Science.gov

Sample records for anti-interleukin-6 receptor monoclonal

  1. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, for treatment of rheumatoid arthritis

    PubMed Central

    Mihara, Masahiko; Ohsugi, Yoshiyuki; Kishimoto, Tadamitsu

    2011-01-01

    Interleukin (IL)-6 has a variety of biological functions. For example, it stimulates the production of acute-phase reactants (C-reactive protein and serum amyloid A) and hepcidin which interferes with iron recycling and absorption, causing iron-deficient anemia, and augments expression of vascular endothelial growth factor and receptor activator of nuclear factor-κB ligand in synovial cells, leading to neovascularization and osteoclast formation. IL-6 also acts on lymphocytes, not only on B cells to stimulate autoantibody production, but also on naïve T helper cells to promote Th17 cell differentiation. Thus, an imbalance between T cell subsets possibly contributes to development of rheumatoid arthritis. Several clinical studies have demonstrated that a humanized anti-IL-6 receptor antibody, tocilizumab, improves clinical symptoms in rheumatoid arthritis. Tocilizumab prevented radiographic progression of joint destruction by inhibiting cartilage/bone resorption. Tocilizumab also improved hematological abnormalities, including hypergammaglobulinemia, high levels of autoantibodies, and elevation of erythrocyte sedimentation rate and acute-phase proteins. Importantly, tocilizumab improved quality of life by reducing systemic symptoms, including fatigue, anemia, anorexia, and fever. These findings have confirmed that hyperproduction of IL-6 is responsible for the above clinical symptoms, including joint destruction. Many patients treated with tocilizumab achieved clinical remission associated with decreased serum IL-6, suggesting that IL-6 enhances autoimmunity. Tocilizumab is a new therapeutic option for rheumatoid arthritis.

  2. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy

    PubMed Central

    Smolen, Josef S; Weinblatt, Michael E; Sheng, Shihong; Zhuang, Yanli; Hsu, Benjamin

    2014-01-01

    Objectives The safety and efficacy of sirukumab, an anti-interleukin-6 (IL-6) monoclonal antibody, were evaluated in a 2-part, placebo-controlled phase II study of patients with active rheumatoid arthritis (RA) despite methotrexate therapy. Methods In Part A (proof-of-concept), 36 patients were randomised to placebo or sirukumab 100 mg every 2 weeks (q2w) through week 10, with crossover treatment during weeks 12–22. In Part B (dose finding), 151 patients were randomised to sirukumab (100 mg q2w, 100 mg q4w, 50 mg q4w, or 25 mg q4w) through week 24, or placebo through week 10 with crossover to sirukumab 100 mg q2w (weeks 12–24). The proportion of patients with an American College of Rheumatology 50 (ACR50) response and the change from baseline in the 28-joint count disease activity score using C-reactive protein (DAS28-CRP) were determined. Safety was evaluated through week 38 in both parts. Results The primary endpoint (ACR50 at week 12 in Part B) was achieved only with sirukumab 100 mg q2w versus placebo (26.7% vs 3.3%; p=0.026). Greater improvements in mean DAS28-CRP at week 12 were observed with sirukumab 100 mg q2w versus placebo in Parts A (2.1 vs 0.6, p<0.001) and B (2.2 vs 1.1; p<0.001). The incidence of adverse events (AEs) was similar for sirukumab-treated and placebo-treated patients through week 12 in Part A (70.6% and 63.2%, respectively) and B (67.8% and 66.7%, respectively). Infections were the most common type of AE; one death occurred (Part B, sirukumab 100 mg q2w, brain aneurysm). Conclusions Sirukumab-treated patients experienced improvements in the signs/symptoms of RA. Safety results through 38 weeks were consistent with other IL-6 inhibitors. Trial registration number NCT00718718. PMID:24699939

  3. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery

    PubMed Central

    Görtz, Dieter; Braun, Gerald S.; Maruta, Yuichi; Djudjaj, Sonja; van Roeyen, Claudia R.; Martin, Ina V.; Küster, Andrea; Schmitz-Van de Leur, Hildegard; Scheller, Jürgen; Ostendorf, Tammo; Floege, Jürgen; Müller-Newen, Gerhard

    2015-01-01

    Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases. PMID:26423228

  4. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery.

    PubMed

    Görtz, Dieter; Braun, Gerald S; Maruta, Yuichi; Djudjaj, Sonja; van Roeyen, Claudia R; Martin, Ina V; Küster, Andrea; Schmitz-Van de Leur, Hildegard; Scheller, Jürgen; Ostendorf, Tammo; Floege, Jürgen; Müller-Newen, Gerhard

    2015-01-01

    Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases.

  5. Successful treatment of tumor necrosis factor receptor-associated periodic syndrome (TRAPS) with tocilizumab: A case report

    PubMed Central

    Akasbi, Nessrine; Soyfoo, Muhammad S.

    2015-01-01

    Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is an autosomal dominant autoinflammatory disease linked to chromosome 12p13 and, more specifically, with mutations within the tumor necrosis factor receptor superfamily, member 1A gene (TNFRSF1A gene). It is characterized by the presence of fever, abdominal pain, myalgia, arthralgia or arthritis, and skin rash. In this report, we describe the case of a patient with tumor necrosis factor receptor-associated periodic syndrome (TRAPS) treated successfully with the anti-interleukin-6 (anti-IL-6) receptor monoclonal antibody tocilizumab, while treatment with anti-TNF α etanercept and infliximab had both failed.

  6. Monoclonal antibodies against the rat liver glucocorticoid receptor.

    PubMed Central

    Okret, S; Wikström, A C; Wrange, O; Andersson, B; Gustafsson, J A

    1984-01-01

    Splenic cells from one BALB/c mouse and one C57/BL mouse, immunized with purified rat liver glucocorticoid receptor (GR), were fused with the mouse myeloma cell line Sp 2/0-Ag 14. Screening for production of anti-GR-antibodies by the hybridomas was carried out with an enzyme-linked immunosorbent assay, using partially purified rat liver GR as antigen. Further screening was by a second-antibody immunoprecipitation assay using [3H]triamcinolone acetonide-GR complex from rat liver cytosol as tracer. Hybridomas from 10 different microplate wells, positive in both assays, were successfully cloned by the limiting dilution method to monoclonality. The different origins of the monoclonal antibodies were confirmed by their various isoelectric points when analyzed by isoelectric focusing. Four of the monoclonal hybridoma cell lines secreted IgM antibodies; two, IgG1; three, IgG2a; and one, IgG2b. The GR-antibody complex was identified in glycerol density gradients by a shift of the 4S GR to an 8.5S or 19S GR-antibody complex when incubated with monoclonal IgG or IgM antibody, respectively. The 10 monoclonal antibodies recognized different determinants on the GR, all situated on that domain of the receptor that is separate from the ligand and DNA-binding domains. Also, the cross-reactivity to the mouse liver GR varied among the monoclonal antibodies. No cross-reactivity was observed to the human lymphocytic GR. NaDodSO4 electrophoresis of a 0.5% pure GR preparation followed by immunoblotting using one of the monoclonal antibodies identified a single peptide with a molecular weight of 94,000, identical to the purified rat liver GR. Images PMID:6200880

  7. Beneficial Effects of Anti-Interleukin-6 Antibodies on Impaired Gastrointestinal Motility, Inflammation and Increased Colonic Permeability in a Murine Model of Sepsis Are Most Pronounced When Administered in a Preventive Setup

    PubMed Central

    Nullens, Sara; Staessens, Michael; Peleman, Cédric; Plaeke, Philip; Malhotra-Kumar, Surbhi; Francque, Sven; De Man, Joris G.; De Winter, Benedicte Y.

    2016-01-01

    Background and Objectives During sepsis, gastrointestinal ileus, mucosal barrier dysfunction and bacterial translocation are accepted to be important triggers that can maintain or exacerbate the septic state. In the caecal ligation and puncture animal model of sepsis, we demonstrated that systemic and colonic interleukin-6 levels are significantly increased coinciding with an impaired colonic barrier function. We therefore aimed to study the effect of therapeutic or curative administration of anti-IL6 antibodies on overall GI motility, colonic permeability and translocation of intestinal bacteria in blood and mesenteric lymph nodes in the mouse caecal ligation and puncture model. Methods OF-1 mice were randomized to either the preventive or curative protocol, in which they received 1 mg/kg of antibodies to interleukin-6, or its IgG isotype control solution. They subsequently underwent either the caecal ligation and puncture procedure, or sham-surgery. GI motility was assessed 48h following the procedure, as well as colonic permeability, serum and colon cytokines, colonic tight junction proteins at the mRNA level; cultures of blood and mesenteric lymph nodes were performed. Results Preventive administration of anti-interleukin-6 antibodies successfully counteracted the gastrointestinal motility disturbances and impaired colonic barrier function that could be observed in vehicle-treated septic animals. Serum and colonic levels of proinflammatory cytokines were significantly lower when animals were preventively treated with anti-interleukin-6 antibodies. A repetitive injection 24h later resulted in the most pronounced effects. Curative treatment significantly lowered systemic and colonic inflammation markers while the effects on transit and permeability were unfortunately no longer significant. Conclusions Caecal ligation and puncture resulted in septic ileus with an increased colonic permeability. Antibodies to interleukin-6 were able to ameliorate gastro

  8. Clinical experience with monoclonal antibodies to epidermal growth factor receptor.

    PubMed

    Calvo, Emiliano; Rowinsky, Eric K

    2005-03-01

    Recent knowledge about the intermediate steps and final consequences of ligand-dependent epidermal growth factor receptor (EGFR) activation has clearly supported the notion that EGFR plays a fundamental role in regulating the proliferation and survival of malignant neoplasms. Among the rationally designed target-based therapeutics that are being assessed, those targeting EGFR appear to be some of the most clinically relevant. The strategy of using monoclonal antibodies (mAbs) to block ligand binding to the extracellular domain of the EGFR has led to the development of therapeutics that robustly arrest malignant cell proliferation and, in some cases, induce profound tumor regression. The chimeric mAb against EGFR, cetuximab, has already been approved by regulatory agencies worldwide to treat patients with advanced colorectal cancer. Other mAbs against EGFR, particularly panitumumab (ABX-EGF), h-R3, and EMD72000, are in advanced stages of clinical development. PMID:15717942

  9. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  10. In vivo Therapy with Monoclonal Anti-I-A Antibody Suppresses Immune Responses to Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Waldor, Matthew K.; Sriram, Subramaniam; McDevitt, Hugh O.; Steinman, Lawrence

    1983-05-01

    A monoclonal antibody to I-A gene products of the immune response gene complex attenuates both humoral and cellular responses to acetylcholine receptor and appears to suppress clinical manifestations of experimental autoimmune myasthenia gravis. This demonstrates that use of antibodies against immune response gene products that are associated with susceptibility to disease may be feasible for therapy in autoimmune conditions such as myasthenia gravis.

  11. Monoclonal γ-T-Cell Receptor Rearrangement in Vulvar Lichen Sclerosus and Squamous Cell Carcinomas

    PubMed Central

    Regauer, Sigrid; Reich, Olaf; Beham-Schmid, Christine

    2002-01-01

    Risk factors for vulvar squamous cell carcinoma (SCC) are human papilloma virus (HPV) infections and lichen sclerosus (LS). The significance of monoclonal γ-T-cell receptor (γ-TCR) rearrangement in the lymphoid infiltrate of LS and the consequence for vulvar carcinogenesis is unknown. One hundred sixty-one biopsies of vulvar LS and SCC, with and without LS, were examined for monoclonal γ-TCR rearrangement and HPV16 expression, and for the expression of B- and T-cell markers and fascin. Monoclonal γ-TCR rearrangement was identified in 8 of 17 patients with LS and 11 of 21 patients with SCC arising in LS with only occasional HPV16 DNA detection. None of the 19 SCC without LS showed monoclonal γ-TCR rearrangement, but 14 of 19 patients had strong HPV16 detection. The lichenoid infiltrate of LS with germline configuration consisted predominantly of T cells (CD8 > CD4), along with numerous B cells. However, in biopsies with monoclonally rearranged γ-TCR, CD4-positive T cells dominated along with B cells and fascin-positive cells in the lichenoid infiltrate and in deeply located lymphocyte aggregates (LAs). These LAs additionally contained fascin-positive dendritic cells with only individual CD8, CD57, and granzyme-positive cells. LAs in biopsies with germline configuration demonstrated numerous T cells (CD8 >CD4), but only single peripheral B cells, CD57, and fascin-positive lymphocytes. Our data suggest that monoclonal γ-TCR rearrangement is characteristic for and limited to LS and SCC arising in LS, raising the question for a LS-associated antigen. We interpret B cells, CD4-positive T cells, and fascin-expressing dendritic cells within LS as a cellular immune response to antigen or proliferating T-cell clones. The resulting local immune dysregulation in LS may provide a permissive environment for the development of a SCC. PMID:11891200

  12. Monoclonal T-cell receptors: new reagents for cancer therapy.

    PubMed

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells.

  13. Monoclonal T-cell receptors: new reagents for cancer therapy.

    PubMed

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells. PMID:17637721

  14. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  15. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44.

    PubMed Central

    Shepley, M P; Racaniello, V R

    1994-01-01

    A monoclonal antibody, AF3, was previously shown to specifically inhibit poliovirus binding to HeLa cells and to detect a 100-kDa glycoprotein only in cell lines and tissues permissive for poliovirus infection. These results suggested that the 100-kDa protein may be involved in the pathogenesis of poliomyelitis and the cellular function of the poliovirus receptor site. To study further the role of the 100-kDa protein in poliovirus attachment, immunoaffinity purification, amino acid sequencing, and cDNA cloning were undertaken. The results demonstrate that antibody AF3 reacts with the lymphocyte homing receptor CD44, a multifunctional cell surface glycoprotein involved in the homing of circulating lymphocytes to lymph nodes and the modulation of lymphocyte adhesion and activation. Antibody AF3 reacts with a subset of CD44 molecules (AF3CD44H), which appears to be a small fraction of the heterogeneously glycosylated CD44 molecules expressed on hematopoietic and nonhematopoietic cells. Anti-CD44 monoclonal antibodies, previously reported to induce CD44-mediated modulation of lymphocyte activation and adhesion, compete with 125I-AF3 in binding assays, demonstrating functional overlap among the epitopes. The anti-CD44 monoclonal antibody A3D8, which binds to a greater molecular weight range of CD44 than does AF3, inhibits poliovirus binding to a similar degree. CD44 does not act as a poliovirus receptor, since CD44-expressing mouse L-cell transformants did not bind poliovirus. The poliovirus receptor and AF3CD44H may be noncovalently associated, or they may interact through the cytoskeleton or signal transduction pathways. Images PMID:7508992

  16. The Use of Epidermal Growth Factor Receptor Monoclonal Antibodies in Squamous Cell Carcinoma of the Head and Neck

    PubMed Central

    Russell, Jeffery S.; Colevas, A. Dimitrios

    2012-01-01

    Targeting of the EGF receptor (EGFR) has become a standard of care in several tumor types. In squamous cell carcinoma of the head and neck, monoclonal antibodies directed against EGFR have become a regular component of therapy for curative as well as palliative treatment strategies. These agents have anti-tumor efficacy as a single modality and have demonstrated synergistic tumor killing when combined with radiation and/or chemotherapy. While cetuximab has been the primary anti-EGFR monoclonal antibody used in the US, variant anti-EGFR monoclonal antibodies have been used in several clinical studies and shown benefit with improved toxicity profiles. Next generation anti-EGFR monoclonal antibodies may demonstrate multi-target epitope recognition, enhanced immune cell stimulation, or conjugation with radioisotopes in order to improve clinical outcomes. Identification of the specific patient subset that would optimally benefit from anti-EGFR monoclonal antibodies remains an elusive goal. PMID:23150825

  17. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor

    NASA Astrophysics Data System (ADS)

    Fraser, Iain; Hughes, Derralynn; Gordon, Siamon

    1993-07-01

    MACROPHAGES interact with other cells and components of the extracellular environment by means of adhesion receptors1,2. Adhesion to artificial substrata in vitro facilitates isolation of macrophages3, and has been used to generate antibodies that inhibit their migration in vivo4,5. Unlike other cell types, macrophages attach to tissue culture plastic in the absence of divalent cations. Here we use an adhesion assay exploiting this property to isolate a rat monoclonal antibody, 2F8, which totally inhibits divalent cation-independent adhesion of murine macrophages to tissue culture plastic in the presence of fetal calf serum. Immunoprecipitation from macrophages and stably transfected Chinese hamster ovary cells revealed that the antigen recognized by monoclonal 2F8 is identical to murine macrophage scavenger receptor6,7. We propose a novel function for this molecule, previously described as an endocytic receptor, thus providing a mechanism for mononuclear phagocyte recruitment to and retention in ligand-rich tissues such as in atherosclerotic lesions.

  18. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2.

    PubMed

    Spratlin, Jennifer

    2011-04-01

    Angiogenesis, a well-recognized characteristic of malignancy, has been exploited more than any other pathway targeted by biologic anti-neoplastic therapies. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the critical receptor involved in malignant angiogenesis with its activation inducing a number of other cellular modifications resulting in tumor growth and metastases. Ramucirumab (IMC-1121B; ImClone Systems Corporation, Branchburg, NJ) is a fully human monoclonal antibody developed to specifically inhibit VEGFR-2. Ramucirumab is currently being investigated in multiple clinical trials across a variety of tumor types. Herein, angiogenesis inhibition in cancer is reviewed and up-to-date information on the clinical development of ramucirumab is presented.

  19. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade

    SciTech Connect

    Crowell, R.L.; Field, A.K.; Schleif, W.A.; Long, W.L.; Colonno, R.J.; Mapoles, J.E.; Emini, E. A.

    1986-02-01

    BALB/c mice were immunized with HeLa cells, and their spleen cells were fused with myeloma cells to produce hybridomas. Initial screening of culture fluids from 800 fusion products in a cell protection assay against coxsackievirus B3 (CB3) and the CB3-RD virus variant yielded five presumptive monoclonal antibodies with three specificities: (i) protection against CB3 on HeLa, (ii) protection against CB3-RD on rhabdomyosarcoma (RD) cells, and (iii) protection against both viruses on the respective cells. Only one of the monoclonal antibodies (with dual specificity) survived two subclonings and was studied in detail. The antibody was determined to have an immunoglobulin G2a isotype and protected cells by blockade of cellular receptors, since attachment of (/sup 35/S)methionine-labeled CB3 was inhibited by greater than 90%. The monoclonal antibody protected HeLa cells against infection by CB1, CB3, CB5, echovirus 6, and coxsackievirus A21 and RD cells against CB1-RD, CB3-RD, and CB5-Rd virus variants. The monoclonal antibody did not protect either cell type against 16 other immunotypes of picornaviruses. The monoclonal antibody produced only positive fluorescence on those cells which were protected against infection, and /sup 125/I-labeled antibody confirmed the specific binding to HeLa and RD cells. The results suggest that this monoclonal antibody possesses some of the receptor specificity of the group B coxsackieviruses.

