Science.gov

Sample records for anthropogenically enhanced global

  1. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative

  2. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  3. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  4. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    NASA Astrophysics Data System (ADS)

    Mao, J.; Fu, W.; Shi, X.; Ricciuto, D. M.; Fisher, J. B.; Dickinson, R. E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; Schwalm, C. R.; Tian, H.; Mu, M.; Arain, M. A.; Ciais, P.; Cook, R. B.; Dai, Y. J.; Hayes, D. J.; Hoffman, F. M.; Huang, M.; Huang, S.; Huntzinger, D. N.; Ito, A.; Jain, A. K.; King, A. W.; Lei, H.; Lu, C.; Michalak, A. M.; Parazoo, N.; Peng, C.; Peng, S.; Poulter, B.; Schaefer, K. M.; Jafarov, E. E.; Thornton, P. E.; Wang, W.; Zeng, N.; Zeng, Z.; Zhao, F.; Zhu, Q.; Zhu, Z.

    2015-12-01

    We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreased trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  5. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGES

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; ...

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  6. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  7. A dynamic model for the global cycling of anthropogenic vanadium

    NASA Astrophysics Data System (ADS)

    Hope, Bruce K.

    2008-12-01

    Vanadium is a major trace metal in fossil fuels. Combustion of residual fuel oils and coal in industrialized economies is recognized as the major source of anthropogenic vanadium. A dynamic mass balance model assessed the influence of anthropogenic inputs on the global distribution and cycling of vanadium between 1700 and 2400 assuming different fossil fuel consumption and V production (mining) scenarios. Anthropogenic V sources were divided into fossil fuel combustion, industrial, and domestic (nonindustrial human activity). By 2050, inputs of anthropogenic V could comprise ≈75-85% of those to the atmosphere, ≈21-33% to ocean dissolved, ≈9-13% to ocean particulate, and ≈28-43% of inputs to land; with between ≈61-64% of all anthropogenic inputs attributable to fossil fuel combustion. Contributions from combustion and industrial sources, although dominant relative to contributions from domestic sources between 1900 and 2100, were estimated to peak between 2000 and 2050. Accumulation of anthropogenic V on land and in the ocean apparently occurs because natural removal processes are unable to cope with increasing amounts and rates of anthropogenic contributions. Impacts or hazards associated with anthropogenic inputs are unlikely to be discernible or significant on a global scale, but may be measurable and meaningful at smaller scales (coastal waters, continental shelves, and bays), in the locality of specific sources, or given an unfavorable exposure scenario.

  8. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  9. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  10. Do anthropogenic aerosols enhance CO2 uptake by plants?

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  11. Observational and modeling constraints on global anthropogenic enrichment of mercury.

    PubMed

    Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M

    2015-04-07

    Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.

  12. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen

    NASA Astrophysics Data System (ADS)

    Benkovitz, Carmen M.; Scholtz, M. Trevor; Pacyna, Jozef; Tarrasón, Leonor; Dignon, Jane; Voldner, Eva C.; Spiro, Peter A.; Logan, Jennifer A.; Graedel, T. E.

    1996-12-01

    Two sets of global inventories of anthropogenic emissions of both oxides of sulfur and oxides of nitrogen for circa 1985 have been produced under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Program. The two sets of inventories have different temporal, sectoral, and vertical resolution. Both were compiled using the same data sets; default data sets of global emissions have been refined via the use of more detailed regional data sets. This article reports on the compilation of the annual, one-vertical-level inventories, called version 1A; the inventory files are available to the scientific community via anonymous file transform protocol (FTP). Existing global inventories and regional inventories have been updated and combined on a 1° × 1° longitude/latitude grid. The resulting global anthropogenic emissions are 65 Tg S yr-1 and 21 Tg N yr-1; qualitative uncertainty estimates have been assigned on a regional basis. Emissions of both SOx and NOx are strongly localized in the highly populated and industrialized areas of eastern North America and across Europe; other smaller regions of large emissions are associated with densely populated areas with developed industries or in connection with exploitation of fuels or mineral reserves. The molar ratio of nitrogen to sulfur emissions reflects the overall character of sources; its value is generally between 0.33 and 10 for industrialized and heavily populated areas but varies over a wide range for other areas. We suggest that those requiring sulfur or nitrogen emission inventories standardize on the GEIA inventories, which we believe are authoritative and which are freely available to all users by anonymous FTP.

  13. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  14. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  15. Scenarios of global mercury emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.

    2013-11-01

    This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  16. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.

  17. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  18. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    The ecological functions of natural vegetation are threatened when it is subsumed in anthropogenic landscapes. We report the first comparative global survey of anthropogenic landscape threats to forest and grass-shrub vegetation. Using a global land-cover map derived from remote...

  19. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  20. The relationship between anthropogenic dust and population over global semi-arid regions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Zhang, Yanting; Xie, Yongkun; Liu, Jingjing

    2016-04-01

    Although anthropogenic dust has received more attention from the climate research community, its dominant role in the production process is still not identified. In this study, we analysed the relationship between anthropogenic dust and population density/change over global semi-arid regions and found that semi-arid regions are major source regions in producing anthropogenic dust. The results showed that the relationship between anthropogenic dust and population is more obvious in cropland than in other land cover types (crop mosaics, grassland, and urbanized regions) and that the production of anthropogenic dust increases as the population density grows to more than 90 persons km-2. Four selected semi-arid regions, namely East China, India, North America, and North Africa, were used to explore the relationship between anthropogenic dust production and regional population. The most significant relationship between anthropogenic dust and population occurred in an Indian semi-arid region that had a greater portion of cropland, and the high peak of anthropogenic dust probability appeared with 220 persons km-2 of population density and 60 persons km-2 of population change. These results suggest that the influence of population on production of anthropogenic dust in semi-arid regions is obvious in cropland regions. However, the impact does not always have a positive contribution to the production of anthropogenic dust, and overly excessive population will suppress the increase of anthropogenic dust. Moreover, radiative and climate effects of increasing anthropogenic dust need more investigation.

  1. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, L.

    2012-05-01

    This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global anthropogenic methane emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. Major uncertainty sources in emission estimates are identified and discussed. Mitigation costs are estimated defining two different cost perspectives; the social planner cost perspective and the private investor cost perspective.

  2. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%.

  3. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    PubMed

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  4. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  5. A dynamic model for the global cycling of anthropogenic vanadium - article no. GB4021

    SciTech Connect

    Hope, B.K.

    2008-12-15

    Vanadium is a major trace metal in fossil fuels. Combustion of residual fuel oils and coal in industrialized economies is recognized as the major source of anthropogenic vanadium. A dynamic mass balance model assessed the influence of anthropogenic inputs on the global distribution and cycling of vanadium between 1700 and 2100 assuming different fossil fuel consumption and V production (mining) scenarios. Anthropogenic V sources were divided into fossil fuel combustion, industrial, and domestic (nonindustrial human activity). By 2050, inputs of anthropogenic V could comprise approximate to 75-85% of those to the atmosphere, approximate to 21-33% to ocean dissolved, approximate to 9-13% to ocean particulate, and approximate to 28-43% of inputs to land; with between approximate to 61-64% of all anthropogenic inputs attributable to fossil fuel combustion. Contributions from combustion and industrial sources, although dominant relative to contributions from domestic sources between 1900 and 2100, were estimated to peak between 2000 and 2050. Accumulation of anthropogenic V on land and in the ocean apparently occurs because natural removal processes are unable to cope with increasing amounts and rates of anthropogenic contributions. Impacts or hazards associated with anthropogenic inputs are unlikely to be discernible or significant on a global scale, but may be measurable and meaningful at smaller scales (coastal waters, continental shelves, and bays), in the locality of specific sources, or given an unfavorable exposure scenario.

  6. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution.

    PubMed

    Zhang, Renyi; Wang, Lin; Khalizov, Alexei F; Zhao, Jun; Zheng, Jun; McGraw, Robert L; Molina, Luisa T

    2009-10-20

    The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart. Dimers or heterodimers of biogenic organic acids alone are unfavorable for new particle formation and growth because of their hydrophobicity. Condensation of low-volatility organic acids is hindered on nano-sized particles, whereas ammonia contributes negligibly to particle growth in the size range of 3-30 nm. The results suggest that initial growth from the critical nucleus to the detectable size of 2-3 nm most likely occurs by condensation of sulfuric acid and water, implying that anthropogenic sulfur emissions (mainly from power plants) strongly influence formation of terrestrial biogenic particles and exert larger direct and indirect climate forcing than previously recognized.

  7. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  8. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  9. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    SciTech Connect

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  10. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin.

    PubMed

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-07-07

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth's climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

  11. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    NASA Astrophysics Data System (ADS)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-07-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

  12. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    PubMed Central

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  13. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  14. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Kosaka, Yu; Okumura, Yuko M.

    2016-01-01

    The Earth's energy budget for the past four decades can now be closed, and it supports anthropogenic greenhouse forcing as the cause for climate warming. However, closure depends on invoking an unrealistically large increase in aerosol cooling during the so-called global warming hiatus since the late 1990s (refs ,) that was due partly to tropical Pacific Ocean cooling. The difficulty with this closure lies in the assumption that the same climate feedback applies to both anthropogenic warming and natural cooling. Here we analyse climate model simulations with and without anthropogenic increases in greenhouse gas concentrations, and show that top-of-the-atmosphere radiation and global mean surface temperature are much less tightly coupled for natural decadal variability than for the greenhouse-gas-induced response, implying distinct climate feedback between anthropogenic warming and natural variability. In addition, we identify a phase difference between top-of-the-atmosphere radiation and global mean surface temperature such that ocean heat uptake tends to slow down during the surface warming hiatus. This result deviates from existing energy theory but we find that it is broadly consistent with observations. Our study highlights the importance of developing metrics that distinguish anthropogenic change from natural variations to attribute climate variability and to estimate climate sensitivity from observations.

  15. Global inventory of volatile organic compound emissions from anthropogenic sources. Final report, March 1988-September 1990

    SciTech Connect

    Watson, J.J.; Probert, J.A.; Piccot, S.D.

    1991-01-01

    The report describes a global inventory of anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. The inventory, one input to atmospheric chemistry models required to estimate the global atmospheric concentration of ozone, is part of an assessment of the potential environmental impacts associated with global climate change. Study results show total global anthropogenic emissions of about 121 million short tons of VOCs per year. The U.S. is the largest emitter with 21% of the total. Globally, fuelwood combustion and savanna burning are the largest sources, together accounting for over 35% of global VOC emissions. The approach used to develop the inventory involved: (1) identifying the major anthropogenic sources of VOC emissions in the U.S. and grouping them into categories; (2) developing emission factors by dividing the U.S. emissions by the amount of production or consumption of the related commodity in the U.S.; (3) multiplying the U.S. emission factors by production/consumption statistics for other countries to yield global VOC emission estimates; and (4) geographically distributing the emissions.

  16. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  17. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    SciTech Connect

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  18. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  19. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-02-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  20. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  1. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, L.

    2012-10-01

    This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. The technical mitigation potential is estimated at 195 Mt methane in 2030, whereof about 80 percent is found attainable at a marginal cost less than 20 Euro t-1 CO2eq when using a social planner cost perspective. With a private investor cost perspective, the corresponding fraction is only 30 percent. Major uncertainty sources in emission estimates are identified and discussed.

  2. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  3. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report

    SciTech Connect

    Joos, F.; Stocker, T.

    1996-11-01

    The major emphasis of our DOE funded research was to study the redistribution of anthropogenic carbon in the climate system and to constrain the global budgets of anthropogenic carbon and the carbon isotopes {sup 13}C and {sup 14}C for the historical period. We have continued the development of box models of the ocean carbon cycle (HILDA model) and the land biota. The coupled model (Bern model) was chosen as the reference model for scenario calculations and the calculations of global warming potential by the Intergovernmental Panel on Climate Change. These models were applied (1) to estimate the uptake of anthropogenic carbon by the ocean and the land biosphere for the last 200 years; (2) to investigate uncertainties in deconvolved fertilization fluxes into the land biota due to uncertainties in ice core CO{sub 2} data; (3) to study the relationship between future atmospheric CO{sub 2} levels and carbon emissions; (4) to investigate the budgets of bomb-produced radiocarbon and fossil {sup 13}C. We assessed the utility of bomb-produced and natural {sup 13}C observations to validate ocean models of anthropogenic CO{sub 2} uptake and tested the eddy diffusion parameterization of large-scale vertical transport in ocean box models. For this, vertical tracer transport in box-diffusion models and the 3-D ocean general circulation model from GFDL/Princeton was compared. We analyzed the distribution of the conservative property {Delta}C* to obtain a direct estimate based on marine measurements of the uptake of anthropogenic CO{sub 2} by the North Atlantic. We contribute to the missing sink debate by using atmospheric CO{sub 2} and {sup 13}C levels to disentangle the net carbon fluxes into the land biota and the ocean. A simplified representation for 4 different ocean models of anthropogenic CO{sub 2} uptake based on mixed-layer pulse response functions was developed.

  4. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.

  5. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  6. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  7. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-03

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13×10(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population.

  8. Using scaling fluctuation analysis to quantify anthropogenic changes in regional and global precipitation, including extremes

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    Anthropic precipitation changes affect the mean and the magnitude and frequency of extreme events, and therefore potentially have severe consequences in all aspects of human life. Unfortunately, - unlike the anthropic temperature changes - precipitation changes of anthropic origin have been proven difficult to establish with high statistical significance. For example, when changes have been established for individual precipitation products, the serious divergences found between products reflect our limited ability to estimate areal precipitation even at global scales. In addition to data issues, the usual approaches to assessing changes in precipitation also have methodological issues that hamper their identification. Here we discuss how the situation can be clarified by the systematic application of scaling fluctuation analysis - for example, to determine the scales at which the anthropogenic signal exceeds the natural variability noise (we find that it is roughly 20 years). Following a recent approach for estimating anthropogenic temperature changes we directly determine the effective sensitivity of the precipitation rate to a doubling of CO2. The novelty in this approach is that it takes CO2 as a surrogate for all anthropogenic forcings and estimates the trend based on the forcing rather than time - the usual approach. This leads both to an improved signal to noise ratio and, when compared to the usual estimates of trends, it augments their statistical significance; we further improve the signal to noise ratio by considering precipitation over the ocean where anthropogenic increases are strongest, finding that there are statistically significant trends at the 3 to 4 standard deviation level. This approach also permits the first direct estimate of the increases in global precipitation with temperature: we find 1.71±0.62 %/K which is close to that found by GCM's (2 - 3%/K) and is well below the value of ≈ 6 - 7%/K predicted on the basis of increases in humidity

  9. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours

    PubMed Central

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-01-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746

  10. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.

    PubMed

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-02-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.

  11. Assembling the Anthropocene: The global significance of anthropogenic sediment flux through the creation of artificial ground

    NASA Astrophysics Data System (ADS)

    Price, S.; Ford, J. R.; Waters, C. N.; Cooper, A. H.

    2012-12-01

    Deliberate, current and historical modification of the landscape and its subsurface by humans creates novel sediments and landforms in the form of artificial ground. The rate and magnitude of artificial ground created through the excavation, transport and deposition of mixtures of rock and soil has varied through time, but it is now significant on a global scale. It is estimated that the annual deliberate anthropogenic movement of rock and soil exceeds that of sediment transfer to the oceans by a factor of three (Douglas & Lawson 2001). In the UK alone, it is estimated that 66 530 M (Million) tonnes (ca. 40 km3) of material has been moved in response to mineral exploitation and processing over ca. 200 years (Price et al. 2011). This compares to an estimated global annual 57 000 M tonnes of material being moved deliberately by humans (Douglas & Lawson 2001). The scale of early mineral workings and land domestication for food production rapidly expanded as human population grew. Subsequent industrialisation, burning of fossil fuels and increased urbanisation in developed countries escalated the demand for diverse natural resources and the scale of land transformation. Mineral extraction and processing make up a significant proportion of the global anthropogenic sediment cycle. Mineral production offers a key indicator of the magnitude and rate of anthropogenic change and its impact on global sediment flux. Wastes from mineral production constitute 'hidden flows' when accounting for anthropogenic sediment flux (Douglas & Lawson 2001) but are often significant. The amount of waste produced during mineral exploitation often exceeds the amount of ore won by up to, and sometimes exceeding, a factor of 30. Using key commodity indicators, including coal and iron ore, distinct trends in the rates and volumes of mineral production are calculated and observed. The volume of production and associated hidden flows of anthropogenic sediments is observed to increase rapidly ca

  12. Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-10-01

    with observations. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide additional SOA, but does not however explain the concentrations or the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the studied period.

  13. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGES

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  14. A Global inventory of volatile organic compound emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Watson, Joel J.; Jones, Julian W.

    1992-06-01

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs. Consequently, a global inventory of anthropogenic VOC emissions has been developed. The inventory includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds which possess different chemical reactivities in the atmosphere. The technical approach used to develop this inventory involved four major steps. The first step was to identify the major anthropogenic sources of VOC emissions in the United States and to group these sources into 28 general source groups. Source groups were developed to represent general categories such as "sources associated with oil and natural gas production" and more specific categories such as savanna buming. Emission factors for these source groups were then developed using different techniques and data bases. For example, emission factors for oil and natural gas production were estimated by dividing the United States' emissions from oil and gas production operations by the amount of oil and natural gas produced in the United States. Multiplication of these emission factors by production/consumption statistics for other countries yielded global VOC emission estimates for specific source groups within those countries. The final step in development of the VOC inventory was to distribute emissions into 10° by 10° grid cells using detailed maps of population and industrial activity. The results of this study show total global anthropogenic VOC emissions of

  15. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Zhang, Yuqiang; Anenberg, Susan C.; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven; Skeie, Ragnhild; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, I. A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2013-09-01

    Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (-20 000 to 27 000) deaths yr-1 due to ozone and 2200 (-350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

  16. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.

    PubMed

    Liu, Gang; Müller, Daniel B

    2013-10-15

    Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation.

  17. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  18. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

    NASA Astrophysics Data System (ADS)

    Smith, Doug M.; Booth, Ben B. B.; Dunstone, Nick J.; Eade, Rosie; Hermanson, Leon; Jones, Gareth S.; Scaife, Adam A.; Sheen, Katy L.; Thompson, Vikki

    2016-10-01

    The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

  19. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  20. Modeling anthropogenically-controled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-04-01

    A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10-11 cm3 molecule-1 s-1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10-12 cm3 molecule-1 s-1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple

  1. Anthropogenic impacts on the global water cycle - a multi model approach.

    NASA Astrophysics Data System (ADS)

    Ludwig, F.; haddeland, I.; Biemans, H.; Clark, D.; Fransen, W.; Voss, F.; Floerke, M.; Heinke, J.; Hagemann, S.; Hanasakki, N.; Gerten, D.; Kabat, P.

    2012-04-01

    Humans activities have a large impact on the global water cycle. Through the building of dams and irrigation schemes large amounts of water are diverted from river systems. Through the emission of greenhouse gases causing global warming, also the rainfall and evaporation patterns are changed across the globe. It is, however, still difficult to quantify current and future impacts on the global water cycle due to limited data availability, model imperfections and large uncertainties in climate change projections. To partly overcome these limitations we used a multi-model approach to study anthropogenic impacts on the global water cycle. Four different global hydrological models (H08, VIC, WaterGAP and LPJml) were forced with an historical climate dataset (Watch Forcing Data) and bias corrected output of three different global climate models (Echam, IPSL and CNRM) using two emission scenarios (A2 and B1). In addition the LPJml model was also run with two different land use change scenarios. Combining the water availability simulations with the water demand scenarios developed within the Watch project we also analyzed current and future water scarcity. The analyses show that current human impacts and on the water cycle are especially high in Central Asia, parts of Europe, the Southwestern US and the Murray-Darling Basin in Australia. The model comparison of agricultural water use and demand showed that the differences in total global agricultural demand and water use were relatively smaller than the differences in simulated water availability. All models showed agricultural water extractions are high in South and East Asia in particular in Northern India and Pakistan and in Northeast China. The most important spatial differences between the different models was observed for Northern China where H08 showed much higher water demands than VIC. Future analyses showed that climate change impacts on the global water cycle are potentially high especially in the semi

  2. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  3. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  4. The negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    NASA Astrophysics Data System (ADS)

    Cuevas, Carlos A.; Prados-Roman, Cristina; Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Saiz-Lopez, Alfonso

    2015-04-01

    Natural emissions of iodine compounds from the oceans efficiently destroy atmospheric ozone reducing its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased (40%) since 1850 as a result of human activities. In this work a chemistry-climate model is used to quantify the current ocean emissions of inorganic iodine and evaluate the impact that the anthropogenic increase of tropospheric ozone has had on the natural cycle of iodine in the marine environment since pre-industrial times. Our results indicate that the human driven enhancement of tropospheric ozone has doubled the oceanic inorganic iodine emissions following the reaction of ozone with iodide at the sea surface. The consequent build-up of atmospheric iodine, with maximum enhancements of up to 70% with respect to preindustrial times in continental pollution outflow regions, has in turn accelerated the ozone chemical loss over the oceans with strong spatial patterns. We suggest that this ocean-atmosphere interaction represents a negative geochemical feedback loop by which current ocean emissions of iodine act as a natural buffer for ozone pollution and its radiative forcing in the global marine environment. This feedback represents a potentially important link between climate change and tropospheric O3 since the oceanic emissions of iodine are not only linked to surface O3, but also to SST and wind speed and might also be linked to climatically driven changes in the state of the world oceans.

  5. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria

    2014-05-01

    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  6. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  7. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  8. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  9. Global source-receptor relationships for mercury under present and year 2050 anthropogenic emissions scenarios

    NASA Astrophysics Data System (ADS)

    Corbitt, E. S.; Holmes, C.; Jacob, D. J.; Streets, D. G.; Selin, N. E.; Sorensen, A.; Sunderland, E. M.

    2009-12-01

    We use the GEOS-Chem global 3-D model for mercury, including dynamic coupling of the atmosphere with ocean and land reservoirs, to quantify continental and regional source-receptor relationships for mercury under present and future (2050) conditions. The model includes several recent developments such as oxidation of Hg(0) by Br atoms and improved representation of land-atmosphere exchange. Different SRES scenarios are considered for 2050 anthropogenic emissions, thus providing a range of future projections. We use a tagged tracer simulation to track atmospheric emissions of mercury from specific source regions including their cycling with the surface ocean and short-lived land reservoirs. We identify net source and receptor regions, distinguishing regions for which domestic emissions reductions would be most effective from others which receive deposition predominantly from the global atmospheric pool of mercury. The projected future increase in the contribution of Hg(II) to global mercury emissions results in a shift toward more regional source-receptor relationships.

  10. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Knutti, R.

    2015-06-01

    Climate change includes not only changes in mean climate but also in weather extremes. For a few prominent heatwaves and heavy precipitation events a human contribution to their occurrence has been demonstrated. Here we apply a similar framework but estimate what fraction of all globally occurring heavy precipitation and hot extremes is attributable to warming. We show that at the present-day warming of 0.85 °C about 18% of the moderate daily precipitation extremes over land are attributable to the observed temperature increase since pre-industrial times, which in turn primarily results from human influence. For 2 °C of warming the fraction of precipitation extremes attributable to human influence rises to about 40%. Likewise, today about 75% of the moderate daily hot extremes over land are attributable to warming. It is the most rare and extreme events for which the largest fraction is anthropogenic, and that contribution increases nonlinearly with further warming. The approach introduced here is robust owing to its global perspective, less sensitive to model biases than alternative methods and informative for mitigation policy, and thereby complementary to single-event attribution. Combined with information on vulnerability and exposure, it serves as a scientific basis for assessment of global risk from extreme weather, the discussion of mitigation targets, and liability considerations.

  11. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    NASA Astrophysics Data System (ADS)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  12. Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2016-07-01

    Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems.

  13. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  14. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  15. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    NASA Astrophysics Data System (ADS)

    Klimont, Z.; Smith, S. J.; Cofala, J.

    2013-03-01

    The evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation. After increasing until about 2006, we estimate a declining trend continuing until 2011. However, there is strong spatial variability, with North America and Europe continuing to reduce emissions, with an increasing role of Asia and international shipping. China remains a key contributor, but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in a significant decline in emissions from the energy sector and stabilization of total Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following an international agreement to reduce the sulfur content of fuel oil. The estimated trends in global SO2 emissions are within the range of representative concentration pathway (RCP) projections and the uncertainty previously estimated for the year 2005.

  16. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts.

    NASA Astrophysics Data System (ADS)

    Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.

    2016-02-01

    Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e

  17. Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Tian, Hanqin; Tao, Bo; Ren, Wei; Kush, John; Liu, Yongqiang; Wang, Yuhang

    2014-03-01

    Fire is a critical component of the Earth system, and substantially influences land surface, climate change, and ecosystem dynamics. To accurately predict the fire regimes in the 21st century, it is essential to understand the historical fire patterns and recognize the interaction among fire, human, and environment factors. Until now, few efforts are put on the studies regarding to the long-term fire reconstruction and the attribution analysis of anthropogenic and environmental factors to fire regimes at global scale. To fill this knowledge gap, we developed a 0.5° × 0.5° data set of global burned area from 1901 to 2007 by coupling Global Fire Emission Database version 3 with a process-based fire model and conducted factorial simulation experiments to evaluate the impacts of human, climate, and atmospheric components. The average global burned area is ~442 × 104 km2 yr-1 during 1901-2007 and our results suggest a notable declining rate of burned area globally (1.28 × 104 km2 yr-1). Burned area in tropics and extratropics exhibited a significant declining trend, with no significant trend detected at high latitudes. Factorial experiments indicated that human activities were the dominant factor in determining the declining trend of burned area in tropics and extratropics, and climate variation was the primary factor controlling the decadal variation of burned area at high latitudes. Elevated CO2 and nitrogen deposition enhanced burned area in tropics and southern extratropics but suppressed fire occurrence at high latitudes. Rising temperature and frequent droughts are becoming increasingly important and expected to increase wildfire activity in many regions of the world.

  18. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

    PubMed

    Zhang, Yanxu; Jacob, Daniel J; Horowitz, Hannah M; Chen, Long; Amos, Helen M; Krabbenhoft, David P; Slemr, Franz; St Louis, Vincent L; Sunderland, Elsie M

    2016-01-19

    Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y(-1)). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  19. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    PubMed Central

    Zhang, Yanxu; Jacob, Daniel J.; Horowitz, Hannah M.; Chen, Long; Amos, Helen M.; Krabbenhoft, David P.; Slemr, Franz; St. Louis, Vincent L.; Sunderland, Elsie M.

    2016-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  20. Natural and Anthropogenic Controls over Global Terrestrial N2O Emission Growth at a Century-Long Time Scale

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Kamaljit, K.; Zhang, B.

    2014-12-01

    The Atmospheric concentration of nitrous oxide (N2O) has increased by 20% relative to pre-industrial level. It has attracted growing attention since N2O has long life time and radiative forcing 265 times higher than CO2 at 100-year time horizon. Global N2O emission from terrestrial ecosystem is among the most important contributors to the increase of atmospheric N2O. However, compared to CO2- and CH4-related research, less intensive studies have been performed in assessing the spatiotemporal patterns of terrestrial N2O emission and attributing its changes to both natural and anthropogenic disturbances across the globe. Here we integrated gridded time-series data of climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) to a process-based land ecosystem model, DLEM, for answering the above questions. During 1900-2010, the inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes have been examined. Through this, we distinguished and quantified the relative contributions of changes in climate, atmospheric composition, and human activities to N2O emission growth at biome-, latitudinal, continental and global scales. The impacts of climate variability, and increasing nitrogen input, particularly nitrogen fertilizer use along with enhanced food production, have been paid special attention. Hot spots and hot time periods of global N2O emission are identified in this study. It provides clue for scientific community and policy makers to develop potential management strategies for mitigating atmospheric N2O increase and climate warming.

  1. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  2. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  3. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  4. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    ERIC Educational Resources Information Center

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  5. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    PubMed

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition.

  6. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  7. Weekly cycles of global fires—Associations with religion, wealth and culture, and insights into anthropogenic influences on global climate

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian; Tapper, Nigel

    2015-11-01

    One approach to quantifying anthropogenic influences on the environment and the consequences of those is to examine weekly cycles (WCs). No long-term natural process occurs on a WC so any such signal can be considered anthropogenic. There is much ongoing scientific debate as to whether regional-scale WCs exist above the statistical noise level, with most significant studies claiming that anthropogenic aerosols and their interaction with solar radiation and clouds (direct/indirect effect) is the controlling factor. A major source of anthropogenic aerosol, underrepresented in the literature, is active fire (AF) from anthropogenic burning for land clearance/management. WCs in AF have not been analyzed heretofore, and these can provide a mechanism for observed regional-scale WCs in several meteorological variables. We show that WCs in AFs are highly pronounced for many parts of the world, strongly influenced by the working week and particularly the day(s) of rest, associated with religious practices.

  8. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  9. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    PubMed

    Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.

