Science.gov

Sample records for anthropogenically enhanced global

  1. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative

  2. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing

    PubMed Central

    Trapp, Robert J.; Diffenbaugh, Noah S.; Brooks, Harold E.; Baldwin, Michael E.; Robinson, Eric D.; Pal, Jeremy S.

    2007-01-01

    Severe thunderstorms comprise an extreme class of deep convective clouds and produce high-impact weather such as destructive surface winds, hail, and tornadoes. This study addresses the question of how severe thunderstorm frequency in the United States might change because of enhanced global radiative forcing associated with elevated greenhouse gas concentrations. We use global climate models and a high-resolution regional climate model to examine the larger-scale (or “environmental”) meteorological conditions that foster severe thunderstorm formation. Across this model suite, we find a net increase during the late 21st century in the number of days in which these severe thunderstorm environmental conditions (NDSEV) occur. Attributed primarily to increases in atmospheric water vapor within the planetary boundary layer, the largest increases in NDSEV are shown during the summer season, in proximity to the Gulf of Mexico and Atlantic coastal regions. For example, this analysis suggests a future increase in NDSEV of 100% or more in locations such as Atlanta, GA, and New York, NY. Any direct application of these results to the frequency of actual storms also must consider the storm initiation.

  3. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  4. Anthropogenic global warming threatens world cultural heritage

    NASA Astrophysics Data System (ADS)

    Cazenave, Anny

    2014-05-01

    Numerous cultural sites of the United Nations Educational, Scientific and Cultural Organization (UNESCO) world cultural Heritage are located in low-lying coastal regions. Because of anthropogenic global warming and induced sea level rise, many of these sites will be partially or totally flooded in the coming centuries/millennia. This is shown in a recent study by Marzeion and Levermann (2014 Environ. Res. Lett. 9 034001). Projecting future sea level rise and associated regional variability, these authors investigate which sites will be at risk. Because UNESCO cultural sites represent the common heritage of human beings and reflect the Earth and humanity history, they need to be protected for future generations.

  5. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  6. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    NASA Astrophysics Data System (ADS)

    Mao, J.; Fu, W.; Shi, X.; Ricciuto, D. M.; Fisher, J. B.; Dickinson, R. E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; Schwalm, C. R.; Tian, H.; Mu, M.; Arain, M. A.; Ciais, P.; Cook, R. B.; Dai, Y. J.; Hayes, D. J.; Hoffman, F. M.; Huang, M.; Huang, S.; Huntzinger, D. N.; Ito, A.; Jain, A. K.; King, A. W.; Lei, H.; Lu, C.; Michalak, A. M.; Parazoo, N.; Peng, C.; Peng, S.; Poulter, B.; Schaefer, K. M.; Jafarov, E. E.; Thornton, P. E.; Wang, W.; Zeng, N.; Zeng, Z.; Zhao, F.; Zhu, Q.; Zhu, Z.

    2015-12-01

    We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreased trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  7. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGES

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; ...

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  8. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  9. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  10. A dynamic model for the global cycling of anthropogenic vanadium

    NASA Astrophysics Data System (ADS)

    Hope, Bruce K.

    2008-12-01

    Vanadium is a major trace metal in fossil fuels. Combustion of residual fuel oils and coal in industrialized economies is recognized as the major source of anthropogenic vanadium. A dynamic mass balance model assessed the influence of anthropogenic inputs on the global distribution and cycling of vanadium between 1700 and 2400 assuming different fossil fuel consumption and V production (mining) scenarios. Anthropogenic V sources were divided into fossil fuel combustion, industrial, and domestic (nonindustrial human activity). By 2050, inputs of anthropogenic V could comprise ≈75-85% of those to the atmosphere, ≈21-33% to ocean dissolved, ≈9-13% to ocean particulate, and ≈28-43% of inputs to land; with between ≈61-64% of all anthropogenic inputs attributable to fossil fuel combustion. Contributions from combustion and industrial sources, although dominant relative to contributions from domestic sources between 1900 and 2100, were estimated to peak between 2000 and 2050. Accumulation of anthropogenic V on land and in the ocean apparently occurs because natural removal processes are unable to cope with increasing amounts and rates of anthropogenic contributions. Impacts or hazards associated with anthropogenic inputs are unlikely to be discernible or significant on a global scale, but may be measurable and meaningful at smaller scales (coastal waters, continental shelves, and bays), in the locality of specific sources, or given an unfavorable exposure scenario.

  11. Global change in wilderness areas: disentangling natural and anthropogenic changes

    Treesearch

    Lisa J. Graumlich

    2000-01-01

    Human impacts on the Earth’s ecosystems are globally pervasive. Wilderness areas, although largely protected from direct human impact at local scales, nevertheless are subject to global changes in atmospheric composition, climate and biodiversity. Research in wilderness areas plays a critical role in disentangling natural and anthropogenic changes in ecosystems by...

  12. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  13. Assessment of global industrial-age anthropogenic arsenic contamination.

    PubMed

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  14. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  15. Anthropogenic iron oxide aerosols enhance atmospheric heating

    PubMed Central

    Moteki, Nobuhiro; Adachi, Kouji; Ohata, Sho; Yoshida, Atsushi; Harigaya, Tomoo; Koike, Makoto; Kondo, Yutaka

    2017-01-01

    Combustion-induced carbonaceous aerosols, particularly black carbon (BC) and brown carbon (BrC), have been largely considered as the only significant anthropogenic contributors to shortwave atmospheric heating. Natural iron oxide (FeOx) has been recognized as an important contributor, but the potential contribution of anthropogenic FeOx is unknown. In this study, we quantify the abundance of FeOx over East Asia through aircraft measurements using a modified single-particle soot photometer. The majority of airborne FeOx particles in the continental outflows are of anthropogenic origin in the form of aggregated magnetite nanoparticles. The shortwave absorbing powers (Pabs) attributable to FeOx and to BC are calculated on the basis of their size-resolved mass concentrations and the mean Pabs(FeOx)/Pabs(BC) ratio in the continental outflows is estimated to be at least 4–7%. We demonstrate that in addition to carbonaceous aerosols the aggregate of magnetite nanoparticles is a significant anthropogenic contributor to shortwave atmospheric heating. PMID:28508863

  16. Do anthropogenic aerosols enhance CO2 uptake by plants?

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  17. The GEIA global gridded inventory of anthropogenic VOCs

    SciTech Connect

    Benkovitz, C.M.; Berdowski, J.J.M.; Veldt, C.

    1995-04-01

    Modeling assessments of the atmospheric chemistry, air quality and climatic conditions of the past, present and future require as input inventories of emissions of the appropriate chemical species constructed on appropriate spatial and temporal scales. The task of the Global Emissions Inventories Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC) is the production of global inventories suitable for a range of research applications. Current GEIA programs are generally based on addressing emissions by species; an international working group of interested participants cooperates in the work needed to compile each inventory. The work of the GEIA program addressing the compilation of a global inventory of anthropogenic emissions of Volatile Organic Compounds (VOCs) gridded with 1{degree} resolution is presented. Past studies were used to identify anthropogenic activities according to their contribution to global VOC emissions, based on results of these initial studies, activity and species groupings for emissions reporting have been selected. Current status of the work of the committee is discussed. Detailed information on available activity rates, emission factors, and speciation profiles for each defined sector is being compiled. Links to investigators working on the compilation of VOC emissions on a regional level have been established.

  18. Observational and modeling constraints on global anthropogenic enrichment of mercury.

    PubMed

    Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M

    2015-04-07

    Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.

  19. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen

    NASA Astrophysics Data System (ADS)

    Benkovitz, Carmen M.; Scholtz, M. Trevor; Pacyna, Jozef; Tarrasón, Leonor; Dignon, Jane; Voldner, Eva C.; Spiro, Peter A.; Logan, Jennifer A.; Graedel, T. E.

    1996-12-01

    Two sets of global inventories of anthropogenic emissions of both oxides of sulfur and oxides of nitrogen for circa 1985 have been produced under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Program. The two sets of inventories have different temporal, sectoral, and vertical resolution. Both were compiled using the same data sets; default data sets of global emissions have been refined via the use of more detailed regional data sets. This article reports on the compilation of the annual, one-vertical-level inventories, called version 1A; the inventory files are available to the scientific community via anonymous file transform protocol (FTP). Existing global inventories and regional inventories have been updated and combined on a 1° × 1° longitude/latitude grid. The resulting global anthropogenic emissions are 65 Tg S yr-1 and 21 Tg N yr-1; qualitative uncertainty estimates have been assigned on a regional basis. Emissions of both SOx and NOx are strongly localized in the highly populated and industrialized areas of eastern North America and across Europe; other smaller regions of large emissions are associated with densely populated areas with developed industries or in connection with exploitation of fuels or mineral reserves. The molar ratio of nitrogen to sulfur emissions reflects the overall character of sources; its value is generally between 0.33 and 10 for industrialized and heavily populated areas but varies over a wide range for other areas. We suggest that those requiring sulfur or nitrogen emission inventories standardize on the GEIA inventories, which we believe are authoritative and which are freely available to all users by anonymous FTP.

  20. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  1. Global anthropogenic emissions of particulate matter including black carbon

    NASA Astrophysics Data System (ADS)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  2. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  3. Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994

    DOE Data Explorer

    Stern, David I. [Boston Univ., MA (United States); Kaufmann, Robert K. [Boston Univ., MA (United States)

    1998-01-01

    The authors provide the first estimates, by year, of global man-made emissions of methane, from 1860 through 1994. The methods, including the rationale for the various coefficients and assumptions used in deriving the estimates, are described fully in Stern and Kaufmann (1995, 1996), which provides the estimates for the period 1860-1993; the data presented here are revised and updated through 1994. Some formulae and coefficients were also revised in that process. Estimates are provided for total anthropogenic emissions, as well as emissions for the following component categories: Flaring and Venting of Natural Gas; Oil and Gas Supply Systems, Excluding Flaring; Coal Mining; Biomass Burning; Livestock Farming; Rice Farming and Related Activities; Landfills. Changes in emissions over time were estimated by treating emissions as a function of variables (such as population or coal production) for which historical time series are available.

  4. Scenarios of global mercury emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.

    2013-11-01

    This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  5. Global survey of anthropogenic neighborhood threats to conservation of grass-shrub and forest vegetation

    Treesearch

    Kurt H. Riitters; James D. Wickham; Timothy G. Wade; Peter Vogt

    2012-01-01

    The conservation value of natural vegetation is degraded by proximity to anthropogenic land uses. Previous global assessments focused primarily on the amount of land protected or converted to anthropogenic uses, and on forest vegetation. Comparative assessments of extant vegetation in terms of proximity to anthropogenic land uses are needed to better inform...

  6. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.

  7. First Global Estimates of Anthropogenic Shortwave Forcing by Methane

    NASA Astrophysics Data System (ADS)

    Collins, William; Feldman, Daniel; Kuo, Chaincy

    2017-04-01

    Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric

  8. Modelling global anthropogenic sediment fluxes in the Holocene

    NASA Astrophysics Data System (ADS)

    Wang, Zhengang; Van Oost, Kristof

    2017-04-01

    A large fraction of natural vegetation has been cleared to provide agricultural cropland, which accelerates erosion by one to two orders of magnitude. Quantification of the accelerated erosion flux is important in order to understand the role of human activities in ecosystem evolution given that soil erosion not only causes on site effects on soil degradation and soil organic carbon (SOC) cycling but also off site effects on the water quality. In this study, we first evaluated and constrained existing ALCC scenarios by comparing observed cumulative sediment fluxes with our model simulations. We further applied a spatially distributed erosion model under the optimized land use scenario at the global scale. Simulation shows that conversion from natural vegetation to cropland has caused a global cumulative agricultural sediment flux of 28000 Pg for the period of agriculture. This results in an average cumulative sediment mobilization of 1890 kg m-2 on the croplands, i.e. a soil truncation of ca. 1.3 m. Regions of early civilization and high cropland fractions such as South Asia, Southeast Asia and Central America have higher area-averaged anthropogenic erosion than other regions.

  9. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  10. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    The ecological functions of natural vegetation are threatened when it is subsumed in anthropogenic landscapes. We report the first comparative global survey of anthropogenic landscape threats to forest and grass-shrub vegetation. Using a global land-cover map derived from remote...

  11. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    The ecological functions of natural vegetation are threatened when it is subsumed in anthropogenic landscapes. We report the first comparative global survey of anthropogenic landscape threats to forest and grass-shrub vegetation. Using a global land-cover map derived from remote...

  12. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  13. Apparent Detection of Global Anthropogenic Effects Extending Into the Thermosphere

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Theriot, M. E.; Akmaev, R. A.; Bougher, S. W.

    2004-05-01

    From a study of long-term orbital decay of Earth satellites, it has been discovered that thermospheric densities have declined substantially since at least 1976. Detection of this decline was first published by Keating et al (2000) in Geophysical Research Letters. They performed an analysis of 5 Earth satellites with periapsis altitudes near 380 km. The study was conducted for conditions near solar minimum to remove the effect of the 11-year solar cycle. Comparisons were made with a standard empirical density model to remove the effects of variations in solar and geomagnetic activity, altitude, season, latitude, time of day, etc. In that article, it was proposed that the cooling trend was caused by anthropogenic effects. Now the data set has been expanded to 14 satellites near 380 km to obtain an improved estimate of the trend and to establish possible variations in the trend. In the new study, the average trend from 1976-1996 is found to be minus 10.3 plus or minus 1.2 percent. This is in accord with the 2000 paper, which gave an average trend of minus 9.8 plus or minus 2.5 percent. The new results show statistically insignificant differences between the trend at low and high latitudes indicating a global response with no significant correlation to geomagnetic activity variations. The results appear to be in accord with theoretical model estimates for the response of the thermosphere to increases in CO2 and CH4 predicted by Roble and Dickinson (1989), Rishbeth and Roble (1992), and Akmaev and Formichev (2000). A paper by Emmert et al (2004) using a similar approach of studying the orbital decay from 27 satellites qualitatively confirms the downward trend originally discovered in the 2000 paper. All 27 of the satellites they studied indicated a downward trend. Twenty of the 27 satellites experienced a decrease in thermospheric density at somewhat higher altitudes, between 500 and 700 km. It is estimated that CO2 will double before the end of this century

  14. The relationship between anthropogenic dust and population over global semi-arid regions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Zhang, Yanting; Xie, Yongkun; Liu, Jingjing

    2016-04-01

    Although anthropogenic dust has received more attention from the climate research community, its dominant role in the production process is still not identified. In this study, we analysed the relationship between anthropogenic dust and population density/change over global semi-arid regions and found that semi-arid regions are major source regions in producing anthropogenic dust. The results showed that the relationship between anthropogenic dust and population is more obvious in cropland than in other land cover types (crop mosaics, grassland, and urbanized regions) and that the production of anthropogenic dust increases as the population density grows to more than 90 persons km-2. Four selected semi-arid regions, namely East China, India, North America, and North Africa, were used to explore the relationship between anthropogenic dust production and regional population. The most significant relationship between anthropogenic dust and population occurred in an Indian semi-arid region that had a greater portion of cropland, and the high peak of anthropogenic dust probability appeared with 220 persons km-2 of population density and 60 persons km-2 of population change. These results suggest that the influence of population on production of anthropogenic dust in semi-arid regions is obvious in cropland regions. However, the impact does not always have a positive contribution to the production of anthropogenic dust, and overly excessive population will suppress the increase of anthropogenic dust. Moreover, radiative and climate effects of increasing anthropogenic dust need more investigation.

  15. Hydrologic and climatic responses to global anthropogenic groundwater extraction

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zeng, Y.

    2016-12-01

    In this study, a groundwater (GW) extraction scheme was incorporated into the model CESM1.2.0 to create a new version called CESM1.2_GW, which was used to investigate hydrologic and climatic responses to anthropogenic GW extraction on a global scale. An ensemble of 41-yr simulations with and without GW extraction (estimated based on local water supply and demand) were conducted and analyzed. The results revealed that GW extraction and water consumption caused drying in deep soil layers but wetting in upper layers, along with a rapidly declining GW table in areas with the most severe GW extraction, including the central United States, the north China Plains and the north of India and Pakistan. The atmosphere also responded to GW extraction, with cooling at the 850 hPa level over the north of India and Pakistan and a large area in north of China and central Russia. Increased precipitation occurred in the north China Plains due to increased evapotranspiration from irrigation. Decreased precipitation occurred in north of India because the Indian monsoon and its transport of water vapor were weaker as a result of cooling induced by GW use. Additionally, the background climate change may complicate the precipitation responses to the GW use. Local terrestrial water storage was shown to be unsustainable at the current high GW extraction rate. Thus, a balance between reduced GW withdrawal and rapid economic development must be achieved in order to maintain a sustainable GW water resource, especially in regions where GW is being over-exploited.

  16. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, L.

    2012-05-01

    This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global anthropogenic methane emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. Major uncertainty sources in emission estimates are identified and discussed. Mitigation costs are estimated defining two different cost perspectives; the social planner cost perspective and the private investor cost perspective.

  17. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%.

  18. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    PubMed

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  19. A dynamic model for the global cycling of anthropogenic vanadium - article no. GB4021

    SciTech Connect

    Hope, B.K.

    2008-12-15

    Vanadium is a major trace metal in fossil fuels. Combustion of residual fuel oils and coal in industrialized economies is recognized as the major source of anthropogenic vanadium. A dynamic mass balance model assessed the influence of anthropogenic inputs on the global distribution and cycling of vanadium between 1700 and 2100 assuming different fossil fuel consumption and V production (mining) scenarios. Anthropogenic V sources were divided into fossil fuel combustion, industrial, and domestic (nonindustrial human activity). By 2050, inputs of anthropogenic V could comprise approximate to 75-85% of those to the atmosphere, approximate to 21-33% to ocean dissolved, approximate to 9-13% to ocean particulate, and approximate to 28-43% of inputs to land; with between approximate to 61-64% of all anthropogenic inputs attributable to fossil fuel combustion. Contributions from combustion and industrial sources, although dominant relative to contributions from domestic sources between 1900 and 2100, were estimated to peak between 2000 and 2050. Accumulation of anthropogenic V on land and in the ocean apparently occurs because natural removal processes are unable to cope with increasing amounts and rates of anthropogenic contributions. Impacts or hazards associated with anthropogenic inputs are unlikely to be discernible or significant on a global scale, but may be measurable and meaningful at smaller scales (coastal waters, continental shelves, and bays), in the locality of specific sources, or given an unfavorable exposure scenario.

  20. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution.

    PubMed

    Zhang, Renyi; Wang, Lin; Khalizov, Alexei F; Zhao, Jun; Zheng, Jun; McGraw, Robert L; Molina, Luisa T

    2009-10-20

    The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart. Dimers or heterodimers of biogenic organic acids alone are unfavorable for new particle formation and growth because of their hydrophobicity. Condensation of low-volatility organic acids is hindered on nano-sized particles, whereas ammonia contributes negligibly to particle growth in the size range of 3-30 nm. The results suggest that initial growth from the critical nucleus to the detectable size of 2-3 nm most likely occurs by condensation of sulfuric acid and water, implying that anthropogenic sulfur emissions (mainly from power plants) strongly influence formation of terrestrial biogenic particles and exert larger direct and indirect climate forcing than previously recognized.

  1. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution

    PubMed Central

    Zhang, Renyi; Wang, Lin; Khalizov, Alexei F.; Zhao, Jun; Zheng, Jun; McGraw, Robert L.; Molina, Luisa T.

    2009-01-01

    The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart. Dimers or heterodimers of biogenic organic acids alone are unfavorable for new particle formation and growth because of their hydrophobicity. Condensation of low-volatility organic acids is hindered on nano-sized particles, whereas ammonia contributes negligibly to particle growth in the size range of 3–30 nm. The results suggest that initial growth from the critical nucleus to the detectable size of 2–3 nm most likely occurs by condensation of sulfuric acid and water, implying that anthropogenic sulfur emissions (mainly from power plants) strongly influence formation of terrestrial biogenic particles and exert larger direct and indirect climate forcing than previously recognized. PMID:19815498

  2. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  3. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  4. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  5. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  6. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    SciTech Connect

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  7. A new global anthropogenic heat estimation based on high-resolution nighttime light data.

    PubMed

    Yang, Wangming; Luan, Yibo; Liu, Xiaolei; Yu, Xiaoyong; Miao, Lijuan; Cui, Xuefeng

    2017-08-22

    Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km(2) spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems.

  8. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin.

    PubMed

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-07-07

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth's climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

  9. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    PubMed Central

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  10. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    NASA Astrophysics Data System (ADS)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-07-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

  11. Anthropogenic effects on global riverine sediment and water discharge - a spatially explicit analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2013-12-01

    Changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010 are studied, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Anthropogenic impact on sediment and water discharge is evaluated by comparing global scale simulations with and without human drivers and parameters (agricultural land use, water intake form aquifers and rivers, sediment trapping in reservoirs, and human-induced soil erosion). The results show that, on average, global riverine sediment flux is reduced by approximately 25% by anthropogenic activities (almost exclusively due to trapping in reservoirs) while water discharge is reduced by about 2%. These results correspond to previous analysis by other research groups. Substantial global and intra-basin variability is observed (see Figure 1) for the first time. In some regions an opposite anthropogenic effect on sediment and water discharge was predicted (e.g. west Mississippi Basin, Rio Grande River, Indian subcontinent). We discuss the western part of the Mississippi Basin as an example of this intriguing anthropogenic impact. Figure 1. Percent change between disturbed and pristine simulations (with and without human footprint respectively) for sediment flux (top) and water discharge (bottom).

  12. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  13. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Kosaka, Yu; Okumura, Yuko M.

    2016-01-01

    The Earth's energy budget for the past four decades can now be closed, and it supports anthropogenic greenhouse forcing as the cause for climate warming. However, closure depends on invoking an unrealistically large increase in aerosol cooling during the so-called global warming hiatus since the late 1990s (refs ,) that was due partly to tropical Pacific Ocean cooling. The difficulty with this closure lies in the assumption that the same climate feedback applies to both anthropogenic warming and natural cooling. Here we analyse climate model simulations with and without anthropogenic increases in greenhouse gas concentrations, and show that top-of-the-atmosphere radiation and global mean surface temperature are much less tightly coupled for natural decadal variability than for the greenhouse-gas-induced response, implying distinct climate feedback between anthropogenic warming and natural variability. In addition, we identify a phase difference between top-of-the-atmosphere radiation and global mean surface temperature such that ocean heat uptake tends to slow down during the surface warming hiatus. This result deviates from existing energy theory but we find that it is broadly consistent with observations. Our study highlights the importance of developing metrics that distinguish anthropogenic change from natural variations to attribute climate variability and to estimate climate sensitivity from observations.

  14. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  15. Global inventory of volatile organic compound emissions from anthropogenic sources. Final report, March 1988-September 1990

    SciTech Connect

    Watson, J.J.; Probert, J.A.; Piccot, S.D.

    1991-01-01

    The report describes a global inventory of anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. The inventory, one input to atmospheric chemistry models required to estimate the global atmospheric concentration of ozone, is part of an assessment of the potential environmental impacts associated with global climate change. Study results show total global anthropogenic emissions of about 121 million short tons of VOCs per year. The U.S. is the largest emitter with 21% of the total. Globally, fuelwood combustion and savanna burning are the largest sources, together accounting for over 35% of global VOC emissions. The approach used to develop the inventory involved: (1) identifying the major anthropogenic sources of VOC emissions in the U.S. and grouping them into categories; (2) developing emission factors by dividing the U.S. emissions by the amount of production or consumption of the related commodity in the U.S.; (3) multiplying the U.S. emission factors by production/consumption statistics for other countries to yield global VOC emission estimates; and (4) geographically distributing the emissions.

  16. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  17. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  18. A global ocean inventory of anthropogenic mercury based on water column measurements.

    PubMed

    Lamborg, Carl H; Hammerschmidt, Chad R; Bowman, Katlin L; Swarr, Gretchen J; Munson, Kathleen M; Ohnemus, Daniel C; Lam, Phoebe J; Heimbürger, Lars-Eric; Rijkenberg, Micha J A; Saito, Mak A

    2014-08-07

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.

  19. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    SciTech Connect

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  20. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  1. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-02-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  2. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  3. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, L.

    2012-10-01

    This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. The technical mitigation potential is estimated at 195 Mt methane in 2030, whereof about 80 percent is found attainable at a marginal cost less than 20 Euro t-1 CO2eq when using a social planner cost perspective. With a private investor cost perspective, the corresponding fraction is only 30 percent. Major uncertainty sources in emission estimates are identified and discussed.

  4. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  5. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report

    SciTech Connect

    Joos, F.; Stocker, T.

    1996-11-01

    The major emphasis of our DOE funded research was to study the redistribution of anthropogenic carbon in the climate system and to constrain the global budgets of anthropogenic carbon and the carbon isotopes {sup 13}C and {sup 14}C for the historical period. We have continued the development of box models of the ocean carbon cycle (HILDA model) and the land biota. The coupled model (Bern model) was chosen as the reference model for scenario calculations and the calculations of global warming potential by the Intergovernmental Panel on Climate Change. These models were applied (1) to estimate the uptake of anthropogenic carbon by the ocean and the land biosphere for the last 200 years; (2) to investigate uncertainties in deconvolved fertilization fluxes into the land biota due to uncertainties in ice core CO{sub 2} data; (3) to study the relationship between future atmospheric CO{sub 2} levels and carbon emissions; (4) to investigate the budgets of bomb-produced radiocarbon and fossil {sup 13}C. We assessed the utility of bomb-produced and natural {sup 13}C observations to validate ocean models of anthropogenic CO{sub 2} uptake and tested the eddy diffusion parameterization of large-scale vertical transport in ocean box models. For this, vertical tracer transport in box-diffusion models and the 3-D ocean general circulation model from GFDL/Princeton was compared. We analyzed the distribution of the conservative property {Delta}C* to obtain a direct estimate based on marine measurements of the uptake of anthropogenic CO{sub 2} by the North Atlantic. We contribute to the missing sink debate by using atmospheric CO{sub 2} and {sup 13}C levels to disentangle the net carbon fluxes into the land biota and the ocean. A simplified representation for 4 different ocean models of anthropogenic CO{sub 2} uptake based on mixed-layer pulse response functions was developed.

  6. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  7. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  8. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.

  9. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-03

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13×10(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population.

  10. Using scaling fluctuation analysis to quantify anthropogenic changes in regional and global precipitation, including extremes

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    Anthropic precipitation changes affect the mean and the magnitude and frequency of extreme events, and therefore potentially have severe consequences in all aspects of human life. Unfortunately, - unlike the anthropic temperature changes - precipitation changes of anthropic origin have been proven difficult to establish with high statistical significance. For example, when changes have been established for individual precipitation products, the serious divergences found between products reflect our limited ability to estimate areal precipitation even at global scales. In addition to data issues, the usual approaches to assessing changes in precipitation also have methodological issues that hamper their identification. Here we discuss how the situation can be clarified by the systematic application of scaling fluctuation analysis - for example, to determine the scales at which the anthropogenic signal exceeds the natural variability noise (we find that it is roughly 20 years). Following a recent approach for estimating anthropogenic temperature changes we directly determine the effective sensitivity of the precipitation rate to a doubling of CO2. The novelty in this approach is that it takes CO2 as a surrogate for all anthropogenic forcings and estimates the trend based on the forcing rather than time - the usual approach. This leads both to an improved signal to noise ratio and, when compared to the usual estimates of trends, it augments their statistical significance; we further improve the signal to noise ratio by considering precipitation over the ocean where anthropogenic increases are strongest, finding that there are statistically significant trends at the 3 to 4 standard deviation level. This approach also permits the first direct estimate of the increases in global precipitation with temperature: we find 1.71±0.62 %/K which is close to that found by GCM's (2 - 3%/K) and is well below the value of ≈ 6 - 7%/K predicted on the basis of increases in humidity

  11. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.

    PubMed

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-02-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.

  12. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours

    PubMed Central

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-01-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746

  13. Assembling the Anthropocene: The global significance of anthropogenic sediment flux through the creation of artificial ground

    NASA Astrophysics Data System (ADS)

    Price, S.; Ford, J. R.; Waters, C. N.; Cooper, A. H.

    2012-12-01

    Deliberate, current and historical modification of the landscape and its subsurface by humans creates novel sediments and landforms in the form of artificial ground. The rate and magnitude of artificial ground created through the excavation, transport and deposition of mixtures of rock and soil has varied through time, but it is now significant on a global scale. It is estimated that the annual deliberate anthropogenic movement of rock and soil exceeds that of sediment transfer to the oceans by a factor of three (Douglas & Lawson 2001). In the UK alone, it is estimated that 66 530 M (Million) tonnes (ca. 40 km3) of material has been moved in response to mineral exploitation and processing over ca. 200 years (Price et al. 2011). This compares to an estimated global annual 57 000 M tonnes of material being moved deliberately by humans (Douglas & Lawson 2001). The scale of early mineral workings and land domestication for food production rapidly expanded as human population grew. Subsequent industrialisation, burning of fossil fuels and increased urbanisation in developed countries escalated the demand for diverse natural resources and the scale of land transformation. Mineral extraction and processing make up a significant proportion of the global anthropogenic sediment cycle. Mineral production offers a key indicator of the magnitude and rate of anthropogenic change and its impact on global sediment flux. Wastes from mineral production constitute 'hidden flows' when accounting for anthropogenic sediment flux (Douglas & Lawson 2001) but are often significant. The amount of waste produced during mineral exploitation often exceeds the amount of ore won by up to, and sometimes exceeding, a factor of 30. Using key commodity indicators, including coal and iron ore, distinct trends in the rates and volumes of mineral production are calculated and observed. The volume of production and associated hidden flows of anthropogenic sediments is observed to increase rapidly ca

  14. Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-10-01

    with observations. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide additional SOA, but does not however explain the concentrations or the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the studied period.

  15. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGES

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  16. A Global inventory of volatile organic compound emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Watson, Joel J.; Jones, Julian W.

    1992-06-01

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs. Consequently, a global inventory of anthropogenic VOC emissions has been developed. The inventory includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds which possess different chemical reactivities in the atmosphere. The technical approach used to develop this inventory involved four major steps. The first step was to identify the major anthropogenic sources of VOC emissions in the United States and to group these sources into 28 general source groups. Source groups were developed to represent general categories such as "sources associated with oil and natural gas production" and more specific categories such as savanna buming. Emission factors for these source groups were then developed using different techniques and data bases. For example, emission factors for oil and natural gas production were estimated by dividing the United States' emissions from oil and gas production operations by the amount of oil and natural gas produced in the United States. Multiplication of these emission factors by production/consumption statistics for other countries yielded global VOC emission estimates for specific source groups within those countries. The final step in development of the VOC inventory was to distribute emissions into 10° by 10° grid cells using detailed maps of population and industrial activity. The results of this study show total global anthropogenic VOC emissions of

  17. Global Anthropogenic CO2 Emissions Through Vegetation Clearance for Agriculture During the Last 6000 Years

    NASA Astrophysics Data System (ADS)

    Hickler, T.; Olofsson, J.; Miller, P. A.; Sykes, M. T.

