.14 - Content requirements for program submissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...
30 CFR 731.14 - Content requirements for program submissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...
30 CFR 731.14 - Content requirements for program submissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Accumulations of methane and coal dust on... Miscellaneous § 75.1709 Accumulations of methane and coal dust on surface coal-handling facilities. [Statutory Provisions] Adequate measures shall be taken to prevent methane and coal dust from accumulating in excessive...
Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification
NASA Astrophysics Data System (ADS)
Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.
2009-04-01
Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 Ë C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 Ë C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.
43 CFR 20.402 - Interests in underground or surface coal mining operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...
43 CFR 20.402 - Interests in underground or surface coal mining operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...
43 CFR 20.402 - Interests in underground or surface coal mining operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...
75 FR 64974 - Notice of Data Availability on Coal Combustion Residual Surface Impoundments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
...-2009-0640; FRL-9216-3] RIN 2050-AE81 Notice of Data Availability on Coal Combustion Residual Surface... rulemaking (75 FR 51434, August 20, 2010) on the Disposal of Coal Combustion Residuals from Electric... Requests that EPA sent to electric utilities on their coal combustion residual surface impoundments as well...
Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian
2014-01-01
Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the furnace should be considered to improve the deep-air-staging combustion configuration.
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...
30 CFR 77.200 - Surface installations; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... other facilities (including custom coal preparation) shall be maintained in good repair to prevent accidents and injuries to employees. ...
Automatic crack detection method for loaded coal in vibration failure process
Li, Chengwu
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Hatcher, P.G.
1988-01-01
A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.
Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang
2013-09-01
Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial organisms from attached growth systems for effluent quality improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trinh, Le Hung; Zablotskii, V. R.
2017-12-01
The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for... inspections and investigations in coal or other mines shall be made each year for the purposes of, among other...
An Investigation Of The Effect Of Particle Size On Oxidation Of Pyrites In Coal.
NASA Astrophysics Data System (ADS)
Chan, Paul K.; Frost, David C.
1986-08-01
We have used X-ray photoelectron spectroscopy (XPS) to study the variation of surface pyrite density with coal particle size (53 4m - 250 4μm). We also detect and monitor pyrite oxidation to sulfate, an important process influencing the surface-dependency of coal-cleansing methods such as flotation. It is very likely that as coal is crushed as part of the processes employed to rid it of prospective pollutants one eventually reaches a pyrite size which may be called "characteristic". It is this parameter that we examine here. Good correlations are established between (i) the liberation of pyrite and particle size, (ii) surface pyrite/sulfate ratio, and (iii) oxidized and non-oxidized sulfur in a typical Canadian coal. For "non-oxidized", or "fresh" coal, the dispersion of pyrite on the coal surface is inversely proportional to coal particle radius, and the tangents of this curve intersect at a particular particle size (106±5 4μm). Although, for the oxidized coal, the appearance of the curves depend on oxidation time intervals at low temperature with humid air, there is an "optimum" particle size which exhibits maximum surface pyrite. Notably, this "optimum" size corresponds to the tangent's intersection for the non-oxidized coal, and hence the "characteristic" size of constituent pyrite. This should allow prediction of pyrite occurrence, a parameter of paramount interest in coal processing and cleaning technology. Coal surface characterization obtained by XPS after various conditioning steps and during flotation, allow both a functional analysis via the study of chemical shifts and a semi-quantitative analysis based on relative intensity measurements.
Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir
NASA Astrophysics Data System (ADS)
Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.
2017-12-01
It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.
Effects of coal mine subsidence in the Sheridan, Wyoming, area
Dunrud, C. Richard; Osterwald, Frank W.
1980-01-01
Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km north of Sheridan, Wyo., (2) a ground and aerial reconnaissance study of a 5-km^2 coal mining area 8-10 km west of Sheridan, and (31 some environmental consequences and problems caused by coal mining.
Lyons, P.C.; Finkelman, R.B.; Thompson, C.L.; Brown, F.W.; Hatcher, P.G.