  10. An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling

    PubMed Central

    Anenberg, Susan C.; Horowitz, Larry W.; Tong, Daniel Q.; West, J. Jason

    2010-01-01

    Background Ground-level concentrations of ozone (O3) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] have increased since preindustrial times in urban and rural regions and are associated with cardiovascular and respiratory mortality. Objectives We estimated the global burden of mortality due to O3 and PM2.5 from anthropogenic emissions using global atmospheric chemical transport model simulations of preindustrial and present-day (2000) concentrations to derive exposure estimates. Methods Attributable mortalities were estimated using health impact functions based on long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. Using simulated concentrations rather than previous methods based on measurements allows the inclusion of rural areas where measurements are often unavailable and avoids making assumptions for background air pollution. Results Anthropogenic O3 was associated with an estimated 0.7 ± 0.3 million respiratory mortalities (6.3 ± 3.0 million years of life lost) annually. Anthropogenic PM2.5 was associated with 3.5 ± 0.9 million cardiopulmonary and 220,000 ± 80,000 lung cancer mortalities (30 ± 7.6 million years of life lost) annually. Mortality estimates were reduced approximately 30% when we assumed low-concentration thresholds of 33.3 ppb for O3 and 5.8 μg/m3 for PM2.5. These estimates were sensitive to concentration thresholds and concentration–mortality relationships, often by > 50%. Conclusions Anthropogenic O3 and PM2.5 contribute substantially to global premature mortality. PM2.5 mortality estimates are about 50% higher than previous measurement-based estimates based on common assumptions, mainly because of methodologic differences. Specifically, we included rural populations, suggesting higher estimates; however, the coarse resolution of the global atmospheric model may underestimate urban PM2.5 exposures. PMID:20382579

  11. Why do anthropogenic global warming skeptics have poorer scientific credentials than their opponents?

    NASA Astrophysics Data System (ADS)

    Rogers, N. L.

    2010-12-01

    A paper published in PNAS (1) analyzed the scientific credentials of two groups of activist scientists. The unconvinced by the evidence group included ~500 scientists and technologists who signed various public documents protesting against various aspects of programs to prevent or mitigate anthropogenic global warming. The convinced by the evidence group (~1200 persons) signed public appeals to implement programs to prevent or mitigate AGW. Scientific credentials were measured by publications and citations. The unspoken message of the paper is that we should have confidence in the canonical program of climate change as outlined by, for example, the IPCC, because those who support the program have better scientific credentials than those that don’t. One of the authors of the paper, James Prall, made available on his website lists of several thousand persons, mostly scientists and technologists, who are in one group or the other. The lists include considerable detail, such as publications, citations and education that relates to scientific qualifications. Using Prall’s lists and relevant anecdotal statements by prominent advocates on both sides of the issue I suggest an alternate reason for the disparity in scientific credentials. The PNAS paper in testing scientific credentials counted the number of publications and citations in the area of climate science. There is a certain circularity in using such a test because persons who are professionally employed as climate scientists will naturally have many publications and citations - that is their professional goal. Professional employment in climate science implies adherence to group standards and to some extent beliefs. To give an analogy, if you are a professional freudian psychoanalyst you can’t say that Freud is a crackpot and retain your professional standing. I’m not saying that climate scientists are crackpots, but that there is surely some sort of shared belief and value system whether or not it is

  12. Going Global: Utilizing Instructional Geocaching to Enhance Students' Global Competency

    ERIC Educational Resources Information Center

    Szolosi, Andrew

    2012-01-01

    Within contemporary society, technology has taken on an integral role in the way we come to know and understand the world. In recognition of that reality, an increasing number of educators have begun to utilize an emerging technology resource, GPS devices, and a GPS-based activity, geocaching, to help enhance students' global competency. The…

  13. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  14. Global All-sky Shortwave Direct Radiative Forcing of Anthropogenic Aerosols from Combined Satellite Observations and GOCART Simulations

    NASA Astrophysics Data System (ADS)

    Su, W.; Loeb, N. G.; Schuster, G. L.; Chin, M.; Rose, F. G.

    2013-05-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon MODIS and MATCH assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the GOCART model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF), by assuming that the anthropogenic fractions from GOCART are representative. The global (60oN ˜60oS) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the TOA, 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo, and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF

  15. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.; Chin, Mian; Rose, Fred G.

    2013-01-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60°N~60°S) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the top of the atmosphere (TOA), 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are

  16. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

    PubMed

    Aronson, Myla F J; La Sorte, Frank A; Nilon, Charles H; Katti, Madhusudan; Goddard, Mark A; Lepczyk, Christopher A; Warren, Paige S; Williams, Nicholas S G; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; Macgregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pysek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-04-07

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.

  17. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers

    PubMed Central

    Aronson, Myla F. J.; La Sorte, Frank A.; Nilon, Charles H.; Katti, Madhusudan; Goddard, Mark A.; Lepczyk, Christopher A.; Warren, Paige S.; Williams, Nicholas S. G.; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; MacGregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pyšek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-01-01

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education. PMID:24523278

  18. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  19. Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    PubMed

    Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco

    2017-03-01

    The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the

  20. Draft Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030

    EPA Pesticide Factsheets

    View draft report and appendices providing historical and projected estimates of global non-CO2 GHG emissions for 1990 to 2030 from sources in the energy, industrial processes, waste, and agriculture sectors.

  1. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  2. Impact of anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon system

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyan; Wang, Zhili; Zhang, Hua

    2017-01-01

    The impact of the total effects due to anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon (EASM) system is studied using an aerosol-climate online model BCC_AGCM2.0.1_CUACE/Aero. The results show that the summer mean net all-sky shortwave fluxes averaged over East Asian monsoon region (EAMR) at the top of the atmosphere (TOA) and surface reduce by 4.8 and 5.0 W m- 2, respectively, due to the increases of global aerosol emissions in 2000 relative to 1850. Changes in radiations and their resulting changes in heat and water transport and cloud fraction contribute together to the surface cooling over EAMR in summer. The increases in global anthropogenic aerosols lead to a decrease of 2.1 K in summer mean surface temperature and an increase of 0.4 hPa in summer mean surface pressure averaged over EAMR, respectively. It is shown that the changes in surface temperature and pressure are significantly larger over land than ocean, thus decreasing the contrast of land-sea surface temperature and pressure. This results in the marked anomalies of north and northeast winds over eastern and southern China and the surrounding oceans in summer, thereby weakening the EASM. The summer mean precipitation averaged over the EAMR reduces by 12%. The changes in non-East Asian aerosol emissions play a more important role in inducing the changes of local temperature and pressure, and thus significantly exacerbate the weakness of the EASM circulation due to local aerosol changes. The weakening of circulation due to both is comparable, and even the effect of non-local aerosols is larger in individual regions. The changes of local and non-local aerosols contribute comparably to the reductions in precipitation over oceans, whereas cause opposite changes over eastern China. Our results highlight the importance of aerosol changes outside East Asia in the impact of the changes of anthropogenic aerosols on EASM.

  3. Can Granger causality delineate natural versus anthropogenic drivers of climate change from global-average multivariate time series?

    NASA Astrophysics Data System (ADS)

    Kodra, E. A.; Chatterjee, S.; Ganguly, A. R.

    2009-12-01

    The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) notes with a high degree of certainty that global warming can be attributed to anthropogenic emissions. Detection and attribution studies, which attempt to delineate human influences on regional- and decadal-scale climate change or its impacts, use a variety of techniques, including Granger causality. Recently, Granger causality was used as a tool for detection and attribution in climate based on a spatio-temporal data mining approach. However, the degree to which Granger causality may be able to delineate natural versus anthropogenic drivers of change in these situations needs to be thoroughly investigated. As a first step, we use multivariate global-average time series of observations to test the performance of Granger causality. We apply the popular Granger F-tests to Radiative Forcing (RF), which is a transformation of carbon dioxide (CO2), and Global land surface Temperature anomalies (GT). Our preliminary results with observations appear to suggest that RF Granger-causes GT, which seem to become more apparent with more data. However, carefully designed simulations indicate that these results are not reliable and may, in fact, be misleading. On the other hand, the same observation- and simulation-driven methodologies, when applied to the El Niño Southern Oscillation (ENSO) index, clearly show reliable Granger-causality from ENSO to GT. We develop and test several hypotheses to explain why the Granger causality tests between RF and GT are not reliable. We conclude that the form of Granger causality used in this study, and in past studies reported in the literature, is sensitive to data availability, random variability, and especially whether the variables arise from a deterministic or stochastic process. Simulations indicate that Granger causality in this form performs poorly, even in simple linear effect cases, when applied to one deterministic and one stochastic time

  4. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  5. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  6. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  7. Global warming is driven by anthropogenic emissions: a time series analysis approach.

    PubMed

    Verdes, Pablo F

    2007-07-27

    The solar influence on global climate is nonstationary. Processes such as the Schwabe and Gleissberg cycles of the Sun, or the many intrinsic atmospheric oscillation modes, yield a complex pattern of interaction with multiple time scales. In addition, emissions of greenhouse gases, aerosols, or volcanic dust perturb the dynamics of this coupled system to different and still uncertain extents. Here we show, using two independent driving force reconstruction techniques, that the combined effect of greenhouse gases and aerosol emissions has been the main external driver of global climate during the past decades.

  8. Determination of stratospheric and anthropogenic contributions to enhanced mid-tropospheric O3 in the tropical western Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, D. C.; Nicely, J. M.; Salawitch, R. J.; Dickerson, R. R.; Canty, T. P.; Hanisco, T. F.; Wolfe, G. M., Jr.; Apel, E. C.; Atlas, E. L.; Campos, T. L.; Hornbrook, R. S.; Kinnison, D. E.; Pan, L.; Randel, W. J.; Riemer, D. D.; Weinheimer, A. J.

    2014-12-01

    Tropospheric O3, an important greenhouse gas, is produced both from anthropogenic precursors and transport from the stratosphere. Previous O3 and water vapor observations in the remote tropical Pacific have shown strongly anti-correlated filaments of high O3 and reduced H2O in the mid-troposphere. These filaments were a pervasive feature seen throughout the troposphere during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign. While it has been proposed, based on analysis of prior observations, that these filaments result from stratospheric intrusion, lack of concomitant measurement of atmospheric tracers has limited the ability to quantitatively assess the relative roles of pollution and stratospheric intrusions. In addition to O3, H2O, and CO, tracers for biomass burning, fossil fuel emissions, and the stratosphere were also measured during CONTRAST. Preliminary correlation analysis shows not only frequent anti-correlation between O3 and water vapor in the filaments but also correlation between O3 and CO as well as other anthropogenic and pyrogenic tracers. The filaments appear to be a complex mixture of air parcels from different origins. Analysis of these observations, along with results from global chemistry models and back trajectories, will be discussed, focusing on anthropogenic and stratospheric contributions to tropospheric O3.

  9. Global Genetic Differentiation in a Cosmopolitan Pest of Stored Beans: Effects of Geography, Host-Plant Usage and Anthropogenic Factors

    PubMed Central

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  10. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    PubMed

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  11. Global and Regional Surface Albedo Changes due to Land Use Transformation: an Anthropogenic Source for Climate Change

    NASA Astrophysics Data System (ADS)

    Monier, E.; Wharton, S.; Laabs, B.; Reck, R.

    2005-12-01

    For the past decades, cropland area has been slowly increasing while forests and woodlands diminished, leading to consequent changes in land use resulting from human behavior. Besides, desertification directly affects millions of people around the world and not a single year goes by without new reports of ice melting. More than being an economic issue, land use transformation can prove to have altered the energy balance, and therefore the climate, through surface albedo changes over the past decades. Each land category has its own surface albedo, defined as its solar back scatter and being only a function of the radiation field incident on it and the properties of the land category itself. Using a global surface albedo model (Hummel and Reck, 1979), involving 49 different types of surfaces for each quarter of the year, January-March, April-June, July-September and October-December, surface albedo maps are computed from land usage maps for the 1970s and 1990s. Regional changes in the surface albedo can cause variation in the energy budget of the earth-atmosphere system, specifically in the tropospheric distribution of temperature, and therefore can be an anthropogenic source for climate change at a global scale. Many feedbacks and teleconnections can be found between surface albedo, cloud coverage and CO2 fluxes leading to a potentially unstable energy budget system. In order to fully comprehend climate change, a extensive review on that system and its foundations is expected to be released in 2006.

  12. Global albedo change and radiative cooling from anthropogenic land-cover change, 1700 to 2005 based on MODIS, land-use harmonization and radiative kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread anthropogenic land-cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion have been partially offset if not outweigh...

  13. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination.

    PubMed

    Chen, Cynthia; Sedwick, Peter N; Sharma, Mukul

    2009-05-12

    Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.

  14. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000

    USGS Publications Warehouse

    Milliman, John D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C.

    2008-01-01

    During the last half of the 20th century, cumulative annual discharge from 137 representative rivers (watershed areas ranging from 0.3 to 6300 ?? 103??km2) to the global ocean remained constant, although annual discharge from about one-third of these rivers changed by more than 30%. Discharge trends for many rivers reflected mostly changes in precipitation, primarily in response to short- and longer-term atmospheric-oceanic signals; with the notable exception of the Parana, Mississippi, Niger and Cunene rivers, few of these "normal" rivers experienced significant changes in either discharge or precipitation. Cumulative discharge from many mid-latitude rivers, in contrast, decreased by 60%, reflecting in large part impacts due to damming, irrigation and interbasin water transfers. A number of high-latitude and high-altitude rivers experienced increased discharge despite generally declining precipitation. Poorly constrained meteorological and hydrological data do not seem to explain fully these "excess" rivers; changed seasonality in discharge, decreased storage and/or decreased evapotranspiration also may play important roles. ?? 2008 Elsevier B.V. All rights reserved.

  15. Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Tolson, R. H.; Bradford, M. S.

    2000-05-01

    A study was performed of the long-term orbital decay of five Earth satellites with perigee altitudes averaging near 350km. To decouple long-term trend measurements from the effects of solar variability, measurements were evaluated during the years of solar minimum (1976, 1986 and 1996). Atmospheric densities derived from these essentially global measurements showed substantial evidence of a decline averaging 9.8 ± 2.5% in thermospheric density over 20 years pointing toward a long-term cooling of the upper atmosphere. Increases in greenhouse gases induced by human activity are hypothesized to warm the Earth's surface and lower atmosphere, but strongly cool the upper atmosphere. Assuming that the 10% increase in CO2 over these 20 years caused cooling resulting in the 10% decline in density, a doubling of CO2 could cause the thermospheric densities measured near 350km to decrease by a factor of 3. This decrease may shrink the altitude of a constant density surface by 40km before the end of the 21st century.

  16. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination

    PubMed Central

    Chen, Cynthia; Sedwick, Peter N.; Sharma, Mukul

    2009-01-01

    Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 × 10−15 g g−1 (5.3 × 10−14 mol kg−1). The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈1.3) and mantle/cosmic dust (≈0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (≈0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower 187Os/188Os ratio (≈0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts. PMID:19416862

  17. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development

  18. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  19. The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.

    2014-12-01

    The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the

  20. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  1. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2016-09-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  2. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.

    PubMed

    Raymond, Peter A; Oh, Neung-Hwan; Turner, R Eugene; Broussard, Whitney

    2008-01-24

    The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs. For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers. Here we introduce an unprecedented high-temporal-resolution, 100-year data set from the Mississippi River and couple it with sub-watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years (ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.

  3. Enhancing Global Understanding: A Call for Cooperation.

    ERIC Educational Resources Information Center

    Naylor, David T.

    Social studies education will improve if educators favoring global education and law-related education replace counterproductive competition with mutual respect and cooperation. As two of the many curricular approaches clamoring for a just share of elementary and secondary school social studies programs, global education and law-related education…

  4. Enhancing Student Collaboration in Global Virtual Teams

    ERIC Educational Resources Information Center

    Kohut, Gary F.

    2012-01-01

    With the growth in the global economy and the rapid development of communication and information technologies, global virtual teams are quickly becoming the norm in the workplace. Research indicates, however, that many students have little or no experience working in such teams. Students who learn through these experiences benefit from higher task…

  5. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  6. Global Investing: Diversification Enhances Return and Controls Risk.

    ERIC Educational Resources Information Center

    Morrell, Louis R.

    1995-01-01

    As the business environment becomes more global, so should a college or university's investment portfolio. Global diversification is becoming increasingly important in controlling risk and enhancing return. This article examines the size of bond markets and returns on bond investments in several nations, performance of world equity markets, and…

  7. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks

    NASA Astrophysics Data System (ADS)

    Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.

    2014-08-01

    Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.

  8. Enhancing medical students' education and careers in global surgery.

    PubMed

    Gosselin-Tardif, Alexandre; Butler-Laporte, Guillaume; Vassiliou, Melina; Khwaja, Kosar; Ntakiyiruta, Georges; Kyamanywa, Patrick; Razek, Tarek; Deckelbaum, Dan L

    2014-08-01

    With surgical conditions being significant contributors to the global burden of disease, efforts aimed at increasing future practitioners' understanding, interest and participation in global surgery must be expanded. Unfortunately, despite the increasing popularity of global health among medical students, possibilities for exposure and involvement during medical school remain limited. By evaluating student participation in the 2011 Bethune Round Table, we explored the role that global surgery conferences can play in enhancing this neglected component of undergraduate medical education. Study results indicate high rates of student dissatisfaction with current global health teaching and opportunities, along with high indices of conference satisfaction and knowledge gain, suggesting that global health conferences can serve as important adjuncts to undergraduate medical education.

  9. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably <1 Tg N2O-N/yr). Assuming that the changes in atmospheric concentrations from 1850 to the present are entirely anthropogenic, the top-down methodology yields an estimate of 5.3 Tg N2O-N/yr (range 5.2 - 5.5) net anthropogenic emissions for the period 2000-2007. Based on a review of bottom-up inventories, we estimate total net anthropogenic N2O emissions of 6.0 Tg N2O-N/yr (5.4-8.4 Tg N2O-N/yr). Estimates (and ranges) by sector (in Tg N2O-N/yr) are: agriculture 4.1 Tg (3.8-6.8); biomass burning 0.7 (0

  10. Assessment of Climatic and Anthropogenic Impacts on the Global Carbon Cycle Constrained by Atmospheric Measurements and Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, Stephen C.

    2001-01-01

    This grant aimed to establish how the global carbon cycle has responded and will respond to global change. We proposed to use models to predict measurements of atmospheric CO2 concentration and C-13/C-12 isotopic ratio, and thereby to establish how sources and sinks of atmospheric CO2 have been influenced by climatic change and human activities. As the work progressed we developed strategies involving finding regional sources and sinks of atmospheric CO2 by an inverse approach, and studying their seasonal and interannual variability.

  11. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report, September 15, 1993--September 14, 1997

    SciTech Connect

    Sarmiento, J.L.; Pacala, S.W.

    1998-06-01

    The primary accomplishment of this research was the development of an ocean biogeochemistry model for the carbon cycle, and the application of this model to studies of anthropogenic CO{sub 2} uptake and the global carbon cycle. The model has been used to study the oceanic uptake that would occur if future atmospheric CO{sub 2} were to be stabilized with the ocean circulation remaining constant. The authors also modeled how oceanic uptake would be affected by changes in ocean circulation that are predicted to occur due to global warming. The research resulted in 21 publications, and an additional 5 papers either in press or in preparation. The accomplishments of this research served as the foundation on which the Carbon Modeling Consortium was built. The CMC is a NOAA funded collaborative program involving principal investigators from various NOAA laboratories and universities. It has the goal of developing techniques to monitor the global carbon cycle on land as well as the ocean, and to predict its future course.

  12. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader

    PubMed Central

    Roura-Pascual, Núria; Hui, Cang; Ikeda, Takayoshi; Leday, Gwénaël; Richardson, David M.; Carpintero, Soledad; Espadaler, Xavier; Gómez, Crisanto; Guénard, Benoit; Hartley, Stephen; Krushelnycky, Paul; Lester, Philip J.; McGeoch, Melodie A.; Menke, Sean B.; Pedersen, Jes S.; Pitt, Joel P. W.; Reyes, Joaquin; Sanders, Nathan J.; Suarez, Andrew V.; Touyama, Yoshifumi; Ward, Darren; Ward, Philip S.; Worner, Sue P.

    2011-01-01

    Because invasive species threaten the integrity of natural ecosystems, a major goal in ecology is to develop predictive models to determine which species may become widespread and where they may invade. Indeed, considerable progress has been made in understanding the factors that influence the local pattern of spread for specific invaders and the factors that are correlated with the number of introduced species that have become established in a given region. However, few studies have examined the relative importance of multiple drivers of invasion success for widespread species at global scales. Here, we use a dataset of >5,000 presence/absence records to examine the interplay between climatic suitability, biotic resistance by native taxa, human-aided dispersal, and human modification of habitats, in shaping the distribution of one of the world's most notorious invasive species, the Argentine ant (Linepithema humile). Climatic suitability and the extent of human modification of habitats are primarily responsible for the distribution of this global invader. However, we also found some evidence for biotic resistance by native communities. Somewhat surprisingly, and despite the often cited importance of propagule pressure as a crucial driver of invasions, metrics of the magnitude of international traded commodities among countries were not related to global distribution patterns. Together, our analyses on the global-scale distribution of this invasive species provide strong evidence for the interplay of biotic and abiotic determinants of spread and also highlight the challenges of limiting the spread and subsequent impact of highly invasive species. PMID:21173219

  13. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthropogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Zheng, Y.; Kohfeld, K. E.; Marchese, P.; Cormier, M.; Warkentine, B.

    2005-12-01

    This project, sponsored by the National Science Foundation, Opportunities to Enhance Diversity in the Geosciences Division, will develop a program based on multidisciplinary investigations of Long Island Sound, as a vehicle to enhance diversity in geosciences. The program includes a curriculum centered on geosciences with a substantial field and laboratory component. Students will participate in a one-week oceanographic expedition to Long Island Sound aboard the R/V Cape Henlopen and in day trips using SUNY Maritime College's R/V Alexanderson. The goal is to illustrate the dominant physical processes in an urban coastal area by using a variety of oceanographic mapping techniques, such as multibeam bathymetric mapping, sediment and water sampling, and current profiling. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience which familiarizes them with their own environment. Furthermore, they will be introduced to solving geoscience problems in a hands-on manner while receiving one-on-one mentoring in a supportive environment. Strong support exists from the City University of New York (CUNY) at the graduate level through MAGNET fellowships. At the undergraduate level, the geoscience curriculum fulfills a science requirement for completion of a BA in geosciences. Support also exists from the "Alliance for Minority Participation" (AMP), a program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate, and the "Search for Education, Elevation, and Knowledge" (SEEK), a QC program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college. The main scientific objectives are 1) to evaluate the impact of anthropogenic activities through studies of the waters, plankton, and sediments and to propose measures for their remediation, and 2) to begin to assess long

  14. Measurement of resuspended aerosol in the Chernobyl area. Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension.

    PubMed

    Garger, E K; Paretzke, H G; Tschiersch, J

    1998-10-01

    During anthropogenic activities, such as agricultural soil management and traffic on unpaved roads, size distribution measurements were performed of atmospheric particulate radionuclides at a site in the Chernobyl 30-km exclusion zone. Analysis of cascade impactor measurements showed an increase of the total atmospheric radioactivity. In the cases of harrowing by a tractor and traffic on unpaved roads, a common shape of the size distribution was found with two maxima, the first in the 2-4 microm range, the second in the 12-20 microm range. The size distributions were compared to measurements during wind-driven resuspension. Particle number concentration measurements with an Aerodynamic Particle Sizer showed a dynamic dependence of the particle concentration in different size ranges on anthropogenic action. The increase of the mean concentration was for the large particles more than one order of magnitude higher than for fine particles during anthropogenic enhanced resuspension. From the measurement of the mass concentration, the radioactive loading could be estimated. An enrichment of radionuclides on resuspended particles (compared to soil particles) was found, with the highest enrichment for large particles. Micrometeorological considerations showed that large particles may frequently be subject to medium range transport. The dry deposition velocity was measured; the mean value of 0.026 m s(-1) +/- 0.016 m s(-1) is typical for 6-9 microm diameter particles.

  15. Impact of anthropogenic and climatic changes on biomass and diversity of the Central African forests, from local to global scale: original methods for new results

    NASA Astrophysics Data System (ADS)

    Mortier, Frédéric; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis; Picard, Nicolas; Rossi, Vivien

    2014-05-01

    Forests of the Congo Basin, the second most important remaining block of tropical moist forest in the world, are facing increasing anthropogenic pressure and climate change. Understanding the biomass and diversity dynamics under these pressures is one major challenge for African nations and international communities. This talk aims to present original methods to model, infer, and predict growth, biomass and diversity of Central African forests, as well as new results on the impacts of global change on those forests, at various scales. With respect to methods, we will present theoretical frameworks allowing (i) to model growth processes in species-rich ecosystems like tropical rain forests, (ii) to take into account uncertainties in biomass estimation. In terms of results, we will highlight at a local scale, how human activities as well as climatic variations would impact (i) the composition and diversity of forests, (ii) the dynamics of biomass and growth processes. At a global scale, we will demonstrate how environmental filtering controls the above ground biomass. The number of studies are currently increasing over the Congo Basin through several research projects led by our team (CoForTips, DynAfFor) and contributing to various international organization's programs (Cifor, FAO, Comifac, Ofac).

  16. The Geophysical, Anthropogenic, and Social Dimensions of Delta Risk: Estimating Contemporary and Future Risks at the Global Scale

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J. P.; Foufoula-Georgiou, E.

    2015-12-01

    Deltas are highly sensitive to increasing risks arising from local humanactivities, land subsidence, regional water management, global sea-level rise,and climate extremes. We extended a delta risk framework to include the impactof relative sea-level rise on exposure to flood conditions. We apply thisframework to an integrated set of global environmental, geophysical, and socialindicators over 48 major deltas to quantify how delta flood risk due to extremeevents is changing over time. Although geophysical and relative sea-level risederived risks are distributed across all levels of economic development, wealthycountries effectively limit their present-day threat by gross domesticproduct-enabled infrastructure and coastal defense investments. However, wheninvestments do not address the long-term drivers of land subsidence and relativesea-level rise, overall risk can be very sensitive to changes in protectivecapability. For instance, we show how in an energy-constrained future scenario,such protections will probably prove to be unsustainable, raising relative risksby four to eight times in the Mississippi and Rhine deltas and by one-and-a-halfto four times in the Chao Phraya and Yangtze deltas. The current emphasis onshort-term solutions on the world's deltas will greatly constrain options fordesigning sustainable solutions in the long term.

  17. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    PubMed

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  18. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature

    SciTech Connect

    Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

    2011-09-17

    Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

  19. Has Anthropogenic Global Warming in the Arctic Contributed to Colder Winter Weather in the Northern Hemisphere Mid-latitudes?

    NASA Astrophysics Data System (ADS)

    Cohen, J. L.; Furtado, J. C.; Barlow, M. A.; Cherry, J. E.; Alexeev, V. A.

    2012-12-01

    The global climate models predict that temperatures will warm the greatest in winter due to a positive feedback of increased greenhouse gases and a diminished and darker cryosphere. Furthermore, current consensus on global climate change predicts warming trends over the NH continents during boreal winter. However, recent trends in Northern Hemisphere (NH) seasonal surface temperatures diverge from these projections. For the last two decades or so, NH landmasses have experienced significant warming trends for all seasons except winter, when large-scale cooling trends exist instead. We propose a mechanism linking Arctic warming and winter continental cooling. Evidence suggests that summer and autumn Arctic warming trends are concurrent with increases in high-latitude moisture and an increase in autumnal Eurasian snow cover, which dynamically induces large-scale wintertime cooling. Understanding this counterintuitive response to radiative warming of the climate system has the potential to improve climate predictions at seasonal and longer timescales.a) JAS area-averaged (poleward of 60°N) surface temperature anomalies (°C) from NASA MERRA. b) September area-averaged (poleward of 65°N) Arctic Ocean sea ice coverage (fractional area). c) September - October vertically integrated (700-1000 hPa) and area-averaged (poleward of 60°N) specific humidity (kg m-2). d) October mean snow cover areal extent (106 km2) over the Eurasian continent from observations (black) and ensemble-mean from the historical runs of the CMIP5 model output (brown line). e) The DJF average AO index (standardized). Same-coloured dashed lines in a) - e) represent the linear trend in each index. Trends with double asterisk (**) indicate trends are significant at the p < 0.01 level.

  20. Non-communicable diseases and global health governance: enhancing global processes to improve health development

    PubMed Central

    Magnusson, Roger S

    2007-01-01

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy. PMID:17519005

  1. Non-communicable diseases and global health governance: enhancing global processes to improve health development.

    PubMed

    Magnusson, Roger S

    2007-05-22

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy.

  2. Detecting anthropogenic footprints in sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  3. Variations in anthropogenic silver in a large Patagonian lake correlate with global shifts in photographic processing technology.

    PubMed

    Juncos, Romina; Campbell, Linda; Arcagni, Marina; Daga, Romina; Rizzo, Andrea; Arribére, María; Ribeiro Guevara, Sergio

    2017-04-01

    At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 μg g(-1) dry weight (DW) in plankton to 0.02-3.1 μg g(-1) DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 μg g(-1) DW). Trophodynamic analyses using δ(15)N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi.

  4. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  5. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  6. Global Wild Annual Lens Collection: A Potential Resource for Lentil Genetic Base Broadening and Yield Enhancement

    PubMed Central

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested. PMID:25254552

  7. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement.

    PubMed

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested.