    2008-12-01

    The mechanisms underlying the development of atmospheric CO2 over the Holocene and the potential role of anthropogenic greenhouse gas forcing in pre-industrial times are still highly debated. We developed a global gridded data set of human land use for the last 6000 years, including permanent and shifting cultivation. The data set was mainly based on archaeological evidence on the global distribution of different types of human societies (empires and agricultural groups), the HYDE data base of land use since 1700, global population estimates, and assumptions concerning cultivation area per person. A dynamic global vegetation model (LPJ) was run with and without human land-use, and the difference in terrestrial carbon storage was assumed to represent the total anthropogenic carbon release to the atmosphere. Modeled total carbon release during the industrial period (A.D. 1850-1990) was 148 gigatons of carbon (GtC), of which 33 GtC originated from non-permanent agriculture. For pre-industrial times (4000 B.C. - A.D. 1850), the net carbon release was 79 GtC from permanent agriculture and 35 GtC from non-permanent agriculture. Modeled carbon release between 4000 and 0 B.C. was considerably lower than would be required for a substantial influence on the climate system. However, the extent of vegetation clearing before the year 1700 is highly uncertain. We suggest that various lines of evidence, and pollen analyses in particular, should be explored in order to test the hypothesis that many areas that were forested at the beginning of the industrial revolution had been cleared earlier. Even though the carbon storage in vegetation might have been restored in such areas, soil carbon storage could have been negatively affected. In summary, our results suggest that a substantial early anthropogenic impact on atmospheric CO2 is unlikely, but important uncertainties remain. We are currently addressing some of the uncertainties through a sensitivity analyses of the modeling

  18. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Zhang, Yuqiang; Anenberg, Susan C.; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven; Skeie, Ragnhild; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, I. A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2013-09-01

    Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (-20 000 to 27 000) deaths yr-1 due to ozone and 2200 (-350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

  19. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.

    PubMed

    Liu, Gang; Müller, Daniel B

    2013-10-15

    Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation.

  20. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  1. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

    NASA Astrophysics Data System (ADS)

    Smith, Doug M.; Booth, Ben B. B.; Dunstone, Nick J.; Eade, Rosie; Hermanson, Leon; Jones, Gareth S.; Scaife, Adam A.; Sheen, Katy L.; Thompson, Vikki

    2016-10-01

    The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

  2. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  3. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-02

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity.

  4. Modeling anthropogenically-controled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-04-01

    A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10-11 cm3 molecule-1 s-1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10-12 cm3 molecule-1 s-1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple

  5. Anthropogenic impacts on the global water cycle - a multi model approach.

    NASA Astrophysics Data System (ADS)

    Ludwig, F.; haddeland, I.; Biemans, H.; Clark, D.; Fransen, W.; Voss, F.; Floerke, M.; Heinke, J.; Hagemann, S.; Hanasakki, N.; Gerten, D.; Kabat, P.

    2012-04-01

    Humans activities have a large impact on the global water cycle. Through the building of dams and irrigation schemes large amounts of water are diverted from river systems. Through the emission of greenhouse gases causing global warming, also the rainfall and evaporation patterns are changed across the globe. It is, however, still difficult to quantify current and future impacts on the global water cycle due to limited data availability, model imperfections and large uncertainties in climate change projections. To partly overcome these limitations we used a multi-model approach to study anthropogenic impacts on the global water cycle. Four different global hydrological models (H08, VIC, WaterGAP and LPJml) were forced with an historical climate dataset (Watch Forcing Data) and bias corrected output of three different global climate models (Echam, IPSL and CNRM) using two emission scenarios (A2 and B1). In addition the LPJml model was also run with two different land use change scenarios. Combining the water availability simulations with the water demand scenarios developed within the Watch project we also analyzed current and future water scarcity. The analyses show that current human impacts and on the water cycle are especially high in Central Asia, parts of Europe, the Southwestern US and the Murray-Darling Basin in Australia. The model comparison of agricultural water use and demand showed that the differences in total global agricultural demand and water use were relatively smaller than the differences in simulated water availability. All models showed agricultural water extractions are high in South and East Asia in particular in Northern India and Pakistan and in Northeast China. The most important spatial differences between the different models was observed for Northern China where H08 showed much higher water demands than VIC. Future analyses showed that climate change impacts on the global water cycle are potentially high especially in the semi

  6. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  7. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  8. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, Feng; Vavrus, Steve J.; Kutzbach, John E.; Ruddiman, William F.; Kaplan, Jed O.; Krumhardt, Kristen M.

    2014-01-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. (2011), we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4. We find that Holocene ALCC causes a global cooling of 0.17°C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, and radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9°C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73°C during the preindustrial era, which is comparable to the ~0.8°C warming during industrial times. On local to regional scales, such as parts of Europe, North America, and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect.

  9. The negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    NASA Astrophysics Data System (ADS)

    Cuevas, Carlos A.; Prados-Roman, Cristina; Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Saiz-Lopez, Alfonso

    2015-04-01

    Natural emissions of iodine compounds from the oceans efficiently destroy atmospheric ozone reducing its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased (40%) since 1850 as a result of human activities. In this work a chemistry-climate model is used to quantify the current ocean emissions of inorganic iodine and evaluate the impact that the anthropogenic increase of tropospheric ozone has had on the natural cycle of iodine in the marine environment since pre-industrial times. Our results indicate that the human driven enhancement of tropospheric ozone has doubled the oceanic inorganic iodine emissions following the reaction of ozone with iodide at the sea surface. The consequent build-up of atmospheric iodine, with maximum enhancements of up to 70% with respect to preindustrial times in continental pollution outflow regions, has in turn accelerated the ozone chemical loss over the oceans with strong spatial patterns. We suggest that this ocean-atmosphere interaction represents a negative geochemical feedback loop by which current ocean emissions of iodine act as a natural buffer for ozone pollution and its radiative forcing in the global marine environment. This feedback represents a potentially important link between climate change and tropospheric O3 since the oceanic emissions of iodine are not only linked to surface O3, but also to SST and wind speed and might also be linked to climatically driven changes in the state of the world oceans.

  10. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria

    2014-05-01

    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  11. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  12. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  13. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  14. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  15. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Knutti, R.

    2015-06-01

    Climate change includes not only changes in mean climate but also in weather extremes. For a few prominent heatwaves and heavy precipitation events a human contribution to their occurrence has been demonstrated. Here we apply a similar framework but estimate what fraction of all globally occurring heavy precipitation and hot extremes is attributable to warming. We show that at the present-day warming of 0.85 °C about 18% of the moderate daily precipitation extremes over land are attributable to the observed temperature increase since pre-industrial times, which in turn primarily results from human influence. For 2 °C of warming the fraction of precipitation extremes attributable to human influence rises to about 40%. Likewise, today about 75% of the moderate daily hot extremes over land are attributable to warming. It is the most rare and extreme events for which the largest fraction is anthropogenic, and that contribution increases nonlinearly with further warming. The approach introduced here is robust owing to its global perspective, less sensitive to model biases than alternative methods and informative for mitigation policy, and thereby complementary to single-event attribution. Combined with information on vulnerability and exposure, it serves as a scientific basis for assessment of global risk from extreme weather, the discussion of mitigation targets, and liability considerations.

  16. Global source-receptor relationships for mercury under present and year 2050 anthropogenic emissions scenarios

    NASA Astrophysics Data System (ADS)

    Corbitt, E. S.; Holmes, C.; Jacob, D. J.; Streets, D. G.; Selin, N. E.; Sorensen, A.; Sunderland, E. M.

    2009-12-01

    We use the GEOS-Chem global 3-D model for mercury, including dynamic coupling of the atmosphere with ocean and land reservoirs, to quantify continental and regional source-receptor relationships for mercury under present and future (2050) conditions. The model includes several recent developments such as oxidation of Hg(0) by Br atoms and improved representation of land-atmosphere exchange. Different SRES scenarios are considered for 2050 anthropogenic emissions, thus providing a range of future projections. We use a tagged tracer simulation to track atmospheric emissions of mercury from specific source regions including their cycling with the surface ocean and short-lived land reservoirs. We identify net source and receptor regions, distinguishing regions for which domestic emissions reductions would be most effective from others which receive deposition predominantly from the global atmospheric pool of mercury. The projected future increase in the contribution of Hg(II) to global mercury emissions results in a shift toward more regional source-receptor relationships.

  17. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    NASA Astrophysics Data System (ADS)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  18. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  19. Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2016-07-01

    Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems.

  20. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970-2012

    NASA Astrophysics Data System (ADS)

    Huang, Ganlin; Brook, Rosie; Crippa, Monica; Janssens-Maenhout, Greet; Schieberle, Christian; Dore, Chris; Guizzardi, Diego; Muntean, Marilena; Schaaf, Edwin; Friedrich, Rainer

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs) simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR) provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors), with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA). Global annual grid maps with a resolution of 0.1° × 0.1° for the period 1970-2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK) as examples.

  1. Identifying species at extinction risk using global models of anthropogenic impact.

    PubMed

    Peters, Howard; O'Leary, Bethan C; Hawkins, Julie P; Roberts, Callum M

    2015-02-01

    The International Union for Conservation of Nature Red List of Endangered Species employs a robust, standardized approach to assess extinction threat focussed on taxa approaching an end-point in population decline. Used alone, we argue this enforces a reactive approach to conservation. Species not assessed as threatened but which occur predominantly in areas with high levels of anthropogenic impact may require proactive conservation management to prevent loss. We matched distribution and bathymetric range data from the global Red List assessment of 632 species of marine cone snails with human impacts and projected ocean thermal stress and aragonite saturation (a proxy for ocean acidification). Our results show 67 species categorized as 'Least Concern' have 70% or more of their occupancy in places subject to high and very high levels of human impact with 18 highly restricted species (range <100 km(2)) living exclusively in such places. Using a range-rarity scoring method we identified where clusters of endemic species are subject to all three stressors: high human impact, declining aragonite saturation levels and elevated thermal stress. Our approach reinforces Red List threatened status, highlights candidate species for reassessment, contributes important evidential data to minimize data deficiency and identifies regions and species for proactive conservation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  3. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  4. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  5. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    NASA Astrophysics Data System (ADS)

    Klimont, Z.; Smith, S. J.; Cofala, J.

    2013-03-01

    The evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation. After increasing until about 2006, we estimate a declining trend continuing until 2011. However, there is strong spatial variability, with North America and Europe continuing to reduce emissions, with an increasing role of Asia and international shipping. China remains a key contributor, but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in a significant decline in emissions from the energy sector and stabilization of total Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following an international agreement to reduce the sulfur content of fuel oil. The estimated trends in global SO2 emissions are within the range of representative concentration pathway (RCP) projections and the uncertainty previously estimated for the year 2005.

  6. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    NASA Astrophysics Data System (ADS)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have

  7. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts.

    NASA Astrophysics Data System (ADS)

    Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.

    2016-02-01

    Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e

  8. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    PubMed Central

    Zhang, Yanxu; Jacob, Daniel J.; Horowitz, Hannah M.; Chen, Long; Amos, Helen M.; Krabbenhoft, David P.; Slemr, Franz; St. Louis, Vincent L.; Sunderland, Elsie M.

    2016-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  9. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

    PubMed

    Zhang, Yanxu; Jacob, Daniel J; Horowitz, Hannah M; Chen, Long; Amos, Helen M; Krabbenhoft, David P; Slemr, Franz; St Louis, Vincent L; Sunderland, Elsie M

    2016-01-19

    Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y(-1)). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  10. Natural and Anthropogenic Controls over Global Terrestrial N2O Emission Growth at a Century-Long Time Scale

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Kamaljit, K.; Zhang, B.

    2014-12-01

    The Atmospheric concentration of nitrous oxide (N2O) has increased by 20% relative to pre-industrial level. It has attracted growing attention since N2O has long life time and radiative forcing 265 times higher than CO2 at 100-year time horizon. Global N2O emission from terrestrial ecosystem is among the most important contributors to the increase of atmospheric N2O. However, compared to CO2- and CH4-related research, less intensive studies have been performed in assessing the spatiotemporal patterns of terrestrial N2O emission and attributing its changes to both natural and anthropogenic disturbances across the globe. Here we integrated gridded time-series data of climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) to a process-based land ecosystem model, DLEM, for answering the above questions. During 1900-2010, the inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes have been examined. Through this, we distinguished and quantified the relative contributions of changes in climate, atmospheric composition, and human activities to N2O emission growth at biome-, latitudinal, continental and global scales. The impacts of climate variability, and increasing nitrogen input, particularly nitrogen fertilizer use along with enhanced food production, have been paid special attention. Hot spots and hot time periods of global N2O emission are identified in this study. It provides clue for scientific community and policy makers to develop potential management strategies for mitigating atmospheric N2O increase and climate warming.

  11. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  12. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  13. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  14. Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution

    NASA Astrophysics Data System (ADS)

    Sahagian, Dork

    2000-07-01

    Human influence on the Earth System and hydrologic cycle has reached the point where it affects the hydrologic balance between ocean and continental storage reservoirs. The anthropogenic redistribution of water mass at a planetary scale even has an effect on Earth rotation parameters. Land use changes associated with expanding agriculture to support an increasing human population have already had a profound influence on basin-scale hydrology, and in extreme cases, on regional climate. Major human activities which lead to hydrologic alterations include irrigation (from ground water mining and surface water diversion), deforestation, wetland filling or drainage, and new dam construction. With the exception of the latter, these all contribute to the transfer of water from the continents to the ocean and a reduction of continental water resources. However, water impoundment behind dams may partially or completely counteract the cumulative effect of the others. Present compilations of reservoirs impounded by dams include only the results of major engineering projects. Smaller impoundments have largely been ignored. The cumulative volume of the literally millions of small reservoirs such as farm ponds and rice paddies may approach that of the larger documented reservoirs. Unfortunately it is not practical to make a global inventory of millions of small and unregistered reservoirs, so their volume may never be known precisely. The quantity of water stored in artifically raised water tables behind dams has also not yet been addressed. The issue of water impoundment or release from continental drainage basins affects global sea level. Recent estimates based solely on major dammed reservoirs suggest that if new dam construction is not maintained at the rates of the 1960s through 1980s, the rate of sea level rise could increase by about half a millimeter per year. If small impoundments are taken into account, this figure could be much greater.

  15. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  16. 1-km Global Anthropogenic Heat Flux Database for Urban Climate Studies

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2016-12-01

    Among various factors contributing to warming in cities, anthropogenic heat emission (AHE), defined by heat fluxes arising from human consumption of energy, has the most obvious influence. Despite this, estimation of the AHE distribution is challenging and assumed almost uniform in investigations of the regional atmospheric environment. In this study, we introduce a top-down method for estimating a global distribution of AHE (see attachment), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 hour. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector: heat loss, heat emissions from industrial-related sectors and heat emissions from commercial, residential and transport sectors (CRT). The first and second components were equally distributed throughout the country and populated areas, respectively. Bulk AHE from the CRT was proportionally distributed using a global population dataset with a nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on monthly temperatures was derived from various city measurements. Finally, a global AHE database was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that a problem of AHE underestimation at central urban areas existing in previous top-down models was significantly mitigated by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of our current methodology. Investigations of AHE in the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%, whereas the share of metabolic heating varied closely depending on the level of economic development in the city. Incorporation of our proposed AHE data

  17. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution.

    PubMed

    Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M; West, J Jason

    2016-11-01

    Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual

  18. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    ERIC Educational Resources Information Center

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  19. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    PubMed

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  20. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  1. Weekly cycles of global fires—Associations with religion, wealth and culture, and insights into anthropogenic influences on global climate

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian; Tapper, Nigel

    2015-11-01

    One approach to quantifying anthropogenic influences on the environment and the consequences of those is to examine weekly cycles (WCs). No long-term natural process occurs on a WC so any such signal can be considered anthropogenic. There is much ongoing scientific debate as to whether regional-scale WCs exist above the statistical noise level, with most significant studies claiming that anthropogenic aerosols and their interaction with solar radiation and clouds (direct/indirect effect) is the controlling factor. A major source of anthropogenic aerosol, underrepresented in the literature, is active fire (AF) from anthropogenic burning for land clearance/management. WCs in AF have not been analyzed heretofore, and these can provide a mechanism for observed regional-scale WCs in several meteorological variables. We show that WCs in AFs are highly pronounced for many parts of the world, strongly influenced by the working week and particularly the day(s) of rest, associated with religious practices.

  2. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  3. Polychaete Richness and Abundance Enhanced in Anthropogenically Modified Estuaries Despite High Concentrations of Toxic Contaminants

    PubMed Central

    Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic

  4. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    PubMed

    Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.

  5. An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling

    PubMed Central

    Anenberg, Susan C.; Horowitz, Larry W.; Tong, Daniel Q.; West, J. Jason

    2010-01-01

    Background Ground-level concentrations of ozone (O3) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] have increased since preindustrial times in urban and rural regions and are associated with cardiovascular and respiratory mortality. Objectives We estimated the global burden of mortality due to O3 and PM2.5 from anthropogenic emissions using global atmospheric chemical transport model simulations of preindustrial and present-day (2000) concentrations to derive exposure estimates. Methods Attributable mortalities were estimated using health impact functions based on long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. Using simulated concentrations rather than previous methods based on measurements allows the inclusion of rural areas where measurements are often unavailable and avoids making assumptions for background air pollution. Results Anthropogenic O3 was associated with an estimated 0.7 ± 0.3 million respiratory mortalities (6.3 ± 3.0 million years of life lost) annually. Anthropogenic PM2.5 was associated with 3.5 ± 0.9 million cardiopulmonary and 220,000 ± 80,000 lung cancer mortalities (30 ± 7.6 million years of life lost) annually. Mortality estimates were reduced approximately 30% when we assumed low-concentration thresholds of 33.3 ppb for O3 and 5.8 μg/m3 for PM2.5. These estimates were sensitive to concentration thresholds and concentration–mortality relationships, often by > 50%. Conclusions Anthropogenic O3 and PM2.5 contribute substantially to global premature mortality. PM2.5 mortality estimates are about 50% higher than previous measurement-based estimates based on common assumptions, mainly because of methodologic differences. Specifically, we included rural populations, suggesting higher estimates; however, the coarse resolution of the global atmospheric model may underestimate urban PM2.5 exposures. PMID:20382579

  6. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    PubMed

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  7. Using Scaling to Understand, Model and Predict Global Scale Anthropogenic and Natural Climate Change

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; del Rio Amador, L.

    2014-12-01

    The atmosphere is variable over twenty orders of magnitude in time (≈10-3 to 1017 s) and almost all of the variance is in the spectral "background" which we show can be divided into five scaling regimes: weather, macroweather, climate, macroclimate and megaclimate. We illustrate this with instrumental and paleo data. Based the signs of the fluctuation exponent H, we argue that while the weather is "what you get" (H>0: fluctuations increasing with scale), that it is macroweather (H<0: fluctuations decreasing with scale) - not climate - "that you expect". The conventional framework that treats the background as close to white noise and focuses on quasi-periodic variability assumes a spectrum that is in error by a factor of a quadrillion (≈ 1015). Using this scaling framework, we can quantify the natural variability, distinguish it from anthropogenic variability, test various statistical hypotheses and make stochastic climate forecasts. For example, we estimate the probability that the warming is simply a giant century long natural fluctuation is less than 1%, most likely less than 0.1% and estimate return periods for natural warming events of different strengths and durations, including the slow down ("pause") in the warming since 1998. The return period for the pause was found to be 20-50 years i.e. not very unusual; however it immediately follows a 6 year "pre-pause" warming event of almost the same magnitude with a similar return period (30 - 40 years). To improve on these unconditional estimates, we can use scaling models to exploit the long range memory of the climate process to make accurate stochastic forecasts of the climate including the pause. We illustrate stochastic forecasts on monthly and annual scale series of global and northern hemisphere surface temperatures. We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow: for example, using hindcasts we find that at 10 year forecast horizons we can still explain

  8. Why do anthropogenic global warming skeptics have poorer scientific credentials than their opponents?

    NASA Astrophysics Data System (ADS)

    Rogers, N. L.

    2010-12-01

    A paper published in PNAS (1) analyzed the scientific credentials of two groups of activist scientists. The unconvinced by the evidence group included ~500 scientists and technologists who signed various public documents protesting against various aspects of programs to prevent or mitigate anthropogenic global warming. The convinced by the evidence group (~1200 persons) signed public appeals to implement programs to prevent or mitigate AGW. Scientific credentials were measured by publications and citations. The unspoken message of the paper is that we should have confidence in the canonical program of climate change as outlined by, for example, the IPCC, because those who support the program have better scientific credentials than those that don’t. One of the authors of the paper, James Prall, made available on his website lists of several thousand persons, mostly scientists and technologists, who are in one group or the other. The lists include considerable detail, such as publications, citations and education that relates to scientific qualifications. Using Prall’s lists and relevant anecdotal statements by prominent advocates on both sides of the issue I suggest an alternate reason for the disparity in scientific credentials. The PNAS paper in testing scientific credentials counted the number of publications and citations in the area of climate science. There is a certain circularity in using such a test because persons who are professionally employed as climate scientists will naturally have many publications and citations - that is their professional goal. Professional employment in climate science implies adherence to group standards and to some extent beliefs. To give an analogy, if you are a professional freudian psychoanalyst you can’t say that Freud is a crackpot and retain your professional standing. I’m not saying that climate scientists are crackpots, but that there is surely some sort of shared belief and value system whether or not it is

  9. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  10. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  11. Anthropogenic soil erosion over the Holocene: Application of a new dynamic soils module for global vegetation models

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.; Vanwalleghem, T.

    2012-04-01

    Over the course of the Holocene, anthropogenic activities have transformed the surface of the Earth. In no way has human impact been more important or longer lasting than the transformation of soils, where erosion and sediment transport over the past 10,000 years have led to irreversible changes in landscapes. Soil erosion also affected global carbon and nutrient cycles, and could have amplified or attenuated ongoing changes in the Earth's climate. To quantify the role of anthropogenically induced soil development and erosion in the Earth system, we developed a new module of global soil dynamics: soil formation, erosion, and sediment transport, that is suitable for global application at 0.5° resolution. We incorporated this soil module into the LPJ-DGVM and performed a series of simulations to quantify the spatial and temporal pattern of global soil change over the Holocene. The soil formation module models bedrock-to-soil conversion rates as exponentially decreasing with soil depth. Parameters for soil formation in different geological units were extracted from a review of existing literature. Our global soil erosion formulation is based on the Revised Universal Soil Loss Equation (RUSLE), but importantly accounts for sediment deposition and the net export of sediment out of a relatively large and geomorphologically heterogeneous gridcell. Our new module was developed by running the detailed soil erosion-deposition model WaTEM/SEDEM at 3 arc-second resolution to derive generalized topographical scaling relations that accurately represent hillslope length, slope gradient and sediment delivery ratio. We show that, at large spatial scale, sediment delivery ratio and the area affected by sediment deposition can be easily estimated from topographical parameters such as mean LS factor and wetness index. We include the feedback between soil formation and soil erosion by adjusting the soil erosion rates for soil depth and stoniness. The results of our Holocene

  12. Global All-sky Shortwave Direct Radiative Forcing of Anthropogenic Aerosols from Combined Satellite Observations and GOCART Simulations

    NASA Astrophysics Data System (ADS)

    Su, W.; Loeb, N. G.; Schuster, G. L.; Chin, M.; Rose, F. G.

    2013-05-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon MODIS and MATCH assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the GOCART model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF), by assuming that the anthropogenic fractions from GOCART are representative. The global (60oN ˜60oS) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the TOA, 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo, and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF

  13. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.; Chin, Mian; Rose, Fred G.

    2013-01-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60°N~60°S) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the top of the atmosphere (TOA), 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are

  14. What Is an Ideal Critical Thinker Expected to Conclude about Anthropogenic Global Warming?

    ERIC Educational Resources Information Center

    Guzzo, Guilherme Brambatti; Dall'Alba, Gabriel

    2017-01-01

    Critical thinking involves the ability to properly assess statements and actions, and it also requires a permanent disposition to appropriately use cognitive skills in the evaluation of any claim. In the present paper, we discuss the characteristics of an ideal critical thinker, and apply them to a contemporary problem, namely anthropogenic global…

  15. Going Global: Utilizing Instructional Geocaching to Enhance Students' Global Competency

    ERIC Educational Resources Information Center

    Szolosi, Andrew

    2012-01-01

    Within contemporary society, technology has taken on an integral role in the way we come to know and understand the world. In recognition of that reality, an increasing number of educators have begun to utilize an emerging technology resource, GPS devices, and a GPS-based activity, geocaching, to help enhance students' global competency. The…

  16. Going Global: Utilizing Instructional Geocaching to Enhance Students' Global Competency

    ERIC Educational Resources Information Center

    Szolosi, Andrew

    2012-01-01

    Within contemporary society, technology has taken on an integral role in the way we come to know and understand the world. In recognition of that reality, an increasing number of educators have begun to utilize an emerging technology resource, GPS devices, and a GPS-based activity, geocaching, to help enhance students' global competency. The…

  17. Regional contributions to global climate change in present and future from anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Reick, C.; Raddatz, T.; Caldeira, K.; Claussen, M.

    2009-12-01

    How can historical CO2 emissions be taken into account when determining a country's responsibility for increased present-day atmospheric CO2 concentrations and radiative forcing? For emissions arising from anthropogenic land cover change (ALCC) the question is further complicated by the millennium-scale history that needs to be considered. Moreover, the positive radiative forcing (RF) caused by CO2 emissions is often counteracted by changes of the physical properties of the land surface. In this study, we simulate the overall RF from historical ALCC in each region of the world, including different accounting methods for past emissions. Conclusions are drawn for the effectiveness of reversing past ALCC for climate change mitigation. We perform transient simulations over the last millennium using ECHAM5/MPI-OM, a comprehensive Earth system model that includes the closed, interactive carbon cycle. Applying a detailed reconstruction of past ALCC as only forcing, we simulate the evolution of atmospheric CO2 since AD 800. The contribution of each region to the CO2 increase is then quantified in two ways: (a) using the time integral over the historical ALCC emissions, and (b) taking into account the larger uptake by land and ocean of earlier emissions, by weighting the emissions according to their occurrence in time with an exponential response function fitted to our model. The contribution to the atmospheric CO2 increase that is simulated for regions with substantial historical emissions is over- or underestimated on average by about 25% if no weighting is performed, but may be overestimated by up to 100% for parts of Europe. This emphasizes the relevance of accounting for the historical evolution of regional emissions and global carbon sinks over a millennium timescale to determine a country's contribution to present-day CO2 increase by ALCC. We then determine the strength of ALCC effects counteracting the positive RF of CO2 emissions. Comparing CO2 RF to RF from

  18. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

    PubMed

    Aronson, Myla F J; La Sorte, Frank A; Nilon, Charles H; Katti, Madhusudan; Goddard, Mark A; Lepczyk, Christopher A; Warren, Paige S; Williams, Nicholas S G; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; Macgregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pysek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-04-07

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.

  19. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers

    PubMed Central

    Aronson, Myla F. J.; La Sorte, Frank A.; Nilon, Charles H.; Katti, Madhusudan; Goddard, Mark A.; Lepczyk, Christopher A.; Warren, Paige S.; Williams, Nicholas S. G.; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; MacGregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pyšek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-01-01

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education. PMID:24523278

  20. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  1. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  2. Ocean N2O Emissions : Recent Global Estimates and Anthropogenically Influenced Changes

    NASA Astrophysics Data System (ADS)

    Suntharalingam, P.; Buithenuis, E.; Andrews, O.; Le Quere, C.

    2016-12-01

    Oceanic N2O is produced by microbial activity during organic matter cycling in the subsurface ocean; its production mechanisms display sensitivity to ambient oxygen level. In the oxic ocean, N2O is produced as a byproduct during the oxidation of ammonia to nitrate, mediated by ammonia oxidizing bacteria and archea. N2O is also produced and consumed in sub-oxic and anoxic waters through the action of marine denitrifiers during the multi-step reduction of nitrate to gaseous nitrogen. The oceanic N2O distribution therefore displays significant heterogeneity with background levels of 10-20 nmol/l in the well-oxygenated ocean basins, high concentrations (> 40 nmol/l) in hypoxic waters, and N2O depletion in the core of ocean oxygen minimum zones (OMZs). Oceanic N2O emissions are estimated to account for up to a third of the pre-industrial N2O fluxes to the atmosphere, however the natural cycle of ocean N2O has been perturbed in recent decades by inputs of anthropogenically derived nutrient, and by the impacts of climate change. Anthropogenic nitrogen inputs (e.g., NOx and NHy from fossil fuel combustion and agricultural fertilizer) enter the ocean via atmospheric deposition and riverine fluxes, influencing oceanic N2O production via their impact on the marine organic matter cycle. In addition, climate variations associated with surface ocean warming affect oceanic circulation and nutrient transport pathways, influencing marine productivity and the ventilation of oxygen minimum zones. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate could lead to significant changes in N2O production and fluxes from these regions. We will summarise the current state of knowledge on the ocean N2O budget and net flux to the atmosphere. Recently reported estimates have been based on (i) empirical relationships derived from ocean tracer data (e.g., involving excess N2O and Apparent Oxygen Utilization (AOU) correlations), (ii) ocean biogeochemical

  3. Contributions to Pliocene Arctic warmth from removal of anthropogenic aerosol and enhanced forest fire emissions

    NASA Astrophysics Data System (ADS)

    Feng, R.; Otto-Bliesner, B. L.; Fletcher, T.; Ballantyne, A.; Brady, E. C.

    2016-12-01

    Changing atmosphere chemistry in the past has been hypothesized to have altered the earth's radiation budget, and hence the climate. Here, we use an advanced climate model to test whether this hypothesis can help explain the amplified warming in the northern high latitudes during the mid-Pliocene warm period (mPWP, 3.0 - 3.3 Ma). The amplified warming, suggested by terrestrial proxy records of northern high latitudes, is underestimated in previous climate simulations. This mismatch between observations and models may be partially due to proxy uncertainties, but also to insufficient model sensitivity, or incomplete knowledge of mPWP climate forcings. To explore the latter aspect, we conducted three coupled simulations using the same mPWP geography and topography, vegetation and CO2 level according to the PRISM3 reconstructions, but alternating emission scenarios among clean, polluted, and clean plus forest fire case. In the clean and polluted case, year-1850 emission and year-1850 natural plus year-2000 industrial emission are prescribed respectively. For the clean-plus-forest fire simulation, emissions from mPWP forest fire are constrained with a process-based prognostic fire model using fixed proxy SSTs. Preliminary results suggest that mPWP Arctic warmth is largely attributable to the removal of anthropogenic aerosols and enhanced deposition of the black carbon on snow and ice emitted from northern high latitude forest fires. Cloud radiative responses are shown to accelerate the summer sea ice melting from the continental margins, triggering the positive surface albedo and water vapor feedback that maintain a low perennial sea ice state in the Arctic Ocean. These results identify the important role that changes in aerosol chemistry may play in amplifying arctic surface temperatures of mPWP and insights on the role that aerosols may play in amplifying future Arctic temperatures.

  4. Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    PubMed

    Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco

    2017-03-01

    The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the

  5. Can Granger causality delineate natural versus anthropogenic drivers of climate change from global-average multivariate time series?

    NASA Astrophysics Data System (ADS)

    Kodra, E. A.; Chatterjee, S.; Ganguly, A. R.