1982-01-01
Resin rodlets, sclerenchyma strands and woody splinters, which are collectively called rodlets, were studied by chemical, optical petrographic, and scanning-electron microscopic (SEM) techniques. A study was made of such rodlets from the bituminous coal beds of the central Appalachian basin (Pennsylvanian; Upper Carboniferous) of the United States. Comparisons were made with rodlets from coal beds of the Illinois basin, the Southern Anthracite Field of Pennsylvania, the St. Rose coal field of Nova Scotia, and European and other coal fields. In order to determine their physical and chemical properties, a detailed study was made of the rodlets from the Pomeroy coal bed (high volatile A bituminous coal; Monongahela Formation; Upper Pennsylvanian) of Kanawha County, West Virginia. The origin of the rodlets was determined by a comparative analysis of a medullosan (seed fern) stem from the Herrin (No. 6) coal bed (high volatile C bituminous coal; Carbondale Formation) from Washington County, Illinois. Rodlets are commonly concentrated in fusain or carbominerite layers or lenses in bituminous coal beds of the central Appalachian basin. Most of the rodlets examined in our study were probably derived from medullosan seed ferns. The three types of rodlets are distinguished on the basis of cellularity, morphology and fracture. The resin rodlets studied by us are noncellular and appear to be similar in properties and origin to those found in coal beds of the Middle and Upper Pennsylvanian of the Illinois basin. The resin rodlets extracted from the Pomeroy coal bed exhibit high relief and high reflectance when polished and viewed in reflected light; they are opaque in transmitted light. In cross section, the resin rodlets are oval to round and have diameters ranging from 60 to 450 ??m. Many are solid, but some have vesicles, canals or cavities, which are commonly filled with clay, probably kaolinite. Typically, they have distinct fracture patterns ("kerfs") in longitudinal and cross sections and many are characterized by dense (probably oxidized) rims. The orientation and amounts of void space and mineralization of resin rodlets in coal have resulted in much confusion in their recognition and classification. The resin rodlets are petrographically recognized as sclerotinites of the inertinite maceral group. We here propose that resin rodlets be assigned to the maceral variety of sclerotinites termed "resino-sclerotinite" because of their presumable resinous origin. Other investigators have confused some fusinitized resin rodlets with fungal masses, which have different morphological properties and which probably have different chemical properties. We here propose that such fungal masses be assigned to the maceral variety of sclerotinites termed "fungo-sclerotinite.". The sclerenchyma strands examined in our study are cellular, thick-walled, and crescent-shaped in cross section. They exhibit high reflectance and high relief and belong to semifusinite and fusinite of the inertinite maceral group. Sclerenchyma strands are commonly associated with resin canals in Medullosa and related seed-fern genera, which are common in coal balls of the Illinois basin. We here propose adoption of the maceral varietal terms "sclerenchymo-fusinite" and "sclerenchymo-semifusinite" for these bodies. The woody splinters in the Pomeroy coal bed are cellular and thin-walled and have scattered pits as much as a few microns in diameter. They are dark brown to black in transmitted light and commonly have a lower reflectance than the resino-sclerotinite and sclerenchymo-fusinite of the Pomeroy coal. The woody splinters belong to semifusinite and fusinite of the inertinite maceral group. The maceral varietal terms "xylemo-semifusinite" and "xylemo-fusinite" are here proposed for these bodies. Elemental chemical data for the resin rodlets of the Pomeroy coal bed of the central Appalachian basin indicate that resin rodlets have significantly lower atomic H/C and O/C ratio
30 CFR 701.4 - Responsibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... responsibility for regulation of coal exploration and surface coal mining and reclamation operations during the... regulatory authority has responsibility for review of and decisions on permits and bonding for surface coal mining and reclamation operations, approval of coal exploration which substantially disturbs the natural...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.207 Illumination. Illumination sufficient to provide safe working conditions shall be...
Thin seam miner/trench mining concepts for Illinois Basin surface coal mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudle, R.D.; Lall, V.
1985-07-01
A hybrid surface/underground mining concept, trench-auger mining is an attempt to increase the depth to which coal seams can be surface mined economically by reducing the amount of overburden which must be removed and reclaimed. In this concept the coal seam is first exposed by digging a series of parallel trenches 400 to 1200 ft apart with conventional surface mining equipment. After surface mining the coal from the bottom of the trench, the coal under the surface between the trenches would be extracted with extended-depth augers, operating from the bottoms of the trenches. The RSV Mining Equipment Co. of Hollandmore » has developed a Thin Seam Miner (TSM). The TSM is essentially a remotely controlled, continuous underground mining machine. The hydraulically driven drum cutter head and coal handling auger flights can be operated from a distance outside the underground mine workings. The purpose of this study is to develop and evaluate Thin Seam Miner/Trench Mining (TSM/TM) concepts for use under conditions existing in the Illinois Coal Basin.« less
Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia
Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.
2015-01-01
Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883
Code of Federal Regulations, 2014 CFR
2014-07-01
... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...
30 CFR 77.808 - Disconnecting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.808 Disconnecting devices. Disconnecting devices shall be installed at the...
MOU on Surface Coal Mining Operations establishes a process for improving coordination in the review of permit applications required for surface coal mining and reclamation in waters of the United States
30 CFR 937.700 - Oregon Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Federal program. (c) The rules in this part apply to all surface coal mining operations in Oregon... more stringent environmental control and regulation of surface coal mining operations than do the... extent they provide for regulation of surface coal mining and reclamation operations which are exempt...
30 CFR 700.4 - Responsibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... concurrence of the Federal surface managing agency as unsuitable for all or certain types of surface coal... the regulation of surface coal mining and reclamation operations under the initial regulatory program... coal mining and reclamation operations on Federal lands in accordance with 30 CFR part 745. (e) The...
30 CFR 700.4 - Responsibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... concurrence of the Federal surface managing agency as unsuitable for all or certain types of surface coal... the regulation of surface coal mining and reclamation operations under the initial regulatory program... coal mining and reclamation operations on Federal lands in accordance with 30 CFR part 745. (e) The...
30 CFR 700.4 - Responsibility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... concurrence of the Federal surface managing agency as unsuitable for all or certain types of surface coal... the regulation of surface coal mining and reclamation operations under the initial regulatory program... coal mining and reclamation operations on Federal lands in accordance with 30 CFR part 745. (e) The...
30 CFR 700.4 - Responsibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... concurrence of the Federal surface managing agency as unsuitable for all or certain types of surface coal... the regulation of surface coal mining and reclamation operations under the initial regulatory program... coal mining and reclamation operations on Federal lands in accordance with 30 CFR part 745. (e) The...