  8. Enhancement of Global Communication Skill at the School of Engineering

    NASA Astrophysics Data System (ADS)

    Morimura, Kumiko

    Globalization is one of the most important challenges for universities. Especially for the School of Engineering, it is crucial to foster researchers or engineers with broader perspective. International communication competency is essential for them in order to deal with other professionals from overseas. Center for Innovation in Engineering Education established in the School of Engineering at the University of Tokyo in 2005 started two programs for graduate and undergraduate students to enhance their international communication competency and to increase international competitiveness. ‘English for Scientists and Engineers A, B’ are for the graduate students to learn how to write papers in English and how to make good presentations. Special English Lessons are for the undergraduate students to have a chance to practice English conversation or prepare for TOEFL test. In this paper, the authors discuss the details of the programs, their purpose and the future tasks.

  9. Enhancing Global Competitiveness through Experiential Learning: Insights into Successful Programming

    ERIC Educational Resources Information Center

    Ghose, Nabarun

    2010-01-01

    International exposure of students is very essential in today's globalized world. Experiential learning, such as study abroad, plays a major role in developing global competencies in students, making them more marketable globally. This paper highlights one experiential activity that injects global competencies in students, thereby making them more…

  10. Sensitivity of Vegetation in the Western United States to Global Anthropogenic Changes in Atmospheric Carbon Dioxide Concentration: Forcing and Feedbacks in an RCM-EVM Coupling

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Sloan, L. C.; Snyder, M. A.; Bell, J. L.; Kaplan, J. O.; Bartlein, P. J.

    2002-12-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO_{2} induced climate change. Additionally, changes in vegetation distribution due to these direct and indirect effects may induce land surface-atmosphere feedbacks that create further change in both regional climate and regional vegetation distribution. Using a regional climate model (RegCM2.5) coupled to an equilibrium vegetation model (BIOME4), we quantitatively tested the sensitivity of climate and vegetation in the western United States to both the direct and indirect effects of doubled pre-Industrial atmospheric CO2 concentrations and to land surface-atmospheric feedbacks induced by the initial vegetation sensitivities. In assessing regional vegetation responses to the initial effects of elevated CO_{2} levels, vegetation in the western United States was sensitive to changes in photosynthesis and water use efficiency caused by increased CO2 availability, with woody biome types replacing less woody types throughout the domain. Vegetation was also sensitive to the initial climatic effects of increased CO_{2} concentrations, particularly at high elevations, both due to warming throughout the domain and to decreased precipitation in key mountain regions such as the Sierra Nevada and the Cascade and Blue Mountains of Oregon. Additionally, these patterns changed when the initial climatic and non-climatic effects of CO2 on vegetation were tested in combination, creating sensitivities not seen in either of the individual cases and indicating that climatic and non-climatic effects must be considered in tandem when assessing the potential impacts of elevated CO_{2} levels. Finally, asynchronous coupling of RegCM2.5 and BIOME4 tested the role of land surface-atmosphere feedbacks in shaping the regional response to elevated global atmospheric CO2 concentrations. The

  11. Using reconstructions of the global peat C balance over the Holocene to constrain the timing and magnitude of anthropogenic land use emissions

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Yu, Zicheng; Massa, Charly; Spahni, Renato; Prentice, Colin; Joos, Fortunat

    2016-04-01

    Major circumpolar peatlands of the northern hemisphere have established over the last 14 kyr, with the majority of peat C sequestered during the Holocene. Today, this C storage amounts to 500-600 GtC. In spite of this substantial impact on the C cycle, independent records of the total terrestrial C balance suggest a small long-term trend over the last 6 kyr. The advent of agriculture, associated land use change, and resulting cumulative CO2 emissions of 50-350 GtC have occurred during a period of continued C sequestration in peatlands. Relatively small variations in the total terrestrial C balance have thus been interpreted to indicate a coincidental timing and a similar magnitude of these compensating fluxes and to lend support for upper-end estimates of preindustrial land use emissions. Here, we test this hypothesis by combining observation-based reconstructions of the terrestrial C balance (ΔC) and peat storage (ΔCpeat) with new results from process-based global land C cycle models that hindcast peat C dynamics and CO2 emissions from anthropogenic land use change (ΔCLUC) following a set of contrasting land use reconstructions. Recent data compilations of peat C accumulation histories allow us to provide an improved temporal resolution of observation-based ΔCpeat. We assess the terrestrial C budget ΔC = ΔCpeat+ δ for different periods in the Holocene and in the last millennium and confront ΔCLUC with the budget residual δ. We find that the combination of ΔCpeat and ΔC and their temporal variations provide additional constraints on ΔCLUC estimates that have thus far not been taken into account. Between 11-7 kyr BP, ΔCpeat alone accounts for the majority of ΔC, incompatible with upper-end ΔCLUC estimates. Between 7-5 kyr BP and 5-2 kyr BP, the budget reveals a substantial land C source, but all model-based estimates of ΔCLUC fall short of explaining the magnitude of δ. ΔC reveals a relatively stable overall C balance during the last millennium

  12. Comment on "Polynomial cointegration tests of anthropogenic impact on global warming" by Beenstock et al. (2012) - some hazards in econometric modelling of climate change

    NASA Astrophysics Data System (ADS)

    Pretis, F.; Hendry, D. F.

    2013-10-01

    We outline six important hazards that can be encountered in econometric modelling of time-series data, and apply that analysis to demonstrate errors in the empirical modelling of climate data in Beenstock et al. (2012). We show that the claim made in Beenstock et al. (2012) as to the different degrees of integrability of CO2 and temperature is incorrect. In particular, the level of integration is not constant and not intrinsic to the process. Further, we illustrate that the measure of anthropogenic forcing in Beenstock et al. (2012), a constructed "anthropogenic anomaly", is not appropriate regardless of the time-series properties of the data.

  13. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  15. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  16. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect

    Pabian, Frank Vincent

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  17. Europa Global Views in Natural and Enhanced Colors

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). The bright white and bluish part of Europa's surface is composed mostly of water ice, with very few non-ice materials. In contrast, the brownish mottled regions on the right side of the image may be covered by hydrated salts and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other unknown component. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.

    North is to the top of the picture and the sun fully illuminates the surface. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. The finest details that can be discerned are 25 kilometers across. The images in this global view were taken in June 1997 at a range of 1.25 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft, during its ninth orbit of Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Counterterrorism: DOD Should Enhance Management of and Reporting on Its Global Train and Equip Program

    DTIC Science & Technology

    2016-04-01

    counterterrorism strategy , as underscored by the allocation of $675 million for Global Train and Equip program activities in fiscal year 2015—a...COUNTERTERRORISM DOD Should Enhance Management of and Reporting on Its Global Train and Equip Program Report to...Reporting on Its Global Train and Equip Program Why GAO Did This Study The United States has undertaken several efforts, including DOD’s Global Train

  19. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  20. Anthropogenic forcings on the surficial osmium cycle.

    PubMed

    Rauch, Sebastien; Peucker-Ehrenbrink, Bernhard; Kylander, Malin E; Weiss, Dominik J; Martinez-Cortizas, Antonio; Heslop, David; Olid, Carolina; Mighall, Tim M; Hemond, Harold F

    2010-02-01

    Osmium is among the least abundant elements in the Earth's continental crust. Recent anthropogenic Os contamination of the environment from mining and smelting activities, automotive catalytic converter use, and hospital discharges has been documented. Here we present evidence for anthropogenic overprinting of the natural Os cycle using a ca. 7000-year record of atmospheric Os deposition and isotopic composition from an ombrotrophic peat bog in NW Spain. Preanthropogenic Os accumulation in this area is 0.10 +/- 0.04 ng m(-2) y(-1). The oldest strata showing human influence correspond to early metal mining and processing on the Iberian Peninsula (ca. 4700-2500 cal. BP). Elevated Os accumulation rates are found thereafter with a local maximum of 1.1 ng m(-2) y(-1) during the Roman occupation of the Iberian Peninsula (ca. 1930 cal. BP) and a further increase starting in 1750 AD with Os accumulation reaching 30 ng m(-2) y(-1) in the most recent samples. Osmium isotopic composition ((187)Os/(188)Os) indicates that recent elevated Os accumulation results from increased input of unradiogenic Os from industrial and automotive sources as well as from enhanced deposition of radiogenic Os through increased fossil fuel combustion and soil erosion. We posit that the rapid increase in catalyst-equipped vehicles, increased fossil fuel combustion, and changes in land-use make the changes observed in NW Spain globally relevant.

  1. Distance Learning Technology for Enhancing Pedagogy: The Global Connection.

    ERIC Educational Resources Information Center

    Smith, David E.

    1997-01-01

    The global connection is a business education project undertaken at three diverse institutions located in Denmark (Copenhagen Business School) and California (National University, Coastline Community College). The project incorporates video teleconferencing technology to provide six guest speakers for teaching purposes within one academic year…

  2. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  3. Global Enhancement but Local Suppression in Feature-based Attention.

    PubMed

    Forschack, Norman; Andersen, Søren K; Müller, Matthias M

    2017-04-01

    A key property of feature-based attention is global facilitation of the attended feature throughout the visual field. Previously, we presented superimposed red and blue randomly moving dot kinematograms (RDKs) flickering at a different frequency each to elicit frequency-specific steady-state visual evoked potentials (SSVEPs) that allowed us to analyze neural dynamics in early visual cortex when participants shifted attention to one of the two colors. Results showed amplification of the attended and suppression of the unattended color as measured by SSVEP amplitudes. Here, we tested whether the suppression of the unattended color also operates globally. To this end, we presented superimposed flickering red and blue RDKs in the center of a screen and a red and blue RDK in the left and right periphery, respectively, also flickering at different frequencies. Participants shifted attention to one color of the superimposed RDKs in the center to discriminate coherent motion events in the attended from the unattended color RDK, whereas the peripheral RDKs were task irrelevant. SSVEP amplitudes elicited by the centrally presented RDKs confirmed the previous findings of amplification and suppression. For peripherally located RDKs, we found the expected SSVEP amplitude increase, relative to precue baseline when color matched the one of the centrally attended RDK. We found no reduction in SSVEP amplitude relative to precue baseline, when the peripheral color matched the unattended one of the central RDK, indicating that, while facilitation in feature-based attention operates globally, suppression seems to be linked to the location of focused attention.

  4. Enhanced global integration of closed contours in individuals with high levels of autistic-like traits.

    PubMed

    Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R

    2014-10-01

    Individuals with autistic traits (measured with Autism-spectrum Quotient, AQ) often excel in detecting shapes hidden within complex structures (e.g. on the Embedded Figures Test, EFT). This facility has been attributed to either weaker global integration of scene elements or enhanced local processing, but 'local' and 'global' have various meanings in the literature. The function of specific global visual mechanisms involved in integrating contours, similar to EFT targets was examined. High AQ scorers produced enhanced performance on the EFT and an alternative Radial Frequency Search Task. Contrary to 'generic' interpretations of weaker global pooling, this group displayed stronger pooling of contour components that was correlated with search ability. This study therefore shows a global contour integration advantage in high AQ observers.

  5. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  6. Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance.

    PubMed

    Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A; Shen, Tammy W; Luft, J Christopher; Luft, Yancey E; Keeler, Amanda W; Robbins, Gregory R; Ting, Jenny P Y; Zamboni, William C; Bear, James E; DeSimone, Joseph M

    2016-01-26

    Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.

  7. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  8. Lowering Global Temperature by Enhancing the Natural Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Wingenter, O. W.; Elliot, S. M.; Blake, D. R.

    2007-12-01

    We describe a well leveraged approach to partially regulate climate using limited iron enhancement to stimulate the natural sulfur cycle resulting in increased cloud reflectivity that could cool large regions of our planet. Our plan differs greatly in size and intended outcome from full scale ocean iron fertilization of the Southern Ocean (SO) as proposed previously to help mitigate rising CO2 in the atmosphere. Some regions of the Earth's oceans are high in nutrients but low in primary productivity. The largest such region is the SO followed by the equatorial Pacific. Several mesoscale (100 km2) experiments have shown that the limiting nutrient to productivity is iron. Yet, the effectiveness of iron fertilization for sequestering significant amounts of atmospheric CO2 is still in question. However, marine microorganisms not only consume inorganic carbon but also produce and consume many climate relevant organic gases. The greatest climate effect of iron fertilization may be in enhancing dimethyl sulfide (DMS) production, leading to changes in the optical properties of the atmosphere and cooling of the region. It appears that that full scale fertilization of the SO is not a viable solution because it would lead to over cooling of the region. Furthermore, our initial proposal differs from other solar shading plans as primary productivity may actually increase somewhat despite the slight loss in sunlight.

  9. Enhanced marine sulphur emissions offset global warming and impact rainfall

    PubMed Central

    Grandey, B. S.; Wang, C.

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  10. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    PubMed

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  11. Enhanced marine sulphur emissions offset global warming and impact rainfall

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Wang, C.

    2015-08-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  12. EMISSIONS AND COST ESTIMATES FOR GLOBALLY SIGNIFICANT ANTHROPOGENIC COMBUSTION SOURCES OF NOX, N2O, CH4, CO AND CO2

    EPA Science Inventory

    The report discusses the development of emission factors for CO2, CO, CH4, NOx, and N2O for about 80 globally significant combustion sources in seven source categories: utility, industrial, fuel production, transportation, residential, commercial, and kilns/ovens/dryers. ecause o...

  13. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  14. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  15. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Feely, R. A.; Mecking, S.; Cross, J. N.; Macdonald, A. M.; Siedlecki, S. A.; Talley, L. D.; Sabine, C. L.; Millero, F. J.; Swift, J. H.; Dickson, A. G.; Rodgers, K. B.

    2017-02-01

    A modified version of the extended multiple linear regression (eMLR) method is used to estimate anthropogenic carbon concentration (Canth) changes along the Pacific P02 and P16 hydrographic sections over the past two decades. P02 is a zonal section crossing the North Pacific at 30°N, and P16 is a meridional section crossing the North and South Pacific at 150°W. The eMLR modifications allow the uncertainties associated with choices of regression parameters to be both resolved and reduced. Canth is found to have increased throughout the water column from the surface to 1000 m depth along both lines in both decades. Mean column Canth inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s) decades along P02, at rates of 0.53 ± 0.11 and 0.46 ± 0.11 mol C m-2 a-1, respectively. By contrast, Canth storage accelerated from 0.29 ± 0.10 to 0.45 ± 0.11 mol C m-2 a-1 along P16. Shifts in water mass distributions are ruled out as a potential cause of this increase, which is instead attributed to recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60°S and 60°N of 6.1 ± 1.5 PgC decade-1 in the earlier decade and 8.8 ± 2.2 PgC decade-1 in the recent decade. This storage estimate is large despite the shallow Pacific Canth penetration due to the large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.

  16. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2015-10-01

    Global warming is expected to decrease ocean oxygen concentrations by less solubility of surface ocean and change in ocean circulation. The associated expansion of the oxygen minimum zone would have adverse impacts on marine organisms and ocean biogeochemical cycles. Oxygen reduction is expected to persist for a thousand years or more, even after atmospheric carbon dioxide stops rising. However, long-term changes in ocean oxygen and circulation are still unclear. Here we simulate multimillennium changes in ocean circulation and oxygen under doubling and quadrupling of atmospheric carbon dioxide, using a fully coupled atmosphere-ocean general circulation model and an offline biogeochemical model. In the first 500 years, global oxygen concentration decreases, consistent with previous studies. Thereafter, however, the oxygen concentration in the deep ocean globally recovers and overshoots at the end of the simulations, despite surface oxygen decrease and weaker Atlantic meridional overturning circulation. This is because, after the initial cessation, the recovery and overshooting of deep ocean convection in the Weddell Sea enhance ventilation and supply oxygen-rich surface waters to deep ocean. Another contributor to deep ocean oxygenation is seawater warming, which reduces the export production and shifts the organic matter remineralization to the upper water column. Our results indicate that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in deep ocean, which is opposite to the centennial-scale global oxygen reduction and general expectation.

  17. A Model for Enhancing Midwifery Education With a Global Health Certificate.

    PubMed

    De Kleine, Morgan; Habashy, Mary R; Collins, Michelle R

    2016-06-10

    Global health is centered on promoting health equity for all populations. There is a growing need for midwives to receive education in the field of global health in order to be equipped to care for diverse populations within the United States and internationally. Midwifery students benefit from the opportunity to complete global health coursework and a global health practicum, as these experiences help them learn how to reduce local and global health disparities through interdisciplinary collaboration and international partnerships. The purpose of this article is to provide an overview of how a graduate certificate in global health can be used to enhance and enrich midwifery education. The article evaluates the numerous benefits of the global health certificate for midwifery students, and it discusses the logistical challenges of implementation, including potential areas for improvement. By collaborating together, midwifery education programs can expand the breadth of global health courses and practicum experiences available to midwifery students and prepare them to engage in global health projects that improve maternal and neonatal health outcomes in the United States and around the world.

  18. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  19. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  20. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Miyazaki, Kazuyuki; Worden, John R.; Liu, Jane J.; Jones, Dylan B. A.; Henze, Daven K.

    2016-05-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern midlatitude regions. However, the exact contribution of regional emissions, chemical and transport processes to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East, using updated reactive nitrogen (NOx) emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime middle free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, lightning NOx from Europe and North America and anthropogenic NOx from Middle Eastern local emissions are the primary sources of O3. This work highlights the critical role of lightning NOx on northern midlatitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  1. From smallpox eradication to contemporary global health initiatives: enhancing human capacity towards a global public health goal.

    PubMed

    Tarantola, Daniel; Foster, Stanley O

    2011-12-30

    The eradication of smallpox owes its success first and foremost to the thousands of lay health workers and community members who, throughout the campaign and across continents, took on the roles of advocates, educators, vaccinators, care providers and contributors to epidemic surveillance and containment. Bangladesh provides a good example where smallpox eradication and the capacity enhancement needed to achieve this goal resulted in a two-way mutually beneficial process. Smallpox-dedicated staff provided community members with information guidance, support and tools. In turn, communities not only created the enabling environment for smallpox program staff to perform their work but acquired the capacity to perform essential eradication tasks. Contemporary global health programmes can learn much from these core lessons including: the pivotal importance of supporting community aspirations, capacity and resilience; the critical need to enhance commitment, capacity and accountability across the workforce; and the high value of attentive human resources management and support. We owe to subsequent global disease control, elimination and eradication ventures recognition of the need for social and behavioural science to inform public health strategies; the essential roles that civil society organizations and public-private partnerships can play in public health discourse and action; the overall necessity of investing in broad-based health system strengthening; and the utility of applying human rights principles, norms and standards to public health policy and practice.

  2. Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls.

    PubMed

    Morris-Drake, Amy; Bracken, Anna M; Kern, Julie M; Radford, Andrew N

    2017-04-01

    Anthropogenic noise is an evolutionarily novel and widespread pollutant in both terrestrial and aquatic habitats. Despite increasing evidence that the additional noise generated by human activities can affect vocal communication, the majority of research has focused on the use of conspecific acoustic information, especially sexual signals. Many animals are known to eavesdrop on the alarm calls produced by other species, enhancing their likelihood of avoiding predation, but how this use of heterospecific information is affected by anthropogenic noise has received little empirical attention. Here, we use two field-based playback experiments on a habituated wild population of dwarf mongooses (Helogale parvula) to determine how anthropogenic noise influences the response of foragers to heterospecific alarm calls. We begin by demonstrating that dwarf mongooses respond appropriately to the alarm calls of sympatric chacma baboons (Papio ursinus) and tree squirrels (Paraxerus cepapi); fleeing only to the latter. We then show that mongoose foragers are less likely to exhibit this flee response to tree squirrel alarm calls during road-noise playback compared to ambient-sound playback. One explanation for the change in response is that noise-induced distraction or stress result in maladaptive behaviour. However, further analysis revealed that road-noise playback results in increased vigilance and that mongooses showing the greatest vigilance increase are those that do not subsequently exhibit a flee response to the alarm call. These individuals may therefore be acting appropriately: if the greater gathering of personal information indicates the absence of an actual predator despite an alarm call, the need to undertake costly fleeing behaviour can be avoided. Either way, our study indicates the potential for anthropogenic noise to interfere with the use of acoustic information from other species, and suggests the importance of considering how heterospecific networks are

  3. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  4. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  5. Possible revisions in reservoir operation rules as an adaptation to climate change assessed by a global hydrological model with anthropogenic activities and a state-of-the-art river routing model

    NASA Astrophysics Data System (ADS)

    Oki, T.; Mateo, C. M. R.; Hanasaki, N.; Yamazaki, D.; Watanabe, S.; Kiguchi, M.; Komori, D.; Champathong, A.

    2015-12-01

    In the past decade, several advances have been made in incorporating anthropogenic impacts such as reservoir operation in global hydrological models. However, detailed examination of their performance in regional or large river basins is still lacking. The Chao Phraya River Basin in Thailand is a good site for a case study because of the availability of detailed and long-term hydrological records which include the operation of two huge reservoirs, the Bhumibol and Sirikit Reservoirs, in the basin. The ensemble means of the simulation results using eight bias-corrected CMIP5 general circulation models (GCMs), selected based on the availability of the atmospheric forcing inputs needed in a water balance model with human activities, the H08 model, under two representative concentration path scenarios (RCP), RCP4.5 and RCP8.5, for the near future from 2041 to 2059 were compared with the base period simulation from 1981 to 1999. The estimates projected an increase in runoff of 10-15% in RCP4.5 and 40-50% in RCP8.5. While the change in dry season ranges from -10mm to 10mm, the wet season runoff could increase by as much as 160mm in RCP8.5. Hence, the frequency of reservoir emptying will decrease while spilling will increase by as much as 5 times of that of the base period in RCP8.5. In RCP4.5, the frequency of reservoir emptying will not significantly change while spilling will most likely double. Consequently, flooding in the basin will be more frequent and more severe. It was found that the mean inundated area downstream of the two reservoirs, simulated by CaMa-Flood, will increase by approximately 30% in RCP4.5 and about 130% in RCP8.5. At flood inundation depth greater than 1.00m, flooded area will increase by about 95% and 460% in RCP4.5 and RCP8.5, respectively. Possible reservoir operation rules adapting to these changes are examined to minimize flooded area and inundation depth in the downstream area, and to avoid full water levels of the reservoirs. It is

  6. Anthropogenic modification of the oceans.

    PubMed

    Tyrrell, Toby

    2011-03-13

    Human activities are altering the ocean in many different ways. The surface ocean is warming and, as a result, it is becoming more stratified and sea level is rising. There is no clear evidence yet of a slowing in ocean circulation, although this is predicted for the future. As anthropogenic CO(2) permeates into the ocean, it is making sea water more acidic, to the detriment of surface corals and probably many other calcifiers. Once acidification reaches the deep ocean, it will become more corrosive to CaCO(3), leading to a considerable reduction in the amount of CaCO(3) accumulating on the deep seafloor. There will be a several thousand-year-long interruption to CaCO(3) sedimentation at many points on the seafloor. A curious feedback in the ocean, carbonate compensation, makes it more likely that global warming and sea-level rise will continue for many millennia after CO(2) emissions cease.

  7. Forging the anthropogenic iron cycle.

    PubMed

    Wang, Tao; Müller, Daniel B; Graedel, T E

    2007-07-15

    Metallurgical iron cycles are characterized for four anthropogenic life stages: production, fabrication and manufacturing, use, and waste management and recycling. This analysis is conducted for year 2000 and at three spatial levels: 68 countries and territories, nine world regions, and the planet. Findings include the following: (1) contemporary iron cycles are basically open and substantially dependent on environmental sources and sinks; (2) Asia leads the world regions in iron production and use; Oceania, Latin America and the Caribbean, Africa, and the Commonwealth of Independent States present a highly production-biased iron cycle; (3) purchased scrap contributes a quarter of the global iron and steel production; (4) iron exiting use is three times less than that entering use; (5) about 45% of global iron entering use is devoted to construction, 24% is devoted to transport equipment, and 20% goes to industrial machinery; (6) with respect to international trade of iron ore, iron and steel products, and scrap, 54 out of the 68 countries are net iron importers, while only 14 are net exporters; (7) global iron discharges in tailings, slag, and landfill approximate one-third of the iron mined. Overall, these results provide a foundation for studies of iron-related resource policy, industrial development, and waste and environmental management.

  8. Geomorphology of anthropogenic landscapes

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    The construction of urban areas and the development of road networks leave a significant signature on the Earth surface, providing a geomorphological evidence to support the idea that humans are nowadays a geomorphic agent having deep effects on the morphological organization of the landscape. The reconstruction or identification of anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the Anthropocene. Following this research line, the present study tests the effectiveness of a recently published topographic index, the Slope Local Length of Autocorrelation (SLLAC, Sofia et al. 2014) to portrait anthropogenic geomorphology, focusing in particular on road network density, and urban complexity (UCI). At first, the research considers the increasing of anthropic structures and the resulting changes in the SLLAC and in two derived parameters (mean SLLAC per km2 and SLLAC roughness, or Surface Peak Curvature -Spc). As a second step, considering the SLLAC derived indices, the anthropogenic geomorphology is automatically depicted using a k-means clustering algorithm. In general, the increasing of road network density or of the UCI is positively correlated to the mean SLLAC per km2, while the Spc is negatively correlated to the increasing of the anthropic structures. Areas presenting different road network organization are effectively captured considering multiple combinations of the defined parameters. Landscapes with small scattered towns, and a network with long roads in a dendritic shape (with hierarchical branching) are characterized simultaneously by high mean SLLAC and low Spc. Large and complex urban areas served by rectilinear networks with numerous short straight lines and right angles, have either a maximized mean SLLAC or a minimized Spc or both. In all cases, the anthropogenic landscape identified by the procedure is comparable to the ones identified manually from orthophoto, with the

  9. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  10. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production.

    PubMed

    Pandey, Neha; Pandey-Rai, Shashi

    2016-01-01

    Application of traditional Chinese drug, artemisinin, originally derived from Artemisia annua L., in malaria therapy has now been globally accepted. Artemisinin and its derivatives, with their established safety records, form the first line of malaria treatment via artemisinin combination therapies (ACTs). In addition to its antimalarial effects, artemisinin has recently been evaluated in terms of its antitumour, antibacterial, antiviral, antileishmanial, antischistosomiatic, herbicidal and other properties. However, low levels of artemisinin in plants have emerged various conventional, transgenic and nontransgenic approaches for enhanced production of the drug. According to WHO (2014), approximately 3.2 billion people are at risk of this disease. However, unfortunately, artemisinin availability is still facing its short supply. To fulfil artemisinin's global demand, no single method alone is reliable, and there is a need to collectively use conventional and advanced approaches for its higher production. Further, it is the unique structure of artemisinin that makes it a potential drug not only against malaria but to other diseases as well. Execution of its action through multiple mechanisms is probably the reason behind its wide spectrum of action. Unfortunately, due to clues for developing artemisinin resistance in malaria parasites, it has become desirable to explore all possible modes of action of artemisinin so that new generation antimalarial drugs can be developed in future. The present review provides a comprehensive updates on artemisinin modes of action and strategies for enhanced artemisinin production at global level.

  11. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-26

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  12. The nonlinear thermodynamics of meteors, noctilucent clouds, enhanced airglow and global atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Rajchl, J.

    1987-01-01

    Two types of fundamental topological junctions of elements are deduced from a nonlinear thermodynamical model. Using this scheme, the possibility of a causal relation between fireballs and faint meteors as nonlinear sources on the one hand, and noctilucent clouds (NC) and Hoffmeister's enhanced airglow (EA) as complementary formative processes in the middle atmosphere and ionosphere, on the other hand, is examined. The principal role of the global atmospheric circulation in this relation is demonstrated. Such circulation in the mesosphere appears to prevent the neutral dust dissipated by fireballs from becoming an efficient agent in NLC generation. In this case, the behavior of ionized material deposited by both the bright and faint meteors is more probably controlled, as shown from the annual variation of the E sub s layer by the darkness of lunar eclipses and the global circulation of the lower thermosphere. The role of fireballs and neutral dust might be more significant as a source of EA phenomenon.

  13. Assessing the observed impact of anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Hansen, Gerrit; Stone, Dáithí

    2016-05-01

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  14. Geoheritage, Geodiversity and natural landscape enhanced and protected through anthropogenic activity: a case study using the Chaîne des Puys and Limagne Fault, Afar and Mexico City

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Hagos, Miruts; Guilbaud, Marie-Noelle

    2015-04-01

    The UNESCO World Heritage (WH) committee called in 2014 for all thematic geological and volcanological studies to be revised in light of a widening gap between current dogma and the progressive geoheritage science views. We discuss question of natural sites and anthropogenic activity. The Chaîne des Puys and Limagne fault UNESCO WH project is the basis of this presentation, but we also the Afar Region of Ethiopia and UNAM campus, Mexico City. It is now difficult to find any totally 'natural' (devoid of human influence) landscape. This very definition of natural ignores that humankind is a geological force, and humans are part of the natural process. The UNESCO WH guidelines recognise this in paragraph 90: 'it is recognized that no area is totally pristine and that all natural areas are in a dynamic state, and to some extent involve contact with people'. A geological landscape, may be large enough to accommodate human occupation without significantly changing landforms: this is the case of the Chaîne des Puys and Limagne fault. Human activity works in some ways to protect geological landscape: regulating vegetation and erosion. The aesthetic nature of humans may work to enhance the landscape's visibility by organisation of land use, and ceremonial use based on the sense of place. Humans also exercise economic activity such as quarrying and mining, which if uncontrolled can seriously modify a landscape. However, isolated works may not have an impact, or may even enhance the value of the site by uncovering geological features that would not naturally be seen. In the Chaîne des Puys only 0,3% of the land surface has been worked by artisanal methods and certain sites, like the Lemptégy volcano have been extracted with the view of enhancing the landscape's scientific value without detracting from the aesthetic. The site preserves its natural, scientific and aesthetic qualities, because of the human presence. The local population have always been and continue to be

  15. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

    PubMed

    Kantola, Ilsa B; Masters, Michael D; Beerling, David J; Long, Stephen P; DeLucia, Evan H

    2017-04-01

    Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate.