    2009-12-01

    The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) notes with a high degree of certainty that global warming can be attributed to anthropogenic emissions. Detection and attribution studies, which attempt to delineate human influences on regional- and decadal-scale climate change or its impacts, use a variety of techniques, including Granger causality. Recently, Granger causality was used as a tool for detection and attribution in climate based on a spatio-temporal data mining approach. However, the degree to which Granger causality may be able to delineate natural versus anthropogenic drivers of change in these situations needs to be thoroughly investigated. As a first step, we use multivariate global-average time series of observations to test the performance of Granger causality. We apply the popular Granger F-tests to Radiative Forcing (RF), which is a transformation of carbon dioxide (CO2), and Global land surface Temperature anomalies (GT). Our preliminary results with observations appear to suggest that RF Granger-causes GT, which seem to become more apparent with more data. However, carefully designed simulations indicate that these results are not reliable and may, in fact, be misleading. On the other hand, the same observation- and simulation-driven methodologies, when applied to the El Niño Southern Oscillation (ENSO) index, clearly show reliable Granger-causality from ENSO to GT. We develop and test several hypotheses to explain why the Granger causality tests between RF and GT are not reliable. We conclude that the form of Granger causality used in this study, and in past studies reported in the literature, is sensitive to data availability, random variability, and especially whether the variables arise from a deterministic or stochastic process. Simulations indicate that Granger causality in this form performs poorly, even in simple linear effect cases, when applied to one deterministic and one stochastic time

  6. Impact of anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon system

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyan; Wang, Zhili; Zhang, Hua

    2017-01-01

    The impact of the total effects due to anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon (EASM) system is studied using an aerosol-climate online model BCC_AGCM2.0.1_CUACE/Aero. The results show that the summer mean net all-sky shortwave fluxes averaged over East Asian monsoon region (EAMR) at the top of the atmosphere (TOA) and surface reduce by 4.8 and 5.0 W m- 2, respectively, due to the increases of global aerosol emissions in 2000 relative to 1850. Changes in radiations and their resulting changes in heat and water transport and cloud fraction contribute together to the surface cooling over EAMR in summer. The increases in global anthropogenic aerosols lead to a decrease of 2.1 K in summer mean surface temperature and an increase of 0.4 hPa in summer mean surface pressure averaged over EAMR, respectively. It is shown that the changes in surface temperature and pressure are significantly larger over land than ocean, thus decreasing the contrast of land-sea surface temperature and pressure. This results in the marked anomalies of north and northeast winds over eastern and southern China and the surrounding oceans in summer, thereby weakening the EASM. The summer mean precipitation averaged over the EAMR reduces by 12%. The changes in non-East Asian aerosol emissions play a more important role in inducing the changes of local temperature and pressure, and thus significantly exacerbate the weakness of the EASM circulation due to local aerosol changes. The weakening of circulation due to both is comparable, and even the effect of non-local aerosols is larger in individual regions. The changes of local and non-local aerosols contribute comparably to the reductions in precipitation over oceans, whereas cause opposite changes over eastern China. Our results highlight the importance of aerosol changes outside East Asia in the impact of the changes of anthropogenic aerosols on EASM.

  7. Draft Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030

    EPA Pesticide Factsheets

    View draft report and appendices providing historical and projected estimates of global non-CO2 GHG emissions for 1990 to 2030 from sources in the energy, industrial processes, waste, and agriculture sectors.

  8. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  9. Anthropogenic Water Augmentation in Major American River Basins through Cloud Seeding to Enhance Snowpack

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.

    2009-04-01

    Recent rapid depletions of glaciers and intense droughts throughout the world have created a need to reexamine modern water augmentation technologies for enhancing snowpack in mountainous regions. Today's reliance on clean efficient hydroelectric power in the Alps from France to Hungary poses a critical need for sustainable snow packs and high elevation water supplies through out the year. Hence, the need to make natural cloud systems more efficient precipitators during the cold season through anthropogenic weather modification techniques. The Bureau of Reclamation, US Department of the Interior, has spent over 39M in research from 1963 to 1990 to develop the scientific basis for snowpack augmentation in the headwaters of the Colorado, American, and Columbia River Basins in the western United States, and through USAID in Morocco. This paper presents a brief summary of the research findings and shows that even during drought conditions potential exists for significant, cost-effective enhancement of water supplies. Examples of ground based propane and AgI seeding generators, cloud physics studies of supercooled cloud droplets and ice crystal characteristics that indicate seeding potential will be shown. Hypothetical analyses of seeding potential in 17 western states from Montana to California will be presented based on observed SNOTEL snow water equivalent measurements, elevation and observed winter precipitation. Early studies indicated from 5 to 20% increases in snow pack were possible, if winter storm systems were seeded effectively. If this potential was realized in drought conditions observed in 2003, over 1.08 million acre feet (1.33 x 10x9 m3) of additional water could be captured by seeding efficiently and effectively in just 10 storms. Results from recent projects sponsored by the National Science Foundation, NOAA, and the States of Wyoming, Utah and Nevada, and conducted by the National Center for Atmospheric Research will be discussed briefly. Examples of

  10. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  11. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  12. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  13. Global warming is driven by anthropogenic emissions: a time series analysis approach.

    PubMed

    Verdes, Pablo F

    2007-07-27

    The solar influence on global climate is nonstationary. Processes such as the Schwabe and Gleissberg cycles of the Sun, or the many intrinsic atmospheric oscillation modes, yield a complex pattern of interaction with multiple time scales. In addition, emissions of greenhouse gases, aerosols, or volcanic dust perturb the dynamics of this coupled system to different and still uncertain extents. Here we show, using two independent driving force reconstruction techniques, that the combined effect of greenhouse gases and aerosol emissions has been the main external driver of global climate during the past decades.

  14. Determination of stratospheric and anthropogenic contributions to enhanced mid-tropospheric O3 in the tropical western Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, D. C.; Nicely, J. M.; Salawitch, R. J.; Dickerson, R. R.; Canty, T. P.; Hanisco, T. F.; Wolfe, G. M., Jr.; Apel, E. C.; Atlas, E. L.; Campos, T. L.; Hornbrook, R. S.; Kinnison, D. E.; Pan, L.; Randel, W. J.; Riemer, D. D.; Weinheimer, A. J.

    2014-12-01

    Tropospheric O3, an important greenhouse gas, is produced both from anthropogenic precursors and transport from the stratosphere. Previous O3 and water vapor observations in the remote tropical Pacific have shown strongly anti-correlated filaments of high O3 and reduced H2O in the mid-troposphere. These filaments were a pervasive feature seen throughout the troposphere during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign. While it has been proposed, based on analysis of prior observations, that these filaments result from stratospheric intrusion, lack of concomitant measurement of atmospheric tracers has limited the ability to quantitatively assess the relative roles of pollution and stratospheric intrusions. In addition to O3, H2O, and CO, tracers for biomass burning, fossil fuel emissions, and the stratosphere were also measured during CONTRAST. Preliminary correlation analysis shows not only frequent anti-correlation between O3 and water vapor in the filaments but also correlation between O3 and CO as well as other anthropogenic and pyrogenic tracers. The filaments appear to be a complex mixture of air parcels from different origins. Analysis of these observations, along with results from global chemistry models and back trajectories, will be discussed, focusing on anthropogenic and stratospheric contributions to tropospheric O3.

  15. Global Genetic Differentiation in a Cosmopolitan Pest of Stored Beans: Effects of Geography, Host-Plant Usage and Anthropogenic Factors

    PubMed Central

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  16. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    PubMed

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  17. Global and Regional Surface Albedo Changes due to Land Use Transformation: an Anthropogenic Source for Climate Change

    NASA Astrophysics Data System (ADS)

    Monier, E.; Wharton, S.; Laabs, B.; Reck, R.

    2005-12-01

    For the past decades, cropland area has been slowly increasing while forests and woodlands diminished, leading to consequent changes in land use resulting from human behavior. Besides, desertification directly affects millions of people around the world and not a single year goes by without new reports of ice melting. More than being an economic issue, land use transformation can prove to have altered the energy balance, and therefore the climate, through surface albedo changes over the past decades. Each land category has its own surface albedo, defined as its solar back scatter and being only a function of the radiation field incident on it and the properties of the land category itself. Using a global surface albedo model (Hummel and Reck, 1979), involving 49 different types of surfaces for each quarter of the year, January-March, April-June, July-September and October-December, surface albedo maps are computed from land usage maps for the 1970s and 1990s. Regional changes in the surface albedo can cause variation in the energy budget of the earth-atmosphere system, specifically in the tropospheric distribution of temperature, and therefore can be an anthropogenic source for climate change at a global scale. Many feedbacks and teleconnections can be found between surface albedo, cloud coverage and CO2 fluxes leading to a potentially unstable energy budget system. In order to fully comprehend climate change, a extensive review on that system and its foundations is expected to be released in 2006.

  18. Global albedo change and radiative cooling from anthropogenic land-cover change, 1700 to 2005 based on MODIS, land-use harmonization and radiative kernels

    USDA-ARS?s Scientific Manuscript database

    Widespread anthropogenic land-cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion have been partially offset if not outweigh...

  19. Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data

    NASA Astrophysics Data System (ADS)

    McKitrick, Ross R.; Michaels, Patrick J.

    2007-12-01

    Local land surface modification and variations in data quality affect temperature trends in surface-measured data. Such effects are considered extraneous for the purpose of measuring climate change, and providers of climate data must develop adjustments to filter them out. If done correctly, temperature trends in climate data should be uncorrelated with socioeconomic variables that determine these extraneous factors. This hypothesis can be tested, which is the main aim of this paper. Using a new database for all available land-based grid cells around the world we test the null hypothesis that the spatial pattern of temperature trends in a widely used gridded climate data set is independent of socioeconomic determinants of surface processes and data inhomogeneities. The hypothesis is strongly rejected (P = 7.1 × 10-14), indicating that extraneous (nonclimatic) signals contaminate gridded climate data. The patterns of contamination are detectable in both rich and poor countries and are relatively stronger in countries where real income is growing. We apply a battery of model specification tests to rule out spurious correlations and endogeneity bias. We conclude that the data contamination likely leads to an overstatement of actual trends over land. Using the regression model to filter the extraneous, nonclimatic effects reduces the estimated 1980-2002 global average temperature trend over land by about half.

  20. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination.

    PubMed

    Chen, Cynthia; Sedwick, Peter N; Sharma, Mukul

    2009-05-12

    Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.

  1. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination

    PubMed Central

    Chen, Cynthia; Sedwick, Peter N.; Sharma, Mukul

    2009-01-01

    Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 × 10−15 g g−1 (5.3 × 10−14 mol kg−1). The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈1.3) and mantle/cosmic dust (≈0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (≈0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower 187Os/188Os ratio (≈0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts. PMID:19416862

  2. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000

    USGS Publications Warehouse

    Milliman, John D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C.

    2008-01-01

    During the last half of the 20th century, cumulative annual discharge from 137 representative rivers (watershed areas ranging from 0.3 to 6300 ?? 103??km2) to the global ocean remained constant, although annual discharge from about one-third of these rivers changed by more than 30%. Discharge trends for many rivers reflected mostly changes in precipitation, primarily in response to short- and longer-term atmospheric-oceanic signals; with the notable exception of the Parana, Mississippi, Niger and Cunene rivers, few of these "normal" rivers experienced significant changes in either discharge or precipitation. Cumulative discharge from many mid-latitude rivers, in contrast, decreased by 60%, reflecting in large part impacts due to damming, irrigation and interbasin water transfers. A number of high-latitude and high-altitude rivers experienced increased discharge despite generally declining precipitation. Poorly constrained meteorological and hydrological data do not seem to explain fully these "excess" rivers; changed seasonality in discharge, decreased storage and/or decreased evapotranspiration also may play important roles. ?? 2008 Elsevier B.V. All rights reserved.

  3. Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Tolson, R. H.; Bradford, M. S.

    2000-05-01

    A study was performed of the long-term orbital decay of five Earth satellites with perigee altitudes averaging near 350km. To decouple long-term trend measurements from the effects of solar variability, measurements were evaluated during the years of solar minimum (1976, 1986 and 1996). Atmospheric densities derived from these essentially global measurements showed substantial evidence of a decline averaging 9.8 ± 2.5% in thermospheric density over 20 years pointing toward a long-term cooling of the upper atmosphere. Increases in greenhouse gases induced by human activity are hypothesized to warm the Earth's surface and lower atmosphere, but strongly cool the upper atmosphere. Assuming that the 10% increase in CO2 over these 20 years caused cooling resulting in the 10% decline in density, a doubling of CO2 could cause the thermospheric densities measured near 350km to decrease by a factor of 3. This decrease may shrink the altitude of a constant density surface by 40km before the end of the 21st century.

  4. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development

  5. The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.

    2014-12-01

    The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the

  6. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  7. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  8. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  9. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2017-07-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  10. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2016-09-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  11. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.

    PubMed

    Raymond, Peter A; Oh, Neung-Hwan; Turner, R Eugene; Broussard, Whitney

    2008-01-24

    The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs. For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers. Here we introduce an unprecedented high-temporal-resolution, 100-year data set from the Mississippi River and couple it with sub-watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years (ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.

  12. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more

  13. Enhancing Student Collaboration in Global Virtual Teams

    ERIC Educational Resources Information Center

    Kohut, Gary F.

    2012-01-01

    With the growth in the global economy and the rapid development of communication and information technologies, global virtual teams are quickly becoming the norm in the workplace. Research indicates, however, that many students have little or no experience working in such teams. Students who learn through these experiences benefit from higher task…

  14. Enhancing Global Understanding: A Call for Cooperation.

    ERIC Educational Resources Information Center

    Naylor, David T.

    Social studies education will improve if educators favoring global education and law-related education replace counterproductive competition with mutual respect and cooperation. As two of the many curricular approaches clamoring for a just share of elementary and secondary school social studies programs, global education and law-related education…

  15. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  16. Concordant genetic estimators of migration reveal anthropogenically enhanced source-sink population structure in the river sculpin, Cottus gobio.

    PubMed

    Hänfling, B; Weetman, D

    2006-07-01

    River systems are vulnerable to natural and anthropogenic habitat fragmentation and will often harbor populations deviating markedly from simplified theoretical models. We investigated fine-scale population structure in the sedentary river fish Cottus gobio using microsatellites and compared migration estimates from three FST estimators, a coalescent maximum-likelihood method and Bayesian recent migration analyses. Source-sink structure was evident via asymmetry in migration and genetic diversity with smaller upstream locations emigration biased and larger downstream subpopulations immigration biased. Patterns of isolation by distance suggested that the system was largely, but not entirely, in migration-drift equilibrium, with headwater populations harboring a signal of past colonizations and in some cases also recent population bottlenecks. Up- vs. downstream asymmetry in population structure was partly attributable to the effects of flow direction, but was enhanced by weirs prohibiting compensatory upstream migration. Estimators of migration showed strong correspondence, at least in relative terms, especially if pairwise FST was used as an indirect index of relative gene flow rather than being translated to Nm. Since true parameter values are unknown in natural systems, comparisons among estimators are important, both to determine confidence in estimates of migration and to validate the performance of different methods.

  17. Global Investing: Diversification Enhances Return and Controls Risk.

    ERIC Educational Resources Information Center

    Morrell, Louis R.

    1995-01-01

    As the business environment becomes more global, so should a college or university's investment portfolio. Global diversification is becoming increasingly important in controlling risk and enhancing return. This article examines the size of bond markets and returns on bond investments in several nations, performance of world equity markets, and…

  18. Global Investing: Diversification Enhances Return and Controls Risk.

    ERIC Educational Resources Information Center

    Morrell, Louis R.

    1995-01-01

    As the business environment becomes more global, so should a college or university's investment portfolio. Global diversification is becoming increasingly important in controlling risk and enhancing return. This article examines the size of bond markets and returns on bond investments in several nations, performance of world equity markets, and…

  19. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks

    NASA Astrophysics Data System (ADS)

    Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.

    2014-08-01

    Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.

  20. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    SciTech Connect

    Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

    2011-08-08

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

  1. Enhancing medical students' education and careers in global surgery.

    PubMed

    Gosselin-Tardif, Alexandre; Butler-Laporte, Guillaume; Vassiliou, Melina; Khwaja, Kosar; Ntakiyiruta, Georges; Kyamanywa, Patrick; Razek, Tarek; Deckelbaum, Dan L

    2014-08-01

    With surgical conditions being significant contributors to the global burden of disease, efforts aimed at increasing future practitioners' understanding, interest and participation in global surgery must be expanded. Unfortunately, despite the increasing popularity of global health among medical students, possibilities for exposure and involvement during medical school remain limited. By evaluating student participation in the 2011 Bethune Round Table, we explored the role that global surgery conferences can play in enhancing this neglected component of undergraduate medical education. Study results indicate high rates of student dissatisfaction with current global health teaching and opportunities, along with high indices of conference satisfaction and knowledge gain, suggesting that global health conferences can serve as important adjuncts to undergraduate medical education.

  2. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  3. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably <1 Tg N2O-N/yr). Assuming that the changes in atmospheric concentrations from 1850 to the present are entirely anthropogenic, the top-down methodology yields an estimate of 5.3 Tg N2O-N/yr (range 5.2 - 5.5) net anthropogenic emissions for the period 2000-2007. Based on a review of bottom-up inventories, we estimate total net anthropogenic N2O emissions of 6.0 Tg N2O-N/yr (5.4-8.4 Tg N2O-N/yr). Estimates (and ranges) by sector (in Tg N2O-N/yr) are: agriculture 4.1 Tg (3.8-6.8); biomass burning 0.7 (0

  4. Assessment of Climatic and Anthropogenic Impacts on the Global Carbon Cycle Constrained by Atmospheric Measurements and Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, Stephen C.

    2001-01-01

    This grant aimed to establish how the global carbon cycle has responded and will respond to global change. We proposed to use models to predict measurements of atmospheric CO2 concentration and C-13/C-12 isotopic ratio, and thereby to establish how sources and sinks of atmospheric CO2 have been influenced by climatic change and human activities. As the work progressed we developed strategies involving finding regional sources and sinks of atmospheric CO2 by an inverse approach, and studying their seasonal and interannual variability.

  5. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report, September 15, 1993--September 14, 1997

    SciTech Connect

    Sarmiento, J.L.; Pacala, S.W.

    1998-06-01

    The primary accomplishment of this research was the development of an ocean biogeochemistry model for the carbon cycle, and the application of this model to studies of anthropogenic CO{sub 2} uptake and the global carbon cycle. The model has been used to study the oceanic uptake that would occur if future atmospheric CO{sub 2} were to be stabilized with the ocean circulation remaining constant. The authors also modeled how oceanic uptake would be affected by changes in ocean circulation that are predicted to occur due to global warming. The research resulted in 21 publications, and an additional 5 papers either in press or in preparation. The accomplishments of this research served as the foundation on which the Carbon Modeling Consortium was built. The CMC is a NOAA funded collaborative program involving principal investigators from various NOAA laboratories and universities. It has the goal of developing techniques to monitor the global carbon cycle on land as well as the ocean, and to predict its future course.

  6. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader

    PubMed Central

    Roura-Pascual, Núria; Hui, Cang; Ikeda, Takayoshi; Leday, Gwénaël; Richardson, David M.; Carpintero, Soledad; Espadaler, Xavier; Gómez, Crisanto; Guénard, Benoit; Hartley, Stephen; Krushelnycky, Paul; Lester, Philip J.; McGeoch, Melodie A.; Menke, Sean B.; Pedersen, Jes S.; Pitt, Joel P. W.; Reyes, Joaquin; Sanders, Nathan J.; Suarez, Andrew V.; Touyama, Yoshifumi; Ward, Darren; Ward, Philip S.; Worner, Sue P.

    2011-01-01

    Because invasive species threaten the integrity of natural ecosystems, a major goal in ecology is to develop predictive models to determine which species may become widespread and where they may invade. Indeed, considerable progress has been made in understanding the factors that influence the local pattern of spread for specific invaders and the factors that are correlated with the number of introduced species that have become established in a given region. However, few studies have examined the relative importance of multiple drivers of invasion success for widespread species at global scales. Here, we use a dataset of >5,000 presence/absence records to examine the interplay between climatic suitability, biotic resistance by native taxa, human-aided dispersal, and human modification of habitats, in shaping the distribution of one of the world's most notorious invasive species, the Argentine ant (Linepithema humile). Climatic suitability and the extent of human modification of habitats are primarily responsible for the distribution of this global invader. However, we also found some evidence for biotic resistance by native communities. Somewhat surprisingly, and despite the often cited importance of propagule pressure as a crucial driver of invasions, metrics of the magnitude of international traded commodities among countries were not related to global distribution patterns. Together, our analyses on the global-scale distribution of this invasive species provide strong evidence for the interplay of biotic and abiotic determinants of spread and also highlight the challenges of limiting the spread and subsequent impact of highly invasive species. PMID:21173219

  7. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthropogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Zheng, Y.; Kohfeld, K. E.; Marchese, P.; Cormier, M.; Warkentine, B.

    2005-12-01

    This project, sponsored by the National Science Foundation, Opportunities to Enhance Diversity in the Geosciences Division, will develop a program based on multidisciplinary investigations of Long Island Sound, as a vehicle to enhance diversity in geosciences. The program includes a curriculum centered on geosciences with a substantial field and laboratory component. Students will participate in a one-week oceanographic expedition to Long Island Sound aboard the R/V Cape Henlopen and in day trips using SUNY Maritime College's R/V Alexanderson. The goal is to illustrate the dominant physical processes in an urban coastal area by using a variety of oceanographic mapping techniques, such as multibeam bathymetric mapping, sediment and water sampling, and current profiling. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience which familiarizes them with their own environment. Furthermore, they will be introduced to solving geoscience problems in a hands-on manner while receiving one-on-one mentoring in a supportive environment. Strong support exists from the City University of New York (CUNY) at the graduate level through MAGNET fellowships. At the undergraduate level, the geoscience curriculum fulfills a science requirement for completion of a BA in geosciences. Support also exists from the "Alliance for Minority Participation" (AMP), a program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate, and the "Search for Education, Elevation, and Knowledge" (SEEK), a QC program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college. The main scientific objectives are 1) to evaluate the impact of anthropogenic activities through studies of the waters, plankton, and sediments and to propose measures for their remediation, and 2) to begin to assess long

  8. Measurement of resuspended aerosol in the Chernobyl area. Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension.

    PubMed

    Garger, E K; Paretzke, H G; Tschiersch, J

    1998-10-01

    During anthropogenic activities, such as agricultural soil management and traffic on unpaved roads, size distribution measurements were performed of atmospheric particulate radionuclides at a site in the Chernobyl 30-km exclusion zone. Analysis of cascade impactor measurements showed an increase of the total atmospheric radioactivity. In the cases of harrowing by a tractor and traffic on unpaved roads, a common shape of the size distribution was found with two maxima, the first in the 2-4 microm range, the second in the 12-20 microm range. The size distributions were compared to measurements during wind-driven resuspension. Particle number concentration measurements with an Aerodynamic Particle Sizer showed a dynamic dependence of the particle concentration in different size ranges on anthropogenic action. The increase of the mean concentration was for the large particles more than one order of magnitude higher than for fine particles during anthropogenic enhanced resuspension. From the measurement of the mass concentration, the radioactive loading could be estimated. An enrichment of radionuclides on resuspended particles (compared to soil particles) was found, with the highest enrichment for large particles. Micrometeorological considerations showed that large particles may frequently be subject to medium range transport. The dry deposition velocity was measured; the mean value of 0.026 m s(-1) +/- 0.016 m s(-1) is typical for 6-9 microm diameter particles.

  9. Impact of anthropogenic and climatic changes on biomass and diversity of the Central African forests, from local to global scale: original methods for new results

    NASA Astrophysics Data System (ADS)

    Mortier, Frédéric; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis; Picard, Nicolas; Rossi, Vivien

    2014-05-01

    Forests of the Congo Basin, the second most important remaining block of tropical moist forest in the world, are facing increasing anthropogenic pressure and climate change. Understanding the biomass and diversity dynamics under these pressures is one major challenge for African nations and international communities. This talk aims to present original methods to model, infer, and predict growth, biomass and diversity of Central African forests, as well as new results on the impacts of global change on those forests, at various scales. With respect to methods, we will present theoretical frameworks allowing (i) to model growth processes in species-rich ecosystems like tropical rain forests, (ii) to take into account uncertainties in biomass estimation. In terms of results, we will highlight at a local scale, how human activities as well as climatic variations would impact (i) the composition and diversity of forests, (ii) the dynamics of biomass and growth processes. At a global scale, we will demonstrate how environmental filtering controls the above ground biomass. The number of studies are currently increasing over the Congo Basin through several research projects led by our team (CoForTips, DynAfFor) and contributing to various international organization's programs (Cifor, FAO, Comifac, Ofac).

  10. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors

    PubMed Central

    Asgharian, Hosseinali; Chang, Peter L.; Lysenkov, Sergey; Scobeyeva, Victoria A.; Reisen, William K.; Nuzhdin, Sergey V.

    2015-01-01

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5–20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents. PMID:26085592

  11. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    PubMed

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  12. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors.

    PubMed

    Asgharian, Hosseinali; Chang, Peter L; Lysenkov, Sergey; Scobeyeva, Victoria A; Reisen, William K; Nuzhdin, Sergey V

    2015-07-07

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5-20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents.

  13. The Geophysical, Anthropogenic, and Social Dimensions of Delta Risk: Estimating Contemporary and Future Risks at the Global Scale

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J. P.; Foufoula-Georgiou, E.

    2015-12-01

    Deltas are highly sensitive to increasing risks arising from local humanactivities, land subsidence, regional water management, global sea-level rise,and climate extremes. We extended a delta risk framework to include the impactof relative sea-level rise on exposure to flood conditions. We apply thisframework to an integrated set of global environmental, geophysical, and socialindicators over 48 major deltas to quantify how delta flood risk due to extremeevents is changing over time. Although geophysical and relative sea-level risederived risks are distributed across all levels of economic development, wealthycountries effectively limit their present-day threat by gross domesticproduct-enabled infrastructure and coastal defense investments. However, wheninvestments do not address the long-term drivers of land subsidence and relativesea-level rise, overall risk can be very sensitive to changes in protectivecapability. For instance, we show how in an energy-constrained future scenario,such protections will probably prove to be unsustainable, raising relative risksby four to eight times in the Mississippi and Rhine deltas and by one-and-a-halfto four times in the Chao Phraya and Yangtze deltas. The current emphasis onshort-term solutions on the world's deltas will greatly constrain options fordesigning sustainable solutions in the long term.

  14. How do anthropogenic aerosol trends change arctic and global climate in CCSM4 over the 20th century?

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Bitz, C. M.; Doherty, S. J.

    2013-12-01

    Since the Clean Air Act began in 1972, global mean sulfate aerosol concentration has been decreasing rapidly, while black carbon concentration has been increasing continuously. What impacts would these aerosol concentration trends impose on the arctic and global climate? In this study, we use atmospheric aerosol single-forcing simulations of the Community Climate System Model version 4 (CCSM4), which has fully coupled atmosphere, ocean, land and sea ice components. The single forcing experiments were carried out by prescribing the time- and space-evolving concentrations of sulfate and black carbon, respectively. The aerosol concentrations were derived from an earlier version of the atmosphere component model run with interactive chemistry and observational-based estimates of reactive-gas emissions. All other forcings were kept fixed at 1850 levels, including surface deposition of black carbon on snow and sea ice. In an ensemble mean of 9 integrations, sulfate aerosols alone could produce ~0.3 K/Decade warming in surface air temperature over the Eurasian arctic from 1975 to 2005 through direct radiative forcing. The increased atmospheric concentration of black carbon reduces the surface air temperature in the arctic, and produces up to 0.5 K/Decade cooling in the Eurasian arctic. In agreement with previous studies, the Arctic cooling from increased atmospheric black carbon concentration is mainly caused by a reduction in atmospheric northward heat transport.

  15. Detecting anthropogenic footprints in sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  16. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature

    SciTech Connect

    Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

    2011-09-17

    Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

  17. Has Anthropogenic Global Warming in the Arctic Contributed to Colder Winter Weather in the Northern Hemisphere Mid-latitudes?

    NASA Astrophysics Data System (ADS)

    Cohen, J. L.; Furtado, J. C.; Barlow, M. A.; Cherry, J. E.; Alexeev, V. A.

    2012-12-01

    The global climate models predict that temperatures will warm the greatest in winter due to a positive feedback of increased greenhouse gases and a diminished and darker cryosphere. Furthermore, current consensus on global climate change predicts warming trends over the NH continents during boreal winter. However, recent trends in Northern Hemisphere (NH) seasonal surface temperatures diverge from these projections. For the last two decades or so, NH landmasses have experienced significant warming trends for all seasons except winter, when large-scale cooling trends exist instead. We propose a mechanism linking Arctic warming and winter continental cooling. Evidence suggests that summer and autumn Arctic warming trends are concurrent with increases in high-latitude moisture and an increase in autumnal Eurasian snow cover, which dynamically induces large-scale wintertime cooling. Understanding this counterintuitive response to radiative warming of the climate system has the potential to improve climate predictions at seasonal and longer timescales.a) JAS area-averaged (poleward of 60°N) surface temperature anomalies (°C) from NASA MERRA. b) September area-averaged (poleward of 65°N) Arctic Ocean sea ice coverage (fractional area). c) September - October vertically integrated (700-1000 hPa) and area-averaged (poleward of 60°N) specific humidity (kg m-2). d) October mean snow cover areal extent (106 km2) over the Eurasian continent from observations (black) and ensemble-mean from the historical runs of the CMIP5 model output (brown line). e) The DJF average AO index (standardized). Same-coloured dashed lines in a) - e) represent the linear trend in each index. Trends with double asterisk (**) indicate trends are significant at the p < 0.01 level.

  18. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  19. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants.

    PubMed

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla

    2012-11-01

    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.

  20. Variations in anthropogenic silver in a large Patagonian lake correlate with global shifts in photographic processing technology.

    PubMed

    Juncos, Romina; Campbell, Linda; Arcagni, Marina; Daga, Romina; Rizzo, Andrea; Arribére, María; Ribeiro Guevara, Sergio

    2017-04-01

    At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 μg g(-1) dry weight (DW) in plankton to 0.02-3.1 μg g(-1) DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 μg g(-1) DW). Trophodynamic analyses using δ(15)N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Non-communicable diseases and global health governance: enhancing global processes to improve health development.

    PubMed

    Magnusson, Roger S

    2007-05-22

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy.

  2. Non-communicable diseases and global health governance: enhancing global processes to improve health development

    PubMed Central

    Magnusson, Roger S

    2007-01-01

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy. PMID:17519005

  3. Spatial entropy-based global and local image contrast enhancement.

    PubMed

    Celik, Turgay

    2014-12-01

    This paper proposes a novel algorithm, which enhances the contrast of an input image using spatial information of pixels. The algorithm introduces a new method to compute the spatial entropy of pixels using spatial distribution of pixel gray levels. Different than the conventional methods, this algorithm considers the distribution of spatial locations of gray levels of an image instead of gray-level distribution or joint statistics computed from the gray levels of an image. For each gray level, the corresponding spatial distribution is computed using a histogram of spatial locations of all pixels with the same gray level. Entropy measures are calculated from the spatial distributions of gray levels of an image to create a distribution function, which is further mapped to a uniform distribution function to achieve the final contrast enhancement. The method achieves contrast improvement in the case of low-contrast images; however, it does not alter the image if the image’s contrast is high enough. Thus, it always produces visually pleasing results without distortions. Furthermore, this method is combined with transform domain coefficient weighting to achieve both local and global contrast enhancement at the same time. The level of the local contrast enhancement can be controlled. Several experiments on effects of contrast enhancement are performed. Experimental results show that the proposed algorithms produce better or comparable enhanced images than several state-of-the-art algorithms.

  4. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  5. Past and Future of the Anthropogenic Biosphere

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2010-12-01

    Human populations and their use of land have now transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes). As anthromes have emerged as the dominant global forms of ecological pattern and process, human interactions with terrestrial ecosystems have become a key earth system process, determining the structure and functioning of the biosphere. This presentation explores Ester Boserup’s land use intensification theories as models for understanding the emergence and dynamics of anthromes and their ecological processes, including their biogeochemistry and community structure, from the mostly wild biosphere of the Holocene to the primarily anthropogenic biosphere of the present and future. Existing global models and data for human population growth and land use over the Holocene differ in their portrayal of the global transition to a mostly anthropogenic biosphere. Yet there is little doubt that human populations have continued to grow over the long term and that anthromes have been increasingly important global ecological systems for millennia. This is conclusive evidence that human interactions with ecosystems can be sustained over the long-term, albeit under conditions that may no longer be realizable by either Earth or human systems. The classic Malthusian paradigm, in which human population growth outstrips natural resources leading to population collapse is unsupported by historical observations at global scale. Boserupian intensification is the better model, providing a robust theoretical foundation in which socio-ecological systems evolve as human populations increase, towards increasingly efficient use of limiting natural resources and enhanced production of anthropogenic ecological services such as food. This is not a story of technical advance, but rather of the forced adoption of ever more energy-intensive technical solutions in support of ever increasing population demands. And it does explain historical changes in the biosphere

  6. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement.