  20. Monoclonal antibodies to the cell surface and a soluble form of the human nerve growth factor receptor

    SciTech Connect

    Clagett-Dame, M.; Chung, C.; Chao, M.V.; DiStefano, P.S. )

    1990-12-01

    Monoclonal antibodies (designated IIIG5, VIID1, VIIIC8, and XIF1) have been produced that bind to the human nerve growth factor receptor (NGF-R) as well as to a soluble, truncated form of the receptor (NGF-Rt). The antibodies were generated against partially purified NGF-Rt from the conditioned medium of E9b cells, a transfected mouse fibroblast cell line (Ltk-) that expresses large numbers of the low affinity form of the human NGF-R on its cell surface. Hybridomas were screened by radiometric immunosorbent assay (RISA) and by immunoprecipitation of solubilized cell surface receptor covalently cross-linked to {sup 125}I-NGF. Four positive lines were cloned by limiting dilution and were found to secrete monoclonal antibodies of the IgGl,k subclass. All monoclonal antibodies bound to both NGF-R and NGF-Rt. Two monoclonal antibodies (VIID1, XIF1) immunoblotted the NGF-R from E9b cell preparations resolved on non-reducing sodium dodecyl sulfate (SDS)-polyacrylamide gels. The antibodies immunoprecipitated NGF-R from both E9b cells and from SH-SY5Y human neuroblastoma cells. The monoclonal antibodies bound to monkey (rhesis and cynomolgus) NGF-Rt, but did not cross-react with NGF-R from chick or rat. Results of antibody competition studies demonstrated that three antibodies bound to a similar or overlapping epitope on the NGF-Rt and one monoclonal antibody (IIIG5) recognized a distinct receptor epitope. Antibodies that bound to different sites on the receptor were used to develop a sensitive 2-site RISA. The 2-site RISA can be used to rapidly quantitate NGF-R and NGF-Rt in large numbers of biological samples in the absence of added {sup 125}I-labeled NGF.

  1. Monoclonal antibodies to purified muscarinic receptor display agonist-like activity.

    PubMed Central

    Leiber, D; Harbon, S; Guillet, J G; André, C; Strosberg, A D

    1984-01-01

    Monoclonal antibody M-35, which immunoprecipitates native calf brain acetylcholine muscarinic receptor, mimics agonist stimulation of the intact guinea pig myometrium: the antibody, just like carbamoylcholine hydrochloride, causes a rise in intracellular cyclic GMP content, an inhibition of cyclic AMP accumulation due to prostacyclin, and induces uterine contractions. Another antibody, M-23, which reacts with the denatured muscarinic receptor, is devoid of agonist-like activity at the cyclic nucleotide level but is still able to induce contractions of both rat and guinea pig myometrium. The cyclic nucleotide changes caused by both carbamoylcholine and antibody M-35 are inhibited by atropine; this antagonist, which blocks carbamoylcholine-mediated contractions, fails however, to prevent contractions induced by antibodies M-35 and M-23. These results suggest that the information necessary to transmit muscarinic signals is entirely contained in the receptor and that ligands only act to trigger the biological response. The data also imply that the muscarinic receptors of the myometrium are coupled to multiple effector systems. PMID:6087318

  2. Efficient generation of a monoclonal antibody against the human C-type lectin receptor DCIR by targeting murine dendritic cells

    PubMed Central

    Heidkamp, Gordon F.; Neubert, Kirsten; Haertel, Eric; Nimmerjahn, Falk; Nussenzweig, Michel C.; Dudziak, Diana

    2010-01-01

    1. Summary Dendritic cells (DCs) are very important for the generation of long lasting immune responses against pathogens or the induction of anti-tumor responses. Targeting antigen to dendritic cells via monoclonal antibodies specific for DC cell surface receptors such as DEC205 was shown to elicit potent cellular and humoral immune responses in vivo. Therefore we investigated whether this novel strategy might also be useful for the generation of new monoclonal antibodies against molecules of choice. We show, that by targeting the extracellular domain of the human C-type lectin receptor ClecSF6/DCIR/LLIR (hDCIR) to DEC205 on DCs in vivo, we were able to generate highly specific monoclonal antibodies against hDCIR. PMID:20566350

  3. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF.

    PubMed

    Valente, S; Souto, B; Balter, H; Welling, M M; Román, E; Robles, A; Pauwels, E K

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with 125Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t = 15.7, p < 0.05) for hEGF in its binding to MAb anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  4. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies.

    PubMed Central

    Ashcom, J D; Stiles, B G

    1997-01-01

    The venoms of predatory marine cone snails, Conus species, contain numerous peptides and proteins with remarkably diverse pharmacological properties. One group of peptides are the alpha-conotoxins, which consist of 13-19 amino acids constrained by two disulphide bonds. A biologically active fluorescein derivative of Conus geographus alpha-conotoxin GI (FGI) was used in novel solution-phase-binding assays with purified Torpedo californica nicotinic acetylcholine receptor (nAchR) and monoclonal antibodies developed against the toxin. The binding of FGI to nAchR or antibody had apparent dissociation constants of 10-100 nM. Structure-function studies with alpha-conotoxin GI analogues composed of a single disulphide loop revealed that different conformational restraints are necessary for effective toxin interactions with nAchR or antibodies. PMID:9359860

  5. Determination of oestrogen receptors with monoclonal antibodies in fine needle aspirates of breast carcinoma.

    PubMed Central

    Marrazzo, A.; La Bara, G.; Taormina, P.; Bazan, P.

    1989-01-01

    Fifty patients with operable breast carcinoma underwent fine needle aspiration for cytological examination. The smears were prepared by means of the immunocytochemical method using monoclonal antibodies for the determination of the oestrogen receptors (ER). After surgery the contents of the ER were determined with the traditional biochemical technique. The results of the immunocytochemical method showed 31 positives, two of which disagreed with the biochemical results, 15 negatives and four cases which could not be assessed due to the absence of adequate numbers of cells. The ICA staining for ER was expressed on a semiquantitative basis; there was a significant correlation between this and the values expressed by the biochemical technique, with a coefficient of 0.83, P less than 0.000006. PMID:2930709

  6. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin.

    PubMed

    Avila, Ana D; Calderón, Carlos F; Pérez, Rita M; Pons, Carmen; Pereda, Celia M; Ortiz, Ana R

    2007-01-01

    Hybrid molecules obtained through conjugation of monoclonal antibodies and toxins constitute an approach under exploration to generate potential agents for the treatment of cancer and other diseases. A frequently employed toxic component in the construction of such immunotoxins is ricin, a plant toxin which inhibits protein synthesis at ribosomal level and so requires to be internalized by the cell. A hemolytic toxin isolated from the sea anemone Stichodactyla helianthus, which is active at the cell membrane level, was linked through a disulfide bond to the anti-epidermal growth factor receptor monoclonal antibody ior egf/r3. The resulting immunotoxin did not exhibit hemolytic activity except under reducing conditions. It was toxic for H125 cells that express the human epidermal growth factor receptor, but non-toxic for U1906 cells that do not express this receptor. PMID:18064354

  7. The production and characterization of monoclonal anti-bodies directed against the GABA sub a /benzodiazepine receptor

    SciTech Connect

    Gallombardo, P.A.

    1989-01-01

    Genetic techniques have indicated that several subunits exist which may combine to form a family a GABA{sub a} receptor subtypes. Further investigations of the localization, structure and function of these receptor subtypes will require the use of subunit specific probes. In order to develop immunochemical markers for the GABA{sub a} subunits mice were immunized with purified receptor and antibody secreting hybridomas were formed. From these hybridomas six monoclonal antibodies were derived. All six monoclonal antibodies recognized the purified receptor in a solid-phase radioimmunoassay and immunoblotted to a 50kD protein in the purified preparation. The mAbs A2, B2, E9, and H10 specifically recognized a 50kD protein band from rat brain membranes which was shown by two-dimensional electrophoresis to be the receptor subunit identified by photolabeling. The mAbs D5 and F7 preferentially recognized unique proteins in addition to the 50kD subunit. A procedure was developed for using mAbs B2 and F7 to immunoprecipitate the benzodiazepine binding site from solubilized brain membranes. A competitive binding assay and an analysis of crossreactivity were combined to divide the six monoclonal antibodies into groups recognizing at least four district epitopes. The monoclonal antibodies were used to demonstrate that the 50kD subunit can be phosphorylated and they were used to follow the development of this subunit in the neonatal rat. The antibodies were able to label immunoreactive proteins in rat astrocytes and in three nematode species. These proteins may be structurally related to subunits of the GABA{sub a} or acetylcholine receptor.

  8. Assessment of estrogen receptor-monoclonal antibody interaction by high performance liquid chromatography

    SciTech Connect

    Brandt, D.W.; Wittliff, J.L.

    1986-05-01

    To define the interrelationships between the various isoforms of the estrogen receptors (ER), a monoclonal antibody-horse radish peroxidase conjugate H222 was used as a probe in conjunction with HPIEC (Synchrom AX-1000) and HPSEC (TSK-3000 SW Toyo Soda) columns. ER from breast tumors was assessed using (16..cap alpha..-/sup 125/I)-iodoestradiol-17..beta.. (3nM) +/-200 fold excess estradiol-17..beta.. and excess H222. When ER was analyzed by HPSEC (size and shape), with 400 mM KCl which caused the dissociation of ER into 4S isoforms, a shift in retension time to higher molecular weight species was seen. The H222 appeared to interact with most isoforms of ER. However, when ER was analyzed by HPIEC (surface charge) with H222, a shift in virtually all of the high salt (150mM) isoform to the flow-through was observed with only 46% shift in elution of the low salt (60-70mM) isoforms. H222 did not alter total ER binding capacity. These data suggest that H222 recognized discrete forms of the ER. Therefore, modification in the receptor may have occurred which masks or removes the antigenic determinant limiting the specificity of H222. These results indicate that H222 may be employed as a tool to elucidate the interrelationships between these ER species.

  9. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  10. Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies

    PubMed Central

    Diaz Miqueli, A; Rolff, J; Lemm, M; Fichtner, I; Perez, R; Montero, E

    2009-01-01

    As epidermal growth factor receptor (EGFR) has been reported to be a radiation response modulator, HER inhibitors are regarded to act as potential radiosensitisers. Our study examined the role of nimotuzumab and cetuximab both, the two monoclonal antibodies (mAbs) to EGFR, as radiosensitisers in a murine glioma model in vivo. Co-administration of both the antibodies with radiation increased the radiosensitivity of U87MG, resulting in a significant delay of subcutaneous (s.c.) tumour growth. Furthermore, the addition of antibodies to the radiation decreased brain tumour sizes and is inhibited by 40–80% the increased tumour cell invasion provoked by radiotherapy, although promoted tumour cell apoptosis. Whereas nimotuzumab led to a reduction in the size of tumour blood vessels and proliferating cells in s.c. tumours, cetuximab had no significant antiangiogenic nor antiproliferative activity. In contrast, cetuximab induced a more marked inhibition of EGFR downstream signalling compared with nimotuzumab. Moreover, both antibodies reduced the total number of radioresistant CD133+ cancer stem cells (CSCs). These results were encouraging, and showed the superiority of combined treatment of mAbs to EGFR and radiation over each single therapy against glioblastoma multiforme (GBM), confirming the role of these drugs as radiosensitisers in human GBM. In addition, we first showed the ability of mAb specifics against EGFR to target radioresistant glioma CSC, supporting the potential use in patients. PMID:19293809

  11. Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers

    NASA Astrophysics Data System (ADS)

    Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba

    2001-07-01

    Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.

  12. Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibody

    SciTech Connect

    Chan, S.M.; Hoffer, P.B.; Maric, N.; Duray, P.

    1987-08-01

    The effect of an anti-human transferrin receptor (anti-TFR) monoclonal antibody (MoAb), designated B3/25, and an anti-melanoma antibody, designated 96.5, on the uptake of gallium-67 (/sup 67/Ga) by tumor was studied. Three groups of six athymic mice bearing a human melanoma were injected via tail vein with (a) 0.55 mg human serum albumin (HSA) (control group), (b) 0.5 mg MoAb B3/25 + 0.55 mg HSA, and (c) 0.5 mg MoAb 96.5 + 0.55 mg HSA, respectively. Twenty-four hours later, each mouse was given an intravenous dose of 5 microCi (/sup 67/Ga) citrate. Biodistribution of activity (percent injected dose per gram) determined 48 hr after injection of /sup 67/Ga showed a 75% decrease in tumor uptake in the group of mice that received B3/25 (anti-TFR MoAb) compared with the control group. In contrast, MoAb 96.5 did not show any effect on melanoma uptake of /sup 67/Ga. Histologic findings suggest that the decreased uptake was not due to cellular damage resulting from binding of B3/25 to TFR. The results of this study strongly suggest the involvement of TFR in the in vivo tumor uptake of /sup 67/Ga.

  13. Generation of monoclonal antibodies against soluble human T cell receptor polypeptides.

    PubMed

    Devaux, B; Bjorkman, P J; Stevenson, C; Greif, W; Elliott, J F; Sagerström, C; Clayberger, C; Krensky, A M; Davis, M M

    1991-09-01

    One approach to the diagnosis and therapy of T cell-mediated diseases is to develop reagents specific for T cell receptor (TcR) variable (V) regions. To date, however, TcR expressed on the surface of antigen-specific T lymphocytes have proven to be poorly immunogenic. As a result, few monoclonal antibodies (mAb) recognizing human variable regions are available. In this report, we have used the "phosphatidylinositol linkage" strategy to generate soluble forms of two human allogeneic TcR derived from human cytotoxic T lymphocytes (CTL) known to be specific for HLA-A2 and HLA-Aw68/HLA-Aw69, respectively. Monomeric TcR alpha and beta chains from the HLA-A2-specific CTL were purified in large quantities from CHO cells and each was used to immunize mice to generate mAb. In particular, the anti-beta chain mAb, denoted anti-V beta 13, stain a significant (approximately 5%) fraction of human peripheral blood alpha/beta T lymphocytes, immunoprecipitate native anti-A2 TcR molecules, and activate T cells transfected with the relevant alpha and beta chain cDNA. Anti-alpha chain mAb were also obtained against a constant region determinant which can immunoprecipitate detergent-solubilized polypeptides. In general, we find that immunizations with soluble protein are far superior to those with cells bearing TcR chimeras or in combination with the purified protein. PMID:1832385

  14. RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors.

    PubMed

    van Mechelen, Lenny; Luytjes, Willem; de Haan, Cornelis A M; Wicht, Oliver

    2016-08-01

    Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo.

  15. RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors.

    PubMed

    van Mechelen, Lenny; Luytjes, Willem; de Haan, Cornelis A M; Wicht, Oliver

    2016-08-01

    Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo. PMID:27185625

  16. A monoclonal antibody to the rat nuclear triiodothyronine receptor: production and characterization.

    PubMed

    Luo, M; Faure, R; Ruel, J; Dussault, J H

    1988-07-01

    The nuclear T3 receptor (NTR) was affinity-labeled with bromoacetyl-[125I]T3, purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and used to immunize BALB/c mice. Spleen cells from one strongly immunoreactive mouse were fused with Sp2 mouse myeloma cells, and 328 hybridomas were screened by a dot-blot immunoassay using as antigen, a preparation of NTR partially purified by diethylaminoethyl-Sephadex chromatography. Four positive cultures were thus found; three of which were confirmed by comparing Western blotting patterns with the electrophoretic mobility of the affinity-labeled NTR. One of these 3 hybridomas was further subcloned by limiting dilution and gave rise to the 2B3 clone, which produces an immunoglobulin of the immunoglobulin G1 subclass. Several lines of evidence indicated that the 2B3 monoclonal antibody was indeed directed against the NTR. The antibody recognized a protein with the same electrophoretic mobility as the affinity-labeled receptor. Thus, Western blotting revealed a predominant protein with a mol wt of 57,000 and a less abundant 45,000 component on sodium dodecyl sulfate gels, and multiple isoelectric variants of the 57,000 protein, with a predominant form at pI 6.2, were detected on two-dimensional gels. Incubation of the 2B3 antibody with the NTR labeled with [125I]T3 resulted in the formation of an antibody-receptor complex, as indicated by a shift of the radioactivity peak upon gel filtration on Sephacryl S-300. In contrast, control ascitic fluid did not change the elution profile of the labeled NTR. The 2B3 antibody is able to remove the T3-binding activity from rat liver nuclear extracts. Finally, in accordance with previous T3-binding experiments, expected amounts of NTR were found in pituitary, liver, brain, kidney, spleen, and testis with the use of the Western blotting technique and immunohistochemistry on frozen tissue sections. This antibody should prove useful in the characterization and

  17. Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor

    PubMed Central

    Wei, Mingming; Zhao, Chengrui; Zhang, Suli; Wang, Li; Liu, Huirong; Ma, Xinliang

    2016-01-01

    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases. PMID:27057554

  18. Monoclonal antibodies to insulin and to the insulin receptor (anti-ID) modify the morphologies of insulin crystals

    NASA Astrophysics Data System (ADS)

    Markman, Ofer; Elias, Dana; Addadi, Lia; Cohen, Irun R.; Berkovitch-Yellin, Ziva

    1992-08-01

    Crystallization of bovine and porcine insulin in the presence of monoclonal antibodies (mAbs) yielded crystals of morphologies which differed from that of insulin crystals grown without the antibodies in solution. The anti-insulin monoclonal antibody ID 7 induced the formation of square plates. The anti-receptor antibodies 312 and A-40 induced deposition of crystals with totally different habit, polar prisms. Four other control mAbs did not have any morphological effect. Systematic work on the growth of crystals of organic and inorganic molecules has shown that morphological modifications, induced when crystals are grown in the presence of selected additives, originate from stereoselective interactions of the additives with the growing crystal faces. The induced morphological modifications can serve as a sensitive tool for the study of these interactions.

  19. Identification and purification of human erythroid progenitor cells by monoclonal antibody to the transferrin receptor (TU 67).