  16. Modification of global precipitation data for enhanced hydrologic modeling of tropical montane watersheds

    NASA Astrophysics Data System (ADS)

    Strauch, Michael; Kumar, Rohini; Eisner, Stephanie; Mulligan, Mark; Reinhardt, Julia; Samaniego, Luis; Santini, William; Vetter, Tobias; Friesen, Jan

    2016-04-01

    Global gridded precipitation is an essential driving input for hydrologic models to simulate runoff dynamics in large river basins. However, the data often fail to adequately represent precipitation variability in mountainous regions due to orographic effects and sparse and highly uncertain gauge data. Water balance simulations in tropical montane regions covered by cloud forests are especially challenging because of the additional water input from cloud water interception. The ISI-MIP2 hydrologic model ensemble encountered these problems for Andean sub-basins of the Upper Amazon Basin, where all models significantly underestimated observed runoff. In this paper, we propose simple yet plausible ways to adjust global precipitation data provided by WFDEI, the WATCH Forcing Data methodology applied to ERA-Interim reanalysis, for tropical montane watersheds. The modifications were based on plausible reasoning and freely available tropics-wide data: (i) a high-resolution climatology of the Tropical Rainfall Measuring Mission (TRMM) and (ii) the percentage of tropical montane cloud forest cover. Using the modified precipitation data, runoff predictions significantly improved for all hydrologic models considered. The precipitation adjustment methods presented here have the potential to enhance other global precipitation products for hydrologic model applications in the Upper Amazon Basin as well as in other tropical montane watersheds.

  17. Anthropogenic sulfur dioxide emissions: 1850-2005

    SciTech Connect

    Smith, S. J.; Van Aardenne, J.; Klimont, Z.; Andres, Robert Joseph; Volke, A.; Delgado Arias, S

    2011-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5 grid by sector for use in coordinated climate model experiments.

  18. Anthropogenic Sulfur Dioxide Emissions: 1850-2005

    SciTech Connect

    Smith, Steven J.; van Aardenne, John; Klimont, Z.; Andres, Robert; Volke, April C.; Delgado Arias, Sabrina

    2011-01-02

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 - 2005. A combination of mass balance and best available inventory data was used in order to achieve the most accurate estimate possible. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties of up to 30% were found. The largest contributors to uncertainty at present are emissions from China and international shipping.

  19. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R.; Volke, A.; Delgado Arias, S.

    2010-06-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  20. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S.

    2011-02-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  1. Random walk expectancies for recent global climate, and in an enhanced Greenhouse warming

    NASA Astrophysics Data System (ADS)

    Gordon, Adrian H.; Bye, John A. T.

    1993-11-01

    We partition the United Kingdom Meteorological Office Global Temperature Series ( Tk) using an exponential decay filter into a filtered series ( T̂k) and a difference series ( T' k = T k - T̂k). For a decay time constant, τ ≈ 0.85 years, T̂k is shown to be agood approximation to a random walk generated by a cumulation of normally distributed interannual temperature transitions, and hence ' k contains the predictable temperature signal. The standard deviation of the T̂k series, σ = 0.083K, which is about 1 1/2 that of the T' k series. From this partition, it is argued that τ is the decay time costant (e-folding time) for the global temperature series, and also by the elementary theory of damped oscillations, that the global cimate system (as represented by the global temperature) can only support free oscillations of natural period less than T = 2 πτ ≈ 5 years, i.e. the QBO and ENSO signals. On assuming that σ does not vary significantly over periods up to 20,000 B.P. we find that the expected maximum excursions of the random walks are consistent with the actual inferred temperature variability. On the other hand, the projected temperature rise due to the enhanced Greenhouse effect possibly cannot be supported as a random walk by σ. This suggests that the interannual structure of the climate system would change under these conditions. This conjecture can be tested adequately only with climate models which correctly reproduced random walk behaviour. This is inhibited in published simulated temperature series from coupled models, possibly because of flux correction. An assessment of the likelihood of a change in the interannual variance, and of the ratio between its predictable and random proportions is clearly of utmost significance in the Greenhouse debate, yet it appears to have received very little discussion.

  2. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  3. The contemporary anthropogenic chromium cycle.

    PubMed

    Johnson, Jeremiah; Schewel, Laura; Graedel, T E

    2006-11-15

    Chromium is an essential engineering metal used in stainless and alloy steels, chemicals, and refractory products. Using material flow analysis, all major anthropogenic chromium flows are characterized for the year 2000, from mining through discard, on three spatial levels: fifty-four countries, nine world regions, and the planet. Included is the first detailed quantification of chromium in internationally traded finished products and diverse waste streams. Findings include (1) 78% of chromium flow entering final use is added as a net addition to stock on the global level; most countries are close to this figure; (2) the majority of mining occurs in Africa (2400 Gg Cr/yr) and the Commonwealth of Independent States (1090 Gg Cr/yr), while the major end-users are Asia, Europe, and North America at 1150, 1140, and 751 Gg Cr/yr, respectively; (3) waste flows of chromium are the greatest in Europe (420 Gg Cr/yr), Asia (370 Gg Cr/yr), and North America (290 Gg Cr/yr), but the composition of these waste flows varies greatly among the world regions; (4) releases of chromium by the global system, which total 2630 Gg Cr/yr, are nearly evenly divided among tailings, ferrochromium slag, downgraded scrap, and post-consumer losses; (5) many countries have a heavy foreign dependence on chromium in the all forms, as is demonstrated for the United States. The findings relating to in-use stock changes and finished product trade are relevant to industry, allowing for more accurate planning for future scrap availability. The quantification of releases due to discards and dissipation hold environmental and human health relevance, while the full life cycle international trade assessment addresses local scarcity.

  4. Anthropogenic Sulfate, Clouds, and Climate Forcing

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  5. Using support vector machine and dynamic parameter encoding to enhance global optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chen, X.; Liu, C.; Huang, K.

    2016-05-01

    This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.

  6. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    PubMed

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  7. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    PubMed

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.

  8. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  9. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  10. Exploring the engine of anthropogenic iron cycles

    PubMed Central

    Müller, Daniel B.; Wang, Tao; Duval, Benjamin; Graedel, T. E.

    2006-01-01

    Stocks of products in use are the pivotal engines that drive anthropogenic metal cycles: They support the lives of people by providing services to them; they are sources for future secondary resources (scrap); and demand for in-use stocks generates demand for metals. Despite their great importance and their impacts on other parts of the metal cycles and the environment, the study of in-use stocks has heretofore been widely neglected. Here we investigate anthropogenic and geogenic iron stocks in the United States (U.S.) by analyzing the iron cycle over the period 1900–2004. Our results show the following. (i) Over the last century, the U.S. iron stock in use increased to 3,200 Tg (million metric tons), which is the same order of magnitude as the remaining U.S. iron stock in identified ores. On a global scale, anthropogenic iron stocks are less significant compared with natural ores, but their relative importance is increasing. (ii) With a perfect recycling system, the U.S. could substitute scrap utilization for domestic mining. (iii) The per-capita in-use iron stock reached saturation at 11–12 metric tons in ≈1980. This last finding, if applicable to other economies as well, could allow a significant improvement of long-term forecasting of steel demand and scrap availability in emerging market economies and therefore has major implications for resource sustainability, recycling technology, and industrial and governmental policy. PMID:17053079

  11. Using message brokering and data mediation on earth science data to enhance global maritime situational awareness

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Alessandrini, A.; Greidanus, H.

    2016-04-01

    Maritime Situational Awareness is the understanding of anything associated with the maritime domain that could impact the security, safety, economy, or environment. The European Commission's Joint Research Centre (JRC) has developed an in-house data collection, data analysis and data visualiztion facility, known as the Blue Hub. The Blue Hub operates as a research and development platform for integrated maritime surveillance and maritime situational awareness. It has global coverage and has been applied, for example, to support counter-piracy around Africa, to investigate fishing activity and to monitor the growing ship traffic in the Arctic. In order to improve maritime awareness and support risk assessment, the JRC has started to integrate data from the marine and atmosheric science community. In particular the JRC is interested in using forecasts from operational ocean models and weather models. For the Blue Hub a new type of data server, called ERDDAP, that performs message brokering and data mediation has become an essential tool for the accessing of ocean forecast data as quickly as possible in easy to use formats. NOAA (National Oceanic and Atmospheric Administration of the USA) is making global oceanography and weather data available through the Environmental Research Division's Data Access Program (ERDDAP) data broker. ERDDAP provides RESTful machine to machine communication, data brokering and data mediation by converting data to a number of standard and developer friendly formats, including some Open Geospatial Consortium formats. In this paper, we demonstrate how data brokering and mediation is making complex scientific data accessible. We show how such data is being integrated into the Blue Hub system to enhance maritime situational awareness.

  12. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Le Quéré, Corinne; Dentener, Frank; Nevison, Cynthia; Butler, James H.; Bange, Hermann W.; Forster, Grant

    2012-04-01

    Anthropogenically induced increases in nitrogen deposition to the ocean can stimulate marine productivity and oceanic emission of nitrous oxide. We present the first global ocean model assessment of the impact on marine N2O of increases in nitrogen deposition from the pre-industrial era to the present. We find significant regional increases in marine N2O production downwind of continental outflow, in coastal and inland seas (15-30%), and nitrogen limited regions of the North Atlantic and North Pacific (5-20%). The largest changes occur in the northern Indian Ocean (up to 50%) resulting from a combination of high deposition fluxes and enhanced N2O production pathways in local hypoxic zones. Oceanic regions relatively unaffected by anthropogenic nitrogen deposition indicate much smaller changes (<2%). The estimated change in oceanic N2O source on a global scale is modest (0.08-0.34 Tg N yr-1, ˜3-4% of the total ocean source), and consistent with the estimated impact on global export production (˜4%).

  13. Some evidence of ground power enhancements at frequencies of global magnetospheric modes at low latitude

    NASA Astrophysics Data System (ADS)

    Francia, P.; Villante, U.

    1997-01-01

    A statistical analysis of the power spectra of the geomagnetic field components H and D for periods ranging between 3 min and 1 h was conducted at a low-latitude observatory (LÁquila, L=1.6) at the minimum and maximum of the solar cycle. For both components, during daytime intervals, we found evidence of power enhancements at frequencies predicted for global modes of the Earthś magnetosphere and occasionally observed at auroral latitudes in the F-region drift velocities (approximately at 1.3, 1.9, 2.6, and 3.4 mHz). Nighttime observations reveal a relative low frequency H enhancement associated with the bay occurrence together with a peak in the H/D power ratio which sharply emerges at 1.2 mHz in the premidnight sector. The strong similarity between solar minimum and maximum suggests that these modes can be considered permanent magnetospheric features. A separate analysis on a two-month interval shows that the observed spectral characteristics are amplified by conditions of high-velocity solar wind. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.->

  14. Significant anthropogenic-induced changes of climate classes since 1950

    PubMed Central

    Chan, Duo; Wu, Qigang

    2015-01-01

    Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950–2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors. PMID:26316255

  15. Significant anthropogenic-induced changes of climate classes since 1950.

    PubMed

    Chan, Duo; Wu, Qigang

    2015-08-28

    Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950-2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors.

  16. Challenging, Eye-Opening, and Changing U.S. Teacher Training in Korea: Creating Experiences That Will Enhance Global Perspectives

    ERIC Educational Resources Information Center

    Oh, Kevin; Nussli, Natalie

    2014-01-01

    This case study explored the short-term international experience of pre-service teachers to create and enhance global perspectives. These teachers (n = 5), all female graduate students at a university in the U.S., were fully immersed in a foreign culture for three weeks while teaching English to primary and secondary students in Korea. Pre-,…

  17. An updated anthropogenic CO2 inventory in the Atlantic Ocean

    SciTech Connect

    Lee, K.; Choi, S.-D.; Park, G.-H.; Peng, T.-H.; Key, Robert; Sabine, Chris; Feely, R. A.; Bullister, J.L.; Millero, F. J.; Kozyr, Alexander

    2003-01-01

    This paper presents a comprehensive analysis of the basin-wide inventory of anthropogenic CO2 in the Atlantic Ocean based on high-quality inorganic carbon, alkalinity, chlorofluorocarbon, and nutrient data collected during the World Ocean Circulation Experiment (WOCE) Hydrographic Program, the Joint Global Ocean Flux Study (JGOFS), and the Ocean-Atmosphere Carbon Exchange Study (OACES) surveys of the Atlantic Ocean between 1990 and 1998. Anthropogenic CO2 was separated from the large pool of dissolved inorganic carbon using an extended version of the DC* method originally developed by Gruber et al. [1996]. The extension of the method includes the use of an optimum multiparameter analysis to determine the relative contributions from various source water types to the sample on an isopycnal surface. Total inventories of anthropogenic CO2 in the Atlantic Ocean are highest in the subtropical regions at 20 40, whereas anthropogenic CO2 penetrates the deepest in high-latitude regions (>40N). The deeper penetration at high northern latitudes is largely due to the formation of deep water that feeds the Deep Western Boundary Current, which transports anthropogenic CO2 into the interior. In contrast, waters south of 50S in the Southern Ocean contain little anthropogenic CO2. Analysis of the data collected during the 1990 1998 period yielded a total anthropogenic CO2 inventory of 28.4 4.7 Pg C in the North Atlantic (equator-70N) and of 18.5 3.9 Pg C in the South Atlantic (equator-70S). These estimated basin-wide inventories of anthropogenic CO2 are in good agreement with previous estimates obtained by Gruber [1998], after accounting for the difference in observational periods. Our calculation of the anthropogenic CO2 inventory in the Atlantic Ocean, in conjunction with the inventories calculated previously for the Indian Ocean [Sabine et al., 1999] and for the Pacific Ocean [Sabine et al., 2002], yields a global anthropogenic CO2 inventory of 112 17 Pg C that has accumulated

  18. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources.

    PubMed

    Billot, Claire; Ramu, Punna; Bouchet, Sophie; Chantereau, Jacques; Deu, Monique; Gardes, Laetitia; Noyer, Jean-Louis; Rami, Jean-François; Rivallan, Ronan; Li, Yu; Lu, Ping; Wang, Tianyu; Folkertsma, Rolf T; Arnaud, Elizabeth; Upadhyaya, Hari D; Glaszmann, Jean-Christophe; Hash, C Thomas

    2013-01-01

    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.

  19. Massive Sorghum Collection Genotyped with SSR Markers to Enhance Use of Global Genetic Resources

    PubMed Central

    Bouchet, Sophie; Chantereau, Jacques; Deu, Monique; Gardes, Laetitia; Noyer, Jean-Louis; Rami, Jean-François; Rivallan, Ronan; Li, Yu; Lu, Ping; Wang, Tianyu; Folkertsma, Rolf T.; Arnaud, Elizabeth; Upadhyaya, Hari D.; Glaszmann, Jean-Christophe; Hash, C. Thomas

    2013-01-01

    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity. PMID:23565161

  20. Anthropogenic Warming Has Increased Drought Risk In California

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Swain, D. L.; Touma, D. E.

    2015-12-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ˜100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  1. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  2. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  3. Enhancing Global Service-Learning with Partnerships as an Engagement Strategy for Christian Higher Education

    ERIC Educational Resources Information Center

    Bish, Gregory T.; Lommel, John

    2016-01-01

    Global engagement programming across higher education continues to expand as institutional leaders and practitioners strive to meet global citizenship and civic engagement outcomes. This article presents case study research on a global service-learning partnership, the "Christian University" (CU) Wheelchair Project, which has involved…

  4. Anthropogenic Aerosols and the Evolution of U.S. Droughts

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Cazavilan, E. J.

    2014-12-01

    Anthropogenic aerosols interact with solar radiation to influence regional to global climate. Trends in aerosol concentrations have impacted the evolution of surface air temperatures and the hydrological cycle over the last 150 years, but the magnitude of influence and any role in shaping extreme events remains uncertain. We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the formation of two potential U.S. droughts. Two periods are analyzed, the 1930s Dust Bowl and the 1970s "missed drought". Each period realized ocean conditions ripe for the formation of central U.S. drought, but experienced differing composition and amounts of anthropogenic aerosol forcing. Simulations forced solely by observed sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. (annual decreases of up to 0.5 mm/day and warming of 0.5°C). We find that anthropogenic aerosols of the 1930s, containing a significant warming component from U.S. black carbon, exacerbated the warm conditions (0.2°C) and provided slightly drier conditions. In contrast, anthropogenic aerosols of the 1970s, containing a large cooling component from U.S. sulfate, reduced annual precipitation deficits and lowered temperatures by up to 0.4°C. Our results showcase the importance of anthropogenic aerosol forcing in the evolution of U.S. droughts.

  5. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).

    PubMed

    García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria

    2013-12-01

    The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B

  6. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  7. South Atlantic interbasin exchanges of mass, heat, salt and anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Evans, G. R.; McDonagh, E. L.; King, B. A.; Bryden, H. L.; Bakker, D. C. E.; Brown, P. J.; Schuster, U.; Speer, K. G.; van Heuven, S. M. A. C.

    2017-02-01

    The exchange of mass, heat, salt and anthropogenic carbon (Cant) between the South Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S) boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with an overturning circulation that exports freshwater from the North Atlantic, and consistent with a bistable Meridional Overturning Circulation (MOC), under conditions of excess freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC) transport, south of the Subtropical Front, is compensated by a 15.9 ± 2.3 Sv westward flow along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric anthropogenic carbon of 0.51 ± 0.37 Pg C yr-1, of which 0.18 ± 0.12 Pg C yr-1 accumulates and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is associated with a 0.11 Pg C yr-1 Cant overturning. The remainder is transported into the Atlantic Ocean north of 24°S (0.28 ± 0.16 Pg C yr-1) and Indian sector of Southern Ocean (1.12 ± 0.43 Pg C yr-1), having been enhanced by inflow through Drake Passage (1.07 ± 0.44 Pg C yr-1). This underlines the importance of the South Atlantic as a crucial element of the anthropogenic carbon sink in the global oceans.

  8. Enhancing Cross-Cultural Competence in Multicultural Teacher Education: Transformation in Global Learning

    ERIC Educational Resources Information Center

    Seeberg, Vilma; Minick, Theresa

    2012-01-01

    Teacher education needs to engage teacher candidates in developing cross-cultural competence so that they may be able to transmit global learning to their future students. This study theorizes cross-cultural competence (CCC) from the perspectives of multicultural and global education. During a four-year project at a mid-western US university,…

  9. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, Elliott; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, Joe; Hilton, Timothy W.

    2015-04-28

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one-third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. Furthermore, the source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  10. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    NASA Astrophysics Data System (ADS)

    Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.

    2015-01-01

    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is

  11. Anthropogenic perturbations in marine microbial communities.

    PubMed

    Nogales, Balbina; Lanfranconi, Mariana P; Piña-Villalonga, Juana M; Bosch, Rafael

    2011-03-01

    Human activities impact marine ecosystems at a global scale and all levels of complexity of life. Despite their importance as key players in ecosystem processes, the stress caused to microorganisms has been greatly neglected. This fact is aggravated by difficulties in the analysis of microbial communities and their high diversity, making the definition of patterns difficult. In this review, we discuss the effects of nutrient increase, pollution by organic chemicals and heavy metals and the introduction of antibiotics and pathogens into the environment. Microbial communities respond positively to nutrients and chemical pollution by increasing cell numbers. There are also significant changes in community composition, increases in diversity and high temporal variability. These changes, which evidence the modification of the environmental conditions due to anthropogenic stress, usually alter community functionality, although this aspect has not been explored in depth. Altered microbial communities in human-impacted marine environments can in turn have detrimental effects on human health (i.e. spread of pathogens and antibiotic resistance). New threats to marine ecosystems, i.e. related to climate change, could also have an impact on microbial communities. Therefore, an effort dedicated to analyse the microbial compartment in detail should be made when studying the impact of anthropogenic activities on marine ecosystems.

  12. Observations of anthropogenic cloud condensation nuclei

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) concentrations and spectral measurements obtained with the DRI instantaneous CCN spectrometer (Hudson, 1989) over the last few years are presented. The climatic importance of cloud microphysics has been pointed out. The particles which affect cloud microphysics are cloud condensation nuclei (CCN). The commonly-observed order of magnitude difference in cloud droplet concentrations between maritime and continental air masses (i.e., Squires, 1958) was determined to be caused by systematic differences in the concentrations of CCN between continental and maritime air masses (e.g., Twomey and Wojciechowski, 1969). Twomey (1977) first pointed out that cloud microphysics also affects the radiative properties of clouds. Thus continental and anthropogenic CCN could affect global temperature. Resolution of this Twomey effect requires answers to two questions - whether antropogenic CCN are a significant contribution to atmospheric CCN, and whether they are actually affecting cloud microphysics to an extent which is of climatic importance. The reasons for the contrast between continental and maritime CCN concentration are not understood. The question of the relative importance of anthropogenic CCN is addressed. These observations should shed light on this complex question although further research is being conducted in order to produce more quantitative answers. Accompanying CN measurements made with a TSI 3020 condensation nucleus (CN) counter are also presented.

  13. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  14. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  15. Anthropogenic Elevation Change in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Prush, V. B.; Lohman, R. B.

    2013-12-01

    Over the past few decades, interferometric synthetic aperture radar (InSAR) has emerged as a valuable tool for studying crustal deformation signals. Its applications to studies of tectonic and non-tectonic sources are varied, including earthquakes and fault-related processes, volcanic deformation, vegetation structure, and anthropogenic signals. In addition to studies of crustal deformation, the sensitivity of interferometric phase to topography makes InSAR a superb tool for the generation of digital elevation models (DEMs). While much of the focus of InSAR research in recent years has been on deformation, changes in the elevation of the ground surface can be of great scientific or societal interest as well. Examples include elevation and volume change due to anthropogenic processes such as landfill and open-pit mining operations, and natural processes such as glacier thinning or terrain alteration resulting from effusive volcanic eruptions. Our study describes two elevation change signals observed in the Pacific Northwest that are of anthropogenic origin. Using the baseline-dependent nature of the topographic component of interferometric phase, we have determined a proxy for canopy height using coherent interferometric phase differences between adjacent logged and forested regions, as well as a means for determining estimates of the amount and time history of material displaced during mining operations at the Centralia Coal Mine in Centralia, Washington. Quantifying the amount of surface change due to anthropogenic activities is not only critical for tracking the altering landscape of the Pacific Northwest and reducing the observed error in interferograms attributable to elevation change. Deforestation is one of the most significant contributors to global carbon emissions, and quantifying changes in vegetation structure can assist in efforts to monitor and mitigate the effects of deforestation on climate change. Similarly, mining operations can have a lasting

  16. Anthropogenic Aerosol Dimming Over Oceans: A Regional Analysis

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-12-01

    The role of anthropogenic aerosols in shaping 20th century SSTs through alteration of surface solar radiation (SSR) is still subject to debate. Identifying and quantifying the relationship between aerosol-induced changes in SSR and the corresponding SST response is difficult due to the masking effect of numerous feedback mechanisms and general variability of the atmosphere-ocean system. We therefore analysed potential anthropogenic aerosol effects on SST with a cascade of experiments of increasing complexity: From atmosphere-only over mixed-layer ocean (MLO) experiments, to fully coupled transient ocean-atmosphere simulations, with and without greenhouse gases and / or aerosols, using the general circulation model ECHAM with explicit aerosol representation. We find anthropogenic aerosols to be crucial to obtain realistic SSR and SST patterns, although co-location of changes in individual variables (aerosol optical depth, SSR, SST) is weak. The effect of greenhouse gases and aerosols in the MLO simulations is essentially additive on global and regional scales, an assumption frequently made in the literature. With atmosphere-only simulations we identified regions most prone to anthropogenic aerosol dimming throughout the 20th century using a strict criterion. From MLO equilibria representative of different decades throughout the 20th century, we identified ocean regions, whose SSTs are most sensitive to changing anthropogenic aerosol emissions. The surface temperature response patterns in our MLO simulations are more sensitive towards the choice of prescribed deep-ocean heat flux if anthropogenic aerosols were included as compared to greenhouse gas only simulations. This implies that ocean dynamics might mask some of the response and cautions against the use of just one set of deep-ocean heat fluxes in MLO studies. Our results corroborate not only the relevance of anthropogenic aerosols for SST responses, but also highlight the complexity and non-locality of the

  17. Offsetting features of climate responses to anthropogenic sulfate and black carbon direct radiative forcings

    NASA Astrophysics Data System (ADS)

    Ocko, I.; Ramaswamy, V.

    2012-12-01

    The two most prominent anthropogenic aerosols—sulfate and black carbon—affect Earth's radiation budget in opposing ways. Here we examine how these aerosols independently impact the climate, by simulating climate responses from pre-industrial times (1860) to present-day (2000) for isolated sulfate and black carbon direct radiative forcings. The NOAA Geophysical Fluid Dynamics Laboratory CM2.1 global climate model is employed with prescribed distributions of externally mixed aerosols. We find that sulfate and black carbon induce opposite effects for a myriad of climate variables. Sulfate (black carbon) is generally cooling (warming), shifts the ITCZ southward (northward), reduces (enhances) the SH Hadley Cell, enhances (reduces) the NH Hadley Cell, and increases (decreases) total sea ice volume. Individually, sulfate and black carbon affect Hadley Cell circulation more than long-lived greenhouse gases, but the net aerosol effect is a weakened response due to opposite behaviors somewhat canceling out the individual effects. Because anthropogenic aerosols are a critical contributor to Earth's climate conditions, this study has implications for future climate changes as well.

  18. Giant natural fluctuation models and anthropogenic warming

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Rio Amador, L.; Hébert, R.; Lima, I.

    2016-08-01

    Explanations for the industrial epoch warming are polarized around the hypotheses of anthropogenic warming (AW) and giant natural fluctuations (GNFs). While climate sceptics have systematically attacked AW, up until now they have only invoked GNFs. This has now changed with the publication by D. Keenan of a sample of 1000 series from stochastic processes purporting to emulate the global annual temperature since 1880. While Keenan's objective was to criticize the International Panel on Climate Change's trend uncertainty analysis (their assumption that residuals are only weakly correlated), for the first time it is possible to compare a stochastic GNF model with real data. Using Haar fluctuations, probability distributions, and other techniques of time series analysis, we show that his model has unrealistically strong low-frequency variability so that even mild extrapolations imply ice ages every ≈1000 years. Helped by statistics, the GNF model can easily be scientifically rejected.

  19. Effects of East Asian Short-lived Anthropogenic Air Pollutants on the Northern Hemispheric Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Horowitz, L. W.; Lau, N.; Fan, S.; Tao, S.; Mauzerall, D. L.; Levy, H.

    2012-12-01

    Short-lived anthropogenic pollutants (such as ozone and aerosols) not only degrade ambient air quality and influence human health, but also play an important role in scattering/absorbing atmospheric radiation and disturbing regional climate. Due to the rapid industrialization, anthropogenic emissions from East Asia (EA) have increased substantially during the past decades. At the same time, EA has experienced a changing climate in terms of surface temperature and precipitation. In order to understand to what extent that EA short-lived anthropogenic emissions could influence domestic and downwind air quality (e.g. surface O3 and PM2.5), and explore the potential linkage between hemispheric-scale climate perturbation and regional anthropogenic forcing, we simulate global climate and chemical compositions during 1981-2000 based on the coupled general circulation model CM3 for atmosphere (with interactive tropospheric and stratospheric chemistry), oceans, land and sea ice, recently developed at Geophysical Fluid Dynamics Laboratory (GFDL/NOAA). We also conduct a parallel sensitivity simulation which is identical to the base simulation but with all anthropogenic emissions over EA turned off. The difference between the base and sensitivity simulations represents the short-term response of the Northern Hemispheric climate system and atmospheric composition to the perturbation of regional anthropogenic forcing. We find that East Asian short-lived anthropogenic emissions exert significant adverse impacts on local air quality during 1981-2000, accounting for 10-30ppbV daily-averaged O3 over Eastern China in JJA. In particular, EA anthropogenic emissions elevate the summertime daily maximum 8-hour average ozone (MDA8 O3) by 30-40ppbV over the North China Plain, where the typical background MDA8 ozone ranges 30 to 45ppbV. In addition, the surface PM2.5 concentrations peak at the same season and over the same region, with a seasonal mean of 10-30ug/m3, mostly contributed from

  20. Decomposition of climate change effects on ocean natural and anthropogenic carbon uptake.

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Marinov, Irina; Palter, Jaime; Sarmiento, Jorge; Galbraith, Eric

    2013-04-01

    The ocean has been the only net sink of anthropogenic CO2 over the last 200 years, removing more than 30% of emitted anthropogenic carbon [Sabine et al., 2004]. The Southern Ocean accounts for up to half of this sink through the formation of various bottom, intermediate and mode water masses [Gruber et al., 2009]. Therefore, understanding the full range of global warming's possible consequences for the Earth system hinges on an understanding of the Southern Ocean's continued ability to serve as a carbon sink in the future. Many of the physical processes that are crucial to ocean carbon uptake and storage are expected to change under warming conditions, with consequences that are difficult to predict. The recent observed increase in the strength of the Southern Ocean Westerlies might enhance the anthropogenic carbon uptake through a more vigorous vertical mixing. However, this could also cause a decrease in natural carbon storage with a compensating effect. On the other hand, projected changes in buoyancy fluxes are expected to work in the opposite direction leading to a reduction of the vertical mixing. Finally, CO2 solubility at the sea surface will be affected by changes in temperature and salinity. We use a coupled atmosphere-ocean model (CM2Mc, Gallbraith et al., 2011) to perform a series of modeling experiments aimed to quantify the separate impact of these mechanisms on the various processes responsible for the functioning of the ocean carbon pumps. The experiments are based on the IPCC rcp8.5 scenario for the 21st century climate and consist in a combination of perturbations in which only one of the forcing factors is varying. This approach allows us to evaluate the relative importance of each process on the ability of the ocean to store carbon through the solubility and biological pumps. We also discuss the future climate projected changes in the relative importance of the Southern Ocean with respect to the global Ocean, for the total carbon uptake

  1. Short Time-Scale Enhancements to the Global Thermosphere Temperature and Nitric Oxide Content Resulting From Ionospheric Joule Heating

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Mlynczak, M. G.; Hunt, L. A.; Sutton, E. K.