    PubMed

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested.

  7. Global Wild Annual Lens Collection: A Potential Resource for Lentil Genetic Base Broadening and Yield Enhancement

    PubMed Central

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested. PMID:25254552

  8. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  9. Anthropogenic-enhanced erosion following the Neolithic Revolution in the Southern Levant: Records from the Dead Sea deep drilling core

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-04-01

    In addition to tectonics and climatic changes, humans have exerted a significant impact on surface erosion over timescales ranging from years to centuries. However, such kind of impact over millennial timescales remains unsubstantiated. The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  10. Climate response to indirect anthropogenic sulfate forcing

    SciTech Connect

    Erickson, D.J.; Oglesby, R.J.; Marshall, S.

    1995-08-01

    A general circulation model (GCM) has been used to conduct sensitivity tests of the climatic influence imparted by a cloud albedo change hypothesized to result from anthropogenic increases in atmospheric sulfur. The global distribution of anthropogenic sulfate aerosols is computed with a simplified 3-D transport model. The NCAR CCM1 has been run with a cloud albedo perturbation that is a function of the distribution of anthropegenic sulfur particles. The authors report climate statistics from the last 20 years of 30 year GCM control and experiment runs. The climate response is strongest in the northern hemisphere winter, with cooling over the North Atlantic and North Pacific oceans on the order of 2-6{degrees}C. The 500 mb geopotential height field shows a significant deepening over the Canadian provinces, enhancing the northernly flow over the North American and North Atlantic regions during boreal winter. The equilibrium climate does not, however, cool over central Europe in northern hemisphere winter, despite this region being one of the most heavily impacted areas in the world by sulfate aerosol. The anthropogenic sulfate {open_quotes}indirect{close_quotes} forcing elicits a highly non-linear climate response that can be explained through changes in the hemispheric wave train. These results may assist in explaining the long-standing climate change issue of what causes the cooling over the North Atlantic and North Pacific over the last decades, a feature that is not explained by increases in greenhouse gases alone. 18 refs., 4 figs.

  11. Enhancement of Global Communication Skill at the School of Engineering

    NASA Astrophysics Data System (ADS)

    Morimura, Kumiko

    Globalization is one of the most important challenges for universities. Especially for the School of Engineering, it is crucial to foster researchers or engineers with broader perspective. International communication competency is essential for them in order to deal with other professionals from overseas. Center for Innovation in Engineering Education established in the School of Engineering at the University of Tokyo in 2005 started two programs for graduate and undergraduate students to enhance their international communication competency and to increase international competitiveness. ‘English for Scientists and Engineers A, B’ are for the graduate students to learn how to write papers in English and how to make good presentations. Special English Lessons are for the undergraduate students to have a chance to practice English conversation or prepare for TOEFL test. In this paper, the authors discuss the details of the programs, their purpose and the future tasks.

  12. Global Crop Yields, Climatic Trends and Technology Enhancement

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.

    2016-12-01

    During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.

  13. Sensitivity of Vegetation in the Western United States to Global Anthropogenic Changes in Atmospheric Carbon Dioxide Concentration: Forcing and Feedbacks in an RCM-EVM Coupling

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Sloan, L. C.; Snyder, M. A.; Bell, J. L.; Kaplan, J. O.; Bartlein, P. J.

    2002-12-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO_{2} induced climate change. Additionally, changes in vegetation distribution due to these direct and indirect effects may induce land surface-atmosphere feedbacks that create further change in both regional climate and regional vegetation distribution. Using a regional climate model (RegCM2.5) coupled to an equilibrium vegetation model (BIOME4), we quantitatively tested the sensitivity of climate and vegetation in the western United States to both the direct and indirect effects of doubled pre-Industrial atmospheric CO2 concentrations and to land surface-atmospheric feedbacks induced by the initial vegetation sensitivities. In assessing regional vegetation responses to the initial effects of elevated CO_{2} levels, vegetation in the western United States was sensitive to changes in photosynthesis and water use efficiency caused by increased CO2 availability, with woody biome types replacing less woody types throughout the domain. Vegetation was also sensitive to the initial climatic effects of increased CO_{2} concentrations, particularly at high elevations, both due to warming throughout the domain and to decreased precipitation in key mountain regions such as the Sierra Nevada and the Cascade and Blue Mountains of Oregon. Additionally, these patterns changed when the initial climatic and non-climatic effects of CO2 on vegetation were tested in combination, creating sensitivities not seen in either of the individual cases and indicating that climatic and non-climatic effects must be considered in tandem when assessing the potential impacts of elevated CO_{2} levels. Finally, asynchronous coupling of RegCM2.5 and BIOME4 tested the role of land surface-atmosphere feedbacks in shaping the regional response to elevated global atmospheric CO2 concentrations. The

  14. Using reconstructions of the global peat C balance over the Holocene to constrain the timing and magnitude of anthropogenic land use emissions

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Yu, Zicheng; Massa, Charly; Spahni, Renato; Prentice, Colin; Joos, Fortunat

    2016-04-01

    Major circumpolar peatlands of the northern hemisphere have established over the last 14 kyr, with the majority of peat C sequestered during the Holocene. Today, this C storage amounts to 500-600 GtC. In spite of this substantial impact on the C cycle, independent records of the total terrestrial C balance suggest a small long-term trend over the last 6 kyr. The advent of agriculture, associated land use change, and resulting cumulative CO2 emissions of 50-350 GtC have occurred during a period of continued C sequestration in peatlands. Relatively small variations in the total terrestrial C balance have thus been interpreted to indicate a coincidental timing and a similar magnitude of these compensating fluxes and to lend support for upper-end estimates of preindustrial land use emissions. Here, we test this hypothesis by combining observation-based reconstructions of the terrestrial C balance (ΔC) and peat storage (ΔCpeat) with new results from process-based global land C cycle models that hindcast peat C dynamics and CO2 emissions from anthropogenic land use change (ΔCLUC) following a set of contrasting land use reconstructions. Recent data compilations of peat C accumulation histories allow us to provide an improved temporal resolution of observation-based ΔCpeat. We assess the terrestrial C budget ΔC = ΔCpeat+ δ for different periods in the Holocene and in the last millennium and confront ΔCLUC with the budget residual δ. We find that the combination of ΔCpeat and ΔC and their temporal variations provide additional constraints on ΔCLUC estimates that have thus far not been taken into account. Between 11-7 kyr BP, ΔCpeat alone accounts for the majority of ΔC, incompatible with upper-end ΔCLUC estimates. Between 7-5 kyr BP and 5-2 kyr BP, the budget reveals a substantial land C source, but all model-based estimates of ΔCLUC fall short of explaining the magnitude of δ. ΔC reveals a relatively stable overall C balance during the last millennium

  15. Enhancing Global Competitiveness through Experiential Learning: Insights into Successful Programming

    ERIC Educational Resources Information Center

    Ghose, Nabarun

    2010-01-01

    International exposure of students is very essential in today's globalized world. Experiential learning, such as study abroad, plays a major role in developing global competencies in students, making them more marketable globally. This paper highlights one experiential activity that injects global competencies in students, thereby making them more…

  16. Comment on "Polynomial cointegration tests of anthropogenic impact on global warming" by Beenstock et al. (2012) - some hazards in econometric modelling of climate change

    NASA Astrophysics Data System (ADS)

    Pretis, F.; Hendry, D. F.

    2013-10-01

    We outline six important hazards that can be encountered in econometric modelling of time-series data, and apply that analysis to demonstrate errors in the empirical modelling of climate data in Beenstock et al. (2012). We show that the claim made in Beenstock et al. (2012) as to the different degrees of integrability of CO2 and temperature is incorrect. In particular, the level of integration is not constant and not intrinsic to the process. Further, we illustrate that the measure of anthropogenic forcing in Beenstock et al. (2012), a constructed "anthropogenic anomaly", is not appropriate regardless of the time-series properties of the data.

  17. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  18. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  19. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J.; Yarden, Oded; Hadar, Yitzhak

    2012-01-01

    The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn2+ supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn2+ on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn2+-deficient media, whereas strongly repressed (to approximately 1%) in Mn2+-supplemented media. Accordingly, in-vitro Mn2+-independent activity was found to be negligible. We tested whether release of mnp4 from Mn2+ repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn2+ in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn2+-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [14C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn2+ suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality. PMID:23285046

  2. Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation.

    PubMed

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J; Yarden, Oded; Hadar, Yitzhak

    2012-01-01

    The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn(2+) supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn(2+) on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn(2+)-deficient media, whereas strongly repressed (to approximately 1%) in Mn(2+)-supplemented media. Accordingly, in-vitro Mn(2+)-independent activity was found to be negligible. We tested whether release of mnp4 from Mn(2+) repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn(2+) in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn(2+)-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [(14)C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn(2+) suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality.

  3. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  4. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect

    Pabian, Frank Vincent

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  5. Europa Global Views in Natural and Enhanced Colors

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). The bright white and bluish part of Europa's surface is composed mostly of water ice, with very few non-ice materials. In contrast, the brownish mottled regions on the right side of the image may be covered by hydrated salts and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other unknown component. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.

    North is to the top of the picture and the sun fully illuminates the surface. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. The finest details that can be discerned are 25 kilometers across. The images in this global view were taken in June 1997 at a range of 1.25 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft, during its ninth orbit of Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Europa Global Views in Natural and Enhanced Colors

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). The bright white and bluish part of Europa's surface is composed mostly of water ice, with very few non-ice materials. In contrast, the brownish mottled regions on the right side of the image may be covered by hydrated salts and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other unknown component. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.

    North is to the top of the picture and the sun fully illuminates the surface. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. The finest details that can be discerned are 25 kilometers across. The images in this global view were taken in June 1997 at a range of 1.25 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft, during its ninth orbit of Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. Enhancing undergraduate nursing students' global health competencies in South Korea.

    PubMed

    Kim, Yoonseo; Han, Kihye; Yoo, Hae Young

    2017-09-01

    As the need for greater global health competency increases for health care professionals in South Korea, educational efforts for nursing students have begun. This study examined the effectiveness of two educational courses for freshmen and sophomores that were designed to improve students' global health competencies. A trend study was conducted for all undergraduate nursing students enrolled in a 4-year undergraduate nursing program in 2013 and 2014. We assessed students' global health competencies (1-knowledge and interests in global health and health equity, 2-global health skills, and 3-learning needs) in 2013 and 2014 and analyzed variance between mean scores by year and by course exposure, using 95% confidence intervals. Students who took both global health courses (sophomores in both years) reported higher global health-related knowledge and interests than did freshmen (p < .01); these scores were not sustained a year later. The two courses may have improved students' global health competencies. Reinforcement of knowledge in later courses may be needed to build on the global competencies. © 2017 Wiley Periodicals, Inc.

  8. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  9. GOSAT Observations of Anthropogenic Emission of Carbon Dioxide and Methane

    NASA Astrophysics Data System (ADS)

    Janardanan Achari, R.; Maksyutov, S. S.; Oda, T.; Saito, M.; W Kaiser, J.; Ganshin, A.; Matsunaga, T.; Yoshida, Y.; Yokota, T.

    2016-12-01

    Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases in terms of radiative forcing. Anthropogenic activities such as combustion of fossil fuel (for CO2) and gas leakage, animal agriculture, rice cultivation and landfill emissions (CH4), are considered to be major sources of those emissions. Still, emission data usually depend on national emission reports, which are seldom evaluated independently. Here we present a method for delineating anthropogenic contribution to global atmospheric CO2 (2009-2014) and CH4 (2009-2012) fields using GOSAT observations of column-average dry air mole fractions (XCO2 and XCH4) and atmospheric transport model simulations using high-resolution emission inventories. The CO2 and CH4 concentration enhancement due to anthropogenic activities, are estimated with the transport model at all GOSAT observation locations using high-resolution emission inventories (ODIAC for CO2 and EDGAR for CH4). Based on this estimate, using a threshold value, the observations are classified into two categories: data influenced by the anthropogenic sources and those not including them. To extract concentration enhancements due to the anthropogenic emissions, we define a clean background (the averaged values for the data free from contamination) in 10°×10° regions over the globe and are subtracted from the individual observational data including the anthropogenic contamination. Thus the anomalies contain contributions from anthropogenic sources. These anomalies are binned and analyzed for continental scale regions and countries. For CO2, we have found global and regional linear relationships between model and observed anomalies especially for Eurasia and North America. The analysis for East Asian region showed a systematic bias that is comparable in magnitude to the reported uncertainties in emission inventories in that region. In the case of CH4, we also found a good match between inventory-based estimates and GOSAT observations for

  10. Anthropogenic forcings on the surficial osmium cycle.

    PubMed

    Rauch, Sebastien; Peucker-Ehrenbrink, Bernhard; Kylander, Malin E; Weiss, Dominik J; Martinez-Cortizas, Antonio; Heslop, David; Olid, Carolina; Mighall, Tim M; Hemond, Harold F

    2010-02-01

    Osmium is among the least abundant elements in the Earth's continental crust. Recent anthropogenic Os contamination of the environment from mining and smelting activities, automotive catalytic converter use, and hospital discharges has been documented. Here we present evidence for anthropogenic overprinting of the natural Os cycle using a ca. 7000-year record of atmospheric Os deposition and isotopic composition from an ombrotrophic peat bog in NW Spain. Preanthropogenic Os accumulation in this area is 0.10 +/- 0.04 ng m(-2) y(-1). The oldest strata showing human influence correspond to early metal mining and processing on the Iberian Peninsula (ca. 4700-2500 cal. BP). Elevated Os accumulation rates are found thereafter with a local maximum of 1.1 ng m(-2) y(-1) during the Roman occupation of the Iberian Peninsula (ca. 1930 cal. BP) and a further increase starting in 1750 AD with Os accumulation reaching 30 ng m(-2) y(-1) in the most recent samples. Osmium isotopic composition ((187)Os/(188)Os) indicates that recent elevated Os accumulation results from increased input of unradiogenic Os from industrial and automotive sources as well as from enhanced deposition of radiogenic Os through increased fossil fuel combustion and soil erosion. We posit that the rapid increase in catalyst-equipped vehicles, increased fossil fuel combustion, and changes in land-use make the changes observed in NW Spain globally relevant.

  11. A Multicomponent Library Resource Model to Enhance Academic Global Health Education Among Residency Programs.

    PubMed

    Patel, Rupa R; Ravichandran, Sandhiya; Doering, Michelle M; Hardi, Angela C

    2017-01-01

    Global health is becoming an increasingly important component of medical education. Medical libraries have an opportunity to assist global health residents with their information needs, but first it is important to identify what those needs are and how best they can be addressed. This article reports a collaboration between global health faculty and an academic medical librarian to assess the information needs of global health pathway residents and how assessment data are used to create a multicomponent program designed to enhance global health education.

  12. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  13. Distance Learning Technology for Enhancing Pedagogy: The Global Connection.

    ERIC Educational Resources Information Center

    Smith, David E.

    1997-01-01

    The global connection is a business education project undertaken at three diverse institutions located in Denmark (Copenhagen Business School) and California (National University, Coastline Community College). The project incorporates video teleconferencing technology to provide six guest speakers for teaching purposes within one academic year…

  14. Europa Global Views in Natural and Enhanced Colors

    NASA Image and Video Library

    1998-05-08

    This color composite view combines violet, green, and infrared images of Jupiter intriguing moon, Europa, for a view of the moon in natural color left and in enhanced color designed to bring out subtle color differences in the surface right.

  15. Global Enhancement but Local Suppression in Feature-based Attention.

    PubMed

    Forschack, Norman; Andersen, Søren K; Müller, Matthias M

    2017-04-01

    A key property of feature-based attention is global facilitation of the attended feature throughout the visual field. Previously, we presented superimposed red and blue randomly moving dot kinematograms (RDKs) flickering at a different frequency each to elicit frequency-specific steady-state visual evoked potentials (SSVEPs) that allowed us to analyze neural dynamics in early visual cortex when participants shifted attention to one of the two colors. Results showed amplification of the attended and suppression of the unattended color as measured by SSVEP amplitudes. Here, we tested whether the suppression of the unattended color also operates globally. To this end, we presented superimposed flickering red and blue RDKs in the center of a screen and a red and blue RDK in the left and right periphery, respectively, also flickering at different frequencies. Participants shifted attention to one color of the superimposed RDKs in the center to discriminate coherent motion events in the attended from the unattended color RDK, whereas the peripheral RDKs were task irrelevant. SSVEP amplitudes elicited by the centrally presented RDKs confirmed the previous findings of amplification and suppression. For peripherally located RDKs, we found the expected SSVEP amplitude increase, relative to precue baseline when color matched the one of the centrally attended RDK. We found no reduction in SSVEP amplitude relative to precue baseline, when the peripheral color matched the unattended one of the central RDK, indicating that, while facilitation in feature-based attention operates globally, suppression seems to be linked to the location of focused attention.

  16. Zinc complexing ligands in rivers in pristine peatland areas in Borneo, and rivers with agricultural and industrial anthropogenic influence in Tropical South East Asia: Elucidating the connection to oceanic regional and global distributions of Zinc ligands and bioavailable Zinc

    NASA Astrophysics Data System (ADS)

    Carrasco, G. G.; Chen, M.

    2016-02-01

    Organic complexing ligands dominate the chemical speciation of Zn in seawater globally, affecting its bioavailability and regulating its micronutrient role. We have shown that intermediate water masses in the West Pacific indicate a connection between point sources related to marginal seas, riverine matter, benthic fluxes, and continental shelves, with ligand concentrations and binding strengths evolving along water mass trajectories. Here we will present results from recent studies in tropical South East Asia that explore rivers in pristine peatland areas in Borneo, and rivers near and around agricultural and industrial anthropogenic influence in Borneo, Singapore and Malaysia, with the aim of elucidating the importance of relatively fresh natural and agricultural land-based plant material and industrial anthropogenic material in the organic matter mix that the ligands are a part of. These results track the ligand concentration and binding strength of different sources of Zn complexing ligands obtained using ASV and modern comprehensive mathematical methods We will compare records of humic substances from coral cores near the mouth of these rivers, with the goal of ascertaining a possible link of humic substance concentrations and metal complexing ligands in the region. We will compare the results from these large sources of organic matter with the ligands observed in continental shelves, where the organic matter has suffered biochemical processes, with ligands observed in the West Pacific, after decades of bacterial respiration while travelling along water masses. We aim to compare these ligand in order to assess the relevance of these sources of complexing ligands to regulate regional and global distribution of Zn ligands and its bioavailable concentrations.

  17. Enhanced global integration of closed contours in individuals with high levels of autistic-like traits.

    PubMed

    Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R

    2014-10-01

    Individuals with autistic traits (measured with Autism-spectrum Quotient, AQ) often excel in detecting shapes hidden within complex structures (e.g. on the Embedded Figures Test, EFT). This facility has been attributed to either weaker global integration of scene elements or enhanced local processing, but 'local' and 'global' have various meanings in the literature. The function of specific global visual mechanisms involved in integrating contours, similar to EFT targets was examined. High AQ scorers produced enhanced performance on the EFT and an alternative Radial Frequency Search Task. Contrary to 'generic' interpretations of weaker global pooling, this group displayed stronger pooling of contour components that was correlated with search ability. This study therefore shows a global contour integration advantage in high AQ observers. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. EMISSIONS AND COST ESTIMATES FOR GLOBALLY SIGNIFICANT ANTHROPOGENIC COMBUSTION SOURCES OF NOX, N2O, CH4, CO AND CO2

    EPA Science Inventory

    The report discusses the development of emission factors for CO2, CO, CH4, NOx, and N2O for about 80 globally significant combustion sources in seven source categories: utility, industrial, fuel production, transportation, residential, commercial, and kilns/ovens/dryers. ecause o...

  19. EMISSIONS AND COST ESTIMATES FOR GLOBALLY SIGNIFICANT ANTHROPOGENIC COMBUSTION SOURCES OF NOX, N2O, CH4, CO AND CO2

    EPA Science Inventory

    The report discusses the development of emission factors for CO2, CO, CH4, NOx, and N2O for about 80 globally significant combustion sources in seven source categories: utility, industrial, fuel production, transportation, residential, commercial, and kilns/ovens/dryers. ecause o...

  20. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  1. Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance.

    PubMed

    Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A; Shen, Tammy W; Luft, J Christopher; Luft, Yancey E; Keeler, Amanda W; Robbins, Gregory R; Ting, Jenny P Y; Zamboni, William C; Bear, James E; DeSimone, Joseph M

    2016-01-26

    Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.

  2. Global Change Master Directory enhances search for Earth science data

    NASA Astrophysics Data System (ADS)

    Olsen, Lola

    The Global Change Master Directory (GCMD) offers an on-line search and retrieval system for those interested in identifying Earth science data sets for educational and research needs. At the heart of the directory is a database of 3400 Earth science entries.It includes references to data held at many federal agencies, universities, and foreign countries. Content is updated and software is upgraded continuously by the GCMD staff. Earth science data set descriptions in the GCMD are written in the Directory Interchange Format (DIF). The DIF has gained interagency and international acceptance in documenting directory-level information for the Earth sciences. New fields have recently been added to bring the DIF into compliance with the Federal Geographic Data Committee's Content Standard for Digital Geospatial Metadata. These additional new fields allow more complete documentation for all data sets, including those held in Geographic Information Systems.

  3. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  4. Enhanced marine sulphur emissions offset global warming and impact rainfall

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Wang, C.

    2015-08-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  5. Enhanced marine sulphur emissions offset global warming and impact rainfall

    PubMed Central

    Grandey, B. S.; Wang, C.

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  6. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    PubMed

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  7. Lowering Global Temperature by Enhancing the Natural Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Wingenter, O. W.; Elliot, S. M.; Blake, D. R.

    2007-12-01

    We describe a well leveraged approach to partially regulate climate using limited iron enhancement to stimulate the natural sulfur cycle resulting in increased cloud reflectivity that could cool large regions of our planet. Our plan differs greatly in size and intended outcome from full scale ocean iron fertilization of the Southern Ocean (SO) as proposed previously to help mitigate rising CO2 in the atmosphere. Some regions of the Earth's oceans are high in nutrients but low in primary productivity. The largest such region is the SO followed by the equatorial Pacific. Several mesoscale (100 km2) experiments have shown that the limiting nutrient to productivity is iron. Yet, the effectiveness of iron fertilization for sequestering significant amounts of atmospheric CO2 is still in question. However, marine microorganisms not only consume inorganic carbon but also produce and consume many climate relevant organic gases. The greatest climate effect of iron fertilization may be in enhancing dimethyl sulfide (DMS) production, leading to changes in the optical properties of the atmosphere and cooling of the region. It appears that that full scale fertilization of the SO is not a viable solution because it would lead to over cooling of the region. Furthermore, our initial proposal differs from other solar shading plans as primary productivity may actually increase somewhat despite the slight loss in sunlight.

  8. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  9. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  10. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Feely, R. A.; Mecking, S.; Cross, J. N.; Macdonald, A. M.; Siedlecki, S. A.; Talley, L. D.; Sabine, C. L.; Millero, F. J.; Swift, J. H.; Dickson, A. G.; Rodgers, K. B.

    2017-02-01

    A modified version of the extended multiple linear regression (eMLR) method is used to estimate anthropogenic carbon concentration (Canth) changes along the Pacific P02 and P16 hydrographic sections over the past two decades. P02 is a zonal section crossing the North Pacific at 30°N, and P16 is a meridional section crossing the North and South Pacific at 150°W. The eMLR modifications allow the uncertainties associated with choices of regression parameters to be both resolved and reduced. Canth is found to have increased throughout the water column from the surface to 1000 m depth along both lines in both decades. Mean column Canth inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s) decades along P02, at rates of 0.53 ± 0.11 and 0.46 ± 0.11 mol C m-2 a-1, respectively. By contrast, Canth storage accelerated from 0.29 ± 0.10 to 0.45 ± 0.11 mol C m-2 a-1 along P16. Shifts in water mass distributions are ruled out as a potential cause of this increase, which is instead attributed to recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60°S and 60°N of 6.1 ± 1.5 PgC decade-1 in the earlier decade and 8.8 ± 2.2 PgC decade-1 in the recent decade. This storage estimate is large despite the shallow Pacific Canth penetration due to the large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.

  11. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  12. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  13. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2015-10-01

    Global warming is expected to decrease ocean oxygen concentrations by less solubility of surface ocean and change in ocean circulation. The associated expansion of the oxygen minimum zone would have adverse impacts on marine organisms and ocean biogeochemical cycles. Oxygen reduction is expected to persist for a thousand years or more, even after atmospheric carbon dioxide stops rising. However, long-term changes in ocean oxygen and circulation are still unclear. Here we simulate multimillennium changes in ocean circulation and oxygen under doubling and quadrupling of atmospheric carbon dioxide, using a fully coupled atmosphere-ocean general circulation model and an offline biogeochemical model. In the first 500 years, global oxygen concentration decreases, consistent with previous studies. Thereafter, however, the oxygen concentration in the deep ocean globally recovers and overshoots at the end of the simulations, despite surface oxygen decrease and weaker Atlantic meridional overturning circulation. This is because, after the initial cessation, the recovery and overshooting of deep ocean convection in the Weddell Sea enhance ventilation and supply oxygen-rich surface waters to deep ocean. Another contributor to deep ocean oxygenation is seawater warming, which reduces the export production and shifts the organic matter remineralization to the upper water column. Our results indicate that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in deep ocean, which is opposite to the centennial-scale global oxygen reduction and general expectation.

  14. A Model for Enhancing Midwifery Education With a Global Health Certificate.

    PubMed

    De Kleine, Morgan; Habashy, Mary R; Collins, Michelle R

    2016-06-10

    Global health is centered on promoting health equity for all populations. There is a growing need for midwives to receive education in the field of global health in order to be equipped to care for diverse populations within the United States and internationally. Midwifery students benefit from the opportunity to complete global health coursework and a global health practicum, as these experiences help them learn how to reduce local and global health disparities through interdisciplinary collaboration and international partnerships. The purpose of this article is to provide an overview of how a graduate certificate in global health can be used to enhance and enrich midwifery education. The article evaluates the numerous benefits of the global health certificate for midwifery students, and it discusses the logistical challenges of implementation, including potential areas for improvement. By collaborating together, midwifery education programs can expand the breadth of global health courses and practicum experiences available to midwifery students and prepare them to engage in global health projects that improve maternal and neonatal health outcomes in the United States and around the world.

  15. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Miyazaki, Kazuyuki; Worden, John R.; Liu, Jane J.; Jones, Dylan B. A.; Henze, Daven K.

    2016-05-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern midlatitude regions. However, the exact contribution of regional emissions, chemical and transport processes to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East, using updated reactive nitrogen (NOx) emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime middle free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, lightning NOx from Europe and North America and anthropogenic NOx from Middle Eastern local emissions are the primary sources of O3. This work highlights the critical role of lightning NOx on northern midlatitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  16. Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls.

    PubMed

    Morris-Drake, Amy; Bracken, Anna M; Kern, Julie M; Radford, Andrew N

    2017-04-01

    Anthropogenic noise is an evolutionarily novel and widespread pollutant in both terrestrial and aquatic habitats. Despite increasing evidence that the additional noise generated by human activities can affect vocal communication, the majority of research has focused on the use of conspecific acoustic information, especially sexual signals. Many animals are known to eavesdrop on the alarm calls produced by other species, enhancing their likelihood of avoiding predation, but how this use of heterospecific information is affected by anthropogenic noise has received little empirical attention. Here, we use two field-based playback experiments on a habituated wild population of dwarf mongooses (Helogale parvula) to determine how anthropogenic noise influences the response of foragers to heterospecific alarm calls. We begin by demonstrating that dwarf mongooses respond appropriately to the alarm calls of sympatric chacma baboons (Papio ursinus) and tree squirrels (Paraxerus cepapi); fleeing only to the latter. We then show that mongoose foragers are less likely to exhibit this flee response to tree squirrel alarm calls during road-noise playback compared to ambient-sound playback. One explanation for the change in response is that noise-induced distraction or stress result in maladaptive behaviour. However, further analysis revealed that road-noise playback results in increased vigilance and that mongooses showing the greatest vigilance increase are those that do not subsequently exhibit a flee response to the alarm call. These individuals may therefore be acting appropriately: if the greater gathering of personal information indicates the absence of an actual predator despite an alarm call, the need to undertake costly fleeing behaviour can be avoided. Either way, our study indicates the potential for anthropogenic noise to interfere with the use of acoustic information from other species, and suggests the importance of considering how heterospecific networks are

  17. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  18. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  19. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  20. The Role of International Research Collaboration in Enhancing Global Presence of an Institution

    ERIC Educational Resources Information Center

    Ao, Fiona Ka Wa

    2012-01-01

    In recent decades, higher education institutions have steadily increased their international involvement in response to globalization. High-level research is generally a key component in efforts to increase international visibility (Armstrong, 2007). International research collaborations are perceived to be an important way to enhance global…

  1. Tropical Tree Trait Diversity Enhances Forest Biomass Resilience in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.

    2016-12-01

    Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.

  2. From smallpox eradication to contemporary global health initiatives: enhancing human capacity towards a global public health goal.

    PubMed

    Tarantola, Daniel; Foster, Stanley O

    2011-12-30

    The eradication of smallpox owes its success first and foremost to the thousands of lay health workers and community members who, throughout the campaign and across continents, took on the roles of advocates, educators, vaccinators, care providers and contributors to epidemic surveillance and containment. Bangladesh provides a good example where smallpox eradication and the capacity enhancement needed to achieve this goal resulted in a two-way mutually beneficial process. Smallpox-dedicated staff provided community members with information guidance, support and tools. In turn, communities not only created the enabling environment for smallpox program staff to perform their work but acquired the capacity to perform essential eradication tasks. Contemporary global health programmes can learn much from these core lessons including: the pivotal importance of supporting community aspirations, capacity and resilience; the critical need to enhance commitment, capacity and accountability across the workforce; and the high value of attentive human resources management and support. We owe to subsequent global disease control, elimination and eradication ventures recognition of the need for social and behavioural science to inform public health strategies; the essential roles that civil society organizations and public-private partnerships can play in public health discourse and action; the overall necessity of investing in broad-based health system strengthening; and the utility of applying human rights principles, norms and standards to public health policy and practice.

  3. Emergent anthropogenic trends in California Current upwelling

    NASA Astrophysics Data System (ADS)

    Brady, Riley X.; Alexander, Michael A.; Lovenduski, Nicole S.; Rykaczewski, Ryan R.

    2017-05-01

    Upwelling in the California Current System (CCS) sustains a productive ecosystem and is mediated by alongshore, equatorward wind stress. A decades-old hypothesis proposes that global warming will accelerate these upwelling favorable winds. Recent analyses provide empirical support for upwelling intensification in the poleward portion of the CCS. However, these studies rely on proxies for upwelling and are limited in their ability to distinguish anthropogenic forcing from internal climate variability. Here we estimate simulated changes in CCS upwelling from 1920 to 2100 using monthly output from a single climate model ensemble, where divergences among simulations can be attributed entirely to internal climate variability. Our projections suggest that CCS upwelling will become more intense in the spring and less intense in the summer as a result of anthropogenic climate change. Anthropogenic changes in upwelling will emerge primarily in the second half of the century.

  4. Possible revisions in reservoir operation rules as an adaptation to climate change assessed by a global hydrological model with anthropogenic activities and a state-of-the-art river routing model

    NASA Astrophysics Data System (ADS)

    Oki, T.; Mateo, C. M. R.; Hanasaki, N.; Yamazaki, D.; Watanabe, S.; Kiguchi, M.; Komori, D.; Champathong, A.