30 CFR 700.4 - Responsibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... concurrence of the Federal surface managing agency as unsuitable for all or certain types of surface coal... the regulation of surface coal mining and reclamation operations under the initial regulatory program... coal mining and reclamation operations on Federal lands in accordance with 30 CFR part 745. (e) The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... road or waiving the prohibition on surface coal mining operations within the buffer zone of a public road. 761.14 Section 761.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Procedures for relocating or closing a public road or waiving the prohibition on surface coal mining...
30 CFR 77.313 - Wet-coal feedbins; low-level indicators.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...
30 CFR 77.313 - Wet-coal feedbins; low-level indicators.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...
30 CFR 77.313 - Wet-coal feedbins; low-level indicators.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...
30 CFR 77.313 - Wet-coal feedbins; low-level indicators.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...
30 CFR 77.313 - Wet-coal feedbins; low-level indicators.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...
30 CFR 736.11 - General procedural requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 736.11 - General procedural requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...
30 CFR 736.11 - General procedural requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...
30 CFR 736.11 - General procedural requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...
30 CFR 736.11 - General procedural requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 77.1000-1 - Filing of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Ground..., with the MSHA Coal Mine Safety and Health district office for the district in which the mine is located...
30 CFR 773.14 - Eligibility for provisionally issued permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 773.14 Section 773.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... surface coal mining and reclamation operation with— (1) A notice of violation issued under § 843.12 of...
30 CFR 939.700 - Rhode Island Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Rhode Island Federal program. (a) This part contains all rules that are applicable to surface coal... to all surface coal mining and reclamation operations in Rhode Island conducted on non-Federal and... stringent environmental control and regulation of surface coal mining and reclamation operations than do the...
30 CFR 732.15 - Criteria for approval or disapproval of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... programs. 732.15 Section 732.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... laws and regulations pertaining to coal exploration and surface coal mining and reclamation operations... system consistent with the regulations of subchapter G of this chapter and prohibit surface coal mining...
30 CFR 840.11 - Inspections by State regulatory authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...
30 CFR 840.11 - Inspections by State regulatory authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...
30 CFR 840.11 - Inspections by State regulatory authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...
30 CFR 840.11 - Inspections by State regulatory authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...
30 CFR 840.11 - Inspections by State regulatory authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...
30 CFR 77.209 - Surge and storage piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface... a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...
NASA Astrophysics Data System (ADS)
Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.
2017-01-01
Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.
30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... more often if necessary for safety, each active working area and each active surface installation shall...; certified person; reports of inspection. 77.1713 Section 77.1713 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES...
In Brief: Coal mining regulations
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-12-01
The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.
Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals
NASA Astrophysics Data System (ADS)
Seehra, Mohindar; Singh, Vivek
2011-03-01
To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.
30 CFR 701.4 - Responsibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL PERMANENT... responsibility for regulation of coal exploration and surface coal mining and reclamation operations during the... mining and reclamation operations, approval of coal exploration which substantially disturbs the natural...
Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working
NASA Astrophysics Data System (ADS)
Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana
2017-11-01
Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; retraining of..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1705 First aid..., 1972, each operator of a surface coal mine shall conduct refresher first aid training programs each...
McClymonds, N.E.
1984-01-01
The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)
Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L
2015-04-01
Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.
NASA Astrophysics Data System (ADS)
Khan, S. U. M.; Baltrus, J. P.; Lai, R. W.; Richardson, A. G.
1991-06-01
Coal pyrite and mineral pyrite surfaces were examined by X-ray photoelectron spectroscopy (XPS) before and after treatment in acidic and basic solutions of sodium ethyl xanthate (NaEtX). XPS showed that the degree of oxidation of coal and mineral pyrite surfaces increased when these pyrites were conditioned in basic solutions. However, conditioning in acidic solutions led to partial removal of surface oxidation from the pyrites. Addition of NaEtX to the acidic and basic solutions enhanced the removal of oxidation from pyrite surfaces. Pretreatment with sulfur dioxide further enhanced the removal of surface oxidation in the presence of NaEtX. Surface oxidation was typically less on mineral pyrite than coal pyrite surfaces following identical treatments. The flotation recoveries of the pyrites in the presence of NaEtX are greatest for the pyrites with the least amount of surface oxidation.
Thermal surface characteristics of coal fires 1 results of in-situ measurements
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Kuenzer, Claudia
2007-12-01
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.