    2014-12-01

    The total Joule heating in the polar ionosphere can be derived from an empirical model of the electric fields and currents, using input measurements of the solar wind velocity and interplanetary magnetic field (IMF). In the thermosphere, measurements of the neutral density from accelerometers on the CHAMP and GRACE satellites are used to derive exospheric temperatures, showing that enhanced ionospheric energy dissipation produces elevated temperatures with little delay.Using the total ionospheric heating, changes in the global mean exosphere temperature as a function of time can be calculated with a simple differential equation. The results compare very well with the CHAMP and GRACE measurement. A critical part of the calculation is the rate at which the thermosphere cools after the ionospheric heating is reduced. It had been noted previously that events with significant levels of heating subsequently cool at a faster rate, and this cooling was attributed to enhanced nitric oxide emissions. This correlation with nitric oxide has been confirmed with very high correlations with measurements of nitric oxide emissions in the thermosphere, from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. These measurements were used in a recent improvement in the equations that calculate the thermosphere temperature. The global nitric oxide cooling rates are included in this calculation, and the predicted levels of nitric oxide, derived from the ionosphere heating model, match the SABER measurements very well, having correlation coefficients on the order of 0.9.These calculations are used to govern the sorting of measurements CHAMP and GRACE measurements, on the basis of the global temperature enhancements due to Joule heating, as well as various solar indices, and season. Global maps of the exospheric temperature are produced from these sorted data.

  2. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets

    PubMed Central

    Toropainen, Sari; Niskanen, Einari A.; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  3. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2008-11-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y-1 for the period 2000 2005. These emissions resulted from the combustion of fossil fuels (260 TgC y-1) and land use change (240 TgC y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000 2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y-1 compared to the global average of 1.2 tC y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US of Gross Domestic Product (GDP) in Africa in 2005 was 187 gC/, close to the world average of 199 gC/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  4. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2009-03-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 Tg C y-1 for the period 2000-2005. These emissions resulted from the combustion of fossil fuels (260 Tg C y-1) and land use change (240 Tg C y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 Tg C accounting for 3.7% of the global emissions. The 2000-2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 t C y-1 compared to the global average of 1.2 t C y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US{} of Gross Domestic Product (GDP) in Africa was 187 g C/ in 2005, close to the world average of 199 g C/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  5. Disruptions in precipitation cycles: Attribution to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Tapiador, Francisco J.; Behrangi, Ali; Haddad, Ziad S.; Katsanos, Dimitris; Castro, Manuel

    2016-03-01

    Disruptions of the spatiotemporal distribution of surface precipitation that are induced by global warming may affect Earth's climate more significantly than changes in the total precipitation amount. Identifying such disruptions at global scales is not straightforward, as it requires disentangling a weak signal from comprehensive, gapless data in a 5-D configuration space whose dimensions are latitude, longitude, time, power, and period. Drawing on reliable, state-of-the-art climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments and using well-tested analytical methods, clear changes in the global precipitation cycles have been found for the simulated period 1862-2003. It has also been found that the disruptions may be attributable to anthropogenic forcing. The disruptions are relevant enough to envision significant changes in precipitation timing if human greenhouse gas emissions continue to accumulate in the future. It is noteworthy that the effects of anthropogenic forcings have been found not predominantly in the intra-annual cycles, i.e., in the short-term weather patterns that would be indicative of local effects, but rather in the interannual planetary long-term variability of the atmosphere. This suggests a global, distributed effect of the anthropogenic forcings on precipitation, which in turn is indicative of changes in the precipitation patterns linked with changes in the thermodynamics of the precipitation microphysics and to a lesser extent with the dynamical aspects of the precipitation processes.

  6. Estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  7. Real-life experience with personally familiar faces enhances discrimination based on global information

    PubMed Central

    Van Belle, Goedele

    2016-01-01

    Despite the agreement that experience with faces leads to more efficient processing, the underlying mechanisms remain largely unknown. Building on empirical evidence from unfamiliar face processing in healthy populations and neuropsychological patients, the present experiment tested the hypothesis that personal familiarity is associated with superior discrimination when identity information is derived based on global, as opposed to local facial information. Diagnosticity and availability of local and global information was manipulated through varied physical similarity and spatial resolution of morph faces created from personally familiar or unfamiliar faces. We found that discrimination of subtle changes between highly similar morph faces was unaffected by familiarity. Contrariwise, relatively more pronounced physical (i.e., identity) differences were more efficiently discriminated for personally familiar faces, indicating more efficient processing of global, as opposed to local facial information through real-life experience. PMID:26855852

  8. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  9. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    PubMed Central

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-01-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation. PMID:27929098

  10. Oxidation of elemental Hg in anthropogenic and marine airmasses

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Ambrose, J. L.; Jaffe, D. A.

    2013-03-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-enhancement ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM < 0.03) in the Asian source region. Secondly, we observed very high RGM levels - the highest reported in the FT - in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m-3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide observational evidence indicating significant GEM oxidation in the lower FT in some conditions.

  11. A Schematic Description of the Nature of Video-Conferencing and Internet Exchange: Enhancing Global Understanding

    ERIC Educational Resources Information Center

    Mupepi, Mambo

    2014-01-01

    The world is becoming increasingly one multicultural Global village and business and education transnational, which implies that students will need to recognize, accept, and adjust to cultural differences in communications to succeed in their studies as well as in their future careers. This presentation is fundamentally about a niftier way of…

  12. Enhancing Global Understanding with Study Abroad: Ethically Grounded Approaches to International Learning

    ERIC Educational Resources Information Center

    Gammonley, Denise; Rotabi, Karen Smith; Gamble, Dorothy N.

    2007-01-01

    Expanding opportunities for short-term overseas study require social work educators to consider ethical implications of these courses. Maximizing global understanding requires skillful facilitation, culturally respectful engagement, and learning activities consistent with ethical codes. Drawing on 10 years of experience leading study abroad trips…

  13. Enhancing Participation in the U.S. Global Change Research Program

    SciTech Connect

    Washington, Warren; Lee, Kai; Arent, Doug; Avery, Susan; Chakos, Arrietta; Daszak, Peter; Dietz, Thomas; Ebi, Kristie L.; Fischhoff, Baruch; Grimm, Nancy B.; Jacoby, Henry; Janetos, Anthony C.; Kheshgi, Haroon S.; Moss, Richard H.; Noble, Ian; Oge, Margo; Segerson, Kathleen; Tierney, Kathleen; Vorosmarty, Charles J.

    2016-02-29

    The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the current breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.

  14. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  15. How Academies use science to enhance global security and well-being.

    NASA Astrophysics Data System (ADS)

    Boright, John

    2017-01-01

    Science academies were originally created to facilitate science communication and later to recognize excellence. But in the last 20 years some 150 academies of science, engineering,and medicine around the world have united to cooperate in contributing to human welfare, by: 1. Providing evidence-based inputs to national, regional, and global policies addressing human needs, and 2. Conducting cooperative programs to increase the capacity of academies to provide such advice, and to better connect academies to publics and to policy makers. Examples: At the global level, 112 academies of science produce brief common statements on major global issues. They have also created an organization to provide in-depth reports on major issues such as a transition to sustainable energy systems, boosting agricultural productivity in Africa, and a guide to responsible conduct in the global research enterprise. Regional networks of those academies, in Africa, the Americas, Asia, and Europe conduct program on topics such as water, energy, engagement of women in science, and science education. They also help and mentor new academies.

  16. Emergence of heat extremes attributable to anthropogenic influences

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Black, Mitchell T.; Min, Seung-Ki; Fischer, Erich M.; Mitchell, Daniel M.; Harrington, Luke J.; Perkins-Kirkpatrick, Sarah E.

    2016-04-01

    Climate scientists have demonstrated that a substantial fraction of the probability of numerous recent extreme events may be attributed to human-induced climate change. However, it is likely that for temperature extremes occurring over previous decades a fraction of their probability was attributable to anthropogenic influences. We identify the first record-breaking warm summers and years for which a discernible contribution can be attributed to human influence. We find a significant human contribution to the probability of record-breaking global temperature events as early as the 1930s. Since then, all the last 16 record-breaking hot years globally had an anthropogenic contribution to their probability of occurrence. Aerosol-induced cooling delays the timing of a significant human contribution to record-breaking events in some regions. Without human-induced climate change recent hot summers and years would be very unlikely to have occurred.

  17. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  18. Research on enhancing the utilization of digital multispectral data and geographic information systems in global habitability studies

    NASA Technical Reports Server (NTRS)

    Martinko, Edward A.; Merchant, James W.

    1988-01-01

    During 1986 to 1987, the Kansas Applied Remote Sensing (KARS) Program continued to build upon long-term research efforts oriented towards enhancement and development of technologies for using remote sensing in the inventory and evaluation of land use and renewable resources (both natural and agricultural). These research efforts directly addressed needs and objectives of NASA's Land-Related Global Habitability Program as well as needs of and interests of public agencies and private firms. The KARS Program placed particular emphasis on two major areas: development of intelligent algorithms to improve automated classification of digital multispectral data; and integrating and merging digital multispectral data with ancillary data in spatial modes.

  19. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  20. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  1. Vocal traits and diet explain avian sensitivities to anthropogenic noise.

    PubMed

    Francis, Clinton D

    2015-05-01

    Global population growth has caused extensive human-induced environmental change, including a near-ubiquitous transformation of the acoustical environment due to the propagation of anthropogenic noise. Because the acoustical environment is a critical ecological dimension for countless species to obtain, interpret and respond to environmental cues, highly novel environmental acoustics have the potential to negatively impact organisms that use acoustics for a variety of functions, such as communication and predator/prey detection. Using a comparative approach with 308 populations of 183 bird species from 14 locations in Europe, North American and the Caribbean, I sought to reveal the intrinsic and extrinsic factors responsible for avian sensitivities to anthropogenic noise as measured by their habitat use in noisy versus adjacent quiet locations. Birds across all locations tended to avoid noisy areas, but trait-specific differences emerged. Vocal frequency, diet and foraging location predicted patterns of habitat use in response to anthropogenic noise, but body size, nest placement and type, other vocal features and the type of anthropogenic noise (chronic industrial vs. intermittent urban/traffic noise) failed to explain variation in habitat use. Strongly supported models also indicated the relationship between sensitivity to noise and predictive traits had little to no phylogenetic structure. In general, traits associated with hearing were strong predictors - species with low-frequency vocalizations, which experience greater spectral overlap with low-frequency anthropogenic noise tend to avoid noisy areas, whereas species with higher frequency vocalizations respond less severely. Additionally, omnivorous species and those with animal-based diets were more sensitive to noise than birds with plant-based diets, likely because noise may interfere with the use of audition in multimodal prey detection. Collectively, these results suggest that anthropogenic noise is a

  2. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  3. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  4. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds.

    PubMed

    Latham, John; Rasch, Philip; Chen, Chih-Chieh; Kettles, Laura; Gadian, Alan; Gettelman, Andrew; Morrison, Hugh; Bower, Keith; Choularton, Tom

    2008-11-13

    An assessment is made herein of the proposal that controlled global cooling sufficient to balance global warming resulting from increasing atmospheric CO2 concentrations might be achieved by seeding low-level, extensive maritime clouds with seawater particles that act as cloud condensation nuclei, thereby activating new droplets and increasing cloud albedo (and possibly longevity). This paper focuses on scientific and meteorological aspects of the scheme. Associated technological issues are addressed in a companion paper. Analytical calculations, cloud modelling and (particularly) GCM computations suggest that, if outstanding questions are satisfactorily resolved, the controllable, globally averaged negative forcing resulting from deployment of this scheme might be sufficient to balance the positive forcing associated with a doubling of CO2 concentration. This statement is supported quantitatively by recent observational evidence from three disparate sources. We conclude that this technique could thus be adequate to hold the Earth's temperature constant for many decades. More work--especially assessments of possible meteorological and climatological ramifications--is required on several components of the scheme, which possesses the advantages that (i) it is ecologically benign--the only raw materials being wind and seawater, (ii) the degree of cooling could be controlled, and (iii) if unforeseen adverse effects occur, the system could be immediately switched off, with the forcing returning to normal within a few days (although the response would take a much longer time).

  5. Anthropogenic warming of Earth's climate system.

    PubMed

    Levitus, S; Antonov, J I; Wang, J; Delworth, T L; Dixon, K W; Broccoli, A J

    2001-04-13

    We compared the temporal variability of the heat content of the world ocean, of the global atmosphere, and of components of Earth's cryosphere during the latter half of the 20th century. Each component has increased its heat content (the atmosphere and the ocean) or exhibited melting (the cryosphere). The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component. Simulation results using an atmosphere-ocean general circulation model that includes estimates of the radiative effects of observed temporal variations in greenhouse gases, sulfate aerosols, solar irradiance, and volcanic aerosols over the past century agree with our observation-based estimate of the increase in ocean heat content. The results we present suggest that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.

  6. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2015-08-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we, for the first time, interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. We firstly examined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). We then constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water, by using acidity as a master variable. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in North African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in preindustrial era to 0.11-0.12 Tg Fe yr-1 in present days, due to air pollution. Over the High Nitrate Low Chlorophyll (HNLC) regions of the ocean, the modeled Fe solubility remains low for

  7. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in the preindustrial era to 0.11-0.12 Tg Fe yr-1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC) regions of the ocean, the modeled Fe

  8. National Writing Project's Multimodal Literacies and Teacher Collaboration: Enhanced Student Learning on Global Social Issues

    ERIC Educational Resources Information Center

    Iyengar, Kalpana; Hood, Caleb

    2016-01-01

    Iyengar and Hood, both teacher consultants with the San Antonio Writing Project (SAWP), and instructors of an undergraduate society and social issues class, collaborated to enhance their undergraduate students' writing experiences using the National Writing Project model (Lieberman & Wood, 2003). Iyengar and Hood used strategies such as…

  9. Impact of Global School/University Partnerships on Science Teacher Enhancement.

    ERIC Educational Resources Information Center

    Hassard, Jack; Weisberg, Julie

    This study investigates a model for teacher enhancement that incorporates cross-cultural interaction and the construction of web-based environmental teaching modules that would support sustained collaborative inquiry among students and teachers. Over a two-year period, web-assisted environmental inquiries and web-based teaching modules were…

  10. Where have all the people gone? Enhancing global conservation using night lights and social media.

    PubMed

    Levin, Noam; Kark, Salit; Crandall, David

    2015-12-01

    Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social

  11. Global testicular infarction in the presence of epididymitis: clinical features, appearances on grayscale, color Doppler, and contrast-enhanced sonography, and histologic correlation.

    PubMed

    Yusuf, Gibran; Sellars, Maria E; Kooiman, Gordon G; Diaz-Cano, Salvador; Sidhu, Paul S

    2013-01-01

    Epididymitis is common, presenting indolently with unilateral scrotal pain and swelling. Diagnosis is based on clinical assessment and resolves with antibiotic therapy. Recognized complications are abscess formation and segmental infarction. Global testicular infarction is rare. Diagnosis is important and requires surgical management. On grayscale sonography, global infarction may be difficult to establish. The addition of color Doppler imaging is useful but is observer experience dependent with limitations in the presence of low flow. Contrast-enhanced sonography is useful for unequivocally establishing the diagnosis. We report global testicular infarction in 2 patients with epididymitis clearly depicted on contrast-enhanced sonography, allowing immediate surgical management.

  12. Graph-theoretical model of global human interactome reveals enhanced long-range communicability in cancer networks

    PubMed Central

    Gladilin, Evgeny

    2017-01-01

    Malignant transformation is known to involve substantial rearrangement of the molecular genetic landscape of the cell. A common approach to analysis of these alterations is a reductionist one and consists of finding a compact set of differentially expressed genes or associated signaling pathways. However, due to intrinsic tumor heterogeneity and tissue specificity, biomarkers defined by a small number of genes/pathways exhibit substantial variability. As an alternative to compact differential signatures, global features of genetic cell machinery are conceivable. Global network descriptors suggested in previous works are, however, known to potentially be biased by overrepresentation of interactions between frequently studied genes-proteins. Here, we construct a cellular network of 74538 directional and differential gene expression weighted protein-protein and gene regulatory interactions, and perform graph-theoretical analysis of global human interactome using a novel, degree-independent feature—the normalized total communicability (NTC). We apply this framework to assess differences in total information flow between different cancer (BRCA/COAD/GBM) and non-cancer interactomes. Our experimental results reveal that different cancer interactomes are characterized by significant enhancement of long-range NTC, which arises from circulation of information flow within robustly organized gene subnetworks. Although enhancement of NTC emerges in different cancer types from different genomic profiles, we identified a subset of 90 common genes that are related to elevated NTC in all studied tumors. Our ontological analysis shows that these genes are associated with enhanced cell division, DNA replication, stress response, and other cellular functions and processes typically upregulated in cancer. We conclude that enhancement of long-range NTC manifested in the correlated activity of genes whose tight coordination is required for survival and proliferation of all tumor cells

  13. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  14. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  15. Enhancing Student International Awareness and Global Competency through Compact International Experience Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schubert, Thomas

    2013-11-01

    Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.

  16. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    SciTech Connect

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto; Tsui, Kwok; Zhuang, Jie; Yang, Bai

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes. To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.

  17. On the fall 2010 Enhancements of the Global Precipitation Climatology Centre's Data Sets

    NASA Astrophysics Data System (ADS)

    Becker, A. W.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Finger, P.; Rudolf, B.

    2010-12-01

    Precipitation is meanwhile a top listed parameter on the WMO GCOS list of 44 essential climate variables (ECV). This is easily justified by its crucial role to sustain any form of life on earth as major source of fresh water, its major impact on weather, climate, climate change and related issues of society’s adaption to the latter. Finally its occurrence is highly variable in space and time thus bearing the potential to trigger major flood and draught related disasters. Since its start in 1989 the Global precipitation Climatology Centre (GPCC) performs global analyses of monthly precipitation for the earth’s land-surface on the basis of in-situ measurements. The effort was inaugurated as part of the Global Precipitation Climatology Project of the WMO World Climate Research Program (WCRP). Meanwhile, the data set has continuously grown both in temporal coverage (original start of the evaluation period was 1986), as well as extent and quality of the underlying data base. The number of stations involved in the related data base has approximately doubled in the past 8 years by trespassing the 40, 60 and 80k thresholds in 2002, 2006 and 2010. Core data source of the GPCC analyses are the data from station networks operated by the National Meteorological Services worldwide; data deliveries have been received from ca. 190 countries. The GPCC integrates also other global precipitation data collections (i.e. FAO, CRU and GHCN), as well as regional data sets. Currently the Africa data set from S. Nicholson (Univ. Tallahassee) is integrated. As a result of these efforts the GPCC holds the worldwide largest and most comprehensive collection of precipitation data, which is continuously updated and extended. Due to the high spatial-temporal variability of precipitation, even its global analysis requires this high number of stations to provide for a sufficient density of measurement data on almost any place on the globe. The acquired data sets are pre-checked, reformatted

  18. Continental anthropogenic primary particle number emissions

    NASA Astrophysics Data System (ADS)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  19. Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes

    PubMed Central

    Weinstein, Jason S.; Lezon-Geyda, Kimberly; Maksimova, Yelena; Craft, Samuel; Zhang, Yaoping; Su, Mack; Schulz, Vincent P.

    2014-01-01

    T follicular helper (Tfh) cells are a subset of CD4+ T helper cells that migrate into germinal centers and promote B-cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence-activated cell sorting–based strategy, we obtained primary Tfh and non-Tfh T effector cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by chromatin immunoprecipitation–sequencing, with parallel transcriptome analyses determined by RNA sequencing. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. PMID:25331115

  20. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  1. Trends of anthropogenic mercury emissions from 1970-2008 using the global EDGARv4 database: the role of increasing emission mitigation by the energy sector and the chlor-alkali industry

    NASA Astrophysics Data System (ADS)

    Muntean, M.; Janssens-Maenhout, G.; Olivier, J. G.; Guizzardi, D.; Dentener, F. J.

    2012-12-01

    The Emission Database for Global Atmospheric Research (EDGAR) describes time-series of emissions of man-made greenhouse gases and short-lived atmospheric pollutants from 1970-2008. EDGARv4 is continuously updated to respond to needs of both the scientific community and environmental policy makers. Mercury, a toxic pollutant with bioaccumulation properties, is included in the forthcoming EDGARv4.3 release, thereby enriching the spectrum of multi-pollutant sources. Three different forms of mercury have been distinguished: gaseous elemental mercury (Hg0), divalent mercury compounds (Hg2+) and particulate associated mercury (Hg-P). A complete inventory of mercury emission sources has been developed at country level using the EDGAR technology-based methodology together with international activity statistics, technology-specific abatement measures, and emission factors from EMEP/EEA (2009), USEPA AP 42 and the scientific literature. A comparison of the EDGAR mercury emission data to the widely used UNEP inventory shows consistent emissions across most sectors compared for the year 2005. The different shares of mercury emissions by region and by sector will be presented with special emphasis on the region-specific mercury emission mitigation potential. We provide a comprehensive ex-post analysis of the mitigation of mercury emissions by respectively end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry between 1970 and 2008. Given the local scale impacts of mercury, we have paid special attention to the spatial distribution of emissions. The default EDGAR Population proxy data was only used to distribute emissions from the residential and solid waste incineration sectors. Other sectors use point source data of power plants, industrial plants, gold and mercury mines. The 2008 mercury emission distribution will be presented, which shows emissions hot-spots on a 0.1°x0.1°resolution gridmap.

  2. Changes in temporal variability of precipitation over land due to anthropogenic forcings

    NASA Astrophysics Data System (ADS)

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    2017-02-01

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950–2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcing (ALL) with simulations of natural forcing only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950–2005, our results indicate that anthropogenic forcing have resulted in decreased uniformity (i.e. increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. The results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.

  3. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.

  4. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a

  5. Attributing physical and biological impacts to anthropogenic climate change.

    PubMed

    Rosenzweig, Cynthia; Karoly, David; Vicarelli, Marta; Neofotis, Peter; Wu, Qigang; Casassa, Gino; Menzel, Annette; Root, Terry L; Estrella, Nicole; Seguin, Bernard; Tryjanowski, Piotr; Liu, Chunzhen; Rawlins, Samuel; Imeson, Anton

    2008-05-15

    Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.

  6. Global Equity and Resource Sustainability: the Central Roles of Conservation and Enhanced Efficiency

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.

    2002-05-01

    The terrestrial biosphere arose at approximately 3.5 Ga, and since the early Archean, evolving life has maintained a dynamic equilibrium with solar energy and resources derived from the lithosphere, hydrosphere and atmosphere. This well-integrated system persisted after the emergence of Homo sapiens while we remained in a hunter/gatherer mode. Beginning about 10,000 years ago, settled agriculture allowed for division of labor, and the rise of civilization. World population now exceeds six billion individuals, and is growing at about ninety million annually. By about 2050, demographic estimates put our numbers at 9-10 billion. Approximately 85 percent of humanity now reside in the Developing Nations. Most people desire the increased standard of living now confined to the Industrialized Nations (due largely to exploitation of the planet). The present distribution of wealth is grossly inequitable and politically destabilizing. But can all people be afforded reasonably comfortable lives without destroying planetary habitability? Of the Earth's net primary biological production, humans control about a third, and our share is increasing. The impact on the environment is largely adverse, resulting in heightened air and water pollution, accelerated loss of biodiversity, ecosystem services, topsoil, fisheries, tropical rain forests, and in global warming + sea-level rise. Implications for human welfare and for viability of the web of life are ominous. Modern societies are sustained by the extraction of energy, water, and other Earth materials far beyond renewal rates, limiting future global carrying capacity. Island communities (e. g., Easter Island, Haiti, Madagascar) provide sobering examples of the fate of cultures that overexploit their environments. The biological carrying capacity of the planet is unknown but finite, hence humanity eventually must reach a managed steady state involving efficient, universal resource recovery and world-wide conservation, while

  7. Community Involvement in Enhancing the Global Change Master Directory (GCMD) Controlled Vocabularies (Keywords)

    NASA Technical Reports Server (NTRS)

    Stevens, T.; Ritz, S.; Aleman, A.; Genazzio, M.; Morahan, M.; Wharton, S.

    2016-01-01

    NASA's Global Change Master Directory (GCMD) develops and expands a hierarchical set of controlled vocabularies (keywords) covering the Earth sciences and associated information (data centers, projects, platforms, instruments, etc.). The purpose of the keywords is to describe Earth science data and services in a consistent and comprehensive manner, allowing for the precise searching of metadata and subsequent retrieval of data and services. The keywords are accessible in a standardized SKOSRDFOWL representation and are used as an authoritative taxonomy, as a source for developing ontologies, and to search and access Earth Science data within online metadata catalogues. The keyword development approach involves: (1) receiving community suggestions, (2) triaging community suggestions, (3) evaluating the keywords against a set of criteria coordinated by the NASA ESDIS Standards Office, and (4) publication/notification of the keyword changes. This approach emphasizes community input, which helps ensure a high quality, normalized, and relevant keyword structure that will evolve with users changing needs. The Keyword Community Forum, which promotes a responsive, open, and transparent processes, is an area where users can discuss keyword topics and make suggestions for new keywords. The formalized approach could potentially be used as a model for keyword development.

  8. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis

    PubMed Central

    Pan, Xiaoyue; Bradfield, Christopher A.; Hussain, M. Mahmood

    2016-01-01

    Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe−/− and Ldlr−/− mice and its liver-specific ablation in Apoe−/− (L-Bmal1−/−Apoe−/−) mice increases, whereas overexpression of BMAL1 in L-Bmal1−/−Apoe−/− and Apoe−/−mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1−/−Apoe−/− and Apoe−/− mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4. PMID:27721414

  9. MO-E-18C-05: Global Health Catalyst: A Novel Platform for Enhancing Access to Medical Physics Education and Research Excellence (AMPERE)

    SciTech Connect

    Ngwa, W; Moreau, M; Asana, L

    2014-06-15

    Purpose: To develop a platform for catalyzing collaborative global Cancer Care Education and Research (CaRE), with a prime focus on enhancing Access to Medical Physics Education and Research Excellence (AMPERE) Methods: An analysis of over 50 global health collaborations between partners in the U.S. and low and middle income countries (LMIC) in Africa was carried out to assess the models of collaborations in Education and Research and relative success. A survey was carried out with questions including: the nature of the collaboration, how it was initiated, impact of culture and other factors, and recommendations for catalyzing/enhancing such collaborations. An online platform called Global Health Catalyst was developed for enhancing AMPERE. Results: The analysis yielded three main models for global health collaborations with survey providing key recommendations on how to enhance such collaborations. Based on this, the platform was developed, and customized to allow Medical Physicists and other Radiation oncology (RadOnc) professionals interested in participating in Global health to readily do so e.g. teach an online course module, participate in training Medical Physicists or other RadOnc health professionals in LMIC, co-mentor students, residents or postdocs, etc. The growing list of features on the platform also include: a feature to enable people to easily find each other, form teams, operate more effectively as partners from different disciplines, institutions, nations and cultural backgrounds, share tools and technologies, obtain seed funding to develop curricula and/or embark upon new areas of investigation, and participate in humanitarian outreach: remote treatment planning assistance, and participation in virtual Chart Rounds, etc. Conclusion: The developed Global Health Catalyst platform could enable any Medical Physicist or RadoOnc professional interested in global health to readily participate in the Education/training of next generation Rad

  10. An enhanced MITOMAP with a global mtDNA mutational phylogeny

    PubMed Central

    Ruiz-Pesini, Eduardo; Lott, Marie T.; Procaccio, Vincent; Poole, Jason C.; Brandon, Marty C.; Mishmar, Dan; Yi, Christina; Kreuziger, James; Baldi, Pierre; Wallace, Douglas C.