    2015-12-01

    In the past decade, several advances have been made in incorporating anthropogenic impacts such as reservoir operation in global hydrological models. However, detailed examination of their performance in regional or large river basins is still lacking. The Chao Phraya River Basin in Thailand is a good site for a case study because of the availability of detailed and long-term hydrological records which include the operation of two huge reservoirs, the Bhumibol and Sirikit Reservoirs, in the basin. The ensemble means of the simulation results using eight bias-corrected CMIP5 general circulation models (GCMs), selected based on the availability of the atmospheric forcing inputs needed in a water balance model with human activities, the H08 model, under two representative concentration path scenarios (RCP), RCP4.5 and RCP8.5, for the near future from 2041 to 2059 were compared with the base period simulation from 1981 to 1999. The estimates projected an increase in runoff of 10-15% in RCP4.5 and 40-50% in RCP8.5. While the change in dry season ranges from -10mm to 10mm, the wet season runoff could increase by as much as 160mm in RCP8.5. Hence, the frequency of reservoir emptying will decrease while spilling will increase by as much as 5 times of that of the base period in RCP8.5. In RCP4.5, the frequency of reservoir emptying will not significantly change while spilling will most likely double. Consequently, flooding in the basin will be more frequent and more severe. It was found that the mean inundated area downstream of the two reservoirs, simulated by CaMa-Flood, will increase by approximately 30% in RCP4.5 and about 130% in RCP8.5. At flood inundation depth greater than 1.00m, flooded area will increase by about 95% and 460% in RCP4.5 and RCP8.5, respectively. Possible reservoir operation rules adapting to these changes are examined to minimize flooded area and inundation depth in the downstream area, and to avoid full water levels of the reservoirs. It is

  5. Anthropogenic modification of the oceans.

    PubMed

    Tyrrell, Toby

    2011-03-13

    Human activities are altering the ocean in many different ways. The surface ocean is warming and, as a result, it is becoming more stratified and sea level is rising. There is no clear evidence yet of a slowing in ocean circulation, although this is predicted for the future. As anthropogenic CO(2) permeates into the ocean, it is making sea water more acidic, to the detriment of surface corals and probably many other calcifiers. Once acidification reaches the deep ocean, it will become more corrosive to CaCO(3), leading to a considerable reduction in the amount of CaCO(3) accumulating on the deep seafloor. There will be a several thousand-year-long interruption to CaCO(3) sedimentation at many points on the seafloor. A curious feedback in the ocean, carbonate compensation, makes it more likely that global warming and sea-level rise will continue for many millennia after CO(2) emissions cease.

  6. Globalization and cognitive enhancement: emerging social and ethical challenges for ADHD clinicians.

    PubMed

    Singh, Ilina; Filipe, Angela M; Bard, Imre; Bergey, Meredith; Baker, Lauren

    2013-09-01

    Globalization of ADHD and the rise of cognitive enhancement have raised fresh concerns about the validity of ADHD diagnosis and the ethics of stimulant drug treatment. We review the literature on these two emerging phenomena, with a focus on the corresponding social, scientific and ethical debates over the universality of ADHD and the use of stimulant drug treatments in a global population of children and adolescents. Drawing on this literature, we reflect on the importance of ethically informed, ecologically sensitive clinical practices in relation to ADHD diagnosis and treatment.

  7. Geomorphology of anthropogenic landscapes

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    The construction of urban areas and the development of road networks leave a significant signature on the Earth surface, providing a geomorphological evidence to support the idea that humans are nowadays a geomorphic agent having deep effects on the morphological organization of the landscape. The reconstruction or identification of anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the Anthropocene. Following this research line, the present study tests the effectiveness of a recently published topographic index, the Slope Local Length of Autocorrelation (SLLAC, Sofia et al. 2014) to portrait anthropogenic geomorphology, focusing in particular on road network density, and urban complexity (UCI). At first, the research considers the increasing of anthropic structures and the resulting changes in the SLLAC and in two derived parameters (mean SLLAC per km2 and SLLAC roughness, or Surface Peak Curvature -Spc). As a second step, considering the SLLAC derived indices, the anthropogenic geomorphology is automatically depicted using a k-means clustering algorithm. In general, the increasing of road network density or of the UCI is positively correlated to the mean SLLAC per km2, while the Spc is negatively correlated to the increasing of the anthropic structures. Areas presenting different road network organization are effectively captured considering multiple combinations of the defined parameters. Landscapes with small scattered towns, and a network with long roads in a dendritic shape (with hierarchical branching) are characterized simultaneously by high mean SLLAC and low Spc. Large and complex urban areas served by rectilinear networks with numerous short straight lines and right angles, have either a maximized mean SLLAC or a minimized Spc or both. In all cases, the anthropogenic landscape identified by the procedure is comparable to the ones identified manually from orthophoto, with the

  8. Forging the anthropogenic iron cycle.

    PubMed

    Wang, Tao; Müller, Daniel B; Graedel, T E

    2007-07-15

    Metallurgical iron cycles are characterized for four anthropogenic life stages: production, fabrication and manufacturing, use, and waste management and recycling. This analysis is conducted for year 2000 and at three spatial levels: 68 countries and territories, nine world regions, and the planet. Findings include the following: (1) contemporary iron cycles are basically open and substantially dependent on environmental sources and sinks; (2) Asia leads the world regions in iron production and use; Oceania, Latin America and the Caribbean, Africa, and the Commonwealth of Independent States present a highly production-biased iron cycle; (3) purchased scrap contributes a quarter of the global iron and steel production; (4) iron exiting use is three times less than that entering use; (5) about 45% of global iron entering use is devoted to construction, 24% is devoted to transport equipment, and 20% goes to industrial machinery; (6) with respect to international trade of iron ore, iron and steel products, and scrap, 54 out of the 68 countries are net iron importers, while only 14 are net exporters; (7) global iron discharges in tailings, slag, and landfill approximate one-third of the iron mined. Overall, these results provide a foundation for studies of iron-related resource policy, industrial development, and waste and environmental management.

  9. Anthropogenic Space Weather

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-04-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  10. Emerging Global Initiatives in Neurogenetics: The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium.

    PubMed

    Bearden, Carrie E; Thompson, Paul M

    2017-04-19

    The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium is a global team science effort, now including over 800 scientists spread across 340 institutions in 35 countries, with the shared goal of understanding disease and genetic influences on the brain. This "crowdsourcing" approach to team neuroscience has unprecedented power for advancing our understanding of both typical and atypical human brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period.

    PubMed

    Yan, Qing; Wei, Ting; Korty, Robert L; Kossin, James P; Zhang, Zhongshi; Wang, Huijun

    2016-11-15

    Given the threats that tropical cyclones (TC) pose to people and infrastructure, there is significant interest in how the climatology of these storms may change with climate. The global historical record has been extensively examined, but it is short and plagued with recurring questions about its homogeneity, limiting its effectiveness at assessing how TCs vary with climate. Past warm intervals provide an opportunity to quantify TC behavior in a warmer-than-present world. Here, we use a TC-resolving (∼25 km) global atmospheric model to investigate TC activity during the mid-Pliocene warm period (3.264-3.025 Ma) that shares similarities with projections of future climate. Two experiments, one driven by the reconstructed sea surface temperatures (SSTs) and the other by the SSTs from an ensemble of mid-Pliocene simulations, consistently predict enhanced global-average peak TC intensity during the mid-Pliocene coupled with longer duration, increased power dissipation, and a poleward migration of the location of peak intensity. The simulations are similar to global TC changes observed during recent global warming, as well as those of many future projections, providing a window into the potential TC activity that may be expected in a warmer world. Changes to power dissipation and TC frequency, especially in the Pacific, are sensitive to the different SST patterns, which could affect the viability of the role of TCs as a factor for maintaining a reduced zonal SST gradient during the Pliocene, as recently hypothesized.

  12. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period

    PubMed Central

    Yan, Qing; Wei, Ting; Kossin, James P.; Zhang, Zhongshi; Wang, Huijun

    2016-01-01

    Given the threats that tropical cyclones (TC) pose to people and infrastructure, there is significant interest in how the climatology of these storms may change with climate. The global historical record has been extensively examined, but it is short and plagued with recurring questions about its homogeneity, limiting its effectiveness at assessing how TCs vary with climate. Past warm intervals provide an opportunity to quantify TC behavior in a warmer-than-present world. Here, we use a TC-resolving (∼25 km) global atmospheric model to investigate TC activity during the mid-Pliocene warm period (3.264−3.025 Ma) that shares similarities with projections of future climate. Two experiments, one driven by the reconstructed sea surface temperatures (SSTs) and the other by the SSTs from an ensemble of mid-Pliocene simulations, consistently predict enhanced global-average peak TC intensity during the mid-Pliocene coupled with longer duration, increased power dissipation, and a poleward migration of the location of peak intensity. The simulations are similar to global TC changes observed during recent global warming, as well as those of many future projections, providing a window into the potential TC activity that may be expected in a warmer world. Changes to power dissipation and TC frequency, especially in the Pacific, are sensitive to the different SST patterns, which could affect the viability of the role of TCs as a factor for maintaining a reduced zonal SST gradient during the Pliocene, as recently hypothesized. PMID:27799528

  13. U.S. ozone air quality under changing climate and anthropogenic emissions.

    PubMed

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  14. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  15. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  16. Assessing the observed impact of anthropogenic climate change

    DOE PAGES

    Hansen, Gerrit; Stone, Dáithí

    2015-12-21

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here in this work, we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is stillmore » weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Finally, hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.« less

  17. Assessing the observed impact of anthropogenic climate change

    SciTech Connect

    Hansen, Gerrit; Stone, Dáithí

    2015-12-21

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here in this work, we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Finally, hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  18. Assessing the observed impact of anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Hansen, Gerrit; Stone, Dáithí

    2016-05-01

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  19. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production.

    PubMed

    Pandey, Neha; Pandey-Rai, Shashi

    2016-01-01

    Application of traditional Chinese drug, artemisinin, originally derived from Artemisia annua L., in malaria therapy has now been globally accepted. Artemisinin and its derivatives, with their established safety records, form the first line of malaria treatment via artemisinin combination therapies (ACTs). In addition to its antimalarial effects, artemisinin has recently been evaluated in terms of its antitumour, antibacterial, antiviral, antileishmanial, antischistosomiatic, herbicidal and other properties. However, low levels of artemisinin in plants have emerged various conventional, transgenic and nontransgenic approaches for enhanced production of the drug. According to WHO (2014), approximately 3.2 billion people are at risk of this disease. However, unfortunately, artemisinin availability is still facing its short supply. To fulfil artemisinin's global demand, no single method alone is reliable, and there is a need to collectively use conventional and advanced approaches for its higher production. Further, it is the unique structure of artemisinin that makes it a potential drug not only against malaria but to other diseases as well. Execution of its action through multiple mechanisms is probably the reason behind its wide spectrum of action. Unfortunately, due to clues for developing artemisinin resistance in malaria parasites, it has become desirable to explore all possible modes of action of artemisinin so that new generation antimalarial drugs can be developed in future. The present review provides a comprehensive updates on artemisinin modes of action and strategies for enhanced artemisinin production at global level.

  20. Anthropogenic climate change

    SciTech Connect

    Budyko, M.I.; Izreal, Yu.A.

    1991-01-01

    The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

  1. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  2. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-26

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  3. The nonlinear thermodynamics of meteors, noctilucent clouds, enhanced airglow and global atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Rajchl, J.

    1987-01-01

    Two types of fundamental topological junctions of elements are deduced from a nonlinear thermodynamical model. Using this scheme, the possibility of a causal relation between fireballs and faint meteors as nonlinear sources on the one hand, and noctilucent clouds (NC) and Hoffmeister's enhanced airglow (EA) as complementary formative processes in the middle atmosphere and ionosphere, on the other hand, is examined. The principal role of the global atmospheric circulation in this relation is demonstrated. Such circulation in the mesosphere appears to prevent the neutral dust dissipated by fireballs from becoming an efficient agent in NLC generation. In this case, the behavior of ionized material deposited by both the bright and faint meteors is more probably controlled, as shown from the annual variation of the E sub s layer by the darkness of lunar eclipses and the global circulation of the lower thermosphere. The role of fireballs and neutral dust might be more significant as a source of EA phenomenon.

  4. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  5. Geoheritage, Geodiversity and natural landscape enhanced and protected through anthropogenic activity: a case study using the Chaîne des Puys and Limagne Fault, Afar and Mexico City

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Hagos, Miruts; Guilbaud, Marie-Noelle

    2015-04-01

    The UNESCO World Heritage (WH) committee called in 2014 for all thematic geological and volcanological studies to be revised in light of a widening gap between current dogma and the progressive geoheritage science views. We discuss question of natural sites and anthropogenic activity. The Chaîne des Puys and Limagne fault UNESCO WH project is the basis of this presentation, but we also the Afar Region of Ethiopia and UNAM campus, Mexico City. It is now difficult to find any totally 'natural' (devoid of human influence) landscape. This very definition of natural ignores that humankind is a geological force, and humans are part of the natural process. The UNESCO WH guidelines recognise this in paragraph 90: 'it is recognized that no area is totally pristine and that all natural areas are in a dynamic state, and to some extent involve contact with people'. A geological landscape, may be large enough to accommodate human occupation without significantly changing landforms: this is the case of the Chaîne des Puys and Limagne fault. Human activity works in some ways to protect geological landscape: regulating vegetation and erosion. The aesthetic nature of humans may work to enhance the landscape's visibility by organisation of land use, and ceremonial use based on the sense of place. Humans also exercise economic activity such as quarrying and mining, which if uncontrolled can seriously modify a landscape. However, isolated works may not have an impact, or may even enhance the value of the site by uncovering geological features that would not naturally be seen. In the Chaîne des Puys only 0,3% of the land surface has been worked by artisanal methods and certain sites, like the Lemptégy volcano have been extracted with the view of enhancing the landscape's scientific value without detracting from the aesthetic. The site preserves its natural, scientific and aesthetic qualities, because of the human presence. The local population have always been and continue to be

  6. Anthropogenic sulfur dioxide emissions: 1850-2005

    SciTech Connect

    Smith, S. J.; Van Aardenne, J.; Klimont, Z.; Andres, Robert Joseph; Volke, A.; Delgado Arias, S

    2011-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5 grid by sector for use in coordinated climate model experiments.

  7. Anthropogenic Sulfur Dioxide Emissions: 1850-2005

    SciTech Connect

    Smith, Steven J.; van Aardenne, John; Klimont, Z.; Andres, Robert; Volke, April C.; Delgado Arias, Sabrina

    2011-01-02

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 - 2005. A combination of mass balance and best available inventory data was used in order to achieve the most accurate estimate possible. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties of up to 30% were found. The largest contributors to uncertainty at present are emissions from China and international shipping.

  8. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R.; Volke, A.; Delgado Arias, S.

    2010-06-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  9. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S.

    2011-02-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  10. Anthropogenic transformation of the terrestrial biosphere.

    PubMed

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  11. GOSAT observations of anthropogenic emission of carbon dioxide and methane

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Ito, Akihiko; Kaiser, Johannes W.; Ganshin, Alexander; Yoshida, Yukio; Yokota, Tatsuya; Matsunaga, Tsuneo

    2017-04-01

    Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases in terms of radiative forcing. Human activities such as combustion of fossil fuel (for CO2), and gas leakage, animal agriculture, rice cultivation and landfill emissions (for CH4), are considered to be major sources of their emissions. Global emissions datasets usually depend on emission estimates reported by countries, which are seldom evaluated in an objective way. Here we present a method for delineating anthropogenic contributions to global atmospheric CO2 and CH4 (2009-2014) concentration fields using GOSAT observations of column-average dry air mole fractions (XCO2 and XCH4) and atmospheric transport model simulations using high-resolution emissions datasets (ODIAC for CO2 and EDGAR for CH4). The XCO2 and XCH4 concentration enhancements due to anthropogenic emissions are estimated at all GOSAT observation locations using the transport model simulation. We calculated threshold values to classify GOSAT observations into two categories: (1) data influenced by the anthropogenic sources and (2) those not influenced. We defined a clean background (averaged concentrations of GOSAT data that are free from contamination) in 10˚ ×10˚ regions over the globe and subtracted the background values from individual GOSAT observations. The anomalies (GOSAT observed values minus background values) were binned and compared to model-based anomalies over continental regions and selected countries. For CO2, we have found global and regional linear relationships between model and observed anomalies especially for Eurasia and North America. The analysis for East Asian region showed a systematic bias that is somewhat comparable in magnitude to the uncertainties in emission inventories in that region, which were reported by recent studies. In the case of CH4, we found a good match between inventory-based estimates and GOSAT observations for continental regions and large countries. The inventory

  12. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

    PubMed

    Kantola, Ilsa B; Masters, Michael D; Beerling, David J; Long, Stephen P; DeLucia, Evan H

    2017-04-01

    Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate.

  13. Anthropogenic Sulfate, Clouds, and Climate Forcing

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  14. The contemporary anthropogenic chromium cycle.

    PubMed

    Johnson, Jeremiah; Schewel, Laura; Graedel, T E

    2006-11-15

    Chromium is an essential engineering metal used in stainless and alloy steels, chemicals, and refractory products. Using material flow analysis, all major anthropogenic chromium flows are characterized for the year 2000, from mining through discard, on three spatial levels: fifty-four countries, nine world regions, and the planet. Included is the first detailed quantification of chromium in internationally traded finished products and diverse waste streams. Findings include (1) 78% of chromium flow entering final use is added as a net addition to stock on the global level; most countries are close to this figure; (2) the majority of mining occurs in Africa (2400 Gg Cr/yr) and the Commonwealth of Independent States (1090 Gg Cr/yr), while the major end-users are Asia, Europe, and North America at 1150, 1140, and 751 Gg Cr/yr, respectively; (3) waste flows of chromium are the greatest in Europe (420 Gg Cr/yr), Asia (370 Gg Cr/yr), and North America (290 Gg Cr/yr), but the composition of these waste flows varies greatly among the world regions; (4) releases of chromium by the global system, which total 2630 Gg Cr/yr, are nearly evenly divided among tailings, ferrochromium slag, downgraded scrap, and post-consumer losses; (5) many countries have a heavy foreign dependence on chromium in the all forms, as is demonstrated for the United States. The findings relating to in-use stock changes and finished product trade are relevant to industry, allowing for more accurate planning for future scrap availability. The quantification of releases due to discards and dissipation hold environmental and human health relevance, while the full life cycle international trade assessment addresses local scarcity.

  15. Random walk expectancies for recent global climate, and in an enhanced Greenhouse warming

    NASA Astrophysics Data System (ADS)

    Gordon, Adrian H.; Bye, John A. T.

    1993-11-01

    We partition the United Kingdom Meteorological Office Global Temperature Series ( Tk) using an exponential decay filter into a filtered series ( T̂k) and a difference series ( T' k = T k - T̂k). For a decay time constant, τ ≈ 0.85 years, T̂k is shown to be agood approximation to a random walk generated by a cumulation of normally distributed interannual temperature transitions, and hence ' k contains the predictable temperature signal. The standard deviation of the T̂k series, σ = 0.083K, which is about 1 1/2 that of the T' k series. From this partition, it is argued that τ is the decay time costant (e-folding time) for the global temperature series, and also by the elementary theory of damped oscillations, that the global cimate system (as represented by the global temperature) can only support free oscillations of natural period less than T = 2 πτ ≈ 5 years, i.e. the QBO and ENSO signals. On assuming that σ does not vary significantly over periods up to 20,000 B.P. we find that the expected maximum excursions of the random walks are consistent with the actual inferred temperature variability. On the other hand, the projected temperature rise due to the enhanced Greenhouse effect possibly cannot be supported as a random walk by σ. This suggests that the interannual structure of the climate system would change under these conditions. This conjecture can be tested adequately only with climate models which correctly reproduced random walk behaviour. This is inhibited in published simulated temperature series from coupled models, possibly because of flux correction. An assessment of the likelihood of a change in the interannual variance, and of the ratio between its predictable and random proportions is clearly of utmost significance in the Greenhouse debate, yet it appears to have received very little discussion.

  16. Enhancing the Emotional Wellbeing of Perinatally HIV Infected Youth across Global Contexts

    PubMed Central

    Small, Latoya; Mercado, Micaela; Gopalan, Priya; Pardo, Gisselle; Ann Mellins, Claude; McKay, Mary McKernan

    2014-01-01

    Increased access to antiretroviral treatment worldwide makes it more possible for children diagnosed with HIV before their 15th birthday to age into adolescence and beyond. Many HIV+ youth navigate stressors including poverty and resource scarcity, which may converge to produce emotional distress. For over a decade, CHAMP (Collaborative HIV Prevention and Adolescent Mental Health Project) investigators partnered with youth, caregivers, providers and community stakeholders to address the health, mental health and risk taking behaviors of perinatally HIV-infected youth. This paper explores the mental health needs of aging cohorts of HIV+ youth, across three global contexts, New York (U.S.), Buenos Aires (Argentina), and KwaZulu-Natal (South Africa), to inform the development and implementation of combination HIV care and prevention supports for HIV+ youth. Methods Analysis of data pooled across three countries involving HIV+ early adolescents and their caregivers over time (baseline and three month follow-up) was conducted. Univariate and multivariate analyses were applied to data from standardized measures used across sites to identify mental health needs of youth participants. The impact of the site specific versions of a family-strengthening intervention, CHAMP+U.S., CHAMP+Argentina, CHAMP+SA, was also examined relative to a randomized standard of care (SOC) comparison condition. Results Analyses revealed mental health resilience in a large proportion of HIV+ youth, particularly behavioral functioning and overall mental health. Yet, significant numbers of caregivers across country contexts reported impaired child emotional and prosocial wellbeing. Significant site differences emerged at baseline. Involvement in the CHAMP+ Family Program was related to significant improvement in emotional wellbeing and a trend towards enhanced prosocial behavior relative to SOC across global sites. Conclusions Ongoing partnerships with youth, family and provider stakeholders across

  17. Enhancing the Emotional Wellbeing of Perinatally HIV Infected Youth across Global Contexts.

    PubMed

    Small, Latoya; Mercado, Micaela; Gopalan, Priya; Pardo, Gisselle; Ann Mellins, Claude; McKay, Mary McKernan

    2014-03-01

    Increased access to antiretroviral treatment worldwide makes it more possible for children diagnosed with HIV before their 15(th) birthday to age into adolescence and beyond. Many HIV+ youth navigate stressors including poverty and resource scarcity, which may converge to produce emotional distress. For over a decade, CHAMP (Collaborative HIV Prevention and Adolescent Mental Health Project) investigators partnered with youth, caregivers, providers and community stakeholders to address the health, mental health and risk taking behaviors of perinatally HIV-infected youth. This paper explores the mental health needs of aging cohorts of HIV+ youth, across three global contexts, New York (U.S.), Buenos Aires (Argentina), and KwaZulu-Natal (South Africa), to inform the development and implementation of combination HIV care and prevention supports for HIV+ youth. Analysis of data pooled across three countries involving HIV+ early adolescents and their caregivers over time (baseline and three month follow-up) was conducted. Univariate and multivariate analyses were applied to data from standardized measures used across sites to identify mental health needs of youth participants. The impact of the site specific versions of a family-strengthening intervention, CHAMP+U.S., CHAMP+Argentina, CHAMP+SA, was also examined relative to a randomized standard of care (SOC) comparison condition. Analyses revealed mental health resilience in a large proportion of HIV+ youth, particularly behavioral functioning and overall mental health. Yet, significant numbers of caregivers across country contexts reported impaired child emotional and prosocial wellbeing. Significant site differences emerged at baseline. Involvement in the CHAMP+ Family Program was related to significant improvement in emotional wellbeing and a trend towards enhanced prosocial behavior relative to SOC across global sites. Ongoing partnerships with youth, family and provider stakeholders across global sites helped to

  18. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    PubMed

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  19. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  20. Late Holocene Climate Change: Astronomical vs. Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.

    2016-12-01

    In the last several thousand years of the current (Holocene) interglacial, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration around 5,000 to 7,000 years ago. Because this anomalous behavior was presumably due to anthropogenic carbon emissions from early agriculture, the Holocene provides a unique opportunity to evaluate the relative strength of astronomical vs. anthropogenic forcing. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) to investigate the climatic response to combined vs. individual forcing from orbital, greenhouse-gases (GHGs) and land-use changes during the late Holocene. Twenty-five equilibrium CCSM4 runs, each 1,000 years apart, were performed to simulate the climate changes of the past 6,000 years due to combined (7 runs) and individual forcings (3x6 runs). Our late Holocene simulations with individual forcings show that orbital forcing associated with decreasing summer insolation produces 0.30 K global cooling during the past 6,000 years, while the gradual increase of GHGs produce 0.35 K warming and the land cover changes associated with agriculture development produce 0.25 K cooling. In addition, the time evolution of global temperature response to the individual forcing is quite different, with gradual warming associated with rising GHGs, but enhanced cooling associated with land cover and orbital changes in the past 1,000 years. For the land cover changes, the enhanced cooling results from the acceleration of land cover changes in the past 1,000 years. For the orbital changes, the enhanced cooling is associated with sudden expansion of sea ice in the Labrador Sea in the past 1,000 years, which suggests that the gradual reduction of summer insolation might have crossed a threshold recently to cause the rapid expansion of simulated sea ice in the North Atlantic Ocean. Because our simulation with combined forcings does not produce an enhanced

  1. Using support vector machine and dynamic parameter encoding to enhance global optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chen, X.; Liu, C.; Huang, K.

    2016-05-01

    This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.

  2. Global warming-enhanced stratification and mass mortality events in the Mediterranean.

    PubMed

    Coma, Rafel; Ribes, Marta; Serrano, Eduard; Jiménez, Eroteida; Salat, Jordi; Pascual, Josep

    2009-04-14

    Summer conditions in the Mediterranean Sea are characterized by high temperatures and low food availability. This leads to "summer dormancy" in many benthic suspension feeders due to energetic constraints. Analysis of the most recent 33-year temperature time series demonstrated enhanced stratification due to global warming, which produced a approximately 40% lengthening of summer conditions. Many biological processes are expected to be affected by this trend, culminating in such events as mass mortality of invertebrates. Climatic anomalies concomitant with the occurrence of these events represent prolonged exposure to warmer summer conditions coupled with reduced food resources. Simulation of the effects of these conditions on a model organism demonstrated a biomass loss of >35%. Losses of this magnitude result in mortality similar to that noted in field observations during mass mortality events. These results indicate that temperature anomalies are the underlying cause of the events, with energetic constraints serving as the main triggering mechanism.

  3. Exploring the engine of anthropogenic iron cycles

    PubMed Central

    Müller, Daniel B.; Wang, Tao; Duval, Benjamin; Graedel, T. E.

    2006-01-01

    Stocks of products in use are the pivotal engines that drive anthropogenic metal cycles: They support the lives of people by providing services to them; they are sources for future secondary resources (scrap); and demand for in-use stocks generates demand for metals. Despite their great importance and their impacts on other parts of the metal cycles and the environment, the study of in-use stocks has heretofore been widely neglected. Here we investigate anthropogenic and geogenic iron stocks in the United States (U.S.) by analyzing the iron cycle over the period 1900–2004. Our results show the following. (i) Over the last century, the U.S. iron stock in use increased to 3,200 Tg (million metric tons), which is the same order of magnitude as the remaining U.S. iron stock in identified ores. On a global scale, anthropogenic iron stocks are less significant compared with natural ores, but their relative importance is increasing. (ii) With a perfect recycling system, the U.S. could substitute scrap utilization for domestic mining. (iii) The per-capita in-use iron stock reached saturation at 11–12 metric tons in ≈1980. This last finding, if applicable to other economies as well, could allow a significant improvement of long-term forecasting of steel demand and scrap availability in emerging market economies and therefore has major implications for resource sustainability, recycling technology, and industrial and governmental policy. PMID:17053079

  4. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Ryan R.; Dunne, John P.

    2010-11-01

    A leading hypothesis relating productivity with climate variability in the California Current Ecosystem (CCE) describes an alternation between warmer, well-stratified periods of low productivity and cooler periods of high productivity. This empirical relationship suggests that productivity will decline with global warming. Here, we explore the response of productivity to future climate change in the CCE using an earth system model. This model projects increases in nitrate supply and productivity in the CCE during the 21st century despite increases in stratification and limited change in wind-driven upwelling. We attribute the increased nitrate supply to enrichment of deep source waters entering the CCE resulting from decreased ventilation of the North Pacific. Decreases in dissolved-oxygen concentration and increasing acidification accompany projected increases in nitrate. This analysis illustrates that anthropogenic climate change may be unlike past variability; empirical relationships based on historical observations may be inappropriate for projecting ecosystem responses to future climate change.

  5. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    PubMed

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.

  6. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  7. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  8. Dopaminergic enhancement of local food seeking is under global homeostatic control

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R.M.; Zhuang, Xiaoxi

    2011-01-01

    Recent work has implicated dopaminergic mechanisms in overeating and obesity with some researchers suggesting parallels between the dopamine dysregulation associated with addiction and an analogous dysregulation in obesity. The precise role of dopamine in mediating reward and reinforcement, however, remains controversial. In contrast to drugs of abuse, pursuit of a natural reward, such as food, is regulated by homeostatic processes that putatively maintain a stable energy balance keeping unrestrained consumption and reward pursuit in check. Understanding how the reward system is constrained by or escapes homeostatic regulation is a critical question. The widespread use of food restriction to motivate animal subjects in behavior paradigms precludes investigation of this relationship as the homeostatic system is locked into deficit mode. In the present study, we examine the role of dopamine in modulating adaptive feeding behavior in semi-naturalistic home cage paradigms where mice earn all their food from lever pressing. We compared consumption and meal patterning between hyperdopaminergic dopamine transporter knock-down mice (DATkd) with wild-type (WT) in two paradigms that introduce escalating costs for procuring food. We found that hyperdopaminergic mice exhibited similar demand elasticity, weight loss and energy balance in response to cost. However, the DATkd show clear differences in meal patterning. Consistent with expectations of enhanced motivation, elevated dopamine increased meal size and reduced intrameal cost sensitivity. Nonetheless, this did not alter overall energy balance. We conclude that elevated dopamine enhances incentive or willingness to work locally within meals without shifting energy balance, enhancing global food-seeking or generating an energy surplus. PMID:22118191

  9. Significant anthropogenic-induced changes of climate classes since 1950

    PubMed Central

    Chan, Duo; Wu, Qigang

    2015-01-01

    Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950–2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors. PMID:26316255

  10. Significant anthropogenic-induced changes of climate classes since 1950.

    PubMed

    Chan, Duo; Wu, Qigang

    2015-08-28

    Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950-2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors.

  11. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Le Quéré, Corinne; Dentener, Frank; Nevison, Cynthia; Butler, James H.; Bange, Hermann W.; Forster, Grant

    2012-04-01

    Anthropogenically induced increases in nitrogen deposition to the ocean can stimulate marine productivity and oceanic emission of nitrous oxide. We present the first global ocean model assessment of the impact on marine N2O of increases in nitrogen deposition from the pre-industrial era to the present. We find significant regional increases in marine N2O production downwind of continental outflow, in coastal and inland seas (15-30%), and nitrogen limited regions of the North Atlantic and North Pacific (5-20%). The largest changes occur in the northern Indian Ocean (up to 50%) resulting from a combination of high deposition fluxes and enhanced N2O production pathways in local hypoxic zones. Oceanic regions relatively unaffected by anthropogenic nitrogen deposition indicate much smaller changes (<2%). The estimated change in oceanic N2O source on a global scale is modest (0.08-0.34 Tg N yr-1, ˜3-4% of the total ocean source), and consistent with the estimated impact on global export production (˜4%).