    PubMed

    Herrmann, F; Griffin, J D; Sabbath, K D; Oster, W; Wernet, P; Mertelsmann, R

    1988-04-01

    Anti-TU 67 is a murine monoclonal antibody that recognizes the transferrin receptor. With respect to hematopoietic cells TU 67 is expressed by human multipotent colony-forming cells (CFU-Mix), erythroid progenitor cells (BFU-E and CFU-E) and a fraction of granulocyte/monocyte colony forming cells, but is not expressed by mature hematopoietic cells including erythrocytes, platelets, lymphocytes, and peripheral blood myeloid cells. The TU 67-positive fraction of normal bone marrow, separated by fluorescence-activated cell sorting (FACS) or immune rosettes, contained 87% of the erythroid progenitor cells. Erythroid progenitor cells were enriched up to 50-fold by using a combination of monoclonal antibodies to deplete mature hematopoietic cells, followed by positive selection of BFU-E and CFU-E by TU 67 antibody.

  20. Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor

    SciTech Connect

    Dowding, A.J.; Hall, Z.W.

    1987-10-06

    The authors have isolated and characterized 12 monoclonal antibodies (mAbs) that block the binding of ..cap alpha..-bungarotoxin (..cap alpha..-BuTx) to the acetylcholine receptor (AChR) of Torpedo californica. Two of the mAbs block ..cap alpha..-BuTx binding completely; the other 10 inhibit only about 50% of the binding. The mAbs that partially inhibit ..cap alpha..-BuTx binding can be divided into two groups by examination of the additive effect of pairs of mAbs on toxin binding, and by analysis of competition between mAbs for binding to the AChR. These two groups of mAbs, which we have termed A and B, appear to recognize different toxin-binding sites on the same receptor. A and B mAbs were used to determine the kinetic and pharmacological properties of the two sites. The site recognized by A mAbs binds ..cap alpha..-BuTx with a forward rate constant of 0.98 x 10/sup 5/ M/sup -1/ s/sup -1/, d-tubocurarine (dTC) with a K/sub D/ of (6.8 +/- 0.3) x 10/sup -8/ M, and pancuronium with a K/sub D/ of (1.9 +/- 1.0) x 10/sup -9/ M. The site recognized by B mAbs binds ..cap alpha..-BuTx with a forward rate constant of 9.3 x 10/sup 5/ M/sup -1/ s/sup -1/, dTC with a K/sub D/ of (4.6 +/- 0.3) x 10/sup -6/ M, and pancurionium with a K/sub D/ of (9.3 +/- 0.8) x 10/sup -6/ M. Binding of A and B mAbs to the AChR was variably inhibited by nicotinic cholinergic agonists and antagonists, and by ..cap alpha..-conotoxin. The observed pattern of inhibition is consistent with the relative affinity of the two sites for antagonists as given above but also indicates that the mAbs recognize a diversity of epitopes within each site.

  1. Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor

    PubMed Central

    1986-01-01

    When the human erythroleukemia cell line K562 is treated with OKT9, a monoclonal antibody against the transferrin receptor, effects on receptor dynamics and degradation ensue. The apparent half-life of the receptor is decreased by greater than 50% as a result of OKT9 treatment. The transferrin receptor is also rapidly redistributed in response to OKT9 such that a lower percentage of the cellular receptors are displayed on the cell surface. OKT9 treatment also leads to a decrease in the total number of receptors participating in the transferrin cycle for cellular iron uptake. The reduction in iron uptake that results from the loss of receptors from the cycle leads to enhanced biosynthesis of the receptor. Receptors with bound OKT9 continue to participate in multiple cycles of iron uptake. However, OKT9 treatment appears to result in a relatively small increase per cycle in the departure of receptors from participation in iron uptake to a pathway leading to receptor degradation. Radiolabeled OKT9 is itself degraded by K562 cells and this degradation is inhibitable by leupeptin or chloroquine. In the presence of leupeptin, OKT9 treatment results in the enhanced intracellular accumulation of transferrin. Because the time involved in the transferrin cycle is shorter (12.5 min) than the normal half-life of the receptor (8 h), a small change in recycling efficiency caused by OKT9 treatment could account for the marked decrease in receptor half-life. In this paper the implications of these findings are discussed as they relate to systems in which receptor number is regulated by ligand. PMID:3005341

  2. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  3. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin.

    PubMed

    Moog-Lutz, Christel; Degoutin, Joffrey; Gouzi, Jean Y; Frobert, Yvelyne; Brunet-de Carvalho, Nicole; Bureau, Jocelyne; Créminon, Christophe; Vigny, Marc

    2005-07-15

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. The nature of the cognate ligands of ALK in vertebrate is still a matter of debate. We produced a panel of monoclonal antibodies (mAbs) directed against the extracellular domain of the human receptor. Two major species of ALK (220 and 140 kDa) were identified in transfected cells, and the use of our mAbs established that the 140-kDa species results from a cleavage of the 220-kDa form. Two mAbs, in the nm range, induced the differentiation of PC12 cells transiently transfected with ALK. In human embryonic kidney 293 cells stably expressing ALK, these two mAbs strongly activated the receptor and subsequently the mitogen-activated protein kinase pathway. We further showed for the first time that activation of ALK also resulted in a specific activation of STAT3. In contrast, other mAbs presented the characteristics of blocking antibodies. Finally, in these cell systems, a mitogenic form of pleiotrophin, a proposed ligand of ALK, failed to activate this receptor. Thus, in the absence of clearly established ligand(s) in vertebrates, the availability of mAbs allowing the activation or the inhibition of the receptor will be essential for a better understanding of the biological roles of ALK.

  4. Characterization of Inhibitors and Monoclonal Antibodies That Modulate the Interaction between Plasmodium falciparum Adhesin PfRh4 with Its Erythrocyte Receptor Complement Receptor 1*

    PubMed Central

    Lim, Nicholas T. Y.; Harder, Markus J.; Kennedy, Alexander T.; Lin, Clara S.; Weir, Christopher; Cowman, Alan F.; Call, Melissa J.; Schmidt, Christoph Q.; Tham, Wai-Hong

    2015-01-01

    Plasmodium falciparum parasites must invade red blood cells to survive within humans. Entry into red blood cells is governed by interactions between parasite adhesins and red blood cell receptors. Previously we identified that P. falciparum reticulocyte binding protein-like homologue 4 (PfRh4) binds to complement receptor 1 (CR1) to mediate entry of malaria parasites into human red blood cells. In this report we characterize a collection of anti-PfRh4 monoclonal antibodies and CR1 protein fragments that modulate the interaction between PfRh4 and CR1. We identify an anti-PfRh4 monoclonal that blocks PfRh4-CR1 interaction in vitro, inhibits PfRh4 binding to red blood cells, and as a result abolishes the PfRh4-CR1 invasion pathway in P. falciparum. Epitope mapping of anti-PfRh4 monoclonal antibodies identified distinct functional regions within PfRh4 involved in modulating its interaction with CR1. Furthermore, we designed a set of protein fragments based on extensive mutagenesis analyses of the PfRh4 binding site on CR1 and determined their interaction affinities using surface plasmon resonance. These CR1 protein fragments bind tightly to PfRh4 and also function as soluble inhibitors to block PfRh4 binding to red blood cells and to inhibit the PfRh4-CR1 invasion pathway. Our findings can aid future efforts in designing specific single epitope antibodies to block P. falciparum invasion via complement receptor 1. PMID:26324715

  5. Inhibition of B cell growth factor (BCGF) by monoclonal antibodies directed against the C3d receptor (CR2).

    PubMed

    Perri, R T; Wilson, B S; Kay, N E

    1986-04-01

    Normal human B cell proliferation is controlled by various immunoregulatory signals including the T cell-derived lymphokine B cell growth factor (BCGF). Human BCGF provides the final proliferative signal to normal, activated B cells. We herein show that anti-CR2 monoclonal antibodies inhibit human B cell responsiveness to purified BCGF. Addition of anti-CR2 antibody, AB5, was capable of completely inhibiting BCGF-mediated enhancement of either anti-mu or staphylococcal protein A-activated human B cells (191 +/- 21 cpm vs. 3942 +/- 622 cpm, mean +/- SEM). Inhibition of B cell response to BCGF by AB5 occurred in a dose-dependent manner. Monoclonal antibody anti-B2, which recognizes the same 140-kDa glycoprotein as AB5, in comparable concentrations also inhibited B cell responsiveness to BCGF. Monoclonal antibodies of the same subclass (IgG1) showed no inhibitory effect on BCGF enhancement of B cell proliferation. The F(ab')2 fragment of AB5 generated by pepsin digestion was similarly inhibitory as was the intact Ig. AB5-mediated inhibition was independent of the target B cell state of activation. Both resting and activated B cells (anti-mu or staphylococcal protein A activated) incubated with similar concentrations of AB5 were unresponsive to BCGF. The ability of anti-CR2 antibodies to block BCGF-dependent B cell proliferation suggests that occupancy of C3d membrane receptors may result in modulation of B cell proliferation in physiologic or clinical disease states. PMID:2938967

  6. Establishment and characterization of monoclonal antibodies to carbohydrate antigens on peanut agglutinin receptor glycoprotein of gastric cancer KATO-III.

    PubMed

    Uetsuki, S; Kato, A; Nagakura, H; Fujimoto, K; Kato, Y; Itsuki, Y; Adachi, M; Nakayama, Y

    1992-08-01

    Eight mouse monoclonal antibodies, GOM-1, GOM-2, GOM-3, GOM-5, GOM-6, GOM-7, GOM-8 and GOM-9 were established that recognized carbohydrate antigens on the human gastric cancer cell line KATO-III. Their binding specificities were studied by enzyme-linked immunosorbent assay, cellular enzyme-linked immunosorbent assay, flow cytometry analysis and thin layer chromatography immunostaining. All these monoclonal antibodies bound to peanut agglutinin receptor glycoproteins and neutral glycolipids extracted from KATO-III cells, but they could be divided into three groups, namely GOM-1, -3, -9 group, GOM-5 and GOM-2, -6, -7, -8 group. GOM-3 specifically bound to the Le(a) structure, Gal beta 1-3 (Fuc alpha 1-4) GlcNAc beta 1-, and GOM-5 specifically bound to the Lec structure, Gal beta 1-3GlcNAc beta-. GOM-2 showed specific binding to KATO-III, but little or no binding to various other cell lines examined or to normal human leukocytic cells. It also did not bind to the synthetic glycoconjugates tested, carrying 10 different terminal sugar chains including T, Tn, Le(a), Lec and Le(x) structures. The binding specificity of GOM-2 was also different from those of the monoclonal antibodies anti-Le(x), anti-Leb and anti-Ley. These results suggest that GOM-2 recognizes a new carbohydrate antigen on KATO-III cells that is distinct from Le(a), Leb, Lec, Le(x), Ley, T and Tn structures. PMID:1398682

  7. Detection of surface asialoglycoprotein receptor expression in hepatic and extra-hepatic cells using a novel monoclonal antibody.

    PubMed

    Park, Jung-Hyun; Kim, Kil Lyong; Cho, Eun-Wie

    2006-07-01

    The asialoglycoprotein receptor (ASGPR) is a heterodimeric membrane protein which is involved in the internalization of desialylated glycoproteins and also in the binding and uptake of various pathogenic viruses. To facilitate the analysis of ASGPR expression, we generated a monoclonal antibody, termed ASSA-1, that is specific to the ASGPR H1 subunit based on ELISA and Western blots analysis. ASSA-1 also reacted to surface-displayed ASGPR in live cells thus enabling analysis of ASGPR expression by immunofluorescence flow cytometry, which we used to analyze established human liver cell lines previously confirmed to be positive for ASGPR mRNA expression. In agreement with previous reports, surface ASGPR was also detected in extra-hepatic cells and, surprisingly, even in human T cell lines, which was then further confirmed in activated, but not in resting, primary human peripheral blood lymphocytes. These observations suggest that ASGPR has a broad pattern of expression that even extends into cells from the immune system, which biological meanings still have to be analyzed. We expect that monoclonal antibody ASSA-1 will serve as a new powerful tool in analyzing the biological role of ASGPR in hepatic and extra-hepatic cells.

  8. Monoclonal antibodies against the native or denatured forms of muscarinic acetylcholine receptors.

    PubMed Central

    André, C; Guillet, J G; De Backer, J P; Vanderheyden, P; Hoebeke, J; Strosberg, A D

    1984-01-01

    BALB/c mice were immunized with affinity-purified muscarinic acetylcholine receptors from calf brain and their splenocytes fused with NS1 myeloma cells. Hybrid cultures were grown and selected for production of antibodies on the basis of enzyme immunoassays on calf and rat forebrain membrane preparations. Thirty-four clones were retained and six of them further subcloned. Two of these subclones produced antibodies that selectively recognized muscarinic acetylcholine receptor-bearing membranes. The M-35b antibodies interacted only with native digitonin-solubilized receptors, and not with denatured receptors. The M-23c antibodies did not react with active digitonin-solubilized receptors but recognized the denatured form. The M-23c antibodies should thus be useful in the purification of the receptor and its precursor translation products, while the M-35b antibodies could be used for the immunocytochemical localization of the receptor in cells and tissues of different species. Images Fig. 2. Fig. 3. PMID:6200320

  9. Identification of the Single Immunodominant Region of the Native Human CC Chemokine Receptor 6 Recognized by Mouse Monoclonal Antibodies

    PubMed Central

    Dorgham, Karim; Dejou, Cécile; Piesse, Christophe; Gorochov, Guy; Pène, Jérôme

    2016-01-01

    Chemokines and their receptors play an important role in cell trafficking and recruitment. The CCR6 chemokine receptor, selectively expressed on leukocyte populations, has been shown to play a deleterious role in the pathogenesis of various chronic inflammatory diseases and, as such, may constitute a prime target in the development of immunotherapeutic treatment. However, to date no neutralizing mouse monoclonal antibodies (mAbs) specific for this chemokine receptor have been reported, whereas information on small molecules capable of interfering with the interaction of CCR6 and its ligands is scant. Here, we report the failure to generate neutralizing mouse mAbs specific for human (hu)CCR6. Immunization of mice with peptides mimicking extracellular domains, potentially involved in CCR6 function, failed to induce Abs reactive with the native receptor. Although the use of NIH-3T3 cells expressing huCCR6 resulted in the isolation of mAbs specific for this receptor, they were not able to block the interaction between huCCR6 and huCCL20. Investigation of the anti-huCCR6 mAbs generated in the present study, as well as those commercially available, show that all mAbs invariably recognize a unique, non-neutralizing, immunodominant region in the first part of its N-terminal domain. Together, these results indicate that the generation of potential neutralizing anti-huCCR6 mAbs in the mouse is unlikely to succeed and that alternative techniques, such as the use of other animal species for immunization, might constitute a better approach to generate such a potentially therapeutic tool for the treatment of inflammatory disease. PMID:27336468

  10. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    SciTech Connect

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  11. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies.

    PubMed

    Shcherbatko, Anatoly; Foletti, Davide; Poulsen, Kris; Strop, Pavel; Zhu, Guoyun; Hasa-Moreno, Adela; Melton Witt, Jody; Loo, Carole; Krimm, Stellanie; Pios, Ariel; Yu, Jessica; Brown, Colleen; Lee, John K; Stroud, Robert; Rajpal, Arvind; Shelton, David

    2016-06-01

    Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications. PMID:27129281

  12. Reverse-phase high-performance liquid chromatography of nerve growth factor receptor-like proteins identified with monoclonal antibodies

    SciTech Connect

    Shan, D.E.; Beck, C.E.; Werrbach-Perez, K.; Perez-Polo, J.R. )

    1990-12-01

    Human neuroblastoma SK-N-SH-SY5Y (SY5Y) and rat pheochromocytoma PC12 cells are model cell lines used in the study of nerve growth factor (NGF) effect. The effects of NGF are initiated by binding to cell surface receptors (NGFR). The amino acid sequence for NGFR has been deduced based on the identification of a single gene for NGFR. However, there are two kinds of NGF binding activities and several reported molecular weights of NGFR. We report here on the demonstration of NGFR-like proteins from PC12 and SY5Y cells by sequential lectin chromatography, reverse-phase HPLC, and SDS-PAGE analysis of immunoprecipitates obtained with NGFR-specific monoclonal antibodies. For both human and rodent NGFR, there was a tendency for the higher molecular-weight species of NGFR-like proteins to be eluted in more hydrophobic fractions. Also, the expression of different species of NGFR could be modified by treatment with retinoic acid (RA). These results are consistent with the hypothesis that the different molecular species of NGFR may result from the generation of a truncated form of NGFR, the presence of sugar residues on the NGFR protein, dimer formation between NGFR, or the association of NGFR with a receptor-associated protein.

  13. Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

    PubMed Central

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246

  14. Assessment of the enhancement of PLGA nanoparticle uptake by dendritic cells through the addition of natural receptor ligands and monoclonal antibody.

    PubMed

    Walters, Adam A; Somavarapu, Satyanarayana; Riitho, Victor; Stewart, Graham R; Charleston, Bryan; Steinbach, Falko; Graham, Simon P

    2015-11-27

    Targeting of specific receptors on antigen-presenting cells is an appealing prospect in the production of novel nanoparticulate vaccines. In particular, the targeting of vaccines to dendritic cell (DC) subsets has been shown in models to significantly improve the induction of immune responses. This paper describes the evaluation of natural ligands, mannan and chitosan, and monoclonal antibodies as targeting motifs to enhance uptake of PLGA nanoparticle carriers by bovine DCs. To assess enhancement of uptake after the addition of natural ligands a bovine monocyte derived DC (MoDC) model was used. For the assessment of monoclonal antibody targeting, the model was expanded to include afferent lymph DCs (ALDCs) in a competitive uptake assay. Mannan, proved unsuccessful at enhancing uptake or targeting by MoDCs. Chitosan coated particle uptake could be impeded by the addition of mannan suggesting uptake may be mediated through sugar receptors. Inclusion of monoclonal antibodies specific for the DEC-205 (CD205) receptor increased the number of receptor expressing DCs associated with particles as well as the number of particles taken up by individual cells. These results support the further evaluation of active targeting of nanovaccines to DCs to enhance their immunogenicity in cattle and other large mammalian species including humans. PMID:26529067

  15. Assessment of the enhancement of PLGA nanoparticle uptake by dendritic cells through the addition of natural receptor ligands and monoclonal antibody.