NASA Astrophysics Data System (ADS)
Croft, Gregory Donald
There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based on aggregated reserve numbers. Electric power generation consumes 92 percent of U.S. coal production. Natural gas competes with coal as a baseload power generation fuel with similar or slightly better generation efficiency. Fischer-Tropsch synthesis, described in Chapter 2, creates transportation fuel from coal with an efficiency of less than 45 percent. Claims of higher efficiencies are based on waste heat recovery, since this is a highly exothermic process. The yield of liquid fuel as a proportion of the energy content of the coal input is always less than 45 percent. Compressed natural gas can be used for vehicle fuel with efficiency greater than 98 percent. If we view Fischer-Tropsch synthesis as a form of arbitrage between markets for electricity and transportation fuel, coal cannot simultaneously compete with natural gas for both transportation fuel and electric power. This is because Fischer-Tropsch synthesis is a way to turn power generation fuel into transportation fuel with low efficiency, while natural gas can be converted to transportation fuel with much greater efficiency. For this reason, Fischer-Tropsch synthesis will be an uneconomic source of transportation fuel as long as natural gas is economic for power generation. This conclusion holds even without the very high capital cost of coal-to-liquids plants. The Intergovernmental Panel on Climate Change (IPCC) has generated forty carbon production and emissions scenarios, see the IPCC Special Report on Emissions Scenarios (2000). Chapter 4 develops a base-case scenario for global coal production based on the physical multi-cycle Hubbert analysis of historical production data. Areas with large resources but little production history, such as Alaska or Eastern Siberia, can be treated as sensitivities on top of this base case. The value of our approach is that it provides a reality check on the magnitude of carbon emissions in a business-as-usual (BAU) scenario. The resulting base case is significantly below 36 of the 40 carbon emission scenarios from the IPCC, and the global peak of coal production from existing coalfields is predicted to occur about the year 2011. The peak coal production rate calculated here is 160 EJ/y, and the associated peak carbon emissions from coal burning are 4.5 Gt C per year. After 2011, the production rates of coal and CO2 decline, reaching 1990 levels by the year 2037, and reaching 50% of the peak value in the year 2047. It is unlikely that future mines will reverse the trend predicted in the base case scenario here, and current efforts to sequester carbon or to convert coal into liquid fuels should be reexamined in light of resource limits. (Abstract shortened by UMI.)
30 CFR 77.1007 - Drilling; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Ground... each shift by a competent person. Equipment defects affecting safety shall be reported. (b) Equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
.../federal_register/code_of_federal_regulations/ibr_locations.html. Incorporation by reference provisions... pursuant to section 523 of the Act to regulate surface coal mining and reclamation operations on Federal... no approved State or Federal program and coal exploration and surface coal mining and reclamation...
30 CFR 778.15 - Right-of-entry information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION... upon which the applicant bases his legal right to enter and begin surface coal mining and reclamation...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Procedures for waiving the prohibition on surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Procedures for waiving the prohibition on surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Procedures for waiving the prohibition on surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Procedures for waiving the prohibition on surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Procedures for waiving the prohibition on surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2014 CFR
2014-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2012 CFR
2012-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2010 CFR
2010-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Method and apparatus for measuring surface density of explosive and inert dust in stratified layers
Sapko, Michael J.; Perlee, Henry E.
1988-01-01
A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.
Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model
Haney, D.C.; Chesnut, D.R.
1997-01-01
The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH ...
GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH CONVEYORS. JIM WALTER RESOURCES INC. MINING DIVISION OPERATES FOUR UNDERGROUND COAL MINES IN THE BLUE CREEK COAL FIELD OF BIRMINGHAM DISTRICT, THREE IN TUSCALOOSA COUNTY AND ONE IN JEFFERSON COUNTY. TOTAL ANNUAL PRODUCTION IS 8,000,000 TONS. AT 2,300 DEEP, JIM WALTER'S BROOKWOOD MINES ARE THE DEEPEST UNDERGROUND COAL MINES IN NORTH AMERICA. THEY PRODUCE A HIGH-GRADE MEDIUM VOLATILE LOW SULPHUR METALLURGICAL COAL. THE BROOKWOOD NO. 5 MINE (PICTURED IN THIS PHOTOGRAPH) EMPLOYS THE LONGWALL MINING TECHNIQUES WITH BELTS CONVEYING COAL FROM UNDERGROUND OPERATIONS TO THE SURFACE. - JIm Walter Resources, Incorporated, Brookwood No. 5 Mine, 12972 Lock 17 Road, Brookwood, Tuscaloosa County, AL
NASA Astrophysics Data System (ADS)
Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin
2017-12-01
In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.
30 CFR 77.1001 - Stripping; loose material.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... angle of repose, or barriers, baffle boards, screens, or other devices be provided that afford...
30 CFR 77.1434 - Retirement criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel... corrosion; (e) Distortion of the rope structure; (f) Heat damage from any source; (g) Diameter reduction due...
30 CFR 77.403-2 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...
30 CFR 77.403-2 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-07-01
....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...
30 CFR 77.100 - Certified person.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and... independent contractor shall make an application which satisfactorily shows that each such person has had at...
30 CFR 77.1437 - End attachment retermination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 77.1437 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... at an attachment; (b) Improper installation of an attachment; (c) Slippage at an attachment; or (d...
30 CFR 77.512 - Inspection and cover plates.
Code of Federal Regulations, 2010 CFR
2010-07-01
....512 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... equipment shall be kept in place at all times except during testing or repairs. ...
Hroncová, Emília; Ladomerský, Juraj; Musil, Juraj
2018-03-01
Currently, it is necessary to deal with issues related to the emissions as there is a constantly increasing interest in combusting sludge from sewage treatment plants in the boilers for wood. An analysis of the energetic importance of the combustion of sewage sludge has already been carried out, but the effects of various treatments of the sludge are not always clear, e.g. composting and subsequent combustion to the air pollution. Investments in other thermal processes of energetic utilisation of sewage sludge and organic waste are not always successfully implemented. The objective of this paper is to point out some problematic cases for acceptance of thermal processes related to energetic use of waste in terms of the air protection. The other aim is to mention the experience with solutions of such issues in Slovakia. There are mentioned first results of the operational validation experiments during the energy generation in circulating fluidized bed boiler in peaking power plant (Power 110MW) with the addition of the so-called alternative fuel based on wood and sewage sludge to the main fuel - black coal (anthracite). And there has already been achieved the highest share of 12.4%w. (dry matter) of sewage sludge in form of compost in blend with black coal, which is technologically viable. Moreover analyzed the problems of the authorization and operation of the co-combustion of sewage sludge and of combustion of products of various kinds of pyrolysis waste - pyrolysis gas and pyrolysis oil are analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.