  12. An updated anthropogenic CO2 inventory in the Atlantic Ocean

    SciTech Connect

    Lee, K.; Choi, S.-D.; Park, G.-H.; Peng, T.-H.; Key, Robert; Sabine, Chris; Feely, R. A.; Bullister, J.L.; Millero, F. J.; Kozyr, Alexander

    2003-01-01

    This paper presents a comprehensive analysis of the basin-wide inventory of anthropogenic CO2 in the Atlantic Ocean based on high-quality inorganic carbon, alkalinity, chlorofluorocarbon, and nutrient data collected during the World Ocean Circulation Experiment (WOCE) Hydrographic Program, the Joint Global Ocean Flux Study (JGOFS), and the Ocean-Atmosphere Carbon Exchange Study (OACES) surveys of the Atlantic Ocean between 1990 and 1998. Anthropogenic CO2 was separated from the large pool of dissolved inorganic carbon using an extended version of the DC* method originally developed by Gruber et al. [1996]. The extension of the method includes the use of an optimum multiparameter analysis to determine the relative contributions from various source water types to the sample on an isopycnal surface. Total inventories of anthropogenic CO2 in the Atlantic Ocean are highest in the subtropical regions at 20 40, whereas anthropogenic CO2 penetrates the deepest in high-latitude regions (>40N). The deeper penetration at high northern latitudes is largely due to the formation of deep water that feeds the Deep Western Boundary Current, which transports anthropogenic CO2 into the interior. In contrast, waters south of 50S in the Southern Ocean contain little anthropogenic CO2. Analysis of the data collected during the 1990 1998 period yielded a total anthropogenic CO2 inventory of 28.4 4.7 Pg C in the North Atlantic (equator-70N) and of 18.5 3.9 Pg C in the South Atlantic (equator-70S). These estimated basin-wide inventories of anthropogenic CO2 are in good agreement with previous estimates obtained by Gruber [1998], after accounting for the difference in observational periods. Our calculation of the anthropogenic CO2 inventory in the Atlantic Ocean, in conjunction with the inventories calculated previously for the Indian Ocean [Sabine et al., 1999] and for the Pacific Ocean [Sabine et al., 2002], yields a global anthropogenic CO2 inventory of 112 17 Pg C that has accumulated

  13. Impacts of Anthropogenic Heat on Summertime Rainfall in Beijing

    NASA Astrophysics Data System (ADS)

    Nie, W.; Zaitchik, B. F.; Ni, G.; Sun, T.

    2016-12-01

    Anthropogenic heat is an important component of the urban energy budgets that can affect land surface and atmospheric boundary layer processes. Representation of anthropogenic heat in numerical climate modeling systems is, therefore, important when simulating urban meteorology and climate, and has the potential to improve weather forecasts, climate process studies, and energy demand analysis. Here, we incorporate spatiotemporally dynamic anthropogenic heat data estimated by the Building Effects Parameterization and Building Energy Model (BEP-BEM) into the Weather Research and Forecasting system (WRF) to investigate its impact on simulation of summertime rainfall in Beijing, China. Simulations of four local rainfall events with and without anthropogenic heat indicate that anthropogenic heat leads to increased rainfall over the urban area. For all four events, anthropogenic heat emission increases sensible heat flux, enhances mixing and turbulent energy transport, lifts PBL height, increases dry static energy and destabilizes the atmosphere in urban areas through thermal perturbation and strong upwelling motion during the pre-storm period, resulting in enhanced convergence during the major rainfall period. Intensified rainfall leads to greater atmospheric dry-down during the storm and a higher post-storm LCL.

  14. Evolution of Efficient Pathways for Degradation of Anthropogenic Chemicals

    PubMed Central

    Copley, Shelley D.

    2010-01-01

    Anthropogenic compounds used as pesticides, solvents, and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these novel compounds. Some anthropogenic compounds are easily degraded, while others are degraded very slowly or only partially, leading to accumulation of toxic products. This review examines the factors that affect the ability of microbes to degrade anthropogenic compounds and the mechanisms by which novel pathways emerge in nature. New approaches for engineering microbes with enhanced degradative abilities include assembly of pathways using enzymes from multiple organisms, directed evolution of inefficient enzymes, and genome shuffling to improve microbial fitness under the challenging conditions posed by contaminated environments. PMID:19620997

  15. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    NASA Astrophysics Data System (ADS)

    Kartika Lestari, R.; Watanabe, Masahiro; Imada, Yukiko; Shiogama, Hideo; Field, Robert D.; Takemura, Toshihiko; Kimoto, Masahide

    2014-10-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960-2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ˜25% increase in severe drought events from 1951-2000 to 2001-2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention.

  16. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  17. Anthropogenic Warming Has Increased Drought Risk In California

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Swain, D. L.; Touma, D. E.

    2015-12-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ˜100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  18. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  19. Using message brokering and data mediation on earth science data to enhance global maritime situational awareness

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Alessandrini, A.; Greidanus, H.

    2016-04-01

    Maritime Situational Awareness is the understanding of anything associated with the maritime domain that could impact the security, safety, economy, or environment. The European Commission's Joint Research Centre (JRC) has developed an in-house data collection, data analysis and data visualiztion facility, known as the Blue Hub. The Blue Hub operates as a research and development platform for integrated maritime surveillance and maritime situational awareness. It has global coverage and has been applied, for example, to support counter-piracy around Africa, to investigate fishing activity and to monitor the growing ship traffic in the Arctic. In order to improve maritime awareness and support risk assessment, the JRC has started to integrate data from the marine and atmosheric science community. In particular the JRC is interested in using forecasts from operational ocean models and weather models. For the Blue Hub a new type of data server, called ERDDAP, that performs message brokering and data mediation has become an essential tool for the accessing of ocean forecast data as quickly as possible in easy to use formats. NOAA (National Oceanic and Atmospheric Administration of the USA) is making global oceanography and weather data available through the Environmental Research Division's Data Access Program (ERDDAP) data broker. ERDDAP provides RESTful machine to machine communication, data brokering and data mediation by converting data to a number of standard and developer friendly formats, including some Open Geospatial Consortium formats. In this paper, we demonstrate how data brokering and mediation is making complex scientific data accessible. We show how such data is being integrated into the Blue Hub system to enhance maritime situational awareness.

  20. Enhancing global health and education in Malawi, Zambia, and the United States through an interprofessional global health exchange program.

    PubMed

    Wilson, Lynda Law; Somerall, D'Ann; Theus, Lisa; Rankin, Sally; Ngoma, Catherine; Chimwaza, Angela

    2014-05-01

    This article describes participant outcomes of an interprofessional collaboration between health professionals and faculty in Malawi, Zambia, and the United States (US). One strategy critical for improving global health and addressing Millennium Development goals is promotion of interprofessional education and collaboration. Program participants included 25 health professionals from Malawi and Zambia, and 19 faculty/health professionals from Alabama and California. African Fellows participated in a 2 week workshop on Interprofessional Education in Alabama followed by 2 weeks working on individual goals with faculty collaborators/mentors. The US Fellows also spent 2 weeks visiting their counterparts in Malawi and Zambia to develop plans for sustainable partnerships. Program evaluations demonstrated participants' satisfaction with the program and indicated that the program promoted interprofessional and cross-cultural understanding; fostered development of long-term sustainable partnerships between health professionals and educators in Zambia and the US; and created increased awareness and use of resources for global health education. © 2014.

  1. Anthropogenic Aerosols and the Evolution of U.S. Droughts

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Cazavilan, E. J.

    2014-12-01

    Anthropogenic aerosols interact with solar radiation to influence regional to global climate. Trends in aerosol concentrations have impacted the evolution of surface air temperatures and the hydrological cycle over the last 150 years, but the magnitude of influence and any role in shaping extreme events remains uncertain. We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the formation of two potential U.S. droughts. Two periods are analyzed, the 1930s Dust Bowl and the 1970s "missed drought". Each period realized ocean conditions ripe for the formation of central U.S. drought, but experienced differing composition and amounts of anthropogenic aerosol forcing. Simulations forced solely by observed sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. (annual decreases of up to 0.5 mm/day and warming of 0.5°C). We find that anthropogenic aerosols of the 1930s, containing a significant warming component from U.S. black carbon, exacerbated the warm conditions (0.2°C) and provided slightly drier conditions. In contrast, anthropogenic aerosols of the 1970s, containing a large cooling component from U.S. sulfate, reduced annual precipitation deficits and lowered temperatures by up to 0.4°C. Our results showcase the importance of anthropogenic aerosol forcing in the evolution of U.S. droughts.

  2. Some evidence of ground power enhancements at frequencies of global magnetospheric modes at low latitude

    NASA Astrophysics Data System (ADS)

    Francia, P.; Villante, U.

    1997-01-01

    A statistical analysis of the power spectra of the geomagnetic field components H and D for periods ranging between 3 min and 1 h was conducted at a low-latitude observatory (LÁquila, L=1.6) at the minimum and maximum of the solar cycle. For both components, during daytime intervals, we found evidence of power enhancements at frequencies predicted for global modes of the Earthś magnetosphere and occasionally observed at auroral latitudes in the F-region drift velocities (approximately at 1.3, 1.9, 2.6, and 3.4 mHz). Nighttime observations reveal a relative low frequency H enhancement associated with the bay occurrence together with a peak in the H/D power ratio which sharply emerges at 1.2 mHz in the premidnight sector. The strong similarity between solar minimum and maximum suggests that these modes can be considered permanent magnetospheric features. A separate analysis on a two-month interval shows that the observed spectral characteristics are amplified by conditions of high-velocity solar wind. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.->

  3. Challenging, Eye-Opening, and Changing U.S. Teacher Training in Korea: Creating Experiences That Will Enhance Global Perspectives

    ERIC Educational Resources Information Center

    Oh, Kevin; Nussli, Natalie

    2014-01-01

    This case study explored the short-term international experience of pre-service teachers to create and enhance global perspectives. These teachers (n = 5), all female graduate students at a university in the U.S., were fully immersed in a foreign culture for three weeks while teaching English to primary and secondary students in Korea. Pre-,…

  4. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources.

    PubMed

    Billot, Claire; Ramu, Punna; Bouchet, Sophie; Chantereau, Jacques; Deu, Monique; Gardes, Laetitia; Noyer, Jean-Louis; Rami, Jean-François; Rivallan, Ronan; Li, Yu; Lu, Ping; Wang, Tianyu; Folkertsma, Rolf T; Arnaud, Elizabeth; Upadhyaya, Hari D; Glaszmann, Jean-Christophe; Hash, C Thomas

    2013-01-01

    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.

  5. Massive Sorghum Collection Genotyped with SSR Markers to Enhance Use of Global Genetic Resources

    PubMed Central

    Bouchet, Sophie; Chantereau, Jacques; Deu, Monique; Gardes, Laetitia; Noyer, Jean-Louis; Rami, Jean-François; Rivallan, Ronan; Li, Yu; Lu, Ping; Wang, Tianyu; Folkertsma, Rolf T.; Arnaud, Elizabeth; Upadhyaya, Hari D.; Glaszmann, Jean-Christophe; Hash, C. Thomas

    2013-01-01

    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity. PMID:23565161

  6. Enhancing Global Service-Learning with Partnerships as an Engagement Strategy for Christian Higher Education

    ERIC Educational Resources Information Center

    Bish, Gregory T.; Lommel, John

    2016-01-01

    Global engagement programming across higher education continues to expand as institutional leaders and practitioners strive to meet global citizenship and civic engagement outcomes. This article presents case study research on a global service-learning partnership, the "Christian University" (CU) Wheelchair Project, which has involved…

  7. Enhancing Global Service-Learning with Partnerships as an Engagement Strategy for Christian Higher Education

    ERIC Educational Resources Information Center

    Bish, Gregory T.; Lommel, John

    2016-01-01

    Global engagement programming across higher education continues to expand as institutional leaders and practitioners strive to meet global citizenship and civic engagement outcomes. This article presents case study research on a global service-learning partnership, the "Christian University" (CU) Wheelchair Project, which has involved…

  8. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  9. South Atlantic interbasin exchanges of mass, heat, salt and anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Evans, G. R.; McDonagh, E. L.; King, B. A.; Bryden, H. L.; Bakker, D. C. E.; Brown, P. J.; Schuster, U.; Speer, K. G.; van Heuven, S. M. A. C.

    2017-02-01

    The exchange of mass, heat, salt and anthropogenic carbon (Cant) between the South Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S) boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with an overturning circulation that exports freshwater from the North Atlantic, and consistent with a bistable Meridional Overturning Circulation (MOC), under conditions of excess freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC) transport, south of the Subtropical Front, is compensated by a 15.9 ± 2.3 Sv westward flow along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric anthropogenic carbon of 0.51 ± 0.37 Pg C yr-1, of which 0.18 ± 0.12 Pg C yr-1 accumulates and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is associated with a 0.11 Pg C yr-1 Cant overturning. The remainder is transported into the Atlantic Ocean north of 24°S (0.28 ± 0.16 Pg C yr-1) and Indian sector of Southern Ocean (1.12 ± 0.43 Pg C yr-1), having been enhanced by inflow through Drake Passage (1.07 ± 0.44 Pg C yr-1). This underlines the importance of the South Atlantic as a crucial element of the anthropogenic carbon sink in the global oceans.

  10. How do the westerlies influence the Southern Ocean subduction of anthropogenic carbon?

    NASA Astrophysics Data System (ADS)

    Downes, Stephanie; Langlais, Clothilde; Brook, Jordan; Spence, Paul

    2017-04-01

    The Southern Ocean is responsible for roughly a third of the global oceanic anthropogenic carbon uptake, and this uptake occurs in the upper ocean Sub-Antarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) layers. The process by which the anthropogenic carbon is transported into the ocean interior is commonly known as 'subduction'. Observationally-based and model studies have shown that the subduction of SAMW and AAIW occurs in hot spots primarily in the deep mixed layer depths in the Indian and Pacific sectors of the Southern Ocean. Two key atmospheric changes in recent decades in the Southern Ocean are increases in atmosphere to ocean buoyancy input, and the poleward intensification of the westerly wind stress band. Both buoyancy and winds are drivers of the Southern Ocean large scale circulation, and in this study we diagnose the impact of specifically the westerly winds on the upper ocean subduction. We evaluate the mean and eddy subduction components under three sensitivity experiments where the westerlies are increased, shifted poleward, and both shifted and increased. We use a 1/4-degree eddy-permitting ocean-ice model coupled to a reanalysis atmosphere. Our perturbation experiments reveal that intensified winds enhance the deep mixed layer depths locally, but a shift in the westerlies decreases (increases) the mixed layer depth in the Indian (southeast Pacific) sector. A poleward intensification of the westerlies combines the individual shift and intensified wind experiment change, as well as strongly enhancing Atlantic mixed layers. The mixed layer changes are associated with SAMW and AAIW subduction, and we find that the poleward intensification of the westerlies overall enhances both the eddy and large scale subduction rates. Using our subduction results and observations, we infer regional anthropogenic carbon inventory changes in a water mass framework under wind stress changes.

  11. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).

    PubMed

    García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria

    2013-12-01

    The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B

  12. Enhancement of global flood damage assessments using building material based vulnerability curves

    NASA Astrophysics Data System (ADS)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  13. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, Elliott; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, Joe; Hilton, Timothy W.

    2015-04-28

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one-third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. Furthermore, the source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  14. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53

  15. Anthropogenic perturbations in marine microbial communities.

    PubMed

    Nogales, Balbina; Lanfranconi, Mariana P; Piña-Villalonga, Juana M; Bosch, Rafael

    2011-03-01

    Human activities impact marine ecosystems at a global scale and all levels of complexity of life. Despite their importance as key players in ecosystem processes, the stress caused to microorganisms has been greatly neglected. This fact is aggravated by difficulties in the analysis of microbial communities and their high diversity, making the definition of patterns difficult. In this review, we discuss the effects of nutrient increase, pollution by organic chemicals and heavy metals and the introduction of antibiotics and pathogens into the environment. Microbial communities respond positively to nutrients and chemical pollution by increasing cell numbers. There are also significant changes in community composition, increases in diversity and high temporal variability. These changes, which evidence the modification of the environmental conditions due to anthropogenic stress, usually alter community functionality, although this aspect has not been explored in depth. Altered microbial communities in human-impacted marine environments can in turn have detrimental effects on human health (i.e. spread of pathogens and antibiotic resistance). New threats to marine ecosystems, i.e. related to climate change, could also have an impact on microbial communities. Therefore, an effort dedicated to analyse the microbial compartment in detail should be made when studying the impact of anthropogenic activities on marine ecosystems.

  16. Observations of anthropogenic cloud condensation nuclei

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) concentrations and spectral measurements obtained with the DRI instantaneous CCN spectrometer (Hudson, 1989) over the last few years are presented. The climatic importance of cloud microphysics has been pointed out. The particles which affect cloud microphysics are cloud condensation nuclei (CCN). The commonly-observed order of magnitude difference in cloud droplet concentrations between maritime and continental air masses (i.e., Squires, 1958) was determined to be caused by systematic differences in the concentrations of CCN between continental and maritime air masses (e.g., Twomey and Wojciechowski, 1969). Twomey (1977) first pointed out that cloud microphysics also affects the radiative properties of clouds. Thus continental and anthropogenic CCN could affect global temperature. Resolution of this Twomey effect requires answers to two questions - whether antropogenic CCN are a significant contribution to atmospheric CCN, and whether they are actually affecting cloud microphysics to an extent which is of climatic importance. The reasons for the contrast between continental and maritime CCN concentration are not understood. The question of the relative importance of anthropogenic CCN is addressed. These observations should shed light on this complex question although further research is being conducted in order to produce more quantitative answers. Accompanying CN measurements made with a TSI 3020 condensation nucleus (CN) counter are also presented.

  17. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  18. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  19. Anthropogenic Elevation Change in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Prush, V. B.; Lohman, R. B.

    2013-12-01

    Over the past few decades, interferometric synthetic aperture radar (InSAR) has emerged as a valuable tool for studying crustal deformation signals. Its applications to studies of tectonic and non-tectonic sources are varied, including earthquakes and fault-related processes, volcanic deformation, vegetation structure, and anthropogenic signals. In addition to studies of crustal deformation, the sensitivity of interferometric phase to topography makes InSAR a superb tool for the generation of digital elevation models (DEMs). While much of the focus of InSAR research in recent years has been on deformation, changes in the elevation of the ground surface can be of great scientific or societal interest as well. Examples include elevation and volume change due to anthropogenic processes such as landfill and open-pit mining operations, and natural processes such as glacier thinning or terrain alteration resulting from effusive volcanic eruptions. Our study describes two elevation change signals observed in the Pacific Northwest that are of anthropogenic origin. Using the baseline-dependent nature of the topographic component of interferometric phase, we have determined a proxy for canopy height using coherent interferometric phase differences between adjacent logged and forested regions, as well as a means for determining estimates of the amount and time history of material displaced during mining operations at the Centralia Coal Mine in Centralia, Washington. Quantifying the amount of surface change due to anthropogenic activities is not only critical for tracking the altering landscape of the Pacific Northwest and reducing the observed error in interferograms attributable to elevation change. Deforestation is one of the most significant contributors to global carbon emissions, and quantifying changes in vegetation structure can assist in efforts to monitor and mitigate the effects of deforestation on climate change. Similarly, mining operations can have a lasting

  20. Anthropogenic Aerosol Dimming Over Oceans: A Regional Analysis

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-12-01

    The role of anthropogenic aerosols in shaping 20th century SSTs through alteration of surface solar radiation (SSR) is still subject to debate. Identifying and quantifying the relationship between aerosol-induced changes in SSR and the corresponding SST response is difficult due to the masking effect of numerous feedback mechanisms and general variability of the atmosphere-ocean system. We therefore analysed potential anthropogenic aerosol effects on SST with a cascade of experiments of increasing complexity: From atmosphere-only over mixed-layer ocean (MLO) experiments, to fully coupled transient ocean-atmosphere simulations, with and without greenhouse gases and / or aerosols, using the general circulation model ECHAM with explicit aerosol representation. We find anthropogenic aerosols to be crucial to obtain realistic SSR and SST patterns, although co-location of changes in individual variables (aerosol optical depth, SSR, SST) is weak. The effect of greenhouse gases and aerosols in the MLO simulations is essentially additive on global and regional scales, an assumption frequently made in the literature. With atmosphere-only simulations we identified regions most prone to anthropogenic aerosol dimming throughout the 20th century using a strict criterion. From MLO equilibria representative of different decades throughout the 20th century, we identified ocean regions, whose SSTs are most sensitive to changing anthropogenic aerosol emissions. The surface temperature response patterns in our MLO simulations are more sensitive towards the choice of prescribed deep-ocean heat flux if anthropogenic aerosols were included as compared to greenhouse gas only simulations. This implies that ocean dynamics might mask some of the response and cautions against the use of just one set of deep-ocean heat fluxes in MLO studies. Our results corroborate not only the relevance of anthropogenic aerosols for SST responses, but also highlight the complexity and non-locality of the

  1. Effects of East Asian Short-lived Anthropogenic Air Pollutants on the Northern Hemispheric Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Horowitz, L. W.; Lau, N.; Fan, S.; Tao, S.; Mauzerall, D. L.; Levy, H.

    2012-12-01

    Short-lived anthropogenic pollutants (such as ozone and aerosols) not only degrade ambient air quality and influence human health, but also play an important role in scattering/absorbing atmospheric radiation and disturbing regional climate. Due to the rapid industrialization, anthropogenic emissions from East Asia (EA) have increased substantially during the past decades. At the same time, EA has experienced a changing climate in terms of surface temperature and precipitation. In order to understand to what extent that EA short-lived anthropogenic emissions could influence domestic and downwind air quality (e.g. surface O3 and PM2.5), and explore the potential linkage between hemispheric-scale climate perturbation and regional anthropogenic forcing, we simulate global climate and chemical compositions during 1981-2000 based on the coupled general circulation model CM3 for atmosphere (with interactive tropospheric and stratospheric chemistry), oceans, land and sea ice, recently developed at Geophysical Fluid Dynamics Laboratory (GFDL/NOAA). We also conduct a parallel sensitivity simulation which is identical to the base simulation but with all anthropogenic emissions over EA turned off. The difference between the base and sensitivity simulations represents the short-term response of the Northern Hemispheric climate system and atmospheric composition to the perturbation of regional anthropogenic forcing. We find that East Asian short-lived anthropogenic emissions exert significant adverse impacts on local air quality during 1981-2000, accounting for 10-30ppbV daily-averaged O3 over Eastern China in JJA. In particular, EA anthropogenic emissions elevate the summertime daily maximum 8-hour average ozone (MDA8 O3) by 30-40ppbV over the North China Plain, where the typical background MDA8 ozone ranges 30 to 45ppbV. In addition, the surface PM2.5 concentrations peak at the same season and over the same region, with a seasonal mean of 10-30ug/m3, mostly contributed from

  2. Giant natural fluctuation models and anthropogenic warming

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Rio Amador, L.; Hébert, R.; Lima, I.

    2016-08-01

    Explanations for the industrial epoch warming are polarized around the hypotheses of anthropogenic warming (AW) and giant natural fluctuations (GNFs). While climate sceptics have systematically attacked AW, up until now they have only invoked GNFs. This has now changed with the publication by D. Keenan of a sample of 1000 series from stochastic processes purporting to emulate the global annual temperature since 1880. While Keenan's objective was to criticize the International Panel on Climate Change's trend uncertainty analysis (their assumption that residuals are only weakly correlated), for the first time it is possible to compare a stochastic GNF model with real data. Using Haar fluctuations, probability distributions, and other techniques of time series analysis, we show that his model has unrealistically strong low-frequency variability so that even mild extrapolations imply ice ages every ≈1000 years. Helped by statistics, the GNF model can easily be scientifically rejected.

  3. Offsetting features of climate responses to anthropogenic sulfate and black carbon direct radiative forcings

    NASA Astrophysics Data System (ADS)

    Ocko, I.; Ramaswamy, V.

    2012-12-01

    The two most prominent anthropogenic aerosols—sulfate and black carbon—affect Earth's radiation budget in opposing ways. Here we examine how these aerosols independently impact the climate, by simulating climate responses from pre-industrial times (1860) to present-day (2000) for isolated sulfate and black carbon direct radiative forcings. The NOAA Geophysical Fluid Dynamics Laboratory CM2.1 global climate model is employed with prescribed distributions of externally mixed aerosols. We find that sulfate and black carbon induce opposite effects for a myriad of climate variables. Sulfate (black carbon) is generally cooling (warming), shifts the ITCZ southward (northward), reduces (enhances) the SH Hadley Cell, enhances (reduces) the NH Hadley Cell, and increases (decreases) total sea ice volume. Individually, sulfate and black carbon affect Hadley Cell circulation more than long-lived greenhouse gases, but the net aerosol effect is a weakened response due to opposite behaviors somewhat canceling out the individual effects. Because anthropogenic aerosols are a critical contributor to Earth's climate conditions, this study has implications for future climate changes as well.

  4. Enhancing Cross-Cultural Competence in Multicultural Teacher Education: Transformation in Global Learning

    ERIC Educational Resources Information Center

    Seeberg, Vilma; Minick, Theresa

    2012-01-01

    Teacher education needs to engage teacher candidates in developing cross-cultural competence so that they may be able to transmit global learning to their future students. This study theorizes cross-cultural competence (CCC) from the perspectives of multicultural and global education. During a four-year project at a mid-western US university,…

  5. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    NASA Astrophysics Data System (ADS)

    Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.

    2015-01-01

    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is

  6. Decomposition of climate change effects on ocean natural and anthropogenic carbon uptake.

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Marinov, Irina; Palter, Jaime; Sarmiento, Jorge; Galbraith, Eric

    2013-04-01

    The ocean has been the only net sink of anthropogenic CO2 over the last 200 years, removing more than 30% of emitted anthropogenic carbon [Sabine et al., 2004]. The Southern Ocean accounts for up to half of this sink through the formation of various bottom, intermediate and mode water masses [Gruber et al., 2009]. Therefore, understanding the full range of global warming's possible consequences for the Earth system hinges on an understanding of the Southern Ocean's continued ability to serve as a carbon sink in the future. Many of the physical processes that are crucial to ocean carbon uptake and storage are expected to change under warming conditions, with consequences that are difficult to predict. The recent observed increase in the strength of the Southern Ocean Westerlies might enhance the anthropogenic carbon uptake through a more vigorous vertical mixing. However, this could also cause a decrease in natural carbon storage with a compensating effect. On the other hand, projected changes in buoyancy fluxes are expected to work in the opposite direction leading to a reduction of the vertical mixing. Finally, CO2 solubility at the sea surface will be affected by changes in temperature and salinity. We use a coupled atmosphere-ocean model (CM2Mc, Gallbraith et al., 2011) to perform a series of modeling experiments aimed to quantify the separate impact of these mechanisms on the various processes responsible for the functioning of the ocean carbon pumps. The experiments are based on the IPCC rcp8.5 scenario for the 21st century climate and consist in a combination of perturbations in which only one of the forcing factors is varying. This approach allows us to evaluate the relative importance of each process on the ability of the ocean to store carbon through the solubility and biological pumps. We also discuss the future climate projected changes in the relative importance of the Southern Ocean with respect to the global Ocean, for the total carbon uptake

  7. Disruptions in precipitation cycles: Attribution to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Tapiador, Francisco J.; Behrangi, Ali; Haddad, Ziad S.; Katsanos, Dimitris; Castro, Manuel

    2016-03-01

    Disruptions of the spatiotemporal distribution of surface precipitation that are induced by global warming may affect Earth's climate more significantly than changes in the total precipitation amount. Identifying such disruptions at global scales is not straightforward, as it requires disentangling a weak signal from comprehensive, gapless data in a 5-D configuration space whose dimensions are latitude, longitude, time, power, and period. Drawing on reliable, state-of-the-art climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments and using well-tested analytical methods, clear changes in the global precipitation cycles have been found for the simulated period 1862-2003. It has also been found that the disruptions may be attributable to anthropogenic forcing. The disruptions are relevant enough to envision significant changes in precipitation timing if human greenhouse gas emissions continue to accumulate in the future. It is noteworthy that the effects of anthropogenic forcings have been found not predominantly in the intra-annual cycles, i.e., in the short-term weather patterns that would be indicative of local effects, but rather in the interannual planetary long-term variability of the atmosphere. This suggests a global, distributed effect of the anthropogenic forcings on precipitation, which in turn is indicative of changes in the precipitation patterns linked with changes in the thermodynamics of the precipitation microphysics and to a lesser extent with the dynamical aspects of the precipitation processes.

  8. Estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  9. Estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  10. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2008-11-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y-1 for the period 2000 2005. These emissions resulted from the combustion of fossil fuels (260 TgC y-1) and land use change (240 TgC y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000 2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y-1 compared to the global average of 1.2 tC y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US of Gross Domestic Product (GDP) in Africa in 2005 was 187 gC/, close to the world average of 199 gC/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  11. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2009-03-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 Tg C y-1 for the period 2000-2005. These emissions resulted from the combustion of fossil fuels (260 Tg C y-1) and land use change (240 Tg C y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 Tg C accounting for 3.7% of the global emissions. The 2000-2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 t C y-1 compared to the global average of 1.2 t C y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US{} of Gross Domestic Product (GDP) in Africa was 187 g C/ in 2005, close to the world average of 199 g C/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  12. Climate shocks: Natural and anthropogenic

    SciTech Connect

    Kondratyev, K.Ya.

    1988-01-01

    Much recent climate research has focused on the effects of CO{sub 2} and radiatively important trace species, volcanic eruptions, and nuclear exchanges on our future climate. These studies suggest that anthropogenic influence will alter our present climate. The reliability of the climate models are a subject of debate, yet valid information derived from climate models is critical for policy-makers and politicians to make decisions regarding energy use and development and defense strategies. K.Ya. Kondratyev, a leading Soviet climate scientist, addresses the role of the greenhouse effect, nuclear winter, and volcanic eruptions on our climate in a recently published book entitled Climate Shocks: Natural and Anthropogenic. The book provides a detailed survey of the literature on these fields, including the pertinent Soviet literature that is often not surveyed by Western scientists.

  13. Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Tai, Amos P. K.; Chen, Youfan; Pan, Yuepeng

    2017-08-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen - namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02-0.04 cm s-1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies

  14. Short Time-Scale Enhancements to the Global Thermosphere Temperature and Nitric Oxide Content Resulting From Ionospheric Joule Heating

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Mlynczak, M. G.; Hunt, L. A.; Sutton, E. K.

    2014-12-01

    The total Joule heating in the polar ionosphere can be derived from an empirical model of the electric fields and currents, using input measurements of the solar wind velocity and interplanetary magnetic field (IMF). In the thermosphere, measurements of the neutral density from accelerometers on the CHAMP and GRACE satellites are used to derive exospheric temperatures, showing that enhanced ionospheric energy dissipation produces elevated temperatures with little delay.Using the total ionospheric heating, changes in the global mean exosphere temperature as a function of time can be calculated with a simple differential equation. The results compare very well with the CHAMP and GRACE measurement. A critical part of the calculation is the rate at which the thermosphere cools after the ionospheric heating is reduced. It had been noted previously that events with significant levels of heating subsequently cool at a faster rate, and this cooling was attributed to enhanced nitric oxide emissions. This correlation with nitric oxide has been confirmed with very high correlations with measurements of nitric oxide emissions in the thermosphere, from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. These measurements were used in a recent improvement in the equations that calculate the thermosphere temperature. The global nitric oxide cooling rates are included in this calculation, and the predicted levels of nitric oxide, derived from the ionosphere heating model, match the SABER measurements very well, having correlation coefficients on the order of 0.9.These calculations are used to govern the sorting of measurements CHAMP and GRACE measurements, on the basis of the global temperature enhancements due to Joule heating, as well as various solar indices, and season. Global maps of the exospheric temperature are produced from these sorted data.