    2007-01-01

    The MITOMAP () data system for the human mitochondrial genome has been greatly enhanced by the addition of a navigable mutational mitochondrial DNA (mtDNA) phylogenetic tree of ∼3000 mtDNA coding region sequences plus expanded pathogenic mutation tables and a nuclear-mtDNA pseudogene (NUMT) data base. The phylogeny reconstructs the entire mutational history of the human mtDNA, thus defining the mtDNA haplogroups and differentiating ancient from recent mtDNA mutations. Pathogenic mutations are classified by both genotype and phenotype, and the NUMT sequences permits detection of spurious inclusion of pseudogene variants during mutation analysis. These additions position MITOMAP for the implementation of our automated mtDNA sequence analysis system, Mitomaster. PMID:17178747

  11. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Heflin, M. B.; Peltzer, G.; Crampe, F.; Webb, F. H.

    2005-05-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm/yr in the Santa Ana and San Gabriel aquifers and faster than 5 mm/yr in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm/yr at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel mountains shortening at 4.5 ±1 mm/yr (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ±2 mm/yr beneath and north of a position 6 ±2 km deep and 8 ±8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  12. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Heflin, Michael B.; Peltzer, Gilles; Crampé, FréDeric; Webb, Frank H.

    2005-04-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm yr-1 in the Santa Ana and San Gabriel aquifers and faster than 5 mm yr-1 in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm yr-1 at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel Mountains shortening at 4.5 ± 1 mm yr-1 (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ± 2 mm yr-1 beneath and north of a position 6 ± 2 km deep and 8 ± 8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  13. Upper-tropospheric moistening in response to anthropogenic warming

    PubMed Central

    Chung, Eui-Seok; Soden, Brian; Sohn, B. J.; Shi, Lei

    2014-01-01

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean–atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979–2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change. PMID:25071183

  14. Microbial DNA records historical delivery of anthropogenic mercury

    PubMed Central

    Poulain, Alexandre J; Aris-Brosou, Stéphane; Blais, Jules M; Brazeau, Michelle; Keller, Wendel (Bill); Paterson, Andrew M

    2015-01-01

    Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions. PMID:26057844

  15. Early emergence in a butterfly causally linked to anthropogenic warming.

    PubMed

    Kearney, Michael R; Briscoe, Natalie J; Karoly, David J; Porter, Warren P; Norgate, Melanie; Sunnucks, Paul

    2010-10-23

    There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted -1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.

  16. Upper-tropospheric moistening in response to anthropogenic warming.

    PubMed

    Chung, Eui-Seok; Soden, Brian; Sohn, B J; Shi, Lei

    2014-08-12

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean-atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979-2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change.

  17. Mass Transport Separation via Grace: Anthropogenic and Natural Change

    NASA Astrophysics Data System (ADS)

    Dickey, J. O.; de Viron, O.

    2011-12-01

    The GRACE satellite has been monitoring the change in the mass distribution at the Earth surface for nearly 10 years. This becomes enough to study long-term mass change, and to separate interannual variations from trends. Up to now, many studies have shown a fast (and non-linear) loss of mass in many glaciers and ice sheets. They all have been attributed to global warming, though part of the mass variation is also associated with the classical long-term climate variation. Using climatic data as well as the GRACE mascon solution, we can separate the part associated to the anthropogenic part from the non-anthropogenic part, in order to better estimate those contributions. Results and implications from our analyses will be presented.

  18. Anthropogenic impacts on the biogeochemistry and cycling of antimony.

    PubMed

    Shotyk, William; Krachler, Michael; Chen, Bin

    2005-01-01

    Antimony is a potentially toxic trace element with no known biological function. Antimony is commonly enriched in coals, and fossil fuel combustion appears to be the largest single source of anthropogenic Sb to the global atmosphere. Abundant in sulfide minerals, its emission to the atmosphere from anthropogenic activities is linked to the mining and metallurgy of non-ferrous metals, especially Pb, Cu, and Zn. In particular, the geochemical and mineralogical association of Sb with Pb minerals implies that, like Pb, Sb has been emitted to the environment for thousands of years because of Pb mining, smelting, and refining. In the US alone, there are more than 400 former secondary lead smelting operations and worldwide there are 133 Pb-Zn smelters in operation today. Antimony is used in creating and improving dozens of industrial and commercial materials including various alloys, ceramics, glasses, plastics, and synthetic fabrics, making waste incineration another important source of Sb to the environment. Enrichments of Sb in atmospheric aerosols, plants, soils, sediments, as well as alpine and polar snow and ice suggest that Sb contamination is extensive, but there are very few quantitative studies of the geographic extent, intensity, and chronology of this contamination. There is an urgent need to quantify the extent of human impacts and how these have changed with time. The decreasing inventories of anthropogenic Sb with time in peat cores from Switzerland and Scotland suggest that the atmospheric Sb flux may be declining, but there have been too few studies to make any general conclusions. In fact, some studies of sediments and biomonitors in central Europe show little decline in Sb concentrations during the past decades. There is an obvious need for reliable data from well dated archives such as polar snow and ice, peat bogs, and sediments. The air concentrations, extent of enrichment, particle size distribution, and rate of deposition of Sb in urban areas is

  19. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGES

    Campbell, J. E.; Whelan, Mary; Seibt, U.; ...

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  20. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  1. Intensity and Development Forecasts of Tropical Cyclones by the JMA High-Resolution Global NWP Model: Impacts of Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Komori, T.; Kitagawa, H.

    2007-12-01

    It is widely considered that a spatial resolution of numerical weather prediction (NWP) model plays an important role for forecasting severe weather events such as tropical cyclones (TCs) and heavy rainfall. Under the KAKUSHIN project (funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology), the Japan Meteorological Agency (JMA) has developed a new Global Spectral Model (GSM) with a high horizontal resolution of about 20km and 60 vertical layers (hereafter called g20km GSMh), which is utilized to evaluate severe weather events in future climate. The 20km GSM will be operational in November 2007 replacing the current GSM with a horizontal resolution of about 60km and 40 vertical layers (hereafter called g60km GSMh). In the present study, we investigate how a model resolution impacts on TC forecasts because this resolution enhancement aims to improve the model's ability to forecast severe weather. Due to the more realistic model topography in higher horizontal resolution, the 20km GSM can give more accurate forecasts of orographic precipitation than the 60km GSM, especially over the area range of heavy precipitation. According to the statistically verified results, the enhancement of horizontal and vertical resolution appears to fairly improve the accuracy of TC intensity forecasts. However, for TC track forecasts, it may be more important to accurately represent large-scale environmental contexts surrounding the TC than to resolve the TC structure itself. In order to clarify resolution impacts on the TC intensity prediction, we categorize the TC intensity forecasts into three stages (development stage, maturation stage and dissipation stage). The results show that the effectiveness of the resolution enhancement is bigger in the development stage and relatively small in the maturation and dissipation stages. For the maturation and dissipation stages, improvement of physical processes seems to be more important than the resolution

  2. The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry.

    PubMed

    McMinn, David; Oreskovic, Nicolas M; Aitkenhead, Matt J; Johnston, Derek W; Murtagh, Shemane; Rowe, David A

    2014-05-01

    Active school travel is in decline. An understanding of the potential determinants of health-enhancing physical activity during the school commute may help to inform interventions aimed at reversing these trends. The purpose of this study was to identify the physical environmental factors associated with health-enhancing physical activity during the school commute. Data were collected in 2009 on 166 children commuting home from school in Scotland. Data on location and physical activity were measured using global positioning systems (GPS) and accelerometers, and mapped using geographical information systems (GIS). Multi-level logistic regression models accounting for repeated observations within participants were used to test for associations between each land-use category (road/track/path, other man-made, greenspace, other natural) and moderate-to-vigorous physical activity (MVPA). Thirty-nine children provided 2,782 matched data points. Over one third (37.1%) of children's school commute time was spent in MVPA. Children commuted approximately equal amounts of time via natural and man-made land-uses (50.2% and 49.8% respectively). Commuting via road/track/path was associated with increased likelihood of MVPA (Exp(B)=1.23, P <0.05), but this association was not seen for commuting via other manmade land-uses. No association was noted between greenspace use and MVPA, but travelling via other natural land-uses was associated with lower odds of MVPA (Exp(B)=0.32, P <0.05). Children spend equal amounts of time commuting to school via man-made and natural land-uses, yet man-made transportation route infrastructure appears to provide greater opportunities for achieving health-enhancing physical activity levels.

  3. Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.

    2014-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.

  4. Anthropogenic Triggering of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor ``foreshocks'', since the induction may occur with a delay up to several years.

  5. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered.

  6. Anthropogenic noise affects vocal interactions.

    PubMed

    McMullen, Heather; Schmidt, Rouven; Kunc, Hansjoerg P

    2014-03-01

    Animal communication plays a crucial role in many species, and it involves a sender producing a signal and a receiver responding to that signal. The shape of a signal is determined by selection pressures acting upon it. One factor that exerts selection on acoustic signals is the acoustic environment through which the signal is transmitted. Recent experimental studies clearly show that senders adjust their signals in response to increased levels of anthropogenic noise. However, to understand how noise affects the whole process of communication, it is vital to know how noise affects the receiver's response during vocal interactions. Therefore, we experimentally manipulated ambient noise levels to expose male European robins (Erithacus rubecula) to two playback treatments consisting of the same song: one with noise and another one without noise. We found that males responding to a conspecific in a noise polluted environment increased minimum frequency and decreased song complexity and song duration. Thus, we show that the whole process of communication is affected by noise, not just the behaviour of the sender.

  7. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  8. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1–10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor “foreshocks”, since the induction may occur with a delay up to several years. PMID:25156190

  9. Modeling fallout of anthropogenic 129I.

    PubMed

    Englund, Edvard; Aldahan, Ala; Possnert, Göran; Haltia-Hovi, Eeva; Hou, Xiaolin; Renberg, Ingmar; Saarinen, Timo

    2008-12-15

    Despite the relatively well-recognized emission rates of the anthropogenic 129I, there is little knowledge about the temporal fallout patterns and magnitude of fluxes since the start of the atomic era atthe early 1940s. We here present measurements of annual 129I concentrations in sediment archives from Sweden and Finland covering the period 1942-2006. The results revealed impression of 129I emissions from the nuclear reprocessing facility at Sellafield and La Hague and a clear Chernobyl fallout enhancement during 1986. In order to estimate relative contributions from the different sources, a numerical model approach was used taking into accountthe emission rates/estimated fallout, transport pathways, and the sediment system. The model outcomes suggest a relatively dominating marine source of 129I to north Europe compared to direct gaseous releases. A transfer rate of 129I from sea to atmosphere is derived for pertinent sea areas (English Channel, Irish Sea, and North Sea), which is estimated at 0.04 to 0.21 y(-1).

  10. Evolution of Bacillus subtilis to enhanced hypobaric growth: global alterations in gene expression

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne; Robles-Martinez, Jose; Rivas-Castillo, Andrea; Schuerger, Andrew

    Much astrobiology research is concerned with defining the environmental limits for life in the universe. Because Mars currently is the primary target for life detection missions, it is important to understand how terrestrial microbes might survive, proliferate, and evolve in martian envi-ronments. This issue is relevant in three distinct but related contexts: (i) testing panspermia hypotheses [1], (ii) mitigating the forward contamination of Mars [2], and (iii) understanding the molecular mechanisms leading to microbial growth in extreme extraterrestrial environments [3]. Prime candidates for Earth-to-Mars transfer include bacteria of the genus Bacillus, spores of which are significant contaminants of Mars-bound spacecraft and which are considered good candidates for lithopanspermia [1-4]. It is thus relevant to assess the potential for such microbes to survive and proliferate in the martian environment. The martian atmosphere poses a significant barrier to growth of terrestrial microbes, due to its low pressure (1-10 mbar; average 7 mbar) and anoxic (˜95% CO2) composition. In an earlier study [5] we showed that low pressures approaching those found on the surface of Mars exhibited an inhibitory effect on the germination and vegetative growth of several Bacillus spp. isolated from spacecraft or their assembly facilities. Even in an Earth-like 80%N2/20%O2 atmosphere, growth of B. subtilis cells was nearly completely inhibited at pressures below 35 mbar, well above the highest pressure on the martian surface [5]. The purpose of the present investigation was to use low pressure as a selective agent to test the hypothesis that a terrestrial microorganism, Bacillus subtilis, could evolve the ability for enhanced growth under hypobaric conditions approaching those of Mars. B. subtilis wild-type strains WN624 (SpcR) and WN628 (CmR) have been described previously [6] and were used as ancestral strains. Strains were propagated in LB liquid medium containing the appropriate

  11. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  12. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  13. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP).

    PubMed

    Basak, Souvik; Jiang, Rongrong

    2012-01-01

    Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP), which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3) were identified with improved tolerance via H(2)O(2) enrichment selection. The best mutant OM3 could grow in 12 mM H(2)O(2) with the growth rate of 0.6 h(-1), whereas the growth of wild type was completely inhibited at this H(2)O(2) concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS), which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2)O(2) treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold), but also RpoS- and OxyR-regulated genes (up to 7.7-fold). qRT-PCR data and enzyme activity assay suggested that catalase (katE) could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.

  14. Changes in South Pacific anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Waters, Jason F.; Millero, Frank J.; Sabine, Christopher L.

    2011-12-01

    The changes in anthropogenic CO2 are evaluated in the South Pacific, along the meridional line P18 (110°W) and the zonal line P06 (32°S), using the extended multiple linear regression (eMLR) method. The structure of the column inventory of anthropogenic CO2 on P18 is similar to the southern section of P16 in the central South Pacific (150°W), but the overall increase is greater by approximately 5-10 μmol kg-1. The value of the anthropogenic CO2 inventory on P18 is in agreement at the crossover point of an earlier evaluation of P06. Subsequent changes in pH due to the increase in anthropogenic CO2 are also evaluated. The change in pH is determined from the changes in anthropogenic CO2 and do not reflect variability in other decadal signals. For both cruise tracks, the average annual change in pH is -0.0016 mol kg-1 yr-1. This value is in good agreement with the average decrease in pH in the North Pacific, at the Hawaii Times Series and the subtropical North Atlantic. The uptake rates of anthropogenic CO2 are within reasonable agreement with similar studies in the South Pacific. There is evidence for greater uptake of anthropogenic CO2 in the western South Pacific and is attributed to the formation of subtropical Mode Water in the region.

  15. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries.

    PubMed

    Mazumder, Debashish; Saintilan, Neil; Alderson, Brendan; Hollins, Suzanne

    2015-11-15

    Urban development in coastal settings has increased the input of nitrogen into estuaries globally, in many cases changing the composition of estuarine ecosystems. By focussing on three adjacent estuaries with a gradient of anthropogenic N loadings, we used stable isotopes of N and C to test for changes due to increased anthropogenic N input on the structure of some key trophic linkages in estuaries. We found a consistent enrichment in δ(15)N corresponding to increased anthropogenic N at the three ecosystem levels studied: fine benthic organic matter, grazing invertebrate, and planktivorous fish. The degree of enrichment in δ(15)N between fine benthic organic matter and the grapsid crab Parasesarma erythrodactyla was identical across the three sites. The glassfish Ambassis jacksoniensis showed lower levels of enrichment compared to basal food sources at the higher N-loaded sites, suggesting a possible effect of anthropogenic N in decreasing food-chain length in these estuaries.

  16. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-01

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr-1 °C-1 in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  17. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  18. Optimizing Land and Water Use at the Local Level to Enhance Global Food Security through Virtual Resources Trade in the World

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.; Zhu, T.

    2014-12-01

    Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.

  19. Development of a national anthropogenic heating database with an extrapolation for international cities

    NASA Astrophysics Data System (ADS)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  20. Dimming over the oceans: Transient anthropogenic aerosol plumes in the twentieth century

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-04-01

    Anthropogenic aerosols reduce incoming surface solar radiation (SSR), but the magnitude of this effect for reducing sea surface temperatures (SST) is still debated. Using simulations from the global climate model ECHAM5 with the Hamburg Aerosol Module and prescribed SSTs, we quantify anthropogenic aerosol dimming over sea surfaces by comparing ensembles, which only differ in anthropogenic aerosol emissions. We isolate the anthropogenic aerosol effect on SSR with sufficiently large ensemble sizes to provide statistically significant results. The following simulation results are obtained: Dimming plumes extend from their source regions with clear seasonality. The latter is predominantly shaped by atmospheric circulation, while interdecadal changes follow the gradual increase in anthropogenic aerosol emissions. Comparing the 1990s with the 1870s, on average, 9.4% (clear-sky SSR) or 15.4% (all-sky SSR) of the entire ocean surface was affected by anthropogenic aerosol dimming larger than -4 Wm-2 (decadal mean). Comparing the same time periods, global average anthropogenic dimming over oceans is -2.3 Wm-2 and -3.4 Wm-2 for clear-sky and all-sky SSR, respectively. Surface dimming is hemispherically asymmetrical with stronger Northern Hemispheric dimming by 2.3 Wm-2 and 4.5 Wm-2 for clear-sky and all-sky SSR, respectively. Zonal average clear-sky dimming reaches its maximum (-5.5 Wm-2) near the equator. All-sky dimming peaks at 40°N (-8 Wm-2) and is regionally larger than clear-sky dimming. Regionally, surface dimming can reach values up to 9.5 Wm-2 (clear-sky) and 25 Wm-2 (all-sky). Results are a contribution toward better quantifying spatially heterogeneous and time-dependent anthropogenic dimming effects on SSTs.

  1. Dimming over the Oceans: Transient Anthropogenic Aerosol Plumes in the 20th Century

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2015-04-01

    Anthropogenic aerosols reduce incoming surface solar radiation (SSR), but the magnitude of this effect for reducing sea surface temperature (SST) is still debated. Using simulations from the global climate model ECHAM5 with the Hamburg Aerosol Module (HAM) and prescribed SSTs, we quantify anthropogenic aerosol dimming over sea surfaces by comparing ensembles, which only differ in anthropogenic aerosol emissions. We isolate the anthropogenic aerosol effect on SSR with sufficiently large ensemble sizes to provide statistically significant results. The following simulation results are obtained: Dimming plumes extend from their source regions with clear seasonality. The latter is predominantly shaped by atmospheric circulation, while interdecadal changes follow the gradual increase in anthropogenic aerosol emissions. Comparing the 1990s with the 1870s, on average, 9.4% (clearsky SSR) or 15.4% (allsky SSR) of the entire ocean surface was affected by anthropogenic aerosol dimming larger than -4 W m-2 (annual mean). Comparing the same time periods, global average anthropogenic dimming over oceans is -2.3 W m-2and -3.4 W m-2 for clearsky and allsky SSR, respectively. Surface dimming is hemispherically asymmetrical with stronger Northern Hemispheric dimming by 2.3 W m-2 and 4.5 W m-2 for clearsky and allsky SSR, respectively. Zonal average clearsky dimming reaches its maximum (5.5 W m-2 ) near the Equator. Allsky dimming peaks at 40° N (-8 W m-2 ) and is regionally larger than clearsky dimming. Regionally, surface dimming can go beyond -20 W m-2 (clearsky) and -40 W m-2 (allsky). Results are a contribution towards better quantifying spatially heterogeneous and time-dependent anthropogenic dimming effects on SSTs.

  2. The Anthropogenic Era Began Thousands of Years Ago

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2003-12-01

    The anthropogenic era is generally thought to have begun about 150 years ago when the industrial revolution began producing CO2 and CH4 at rates sufficient to alter atmospheric compositions. The hypothesis proposed here is that anthropogenic emissions first altered atmospheric gas concentrations (and climate) thousands of years ago. This hypothesis rests on three arguments: (1) Cyclic variations in CO2 and CH4 driven by Earth-orbital changes during the last 400,000 years predict decreases of both gases throughout the Holocene, but CO2 began an anomalous increase near 8000 years ago and CH4 about 5000 years ago. (2) Published explanations attributing these Holocene gas increases to natural forcing can be rejected based on available paleoclimatic evidence. (3) Archeological, cultural, historical, and geologic sources provide viable explanations tied to anthropogenic changes that emerged from early agriculture in Eurasia, including forest clearance after 8000 years ago and lowland irrigation for rice farming by 5000 years ago. Prior to the industrial era, these emissions caused a mean-annual warming effect of ~0.8oC globally and 1.5-2oC at high latitudes. The early-anthropogenic warming counteracted most of a natural cooling that would otherwise have occurred, and it may have prevented a glaciation in northeastern Canada predicted by two kinds of climatic models. CO2 decreases as large as 10 ppm during the last 1000 years cannot be explained by solar-volcanic forcing without violating constraints imposed by reconstructions of northern hemisphere temperature. The CO2 decreases can be explained by bubonic plague pandemics that the caused widespread abandonment of western Eurasian farms documented in historical records. Rapid regrowth of forests on millions of abandoned farms could have sequestered enough carbon to explain the observed CO2 decreases. Plague-driven CO2 decreases were a significant causal factor in the cooler temperatures of the Little Ice Age from 1300 to

  3. CO2 Biogenic vs Anthropogenic Sectoral Contribution for INFLUX

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Prasad, K.; Hu, H.; Whetstone, J. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Davis, K. J.; Turnbull, J. C.; Karion, A.; Sweeney, C.; Brewer, A.; Hardesty, M.; Cambaliza, M. O. L.; Shepson, P. B.; Patarasuk, R.; Gurney, K. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. This project is an experimental test bed which is intended to establish reliable methods for quantifying and validating GHG emissions independently of the inventory methods typically used for Measurement, Reporting and Verification (MRV) of pollution sources. Analyzing the contribution of different source types or sectors is a fundamental step in order to achieve an accuracy level desired for such MRV applications. This is especially challenging when attempting to determine anthropogenic emissions during the growing season since biological GHG fluxes reach a maximum at this time. To this end, the Weather Research and Forecasting Model (WRF-ARW) version 3.5.1 was used along with a modified version of the Green House Gases chemistry module for simulating the CO2 mole fraction transport during September and October 2013. Sectoral anthropogenic CO2 emissions were obtained from Hestia 2012 and from Vulcan 2002 beyond the spatial coverage of Hestia. Biogenic CO2 emissions were simulated by using an augmented version of the "Vegetation Photosynthesis and Respiration Model" (VPRM) included in WRF-CHEM. An implementation of the unconstrained nonlinear global optimization method of Nelder and Mead was employed to find the optimum values for the VPRM parameters for each vegetation category by using data from Ameriflux eddy covariance flux towers. Here we present a preliminary assessment of the relative contribution of biological vs sectoral anthropogenic CO2 fluxes on the INFLUX measurements network. The simulations are compared to tower and aircraft measurements that include trace gases with the capacity to distinguish observationally anthropogenic and biogenic CO2 sources and sinks. In addition, an evaluation of the sensitivity of the sectoral attribution to meteorological

  4. Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow (on Crete in 2001)

    NASA Astrophysics Data System (ADS)

    Gros, V.; Williams, J.; van Aardenne, J. A.; Salisbury, G.; Hofmann, R.; Lawrence, M. G.; von Kuhlmann, R.; Lelieveld, J.; Krol, M.; Berresheim, H.; Lobert, J. M.; Atlas, E.

    2003-04-01

    During the Mediterranean Intensive Oxidant Study MINOS in August 2001, 87 air samples were collected at the ground-based station Finokalia (35° 19' N, 25° 40' E) on the north coast of Crete and subsequently analysed by GC-MS. The analysis includes various hydrocarbons, organo-halogens, HCFCs and CFCs. These compounds have a wide variety of sources and sinks and a large range of atmospheric lifetimes. By plotting the measured variability of these species against lifetime, we found that the compounds describe a linear relationship. It is shown, based on air mass origin analysis and chemical ratios, that several distinct anthropogenic sources influenced the atmospheric composition in Crete. Propane observations are compared to a global model to assess the fossil fuel related emission inventory. Although the model reproduces the general pattern of the propane variations, the model mixing ratios are systematically too low by a factor of 1.5 to 3, probably due to an underestimation of the propane emissions from east European countries in the underlying global database EDGAR. Another important finding was that methyl chloroform, a compound banned under the Montreal protocol, showed significant enhancements from background, which were well correlated with CFC-113. This suggests continued use and emission of methyl chloroform by one or more European countries. We also discuss the observed variations of bromomethane and suggest that the significant peak observed on 12 August 2001 reflects heavy agricultural use as a soil fumigant in Italy.

  5. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    SciTech Connect

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M.

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  6. Therapist competence in global mental health: Development of the ENhancing Assessment of Common Therapeutic factors (ENACT) rating scale.

    PubMed

    Kohrt, Brandon A; Jordans, Mark J D; Rai, Sauharda; Shrestha, Pragya; Luitel, Nagendra P; Ramaiya, Megan K; Singla, Daisy R; Patel, Vikram

    2015-06-01

    Lack of reliable and valid measures of therapist competence is a barrier to dissemination and implementation of psychological treatments in global mental health. We developed the ENhancing Assessment of Common Therapeutic factors (ENACT) rating scale for training and supervision across settings varied by culture and access to mental health resources. We employed a four-step process in Nepal: (1) Item generation: We extracted 1081 items (grouped into 104 domains) from 56 existing tools; role-plays with Nepali therapists generated 11 additional domains. (2) Item relevance: From the 115 domains, Nepali therapists selected 49 domains of therapeutic importance and high comprehensibility. (3) Item utility: We piloted the ENACT scale through rating role-play videotapes, patient session transcripts, and live observations of primary care workers in trainings for psychological treatments and the Mental Health Gap Action Programme (mhGAP). (4) Inter-rater reliability was acceptable for experts (intraclass correlation coefficient, ICC(2,7) = 0.88 (95% confidence interval (CI) 0.81-0.93), N = 7) and non-specialists (ICC(1,3) = 0.67 (95% CI 0.60-0.73), N = 34). In sum, the ENACT scale is an 18-item assessment for common factors in psychological treatments, including task-sharing initiatives with non-specialists across cultural settings. Further research is needed to evaluate applications for therapy quality and association with patient outcomes.

  7. Handling time-expensive global optimization problems through the surrogate-enhanced evolutionary annealing-simplex algorithm

    NASA Astrophysics Data System (ADS)

    Tsoukalas, Ioannis; Kossieris, Panagiotis; Efstratiadis, Andreas; Makropoulos, Christos

    2015-04-01

    In water resources optimization problems, the calculation of the objective function usually presumes to first run a simulation model and then evaluate its outputs. In several cases, however, long simulation times may pose significant barriers to the optimization procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required by the problem's complexity. A promising novel strategy to address these shortcomings is the use of surrogate modelling techniques within global optimization algorithms. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modelling with the effectiveness and efficiency of the EAS method. The algorithm combines three different optimization approaches (evolutionary search, simulated annealing and the downhill simplex search scheme), in which key decisions are partially guided by numerical approximations of the objective function. The performance of the proposed algorithm is benchmarked against other surrogate-assisted algorithms, in both theoretical and practical applications (i.e. test functions and hydrological calibration problems, respectively), within a limited budget of trials (from 100 to 1000). Results reveal the significant potential of using SE-EAS in challenging optimization problems, involving time-consuming simulations.

  8. The global distribution of the dusk-to-nighttime enhancement of summer NmF2 at solar minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing; Zhang, Hui

    2016-08-01

    In this paper, the dusk-to-nighttime enhancement (DNE) of summer NmF2 was investigated based on Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation observations at solar minimum. The global distributions of the magnitude and the peak time of the DNE as well as the role of the DNE in NmF2 diurnal cycle were presented. The DNE mainly exists in three regions (one in the Southern Hemisphere and two in the Northern Hemisphere), and its distribution is related to geomagnetic configuration, especially in the Southern Hemisphere. For most DNEs, their peaks correspond to the maxima of NmF2 diurnal cycle. The DNEs are much more prominent in the southern than in the northern summer hemisphere; they last to later nighttime hours, have larger magnitudes, and play more important roles in NmF2 diurnal cycle in the southern than in the northern summer hemisphere. The distribution of the DNE was analyzed in terms of photoionization and the vertical plasma drift induced by neutral winds. The positive geomagnetic declinations and the smaller geomagnetic inclinations at higher geographic latitudes over the South Pacific are crucial for the prominent DNEs in the southern summer hemisphere; they result in larger upward plasma drift at higher latitudes where photoionization is still significant at sunset and evening hours.