    PubMed

    Walters, Adam A; Somavarapu, Satyanarayana; Riitho, Victor; Stewart, Graham R; Charleston, Bryan; Steinbach, Falko; Graham, Simon P

    2015-11-27

    Targeting of specific receptors on antigen-presenting cells is an appealing prospect in the production of novel nanoparticulate vaccines. In particular, the targeting of vaccines to dendritic cell (DC) subsets has been shown in models to significantly improve the induction of immune responses. This paper describes the evaluation of natural ligands, mannan and chitosan, and monoclonal antibodies as targeting motifs to enhance uptake of PLGA nanoparticle carriers by bovine DCs. To assess enhancement of uptake after the addition of natural ligands a bovine monocyte derived DC (MoDC) model was used. For the assessment of monoclonal antibody targeting, the model was expanded to include afferent lymph DCs (ALDCs) in a competitive uptake assay. Mannan, proved unsuccessful at enhancing uptake or targeting by MoDCs. Chitosan coated particle uptake could be impeded by the addition of mannan suggesting uptake may be mediated through sugar receptors. Inclusion of monoclonal antibodies specific for the DEC-205 (CD205) receptor increased the number of receptor expressing DCs associated with particles as well as the number of particles taken up by individual cells. These results support the further evaluation of active targeting of nanovaccines to DCs to enhance their immunogenicity in cattle and other large mammalian species including humans.

  16. Variable region structure and staphylococcal protein A binding specificity of a mouse monoclonal IgM anti-laminin-receptor antibody.

    PubMed Central

    Feijó, G C; Sabbaga, J; Carneiro, C R; Brígido, M M

    1997-01-01

    Staphylococcal protein A is a cell wall-attached polypeptide that acts as a B-lymphocyte superantigen. This activation correlates with specific VH gene segment usage in the B-cell receptor. B-cell receptor assembled from members of the VH3 family in humans, or S107 family in mice, has an intrinsic affinity for protein A. Human VH3-derived antibodies bind to domain D of protein A. We have characterized a mouse IgM monoclonal antibody that binds protein A. The sequencing of the variable region suggests an almost germline-encoded VH derived from S107 family and a V kappa 8-derived VL. The binding specificity of the monoclonal antibody was tested with various recombinant constructions derived from protein A. We show that, unlike human VH3-derived antibody, mouse S107-derived immunoglobulin binds to the B domain of the bacterial superantigen. PMID:9301540

  17. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    SciTech Connect

    Jaramillo, Maria L. . E-mail: maria.jaramillo@nrc.ca; Leon, Zully; Grothe, Suzanne; Paul-Roc, Beatrice; Abulrob, Abedelnasser; O'Connor McCourt, Maureen

    2006-09-10

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidenced by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.

  18. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer.

    PubMed

    Herbst, R S; Kim, E S; Harari, P M

    2001-07-01

    Squamous cell carcinoma (SCC) of the head and neck (H&N) remains a clinical challenge due to its high rate of locoregional disease recurrence. The importance of the epidermal growth factor receptor (EGFR) in the development and progression of many solid tumours (including SCC of the H&N) is well understood; increased expression is associated with enhanced tumour invasion, resistance to chemotherapy and decreased patient survival. Several approaches have been developed to achieve EGFR blockade as an anticancer treatment strategy, including an anti-EGFR monoclonal antibody (mAb), IMC-C225, which competitively binds to the extracellular receptor site to prevent binding by natural EGFR ligands (EGF and TGF-alpha). Preclinical studies evaluating this chimeric mAb in human cancer cell lines in vitro and human tumour xenografts in vivo have demonstrated its potent antitumour activity. The clinical efficacy of IMC-C225 appears to involve multiple anticancer mechanisms, including inhibition of cell cycle progression, induction of apoptosis, anti-angiogenesis, inhibition of metastasis and its ability to enhance the response to chemotherapy and radiation therapy. Phase I studies of IMC-C225 combined with chemotherapy or radiation for SCC of the H&N demonstrate excellent response rates in patients with recurrent or refractory disease. Phase II and III trials examining the efficacy and safety of these combinations are currently underway. To date, IMC-C225 has been well-tolerated, with skin rashes and allergic reactions being the most clinically important adverse events reported. IMC-C225 displays dose-dependent elimination characteristics and a half-life of approximately 7 days. Current recommendations for dosing include a 400 mg/m2 loading dose, followed by weekly infusions of 250 mg/m2.

  19. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer.

    PubMed

    Herbst, Roy S; Hong, Waun Ki

    2002-10-01

    Squamous cell carcinoma of the head and neck remains a clinical challenge because of the high rate of locoregional disease recurrence. The importance of the epidermal growth factor receptor (EGFR) in the development and progression of many solid tumors, including squamous cell carcinoma of the head and neck, is well understood; increased expression is associated with enhanced tumor invasiveness, resistance to chemotherapy, and a lower patient survival rate. Several approaches have been developed to achieve EGFR blockade as an anticancer treatment strategy, including the anti-EGFR monoclonal antibody IMC-C225, which competitively binds to the extracellular receptor site and prevents binding by the natural EGFR ligands EGF and transforming growth factor-alpha. Preclinical studies to evaluate IMC-225 in human cancer cell lines in vitro and human tumor xenografts in vivo have shown its potent antitumor activity. Clinical efficacy of IMC-C225 appears to involve multiple mechanisms, including inhibition of cell cycle progression, induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, and enhancement of the response to chemotherapy and radiation therapy. Phase I studies of IMC-C225 combined with chemotherapy or radiation showed promising response rates in patients with recurrent or refractory squamous cell carcinoma of the head and neck. Phase II and III trials to examine the efficacy and safety of these combinations are currently underway. To date, IMC-C225 has been well tolerated, with skin rashes and allergic reactions being the most clinically important adverse events reported. IMC-C225 displays dose-dependent elimination characteristics and a half-life of approximately 7 days. Current recommendations for dosing include a 400 mg/m(2) loading dose, followed by weekly infusions at 250 mg/m(2).

  20. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    PubMed Central

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  1. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types

    PubMed Central

    1989-01-01

    A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non- lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those

  2. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  3. Detection of Amino-terminal Extracellular Domain of Somatostatin Receptor 2 by Specific Monoclonal Antibodies and Quantification of Receptor Density in Medulloblastoma

    PubMed Central

    Wikstrand, Carol J.; McLendon, Roger E.; Zalutsky, Michael R.; Kumar, Ujendra; Bigner, Darell D.

    2009-01-01

    Somatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer 33QTEPYYDLTSNA44, which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface–detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG3 MAb exhibited a 50–100% IRF, but low KA. Four IgG2a MAbs had 46–94% IRFs and modest KAs versus intact cells (0.21–1.2 × 108 M−1). Following binding of radiolabeled MAbs to D341 MED at 4°C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37°C after 2 h was 65–66%, and after 24 h, 52–64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 × 104 for the “glial” phenotype DAOY MED cell line and 0.6–8.8 × 105 for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs. PMID:20025498

  4. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell.

    PubMed

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-11-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma.

  5. Structural analysis of covalently labeled estrogen receptors by limited proteolysis and monoclonal antibody reactivity

    SciTech Connect

    Katzenellenbogen, B.S.; Elliston, J.F.; Monsma, F.J. Jr.; Springer, P.A.; Ziegler, Y.S.

    1987-04-21

    The authors have used limited proteolysis of affinity-labeled estrogen receptors (ER), coupled with antireceptor antibody immunoreactivity, to assess structural features of ER and the relatedness of ER from MCF-7 human breast cancer and rat uterine cells. MCF-7 ER preparations covalently labeled with (/sup 3/H)tamoxifen aziridine ((/sup 3/H)TAZ) were treated with trypsin (T), ..cap alpha..-chymotrypsin (C), or Staphylococcus aureus V8 protease prior to electrophoresis on sodium dodecyl sulfate gels. Fluorography revealed a distinctive ladder of ER fragments containing TAZ for each protease generated from the M/sub r/ 66,000 ER. Immunoblot detection with the primate-specific antibody D75P3..gamma.. revealed that all immunoreactive fragments corresponded to TAZ-labeled fragments but that some small TAZ-labeled fragments were no longer immunoreactive. In contrast, use of the antibody H222SP..gamma.. revealed a correspondence between TAZ-labeled and immunoreactive fragments down to the smallest fragments generated, ca. 6K for T and C and 28K for V8. MCF-7 nuclear and cytosol ER showed very similar digest patterns, and there was a remarkable similarity in the TAZ-labeled and H222-immunoreactive fragments generated by proteolysis of both MCF-7 and rat uterine ER. These findings reveal great structural similarities between the human (breast cancer) and rat (uterine) ER and between nuclear and cytosol ER, indicate charge heterogeneity of ER, and allow a comparison of the immunoreactive and hormone attachment site domains of the ER. The observation that T and C generate a ca. 6K TAZ-labeled fragment that is also detectable with the H222 antibody should be of interest inn studies determining the hormone binding domain of the ER and in amino acid sequencing of this region.

  6. Fully Human Monoclonal Antibody Inhibitors of the Neonatal Fc Receptor Reduce Circulating IgG in Non-Human Primates

    PubMed Central

    Nixon, Andrew E.; Chen, Jie; Sexton, Daniel J.; Muruganandam, Arumugam; Bitonti, Alan J.; Dumont, Jennifer; Viswanathan, Malini; Martik, Diana; Wassaf, Dina; Mezo, Adam; Wood, Clive R.; Biedenkapp, Joseph C.; TenHoor, Chris

    2015-01-01

    The therapeutic management of antibody-mediated autoimmune disease typically involves immunosuppressant and immunomodulatory strategies. However, perturbing the fundamental role of the neonatal Fc receptor (FcRn) in salvaging IgG from lysosomal degradation provides a novel approach – depleting the body of pathogenic immunoglobulin by preventing IgG binding to FcRn and thereby increasing the rate of IgG catabolism. Herein, we describe the discovery and preclinical evaluation of fully human monoclonal IgG antibody inhibitors of FcRn. Using phage display, we identified several potent inhibitors of human-FcRn in which binding to FcRn is pH-independent, with over 1000-fold higher affinity for human-FcRn than human IgG-Fc at pH 7.4. FcRn antagonism in vivo using a human-FcRn knock-in transgenic mouse model caused enhanced catabolism of exogenously administered human IgG. In non-human primates, we observed reductions in endogenous circulating IgG of >60% with no changes in albumin, IgM, or IgA. FcRn antagonism did not disrupt the ability of non-human primates to mount IgM/IgG primary and secondary immune responses. Interestingly, the therapeutic anti-FcRn antibodies had a short serum half-life but caused a prolonged reduction in IgG levels. This may be explained by the high affinity of the antibodies to FcRn at both acidic and neutral pH. These results provide important preclinical proof of concept data in support of FcRn antagonism as a novel approach to the treatment of antibody-mediated autoimmune diseases. PMID:25954273

  7. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    SciTech Connect

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori; Masuko, Kazue; Hashimoto, Yoshiyuki; Masuko, Takashi

    2008-03-21

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.

  8. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates.

    PubMed

    Nixon, Andrew E; Chen, Jie; Sexton, Daniel J; Muruganandam, Arumugam; Bitonti, Alan J; Dumont, Jennifer; Viswanathan, Malini; Martik, Diana; Wassaf, Dina; Mezo, Adam; Wood, Clive R; Biedenkapp, Joseph C; TenHoor, Chris

    2015-01-01

    The therapeutic management of antibody-mediated autoimmune disease typically involves immunosuppressant and immunomodulatory strategies. However, perturbing the fundamental role of the neonatal Fc receptor (FcRn) in salvaging IgG from lysosomal degradation provides a novel approach - depleting the body of pathogenic immunoglobulin by preventing IgG binding to FcRn and thereby increasing the rate of IgG catabolism. Herein, we describe the discovery and preclinical evaluation of fully human monoclonal IgG antibody inhibitors of FcRn. Using phage display, we identified several potent inhibitors of human-FcRn in which binding to FcRn is pH-independent, with over 1000-fold higher affinity for human-FcRn than human IgG-Fc at pH 7.4. FcRn antagonism in vivo using a human-FcRn knock-in transgenic mouse model caused enhanced catabolism of exogenously administered human IgG. In non-human primates, we observed reductions in endogenous circulating IgG of >60% with no changes in albumin, IgM, or IgA. FcRn antagonism did not disrupt the ability of non-human primates to mount IgM/IgG primary and secondary immune responses. Interestingly, the therapeutic anti-FcRn antibodies had a short serum half-life but caused a prolonged reduction in IgG levels. This may be explained by the high affinity of the antibodies to FcRn at both acidic and neutral pH. These results provide important preclinical proof of concept data in support of FcRn antagonism as a novel approach to the treatment of antibody-mediated autoimmune diseases. PMID:25954273

  9. Nonmitogenic Anti-CD3 Monoclonal Antibodies Deliver a Partial T Cell Receptor Signal and Induce Clonal Anergy

    PubMed Central

    Smith, Judith A.; Tso, J. Yun; Clark, Marcus R.; Cole, Michael S.; Bluestone, Jeffrey A.

    1997-01-01

    Anti-CD3 monoclonal antibodies (mAbs) are potent immunosuppressive agents used in clinical transplantation. However, the activation-related adverse side effects associated with these mAbs have prompted the development of less toxic nonmitogenic anti-CD3 mAb therapies. At present, the functional and biochemical consequences of T cell exposure to nonmitogenic anti-CD3 is unclear. In this study, we have examined the early signaling events triggered by a nonmitogenic anti-CD3 mAb. Like the mitogenic anti-CD3 mAb, nonmitogenic anti-CD3 triggered changes in the T cell receptor (TCR) complex, including ζ chain tyrosine phosphorylation and ZAP-70 association. However, unlike the mitogenic anti-CD3 stimulation, nonmitogenic anti-CD3 was ineffective at inducing the highly phosphorylated form of ζ (p23) and tyrosine phosphorylation of the associated ZAP-70 tyrosine kinase. This proximal signaling deficiency correlated with minimal phospholipase Cγ-1 phosphorylation and failure to mobilize detectable Ca2+. Not only did biochemical signals delivered by nonmitogenic anti-CD3 resemble altered peptide ligand signaling, but exposure of Th1 clones to nonmitogenic anti-CD3 also resulted in functional anergy. Finally, a bispecific anti-CD3 × anti-CD4 F(ab)′2 reconstituted early signal transduction events and induced proliferation, suggesting that defective association of lck with the TCR complex may underlie the observed signaling differences between the mitogenic and nonmitogenic anti-CD3. PMID:9126922

  10. A Pharmacologically Active Monoclonal Antibody against the Human Melanocortin-4 Receptor: Effectiveness After Peripheral and Central Administration

    PubMed Central

    Peter, Jean-Christophe; Lecourt, Anne-Catherine; Weckering, Marjorie; Zipfel, Géraldine; Niehoff, Michael L.; Banks, William A.; Hofbauer, Karl G.

    2010-01-01

    The hypothalamic melanocortin-4 receptor (MC4R) is a constituent of an important pathway regulating food intake and energy expenditure. We produced a monoclonal antibody (mAb) directed against the N-terminal domain of the MC4R and evaluated its potential as a possible therapeutic agent. This mAb (1E8a) showed specific binding to the MC4R in human embryonic kidney 293 cells expressing the human MC4R and blocked the activity of the MC4R under basal conditions and after stimulation with α-melanocyte-stimulating hormone (α-MSH). The inverse agonist action of Agouti-related protein was significantly enhanced in the presence of mAb 1E8a. After a single intracerebroventricular injection into the third ventricle, mAb 1E8a (1 μg) increased 24-h food intake in rats. After 7 days of continuous intracerebroventricular administration, mAb 1E8a increased food intake, body weight, and fat pad weight and induced hyperglycemia. Because the complete mAb was ineffective after intravenous injection, we produced single-chain variable fragments (scFvs) derived from mAb 1E8a. In pharmacokinetic studies it was demonstrated that these scFvs crossed the blood-brain barrier and reached the hypothalamus. Consequently, the scFv 1E8a increased significantly food intake and body weight in rats after intravenous administration (300 μg/kg). The pharmacological profile of mAb 1E8a and the fact that its scFv was active after peripheral administration suggest that derivatives of anti-MC4R mAbs may be useful in the treatment of patients with anorexia or cachexia. PMID:20118207

  11. Investigating the Interaction between the Neonatal Fc Receptor and Monoclonal Antibody Variants by Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Jensen, Pernille Foged; Larraillet, Vincent; Schlothauer, Tilman; Kettenberger, Hubert; Hilger, Maximiliane; Rand, Kasper D.

    2015-01-01

    The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution. PMID:25378534

  12. AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis

    PubMed Central

    Yano, Tomoya; Takeda, Hiroyuki; Uematsu, Atsushi; Yamanaka, Satoshi; Nomura, Shunsuke; Nemoto, Keiichirou; Iwasaki, Takahiro; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2016-01-01

    Polypeptide tag technology is widely used for protein detection and affinity purification. It consists of two fundamental elements: a peptide sequence and a binder which specifically binds to the peptide tag. In many tag systems, antibodies have been used as binder due to their high affinity and specificity. Recently, we obtained clone Ra48, a high-affinity rabbit monoclonal antibody (mAb) against dopamine receptor D1 (DRD1). Here, we report a novel tag system composed of Ra48 antibody and its epitope sequence. Using a deletion assay, we identified EEAAGIARP in the C-terminal region of DRD1 as the minimal epitope of Ra48 mAb, and we named this sequence the “AGIA” tag, based on its central sequence. The tag sequence does not include the four amino acids, Ser, Thr, Tyr, or Lys, which are susceptible to post-translational modification. We demonstrated performance of this new tag system in biochemical and cell biology applications. SPR analysis demonstrated that the affinity of the Ra48 mAb to the AGIA tag was 4.90 × 10−9 M. AGIA tag showed remarkably high sensitivity and specificity in immunoblotting. A number of AGIA-fused proteins overexpressed in animal and plant cells were detected by anti-AGIA antibody in immunoblotting and immunostaining with low background, and were immunoprecipitated efficiently. Furthermore, a single amino acid substitution of the second Glu to Asp (AGIA/E2D) enabled competitive dissociation of AGIA/E2D-tagged protein by adding wild-type AGIA peptide. It enabled one-step purification of AGIA/E2D-tagged recombinant proteins by peptide competition under physiological conditions. The sensitivity and specificity of the AGIA system makes it suitable for use in multiple methods for protein analysis. PMID:27271343

  13. A phase I study of farletuzumab, a humanized anti-folate receptor α monoclonal antibody, in patients with solid tumors.