  15. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets

    PubMed Central

    Toropainen, Sari; Niskanen, Einari A.; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  16. Oxidation of elemental Hg in anthropogenic and marine airmasses

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Ambrose, J. L.; Jaffe, D. A.

    2013-03-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-enhancement ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM < 0.03) in the Asian source region. Secondly, we observed very high RGM levels - the highest reported in the FT - in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m-3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide observational evidence indicating significant GEM oxidation in the lower FT in some conditions.

  17. Emergence of heat extremes attributable to anthropogenic influences

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Black, Mitchell T.; Min, Seung-Ki; Fischer, Erich M.; Mitchell, Daniel M.; Harrington, Luke J.; Perkins-Kirkpatrick, Sarah E.

    2016-04-01

    Climate scientists have demonstrated that a substantial fraction of the probability of numerous recent extreme events may be attributed to human-induced climate change. However, it is likely that for temperature extremes occurring over previous decades a fraction of their probability was attributable to anthropogenic influences. We identify the first record-breaking warm summers and years for which a discernible contribution can be attributed to human influence. We find a significant human contribution to the probability of record-breaking global temperature events as early as the 1930s. Since then, all the last 16 record-breaking hot years globally had an anthropogenic contribution to their probability of occurrence. Aerosol-induced cooling delays the timing of a significant human contribution to record-breaking events in some regions. Without human-induced climate change recent hot summers and years would be very unlikely to have occurred.

  18. Vocal traits and diet explain avian sensitivities to anthropogenic noise.

    PubMed

    Francis, Clinton D

    2015-05-01

    Global population growth has caused extensive human-induced environmental change, including a near-ubiquitous transformation of the acoustical environment due to the propagation of anthropogenic noise. Because the acoustical environment is a critical ecological dimension for countless species to obtain, interpret and respond to environmental cues, highly novel environmental acoustics have the potential to negatively impact organisms that use acoustics for a variety of functions, such as communication and predator/prey detection. Using a comparative approach with 308 populations of 183 bird species from 14 locations in Europe, North American and the Caribbean, I sought to reveal the intrinsic and extrinsic factors responsible for avian sensitivities to anthropogenic noise as measured by their habitat use in noisy versus adjacent quiet locations. Birds across all locations tended to avoid noisy areas, but trait-specific differences emerged. Vocal frequency, diet and foraging location predicted patterns of habitat use in response to anthropogenic noise, but body size, nest placement and type, other vocal features and the type of anthropogenic noise (chronic industrial vs. intermittent urban/traffic noise) failed to explain variation in habitat use. Strongly supported models also indicated the relationship between sensitivity to noise and predictive traits had little to no phylogenetic structure. In general, traits associated with hearing were strong predictors - species with low-frequency vocalizations, which experience greater spectral overlap with low-frequency anthropogenic noise tend to avoid noisy areas, whereas species with higher frequency vocalizations respond less severely. Additionally, omnivorous species and those with animal-based diets were more sensitive to noise than birds with plant-based diets, likely because noise may interfere with the use of audition in multimodal prey detection. Collectively, these results suggest that anthropogenic noise is a

  19. Real-life experience with personally familiar faces enhances discrimination based on global information

    PubMed Central

    Van Belle, Goedele

    2016-01-01

    Despite the agreement that experience with faces leads to more efficient processing, the underlying mechanisms remain largely unknown. Building on empirical evidence from unfamiliar face processing in healthy populations and neuropsychological patients, the present experiment tested the hypothesis that personal familiarity is associated with superior discrimination when identity information is derived based on global, as opposed to local facial information. Diagnosticity and availability of local and global information was manipulated through varied physical similarity and spatial resolution of morph faces created from personally familiar or unfamiliar faces. We found that discrimination of subtle changes between highly similar morph faces was unaffected by familiarity. Contrariwise, relatively more pronounced physical (i.e., identity) differences were more efficiently discriminated for personally familiar faces, indicating more efficient processing of global, as opposed to local facial information through real-life experience. PMID:26855852

  20. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  1. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  2. Remote sensing data as a proxy of the anthropogenic-induced pollution of river basins

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Ruggeri, Andrea; Elshorbagy, Amin; Laio, Francesco; Montanari, Alberto

    2017-04-01

    The increasing human presence in river watersheds over the past decades can alter ecohydrological processes and in particular nitrogen and phosphorus inputs into river basins. Moving from the recent progress on remote sensing techniques, we analyse several remote sensed databases on the anthropogenic presence across the globe (e.g. Modis Land Cover, Night-time lights, Global Human Settlement Layer, Gridded Population of the World) by focusing on several major rivers of the world. We investigate the temporal evolution of human presence from each dataset, examine their comparability, and finally test for a correlation between the aforementioned human presence and water pollution levels as derived from grey water footprints for several major rivers in the world. Our preliminary results suggest that increasing human presence can effectively enhance water pollution, thus showing how innovative combinations of different data sources can provide useful information on ecohydrological processes.

  3. Industrial age anthropogenic inputs of heavy metals into the pedosphere.

    PubMed

    Han, Fengxiang X; Banin, Amos; Su, Yi; Monts, David L; Plodinec, M John; Kingery, William L; Triplett, Glover E

    2002-11-01

    Heavy metals have been increasingly released into our environment. We present here, for the first time, the global industrial age production of Cd, Cu, Cr, Hg, Ni, Pb, and Zn, and their potential accumulation and environmental effects in the pedosphere. World soils have been seriously polluted by Pb and Cd and slightly by Zn. The potential industrial age anthropogenic Pb, Hg, and Cd inputs in the pedosphere are 9.6, 6.1, and 5.2 times those in the lithosphere, respectively. The potential anthropogenic heavy metal inputs in the pedosphere increased tremendously after the 1950s, especially for Cr and Ni. In 2000, the cumulative industrial age anthropogenic global production of Cd, Cr, Cu, Hg, Ni, Pb, and Zn was 1.1, 105, 451, 0.64, 36, 235, and 354 million tonnes, respectively. The global industrial age metal burdens per capita (in 2000) were 0.18, 17.3, 74.2, 0.10, 5.9, 38.6, and 58.2 kg for Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. Acidification may increase the bioavailability and toxicity of heavy metals in the pedosphere. The improvement of industrial processing technology reducing the metal dispersion rate, the recycling of metal-containing outdated products, by-products and wastes, and the development of new substitute materials for heavy metals are possible strategies to minimize the effects of heavy metals on our environment.

  4. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  5. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    PubMed Central

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-01-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation. PMID:27929098

  6. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    PubMed

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  7. Anthropogenic warming of Earth's climate system.

    PubMed

    Levitus, S; Antonov, J I; Wang, J; Delworth, T L; Dixon, K W; Broccoli, A J

    2001-04-13

    We compared the temporal variability of the heat content of the world ocean, of the global atmosphere, and of components of Earth's cryosphere during the latter half of the 20th century. Each component has increased its heat content (the atmosphere and the ocean) or exhibited melting (the cryosphere). The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component. Simulation results using an atmosphere-ocean general circulation model that includes estimates of the radiative effects of observed temporal variations in greenhouse gases, sulfate aerosols, solar irradiance, and volcanic aerosols over the past century agree with our observation-based estimate of the increase in ocean heat content. The results we present suggest that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.

  8. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in the preindustrial era to 0.11-0.12 Tg Fe yr-1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC) regions of the ocean, the modeled Fe

  9. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2015-08-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we, for the first time, interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. We firstly examined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). We then constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water, by using acidity as a master variable. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in North African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in preindustrial era to 0.11-0.12 Tg Fe yr-1 in present days, due to air pollution. Over the High Nitrate Low Chlorophyll (HNLC) regions of the ocean, the modeled Fe solubility remains low for

  10. A Schematic Description of the Nature of Video-Conferencing and Internet Exchange: Enhancing Global Understanding

    ERIC Educational Resources Information Center

    Mupepi, Mambo

    2014-01-01

    The world is becoming increasingly one multicultural Global village and business and education transnational, which implies that students will need to recognize, accept, and adjust to cultural differences in communications to succeed in their studies as well as in their future careers. This presentation is fundamentally about a niftier way of…

  11. How Academies use science to enhance global security and well-being.

    NASA Astrophysics Data System (ADS)

    Boright, John

    2017-01-01

    Science academies were originally created to facilitate science communication and later to recognize excellence. But in the last 20 years some 150 academies of science, engineering,and medicine around the world have united to cooperate in contributing to human welfare, by: 1. Providing evidence-based inputs to national, regional, and global policies addressing human needs, and 2. Conducting cooperative programs to increase the capacity of academies to provide such advice, and to better connect academies to publics and to policy makers. Examples: At the global level, 112 academies of science produce brief common statements on major global issues. They have also created an organization to provide in-depth reports on major issues such as a transition to sustainable energy systems, boosting agricultural productivity in Africa, and a guide to responsible conduct in the global research enterprise. Regional networks of those academies, in Africa, the Americas, Asia, and Europe conduct program on topics such as water, energy, engagement of women in science, and science education. They also help and mentor new academies.

  12. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  13. Enhancing Global Understanding with Study Abroad: Ethically Grounded Approaches to International Learning

    ERIC Educational Resources Information Center

    Gammonley, Denise; Rotabi, Karen Smith; Gamble, Dorothy N.

    2007-01-01

    Expanding opportunities for short-term overseas study require social work educators to consider ethical implications of these courses. Maximizing global understanding requires skillful facilitation, culturally respectful engagement, and learning activities consistent with ethical codes. Drawing on 10 years of experience leading study abroad trips…

  14. A Schematic Description of the Nature of Video-Conferencing and Internet Exchange: Enhancing Global Understanding

    ERIC Educational Resources Information Center

    Mupepi, Mambo

    2014-01-01

    The world is becoming increasingly one multicultural Global village and business and education transnational, which implies that students will need to recognize, accept, and adjust to cultural differences in communications to succeed in their studies as well as in their future careers. This presentation is fundamentally about a niftier way of…

  15. Enhancing Participation in the U.S. Global Change Research Program

    SciTech Connect

    Washington, Warren; Lee, Kai; Arent, Doug; Avery, Susan; Chakos, Arrietta; Daszak, Peter; Dietz, Thomas; Ebi, Kristie L.; Fischhoff, Baruch; Grimm, Nancy B.; Jacoby, Henry; Janetos, Anthony C.; Kheshgi, Haroon S.; Moss, Richard H.; Noble, Ian; Oge, Margo; Segerson, Kathleen; Tierney, Kathleen; Vorosmarty, Charles J.

    2016-02-29

    The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the current breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.

  16. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  17. Ecology of estuaries: Anthropogenic effects

    SciTech Connect

    Kennish, M.J.

    1992-01-01

    Estuaries and near-shore oceanic water are subjected to a multitude of human wastes. The principal objective of this book is to examine anthropogenic effects on estuaries, and it focuses primarily on contaminants in coastal systems. Covered within various chapters are the following topics: waste disposal strategies; definition and classification of pollutants (including organic loading, oil pollution, polynuclear aromatic hydrocarbons; chlorinated hydrocarbons; heavy metals; radionuclides) biological impacts; waste management; impacts of power plants; dredging and spoil disposal; case studies, primarily Chesapeake Bay. The book serves as a text and as a reference.

  18. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  19. Impact of Anthropogenic Emissions on Isoprene Photochemical Oxidation Pathways in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Thayer, M. P.; Dorris, M. R.; Keutsch, F. N.; Goldstein, A. H.; Guenther, A. B.; Isaacman-VanWertz, G. A.; Jimenez, J. L.; Kim, S.; Liu, Y.; Martin, S. T.; Palm, B. B.; Park, J. H.; Seco, R.; Sjostedt, S. J.; Springston, S. R.; Wernis, R. A.; Yee, L.

    2016-12-01

    The atmosphere over the Amazon rainforest is characterized by high concentrations of biogenic volatile organic compounds (BVOCs) - most notably isoprene, which is the most abundant non-methane VOC both locally and globally. These BVOCs are photochemically oxidized, forming oVOCs, especially via reaction with the hydroxyl radical (OH). This photochemical processing can result in formation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). During the Green Ocean Amazon campaign (GoAmazon2014/5), we obtained formaldehyde and glyoxal measurements together with OH, peroxy radicals (RO2+HO2), nitrogen oxides (NOx), CO, CO2, O3, (o)VOCs, and aerosol particle size distribution. Here we present data collected during 2014 at the T3 field site, 60 km to the west of Manaus, Brazil (3°12'47.82"S, 60°35'55.32"W). The T3 GoAmazon site varies between sampling strictly pristine (biogenic) emissions and influence from anthropogenic emissions from Manaus, depending on meteorological conditions. The day-to-day oscillation provides an ideal setting for evaluating the impact of pollution from biomass burning and urban emissions on VOC oxidation and resultant secondary pollutant production. Anthropogenic plumes contain not only additional VOC precursors, but also enhanced NOx, which drastically alters the relative importance of various isoprene oxidation pathways. We utilize a 0-D photochemical box model to examine how these factors impact reactivity and pollutant formation. Due to ongoing expansion of human influence and emissions in previously-pristine areas, understanding the sensitivity of biogenic oxidation to anthropogenic influence has significant impacts for tropospheric air quality, both in the rapidly-developing Amazon Basin and other BVOC-dominated regions.

  20. Research on enhancing the utilization of digital multispectral data and geographic information systems in global habitability studies

    NASA Technical Reports Server (NTRS)

    Martinko, Edward A.; Merchant, James W.

    1988-01-01

    During 1986 to 1987, the Kansas Applied Remote Sensing (KARS) Program continued to build upon long-term research efforts oriented towards enhancement and development of technologies for using remote sensing in the inventory and evaluation of land use and renewable resources (both natural and agricultural). These research efforts directly addressed needs and objectives of NASA's Land-Related Global Habitability Program as well as needs of and interests of public agencies and private firms. The KARS Program placed particular emphasis on two major areas: development of intelligent algorithms to improve automated classification of digital multispectral data; and integrating and merging digital multispectral data with ancillary data in spatial modes.

  1. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  2. A simple model of the anthropogenically forced CO2 cycle

    NASA Astrophysics Data System (ADS)

    Weber, W.; Lüdecke, H.-J.; Weiss, C. O.

    2015-10-01

    From basic physical assumptions we derive a simple linear model of the global CO2 cycle without free parameters. It yields excellent agreement with the observations reported by the carbon dioxide information analysis center (CDIAC) as time series of atmospheric CO2 growth, of sinks in the ocean and of absorption by the biosphere. The agreement extends from the year 1850 until present (2013). Based on anthropogenic CO2 emission scenarios until 2150, future atmospheric CO2 concentrations are calculated. As the model shows, and depending on the emission scenario, the airborne fraction of CO2 begins to decrease in the year ~ 2050 and becomes negative at the latest in ~ 2130. At the same time the concentration of the atmospheric CO2 will reach a maximum between ~ 500 and ~ 900 ppm. As a consequence, increasing anthropogenic CO2 emissions will make the ocean and the biosphere the main reservoirs of anthropogenic CO2 in the long run. Latest in about 150 years, anthropogenic CO2 emission will no longer increase the CO2 content of the atmosphere.

  3. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  4. Strengthening the evidence-policy interface for patient safety: enhancing global health through hospital partnerships

    PubMed Central

    2013-01-01

    Strengthening the evidence-policy interface is a well-recognized health system challenge in both the developed and developing world. Brokerage inherent in hospital-to-hospital partnerships can boost relationships between “evidence” and “policy” communities and move developing countries towards evidence based patient safety policy. In particular, we use the experience of a global hospital partnership programme focused on patient safety in the African Region to explore how hospital partnerships can be instrumental in advancing responsive decision-making, and the translation of patient safety evidence into health policy and planning. A co-developed approach to evidence-policy strengthening with seven components is described, with reflections from early implementation. This rapidly expanding field of enquiry is ripe for shared learning across continents, in keeping with the principles and spirit of health systems development in a globalized world. PMID:24131652

  5. Strengthening the evidence-policy interface for patient safety: enhancing global health through hospital partnerships.

    PubMed

    Syed, Shamsuzzoha B; Dadwal, Viva; Storr, Julie; Riley, Pamela; Rutter, Paul; Hightower, Joyce D; Gooden, Rachel; Kelley, Edward; Pittet, Didier

    2013-10-16

    Strengthening the evidence-policy interface is a well-recognized health system challenge in both the developed and developing world. Brokerage inherent in hospital-to-hospital partnerships can boost relationships between "evidence" and "policy" communities and move developing countries towards evidence based patient safety policy. In particular, we use the experience of a global hospital partnership programme focused on patient safety in the African Region to explore how hospital partnerships can be instrumental in advancing responsive decision-making, and the translation of patient safety evidence into health policy and planning. A co-developed approach to evidence-policy strengthening with seven components is described, with reflections from early implementation. This rapidly expanding field of enquiry is ripe for shared learning across continents, in keeping with the principles and spirit of health systems development in a globalized world.

  6. Counterterrorism: DOD Should Enhance Management of and Reporting on Its Global Train and Equip Program

    DTIC Science & Technology

    2016-04-01

    and Equip program, to build the capacity of its foreign partners to counter terrorism . Funding allocated for this program totals $2.3 billion since...funds allocated in fiscal years 2006 through 2013— indicate some progress in building capability to combat terrorism and conduct stability...Global Train and Equip program, to build the capacity of its foreign partners to counter terrorism . Congress originally authorized a temporary program

  7. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  8. Continental anthropogenic primary particle number emissions

    NASA Astrophysics Data System (ADS)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  9. Global warming possibly linked to an enhanced risk of suicide: data from Italy, 1974-2003.

    PubMed

    Preti, A; Lentini, G; Maugeri, M

    2007-09-01

    The global increase in surface temperature (known as global warming) was found to impact on mortality through ill health, particularly among the elderly and in summer. This study sets out to explore the impact of global warming on suicide mortality, using data from Italy. Monthly data on suicide mortality and temperature were obtained for a 30-year period (from January 1974 to December 2003), and the relation between them was investigated using the Gaussian low-pass filter, linear correlation analysis and rank analysis. For males, increasing anomalies in monthly average temperatures associated to a higher monthly suicide mean from May to August and, to a lower extent, in November and December. In January, on the other hand, increasing anomalies in monthly average temperatures appeared to be coupled to a lower number of suicides. For females, the links between temperature and suicides are less consistent than for males, and sometimes have a reverse sign, too. Data could not be analyzed according to age, since this information was not available across the whole time interval. The use of monthly data, instead of daily data (unavailable), is another major limitation of this study. An improvement in the ability of communities to adjust to temperature changes by implementing public health interventions may play an important part in preserving the wellness of the general population, and also in limiting the worst consequences of suicidal behaviour.

  10. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds.

    PubMed

    Latham, John; Rasch, Philip; Chen, Chih-Chieh; Kettles, Laura; Gadian, Alan; Gettelman, Andrew; Morrison, Hugh; Bower, Keith; Choularton, Tom

    2008-11-13

    An assessment is made herein of the proposal that controlled global cooling sufficient to balance global warming resulting from increasing atmospheric CO2 concentrations might be achieved by seeding low-level, extensive maritime clouds with seawater particles that act as cloud condensation nuclei, thereby activating new droplets and increasing cloud albedo (and possibly longevity). This paper focuses on scientific and meteorological aspects of the scheme. Associated technological issues are addressed in a companion paper. Analytical calculations, cloud modelling and (particularly) GCM computations suggest that, if outstanding questions are satisfactorily resolved, the controllable, globally averaged negative forcing resulting from deployment of this scheme might be sufficient to balance the positive forcing associated with a doubling of CO2 concentration. This statement is supported quantitatively by recent observational evidence from three disparate sources. We conclude that this technique could thus be adequate to hold the Earth's temperature constant for many decades. More work--especially assessments of possible meteorological and climatological ramifications--is required on several components of the scheme, which possesses the advantages that (i) it is ecologically benign--the only raw materials being wind and seawater, (ii) the degree of cooling could be controlled, and (iii) if unforeseen adverse effects occur, the system could be immediately switched off, with the forcing returning to normal within a few days (although the response would take a much longer time).

  11. External control of 20th century temperature by natural and anthropogenic forcings.

    PubMed

    Stott, P A; Tett, S F; Jones, G S; Allen, M R; Mitchell, J F; Jenkins, G J

    2000-12-15

    A comparison of observations with simulations of a coupled ocean-atmosphere general circulation model shows that both natural and anthropogenic factors have contributed significantly to 20th century temperature changes. The model successfully simulates global mean and large-scale land temperature variations, indicating that the climate response on these scales is strongly influenced by external factors. More than 80% of observed multidecadal-scale global mean temperature variations and more than 60% of 10- to 50-year land temperature variations are due to changes in external forcings. Anthropogenic global warming under a standard emissions scenario is predicted to continue at a rate similar to that observed in recent decades.

  12. Car Catalysts Impact on Anthropogenic Osmium Budget

    NASA Astrophysics Data System (ADS)

    Poirier, A.; Gariepy, C.

    2004-05-01

    A few sources of anthropogenic osmium have been identified that clearly contribute to the observed increase in unradiogenic osmium in recent urban sediments (a major one being biomedical use of OsO4 as a lipid stain used to enhance cell structures for optical and electron microscopy (1,2,3,4)). Previous studies suggested the possibility that automobile catalytic converters might also contribute to this Os pollution, even though this metal is not directly employed in car catalysts (1,4). The importance of this potential source has never been quantitatively tested. Here, we present results for the Os isotope analysis of 4 new catalytic converters. The unradiogenic 187Os/188Os composition of all catalytic converters is similar to typical platinum group elements ore (5). The measured Os concentrations are in the pg/g range (6-228 pg/g). The physical conditions in catalysts (oxidising environment and 300 \\deg C) are effective in promoting the oxidation of osmium to its gaseous form. We therefore expect that osmium volatility plays an important role in releasing Os from the catalysts. Based on measured concentrations, we estimate that car catalysts could be responsible for up to several picograms of anthropogenic osmium deposited per square meter in urban areas every year. Our results strengthen the idea that automobile catalytic converters might be a significant source of Os pollution. 1.Ravizza, G. E. and Bothner, M. H. (1996) Geochimica et Cosmochimica Acta, 60; 15, 2753-2763. 2.Smith, I. C., Carson, B. L., and Ferguson T.L. (1974) Environmental Health Perspectives, 8, 201-213. 3.Esser, B. K. and Turekian, K. K. (1993) Environmental Science and Technology, 27; 13, 2719-2724. 4.Rauch S., Hemond H.F., and Peucker-Ehrenbrink, B. (2004) Environmental Science and Technology, 38, 396-402. 5.McCandless, T. and Ruiz, J. (1991) Geology, 19, 1225-1228.

  13. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  14. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  15. Changes in temporal variability of precipitation over land due to anthropogenic forcings

    DOE PAGES

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    2017-02-02

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less

  16. Changes in temporal variability of precipitation over land due to anthropogenic forcings

    NASA Astrophysics Data System (ADS)

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    2017-02-01

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcing (ALL) with simulations of natural forcing only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005, our results indicate that anthropogenic forcing have resulted in decreased uniformity (i.e. increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. The results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.

  17. CLIMATE VARIABILITY, ANTHROPOGENIC CHANGE, AND CONSEQUENCES IN THE MID-ATLANTIC

    EPA Science Inventory

    When compared to the preceding millennium, the rate of temperature change over the past century strongly suggests that we are in a period of rapid global climate change. Globally, continued anthropogenic increases in concentrations of atmospheric greenhouse gases probably will re...

  18. Impact of Global School/University Partnerships on Science Teacher Enhancement.

    ERIC Educational Resources Information Center

    Hassard, Jack; Weisberg, Julie

    This study investigates a model for teacher enhancement that incorporates cross-cultural interaction and the construction of web-based environmental teaching modules that would support sustained collaborative inquiry among students and teachers. Over a two-year period, web-assisted environmental inquiries and web-based teaching modules were…

  19. National Writing Project's Multimodal Literacies and Teacher Collaboration: Enhanced Student Learning on Global Social Issues

    ERIC Educational Resources Information Center

    Iyengar, Kalpana; Hood, Caleb

    2016-01-01

    Iyengar and Hood, both teacher consultants with the San Antonio Writing Project (SAWP), and instructors of an undergraduate society and social issues class, collaborated to enhance their undergraduate students' writing experiences using the National Writing Project model (Lieberman & Wood, 2003). Iyengar and Hood used strategies such as…

  20. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. Copyright © 2014, American Association for the Advancement of Science.

  1. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    PubMed Central

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  2. Where have all the people gone? Enhancing global conservation using night lights and social media.

    PubMed

    Levin, Noam; Kark, Salit; Crandall, David

    2015-12-01

    Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social

  3. Global testicular infarction in the presence of epididymitis: clinical features, appearances on grayscale, color Doppler, and contrast-enhanced sonography, and histologic correlation.

    PubMed

    Yusuf, Gibran; Sellars, Maria E; Kooiman, Gordon G; Diaz-Cano, Salvador; Sidhu, Paul S

    2013-01-01

    Epididymitis is common, presenting indolently with unilateral scrotal pain and swelling. Diagnosis is based on clinical assessment and resolves with antibiotic therapy. Recognized complications are abscess formation and segmental infarction. Global testicular infarction is rare. Diagnosis is important and requires surgical management. On grayscale sonography, global infarction may be difficult to establish. The addition of color Doppler imaging is useful but is observer experience dependent with limitations in the presence of low flow. Contrast-enhanced sonography is useful for unequivocally establishing the diagnosis. We report global testicular infarction in 2 patients with epididymitis clearly depicted on contrast-enhanced sonography, allowing immediate surgical management.

  4. Trends of anthropogenic mercury emissions from 1970-2008 using the global EDGARv4 database: the role of increasing emission mitigation by the energy sector and the chlor-alkali industry

    NASA Astrophysics Data System (ADS)

    Muntean, M.; Janssens-Maenhout, G.; Olivier, J. G.; Guizzardi, D.; Dentener, F. J.

    2012-12-01

    The Emission Database for Global Atmospheric Research (EDGAR) describes time-series of emissions of man-made greenhouse gases and short-lived atmospheric pollutants from 1970-2008. EDGARv4 is continuously updated to respond to needs of both the scientific community and environmental policy makers. Mercury, a toxic pollutant with bioaccumulation properties, is included in the forthcoming EDGARv4.3 release, thereby enriching the spectrum of multi-pollutant sources. Three different forms of mercury have been distinguished: gaseous elemental mercury (Hg0), divalent mercury compounds (Hg2+) and particulate associated mercury (Hg-P). A complete inventory of mercury emission sources has been developed at country level using the EDGAR technology-based methodology together with international activity statistics, technology-specific abatement measures, and emission factors from EMEP/EEA (2009), USEPA AP 42 and the scientific literature. A comparison of the EDGAR mercury emission data to the widely used UNEP inventory shows consistent emissions across most sectors compared for the year 2005. The different shares of mercury emissions by region and by sector will be presented with special emphasis on the region-specific mercury emission mitigation potential. We provide a comprehensive ex-post analysis of the mitigation of mercury emissions by respectively end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry between 1970 and 2008. Given the local scale impacts of mercury, we have paid special attention to the spatial distribution of emissions. The default EDGAR Population proxy data was only used to distribute emissions from the residential and solid waste incineration sectors. Other sectors use point source data of power plants, industrial plants, gold and mercury mines. The 2008 mercury emission distribution will be presented, which shows emissions hot-spots on a 0.1°x0.1°resolution gridmap.

  5. Attributing physical and biological impacts to anthropogenic climate change.

    PubMed

    Rosenzweig, Cynthia; Karoly, David; Vicarelli, Marta; Neofotis, Peter; Wu, Qigang; Casassa, Gino; Menzel, Annette; Root, Terry L; Estrella, Nicole; Seguin, Bernard; Tryjanowski, Piotr; Liu, Chunzhen; Rawlins, Samuel; Imeson, Anton

    2008-05-15

    Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.

  6. Graph-theoretical model of global human interactome reveals enhanced long-range communicability in cancer networks

    PubMed Central

    Gladilin, Evgeny

    2017-01-01

    Malignant transformation is known to involve substantial rearrangement of the molecular genetic landscape of the cell. A common approach to analysis of these alterations is a reductionist one and consists of finding a compact set of differentially expressed genes or associated signaling pathways. However, due to intrinsic tumor heterogeneity and tissue specificity, biomarkers defined by a small number of genes/pathways exhibit substantial variability. As an alternative to compact differential signatures, global features of genetic cell machinery are conceivable. Global network descriptors suggested in previous works are, however, known to potentially be biased by overrepresentation of interactions between frequently studied genes-proteins. Here, we construct a cellular network of 74538 directional and differential gene expression weighted protein-protein and gene regulatory interactions, and perform graph-theoretical analysis of global human interactome using a novel, degree-independent feature—the normalized total communicability (NTC). We apply this framework to assess differences in total information flow between different cancer (BRCA/COAD/GBM) and non-cancer interactomes. Our experimental results reveal that different cancer interactomes are characterized by significant enhancement of long-range NTC, which arises from circulation of information flow within robustly organized gene subnetworks. Although enhancement of NTC emerges in different cancer types from different genomic profiles, we identified a subset of 90 common genes that are related to elevated NTC in all studied tumors. Our ontological analysis shows that these genes are associated with enhanced cell division, DNA replication, stress response, and other cellular functions and processes typically upregulated in cancer. We conclude that enhancement of long-range NTC manifested in the correlated activity of genes whose tight coordination is required for survival and proliferation of all tumor cells

  7. Anthropogenic noise changes arthropod abundances.

    PubMed

    Bunkley, Jessie P; McClure, Christopher J W; Kawahara, Akito Y; Francis, Clinton D; Barber, Jesse R

    2017-05-01

    Anthropogenic noise is a widespread and growing form of sensory pollution associated with the expansion of human infrastructure. One specific source of constant and intense noise is that produced by compressors used for the extraction and transportation of natural gas. Terrestrial arthropods play a central role in many ecosystems, and given that numerous species rely upon airborne sounds and substrate-borne vibrations in their life histories, we predicted that increased background sound levels or the presence of compressor noise would influence their distributions. In the second largest natural gas field in the United States (San Juan Basin, New Mexico, USA), we assessed differences in the abundances of terrestrial arthropod families and community structure as a function of compressor noise and background sound level. Using pitfall traps, we simultaneously sampled five sites adjacent to well pads that possessed operating compressors, and five alternate, quieter well pad sites that lacked compressors, but were otherwise similar. We found a negative association between sites with compressor noise or higher levels of background sound and the abundance of five arthropod families and one genus, a positive relationship between loud sites and the abundance of one family, and no relationship between noise level or compressor presence and abundance for six families and two genera. Despite these changes, we found no evidence of community turnover as a function of background sound level or site type (compressor and noncompressor). Our results indicate that anthropogenic noise differentially affects the abundances of some arthropod families. These preliminary findings point to a need to determine the direct and indirect mechanisms driving these observed responses. Given the diverse and important ecological functions provided by arthropods, changes in abundances could have ecological implications. Therefore, we recommend the consideration of arthropods in the environmental

  8. Global terrestrial N2O budget for present and future

    NASA Astrophysics Data System (ADS)

    Olin, Stefan; Xing, Xu-Ri; Wårlind, David; Eliasson, Peter; Smith, Ben; Arneth, Almut

    2017-04-01

    Nitrogen (N) plays an important role in plant productivity and physiology and is the main limiting nutrient in a majority of the terrestrial ecosystems. The enhanced input of anthropogenic reactive nitrogen (Nr) in agriculture have enhanced global food production, but with adverse effects on biodiversity and water quality, and substantially increased emissions of N trace gases that affect air quality and climate. Emissions of N gases affects the climate, either through cloud forming nitrogen oxides (NOx) gases or as greenhouse gases, where nitrous oxide (N2O) is the most important being approximately 300 times more potent than carbon dioxide (CO2). In this study we use the process-based global vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Olin et al. 2015) that recently have incorporated a new soil N transformation scheme, adopted from Xu-Ri and Prentice (2008), which makes it possible to study the N2O emission respond to changes in climate and CO2 concentration as well as anthropogenic N enhancements on a global scale. We present here results from the validation of the new model against site-scale N2O measurements from agricultural and non-agricultural ecosystems. We will also present results from a study to examine how land use, land use change and anthropogenic N fertilisation influence historical and future global N2O emissions. This new development represents a key component within future projects in CMIP6 (LUMIP) and in EC-Earth for the EU Horizon 2020 project CRESCENDO. Olin, S., Lindeskog, M., Pugh, T., Schurgers, G., Mischurow, M., Wårlind, D., Zaehle, S., Stocker, B., Smith, B. and Arneth, A. 2015. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 6, 745-768. Xu-Ri and Prentice IC. 2008. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14, 1745-1764.