South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vories, K.C.
2003-07-01
Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less
77 FR 62311 - Western Coal Traffic League-Petition for Declaratory Order
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35506] Western Coal Traffic League--Petition for Declaratory Order AGENCY: Surface Transportation Board, DOT. ACTION: Notice... petition of the Western Coal Traffic League (WCTL), where WCTL asked the Board to issue an order declaring...
30 CFR 77.1905 - Hoist safeguards; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... when fully loaded. (b) When persons are transported by a hoist, a second person familiar with and...
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
30 CFR 740.11 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11... State or Federal regulatory program in subchapter T of this chapter apply to: (1) Coal exploration operations on Federal lands not subject to 43 CFR part 3400, and (2) Surface coal mining and reclamation...
30 CFR 740.11 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11... State or Federal regulatory program in subchapter T of this chapter apply to: (1) Coal exploration operations on Federal lands not subject to 43 CFR part 3400, and (2) Surface coal mining and reclamation...
30 CFR 740.11 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11... State or Federal regulatory program in subchapter T of this chapter apply to: (1) Coal exploration operations on Federal lands not subject to 43 CFR part 3400, and (2) Surface coal mining and reclamation...
30 CFR 740.11 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11... State or Federal regulatory program in subchapter T of this chapter apply to: (1) Coal exploration operations on Federal lands not subject to 43 CFR part 3400, and (2) Surface coal mining and reclamation...
30 CFR 77.1800 - Cutout switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Trolley... be provided with cutout switches at intervals of not more than 2,000 feet and near the beginning of...
30 CFR 77.1906 - Hoists; daily inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
....1906 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... shall be run by the hoist operator through one complete cycle of operation before any person is...
Assessment of coal geology, resources, and reserves in the Montana Powder River Basin
Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.
2013-01-01
The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.
Influence of specific surface area on coal dust explosibility using the 20-L chamber.
Zlochower, Isaac A; Sapko, Michael J; Perera, Inoka E; Brown, Connor B; Harris, Marcia L; Rayyan, Naseem S
2018-07-01
The relationship between the explosion inerting effectiveness of rock dusts on coal dusts, as a function of the specific surface area (cm 2 /g) of each component is examined through the use of 20-L explosion chamber testing. More specifically, a linear relationship is demonstrated for the rock dust to coal dust (or incombustible to combustible) content of such inerted mixtures with the specific surface area of the coal and the inverse of that area of the rock dust. Hence, the inerting effectiveness, defined as above, is more generally linearly dependent on the ratio of the two surface areas. The focus on specific surface areas, particularly of the rock dust, provide supporting data for minimum surface area requirements in addition to the 70% less than 200 mesh requirement specified in 30 CFR 75.2.
30 CFR 71.220 - Status change reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling... status of the mine or designated work position to the MSHA District Office or to any other MSHA office...
30 CFR 71.220 - Status change reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.220 Status change reports. (a) If there is a change in operational status that affects the...
30 CFR 730.12 - Requirements for regulatory programs in States.
Code of Federal Regulations, 2014 CFR
2014-07-01
... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...
30 CFR 740.17 - Inspection, enforcement and civil penalties.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...
30 CFR 740.17 - Inspection, enforcement and civil penalties.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...
30 CFR 740.17 - Inspection, enforcement and civil penalties.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...
30 CFR 730.12 - Requirements for regulatory programs in States.
Code of Federal Regulations, 2012 CFR
2012-07-01
... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...
30 CFR 740.17 - Inspection, enforcement and civil penalties.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...
30 CFR 740.17 - Inspection, enforcement and civil penalties.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...
30 CFR 730.12 - Requirements for regulatory programs in States.
Code of Federal Regulations, 2013 CFR
2013-07-01
... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...
30 CFR 71.208 - Bimonthly sampling; designated work positions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bimonthly sampling; designated work positions... COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.208 Bimonthly sampling; designated work positions. (a) Each...
30 CFR 77.1436 - Drum end attachment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel... making one full turn around the shaft, if the drum is fixed to the shaft; or (3) By properly assembled...
30 CFR 77.502-2 - Electric equipment; frequency of examination and testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and testing. 77.502-2 Section 77.502-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.502-2 Electric equipment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES General § 77.1 Scope. This..., pursuant to section 101(i) of the Federal Mine Safety and Health Act of 1977. [36 FR 9364, May 22, 1971, as...
30 CFR 77.1402-1 - Maximum load; posting.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1402-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... number of men permitted to ride on each hoist or elevator at one time; this limit shall be posted on each...
30 CFR 77.1708 - Safety program; instruction of persons employed at the mine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... at the mine. 77.1708 Section 77.1708 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1708 Safety program; instruction of persons...
30 CFR 77.213 - Draw-off tunnel escapeways.
Code of Federal Regulations, 2011 CFR
2011-07-01
....213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... horizontal it shall be equipped with a ladder which runs the full length of the inclined portion of the...
Coal-shale interface detection system
NASA Technical Reports Server (NTRS)
Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)
1979-01-01
A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
NASA Technical Reports Server (NTRS)
Reid, H., Jr. (Inventor)
1980-01-01
A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
NASA Astrophysics Data System (ADS)
You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin
2018-07-01
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.