    PubMed

    Sasaki, Yasutsuna; Miwa, Keisuke; Yamashita, Keishi; Sunakawa, Yu; Shimada, Ken; Ishida, Hiroo; Hasegawa, Kosei; Fujiwara, Keiichi; Kodaira, Makoto; Fujiwara, Yasuhiro; Namiki, Masayuki; Matsuda, Minami; Takeuchi, Yutaka; Katsumata, Noriyuki

    2015-04-01

    Farletuzumab is a humanized monoclonal antibody against folate receptor α (FRA). The purpose of the study is to assess safety and tolerability, the pharmacokinetic (PK) profile, and preliminary antitumor effect. Patients with ovarian cancer (OC) or FRA-expressing solid tumors who are resistant to standard treatments were eligible for the study. After single-dose administration for PK assessment, farletuzumab was administered by intravenous injection, repeating every week until disease progression. Dose-limiting toxicities (DLTs) were defined as grade 4 hematological and grade 3/4 nonhematological toxicities. Dose escalation was planned in 4 cohorts (50, 100, 200, and 400 mg/m(2)). Fourteen patients with OC and two patients with gastric cancer (GC) received farletuzumab infusion. Neither DLTs nor grade 3/4 toxicities were reported in all cohorts. Major adverse events, including grade 1/2 infusion related reaction (15 patients, 93.8%), headache (seven patients, 43.8%), and nausea and decreased appetite (five patients each, 31.3%), were observed and medically managed. AUC and Cmax increased dose-dependently and linear PK profiles were observed. No tumor shrinkage was recorded, but long-term disease stabilization for 25 and 20 months was observed in one patient with clear cell OC (100 mg/m(2)) and one patient with GC (400 mg/m(2)), respectively. No cumulative toxicity occurred in any patient. Farletuzumab was well tolerated in Japanese patients with a similar PK profile as compared with the US population. Long-term disease stabilization was observed in a subpopulation of clear cell OC and GC; both of them were resistant and progressive after standard chemotherapies (ClinicalTrials.gov Identifier: NCT01049061).

  14. Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca/sup 2 +/ channel structure

    SciTech Connect

    Vandaele, S.; Fosset, M.; Galizzi, J.P.; Lazdunski, M.

    1987-01-13

    Monoclonal hybridoma cell lines secreting antibodies against the (+)-PN 200-110 and the (-)-demethoxyverapamil binding components of the voltage-dependent calcium channel from rabbit transverse-tubule membranes have been isolated. The specificity of these monoclonal antibodies was established by their ability to coimmunoprecipitate (+)-(/sup 3/H)PN 200-110 and (-)-(/sup 3/H)demethoxyverapamil receptors. Monoclonal antibodies described in this work cross-reacted with rat, mouse, chicken, and frog skeletal muscle Ca/sup 2 +/ channels but not with crayfish muscle Ca/sup 2 +/ channels. Cross-reactivity was also detected with membranes prepared from rabbit heart, brain, and intestinal smooth muscle. These antibodies were used in immunoprecipitation experiments with /sup 125/I-labeled detergent (3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS) and digitonin) solubilized membranes. They revealed a single immunoprecipitating component of molecular weight (M/sub r/) 170,000 in nonreducing conditions. After disulfide bridge reduction the CHAPS-solubilized (+)-PN 200-110-(-)-demethoxyverapamil binding component gave rise to a large peptide of M/sub r/ 140,000 and to smaller polypeptides of M/sub r/ 30,000 and 26,000 whereas the digitonin-solubilized receptor appeared with subunits at M/sub r/ 170,000, 140,000, 30,000, and 26,000. All these results taken together are interpreted as showing that both the 1,4-dihydropyridine and the phenylalkylamine receptors are part of a single polypeptide chain of M/sub r/ 170,000.

  15. Epitope-mapped monoclonal antibodies as tools for functional and morphological analyses of the human urokinase receptor in tumor tissue.

    PubMed Central

    Luther, T.; Magdolen, V.; Albrecht, S.; Kasper, M.; Riemer, C.; Kessler, H.; Graeff, H.; Müller, M.; Schmitt, M.

    1997-01-01

    uPAR (CD87), the receptor for the urokinase-type plasminogen activator (uPA) facilitates tumor cell invasion and metastasis by focusing uPA proteolytic activity to the cell surface. As uPAR exists in various molecular forms, it is desirable to use well defined antibodies for analyses of uPAR antigen expression in human malignant tumors by immunological methods. Therefore, twelve monoclonal antibodies (MAbs) directed against uPAR were generated by using nonglycosylated, recombinant human uPAR (spanning amino acids 1 to 284), expressed in Escherichia coli, as the immunogen. The reaction pattern of these MAbs with the immunogen and a series of carboxyl-terminally truncated versions of uPAR demonstrated that at least six different epitopes of uPAR are recognized. All MAbs reacted under reducing conditions in immunoblot analyses with E. coli-expressed uPA and also with highly glycosylated, functionally intact, recombinant human uPAR expressed in Chinese hamster ovary (CHO) cells. Seven of the MAbs recognized CHO uPAR under nonreducing conditions as well. By flow cytofluorometric analyses, three of these MAbs were shown to bind to native human uPAR present on the cell surface of monocytoid U937 cells with MAb IIIF10 being the best. Saturation of uPAR with uPA on U937 cells completely blocked interaction of MAb IIIF10 with uPAR (mapped epitope, amino acids 52 to 60 of domain I of uPAR). In turn, preincubation of U937 cells with MAb IIIF10 efficiently reduced binding of uPA to uPAR, indicating that the epitope detected by MAb IIIF10 is located within or closely to the uPA-binding site of uPAR, and thus, this site may be a target to influence uPA/uPAR-mediated proteolysis in tumors. Binding of MAbs IID7 or IIIB11 (mapped epitope, amino acids 125 to 132 of domain II of uPAR) to uPAR is not affected when uPAR is occupied by uPA. As these MAbs reacted strongly with cellular uPAR antigen in formalin-fixed paraffin-embedded tumor sections, the domain-II-specific antibodies IID7

  16. Nonclinical safety of mavrilimumab, an anti-GMCSF receptor alpha monoclonal antibody, in cynomolgus monkeys: Relevance for human safety

    SciTech Connect

    Ryan, Patricia C.; Sleeman, Matthew A.; Rebelatto, Marlon; Wang, Bing; Lu, Hong; Chen, Xiaomin; Wu, Chi-Yuan; Hinrichs, Mary Jane; Roskos, Lorin; Towers, Heidi; McKeever, Kathleen; Dixit, Rakesh

    2014-09-01

    Mavrilimumab (CAM-3001) is an investigational human IgG4 monoclonal antibody (MAb) targeting GM-CSF receptor alpha which is currently being developed for the treatment of RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. To support clinical development, the nonclinical safety of mavrilimumab was evaluated in several studies with cynomolgus monkeys as the pharmacologically relevant species. Comprehensive toxicity parameters were assessed in each study, and treatment duration ranged from 4 to 26 weeks. Mavrilimumab has an acceptable safety profile in monkeys with no changes in any parameters other than microscopic findings in lung. In several studies, minimal accumulation of foamy alveolar macrophages was observed. This finding was only seen in studies of at least 11 weeks duration, was reversible following a dose-free recovery period and was considered non-adverse. At higher dose levels (≥ 30 mg/kg/week), in a 26-week repeat-IV dose study, the presence of lung foreign material, cholesterol clefts, and granulomatous inflammation was also observed in a few animals and was considered adverse. The dose- and time-related accumulation of foamy macrophages in lung following exposure to mavrilimumab observed in several NHP studies was expected based upon the known role of GM-CSFRα signaling in the function of alveolar macrophages. Overall, a clean no-observed-adverse-effect-level (NOAEL) without any effects in lung was established and provided adequate clinical safety margins. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress. - Highlights: • Mavrilimumab is a MAB targeting GM-CSFRα being developed for RA therapy. • Mavrilimumab has an acceptable safety profile in cynomolgus monkeys.

  17. Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas.

    PubMed

    Mu, Ketao; Zhang, Shun; Ai, Tao; Jiang, Jingjing; Yao, Yihao; Jiang, Lingyu; Zhou, Qing; Xiang, Hongbing; Zhu, Yanhong; Yang, Xiangliang; Zhu, Wenzhen

    2015-01-01

    The objective of this study was to successfully synthesize epidermal growth factor receptor monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (EGFRmAb-SPIONs) and explore their biocompatibility and potential applications as a targeted magnetic resonance imaging (MRI) contrast agent for the EGFR-specific detection of brain glioma in vivo. After conjugation of EGFRmAb with SPIONs, the magnetic characteristics of EGFRmAb-SPIONs were investigated. Thereafter, the targeting abilities of EGFRmAb-SPIONs with MRI were qualitatively and quantitatively assessed in EGFR-positive C6 glioma cells in vitro and in a Wistar rat model bearing C6 glioma in vivo. Furthermore, the preliminary biocompatibility and toxicity of EGFRmAb-SPIONs were evaluated in normal rats through hematology assays and histopathologic analyses. Statistical analysis was performed using one-way analysis of variance and Student t-test, with a significance level of p < .05. From the results of EGFRmAb-SPION characterizations, the average particle size was 10.21 nm and the hydrodynamic diameter was 161.5 ± 2.12 nm. The saturation magnetization was 55 emu/g·Fe, and T2 relaxivity was 92.73 s-1mM-1 in distilled water. The preferential accumulation of the EGFRmAb-SPIONs within glioma and subsequent MRI contrast enhancement were demonstrated both in vitro in C6 cells and in vivo in rats bearing C6 glioma. After intravenous administration of EGFRmAb-SPIONs, T2-weighted MRI of the rat model with brain glioma exhibited an apparent hypointense region within glioma from 2 to 48 hours. The maximal image contrast was reached at 24 hours, where the signal intensity decreased and the R2 value increased by 30% compared to baseline. However, T2-weighted imaging of the rat model administered with SPIONs showed no visible signal changes within the tumor over the same time period. Moreover, no evident toxicities in vitro and in vivo with EGFRmAb-SPIONs were clearly identified based on the laboratory

  18. Inhibition of allograft rejection by anti-T-cell receptor-alpha beta monoclonal antibodies preserving resistance to bacterial infection.

    PubMed Central

    Eto, M; Yoshikai, Y; Nishimura, Y; Hiromatsu, K; Maeda, T; Nomoto, K; Kong, Y Y; Kubo, R T; Kumazawa, J; Nomoto, K

    1994-01-01

    Anti-CD3 monoclonal antibody (mAb) has been administered in clinical organ transplantation to reverse acute allograft rejection; however, severe immunodeficiency can result from such mAb treatment and cause an increased incidence of opportunistic infections. Therefore, new model systems are required in order to establish better methods for suppressing allograft rejection while preserving resistance to opportunistic infections. In this study, we compared the effects of the in vivo administration of anti-T-cell receptor-alpha beta (TcR alpha beta) mAb, H57-597, with those of anti-CD3 mAb, 145-2C11. Much to our surprise, the in vivo administration of anti-TcR alpha beta mAb prior to skin grafting led to a longer allograft survival than that of anti-CD3 mAb at any of the comparable dosages examined. In the lymphoid organs of mice treated with anti-TcR alpha beta mAb, TcR alpha beta-bearing cells were almost completely depleted, while TcR gamma delta-bearing cells remained at a relatively increased level on day 14 after anti-TcR alpha beta mAb treatment. The in vitro stimulation by anti-TcR gamma delta mAb clearly showed that such TcR gamma delta-bearing cells were functionally intact. Furthermore, the mice treated with anti-TcR alpha beta mAb, but not anti-CD3 mAb, were observed to be resistant to infection with Listeria monocytogenes. Finally, treatment with H57-597, but not with 145-2C11, led to a marked prolongation of skin allograft survival in the thymectomized mice. These results strongly suggest that anti-TcR alpha beta mAb, which partially preserved anti-bacterial resistance, may be more effective in preventing graft rejection than anti-CD3 mAb in the periphery, and indicate that anti-TcR alpha beta mAb may thus be potentially applicable for human transplantation. In addition, these results also indicate that the TcR gamma delta-bearing cells alone, at least in the absence of TcR alpha beta-bearing cells, do not contribute to allograft rejection in vivo. PMID

  19. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4) Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage.

    PubMed

    Cai, Binggang; Wang, Maorong; Zhu, Xuhui; Xu, Jing; Zheng, Wenkai; Zhang, Yiqing; Zheng, Feng; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Lipopolysaccharides (LPS) can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4) signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2) complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  20. Use of Heteropolymeric Monoclonal Antibodies to Attach Antigens to the C3b Receptor of Human Erythrocytes: A Potential Therapeutic Treatment

    NASA Astrophysics Data System (ADS)

    Taylor, Ronald P.; Sutherland, William M.; Reist, Craig J.; Webb, Donna J.; Wright, Eleanor L.; Labuguen, Ronald H.

    1991-04-01

    We have prepared bispecific, cross-linked monoclonal antibodies (heteropolymers) with specificity for both targeted antigens and the human erythrocyte (RBC) complement receptor. These heteropolymers facilitate binding of target antigens (human IgG and dinitrophenylated bovine γ globulin) to human RBCs under conditions that either allow or preclude complement activation. Quantitative analyses of this binding agree well with the number of complement receptors per RBC. In vitro "whole-blood" model experiments indicate heteropolymer-facilitated binding of antigens to RBCs is rapid and stable at 37^circC. It may be possible to extend these prototype experiments to the in vivo situation and use heteropolymer-attached RBCs for the safe and rapid binding, neutralization, and removal from the circulation of pathogenic antigens associated with infectious disease.

  1. Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: A potential therapeutic treatment

    SciTech Connect

    Taylor, R.P.; Sutherland, W.M.; Reist, C.J.; Webb, D.J.; Wright, E.L.; Labuguen, R.H. )

    1991-04-15

    The authors prepared bispecific, cross-linked monoclonal antibodies (heteropolymers) with specificity for both targeted antigens and the human erythrocyte (RBC) complement receptor. These heteropolymers facilitate binding of target antigens (human IgG and dinitrophenylated bovine {gamma} globulin) to human RBCs under conditions that either allow or preclude complement activation. Radioimmuno-assay analyses of this binding agree well with the number of complement receptors per RBC. In vitro whole-blood model experiments indicate heteropolymer-facilitated binding of antigens to RBCs is rapid and stable at 37C. It may be possible to extend these prototype experiments to the in vivo situation and use heteropolymer-attached RBCs for the safe and rapid binding, neutralization, and removal from the circulation of pathogenic antigens associated with infectious disease.

  2. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor.

    PubMed

    Rowinsky, Eric K; Youssoufian, Hagop; Tonra, James R; Solomon, Phillip; Burtrum, Douglas; Ludwig, Dale L

    2007-09-15

    Targeted monoclonal antibody therapy is an important strategy in cancer therapeutics. Among the most promising characteristics of therapeutic targets are those that modulate the growth and survival of malignant neoplasms and their sensitivity to anticancer therapies. The insulin-like growth factor-I receptor (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and has been implicated as a principal cause of heightened proliferative and survival signaling. IGF-IR has also been shown to confer resistance to cytotoxic, hormonal, and targeted therapies, suggesting that therapeutics targeting IGF-IR may be effective against a broad range of malignancies. IMC-A12 (ImClone Systems Incorporated), a fully human monoclonal IgG1 antibody that binds with high affinity to the IGF-IR, inhibits ligand-dependent receptor activation and downstream signaling. IMC-A12 also mediates robust internalization and degradation of the IGF-IR. In human tumor xenograft models, IGF-IR blockade by IMC-A12 results in rapid and profound growth inhibition of cancers of the breast, lung, colon, and pancreas, and many other neoplasms. Although promising single-agent activity has been observed, the most impressive effects of targeting the IGF-IR with IMC-A12 have been noted when this agent was combined with cytotoxic agents or other targeted therapeutics. The results with IMC-A12 to date suggest that it may be an effective therapeutic in a diverse array of oncologic indications.

  3. First case report of exacerbated ulcerative colitis after anti-interleukin-6R salvage therapy

    PubMed Central

    Atreya, Raja; Billmeier, Ulrike; Rath, Timo; Mudter, Jonas; Vieth, Michael; Neumann, Helmut; Neurath, Markus F

    2015-01-01

    We present the case of a 53-year-old woman with long-standing ulcerative colitis and severe, steroid-dependent disease course unresponsive to treatment with azathioprine, methotrexate, anti-TNF antibodies (infliximab, adalimumab) and tacrolimus, who refused colectomy as a therapeutic option. As the pro-inflammatory cytokine interleukin-6 (IL-6) had been identified as a crucial regulator in the immunopathogenesis of inflammatory bowel diseases, we treated the patient with biweekly intravenous infusions of an anti-IL-6R antibody (tocilizumab) for 12 wk. However, no clinical improvement of disease activity was noted. In fact, endoscopic, histological and endomicroscopic assessment demonstrated exacerbation of mucosal inflammation and ulcer formation upon anti-IL-6R therapy. Mechanistic studies revealed that tocilizumab treatment failed to suppress intestinal IL-6 production, impaired epithelial barrier function and induced production of pro-inflammatory cytokines such as TNF, IL-21 and IFN-γ. Inhibition of IL-6 by tocilizumab had no clinical benefit in this patient with intractable ulcerative colitis and even led to exacerbation of mucosal inflammation. Our findings suggest that anti-IL-6R antibody therapy may lead to aggravation of anti-TNF resistant ulcerative colitis. When targeting IL-6, the differential responsiveness of target cells has to be taken into account, as IL-6 on the one side promotes acute and chronic mucosal inflammation via soluble IL-6R signaling but on the other side also strongly contributes to epithelial cell survival via membrane bound IL-6R signaling. PMID:26668517

  4. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  5. Immunohistochemical detection of the androgen receptor with monoclonal antibody F39.4 in routinely processed, paraffin-embedded human tissues after microwave pre-treatment.

    PubMed

    Janssen, P J; Brinkmann, A O; Boersma, W J; Van der Kwast, T H

    1994-08-01

    We describe the immunohistochemical detection of the human androgen receptor (AR) in routinely processed, paraffin-embedded tissue with the monoclonal antibody (MAb) F39.4. Deparaffinized sections were heated in a microwave oven for antigen retrieval. A panel of human male- and female-derived tissues was investigated. We observed a nuclear staining pattern consistent with previous results on frozen sections. Moreover, we studied the possibility of detecting AR in prolonged formalin-fixed tissue and in paraffin-embedded archival material. After prolonged fixation times or long-term storage of paraffin-embedded tissue, the staining intensity for the AR did not deteriorate. Blocking experiments with the specific synthetic peptides demonstrated the specificity of this technique. We conclude that this method is specific, allows retrospective AR studies, and offers optimally preserved morphology.

  6. Rationale for the development of IMC-3G3, a fully human immunoglobulin G subclass 1 monoclonal antibody targeting the platelet-derived growth factor receptor alpha.