  9. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    SciTech Connect

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto; Tsui, Kwok; Zhuang, Jie; Yang, Bai

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes. To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.

  10. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  11. Enhancing Student International Awareness and Global Competency through Compact International Experience Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schubert, Thomas

    2013-11-01

    Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.

  12. On the fall 2010 Enhancements of the Global Precipitation Climatology Centre's Data Sets

    NASA Astrophysics Data System (ADS)

    Becker, A. W.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Finger, P.; Rudolf, B.

    2010-12-01

    Precipitation is meanwhile a top listed parameter on the WMO GCOS list of 44 essential climate variables (ECV). This is easily justified by its crucial role to sustain any form of life on earth as major source of fresh water, its major impact on weather, climate, climate change and related issues of society’s adaption to the latter. Finally its occurrence is highly variable in space and time thus bearing the potential to trigger major flood and draught related disasters. Since its start in 1989 the Global precipitation Climatology Centre (GPCC) performs global analyses of monthly precipitation for the earth’s land-surface on the basis of in-situ measurements. The effort was inaugurated as part of the Global Precipitation Climatology Project of the WMO World Climate Research Program (WCRP). Meanwhile, the data set has continuously grown both in temporal coverage (original start of the evaluation period was 1986), as well as extent and quality of the underlying data base. The number of stations involved in the related data base has approximately doubled in the past 8 years by trespassing the 40, 60 and 80k thresholds in 2002, 2006 and 2010. Core data source of the GPCC analyses are the data from station networks operated by the National Meteorological Services worldwide; data deliveries have been received from ca. 190 countries. The GPCC integrates also other global precipitation data collections (i.e. FAO, CRU and GHCN), as well as regional data sets. Currently the Africa data set from S. Nicholson (Univ. Tallahassee) is integrated. As a result of these efforts the GPCC holds the worldwide largest and most comprehensive collection of precipitation data, which is continuously updated and extended. Due to the high spatial-temporal variability of precipitation, even its global analysis requires this high number of stations to provide for a sufficient density of measurement data on almost any place on the globe. The acquired data sets are pre-checked, reformatted

  13. Chaos-enhanced Stochastic Fractal Search algorithm for Global Optimization with Application to Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Rahman, Tuan A. Z.; Jalil, N. A. Abdul; As'arry, A.; Raja Ahmad, R. K.

    2017-06-01

    Support vector machine (SVM) has been known as one-state-of-the-art pattern recognition method. However, the SVM performance is particularly influenced byits parameter selection. This paper presents the parameter optimization of an SVM classifier using chaos-enhanced stochastic fractal search (SFS) algorithm to classify conditions of a ball bearing. The vibration data for normal and damaged conditions of the ball bearing system obtained from the Case Western Reserve University Bearing Data Centre. Features based on time and frequency domains were generated to characterize the ball bearing conditions. The performance of chaos-enhanced SFS algorithms in comparison to their predecessor algorithm is evaluated. In conclusion, the injection of chaotic maps into SFS algorithm improved its convergence speed and searching accuracy based on the statistical results of CEC 2015 benchmark test suites and their application to ball bearing fault diagnosis.

  14. Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes

    PubMed Central

    Weinstein, Jason S.; Lezon-Geyda, Kimberly; Maksimova, Yelena; Craft, Samuel; Zhang, Yaoping; Su, Mack; Schulz, Vincent P.

    2014-01-01

    T follicular helper (Tfh) cells are a subset of CD4+ T helper cells that migrate into germinal centers and promote B-cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence-activated cell sorting–based strategy, we obtained primary Tfh and non-Tfh T effector cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by chromatin immunoprecipitation–sequencing, with parallel transcriptome analyses determined by RNA sequencing. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. PMID:25331115

  15. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Heflin, M. B.; Peltzer, G.; Crampe, F.; Webb, F. H.

    2005-05-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm/yr in the Santa Ana and San Gabriel aquifers and faster than 5 mm/yr in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm/yr at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel mountains shortening at 4.5 ±1 mm/yr (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ±2 mm/yr beneath and north of a position 6 ±2 km deep and 8 ±8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  16. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Heflin, Michael B.; Peltzer, Gilles; Crampé, FréDeric; Webb, Frank H.

    2005-04-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm yr-1 in the Santa Ana and San Gabriel aquifers and faster than 5 mm yr-1 in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm yr-1 at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel Mountains shortening at 4.5 ± 1 mm yr-1 (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ± 2 mm yr-1 beneath and north of a position 6 ± 2 km deep and 8 ± 8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  17. Upper-tropospheric moistening in response to anthropogenic warming

    PubMed Central

    Chung, Eui-Seok; Soden, Brian; Sohn, B. J.; Shi, Lei

    2014-01-01

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean–atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979–2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change. PMID:25071183

  18. Early emergence in a butterfly causally linked to anthropogenic warming.

    PubMed

    Kearney, Michael R; Briscoe, Natalie J; Karoly, David J; Porter, Warren P; Norgate, Melanie; Sunnucks, Paul

    2010-10-23

    There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted -1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.

  19. Upper-tropospheric moistening in response to anthropogenic warming.

    PubMed

    Chung, Eui-Seok; Soden, Brian; Sohn, B J; Shi, Lei

    2014-08-12

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean-atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979-2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change.

  20. Microbial DNA records historical delivery of anthropogenic mercury

    PubMed Central

    Poulain, Alexandre J; Aris-Brosou, Stéphane; Blais, Jules M; Brazeau, Michelle; Keller, Wendel (Bill); Paterson, Andrew M

    2015-01-01

    Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions. PMID:26057844

  1. Mass Transport Separation via Grace: Anthropogenic and Natural Change

    NASA Astrophysics Data System (ADS)

    Dickey, J. O.; de Viron, O.

    2011-12-01

    The GRACE satellite has been monitoring the change in the mass distribution at the Earth surface for nearly 10 years. This becomes enough to study long-term mass change, and to separate interannual variations from trends. Up to now, many studies have shown a fast (and non-linear) loss of mass in many glaciers and ice sheets. They all have been attributed to global warming, though part of the mass variation is also associated with the classical long-term climate variation. Using climatic data as well as the GRACE mascon solution, we can separate the part associated to the anthropogenic part from the non-anthropogenic part, in order to better estimate those contributions. Results and implications from our analyses will be presented.

  2. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  3. Anthropogenic impacts on the biogeochemistry and cycling of antimony.

    PubMed

    Shotyk, William; Krachler, Michael; Chen, Bin

    2005-01-01

    Antimony is a potentially toxic trace element with no known biological function. Antimony is commonly enriched in coals, and fossil fuel combustion appears to be the largest single source of anthropogenic Sb to the global atmosphere. Abundant in sulfide minerals, its emission to the atmosphere from anthropogenic activities is linked to the mining and metallurgy of non-ferrous metals, especially Pb, Cu, and Zn. In particular, the geochemical and mineralogical association of Sb with Pb minerals implies that, like Pb, Sb has been emitted to the environment for thousands of years because of Pb mining, smelting, and refining. In the US alone, there are more than 400 former secondary lead smelting operations and worldwide there are 133 Pb-Zn smelters in operation today. Antimony is used in creating and improving dozens of industrial and commercial materials including various alloys, ceramics, glasses, plastics, and synthetic fabrics, making waste incineration another important source of Sb to the environment. Enrichments of Sb in atmospheric aerosols, plants, soils, sediments, as well as alpine and polar snow and ice suggest that Sb contamination is extensive, but there are very few quantitative studies of the geographic extent, intensity, and chronology of this contamination. There is an urgent need to quantify the extent of human impacts and how these have changed with time. The decreasing inventories of anthropogenic Sb with time in peat cores from Switzerland and Scotland suggest that the atmospheric Sb flux may be declining, but there have been too few studies to make any general conclusions. In fact, some studies of sediments and biomonitors in central Europe show little decline in Sb concentrations during the past decades. There is an obvious need for reliable data from well dated archives such as polar snow and ice, peat bogs, and sediments. The air concentrations, extent of enrichment, particle size distribution, and rate of deposition of Sb in urban areas is

  4. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a

  5. Salinity changes relative to the response to anthropogenic forcing and internal variability in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Vinogradova, Nadya; Buckley, Martha

    2017-04-01

    Over the past few decades, surface waters in the subpolar North Atlantic have experienced substantial fluctuations, including periods of rapid cooling and freshening alternating with the periods of enhanced warming, salinification, and decreased circulation of the gyre. Since these waters feed the North Atlantic thermohaline circulation, such changes have the potential to impact the global ocean circulation and future climate states. A number of potential causes for the observed changes have been suggested, including those related to the strength of the ocean circulation and heat transports, as well as other factors, such as anthropogenic aerosol forcing or changes in surface fluxes. Here we assess how the observed warming/salinification events fit into the long-term picture, focusing on variations in upper-ocean salinity. Salinification of the subpolar North Atlantic may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Using a suite of in situ salinity observations spanning the last 60 years, modern satellite salinity observations from Aquarius and SMOS missions, and multi-decadal realizations from global climate models, we estimate the likelihood of such salinity changes in the context of the historical record, contemporary estimates, and future projections. Results are discussed in terms of the probability of occurrence of a decade-long salinification in the presence of the background freshening in response to anthropogenic forcing. In particular, computed probabilities suggest that such "unusual" salinification events are plausible under the strong influence of internal, decadal-to-interdecadal variability.

  6. Global Equity and Resource Sustainability: the Central Roles of Conservation and Enhanced Efficiency

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.

    2002-05-01

    The terrestrial biosphere arose at approximately 3.5 Ga, and since the early Archean, evolving life has maintained a dynamic equilibrium with solar energy and resources derived from the lithosphere, hydrosphere and atmosphere. This well-integrated system persisted after the emergence of Homo sapiens while we remained in a hunter/gatherer mode. Beginning about 10,000 years ago, settled agriculture allowed for division of labor, and the rise of civilization. World population now exceeds six billion individuals, and is growing at about ninety million annually. By about 2050, demographic estimates put our numbers at 9-10 billion. Approximately 85 percent of humanity now reside in the Developing Nations. Most people desire the increased standard of living now confined to the Industrialized Nations (due largely to exploitation of the planet). The present distribution of wealth is grossly inequitable and politically destabilizing. But can all people be afforded reasonably comfortable lives without destroying planetary habitability? Of the Earth's net primary biological production, humans control about a third, and our share is increasing. The impact on the environment is largely adverse, resulting in heightened air and water pollution, accelerated loss of biodiversity, ecosystem services, topsoil, fisheries, tropical rain forests, and in global warming + sea-level rise. Implications for human welfare and for viability of the web of life are ominous. Modern societies are sustained by the extraction of energy, water, and other Earth materials far beyond renewal rates, limiting future global carrying capacity. Island communities (e. g., Easter Island, Haiti, Madagascar) provide sobering examples of the fate of cultures that overexploit their environments. The biological carrying capacity of the planet is unknown but finite, hence humanity eventually must reach a managed steady state involving efficient, universal resource recovery and world-wide conservation, while

  7. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGES

    Campbell, J. E.; Whelan, Mary; Seibt, U.; ...

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  8. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  9. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis

    PubMed Central

    Pan, Xiaoyue; Bradfield, Christopher A.; Hussain, M. Mahmood

    2016-01-01

    Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe−/− and Ldlr−/− mice and its liver-specific ablation in Apoe−/− (L-Bmal1−/−Apoe−/−) mice increases, whereas overexpression of BMAL1 in L-Bmal1−/−Apoe−/− and Apoe−/−mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1−/−Apoe−/− and Apoe−/− mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4. PMID:27721414

  10. Learning globally to enhance local practice: an international programme in primary care & family health.

    PubMed

    Godoy-Ruiz, Paula; Rodas, Jamie; Talbot, Yves; Rouleau, Katherine

    2016-09-01

    In a global context of growing health inequities, international learning experiences have become a popular strategy for equipping health professionals with skills, knowledge, and competencies required to work with the populations they serve. This study sought to analyse the Chilean Interprofessional Programme in Primary Health Care (CIPPHC), a 5 week international learning experience funded by the Ministry of Health in Chile targeted at Chilean primary care providers and delivered in Toronto by the Department of Family and Community Medicine at the University of Toronto. The study focused on three cohorts of students (2010-2012). Anonymous programme evaluations were analysed and semi-structured interviews conducted with programme alumni. Simple descriptive statistics were gathered from the evaluations and the interviews were analysed via thematic content analysis. The majority of participants reported high levels of satisfaction with the training programme, knowledge gain, particularly in the areas of the Canadian model of primary care, and found the materials delivered to be applicable to their local context. The CIPPHC has proven to be a successful educational initiative and provides valuable lessons for other academic centres in developing international interprofessional training programmes for primary care health care providers.

  11. Community Involvement in Enhancing the Global Change Master Directory (GCMD) Controlled Vocabularies (Keywords)

    NASA Technical Reports Server (NTRS)

    Stevens, T.; Ritz, S.; Aleman, A.; Genazzio, M.; Morahan, M.; Wharton, S.

    2016-01-01

    NASA's Global Change Master Directory (GCMD) develops and expands a hierarchical set of controlled vocabularies (keywords) covering the Earth sciences and associated information (data centers, projects, platforms, instruments, etc.). The purpose of the keywords is to describe Earth science data and services in a consistent and comprehensive manner, allowing for the precise searching of metadata and subsequent retrieval of data and services. The keywords are accessible in a standardized SKOSRDFOWL representation and are used as an authoritative taxonomy, as a source for developing ontologies, and to search and access Earth Science data within online metadata catalogues. The keyword development approach involves: (1) receiving community suggestions, (2) triaging community suggestions, (3) evaluating the keywords against a set of criteria coordinated by the NASA ESDIS Standards Office, and (4) publication/notification of the keyword changes. This approach emphasizes community input, which helps ensure a high quality, normalized, and relevant keyword structure that will evolve with users changing needs. The Keyword Community Forum, which promotes a responsive, open, and transparent processes, is an area where users can discuss keyword topics and make suggestions for new keywords. The formalized approach could potentially be used as a model for keyword development.

  12. MO-E-18C-05: Global Health Catalyst: A Novel Platform for Enhancing Access to Medical Physics Education and Research Excellence (AMPERE)

    SciTech Connect

    Ngwa, W; Moreau, M; Asana, L

    2014-06-15

    Purpose: To develop a platform for catalyzing collaborative global Cancer Care Education and Research (CaRE), with a prime focus on enhancing Access to Medical Physics Education and Research Excellence (AMPERE) Methods: An analysis of over 50 global health collaborations between partners in the U.S. and low and middle income countries (LMIC) in Africa was carried out to assess the models of collaborations in Education and Research and relative success. A survey was carried out with questions including: the nature of the collaboration, how it was initiated, impact of culture and other factors, and recommendations for catalyzing/enhancing such collaborations. An online platform called Global Health Catalyst was developed for enhancing AMPERE. Results: The analysis yielded three main models for global health collaborations with survey providing key recommendations on how to enhance such collaborations. Based on this, the platform was developed, and customized to allow Medical Physicists and other Radiation oncology (RadOnc) professionals interested in participating in Global health to readily do so e.g. teach an online course module, participate in training Medical Physicists or other RadOnc health professionals in LMIC, co-mentor students, residents or postdocs, etc. The growing list of features on the platform also include: a feature to enable people to easily find each other, form teams, operate more effectively as partners from different disciplines, institutions, nations and cultural backgrounds, share tools and technologies, obtain seed funding to develop curricula and/or embark upon new areas of investigation, and participate in humanitarian outreach: remote treatment planning assistance, and participation in virtual Chart Rounds, etc. Conclusion: The developed Global Health Catalyst platform could enable any Medical Physicist or RadoOnc professional interested in global health to readily participate in the Education/training of next generation Rad

  13. Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.

    2014-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.

  14. An enhanced MITOMAP with a global mtDNA mutational phylogeny

    PubMed Central

    Ruiz-Pesini, Eduardo; Lott, Marie T.; Procaccio, Vincent; Poole, Jason C.; Brandon, Marty C.; Mishmar, Dan; Yi, Christina; Kreuziger, James; Baldi, Pierre; Wallace, Douglas C.

    2007-01-01

    The MITOMAP () data system for the human mitochondrial genome has been greatly enhanced by the addition of a navigable mutational mitochondrial DNA (mtDNA) phylogenetic tree of ∼3000 mtDNA coding region sequences plus expanded pathogenic mutation tables and a nuclear-mtDNA pseudogene (NUMT) data base. The phylogeny reconstructs the entire mutational history of the human mtDNA, thus defining the mtDNA haplogroups and differentiating ancient from recent mtDNA mutations. Pathogenic mutations are classified by both genotype and phenotype, and the NUMT sequences permits detection of spurious inclusion of pseudogene variants during mutation analysis. These additions position MITOMAP for the implementation of our automated mtDNA sequence analysis system, Mitomaster. PMID:17178747

  15. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1–10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor “foreshocks”, since the induction may occur with a delay up to several years. PMID:25156190

  16. Anthropogenic noise affects vocal interactions.

    PubMed

    McMullen, Heather; Schmidt, Rouven; Kunc, Hansjoerg P

    2014-03-01

    Animal communication plays a crucial role in many species, and it involves a sender producing a signal and a receiver responding to that signal. The shape of a signal is determined by selection pressures acting upon it. One factor that exerts selection on acoustic signals is the acoustic environment through which the signal is transmitted. Recent experimental studies clearly show that senders adjust their signals in response to increased levels of anthropogenic noise. However, to understand how noise affects the whole process of communication, it is vital to know how noise affects the receiver's response during vocal interactions. Therefore, we experimentally manipulated ambient noise levels to expose male European robins (Erithacus rubecula) to two playback treatments consisting of the same song: one with noise and another one without noise. We found that males responding to a conspecific in a noise polluted environment increased minimum frequency and decreased song complexity and song duration. Thus, we show that the whole process of communication is affected by noise, not just the behaviour of the sender.

  17. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  18. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered.

  19. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing.

    PubMed

    Jiang, Li; Shao, Changwei; Wu, Qi-Jia; Chen, Geng; Zhou, Jie; Yang, Bo; Li, Hairi; Gou, Lan-Tao; Zhang, Yi; Wang, Yangming; Yeo, Gene W; Zhou, Yu; Fu, Xiang-Dong

    2017-10-01

    MicroRNA (miRNA) biogenesis is known to be modulated by a variety of RNA-binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. Here, we report that the RNA-binding NONO-PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha-DGCR8 Microprocessor. NONO and PSF are key components of paraspeckles organized by the long noncoding RNA (lncRNA) NEAT1. We further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with the NONO-PSF heterodimer as well as many other RBPs and that multiple RNA segments in NEAT1, including a 'pseudo pri-miRNA' near its 3' end, help attract the Microprocessor. These findings suggest a 'bird nest' model in which an lncRNA orchestrates efficient processing of potentially an entire class of small noncoding RNAs in the nucleus.

  20. Anthropogenic Hg in the ocean: Trajectories of change and implications for exposure in the United States

    NASA Astrophysics Data System (ADS)

    Amos, H. M.; Corbitt, E. S.; Bullard, K. T.; Sunderland, E. M.

    2014-12-01

    Humans have been releasing mercury (Hg) to the environment for millenia through activities such as mining and fuel combustion. The result has been an enrichment of the ocean, atmosphere, and terrestrial ecosystems. Consumption of marine fish contaminated with methylmercury (MeHg) is the primary route of exposure in many populations globally. We present an updated analysis of sources of MeHg exposures in the United States that shows the majority (>70%) is from oceanic fish rather than coastal species. Using a fully coupled biogeochemical box model we also estimate Hg accumulation across major ocean basins and show anthropogenic enrichment is highest in the North Atlantic Ocean and lowest in the deep Pacific Ocean. Our results for contemporary ocean concentrations are consistent with recent data from the Pacific, Atlantic, Indian and Southern Oceans measured as part of the CLIVAR repeat hydrography program. Our estimates of natural (i.e., pre-anthropogenic) seawater Hg concentrations are lower than suggested by other studies, implying a greater anthropogenic perturbation in the ocean. Our work suggests total accumulation of anthropogenic Hg in the global oceans is greater than recently derived based on anthropogenic CO2. We compare modeled seawater concentrations since 1980 to observations over this period to evaluate evidence for changes in recent decades and then investigate potential impacts of changing global emissions. To do this, we use a range of historical and future anthropogenic Hg emission inventories. Our previous work using the box model indicates burial of Hg at ocean margins is the single largest global sink of anthropogenic Hg. We will discuss how the magnitude and permanence of this sink affects estimates of enrichment and time scales of recovery in all geochemical Hg reservoirs. Governing time scales of response in each ocean basin are diagnosed using eigenanalysis and discussed in the context of changes in human MeHg exposure resulting from

  1. Modeling fallout of anthropogenic 129I.

    PubMed

    Englund, Edvard; Aldahan, Ala; Possnert, Göran; Haltia-Hovi, Eeva; Hou, Xiaolin; Renberg, Ingmar; Saarinen, Timo

    2008-12-15

    Despite the relatively well-recognized emission rates of the anthropogenic 129I, there is little knowledge about the temporal fallout patterns and magnitude of fluxes since the start of the atomic era atthe early 1940s. We here present measurements of annual 129I concentrations in sediment archives from Sweden and Finland covering the period 1942-2006. The results revealed impression of 129I emissions from the nuclear reprocessing facility at Sellafield and La Hague and a clear Chernobyl fallout enhancement during 1986. In order to estimate relative contributions from the different sources, a numerical model approach was used taking into accountthe emission rates/estimated fallout, transport pathways, and the sediment system. The model outcomes suggest a relatively dominating marine source of 129I to north Europe compared to direct gaseous releases. A transfer rate of 129I from sea to atmosphere is derived for pertinent sea areas (English Channel, Irish Sea, and North Sea), which is estimated at 0.04 to 0.21 y(-1).

  2. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2017-07-13

    Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  4. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  5. Estimation of anthropogenic CO2 inventories in the ocean.

    PubMed

    Sabine, Christopher L; Tanhua, Toste

    2010-01-01

    A significant impetus for recent ocean biogeochemical research has been to better understand the ocean's role as a sink for anthropogenic CO2. In the 1990s the global carbon survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) inspired the development of several approaches for estimating anthropogenic carbon inventories in the ocean interior. Most approaches agree that the total global ocean inventory of Cant was around 120 Pg C in the mid-1990s. Today, the ocean carbon uptake rate estimates suggest that the ocean is not keeping pace with the CO2 emissions growth rate. Repeat occupations of the WOCE/JGOFS survey lines consistently show increases in carbon inventories over the last decade, but have not yet been synthesized enough to verify a slowdown in the carbon storage rate. There are many uncertainties in the future ocean carbon storage. Continued observations are necessary to monitor changes and understand mechanisms controlling ocean carbon uptake and storage in the future.

  6. Enhancing the USDA Global Crop Assessment Decision Support System Using SMAP Soil Moisture Data

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Mladenova, I. E.; Crow, W. T.; Reynolds, C. A.

    2016-12-01

    The Foreign Agricultural Services (FAS) is a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected crop supply and demand estimates. Knowledge of the amount of water in the root zone is an essential source of information for the crop analysts as it governs the crop development and crop growth, which in turn determine the end-of-season yields. USDA FAS currently relies on root zone soil moisture (RZSM) estimates generated using the modified two-layer Palmer Model (PM). PM is a simple water-balance hydrologic model that is driven by daily precipitation observations and minimum and maximum temperature data. These forcing data are based on ground meteorological station measurements from the World Meteorological Organization (WMO), and gridded weather data from the former U.S. Air Force Weather Agency (AFWA), currently called U.S. Air Force 557th Weather Wing. The PM was extended by adding a data assimilation (DA) unit that provides the opportunity to routinely ingest satellite-based soil moisture observations. This allows us to adjust for precipitation-related inaccuracies and enhance the quality of the PM soil moisture estimates. The current operational DA system is based on a 1-D Ensample Kalman Filter approach and relies on observations obtained from the Soil Moisture Ocean Salinity Mission (SMOS). Our talk will demonstrate the value of assimilating two satellite products (i.e. a passive and active) and discuss work that is done in preparation for ingesting soil moisture observations from the Soil Moisture Active Passive (SMAP) mission.

  7. Polycations globally enhance binding of 14-3-3omega to target proteins in spinach leaves.

    PubMed

    Shen, Wei; Huber, Steven C

    2006-06-01

    The binding of 14-3-3omega to phosphorylated nitrate reductase (pNR) is stimulated by cations such as Mg(2+) or spermine, and decreased by 5'-AMP. In order to determine whether binding to other cellular proteins is affected similarly, far-Western overlays of extracts prepared from light- or dark-treated spinach (Spinacia oleracea) leaves were performed using digoxigenin (DIG)-labeled Arabidopsis 14-3-3omega. When separated by SDS-PAGE, approximately 25 proteins of >35 kDa could be resolved that interacted with DIG-labeled 14-3-3omega in the absence of added cations. The presence of 5 mM Mg(2+) or 0.5 mM spermine enhanced binding to most of the target proteins to a maximum of about a doubling of the observed binding. In most cases, the binding was dependent on phosphorylation of the target protein, whereas that was not necessarily the case for binding to target proteins that were unaffected by polycations. The extent of stimulation varied among the target proteins, but there was no indication that the nature of the cation activator (e.g. Mg(2+) vs. spermine(4+)) altered the specificity for target proteins. In addition, binding of DIG-labeled 14-3-3omega to some, but not all, target proteins was reduced by 5 mM 5'-AMP. Interestingly, light/dark treatment of spinach leaves affected the subsequent binding of DIG-labeled 14-3-3omega in the overlay assay to only a few of the target proteins, one of which was identified as NADH:nitrate reductase. Overall, the results suggest that the binding of 14-3-3s to targets in addition to pNR may also be regulated by polycations and 5'-AMP.

  8. Changes in South Pacific anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Waters, Jason F.; Millero, Frank J.; Sabine, Christopher L.

    2011-12-01

    The changes in anthropogenic CO2 are evaluated in the South Pacific, along the meridional line P18 (110°W) and the zonal line P06 (32°S), using the extended multiple linear regression (eMLR) method. The structure of the column inventory of anthropogenic CO2 on P18 is similar to the southern section of P16 in the central South Pacific (150°W), but the overall increase is greater by approximately 5-10 μmol kg-1. The value of the anthropogenic CO2 inventory on P18 is in agreement at the crossover point of an earlier evaluation of P06. Subsequent changes in pH due to the increase in anthropogenic CO2 are also evaluated. The change in pH is determined from the changes in anthropogenic CO2 and do not reflect variability in other decadal signals. For both cruise tracks, the average annual change in pH is -0.0016 mol kg-1 yr-1. This value is in good agreement with the average decrease in pH in the North Pacific, at the Hawaii Times Series and the subtropical North Atlantic. The uptake rates of anthropogenic CO2 are within reasonable agreement with similar studies in the South Pacific. There is evidence for greater uptake of anthropogenic CO2 in the western South Pacific and is attributed to the formation of subtropical Mode Water in the region.

  9. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-01

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr-1 °C-1 in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  10. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries.

    PubMed

    Mazumder, Debashish; Saintilan, Neil; Alderson, Brendan; Hollins, Suzanne

    2015-11-15

    Urban development in coastal settings has increased the input of nitrogen into estuaries globally, in many cases changing the composition of estuarine ecosystems. By focussing on three adjacent estuaries with a gradient of anthropogenic N loadings, we used stable isotopes of N and C to test for changes due to increased anthropogenic N input on the structure of some key trophic linkages in estuaries. We found a consistent enrichment in δ(15)N corresponding to increased anthropogenic N at the three ecosystem levels studied: fine benthic organic matter, grazing invertebrate, and planktivorous fish. The degree of enrichment in δ(15)N between fine benthic organic matter and the grapsid crab Parasesarma erythrodactyla was identical across the three sites. The glassfish Ambassis jacksoniensis showed lower levels of enrichment compared to basal food sources at the higher N-loaded sites, suggesting a possible effect of anthropogenic N in decreasing food-chain length in these estuaries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intensity and Development Forecasts of Tropical Cyclones by the JMA High-Resolution Global NWP Model: Impacts of Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Komori, T.; Kitagawa, H.

    2007-12-01

    It is widely considered that a spatial resolution of numerical weather prediction (NWP) model plays an important role for forecasting severe weather events such as tropical cyclones (TCs) and heavy rainfall. Under the KAKUSHIN project (funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology), the Japan Meteorological Agency (JMA) has developed a new Global Spectral Model (GSM) with a high horizontal resolution of about 20km and 60 vertical layers (hereafter called g20km GSMh), which is utilized to evaluate severe weather events in future climate. The 20km GSM will be operational in November 2007 replacing the current GSM with a horizontal resolution of about 60km and 40 vertical layers (hereafter called g60km GSMh). In the present study, we investigate how a model resolution impacts on TC forecasts because this resolution enhancement aims to improve the model's ability to forecast severe weather. Due to the more realistic model topography in higher horizontal resolution, the 20km GSM can give more accurate forecasts of orographic precipitation than the 60km GSM, especially over the area range of heavy precipitation. According to the statistically verified results, the enhancement of horizontal and vertical resolution appears to fairly improve the accuracy of TC intensity forecasts. However, for TC track forecasts, it may be more important to accurately represent large-scale environmental contexts surrounding the TC than to resolve the TC structure itself. In order to clarify resolution impacts on the TC intensity prediction, we categorize the TC intensity forecasts into three stages (development stage, maturation stage and dissipation stage). The results show that the effectiveness of the resolution enhancement is bigger in the development stage and relatively small in the maturation and dissipation stages. For the maturation and dissipation stages, improvement of physical processes seems to be more important than the resolution

  12. Cross-modal impacts of anthropogenic noise on information use.

    PubMed

    Morris-Drake, Amy; Kern, Julie M; Radford, Andrew N

    2016-10-24

    Anthropogenic noise is a global pollutant, and there is rapidly accumulating evidence of impacts on a range of animal taxa [1,2]. While many studies have considered how additional noise may affect information provision and use, they have focused on the masking and consequent alteration of acoustic signals and cues; so-called unimodal effects [3]. Using field-based experimental trials on habituated wild dwarf mongooses (Helogale parvula) [4], we combine sound playbacks and faecal presentations to demonstrate that anthropogenic noise can disrupt responses to information from different sensory modalities. The adaptive, stronger response exhibited towards predator faeces compared with control faeces in ambient-noise conditions was detrimentally affected by road-noise playback. Specifically, having taken longer to detect the faeces, the mongooses interacted less with the predator cue, did not show increased vigilance following its detection, and spent less time in the safe vicinity of a burrow refuge, thus suffering a potentially increased predation risk. Our results are the first to show that anthropogenic noise could alter responses to olfactory cues, strongly indicating the possibility of cross-modal impacts of noise pollution on information use [3]. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Anthropogenic mercury emissions in China

    NASA Astrophysics Data System (ADS)

    Streets, David G.; Hao, Jiming; Wu, Ye; Jiang, Jingkun; Chan, Melissa; Tian, Hezhong; Feng, Xinbin

    An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (±236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30×30 min