  9. Therapist Competence in Global Mental Health: Development of the Enhancing Assessment of Common Therapeutic Factors (ENACT) Rating Scale

    PubMed Central

    Kohrt, Brandon A.; Jordans, Mark J.D.; Rai, Sauharda; Shrestha, Pragya; Luitel, Nagendra P.; Ramaiya, Megan; Singla, Daisy; Patel, Vikram

    2015-01-01

    Lack of reliable and valid measures of therapist competence is a barrier to dissemination and implementation of psychological treatments in global mental health. We developed the ENhancing Assessment of Common Therapeutic factors (ENACT) rating scale for training and supervision across settings varied by culture and access to mental health resources. We employed a four-step process in Nepal: (1) Item generation: We extracted 1,081 items (grouped into 104 domains) from 56 existing tools; role-plays with Nepali therapists generated 11 additional domains. (2) Item relevance: From the 115 domains, Nepali therapists selected 49 domains of therapeutic importance and high comprehensibility. (3) Item utility: We piloted the ENACT scale through rating role-play videotapes, patient session transcripts, and live observations of primary care workers in trainings for psychological treatments and the Mental Health Gap Action Programme (mhGAP). (4) Inter-rater reliability was acceptable for experts (intraclass correlation coefficient, ICC(2,7)=0.88 (95% confidence interval (CI) 0.81—0.93), N=7) and non-specialists (ICC(1,3)=0.67 (95% CI 0.60—0.73), N=34). In sum, the ENACT scale is an 18-item assessment for common factors in psychological treatments, including task-sharing initiatives with non-specialists across cultural settings. Further research is needed to evaluate applications for therapy quality and association with patient outcomes. PMID:25847276

  10. Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra)

    PubMed Central

    Zhu, Li-Wen; Xia, Shi-Tao; Wei, Li-Na; Li, Hong-Mei; Yuan, Zhan-Peng; Tang, Ya-Jie

    2016-01-01

    This study was initiated to improve E. coli succinate production by engineering the E. coli global transcription factor, Cra (catabolite repressor/activator). Random mutagenesis libraries were generated through error-prone PCR of cra. After re-screening and mutation site integration, the best mutant strain was Tang1541, which provided a final succinate concentration of 79.8 ± 3.1 g/L: i.e., 22.8% greater than that obtained using an empty vector control. The genes and enzymes involved in phosphoenolpyruvate (PEP) carboxylation and the glyoxylate pathway were activated, either directly or indirectly, through the mutation of Cra. The parameters for interaction of Cra and DNA indicated that the Cra mutant was bound to aceBAK, thereby activating the genes involved in glyoxylate pathway and further improving succinate production even in the presence of its effector fructose-1,6-bisphosphate (FBP). It suggested that some of the negative effect of FBP on Cra might have been counteracted through the enhanced binding affinity of the Cra mutant for FBP or the change of Cra structure. This work provides useful information about understanding the transcriptional regulation of succinate biosynthesis. PMID:27811970

  11. Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli

    PubMed Central

    Chen, Tingjian; Wang, Jianqing; Yang, Rong; Li, Jicong; Lin, Min; Lin, Zhanglin

    2011-01-01

    Background The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli. Methodology/Principal Findings To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein. Conclusions To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or

  12. Adulterated and Counterfeit Male Enhancement Nutraceuticals and Dietary Supplements Pose a Real Threat to the Management of Erectile Dysfunction: A Global Perspective.

    PubMed

    ElAmrawy, Fatema; ElAgouri, Ghada; Elnoweam, Ola; Aboelazayem, Samar; Farouk, ElMohanad; Nounou, Mohamed I

    2016-11-01

    Erectile dysfunction prevalence globally is noticeably high. This is accompanied by an increase in the use of nutraceuticals for male enhancement. However, the global market is invaded by counterfeit and adulterated nutraceuticals claimed to be of natural origin sold with a therapeutic claim. The objective of this article is to review male enhancement nutraceuticals worldwide with respect to claim, adulterants, and safety. The definition of such products is variable across countries. Thus, the registration procedures differ as well. This facilitates the manipulation of the process, which leads to widespread adulterated and counterfeit products without control. The tele-advertisement and Internet pharmacies aided the widespread sale of male enhancement nutraceuticals, unfortunately, the spurious ones. Finally, based on literature, most of these products were found to be adulterated with active pharmaceutical ingredients (API) and mislabeled as being natural. These products represent a major health hazard for consumers due to lack of clear regulations.

  13. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    SciTech Connect

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  14. Late Holocene climate: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.; Fuller, D. Q.; Kutzbach, J. E.; Tzedakis, P. C.; Kaplan, J. O.; Ellis, E. C.; Vavrus, S. J.; Roberts, C. N.; Fyfe, R.; He, F.; Lemmen, C.; Woodbridge, J.

    2016-03-01

    For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? Or was it in considerable degree the result of humans intervening in the climate system through greenhouse gas emissions from early agriculture? Here we summarize new evidence that moves this debate forward by testing both hypotheses. By comparing late Holocene responses to those that occurred during previous interglaciations (in section 2), we assess whether the late Holocene responses look different (and thus anthropogenic) or similar (and thus natural). This comparison reveals anomalous (anthropogenic) signals. In section 3, we review paleoecological and archaeological syntheses that provide ground truth evidence on early anthropogenic releases of greenhouse gases. The available data document large early anthropogenic emissions consistent with the anthropogenic ice core anomalies, but more information is needed to constrain their size. A final section compares natural and anthropogenic interpretations of the δ13C trend in ice core CO2.

  15. Distinguishing Between Natural and Anthropogenic Part of Sea Level Trends

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-12-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. From the perspective of assessing the contribution of human activities to climate changes, the sea level drivers can be partitioned in anthropogenic and natural forcing. In this study we try to answer the following two questions: (1) How large a sea level trend could be expected as result of natural internal variability? (2) Whether the sea level changes observed over the past century were natural in origin. We suppose that natural behavior of sea level consists of increases and decreases occurring with frequencies following a power law distribution and the monthly sea level records are power law long-term correlated time series. Then we search for the presence of unnatural external sea level trend by applying statistics of Lennartz and Bunde [2009]. We estimate the minimum anthropogenic sea level trend as a lower bound of statistically significant external sea level trend in the longest tide-gauge records worldwide. We apply this new method to distinguish between the trend-like natural oscillations and the external trends in the longest available sea level records and in global mean sea level reconstructions. The results show that the long-term persistence impacts strongly on sea level rise estimation. We provide statistical evidences that the observed sea level changes, at global and regional scales, are beyond its natural internal variability and cannot be explained without human influence. We found that sea level change during the past century contains an external component at 99% significance level in two thirds of the available longest tidal records worldwide. The anthropogenic sea level trend is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century, which is about 1.7 mm/yr. This work provides the first estimate of the minimal anthropogenic contribution

  16. Global Composite

    Atmospheric Science Data Center

    2013-04-19

    ... cover from one day to another. The lower panel is a composite in which red, green, and blue radiances from MISR's 70-degree ... In relatively clear ocean areas, the oblique-angle composite is generally brighter than its nadir counterpart due to enhanced ... Mar 2002 Images:  Global Composite location:  Global Images thumbnail:  ...

  17. Interannual Variations and Trends in Global Land Surface Phenology Derived from Enhanced Vegetation Index During 1982-2010

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-01-01

    Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  18. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  19. Modeling biogenic and anthropogenic secondary organic aerosol in China

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Wang, Peng; Ying, Qi; Zhang, Hongliang; Chen, Jianjun; Ge, Xinlei; Li, Xinghua; Jiang, Jingkun; Wang, Shuxiao; Zhang, Jie; Zhao, Yu; Zhang, Yingyi

    2017-01-01

    A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene oxidation was applied to study the spatial and temporal distribution of SOA in China in the entire year of 2013. Predicted organic carbon (OC), elemental carbon and volatile organic compounds agreed favorably with observations at several urban areas, although the high OC concentrations in wintertime in Beijing were under-predicted. Predicted summer SOA was generally higher (10-15 µg m-3) due to large contributions of isoprene (country average, 61 %), although the relative importance varies in different regions. Winter SOA was slightly lower and was mostly due to emissions of alkane and aromatic compounds (51 %). Contributions of monoterpene SOA was relatively constant (8-10 %). Overall, biogenic SOA accounted for approximately 75 % of total SOA in summer, 50-60 % in autumn and spring, and 24 % in winter. The Sichuan Basin had the highest predicted SOA concentrations in the country in all seasons, with hourly concentrations up to 50 µg m-3. Approximately half of the SOA in all seasons was due to the traditional equilibrium partitioning of semivolatile components followed by oligomerization, while the remaining SOA was mainly due to reactive surface uptake of isoprene epoxide (5-14 %), glyoxal (14-25 %) and methylglyoxal (23-28 %). Sensitivity analyses showed that formation of SOA from biogenic emissions was significantly enhanced due to anthropogenic emissions. Removing all anthropogenic emissions while keeping the biogenic emissions unchanged led to total SOA concentrations of less than 1 µg m-3, which suggests that manmade emissions facilitated biogenic SOA formation and controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.

  20. Microbial copper reduction method to scavenge anthropogenic radioiodine

    PubMed Central

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-01-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu2+ to Cu+) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I− fixation via microcrystal formation. PMID:27311370

  1. Microbial copper reduction method to scavenge anthropogenic radioiodine

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-06-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu2+ to Cu+) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I‑ fixation via microcrystal formation.

  2. Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data.

    PubMed

    Nelms, S E; Coombes, C; Foster, L C; Galloway, T S; Godley, B J; Lindeque, P K; Witt, M J

    2017-02-01

    Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be

  3. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  4. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  5. 20th century global warming favoured enhanced intensity of extreme torrential events - a proglacial sediment record in NW French Alps

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Arnaud, F.; Legaz, A.; Allignol, F.; Enters, D.; Revillon, S.

    2009-04-01

    there is no major flood event during the following period (1860 - 1900) characterized by the retreat of the large alpine glaciers. This implies glacial activity modifies the climate-sediment transfer relationship in alpine areas. Our main result is the dramatic rise of flood deposits thickness over the last decades. Among the 100 flood-triggered layers deposited over the last 250 years, the two thickest ones occurred in 1987 and 2005 whereas the flood frequency is among the lowest. The 2005 deposit is two times thicker than any previously reported one. An enhanced intensity of recent extreme torrential events in the present-day context of global climate change seems likely.

  6. Fate and Effects of Anthropogenic Chemicals in Mangrove Ecosystems: A Review

    EPA Science Inventory

    The role of anthropogenic chemicals in the decline of plant-dominated, fringe ecosystems such as mangroves is important to understand. Mangrove global coverage has been reduced approximately 50% in recent years and the presence of toxic chemicals may be a contributing factor. T...

  7. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  8. Mixing of anthropogenic dust and carbonaceous aerosols in seasonal snow on snow albedo reduction in 2014 China survey

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Huang, Jianping; Pu, Wei

    2016-04-01

    Anthropogenic dusts produced from the affected by human activities derived from the industrial areas and carbonaceous aerosols (black carbon and organic carbon) deposited into snow or ice core via wet and dry deposition play key roles to the regional and global climate. Recently, a China survey was performed to measure the concentrations of insoluble light-absorbing particles (ILAP) in seasonal snow across northern China in January and February of 2014. The results indicate that the higher concentration of NO3- and SO42- and heavy metals of Zn, Pb, Cd, Ni, and Cu are likely to be attributed to enhanced local industrial emissions due to human activities. The emissions from fossil fuel combustion and biomass burning are likely to be important for the chemical elements in the seasonal snow with long-range transport, while medium enrichment factors of Mg, Ca, and Al were predominantly associated with soil dust, which is the most important natural source. There are large ranges of the BC and AD in seasonal snow over northeast China because of the anthropogenic emissions, which are caused by human activities. In addition, although the values of the snow albedo by model simulations are little higher in the visible to near-infrared wavelength than that during the China survey, the surface snow albedo by field campaign measurements have good agreement with the model simulations in the visible wavelength.

  9. The Impact of Biogenic and Anthropogenic Atmospheric Aerosol on Climate in Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Zakey, A.; Steiner, A. L.; Shokr, M. E.; El-Raey, M.; Ahmed, Y.; Al-Hadidi, A.; Zakey, A.

    2014-12-01

    Aerosols are indicators of air quality as they reduce visibility and adversely affect public health. Aerosol optical depth (AOD) is a measure of the radiation extinction due to interaction of radiation with aerosol particles in the atmosphere. Using this optical measure of atmospheric aerosols we explore the seasonal and annual patterns of aerosols from both anthropogenic and biogenic sources over Egypt. Here, we use an integrated environment-climate-aerosol model in conjunction with inversion technique to identify the aerosol particle size distribution over different locations in Egypt. The online-integrated Environment-Climate-Aerosol model (EnvClimA), which is based on the International Center for Theoretical Physics Regional Climate Model (ICTP-RegCM), is used to study the emission of different aerosols and their impact on climate parameters for a long-term base line simulation run over Egypt and North Africa. The global emission inventory is downscaled and remapping them over Egypt using local factors such as population, traffic and industrial activities to identify the sources of anthropogenic and biogenic emission from local emission over Egypt. The results indicated that the dominant natural aerosols over Egypt are dust emissions that frequently occur during the transitional seasons (Spring and Autumn). From the local observation we identify the number of dust and sand storm occurrences over Egypt. The Multiangle Imaging SpectroRadiometer (MISR) is used to identify the optical characterizations of different types of aerosols over Egypt. Modeled aerosol optical depth and MISR observed (at 555 nm) are compared from March 2000 through November 2013. The results identify that the MISR AOD captures the maximum peaks of AOD in March/April that coincide with the Khamasin dust storms. However, peaks in May are either due to photochemical reactions or anthropogenic activities. Note: This presentation is for a Partnerships for Enhanced Engagement in Research (PEER

  10. Anthropogenic noise affects behavior across sensory modalities.

    PubMed

    Kunc, Hansjoerg P; Lyons, Gillian N; Sigwart, Julia D; McLaughlin, Kirsty E; Houghton, Jonathan D R

    2014-10-01

    Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals.

  11. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Trenbath, K. L.

    2011-12-01

    Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their

  12. ON THE FLARE-INDUCED SEISMICITY IN THE ACTIVE REGION NOAA 10930 AND RELATED ENHANCEMENT OF GLOBAL WAVES IN THE SUN

    SciTech Connect

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; Garcia, R. A. E-mail: pvk@prl.res.in E-mail: tiwari@mps.mpg.de

    2011-12-10

    A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <{nu} < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <{nu} < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post

  13. Isolating the anthropogenic component of Arctic warming

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-01

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. We apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability from the observed temperature. We find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

  14. Isolating the anthropogenic component of Arctic warming

    SciTech Connect

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

  15. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  16. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  17. Anthropogenic and natural influences in the evolution of lower stratospheric cooling.

    PubMed

    Ramaswamy, V; Schwarzkopf, M D; Randel, W J; Santer, B D; Soden, B J; Stenchikov, G L

    2006-02-24

    Observations reveal that the substantial cooling of the global lower stratosphere over 1979-2003 occurred in two pronounced steplike transitions. These arose in the aftermath of two major volcanic eruptions, with each cooling transition being followed by a period of relatively steady temperatures. Climate model simulations indicate that the space-time structure of the observed cooling is largely attributable to the combined effect of changes in both anthropogenic factors (ozone depletion and increases in well-mixed greenhouse gases) and natural factors (solar irradiance variation and volcanic aerosols). The anthropogenic factors drove the overall cooling during the period, and the natural ones modulated the evolution of the cooling.

  18. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Chung, S. H.; Avise, J.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2015-11-01

    increases in temperature, enhanced biogenic emissions and changes in land use. The model predicts an average increase of 1-6 ppb in DM8O due to projected increase in global emissions of ozone precursors. The effects of these factors are only partially offset by reductions in DM8O associated with decreasing US anthropogenic emissions. Increases in PM2.5 levels between 4 and 10 μg m-3 in the Northeast, Southeast, Midwest and South regions are mostly a result of increase in primary anthropogenic particulate matter (PM), enhanced biogenic emissions and land use changes. Changes in boundary conditions shift the composition but do not alter overall simulated PM2.5 mass concentrations.

  19. Impact of anthropogenic climate change on wildfire across western US forests.

    PubMed

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  20. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    PubMed

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions.

  1. Impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Park Williams, A.

    2016-10-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  2. A tiered observational system for anthropogenic methane emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  3. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  4. Long-range transport of anthropogenic sulfur in an on-line tracer model

    SciTech Connect

    Dastoor, A.P.

    1996-12-31

    An Eulerian global meteorological tracer transport model has been constructed for simulating the long range transport of anthropogenic sulfur. The advantage of this model is that the physical processes in the atmosphere, advection and chemical conversions are calculated within one consistent modeling system. The global model presented here includes the dynamics of meteorological and tracer fields, thermodynamics, cloud processes, turbulent boundary layer mixing, multiple 3-dimensional anthropogenic sulfur emission sources, dry and aqueous-phase chemical processes for sulfur, dry deposition process and the precipitation scavenging of sulfur. In contrast to an off-line chemical transport model the dynamic global tracer model is capable of studying the interaction between pollutant, radiative and hydrological budgets and atmospheric circulation.

  5. Acid lakes from natural and anthropogenic causes

    SciTech Connect

    Patrick, R.; Binetti, V.P.; Halterman, S.G.

    1981-01-30

    Lakes may be acid because of natural ecological conditions or because of anthropogenic activities. Apparently there has been a recent increase in acidity of many lakes in the northeastern United States. Factors that may be contributing to this increase include the use by utilities of precipitators, sulfur scrubbers, and tall stacks; the use of petroleum; and methods of combustion of fossil fuels.

  6. Anthropogenic cycles of the elements: a critical review.

    PubMed

    Chen, Wei-Qiang; Graedel, T E

    2012-08-21

    A cycle is the quantitative characterization of the flows of a specific material into, within, and from a given system. An anthropogenic elemental cycle can be static (for a point in time) or dynamic (over a time interval). The about 350 publications collected for this review contain a total of 1074 individual cycle determinations, 989 static and 85 dynamic, for 59 elements; more than 90% of the publications have appeared since 2000. The cycles are of varying quality and completeness, with about 80% at country- or territory-level, addressing 45 elements, and 5% at global-level, addressing 30 elements. Despite their limitations, cycles have often been successful in revealing otherwise unknown information. Most of the elements for which no cycles exist are radioactively unstable or are used rarely and in small amounts. For a variety of reasons, the anthropogenic cycles of only perhaps a dozen elements are well characterized. For all the others, with cycles limited or nonexistent, our knowledge of types of uses, lifetimes in those uses, international trade, losses to the environment, and rates of recycling is quite limited, thereby making attempts to evaluate resource sustainability particularly problematic.

  7. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Keil, Richard

    2017-01-01

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers—including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments—all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  8. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    PubMed

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  9. Climate effects of anthropogenic aerosols over East Asia based on modeling study

    NASA Astrophysics Data System (ADS)

    Mukai, Makiko

    The increasing emission of anthropogenic aerosols causes serious air pollution episodes and various effects on the climate by the aerosols interacting with the radiation budget by directly absorbing and scattering the solar radiation, and by them indirectly modifying the optical properties and lifetimes of clouds. In East Asia anthropogenic aerosol concentrations are rapidly increasing. It is therefore necessary to evaluate the sensitivity of anthropogenic aerosols upon the radiative forcing in this region. For this purpose we utilize an atmospheric general circulation model (AGCM) with an aerosol transport and radiation model and an ocean mixed-layer model. The model in this study was a three-dimensional aerosol transport-radiation model (SPRINTARS), driven by the AGCM developed by CCSR (Center for Climate System Research), NIES (National Institute for Environmental Studies), and FRCGC (Frontier Research Center for Global Change). This model incorporates sulfate, carbonaceous, sea salt, and mineral dust aerosols, the first three of which are assumed to acts as cloud condensation nuclei that generate cloud droplets whose number increases with the number of nuclei. We assumed sulfate and carbonaceous aerosol from fuel burning for anthropogenic aerosol. And the model simulations of equilibrium experiments were performed to investigate the impact of anthropogenic aerosols based on present-day emission data and the preindustrial-era emission data. Our simulation results showed that copious anthropogenic aerosol loading causes significant decrease in the surface downward shortwave radiation flux (SDSWRF), which indicates that a direct effect of aerosols has the greatest influence on the surface radiation. It is found from our model simulations that low-level clouds increase but convective clouds decrease due to reduced convective activity caused by surface cooling when anthropogenic aerosol increases. It was also found that the contributions of aerosols to the radiation

  10. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  11. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  12. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    PubMed

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.

  13. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves

    PubMed Central

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A.; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-01-01

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243–4,058 adult individuals per hectare in only 39 y (annual growth rate of ca. 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm’s demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet’s richest repositories of biodiversity. PMID:27071122

  14. The formation of the ocean’s anthropogenic carbon reservoir

    PubMed Central

    Iudicone, Daniele; Rodgers, Keith B.; Plancherel, Yves; Aumont, Olivier; Ito, Takamitsu; Key, Robert M.; Madec, Gurvan; Ishii, Masao

    2016-01-01

    The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry. PMID:27808101

  15. Condition-dependent physiological and behavioural responses to anthropogenic noise.

    PubMed

    Purser, Julia; Bruintjes, Rick; Simpson, Stephen D; Radford, Andrew N

    2016-03-01

    Anthropogenic (man-made) noise, a global pollutant of international concern, is known to affect the physiology and behaviour of a range of organisms. However, experimental studies have tended to focus on trait means; intra-population variation in responses are likely, but have rarely been explored. Here we use established experimental methods to demonstrate a condition-dependent effect of additional noise. We show that juvenile European eels (Anguilla anguilla) in good condition do not respond differently to playbacks of ambient coastal noise and coastal noise with passing ships. By contrast, the additional noise of ship passes caused an increase in ventilation rate and a decrease in startling to a looming predatory stimulus in poor condition eels. Intra-population variation in responses to noise has important implications both for population dynamics and the planning of mitigation measures.

  16. The formation of the ocean’s anthropogenic carbon reservoir

    NASA Astrophysics Data System (ADS)

    Iudicone, Daniele; Rodgers, Keith B.; Plancherel, Yves; Aumont, Olivier; Ito, Takamitsu; Key, Robert M.; Madec, Gurvan; Ishii, Masao

    2016-11-01

    The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry.

  17. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  18. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  19. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  20. Anthropogenic greenhouse gas contribution to UK autumn flood risk

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí; Stott, Peter; Nozawa, Toru; Hilberts, Arno; Lohmann, Dag; Allen, Myles

    2010-05-01

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing[1]. Yet climate models typically used for studying the attribution problem do not resolve weather at scales causing damage[2]. Here we present the first multi-step study that attributes increasing risk of a damaging regional weather-related event to global anthropogenic greenhouse gas emissions. The event was the UK flooding of October and November 2000, occurring during the wettest autumn in England & Wales since records began in 1766[3] and inundating several river catchments[4]. Nearly 10,000 properties were flooded and transport services and power supplies severely disrupted, with insured losses estimated at £1.3bn[5,6]. Though the floods were deemed a ‘wake up call' to the impacts of climate change[7], anthropogenic drivers cannot be blamed for this individual event: but they could be blamed for changing its risk[8,9]. Indeed, typically quoted thermodynamic arguments do suggest increased probability of precipitation extremes under anthropogenic warming[10]. But these arguments are too simple[11,12,13] to fully account for the complex weather[4,14] associated with the flooding. Instead we use a Probabilistic Event Attribution framework, to rigorously estimate the contribution of anthropogenic greenhouse gas emissions to England & Wales Autumn 2000 flood risk. This involves comparing an unprecedented number of daily river runoff realisations for the region, under Autumn 2000 scenarios both with and without the emissions. These realisations are produced using publicly volunteered distributed computing power to generate several thousand seasonal forecast resolution climate model simulations[15,16] that are then fed into a precipitation-runoff model[17,18]. Autumn 2000 flooding is characterised by realisations exceeding the highest daily river runoff for that period, derived from the observational-based ERA-40 re-anaylsis[19]. We find that our

  1. Research and Development in the Anthropogenic Cryosphere

    NASA Astrophysics Data System (ADS)

    de Jong, C.; Luthe, T.; Hohenwallne, D.

    2009-04-01

    Much of todays cryosphere research is oriented towards the polar regions and is strongly supported by large associations and funding. On the other hand, funding and institutional support is still limited for mountains. In Europe, mountain research is mainly funded through Alpine Space Interregs, FP7, ESF and COST. However, there is growing global change pressure on mountain regions, particularly in the more fragile, higher altitudes such as between 1000 - 3200 m in the Alps. Although these zones are comparable to the Arctic in terms of climatic and physiographic conditions, they are not in terms of human pressures and atmospheric pollution released from surrounding agglomerations. A re-orientation of research into more applied projects that tackle present day problems is necessary. Not only is climate change rapidly changing the face of mountains, socio-economic multipliers are also acting fast. New problems such as conflicts over natural resources are evolving at a rapid rate, requiring research funding and projects to respond at according rates if timely and efficient solutions are to be proposed. Other problems include contamination of high altitude lakes and ecosystems through atmospheric precipitation of persistent organic pollutants and concentration of radio-active substances. The rapid melt of glacier ice is also releasing pollutants that have been captured for many decades. Many of the present day problems develop due to a miscomprehension of the cryosphere. Short-term economical reasoning outweighs the long-term ecological impacts that could be very counter-productive at the long term. Both the glaciological, snow, permafrost, geomorphological, ecological, hydrological and atmospheric conditions are increasingly heavily modified by human impacts. The effects include the alteration of the ice cover (by artificial covering of glaciers), production of artificial snow cover, snow and ground compaction, erosion, landsliding, change in vegetation cover and

  2. Anthropogenic Osmium in Airborne Particles from Woods Hole, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Sen, I. S.; Geboy, N.

    2012-12-01

    The global geochemical cycle of osmium has been significantly disturbed by the introduction of automobile exhaust catalysts to convert noxious gas emissions into more benign forms. Anthropogenic osmium has been reported in rainwater, snow, and in the urban airborne particles from around the world to reveal global-scale osmium pollution [1, 2]. In this study, we report on the platinum group element (PGE) concentrations and osmium isotope ratios of airborne particles (PM10) collected in Woods Hole, a small coastal town in Massachusetts to better understand inputs of anthropogenic osmium to rural environments. We further investigate the use of osmium isotopes to track sources of airborne particles and support source apportionment studies on a continental scale. The samples used in this study were collected at Woods Hole Oceanographic Institution over one year (2008-2009). From this collection twelve samples for which the backward air mass trajectories have been determined were selected for osmium isotope analyses. Our results show that the osmium and platinum concentrations are an order of magnitude lower when compared to downtown Boston [2]. The average Os, Pt and Ir concentrations are 0.006±0.012, 0.019±0.023, and 0.685±0.634 pg m-3, respectively. The 187Os/188Os of the aerosols range from 0.275 to 0.788. As continental crust is radiogenic (187Os/188Os >1) and PGE ore bodies generally have unradiogenic 187Os/188Os (~0.2), the unradiogenic 187Os/188Os signature of the aerosols indicates anthropogenic contributions. With 95% of the total osmium mobilization on land being attributed to human activities [3], it is clear that human imprint on airborne particles is not restricted to urban centers with high traffic flows, but also affects rural environments. Aerosol particles that have backward air mass trajectories from the Southwest, the densely populated and industrialized Eastern seaboard, are characterized by unradiogenic osmium, while air masses from the North

  3. Global sea level linked to global temperature

    PubMed Central

    Vermeer, Martin; Rahmstorf, Stefan

    2009-01-01

    We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972

  4. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild grass Brachypodium distachyon (Brachypodium) has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of microRNAs (miRNAs), molecules known to be a key for eukaryotic gene regulation, has been limited in Brachypodium to studies examining a few sa...

  5. Enhancing Research Capacity for Global Health: Evaluation of a Distance-Based Program for International Study Coordinators

    ERIC Educational Resources Information Center

    Wilson, Lynda Law; Rice, Marti; Jones, Carolynn T.; Joiner, Cynthia; LaBorde, Jennifer; McCall, Kimberly; Jester, Penelope M.; Carter, Sheree C.; Boone, Chrissy; Onwuzuligbo, Uzoma; Koneru, Alaya

    2013-01-01

    Introduction: Due to the increasing number of clinical trials conducted globally, there is a need for quality continuing education for health professionals in clinical research manager (CRM) roles. This article describes the development, implementation, and evaluation of a distance-based continuing education program for CRMs working outside the…

  6. Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime european outflow (on Crete in 2001)

    NASA Astrophysics Data System (ADS)

    Gros, V.; Williams, J.; van Aardenne, J. A.; Salisbury, G.; Hofmann, R.; Lawrence, M. G.; von Kuhlmann, R.; Lelieveld, J.; Krol, M.; Berresheim, H.; Lobert, J. M.; Atlas, E.

    2003-08-01

    During the Mediterranean Intensive Oxidant Study MINOS in August 2001, 87 air samples were collected at the ground-based station Finokalia (35°19'N, 25°40'E) on the north coast of Crete and subsequently analysed by GC-MS. The analysis includes various hydrocarbons, organo-halogens, HCFCs and CFCs. These compounds have a wide variety of sources and sinks and a large range of atmospheric lifetimes. We evaluated the characteristics of the sampling site in terms of proximity to individual sources by plotting the measured variability of these species against lifetime. The resulting linear relationship suggests that the sampling site is representative of intermediate conditions between a remote site and one that is in the vicinity of a wide variety of sources. Our analysis of air mass origin and chemical ratios also shows that several distinct anthropogenic sources influenced the atmospheric composition over Crete. Propane observations are compared to a global model to assess the fossil fuel related emission inventory. Although the model reproduces the general pattern of the propane variations, the model mixing ratios are systematically too low by a factor of 1.5 to 3, probably due to an underestimation of the propane emissions from east European countries in the underlying global database EDGAR. Another important finding was that methyl chloroform, a compound banned under the Montreal protocol, showed significant enhancements from background, which were well correlated with CFC-113. This suggests continued use and emission of methyl chloroform by one or more European countries. We also discuss the observed variations of methyl bromide and suggest that the significant peak observed on 12 August 2001 reflects heavy agricultural use as a soil fumigant in Italy.

  7. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  8. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  9. Hidden Markov models for estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcasses searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. ...

  10. Quantifying the Anthropogenic Footprint in Eastern China

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei; Dou, Youjun

    2016-04-01

    Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities.