    PubMed

    Shah, Gaurav D; Loizos, Nick; Youssoufian, Hagop; Schwartz, Jonathan D; Rowinsky, Eric K

    2010-02-15

    A large body of evidence suggests that the platelet-derived growth factor (PDGF) family and associated receptors are potential targets in oncology therapeutic development because of their critical roles in the proliferation and survival of various cancers and in the regulation and growth of the tumor stroma and blood vessels. Several small molecules that nonspecifically target the PDGF signaling axis are in current use or development as anticancer therapies. However, for the majority of these agents, PDGF and its receptors are neither the primary targets nor the principal mediators of anticancer activity. IMC-3G3, a fully human monoclonal antibody of the immunoglobulin G subclass 1, specifically binds to the human PDGF receptor alpha (PDGFRalpha) with high affinity and blocks PDGF ligand binding and PDGFRalpha activation. The results of preclinical studies and the frequent expression of PDGFRalpha in many types of cancer and in cancer-associated stroma support a rationale for the clinical development of IMC-3G3. Currently, IMC-3G3 is being evaluated in early clinical development for patients with several types of solid malignancies.

  7. A monoclonal anti-peptide antibody reacting with the insulin receptor beta-subunit. Characterization of the antibody and its epitope and use in immunoaffinity purification of intact receptors.

    PubMed Central

    Ganderton, R H; Stanley, K K; Field, C E; Coghlan, M P; Soos, M A; Siddle, K

    1992-01-01

    A mouse monoclonal antibody (CT-1) was prepared against the C-terminal peptide sequence of the human insulin receptor beta-subunit (KKNGRILTLPRSNPS). The antibody reacted with native human and rat insulin receptors in solution, whether or not insulin was bound and whether or not the receptor had undergone prior tyrosine autophosphorylation. The antibody also reacted specifically with the receptor beta-subunit on blots of SDS/polyacrylamide gels. Preincubation of soluble receptors with antibody increased the binding of 125I-insulin approx. 2-fold. The antibody did not affect insulin-stimulated autophosphorylation, but increased the basal autophosphorylation rate approx. 2-fold. The amino acid residues contributing to the epitope for CT-1 were defined by construction and screening of an epitope library. Oligonucleotides containing 23 random bases were synthesized and ligated into the vector pCL627, and the corresponding peptide sequences expressed as fusion proteins in Escherichia coli were screened by colony blotting. Reactive peptides were identified by sequencing the oligonucleotide inserts in plasmids purified from positive colonies. Six different positive sequences were found after 900,000 colonies had been screened, and the consensus epitope was identified as GRVLTLPRS. Phosphorylation of the threonine residue within this sequence (corresponding to the known phosphorylation site Thr-1348 in the insulin receptor) decreased the affinity of antibody binding approx. 100-fold, as measured by competition in an e.l.i.s.a. Antibody CT-1 was used for immunoaffinity isolation of insulin receptor from detergent-solubilized human placental or rat liver microsomal membranes. Highly purified receptor was obtained in 60% yield by binding to CT-1-Sepharose immunoadsorbent and specific elution with a solution of peptide corresponding to the known epitope. This approach to purification under very mild conditions may in principle be used with any protein for which an antibody is

  8. Very High Plasma Concentrations of a Monoclonal Antibody against the Human Insulin Receptor Are Produced by Subcutaneous Injection in the Rhesus Monkey.

    PubMed

    Boado, Ruben J; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Pardridge, William M

    2016-09-01

    Brain penetration of recombinant protein drugs is possible following the re-engineering of the drug as an IgG fusion protein. The IgG domain is a monoclonal antibody (mAb) against an endogenous blood-brain barrier (BBB) receptor transporter, such as the insulin receptor. One such mAb targets the human insulin receptor (HIR) and is active in Rhesus monkeys. Prior work has measured the plasma pharmacokinetics of HIRMAb-derived fusion proteins following intravenous (IV) infusion. However, an alternative method of administration for chronic treatment of brain disease is the subcutaneous (SQ) route. The extent to which an antibody against the insulin receptor undergoes systemic distribution and clearance is unknown. Therefore, in the present study, the rate of plasma clearance of the HIRMAb is measured in Rhesus monkeys following IV or SQ administration of 3, 10, and 30 mg/kg doses of the antibody. The HIRMAb is readily absorbed into the systemic circulation following SQ injection with a 42% plasma bioavailability. The rate of plasma clearance of the antibody, 0.04-0.06 mL/min/kg, is the same following either IV or SQ administration. Owing to the slow rate of plasma clearance of the antibody, high concentrations of the HIRMAb are sustained in plasma for days after the SQ injection. The plasma concentration of the HIRMAb exceeds 0.8 mg/mL, which is 9% of the entire plasma IgG pool in the primate, after the SQ injection of the high dose, 30 mg/kg, of the antibody. In summary, the pharmacokinetics of plasma clearance of the HIRMAb are such that HIRMAb-derived fusion proteins can be developed as protein therapeutics for the brain with chronic SQ administration on a weekly or twice-weekly regimen. PMID:27513815

  9. Nivolumab and pembrolizumab as immune-modulating monoclonal antibodies targeting the PD-1 receptor to treat melanoma.

    PubMed

    Faghfuri, Elnaz; Faramarzi, Mohammad Ali; Nikfar, Shekoufeh; Abdollahi, Mohammad

    2015-01-01

    Malignant melanoma is an important issue in oncology due to its high incidence, high mortality, and resistance to systemic therapy; however, targeted immunotherapy has noticeably improved the survival rates of melanoma patients. Promising targeted immunotherapies for malignant melanoma include the blockade of immune checkpoints with antibodies targeting cytotoxic T lymphocyte-associated antigen 4 and the programmed cell death protein 1 pathway. The US FDA-approved antibody ipilimumab targets cytotoxic T lymphocyte-associated antigen 4; however, it was limited by toxicity and a low response. Nivolumab and pembrolizumab (formerly lambrolizumab), the two FDA-approved anti-programmed death-1 monoclonal antibodies, show highly durable response rates and long-term safety, validating the importance of the programmed cell death protein 1 pathway blockade for treatment of malignant melanoma.

  10. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    PubMed

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  11. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, Thomas J.; Parker, Michael W.

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  12. Automated immunohistochemical assay for estrogen receptor status in breast cancer using monoclonal antibody CC4-5 on the Ventana ES.

    PubMed

    Nichols, G E; Frierson, H F; Boyd, J C; Hanigan, M H

    1996-09-01

    Determination of breast cancer estrogen receptor (ER) status as a predictor of tumor response to adjuvant endocrine therapy remains a mainstay of breast cancer management. Recent second generation anti-ER antibodies and new epitope retrieval methods have produced paraffin-based immunohistochemical results that correlate closely with the dextran-coated charcoal (DCC) assay and appear to represent a superior method of ER assay. The authors determined the ER status of 103 invasive breast cancers by paraffin-based, automated immunohistochemistry on the Ventana ES using a new monoclonal antibody, CC4-5, and compared the results to those of parallel DCC biochemical analysis and manual immunohistochemical analysis using anti-ER monoclonal antibody ER1D5. The specificity of the CC4-5 antibody for ER protein was confirmed by Western blot analysis. Sixty of 103 cases were positive for ER by CC4-5 automated immunohistochemistry. With a ligand binding assay threshold value of 20 fmol/mg protein, there were 50 positive cases by biochemical assay. The biochemical results corresponded to an 88% rate of agreement with automated CC4-5 staining. Analysis of discordant cases revealed that the majority of CC4-5 immunopositive only cases (8 of 11) were strongly positive, stroma rich tumors, suggesting that corresponding biochemical measurements were diluted by non representative stromal tissue. There was only one immunonegative, biochemically positive case (27 fmol/mg protein). Semiquantitation of CC4-5 staining using percent positive tumor cells or weighted average staining intensity (HSCORE) showed moderate to good correlation with quantitative DCC results (r = 0.64 and 0.62, P < .0001). ER1D5 was not suitable for use on the Ventana ES, most likely due to temperature constraints of the instrument. By manual ER1D5 staining, 40 of 79 examined cases were positive corresponding to a 99% rate of agreement with automated CC4-5 staining. Semiquantitation of ER1D5 staining by percent

  13. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor.

    PubMed

    Sano, Kohei; Ohashi, Manami; Kanazaki, Kengo; Ding, Ning; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2015-08-28

    Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200-400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies.

  14. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth.

    PubMed

    Lebron, Maria B; Brennan, Laura; Damoci, Christopher B; Prewett, Marie C; O'Mahony, Marguerita; Duignan, Inga J; Credille, Kelly M; DeLigio, James T; Starodubtseva, Marina; Amatulli, Michael; Zhang, Yiwei; Schwartz, Kaben D; Burtrum, Douglas; Balderes, Paul; Persaud, Kris; Surguladze, David; Loizos, Nick; Paz, Keren; Kotanides, Helen

    2014-09-01

    Stem cell factor receptor (c-Kit) exerts multiple biological effects on target cells upon binding its ligand stem cell factor (SCF). Aberrant activation of c-Kit results in dysregulated signaling and is implicated in the pathogenesis of numerous cancers. The development of more specific and effective c-Kit therapies is warranted given its essential role in tumorigenesis. In this study, we describe the biological properties of CK6, a fully human IgG1 monoclonal antibody against the extracellular region of human c-Kit. CK6 specifically binds c-Kit receptor with high affinity (EC 50 = 0.06 nM) and strongly blocks its interaction with SCF (IC 50 = 0.41 nM) in solid phase assays. Flow cytometry shows CK6 binding to c-Kit on the cell surface of human small cell lung carcinoma (SCLC), melanoma, and leukemia tumor cell lines. Furthermore, exposure to CK6 inhibits SCF stimulation of c-Kit tyrosine kinase activity and downstream signaling pathways such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), in addition to reducing tumor cell line growth in vitro. CK6 treatment significantly decreases human xenograft tumor growth in NCI-H526 SCLC (T/C% = 57) and Malme-3M melanoma (T/C% = 58) models in vivo. The combination of CK6 with standard of care chemotherapy agents, cisplatin and etoposide for SCLC or dacarbazine for melanoma, more potently reduces tumor growth (SCLC T/C% = 24, melanoma T/C% = 38) compared with CK6 or chemotherapy alone. In summary, our results demonstrate that CK6 is a c-Kit antagonist antibody with tumor growth neutralizing properties and are highly suggestive of potential therapeutic application in treating human malignancies harboring c-Kit receptor. PMID:24921944

  15. Pharmacokinetics and Brain Uptake in the Rhesus Monkey of a Fusion Protein of Arylsulfatase A and a Monoclonal Antibody Against the Human Insulin Receptor

    PubMed Central

    Boado, Ruben J.; Lu, Jeff Zhiqiang; Hui, Eric K.-W.; Sumbria, Rachita K.; Pardridge, William M.

    2014-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [125I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein. PMID:23192358

  16. Biodistribution of an anti-interleukin 2 receptor monoclonal antibody in rat recipients of a heart allograft, and its use as a rejection marker in gamma scintigraphy

    SciTech Connect

    Thedrez, P.; Paineau, J.; Jacques, Y.; Chatal, J.F.; Pelegrin, A.; Bouchaud, C.; Soulillou, J.P. )

    1989-09-01

    Anti-interleukin-2 receptor monoclonal antibodies have been shown to prevent allograft rejection. This paper reports on the biodistribution of a mouse MoAb directed at the 55 Kd alpha chain of rat interleukin-2 receptor (IL2-R) during allograft rejection. Only a low percentage (approximately 1%) of intact 125I-labeled MoAb was detected in the rejected graft, and irrelevant control IgG1 was found at a similar level. This suggests that most of the injected intact MoAb bound to graft tissue via its monomorphic Fc segment. In contrast, OX39 F(ab')2 fragments showed a preferential localization in the rejected allograft and did not bind to the LEW-to-LEW syngeneic heart graft. Irrelevant F(ab')2 did not concentrate in the allogeneic graft. Accordingly, F(ab')2 fragments from OX39 or irrelevant MoAb were used for gamma-scintigraphy on allograft recipients together with biodistribution studies. Results show that scintigraphy was able to detect allograft accumulation of 131I OX39 F(ab')2, whereas no imaging was obtained when OX39 F(ab')2 was used in the syngeneic combination or when irrelevant 131-IgG1 F(ab')2 was given to allograft recipients. This method, applied to the clinical situation, could be of interest for detection of early graft rejection episodes by immunoscintigraphy using reagents specific for activation determinants on lymphocyte membranes, such as anti-interleukin-2 receptor MoAb.

  17. Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10.

    PubMed

    Youssoufian, Hagop; Rowinsky, Eric K; Tonra, James; Li, Yiwen

    2010-02-15

    FMS-related tyrosine kinase receptor 3 (FLT3) is a class III receptor tyrosine kinase that holds considerable promise as a therapeutic target in hematologic malignancies. Current efforts directed toward the development of small-molecule tyrosine kinase inhibitors of FLT3 may be limited by off-target toxicities and the development of drug resistance. Target-specific antibodies could overcome these hurdles and provide additional mechanisms to enhance the antitumor efficacy of FLT3 inhibitors. IMC-EB10 is a novel antibody directed against FLT3. The binding of IMC-EB10 to FLT3 results in antiproliferative effects in vitro and in mouse models engrafted with human leukemia cells that harbor wild-type or constitutively activated FLT3. Future clinical trials will test these notions formally and will identify the most appropriate opportunities for this member of a new generation of antileukemic therapies.

  18. Production and characterisation of a monoclonal antibody that recognises the chicken CSF1 receptor and confirms that expression is restricted to macrophage-lineage cells.

    PubMed

    Garcia-Morales, Carla; Rothwell, Lisa; Moffat, Lindsey; Garceau, Valerie; Balic, Adam; Sang, Helen M; Kaiser, Pete; Hume, David A

    2014-02-01

    Macrophages contribute to innate and acquired immunity as well as many aspects of homeostasis and development. Studies of macrophage biology and function in birds have been hampered by a lack of definitive cell surface markers. As in mammals, avian macrophages proliferate and differentiate in response to CSF1 and IL34, acting through the shared receptor, CSF1R. CSF1R mRNA expression in the chicken is restricted to macrophages and their progenitors. To expedite studies of avian macrophage biology, we produced an avian CSF1R-Fc chimeric protein and generated a monoclonal antibody (designated ROS-AV170) against the chicken CSF1R using the chimeric protein as immunogen. Specific binding of ROS-AV170 to CSF1R was confirmed by FACS, ELISA and immunohistochemistry on tissue sections. CSF1 down-regulated cell surface expression of the CSF1R detected with ROS-AV170, but the antibody did not block CSF1 signalling. Expression of CSF1R was detected on the surface of bone marrow progenitors only after culture in the absence of CSF1, and was induced during macrophage differentiation. Constitutive surface expression of CSF1R distinguished monocytes from other myeloid cells, including heterophils and thrombocytes. This antibody will therefore be of considerable utility for the study of chicken macrophage biology.

  19. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  20. Characterization of the epitope on murine T-cell receptor (TCR) alpha proteins recognized by H28-710 monoclonal antibody.

    PubMed

    Karaivanova, V; Suzuki, C; Howe, C; Kearse, K P

    1999-12-01

    Antigen recognition by alphabeta T lymphocytes is mediated via the multisubunit T-cell receptor (TCR) complex consisting of invariant CD3-gamma,delta,epsilon, and zeta chains associated with clonotypic TCRalpha,beta molecules. In the current report, we evaluated the molecular basis for recognition of murine TCRalpha proteins by H28-710 monoclonal antibody (MAb), specific for the constant region of murine TCRalpha chains. H28-710 is widely used in the study of the TCR complex as it is the only reagent currently available that recognizes all murine TCRalpha proteins, regardless of their clonotype. These data show that H28-710 is useful for the immunoprecipitation of TCRalpha proteins not associated with CD3 subunits, and that H28-710 effectively recognizes denatured TCRalpha proteins synthesized in several different cell types. Most importantly, these results demonstrate that H28 binding involves a serine/threonine-rich region between amino acids 150-177 on murine TCRalpha polypeptides.

  1. Complement-independent binding of microorganisms to primate erythrocytes in vitro by cross-linked monoclonal antibodies via complement receptor 1.

    PubMed Central

    Powers, J H; Buster, B L; Reist, C J; Martin, E; Bridges, M; Sutherland, W M; Taylor, R P; Scheld, W M

    1995-01-01

    Under certain circumstances, soluble antigens, particulate antigens, and/or microorganisms have been shown to bind to primate erythrocytes via complement receptor 1 (CR1) in the presence of specific antibodies and complement. This immune adherence reaction, specific for CR1, can lead to neutralization of antigens in the circulation and their subsequent clearance from the blood. The present experiments utilized cross-linked monoclonal antibody complexes (heteropolymers) with specificity for both CR1 and either 35S-labeled herpes simplex virus capsid or Haemophilus influenzae as prototype viral and bacterial particulate antigens, respectively. In each case, the respective specific heteropolymers facilitated binding of the target antigens (> or = 70 to 90%) in vitro to erythrocytes in the absence of complement. Several experimental protocols were employed to demonstrate that heteropolymers mediate specific, rapid (> or = 30 s), and quantitative binding of prototypical particulate pathogens to human and monkey erythrocytes but not to sheep erythrocytes, which lack CR1. These results extend the potential use of the erythrocyte-heteropolymer system to the neutralization and clearance of particulate viral and bacterial pathogens from the blood. PMID:7890390

  2. Characterisation of a monoclonal antibody detecting Atlantic salmon endothelial and red blood cells, and its association with the infectious salmon anaemia virus cell receptor

    PubMed Central

    Aamelfot, Maria; Weli, Simon C; Dale, Ole B; Koppang, Erling O; Falk, Knut

    2013-01-01

    Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon. PMID:23439106

  3. The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody

    PubMed Central

    1983-01-01

    An antibody-secreting B cell hybridoma, KJ1-26.1, has been prepared from mice immunized with the T cell hybridoma DO-11.10, which recognizes chicken ovalbumin in association with I-Ad (cOVA/I-Ad). KJ1- 26.1 blocks I-restricted antigen recognition by DO-11.10 and a subclone of this T cell hybridoma, DO-11.10.24, which has the same specificity for cOVA/I-Ad as its parent. KJ1-26.1 does not block I-restricted antigen recognition by any other T cell hybridoma tested, including a number of T cell hybridomas closely related to DO-11.10, with similar, but not identical, specificities for antigen/I. Moreover, KJ1-26.1 binds to DO-11.10 and DO-11.10.24, but not to any other T cell hybridomas tested, including three subclones of DO-11.10 that have lost the ability to recognize cOVA/I-Ad. Thus, in every regard KJ1-26.1 appears to be binding to all or part of the receptors for antigen/I on the T cell hybridoma DO-11.10. KJ1-26.1 appears to bind to approximately 15,000 molecules/cell on the surface of DO-11.10. The antibody precipitates an 80,000 dimer from the cells, which on reduction migrates as 40-44,000 monomers. The receptor(s) for antigen/I on DO-11.10 therefore includes molecules with these properties. PMID:6601175

  4. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    DOE PAGES

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; Hu, Guangnan; Wang, Shixia; Lu, Shan; Kong, Xiang -Peng

    2015-07-15

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less

  5. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    SciTech Connect

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; Hu, Guangnan; Wang, Shixia; Lu, Shan; Kong, Xiang -Peng

    2015-07-15

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.