Interfacial properties and coal cleaning in the LICADO process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, S.M.B.
1986-01-01
The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less
30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RECLAMATION AND OPERATION PLAN § 780.27 Reclamation plan: Surface mining near underground mining. For surface... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Waiver of surface facilities requirements...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Waiver of surface facilities requirements...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Waiver of surface facilities requirements...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Application for waiver of surface facilities...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Waiver of surface facilities requirements...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Application for waiver of surface facilities...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Application for waiver of surface facilities...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Application for waiver of surface facilities...
30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface...
30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designatng Areas Unsuitable for Surface...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
30 CFR 77.100 - Certified person.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certified person. 77.100 Section 77.100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and Certified Persons § 77.100 Certified...
30 CFR 77.411 - Compressed air and boilers; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...
30 CFR 77.411 - Compressed air and boilers; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...
30 CFR 77.411 - Compressed air and boilers; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...
30 CFR 77.411 - Compressed air and boilers; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...
30 CFR 77.411 - Compressed air and boilers; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...
Plantz, Gerald G.
1985-01-01
The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.
Coal-shale interface detection
NASA Technical Reports Server (NTRS)
Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)
1979-01-01
A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
McClymonds, N.E.
1986-01-01
The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)
Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri.
Igbinigie, Eric E; Aktins, Simon; van Breugel, Yvonne; van Dyke, Susan; Davies-Coleman, Michael T; Rose, Peter D
2008-11-01
Cynodon dactylon (Bermuda grass) has been observed to grow sporadically on the surface of coal dumps in the Witbank coal mining area of South Africa. Root zone investigation indicated that a number of fungal species may be actively involved in the biodegradation of hard coal, thus enabling the survival of the plant, through mutualistic interaction, in this extreme environment. In an extensive screening program of over two thousand samples, the Deuteromycete, Neosartorya fischeri, was isolated and identified. The biodegradation of coal by N. fischeri was tested in flask studies and in a perfusion fixed-bed bioreactor used to simulate the coal dump environment. The performance of N. fischeri was compared to Phanaerochaete chrysosporium and Trametes (Polyporus) versicolor, previously described in coal biodegradation studies. Fourier transform infrared spectrometry and pyrolysis gas chromatography mass spectrometry of the biodegradation product indicated oxidation of the coal surface and nitration of the condensed aromatic structures of the coal macromolecule as possible reaction mechanisms in N. fischeri coal biodegradation. This is a first report of N. fischeri-mediated coal biodegradation and, in addition to possible applications in coal biotechnology, the findings may enable development of sustainable technologies in coal mine rehabilitation.
Characterization of Malaysian coals for carbon dioxide sequestration
NASA Astrophysics Data System (ADS)
Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.
2016-06-01
Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.
30 CFR 77.204 - Openings in surface installations; safeguards.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 77.204 Section 77.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF..., barriers, covers or other protective devices. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL PERMANENT... program implementation; (2) Subchapter D on surface coal mining and reclamation operations on Federal lands; (3) Subchapter E on surface coal mining and reclamation operations on Indian lands. (4...
Tribological properties of coal slurries
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Schrubens, Dale L.
1987-01-01
A pin-on-disk tribometer was used to study the tribological properties of methyl alcohol-coal slurries. Friction coefficients, steel pin wear rates and wear surface morphological studies were conducted on AISI 440C HT and M-50 bearing steels which were slid dry and in solutions of methyl alcohol, methyl alcohol-fine coal particles, and methyl alcohol-fine coal particles-flocking additive. The latter was an oil derived from coal and originally intended to be added to the coal slurry to improve the sedimentation and rheology properties. The results of this study indicated that the addition of the flocking additive to the coal slurry markedly improved the tribological properties, especially wear. In addition, the type of steel was found to be very important in determining the type of wear that took place. Cracks and pits were found on the M-50 steel pin wear surfaces that slid in the coal slurries while 440C HT steel pins showed none.
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
Environmental risks associated with unconventional gas extraction: an Australian perspective
NASA Astrophysics Data System (ADS)
Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill
2015-04-01
Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... Environmental Impact Statement for Surface Coal and Lignite Mining in the State of Texas AGENCY: Department of..., indirect, and cumulative effects associated with a decision to develop and assess data and information with... responsibility. These coal and lignite mining activities may eventually require authorization from the USACE...
30 CFR 77.201 - Methane content in surface installations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane content in surface installations. 77.201 Section 77.201 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Surface Installations § 77.201 Methane content in surface installations. The methane...
30 CFR 77.201 - Methane content in surface installations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane content in surface installations. 77.201 Section 77.201 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Surface Installations § 77.201 Methane content in surface installations. The methane...
30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...
Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming
2014-01-01
The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601
From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)
Mastalerz, Maria; Padgett, P.L.
1999-01-01
A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.
Water produced with coal-bed methane
,
2000-01-01
Natural gas produced from coal beds (coal-bed methane, CBM) accounts for about 7.5 percent of the total natural gas production in the United States. Along with this gas, water is also brought to the surface. The amount of water produced from most CBM wells is relatively high compared to conventional natural gas wells because coal beds contain many fractures and pores that can contain and transmit large volumes of water. In some areas, coal beds may function as regional or local aquifers and important sources for ground water. The water in coal beds contributes to pressure in the reservoir that keeps methane gas adsorbed to the surface of the coal. This water must be removed by pumping in order to lower the pressure in the reservoir and stimulate desorption of methane from the coal (fi g. 1). Over time, volumes of pumped water typically decrease and the production of gas increases as coal beds near the well bore are dewatered.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation...