  11. Anthropogenic Aerosols and the Dust Bowl

    NASA Astrophysics Data System (ADS)

    Cazavilan, E. J.; Leibensperger, E. M.

    2014-12-01

    We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the 1930s Dust Bowl. The Dust Bowl was primarily forced by anomalous sea surface temperatures, but may have been partially shaped by the large amounts of black carbon emitted at that time. A simulation using observed 1932-1938 sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. Adding the influence of 1930s anthropogenic aerosols exacerbates the drying and warm conditions (0.2 °C increase over mid-west continental US, and a decrease of -0.1 mm/day of precipitation). We find that these changes are concurrent with a weakening and shift of the Bermuda High.

  12. Quantifying the Anthropogenic Footprint in Eastern China

    PubMed Central

    Meng, Chunlei; Dou, Youjun

    2016-01-01

    Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities. PMID:27067132

  13. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis.

    PubMed

    Dresios, John; Aschrafi, Armaz; Owens, Geoffrey C; Vanderklish, Peter W; Edelman, Gerald M; Mauro, Vincent P

    2005-02-08

    The expression of Rbm3, a glycine-rich RNA-binding protein, is enhanced under conditions of mild hypothermia, and Rbm3 has been postulated to facilitate protein synthesis at colder temperatures. To investigate this possibility, Rbm3 was overexpressed as a c-Myc fusion protein in mouse neuroblastoma N2a cells. Cells expressing this fusion protein showed a 3-fold increase in protein synthesis at both 37 degrees C and 32 degrees C compared with control cells. Although polysome profiles of cells expressing the fusion protein and control cells were similar, several differences were noted, suggesting that Rbm3 might enhance the association of 40S and 60S ribosomal subunits at 32 degrees C. Studies to assess a direct interaction of Rbm3 with ribosomes showed that a fraction of Rbm3 was associated with 60S ribosomal subunits in an RNA-independent manner. It appeared unlikely that this association could explain the global enhancement of protein synthesis, however, because cells expressing the Rbm3 fusion protein showed no substantial increase in the size of their monosome and polysome peaks, suggesting that similar numbers of mRNAs were being translated at approximately the same rates. In contrast, a complex that sedimented between the top of the gradient and 40S subunits was less abundant in cells expressing recombinant Rbm3. Further analysis showed that the RNA component of this fraction was microRNA. We discuss the possibility that Rbm3 expression alters global protein synthesis by affecting microRNA levels and suggest that both Rbm3 and microRNAs are part of a homeostatic mechanism that regulates global levels of protein synthesis under normal and cold-stress conditions.

  14. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth

  15. Blue whales respond to anthropogenic noise.

    PubMed

    Melcón, Mariana L; Cummins, Amanda J; Kerosky, Sara M; Roche, Lauren K; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  16. Are torpid bats immune to anthropogenic noise?

    PubMed

    Luo, Jinhong; Clarin, B-Markus; Borissov, Ivailo M; Siemers, Björn M

    2014-04-01

    Anthropogenic noise has a negative impact on a variety of animals. However, many bat species roost in places with high levels of anthropogenic noise. Here, we tested the hypothesis that torpid bats are insensitive to anthropogenic noise. In a laboratory experiment, we recorded skin temperature (Tsk) of bats roosting individually that were subjected to playbacks of different types of noise. We found that torpid bats with Tsk ~10°C lower than their active Tsk responded to all types of noise by elevating Tsk. Bats responded most strongly to colony and vegetation noise, and most weakly to traffic noise. The time of day when torpid bats were exposed to noise had a pronounced effect on responses. Torpid bats showed increasing responses from morning towards evening, i.e. towards the onset of the active phase. Skin temperature at the onset of noise exposure (Tsk,start, 17-29°C) was not related to the response. Moreover, we found evidence that torpid bats rapidly habituated to repeated and prolonged noise exposure.

  17. Seasonal variability in anthropogenic halocarbon emissions.

    PubMed

    Gentner, Drew R; Miller, Angela M; Goldstein, Allen H

    2010-07-15

    Ambient concentrations of eight predominantly anthropogenic halocarbons were measured via in situ gas chromatography in California's South Coast air basin for both summer and fall during the 2005 Study of Organic Aerosols at Riverside (SOAR). Ongoing emissions of the banned halocarbons methylchloroform and CFC-11 were observed in the South Coast air basin, whereas CFC-113 emissions have effectively ceased. We estimate anthropogenic emissions in the South Coast air basin for methylchloroform, CFC-11, HCFC-141b, chloroform, tetrachloroethene (PCE), trichloroethylene (TCE), and dichloromethane based on regressions of halocarbon to carbon monoxide mixing ratios and carbon monoxide emission inventories. We estimate per capita methylchloroform and chloroform emissions in the South Coast air basin for the year 2005 to be 6.6 +/- 0.4 g/(person.year) and 19 +/- 1 g/(person.year), respectively. We compare our results to national emission estimates calculated from previous work; for several compounds, emissions in the South Coast air basin are significantly lower than national per capita emissions. We observed strong seasonal differences in anthropogenic emissions of methylchloroform and chloroform; emissions were 4.5 and 2.5 times greater in summer than in fall, respectively. Possible seasonal sources include landfills and water chlorination. We conclude that seasonal variability in methylchloroform emissions has not been included in previous inventories and may cause errors in methylchloroform emission estimates after the year 2000 and seasonally resolved inversion calculations of hydroxyl radical abundance.

  18. Blue Whales Respond to Anthropogenic Noise

    PubMed Central

    Melcón, Mariana L.; Cummins, Amanda J.; Kerosky, Sara M.; Roche, Lauren K.; Wiggins, Sean M.; Hildebrand, John A.

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood. PMID:22393434

  19. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

    PubMed Central

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-01

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a−1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models. PMID:28079148

  20. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-01

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a‑1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  1. Anthropogenic features and hillslope processes interaction

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of

  2. Anthropogenic Nutrient Loading in the Northeastern US 1920-2000

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Ng, M.; Brideau, J. M.; Hoover, J. H.; Thomas, B.

    2010-12-01

    Human activities have dramatically altered biogeochemical cycles on local to global scales. Altered fluxes of nutrients (nitrogen, phosphorus) to freshwater systems have been driven directly by human-mediated fluxes (e.g., industrial N fixation) and indirectly due to changes in land and water systems that alter rates of biogeochemical transformations and transport vectors for nutrients. The Northeastern United States as a region underwent many biophysical and political changes over the 20th century, making it an excellent case study for understanding human-biogeochemical relationships over time. From 1920 to 2000, this region experienced significant losses of agricultural land and increases in forest and urban land cover. Furthermore, major national and state legislation, including nuisance laws and the Clean Water Act, was passed during the 20th century to control pollution problems, and major technological advances in wastewater treatment were made. Our goals were to: 1) describe quantitative changes in the spatial patterns of water quality over time, 2) understand the proximate (e.g., changes in land use, new technology) and 3) ultimate (e.g., major demographic, economic, social shifts) drivers of those patterns. Using data from the historic Census of Agriculture, the National Atmospheric Deposition Program, and primary literature, we create a comprehensive time series database of anthropogenic N and P inputs to the Northeast terrestrial system. Inputs are estimated for each county at decadal time scales. Inputs included atmospheric deposition of nitrogen, fertilizer, manure, enhanced biological nitrogen fixation, and domestic waste. We used this database, in conjunction with data on land use, reservoirs, climate, and stream nutrient loads estimated from USGS NWIS to develop a modified export coefficient model for 26 watersheds in the Northeast. We then used this model to estimate nutrient loads at the decadal scale for all HUC 8 watersheds in our study region

  3. Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing

    SciTech Connect

    Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

    2009-02-03

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  4. Increasing Anthropogenic Emissions in China Offset Air Quality Policy Efforts in Western United States: A Satellite and Modelling Perspective

    NASA Astrophysics Data System (ADS)

    Boersma, F. F.; Verstraeten, W. W.; Williams, J. E.; Neu, J. L.; Bowman, K. W.; Worden, J.

    2014-12-01

    Tropospheric ozone is an important greenhouse gas and a global air pollutant originating from photo-chemical oxidation of ozone precursors in the presence of NOX. Eastern Asia has the fastest growing anthropogenic emissions in the world, possibly affecting both the pollution in the local troposphere as well as in the trans-Pacific region. Local measurements over Asia show that tropospheric ozone has increased by 1 to 3% per year since the start of the millennium. This increase is often invoked to explain positive ozone trends observed in western United States, but to date there is no unambiguous evidence showing that enhanced Asian pollution is responsible for these trends. Here we interpret satellite measurements of tropospheric ozone and its precursor nitrate dioxide from the Aura Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) using the TM5 global chemistry-transport model to directly show that tropospheric ozone over China has increased by ~10% from 2005-2010 in response to both a ~15% rise in Chinese emissions and an increased downward ozone transport from the stratosphere. What is more, we demonstrate that Chinese export of ozone and its precursors have offset one-third of the reduction in free tropospheric ozone over the western United States that should have occurred during 2005-2010 via emissions reductions associated with air quality policies in the United States. The issue of export and long-range transport of pollution from other countries indicates that global efforts may be required to address both the global as well as the regional air quality and climate change.

  5. A new global approach using a network of piezoelectric elements and energy redistribution for enhanced vibration damping of smart structure

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Guyomar, Daniel; Richard, Claude

    2013-04-01

    A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.

  6. Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Lin, Che-Jen; Lu, Zhiyun; Zhang, Hui; Zhang, Yiping; Feng, Xinbin

    2016-08-01

    Forest ecosystems play an important role in the global cycling of mercury (Hg). In this study, we characterized the Hg cycling at a remote evergreen broadleaf (EB) forest site in southwest China (Mount Ailao). The annual Hg input via litterfall is estimated to be 75.0 ± 24.2 µg m-2 yr-1 at Mount Ailao. Such a quantity is up to 1 order of magnitude greater than those observed at remote temperate/boreal (T/B) forest sites. Production of litter biomass is found to be the most influential factor causing the high Hg input to the EB forest. Given their large areal coverage, Hg deposition through litterfall in EB forests is appropriately 9 ± 5 Mg yr-1 in China and 1086 ± 775 Mg yr-1 globally. The observed wet Hg deposition at Mount Ailao is 4.9 ± 4.5 µg m-2 yr-1, falling in the lower range of those observed at 49 T/B forest sites in North America and Europe. Given the data, the Hg deposition flux through litterfall is approximately 15 times higher than the wet Hg deposition at Mount Ailao. Steady Hg accumulation in decomposing litter biomass and Hg uptake from the environment were observed during 25 months of litter decomposition. The size of the Hg pool in the organic horizon of EB forest floors is estimated to be up to 2-10 times the typical pool size in T/B forests. This study highlights the importance of EB forest ecosystems in global Hg cycling, which requires further assessment when more data become available in tropical forests.

  7. Panwapa: Global Kids, Global Connections

    ERIC Educational Resources Information Center

    Berson, Ilene R.; Berson, Michael J.

    2009-01-01

    Panwapa, created by the Sesame Street Workshop of PBS, is an example of an initiative on the Internet designed to enhance students' learning by exposing them to global communities. Panwapa means "Here on Earth" in Tshiluba, a Bantu language spoken in the Democratic Republic of Congo. At the Panwapa website, www.panwapa.org, children aged…

  8. CLANIMAE: Climatic and Anthropogenic Impacts on African Ecosystems

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; André, L.; Mahy, G.; Cocquyt, C.; Plisnier, P.-D.; Gelorini, V.; Rumes, B.; Lebrun, J.; Bock, L.; Marchant, R.

    2009-04-01

    Global studies of historical land use focusing on the large-scale landscape change that can potentially affect global climate (via effects on surface albedo, aerosols, and the carbon cycle) have concluded that the impact of pre-colonial East African cultures on regional ecosystems was limited, due to very low mean population density. This contrasts with the paradigm in East African archaeology and paleoecology that the onset of anthropogenic deforestation started at least 2500 years ago, following the introduction of iron metallurgy by Bantu immigrants. This conflict highlights the present lack of real data on historical climate-environment-human interactions in East Africa, which are eminently relevant to sustainable natural resource management and biodiversity conservation in a future of continued population growth and global climate change. CLANIMAE responds to the urgent need of a correct long-term perspective to today's climate-environment-human interactions in East Africa, by reconstructing simultaneously the histories of past climate change and of vegetation and water-quality changes over the last 2500 years, through multi-disciplinary analysis of dated lake-sediment records. The climate reconstructions integrate information on biological, geochemical and sedimentological indicators of past changes in the water balance of the study lakes, which cover the climatological gradient from (sub-)humid western Uganda to semi-arid eastern Kenya. Reconstruction of past terrestrial vegetation dynamics is based on analyses of fossil plant pollen and phytoliths, plus the fossil spores of fungi associated with the excrements of large domestic animals as indicators of lake use by pastoralists. The evolution of water quality through time is reconstructed using silicon isotopes in diatom algae as proxy indicator for past phytoplankton productivity, and paleoecological analyses of fossil diatoms and aquatic macrophytes, following calibration of diatom and macrophyte species

  9. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    NASA Astrophysics Data System (ADS)

    Imbers, J.; Lopez, A.; Huntingford, C.; Allen, M. R.

    2013-04-01

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes.

  10. The Mechanisms of Natural Variability and its Interaction with Anthropogenic Climate Change Final Report

    SciTech Connect

    Vallis, Geoffrey K.

    2015-01-30

    The project had two main components. The first concerns estimating the climate sensitivity in the presence of forcing uncertainty and natural variability. Climate sensitivity is the increase in the average surface temperature for a given increase in greenhouse gases, for example a doubling of carbon dioxide. We have provided new, probabilistic estimates of climate sensitivity using a simple climate model an the observed warming in the 20th century, in conjunction with ideas in data assimilation and parameter estimation developed in the engineering community. The estimates combine the uncertainty in the anthropogenic aerosols with the uncertainty arising because of natural variability. The second component concerns how the atmospheric circulation itself might change with anthropogenic global warming. We have shown that GCMs robustly predict an increase in the length scale of eddies, and we have also explored the dynamical mechanisms whereby there might be a shift in the latitude of the jet stream associated with anthropogenic warming. Such shifts in the jet might cause large changes in regional climate, potentially larger than the globally-averaged signal itself. We have also shown that the tropopause robustly increases in height with global warming, and that the Hadley Cell expands, and that the expansion of the Hadley Cell is correlated with the polewards movement of the mid-latitude jet.

  11. Using isotopic ratios for discrimination of environmental anthropogenic radioactivity.

    PubMed

    Hayes, Robert B; Akbarzadeh, Mansour

    2014-10-01

    When air is pulled into the WIPP repository for ventilation purposes, this air is unfiltered and contains all the components of ubiquitous anthropogenic radionuclides from global nuclear fallout (including Cs and Pu isotopes). Although the NORM in aeolian sand and dust contribute to the gross alpha beta activity on effluent air filters, there remains a need to discriminate effluent TRU generated in the disposal process at WIPP from TRU being pulled into the repository with the unfiltered surface air. This is only evaluated using ratios of Cs and Pu activity found through radioassay of air filters taken from the mine effluent. By characterizing both the credible range of Cs/Pu ratios from the environment and those known to exist in the waste, a rigorous test criteria is attained. The use of HPGE to assay Cs in the intake dust plated out in the mine allowed a gross assay of total TRU radioactivity pulled into the mine over time from global fallout. Radiochemistry of samples from deposition in the mine's air intake shaft was also carried out. The use of net activity ratios at background levels is also shown to follow a Cauchy distribution in terms of their expected statistical distributions.

  12. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  13. Anthropogenic carbon in the ocean—Surface to interior connections

    NASA Astrophysics Data System (ADS)

    Groeskamp, Sjoerd; Lenton, Andrew; Matear, Richard; Sloyan, Bernadette M.; Langlais, Clothilde

    2016-11-01

    Quantifying the surface to interior transport of anthropogenic carbon (CA) is critical for projecting future carbon uptake and for improved understanding of the role of the oceans in the global carbon cycle. Here we develop and apply a diagnostic tool that provides a volumetric stream function in (CA,σ0) coordinates to calculate the total diapycnal CA transport in the ocean, where σ0 is the surface referenced potential density anomaly. We combine this with air-sea fluxes of CA to infer the internal ocean mixing of CA to obtain a closed globally integrated budget analyses of the ocean's CA transport. This diagnostic separates the contribution from the mean flow, seasonal cycles, trend, surface fluxes, and mixing in the distribution and the accumulation of CA in the ocean. We find that the redistribution of CA from the surface to the interior of the ocean is due to an interplay between circulation and mixing. The circulation component is dominated by the mean flow; however, effects due to seasonal cycles are significant for the CA redistribution. The two most important pathways for CA subduction are through the transformation of thermocline water (TW) into subantarctic mode water and by transformation of Circumpolar Deep Water (CDW) into lighter Antarctic Intermediate Water. The results suggest that an accurate representation of intermediate and mode water formation, deep water formation, and spatial and temporal distribution of ocean mixing in ocean models is essential to simulate and project the oceanic uptake of CA.

  14. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Harrington, Luke J.; Frame, David J.; Fischer, Erich M.; Hawkins, Ed; Joshi, Manoj; Jones, Chris D.

    2016-05-01

    Understanding how the emergence of the anthropogenic warming signal from the noise of internal variability translates to changes in extreme event occurrence is of crucial societal importance. By utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from eleven earth system models, we demonstrate that the inherently lower internal variability found at tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances of the 99.9th percentile derived from pre-industrial climate simulations) occurring much earlier than for mid-to-high latitude regions. Most of the world’s poorest people live at low latitudes, when considering 2010 GDP-PPP per capita; conversely the wealthiest population quintile disproportionately inhabit more variable mid-latitude climates. Consequently, the fraction of the global population in the lowest socio-economic quintile is exposed to substantially more frequent daily temperature extremes after much lower increases in both mean global warming and cumulative CO2 emissions.

  15. Detecting and Quantifying the Anthropogenic Influence on Extremes

    NASA Astrophysics Data System (ADS)

    Zwiers, F. W.

    2015-12-01

    The body of evidence indicating a human contribution to observed climate change has continued to strengthen as indicated by the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). This includes an accumulating body of evidence suggesting that temperature and precipitation extremes have both changed in response to human influences on the climate. The research on temperature extremes is well established, with recent work indicating that temperature extremes have continued to warm over land despite the global warming "hiatus", and that anthropogenic forcing has substantially increased the odds of extreme warm years and summers, both globally and regionally. The evidence on precipitation extremes is less well established, although there is increasingly strong evidence that human influence is detectable in observations at the largest scales that are resolvable in available international compilations of daily precipitation records. In contrast, assessments of historical and projected changes in the terrestrial branch of the hydrological cycle and storminess remain cautious, due to data limitations, uncertainty in process understanding, modelling, and in the case of terrestrial hydrological impacts, the highly heterogeneous nature of the impacted systems. Despite uncertainties and limitations in knowledge, observed and projected changes in the simple temperature and precipitation indicators in which we have greatest confidence provide strong evidence that adaptation is required now, and that further adaptation will be required in the future.

  16. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  17. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-11-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.

  18. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  19. Toward a treaty on safety and cost-effectiveness of pharmaceuticals and medical devices: enhancing an endangered global public good

    PubMed Central

    Faunce, Thomas Alured

    2006-01-01

    • Expert evaluations of the safety, efficacy and cost-effectiveness of pharmaceutical and medical devices, prior to marketing approval or reimbursement listing, collectively represent a globally important public good. The scientific processes involved play a major role in protecting the public from product risks such as unintended or adverse events, sub-standard production and unnecessary burdens on individual and governmental healthcare budgets. • Most States now have an increasing policy interest in this area, though institutional arrangements, particularly in the area of cost-effectiveness analysis of medical devices, are not uniformly advanced and are fragile in the face of opposing multinational industry pressure to recoup investment and maintain profit margins. • This paper examines the possibility, in this context, of States commencing negotiations toward bilateral trade agreement provisions, and ultimately perhaps a multilateral Treaty, on safety, efficacy and cost-effectiveness analysis of pharmaceuticals and medical devices. Such obligations may robustly facilitate a conceptually interlinked, but endangered, global public good, without compromising the capacity of intellectual property laws to facilitate local product innovations. PMID:16569240

  20. Mineralogical and Anthropogenic Controls of Stream Water Chemistry in Salted Watersheds

    NASA Astrophysics Data System (ADS)

    Sun, H.; Alexander, J.; Gove, B.; Chakowski, N.; Husch, J.

    2013-12-01

    Analyses of major cation and anion concentrations in stream water and soil solutions from two salted (regular applications of winter road deicing salt) watersheds located in the northeastern United States indicate that both mineralogical and anthropogenic factors are important in controlling water chemistry. The relatively stable concentrations of calcium and magnesium, as well as their possible weathering paths identified by mass-balance models, indicate that the weathering of feldspars and the dissolution of carbonates are the primary sources for these two cations in the small, salted Centennial Lake Watershed (CLW, 1.95 km 2). However, the relatively stable and lower concentrations of sodium and chloride in soil solutions, and their fluctuating and higher concentrations in stream water from the CLW, indicate that road deicing salt is the primary source for these ions in stream water. Furthermore, positive correlations between calcium and sulfur concentrations and magnesium and sulfur concentrations in soil solutions, as well as positive correlations between sulfur and iron concentrations in soil compositions, indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite are the primary sources of sulfate in the CLW. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW, 17560 km 2) show that sodium and chloride concentrations have increased steadily due to the regular application of winter deicing salt over the 68 years for which data are available. The more rapid increase of stream water chloride concentrations, relative to the increase in sodium, also results in the steady decline of Na+/Cl-molar ratios in the DRW over that time. In addition, the reduction of sulfate and increase of bicarbonate concentration since 1980 in DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in

  1. Natural and anthropogenic change in the morphology and connectivity of tidal channels of southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L., Jr.; Wallace Auerbach, L.; Ahmed, K. R.; Small, C.; Sams, S. E.

    2014-12-01

    Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming. GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as

  2. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  3. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    PubMed

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna.

  4. One dimensional modeling of anthropogenic beach berm erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Sanders, B. F.

    2013-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) are in use internationally to guard against beach overtopping and consequent coastal flooding. Berms can be constructed on a seasonal basis or in anticipation of a hazardous event, e.g., when a storm is expected to arrive coincident with an astronomical high tide. In either case, a common approach is to scrape sand from the foreshore with heavy equipment and deposit it on the crest of the natural beach dune, thus providing added protection from the possibility of wave overtopping. Given the potential for higher sea levels globally and more extreme storm events, anthropogenic berms will surely be tested to their limits and will ultimately fail, causing flooding. A better understanding of the conditions under which these berms fail is therefore needed to support coastal flood risk management. An experimental campaign in Newport Beach, California was conducted to document the dynamic erosion of prototype beach berms under a rising tide and mild to moderate wave conditions. Terrestrial laser scanning (TLS) of the berm produced a digital model of how the berm shape evolved over time. Here, a numerical model of swash zone hydromorphodynamics based on shallow-water flow physics is presented to evaluate whether and to what extent the timing and degree of berm erosion and overtopping can be predicted from first principles. The model tightly couples flow and sediment transport within an approximate Riemann solver, and thus is of the Godunov-type variety of finite volume schemes. Additionally, the model includes an avalanching scheme to account for non-hydrodynamic slumping down the angle of repose. Results indicate that it is possible to calibrate the model for a particular event, and then successfully predict erosion for another event, but due to parameter sensitivities, it is unlikely that the model can be applied at a site without calibration (true prediction).

  5. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    PubMed Central

    Keenan, Trevor F; Prentice, I. Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-01-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. PMID:27824333

  6. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake.

    PubMed

    Keenan, Trevor F; Prentice, I Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G James

    2016-11-08

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  7. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  8. Predicting Anthropogenic Noise Contributions to US Waters.

    PubMed

    Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie

    2016-01-01

    To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them.

  9. Attribution of irreversible loss to anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  10. From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea.

    PubMed

    Lee, S Y

    2016-08-30

    Southeast Asia is the global centre of mangrove development but human activities have dramatically reduced mangrove area in the region. An analysis is made of the shift in carbon and nitrogen influxes into the South China Sea (SCS) resulting from three anthropogenic nutrient sources: domestic sewage discharge, fertilizer use in rice agriculture and environmental loss from mariculture, between 1997 and 2010. Anthropogenic C and N influxes were, respectively, 1.81× and 1.43× those in 1997, with coastal aquaculture contributing most to the increase. In contrast, fringing mangroves provided ~44% of the C but only ~3% of the N from anthropogenic sources in 2010. In 1997, influx from mangroves was 113% and 6% of anthropogenic influx for C and N, respectively. This dominance by relatively labile anthropogenic nutrients over mangrove sources would change nearshore trophodynamics, with negative implications for the resilience of mangroves and nutrient-intolerant systems such as corals.

  11. Atmospheric mercury deposition during the last 270 years--A glacial ice core record of natural and anthropogenic sources

    USGS Publications Warehouse

    Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.; Cecil, L. DeWayne; Olson, Mark L.; DeWild, John F.; Susong, David D.; Green, Jaromy R.; Abbott, Michael L.

    2002-01-01

    Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720−1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2−7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.

  12. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  13. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    USGS Publications Warehouse

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  14. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  15. Farmer responses to multiple stresses in the face of global change: Assessing five case studies to enhance adaptation

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Feola, G.; Lerner, A. M.; Jain, M.; Montefrio, M.

    2013-12-01

    The global challenge of sustaining agricultural livelihoods and yields in the face of growing populations and increasing climate change is the topic of intense research. The role of on-the-ground decision-making by individual farmers actually producing food, fuel, and fiber is often studied in individual cases to determine its environmental, economic, and social effects. However, there are few efforts to link across studies in a way that provides opportunities to better understand empirical farmer behavior, design effective policies, and be able to aggregate from case studies to a broader scale. Here we synthesize existing literature to identify four general factors affecting farmer decision-making: local technical and socio-cultural contexts; actors and institutions involved in decision-making; multiple stressors at broader scales; and the temporal gradient of decision-making. We use these factors to compare five cases that illustrate agricultural decision-making and its impacts: cotton and castor farming in Gujarat, India; swidden cultivation of upland rice in the Philippines; potato cultivation in Andean Colombia; winegrowing in Northern California; and maize production in peri-urban central Mexico. These cases span a geographic and economic range of production systems, but we find that we are able to make valid comparisons and draw lessons common across all cases by using the four factors as an organizing principle. We also find that our understanding of why farmers make the decisions they do changes if we neglect to examine even one of the four general factors guiding decision-making. This suggests that these four factors are important to understanding farmer decision-making, and can be used to guide the design and interpretation of future studies, as well as be the subject of further research in and of themselves to promote an agricultural system that is resilient to climate and other global environmental changes.

  16. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    PubMed Central

    2013-01-01

    Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943

  17. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.

    PubMed

    Liu, Fei; Song, Xianfang; Yang, Lihu; Han, Dongmei; Zhang, Yinghua; Ma, Ying; Bu, Hongmei

    2015-12-15

    Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of

  18. The importance of invertebrates when considering the impacts of anthropogenic noise.

    PubMed

    Morley, Erica L; Jones, Gareth; Radford, Andrew N

    2014-02-07

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise.

  19. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    PubMed Central

    Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-01-01

    Abstract Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from −15.2 ± 1.8 to −13.3 ± 1.6 Pg C yr−1 °C−1 in global stratified oceans during 1948–2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming. PMID:27867233

  20. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming.

    PubMed

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-28

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr(-1) °C(-1) in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  1. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  2. Our Changing Planet: The FY 1993 US Global Change Research Program. A report by the Committee on Earth and Environmental Sciences, a supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).

  3. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  4. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  5. Mixed-layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated, to what extent anthropogenic aerosol-induced changes in surface solar radiation (SSR) since industrialization affected surface temperatures (tsurf). We use mixed-layer ocean (MLO) experiments with the general circulation model ECHAM6.1 and explicit aerosols (HAM2.2) to identify regions where this effect is discernible. For each decade from 1870 to 2000 we derive three equilibria: anthropogenic aerosol emissions and greenhouse gas concentrations at the respective decade's levels (ALL), either aerosols or greenhouse gases fixed at year 1850 levels (GHG and AERO). We duplicated parts of the experiments with different prescribed divergence of ocean heat transport (Q_ALL, Q_AERO, Q_GHG). Comparing year 2000 with year 1870 equilibria, we find global average cooling of -1.4K for AERO, and warming of 1.4K for GHG. ALL and Q_ALL warm by 0.6K and 0.4K, respectively. The way divergence of ocean heat transport is prescribed thus matters. Pattern correlations of year 2000 tsurf responses in ALL with the sum of AERO and GHG are higher (0.88) than with Q_ALL (0.71) confirming additivity of global patterns, but not of global means. The imprint of anthropogenic aerosols on tsurf response patterns in ALL is distinct, thus potentially detectable. Over the decades, ocean fractions affected by either changing aerosol optical depth or all-sky SSR vary in concert, supporting linkage between anthropogenic aerosols and all-sky SSR. SSR changes and tsurf responses are marginally collocated. Oceanic regions with strongest tsurf response to aerosol-induced SSR changes are the northern mid-latitudes and North Pacific with tsurf sensitivities up to -0.7K per Wm-2 SSR change. Results presented have been published under the same title in the Journal of Geophysical Research, Volume 121, DOI 10.1002/2015JD024070.

  6. Mixed-layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2016-01-01