  6. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding.

    PubMed

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; Hu, Guangnan; Wang, Shixia; Lu, Shan; Kong, Xiang-Peng

    2015-07-01

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence (433)AMYAPPI(439), it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system. PMID:26251831

  7. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    PubMed Central

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; Hu, Guangnan; Wang, Shixia; Lu, Shan; Kong, Xiang-Peng

    2015-01-01

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system. PMID:26251831

  8. Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation.

    PubMed

    Dino, M R; Harroch, S; Hockfield, S; Matthews, R T

    2006-11-01

    Perineuronal nets (PNs) are lattice-like condensations of the extracellular matrix (ECM) that envelop synapses and decorate the surface of subsets of neurons in the CNS. Previous work has suggested that, despite the fact that PNs themselves are not visualized until later in development, some PN component molecules are expressed in the rodent CNS even before synaptogenesis. In the adult mammalian brain, monoclonal antibody Cat-315 recognizes a glycoform of aggrecan, a major component of PNs. In primary cortical cultures, a Cat-315-reactive chondroitin sulfate proteoglycan (CSPG) is also expressed on neuronal surfaces and is secreted into culture media as early as 24 h after plating. In this study, we show that in primary cortical cultures, the Cat-315 CSPG detected in early neural development is expressed in extrasynaptic sites prior to synapse formation. This suggests that ECM components in the CNS, as in the neuromuscular junction (NMJ), may prepattern neuronal surfaces prior to innervation. We further show that while the Cat-315-reactive carbohydrate decorates aggrecan in the adult, it decorates a different CSPG in the developing CNS. Using receptor protein tyrosine phosphatase beta (RPTPbeta/protein tyrosine phosphatase zeta) knock-out mice and immunoprecipitation techniques, we demonstrate here that in the developing rodent brain Cat-315 recognizes RPTPbeta isoforms. Our further examination of the Cat-315 epitope suggests that it is an O-mannose linked epitope in the HNK-1 family. The presence of the Cat-315 reactive carbohydrate on different PN components--RPTPbeta and aggrecan--at different stages of synapse development suggests a potential role for this neuron-specific carbohydrate motif in synaptogenesis.

  9. Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging

    PubMed Central

    Ito, Kimihiro; Mitsunaga, Makoto; Nishimura, Takashi; Kobayashi, Hisataka; Tajiri, Hisao

    2016-01-01

    Photoimmunotherapy is a new class of molecular targeted cancer therapy based on a monoclonal antibody (mAb) conjugated to a photosensitizer and irradiation with near-infrared (NIR) light for both imaging and therapy. Here, we sought to determine the feasibility of combining photoimmunotherapy using conjugates of human epidermal growth factor receptor 2 (HER2)-specific mAb-photosensitizer IR700, trastuzumab-IR700 and pertuzumab-IR700. HER2-expressing and non-expressing cells were treated with mAb-IR700 conjugates and irradiated with NIR light. Fluorescence imaging and cytotoxic effects were examined in cultured HER2-expressng cancer cell lines and in a mouse tumor xenograft model. Trastuzumab-IR700 and pertuzumab-IR700 could specifically bind to HER2 without competing, and the combination treatment of both agents yielded stronger HER2-specific IR700 fluorescence signals than with the treatment with either agent singly. A cytotoxicity assay showed that the combination treatment of both trastuzumab-IR700 and pertuzumab-IR700 followed by NIR light irradiation induced stronger cytotoxic effect than with treatment of either agent plus NIR light irradiation. Furthermore, the phototoxic and cytotoxic effects of mAb depended on HER2-specific IR700 signal intensities. Consistent with in vitro studies, in xenograft tumor models also, IR700 fluorescence imaging-guided NIR light irradiation after the combination treatment of trastuzumab-IR700 and pertuzumab-IR700 led to stronger antitumor effects than by treatment with either agent followed by NIR light irradiation. In conclusion, fluorescence molecular imaging can facilitate the assessment of treatment outcomes of molecular targeted photoimmunotherapy, which holds great potential in facilitating better outcomes in cancer patients. PMID:26909859

  10. Identification of a second T-cell antigen receptor in human and mouse by an anti-peptide. gamma. -chain-specific monoclonal antibody

    SciTech Connect

    Ioannides, C.G.; Itoh, K.; Fox, F.E.; Pahwa, R.; Good, R.A.; Platsoucas, C.D.

    1987-06-01

    The authors developed a monoclonal antibody (mAb) (9D7) against a synthetic peptide (P13K) selected from the deduced amino acid sequence of the constant region of the lambda chain of the murine T-cell antigen receptor (TCR) (amino acids 118-130). Using this mAb, they identified a putative second TCR expressed on peripheral blood lymphocytes from a patient with severe combined immunodeficiency (SCID) that were propagated in culture with recombinant interleukin 2 (rIL-2) and Con A. This mAb immunoprecipitated two polypeptide chains of 40 and 58 kDa under nonreducing conditions and of 40 and 56 kDa under reducing conditions from /sup 125/I-labeled denatured lysates of T3/sup +/ WT31/sup -/ lymphocytes expanded in culture from a SCID patient. Chemical crosslinking of /sup 125/I-labeled cells followed by immunoprecipitation with anti-Leu-4 mAb under nonreducing or reducing conditions revealed that the 40- and 56-kDa polypeptide chains were associated with the T3 differentiation antigen. These experiments were done with polyclonal cell populations. Cloned T3/sup +/ WT31/sup -/ cell populations are required to determine whether the TCR contains two lambda polypeptide chains. Using the same 9D7 anti-P18K mAb and immunoblotting analysis, they identified a 35 kDa ..gamma..-chain polypeptide under reducing conditions expressed on purified L3T4/sup -/ Lyt2/sup -/ BALB/c mouse thymocytes. This ..gamma..-chain TCR is disulfide linked and has a molecular mass of 80 kDa under nonreducing conditions.

  11. Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats.

    PubMed

    Iznaga Escobar, N; Morales, A M; Ducongé, J; Torres, I C; Fernández, E; Gómez, J A

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t 1/2alpha) of 0.250 h and a mean elimination (t 1/2beta) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with 99mTc-labeled humanized MAb R3 conjugate in patients should be supported.

  12. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts.

    PubMed

    Prewett, Marie C; Hooper, Andrea T; Bassi, Rajiv; Ellis, Lee M; Waksal, Harlan W; Hicklin, Daniel J

    2002-05-01

    Colon carcinomas frequently express the epidermal growth factor receptor (EGFR), and this expression correlates with more aggressive disease and poor prognosis. Previous studies have shown that EGFR blockade by monoclonal antibody IMC-C225 can inhibit the growth of human colon carcinoma tumor cells in vitro and xenografts of these tumors in athymic mice. In this report, we have studied the in vivo activity of IMC-C225 combined with the topoisomerase I inhibitor irinotecan (CPT-11) using two models of human colorectal carcinoma in nude mice. IMC-C225 was tested at a dose of 1 or 0.5 mg administered q3d. CPT-11 was administered at a dose of 100 mg/kg/week or a maximum tolerated dose of 150 mg/kg/week. Treatment with the combination of IMC-C225 (1 and 0.5 mg) and CPT-11 (100 mg/kg) significantly inhibited the growth of established DLD-1 and HT-29 tumors compared with either CPT-11 or IMC-C225 monotherapy (P < 0.05). Combination therapy with IMC-C225 (1 mg) and the MTD of CPT-11 (150 mg/kg) resulted in a regression rate of 100 and 60% of established DLD-1 and HT-29 tumors, respectively. In a refractory tumor model, combined treatment with IMC-C225 and CPT-11 significantly inhibited the growth of CPT-11 refractory DLD-1 and HT-29 tumors, whereas either agent alone did not control tumor growth. Histological examination of treated tumors showed extensive tumor necrosis, decreased tumor cell proliferation, increased tumor cell apoptosis, and a marked decrease in tumor vasculature. These results suggest that EGFR blockade by IMC-C225 combined with topoisomerase I inhibitors may be an effective therapy against chemorefractory colorectal carcinoma tumors.

  13. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2.

    PubMed

    Spratlin, Jennifer L; Cohen, Roger B; Eadens, Matthew; Gore, Lia; Camidge, D Ross; Diab, Sami; Leong, Stephen; O'Bryant, Cindy; Chow, Laura Q M; Serkova, Natalie J; Meropol, Neal J; Lewis, Nancy L; Chiorean, E Gabriela; Fox, Floyd; Youssoufian, Hagop; Rowinsky, Eric K; Eckhardt, S Gail

    2010-02-10

    PURPOSE To evaluate the safety, maximum-tolerated dose (MTD), pharmacokinetics (PKs), pharmacodynamics, and preliminary anticancer activity of ramucirumab (IMC-1121B), a fully human immunoglobulin G(1) monoclonal antibody targeting the vascular endothelial growth factor receptor (VEGFR)-2. PATIENTS AND METHODS Patients with advanced solid malignancies were treated once weekly with escalating doses of ramucirumab. Blood was sampled for PK studies throughout treatment. The effects of ramucirumab on circulating vascular endothelial growth factor-A (VEGF-A), soluble VEGFR-1 and VEGFR-2, tumor perfusion, and vascularity using dynamic contrast-enhanced magnetic resonance imaging were assessed. Results Thirty-seven patients were treated with 2 to 16 mg/kg of ramucirumab. After one patient each developed dose-limiting hypertension and deep venous thrombosis at 16 mg/kg, the next lower dose (13 mg/kg) was considered the MTD. Nausea, vomiting, headache, fatigue, and proteinuria were also noted. Four (15%) of 27 patients with measurable disease had a partial response (PR), and 11 (30%) of 37 patients had either a PR or stable disease lasting at least 6 months. PKs were characterized by dose-dependent elimination and nonlinear exposure consistent with saturable clearance. Mean trough concentrations exceeded biologically relevant target levels throughout treatment at all dose levels. Serum VEGF-A increased 1.5 to 3.5 times above pretreatment values and remained in this range throughout treatment at all dose levels. Tumor perfusion and vascularity decreased in 69% of evaluable patients. CONCLUSION Objective antitumor activity and antiangiogenic effects were observed over a wide range of dose levels, suggesting that ramucirumab may have a favorable therapeutic index in treating malignancies amenable to VEGFR-2 inhibition.

  14. Partial and transient modulation of the CD3-T-cell receptor complex, elicited by low-dose regimens of monoclonal anti-CD3, is sufficient to induce disease remission in non-obese diabetic mice.

    PubMed

    Mehta, Devangi S; Christmas, Rudy A; Waldmann, Herman; Rosenzweig, Michael

    2010-05-01

    It has been established that a total of 250 microg of monoclonal anti-mouse CD3 F(ab')(2) fragments, administered daily (50 microg per dose), induces remission of diabetes in the non-obese diabetic (NOD) mouse model of autoimmune diabetes by preventing beta cells from undergoing further autoimmune attack. We evaluated lower-dose regimens of monoclonal anti-CD3 F(ab')(2) in diabetic NOD mice for their efficacy and associated pharmacodynamic (PD) effects, including CD3-T-cell receptor (TCR) complex modulation, complete blood counts and proportions of circulating CD4(+), CD8(+) and CD4(+) FoxP3(+) T cells. Four doses of 2 microg (total dose 8 microg) induced 53% remission of diabetes, similarly to the 250 microg dose regimen, whereas four doses of 1 microg induced only 16% remission. While the 250 microg dose regimen produced nearly complete and sustained modulation of the CD3 -TCR complex, lower doses, spaced 3 days apart, which induced similar remission rates, elicited patterns of transient and partial modulation. In treated mice, the proportions of circulating CD4(+) and CD8(+) T cells decreased, whereas the proportions of CD4(+) FoxP3(+) T cells increased; these effects were transient. Mice with greater residual beta-cell function, estimated using blood glucose and C-peptide levels at the initiation of treatment, were more likely to enter remission than mice with more advanced disease. Thus, lower doses of monoclonal anti-CD3 that produced only partial and transient modulation of the CD3-TCR complex induced remission rates comparable to higher doses of monoclonal anti-CD3. Accordingly, in a clinical setting, lower-dose regimens may be efficacious and may also improve the safety profile of therapy with monoclonal anti-CD3, potentially including reductions in cytokine release-related syndromes and maintenance of pathogen-specific immunosurveillance during treatment.

  15. Estimation of hormone receptor status in fine-needle aspirates and paraffin-embedded sections from breast cancer using the novel rabbit monoclonal antibodies SP1 and SP2.

    PubMed

    Cano, Guillerma; Milanezi, Fernanda; Leitão, Dina; Ricardo, Sara; Brito, Maria José; Schmitt, Fernando Carlos

    2003-10-01

    We describe a method of immunocytochemical assessment of estrogen receptor (ER) status on alcohol-fixed smears obtained by fine-needle aspiration (FNA) from breast cancer patients, using a commercially available rabbit monoclonal antibody anti-ER (SP1) without any antigen retrieval. A series of 40 aspirates were analyzed and the results of ER status were compared with the respective formalin-fixed tissue using the same procedure and with assessment by the classical method using the mouse monoclonal antibody 6F11 (anti-ER) with antigen retrieval on paraffin sections. Twenty-four out of the 40 cases examined were positive at least by two methods and 16 were negative for all three determinations. The results obtained in the ER immunocytochemical assay on aspirates and paraffin sections using the antibody SP1 and those obtained on paraffin sections using the antibody 6F11 were quite similar. In one case the material was insufficient to interpret the reaction in the cytological specimen and only one case, with focal positivity reaction on paraffin sections, was negative in the cytological specimen. The intensity of nuclei staining in cytological smears of breast cancer cells was stronger than that observed by traditional methods. We also assessed progesterone receptor (PR) status on 40 paraffin-sections from breast cancer patients, using a commercially available rabbit monoclonal antibody anti-PR (SP2), with the same characteristics described for anti-ER (SP1). The results were compared with assessment by the classic method with mouse monoclonal antibody 1A6 (PR) on paraffin sections and total agreement was observed. Of the 40 cases examined, 18 were positive and 22 were negative for the two determinations. We conclude that the application of the ER method on alcohol-fixed smears/paraffin sections with the rabbit monoclonal antibody SP1, and the PR method on paraffin sections with the rabbit monoclonal antibody SP2, provide several advantages, such as high sensitivity

  16. A new mouse anti-mouse complement receptor type 2 and 1 (CR2/CR1) monoclonal antibody as a tool to study receptor involvement in chronic models of immune responses and disease

    PubMed Central

    Kulik, Liudmila; Hewitt, Finnegan B.; Willis, Van C.; Rodriguez, Rosa; Tomlinson, Stephen; Holers, V. Michael

    2014-01-01

    Although reagents are available to block mouse complement receptor type 2 and/or type1 (CR2/CR1, CD21/CD35) function in acute or short term models of human disease, a mouse anti-rat antibody response limits their use in chronic models. We have addressed this problem by generating in Cr2−/− mice a mouse monoclonal antibody (mAb 4B2) to mouse CR2/CR1. The binding of murine mAb 4B2 to CR2/CR1 directly blocked C3dg (C3d) ligand binding. In vivo injection of mAb 4B2 induced substantial down regulation of CR2 and CR1 from the B cell surface, an effect that lasted six weeks after a single injection of 2 mg of mAb. The 4B2 mAb was studied in vivo for the capability to affect immunological responses to model antigens. Pre-injection of mAb 4B2 before immunization of C57BL/6 mice reduced the IgG1 antibody response to the T-dependent antigen sheep red blood cells (SRBC) to a level comparable to that found in Cr2−/− mice. We also used the collagen-induced arthritis (CIA) model, a CR2/CR1-dependent autoimmune disease model, and found that mice pre-injected with mAb 4B2 demonstrated substantially reduced levels of pathogenic IgG2a antibodies to both the bovine type II collagen (CII) used to induce arthritis and to endogenous mouse CII. Consistent with this result, mice pre-injected with mAb 4B2 demonstrated only very mild arthritis. This reduction in disease, together with published data in CII-immunized Cr2−/− mice, confirm both that the arthritis development depends on CR2/CR1 receptors and that mAb 4B2 can be used to induce biologically relevant receptor blockade. Thus mAb 4B2 is an excellent candidate for use in chronic murine models to determine how receptor blockage at different points modifies disease activity and autoantibody responses. PMID:25457881

  17. Endothelin A Receptor Antagonism Enhances Inhibitory Effects of Anti-Ganglioside GD2 Monoclonal Antibody on Invasiveness and Viability of Human Osteosarcoma Cells

    PubMed Central

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  18. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells.

    PubMed

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  19. Monoclonal antibodies.

    PubMed

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  20. Identification of a second T-cell antigen receptor in human and mouse by an anti-peptide gamma-chain-specific monoclonal antibody.

    PubMed Central

    Ioannides, C G; Itoh, K; Fox, F E; Pahwa, R; Good, R A; Platsoucas, C D

    1987-01-01

    We developed a monoclonal antibody (mAb) (9D7) against a synthetic peptide (P13K) selected from the deduced amino acid sequence of the constant region of the gamma chain of the murine T-cell antigen receptor (TCR) (amino acids 118-130). Using this mAb, we identified a putative second TCR expressed on peripheral blood lymphocytes from a patient with severe combined immunodeficiency (SCID) that were propagated in culture with recombinant interleukin 2 (rIL-2) and Con A. This mAb immunoprecipitated two polypeptide chains of 40 and 58 kDa under nonreducing conditions and of 40 and 56 kDa under reducing conditions from 125I-labeled denatured lysates of T3+ WT31- lymphocytes expanded in culture from a SCID patient. These polypeptide chains were not disulfide linked and were not present on human peripheral blood lymphocytes from normal donors cultured for 5 days with phytohemagglutinin or for 2 weeks with rIL-2 and polyclonal activators or on cells of the Jurkat lymphoblastoid human T-cell line. Chemical crosslinking of 125I-labeled cells followed by immunoprecipitation with anti-Leu-4 mAb under nonreducing or reducing conditions revealed that the 40- and 56-kDa polypeptide chains were associated with the T3 differentiation antigen. These results were confirmed by sequential immunoprecipitation with anti-Leu-4 mAb followed by 9D7 anti-P13K mAb. The 9D7 anti-P13K mAb immunoprecipitated two polypeptide chains of 43 and 64 kDa from denatured lysates of lymphocytes from a patient with severe common variable immunodeficiency (CVI) that were expanded in culture with rIL-2 and Con A. Thus, this second TCR may be composed of two polypeptide chains (gamma gamma'), both of which appear to be the product of the gamma-chain gene. These experiments were done with polyclonal cell populations. Cloned T3+ WT31- cell populations are required to determine whether this TCR contains two gamma polypeptide chains. In contrast, only one polypeptide chain of 56 kDa was immunoprecipitated by the

  1. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors

    PubMed Central

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M.; Rayzman, Veronika; Hardy, Matthew P.; Braley, Hal; Gauvreau, Gail M.; Hercus, Timothy R.; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J.; Fabri, Louis J.; Vairo, Gino; Lopez, Angel F; Parker, Michael W.; Nash, Andrew D.; Wilson, Nicholas J.; Wilson, Michael J.; Owczarek, Catherine M.