30 CFR 740.10 - Information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...
30 CFR 740.10 - Information collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...
Cravotta, C.A.; Ward, S.J.; Hammarstrom, J.M.
2008-01-01
Acidic mine drainage (AMD) containing elevated concentrations of dissolved iron and other metals can be neutralized to varying degrees by reactions with limestone in passive treatment systems. We evaluated the chemical and mineralogical characteristics and the effectiveness of calcitic and dolomitic limestone for the neutralization of net-acidic, oxic, iron-laden AMD from a flooded anthracite mine. The calcitic limestone, with CaCO3 and MgCO3 contents of 99.8 and <0.1 wt%, respectively, and the dolomitic limestone, with CaCO3 and MgCO3 contents of 60.3 and 40.2 wt%, were used to construct a downflow treatment system in 2003 at the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. In the winter of 2002-2003, laboratory neutralization-rate experiments evaluated the evolution of effluent quality during 2 weeks of continuous contact between AMD from the Bell Mine and the crushed calcitic or dolomitic limestone in closed, collapsible containers (cubitainers). The cubitainer tests showed that: (1) net-alkaline effluent could be achieved with detention times greater than 3 h, (2) effluent alkalinities and associated dissolution rates were equivalent for uncoated and Fe(OH)3-coated calcitic limestone, and (3) effluent alkalinities and associated dissolution rates for dolomitic limestone were about half those for calcitic limestone. The dissolution rate data for the cubitainer tests were used with data on the volume of effuent and surface area of limestone in the treatment system at the Bell Mine to evaluate the water-quality data for the first 1.5 years of operation of the treatment system. These rate models supported the interpretation of field results and indicated that treatment benefits were derived mainly from the dissolution of calcitic limestone, despite a greater quantity of dolomitic limestone within the treatment system. The dissolution-rate models were extrapolated on a decadal scale to indicate the expected decreases in the mass of limestone and associated alkalinities resulting from the long-term reaction of AMD with the treatment substrate. The models indicated the calcitic limestone would need to be replenished approaching the 5-year anniversary of treatment operations to maintain net-alkaline effluent quality. ?? 2008 Springer-Verlag.
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
30 CFR 716.6 - Coal mines in Alaska.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...
30 CFR 825.2 - Special bituminous coal mines in Wyoming.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...
30 CFR 825.2 - Special bituminous coal mines in Wyoming.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...
30 CFR 870.19 - How to calculate excess moisture in HIGH-rank coals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... coals. 870.19 Section 870.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... COAL PRODUCTION REPORTING § 870.19 How to calculate excess moisture in HIGH-rank coals. Here are the requirements for calculating the excess moisture in high-rank coals for a calendar quarter. ASTM standards...
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
30 CFR 716.6 - Coal mines in Alaska.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...
30 CFR 716.6 - Coal mines in Alaska.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...
30 CFR 716.6 - Coal mines in Alaska.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...
30 CFR 716.6 - Coal mines in Alaska.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
30 CFR 870.19 - How to calculate excess moisture in HIGH-rank coals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coals. 870.19 Section 870.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... COAL PRODUCTION REPORTING § 870.19 How to calculate excess moisture in HIGH-rank coals. Here are the requirements for calculating the excess moisture in high-rank coals for a calendar quarter. ASTM standards...
30 CFR 825.2 - Special bituminous coal mines in Wyoming.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...
30 CFR 825.2 - Special bituminous coal mines in Wyoming.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...
30 CFR 825.2 - Special bituminous coal mines in Wyoming.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...
Improved Coal-Thickness Measurement
NASA Technical Reports Server (NTRS)
Barr, T. A.
1984-01-01
Summed signals and dielectric-filled antenna improve measurement. Improved FM radar for measuring thickness of coal seam eliminates spectrum splitting and reduces magnitude of echo from front coal surface.
30 CFR 740.11 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... jurisdiction. (e) This subchapter shall not apply to surface coal mining and reclamation operations within a... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11...
30 CFR 900.4 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.4 Responsibilities. (a) Each State that has surface coal mining and reclamation operations or coal exploration activities on non...
30 CFR 800.14 - Determination of bond amount.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 800.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.14...
30 CFR 77.1433 - Examinations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel Hoisting... be made at stress points, including the area near attachments, where the rope rests on sheaves, where...
30 CFR 77.1433 - Examinations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel Hoisting... be made at stress points, including the area near attachments, where the rope rests on sheaves, where...
Liquefaction of calcium-containing subbituminous coals and coals of lower rank
Gorbaty, Martin L.; Taunton, John W.
1980-01-01
A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.
Modeling forest ecosystem changes resulting from surface coal mining in West Virginia
John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella
2012-01-01
The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...
30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK.... If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any person performing such work must wear and employ all of the protective...
30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., forest, recreation area, or places; (f)(1) Where the proposed surface coal mining operation may adversely... mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS...
30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., forest, recreation area, or places; (f)(1) Where the proposed surface coal mining operation may adversely... mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS...
30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., forest, recreation area, or places; (f)(1) Where the proposed surface coal mining operation may adversely... mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS...
30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., forest, recreation area, or places; (f)(1) Where the proposed surface coal mining operation may adversely... mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...
Method for recovering light hydrocarbons from coal agglomerates
Huettenhain, Horst; Benz, August D.; Getsoian, John
1991-01-01
A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
Characterization of activated carbon prepared from chicken waste and coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Zhang; Hong Cui; Riko Ozao
Activated carbons (ACs) were prepared from chicken waste (CW) and coal (E-coal) blended at the ratios of 100:0, 80:20, 50:50, 20:80, and 0:100. The process included carbonization in flowing gaseous nitrogen (300 mL min{sup -1}) at ca. 430{sup o}C for 60 min and successive steam activation (0.1 mL min{sup -1} water injection with a flow of N{sub 2} at 100 mL min{sup -1}) at 650{sup o}C for 30 min. Chicken waste is low in sulfur content but is high in volatile matter (about 55 wt %), and ACs with higher specific surface area were more successfully obtained by mixing withmore » coal. The specific surface area of the CW/Coal blend AC can be estimated by SSA{sub BET} = -65.8x{sup 2} + 158x + 168, where SSA{sub BET} is the specific surface area in m{sup 2} g{sup -1} as determined by the BET method using CO{sub 2} as the adsorbent, where x is the coal fraction by weight in the CW/coal blend ranging from 0.0 to 1.0 (e.g., x = 0.0 signifies the blend contains no coal and x = 1.0 signifies the blend consists of 100% coal). 26 refs., 7 figs., 3 tabs.« less
Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst
NASA Astrophysics Data System (ADS)
Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong
2017-08-01
A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.
30 CFR 715.11 - General obligations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL... surface coal mining and reclamation operations conducted on lands where any element of the operations is... are established by part 716 of this chapter for— (1) Surface coal mining operations on steep slopes...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Information Collection; Application for Waiver of Surface Sanitary Facilities' Requirements (Pertaining to... for Waiver of Surface Sanitary Facilities' Requirements (Pertaining to Coal Mines). DATES: All...-3 require coal mine operators to provide bathing facilities, clothing change rooms, and sanitary...
30 CFR 740.1 - Scope and purpose.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.1 Scope and purpose. This part provides for the regulation of surface coal mining and reclamation...
30 CFR 740.1 - Scope and purpose.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.1 Scope and purpose. This part provides for the regulation of surface coal mining and reclamation...
30 CFR 740.1 - Scope and purpose.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.1 Scope and purpose. This part provides for the regulation of surface coal mining and reclamation...
30 CFR 740.1 - Scope and purpose.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.1 Scope and purpose. This part provides for the regulation of surface coal mining and reclamation...
30 CFR 740.1 - Scope and purpose.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.1 Scope and purpose. This part provides for the regulation of surface coal mining and reclamation...
Economic effects of western Federal land-use restrictions on U.S. coal markets
Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.
1991-01-01
Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coals. 870.20 Section 870.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... COAL PRODUCTION REPORTING § 870.20 How to calculate excess moisture in LOW-rank coals. Here are the requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234...
30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... coals. 870.20 Section 870.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... COAL PRODUCTION REPORTING § 870.20 How to calculate excess moisture in LOW-rank coals. Here are the requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Environmental Impact Statement (SEIS) for PacRim Coal's Proposed Chuitna Coal Project AGENCY: U.S. Army Corps of... Chuitna Coal Project. It is anticipated that the Environmental Protection Agency (EPA), the Native Village... the Alaska Surface Coal Mining Control and Reclamation Act (ASCMCRA) permit, which governs all aspects...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
Solid fossil-fuel recovery by electrical induction heating in situ - A proposal
NASA Astrophysics Data System (ADS)
Fisher, S.
1980-04-01
A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.
Zhai, M.; Totolo, O.; Modisi, M.P.; Finkelman, R.B.; Kelesitse, S.M.; Menyatso, M.
2009-01-01
Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 ??m) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction. ?? 2009 Springer Science+Business Media B.V.
Zhai, Mingzhe; Totolo, Otlogetswe; Modisi, Motsoptse P; Finkelman, Robert B; Kelesitse, Sebueng M; Menyatso, Mooketsi
2009-12-01
Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 μm) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless the...
30 CFR 77.807 - Installation of high-voltage transmission cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS... against damage. They shall be placed to prevent contact with low-voltage or communication circuits. ...
ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES
Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...
30 CFR 740.15 - Bonds on Federal lands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining, the applicant for a mining permit, if unable to obtain the written consent of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Permit fees. 777.17 Section 777.17 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.17 Permit fees. An application for a surface coal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Permit fees. 777.17 Section 777.17 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.17 Permit fees. An application for a surface coal...
Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.
2008-01-01
The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All rights reserved.
Comments on Interior’s Surface Mining Regulations.
1981-08-05
regulations and responses to pro- posed regulati n, (2) identified studies on cost/benefit analy- sis of environme ital regulations and selected ...agricultural production at the national level, in some rural counties essentially the entire area is underlain with strippable coal. obviously, surface mining...1980).) Illinois, which has the most strippable coal reserves underlying prime farmland, has two heavily worked coal seams which are continuous. One
30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of...
Removal of basic nitrogen compounds from hydrocarbon liquids
Givens, Edwin N.; Hoover, David S.
1985-01-01
A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.
30 CFR 716.4 - Special bituminous coal mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...