    2016-01-01

    ABSTRACT The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  2. Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice

    PubMed Central

    Flynn, Jeffrey C; Gilbert, Jacqueline A; Meroueh, Chady; Snower, Daniel P; David, Chella S; Kong, Yi-chi M; Paul Banga, J

    2007-01-01

    We have examined the induction of autoimmunity and the maintenance of sustained hyperthyroidism in autoimmunity-prone human leucocyte antigen (HLA) DR3 transgenic non-obese diabetic (NOD) mice following chronic stimulation of the thyrotropin receptor (TSHR) by monoclonal thyroid-stimulating autoantibodies (TSAbs). Animals received weekly injections over the course of 9 weeks of monoclonal antibodies (mAbs) with strong thyroid-stimulating properties. Administration of the mAbs KSAb1 (IgG2b) or KSAb2 (IgG2a), which have similar stimulating properties but different TSH-binding blocking activity, resulted in significantly elevated serum thyroxine (T4) levels and thyroid hyperplasia. After the first injection, an initial surge then fall in serum T4 levels was followed by sustained elevated levels with subsequent injections for at least 63 days. Examination of KSAb1 and KSAb2 serum bioactivity showed that the accumulation of the TSAbs in serum was related to their subclass half-lives. The thyroid glands were enlarged and histological examination showed hyperplastic follicles, with minimal accompanying thyroid inflammation. Our results show that chronic in vivo administration of mAbs with strong thyroid-stimulating activity resulted in elevated T4 levels, suggesting persistent stimulation without receptor desensitization, giving a potential explanation for the sustained hyperthyroid status in patients with Graves' disease. Moreover, despite the presence of HLA disease susceptibility alleles and the autoimmune prone NOD background genes, chronic stimulation of the thyroid gland did not lead to immune cell-mediated follicular destruction, suggesting the persistence of immunoregulatory influences to suppress autoimmunity. PMID:17535305

  3. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  4. Insulin-like growth factor-I receptor (IGF-IR) targeting with monoclonal antibody cixutumumab (IMC-A12) inhibits IGF-I action in endometrial cancer cells.

    PubMed

    Attias-Geva, Zohar; Bentov, Itay; Ludwig, Dale L; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2011-07-01

    Specific insulin-like growth factor-I receptor (IGF-IR) targeting emerged in recent years as a promising therapeutic strategy in cancer. Endometrial cancer is the most common gynaecological cancer in the Western world. The aim of this study was to evaluate the potential of cixutumumab (IMC-A12, ImClone Systems), a fully human monoclonal antibody against the IGF-IR, to inhibit IGF-I-mediated biological actions and cell signalling events in four endometrial carcinoma-derived cell lines (ECC-1, Ishikawa, USPC-1 and USPC-2). Our results demonstrate that cixutumumab was able to block the IGF-I-induced autophosphorylation of the IGF-IR. In addition, the PI3K and MAPK downstream signalling pathways were also inactivated by cixutumumab in part of the cell lines. Prolonged (24h and 48h) exposures to cixutumumab reduced IGF-IR expression. Furthermore, confocal microscopy of GFP-tagged receptors shows that cixutumumab treatment led to IGF-IR redistribution from the cell membrane to the cytoplasm. Antiapoptotic effects were evaluated by cleavage of caspase 3 and PARP, and mitogenicity and transformation by proliferation and cell cycle assays. Results obtained showed that cixutumumab abrogated the IGF-I-stimulated increase in proliferation rate, and increased caspase-3 and PARP cleavage, two markers of apoptosis. Of importance, cixutumumab had no effect neither on insulin receptor (IR) expression nor on IGF-I activation of IR. In summary, in a cellular model of endometrial cancer cixutumumab was able to inhibit the IGF-I-induced activation of intracellular cascades, apoptosis and proliferation.

  5. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro.

    PubMed Central

    Ockenhouse, C F; Magowan, C; Chulay, J D

    1989-01-01

    The CD36 leukocyte differentiation antigen, recognized by MAbs OKM5 and OKM8 and found on human monocytes and endothelial cells, has been implicated as a sequestration receptor for erythrocytes infected with the human malaria parasite Plasmodium falciparum (IRBC). CD36 is also expressed on platelets and appears to be identical to platelet glycoprotein IV. We investigated receptor activation of monocytes and platelets by anti-CD36 MAbs and by IRBC. Incubation of human monocytes with anti-CD36 MAbs or IRBC resulted in stimulation of the respiratory burst as measured by reduction of nitroblue tetrazolium and generation of chemiluminescence. Incubation of human platelets with anti-CD36 MAbs resulted in platelet activation as measured by aggregation or ATP secretion. Activation of monocytes and platelets required appropriate intracellular transmembrane signaling and was inhibited by calcium antagonists or by specific inhibitors of protein kinase C or guanine nucleotide binding proteins. Soluble CD36 inhibited binding of IRBC to both monocytes and platelets, suggesting that these interactions are mediated by the CD36 receptor. Using a cytochemical electron microscopic technique, the presence of reactive oxygen intermediates was identified at the interface between human monocytes and IRBC. These data provide support for the hypothesis that reactive oxygen intermediates produced by monocytes when IRBC ligands interact with cell surface receptors may play a role in the pathophysiology of falciparum malaria. Images PMID:2474569

  6. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  7. In vivo analysis of insulin-like growth factor type 1 receptor humanized monoclonal antibody MK-0646 and small molecule kinase inhibitor OSI-906 in colorectal cancer.

    PubMed

    Leiphrakpam, Premila D; Agarwal, Ekta; Mathiesen, Michelle; Haferbier, Katie L; Brattain, Michael G; Chowdhury, Sanjib

    2014-01-01

    The development and characterization of effective anticancer drugs against colorectal cancer (CRC) is of urgent need since it is the second most common cause of cancer death. The study was designed to evaluate the effects of two IGF-1R antagonists, MK-0646, a recombinant fully humanized monoclonal antibody and OSI-906, a small molecule tyrosine kinase inhibitor on CRC cells. Xenograft study was performed on IGF-1R-dependent CRC cell lines for analyzing the antitumor activity of MK-0646 and OSI-906. Tumor proliferation and apoptosis were assessed using Ki67 and TUNEL assays, respectively. We also performed in vitro characterization of MK-0646 and OSI-906 treatment on CRC cells to identify mechanisms associated with drug-induced cell death. Exposure of the GEO and CBS tumor xenografts to MK-0646 or OSI-906 led to a decrease in tumor growth. TUNEL analysis showed an increase of approximately 45-55% in apoptotic cells in both MK-0646 and OSI-906 treated tumor samples. We report the novel finding that treatment with IGF-1R antagonists led to downregulation of X-linked inhibitor of apoptosis (XIAP) protein involved in cell survival and inhibition of cell death. In conclusion, IGF-1R antagonists (MK-0646 and OSI-906) demonstrated single agent inhibition of subcutaneous CRC xenograft growth. This was coupled to pro-apoptotic effects resulting in downregulation of XIAP and inhibition of cell survival. We report a novel mechanism by which MK-0646 and OSI-906 elicits cell death in vivo and in vitro. Moreover, these results indicate that MK-0646 and OSI-906 may be potential anticancer candidates for the treatment of patients with IGF-1R-dependent CRC. PMID:24173770

  8. Chimaeric Lym-1 monoclonal antibody-mediated cytolysis by neutrophils from G-CSF-treated patients: stimulation by GM-CSF and role of Fcγ-receptors

    PubMed Central

    Ottonello, L; Epstein, A L; Mancini, M; Tortolina, G; Dapino, P; Dallegri, F

    2001-01-01

    Chimaeric Lym-1 (chLym-1) is a monoclonal antibody generated by fusing the variable region genes of murine Lym-1 to human γ1 and κ constant regions. Owing to its selectivity and avidity for human malignant B cells, it is an attractive candidate for developing immune-interventions in B-lymphomas. In the attempt to identify rational bases for optimizing potential chLym-1 related therapeutic approaches, we studied the ability of this ch-mAb to trigger neutrophil-mediated Raji cell cytolysis in cooperation with two neutrophil-related cytokines, G-CSF and GM-CSF. ChLym-1 triggered low levels of cytolysis by normal neutrophils but induced consistent cytolysis in neutrophils from individuals treated with G-CSF. When exposed to GM-CSF, neutrophils from subjects treated with G-CSF became potent effectors, also leading to 75% lysis. By using mAbs specific for distinct FcγRs, normal neutrophils were inhibited by mAb IV.3, suggesting the intervention of FcγRII, constitutively expressed on the cells. On the other hand, neutrophils from patients treated with G-CSF were inhibited by mAb IV.3 plus mAb 197, a finding consistent with a cooperative intervention of FCγRII and G-CSF-induced FcγRI. The anti-FcγRIII mAb 3G8 promoted significant enhancement of the neutrophil cytolytic efficiency. Therefore, neutrophil FcγRIII behaves as a down-regulator of the cytolytic potential. The present findings suggest new attempts to develop mAb-based and G-CSF/GM-CSF combined immune-interventions in B lymphomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487281

  9. Mapping the functional topography of Fc gamma with monoclonal antibodies: localization of epitopes interacting with the binding sites of Fc receptor on human K cells.

    PubMed

    Sármay, G; Jefferis, R; Klein, E; Benczur, M; Gergely, J

    1985-10-01

    A panel of monoclonal antibodies (mAb) specific for the C gamma 2, C gamma 3 or inter C gamma 2/C gamma 3 domain epitopes was tested for inhibition of antibody-dependent cellular cytotoxicity (ADCC) specific for anti-D IgG-coated erythrocytes. Significant inhibition of ADCC was demonstrable for some antibodies having specificity for C gamma 2 or C gamma 3 domain epitopes, while others gave no inhibition. Fab fragments of a representative C gamma 2-specific antibody (A55) and C gamma 3-specific antibody (x3a8) retained their inhibitory capacity in lymphocyte-mediated ADCC, but only A55 Fab inhibited monocyte-mediated lysis. Furthermore, the Fab portion of A55 completely abolished the complement-dependent enhancement of ADCC mediated by concanavalin A-stimulated cells, while x3a8 Fab had no effect in this system. On the other hand, x3a8 Fab inhibited the binding of anti-D IgG-sensitized erythrocytes to lymphocytes while A55 Fab did not influence this latter interaction. The results suggest that C gamma 2 domain-FcR interaction is essential for the triggering of lytic process both in lymphocyte and in monocyte-mediated ADCC, while C gamma 3 domain has no role in the latter but is responsible for the appropriate contact between effector lymphocytes and target cells. A site in the region of Lys274 appears to be critical for triggering of both lymphocyte and monocyte-mediated ADCC.

  10. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy

    PubMed Central

    Rengifo, Charles E.; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment. PMID:26317020

  11. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy.

    PubMed

    Rengifo, Charles E; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  12. Analysis of cytokine production and V beta T-cell receptor subsets in irradiated recipients receiving portal or peripheral venous reconstitution with allogeneic bone marrow cells, with or without additional anti-cytokine monoclonal antibodies.

    PubMed Central

    Gorczynski, R M; Chen, Z; Zeng, H; Gorczynski, L; Terzioglu, E

    1998-01-01

    Irradiated (800 rads) AKR mice received intravenous (i.v.) reconstitution with a mixture of B10.BR T-depleted bone marrow cells and spleen cells. Only in groups of mice treated additionally with i.v. cyclophosphamide (Cy; 150 mg/kg), 24 hr before transplantation, was long-term (> 60% at 50 days) survival seen. In mice receiving only irradiation all animals died by 30 days post-transplantation. Histological changes consistent with graft-versus-host disease (GVHD) were seen in the liver of reconstituted mice at 30 days, along with an organ-specific increase in V beta 3 T-cell receptor-positive (TCR+) cells. No such increase in V beta 3 TCR+ cells was seen in the spleen from the same mice. These data are consistent with a tissue antigen-driven expansion of V beta 3 TCR+ cells associated with GVHD in the liver in this model. When we analysed cytokine production in vitro from CD3+ cells restimulated with 'host' (AKR) antigen-presenting cells (APC), we found a transition in cytokine production from preferential synthesis of type-1 cytokines [interleukin-2 (IL-2) and interferon-gamma (IFN-gamma)] at early times (day 15) post-reconstitution to increased production of type-2 cytokines [IL-4, transforming growth factor-beta (TGF-beta) and IL-10] at later times (day 30) post-reconstitution in Cy-treated recipients. Animals not receiving Cy did not show this 'switch' in cytokine production at later time points. We have observed a similar polarization in cytokine production, along with increased graft survival, in recipients of vascularized and non-vascularized allografts after portal venous (p.v.), but not i.v., pretransplant donor-specific immunization. We next studied AKR mice receiving 800 rads and subsequently reconstituted with B10.BR stem cells via the p.v. route. Again these mice showed prolonged survival (> 50% at 50 days), with polarization to IL-4, IL-10 and TGF-beta on restimulation of CD3+ cells in vitro at 30 days post-transplant and increased V beta 3 TCR+ cells

  13. Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fc epsilon receptor activation

    PubMed Central

    1992-01-01

    The mAb AA4 binds to novel derivatives of the ganglioside Gd1b on rat basophilic leukemia (RBL-2H3) cells. Some of the gangliosides are located close to the high affinity IgE receptor (Fc epsilon RI), and binding of mAb AA4 inhibits Fc epsilon RI-mediated histamine release. In the present study, mAb AA4 was found to bind exclusively to mast cells in all rat tissues examined. In vitro, within 1 min of mAb AA4 binding, the cells underwent striking morphologic changes. They lost their normal spindle shaped appearance, increased their ruffling, and spread over the surface of the culture dish. These changes were accompanied by a redistribution of the cytoskeletal elements, actin, tubulin, and vimentin, but only the actin was associated with the membrane ruffles. Binding of mAb AA4 also induces a rise in intracellular calcium, stimulates phosphatidyl inositol breakdown, and activates PKC. However, the extent of these changes was less than that observed when the cells were stimulated with antigen or antibody directed against the Fc epsilon RI. None of these changes associated with mAb AA4 binding were seen when the cells were exposed to nonspecific IgG, IgE, or four other anti-cell surface antibodies, nor were the changes induced by binding mAb AA4 at 4 degrees C or in the absence of extracellular calcium. Although mAb AA4 does not stimulate histamine release, it enhances the effect of the calcium ionophore A23187 mediated release. The morphological and biochemical effects produced by mAb AA4 are similar to those seen following activation of the cell through the IgE receptor. Therefore, the surface gangliosides which bind mAb AA4 may function in modulating secretory events. PMID:1370498

  14. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    SciTech Connect

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-02-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of (/sup 3/H)thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody ..cap alpha..IR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of /sup 125/I-labeled IGF-I but not /sup 125/I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. ..cap alpha..IR-3 competitively inhibits IGF-I-mediated stimulation of (/sup 3/H)thymidine incorporation into DNA. This inhibition is dependent on the concentration of ..cap alpha..IR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of < 1 ..mu..g/ml, the effect of insulin to stimulate (/sup 3/H)thymidine incorporation is not inhibited by ..cap alpha..IR-3. However, the incremental effects of higher concentrations (> 1 ..mu..g/ml) of insulin on (/sup 3/H)thymidine incorporation are inhibited by ..cap alpha..IR-3. ..cap alpha..IR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself.

  15. Large granular lymphocyte expansions in patients with Felty's syndrome: analysis using anti-T cell receptor V beta-specific monoclonal antibodies.

    PubMed Central

    Bowman, S J; Bhavnani, M; Geddes, G C; Corrigall, V; Boylston, A W; Panayi, G S; Lanchbury, J S

    1995-01-01

    Felty's syndrome (FS), the association of rheumatoid arthritis (RA) and idiopathic neutropenia, remains an unexplained phenomenon. HLA-DR4 is found in over 90% of cases. Patients with FS may have a T cell lymphocytosis of CD3+CD8+CD57+ large granular lymphocytes (LGL syndrome). In this study of 47 patients with FS, 19% had clear evidence for LGL expansions, while in total 42% had variable evidence for the LGL syndrome using currently available techniques. Of these T cell expansions, 76% were clonal, as demonstrated by Southern blotting and analysis with T cell receptor (TCR) beta chain constant region probes. This technique may fail to detect clonal populations in some patients. Cytofluorographic analysis using antibodies specific for TCR V beta chains identified patients with clonal LGL expansions with results comparable to those obtained with Southern blotting. No evidence for shared V beta usage among expansions from different patients was seen. The role of LGL in RA and FS is currently unclear, but this technique offers a practical and accessible means of identifying patients with LGL expansions, as a starting point for further investigation. Images Fig. 1 PMID:7621587

  16. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease.

    PubMed

    Cox, Carol J; Sharma, Meenakshi; Leckman, James F; Zuccolo, Jonathan; Zuccolo, Amir; Kovoor, Abraham; Swedo, Susan E; Cunningham, Madeleine W

    2013-12-01

    How autoantibodies target the brain and lead to disease in disorders such as Sydenham chorea (SC) is not known. SC is characterized by autoantibodies against the brain and is the main neurologic manifestation of streptococcal-induced rheumatic fever. Previously, our novel SC-derived mAb 24.3.1 was found to recognize streptococcal and brain Ags. To investigate in vivo targets of human mAb 24.3.1, VH/VL genes were expressed in B cells of transgenic (Tg) mice as functional chimeric human VH 24.3.1-mouse C-region IgG1(a) autoantibody. Chimeric human-mouse IgG1(a) autoantibody colocalized with tyrosine hydroxylase in the basal ganglia within dopaminergic neurons in vivo in VH 24.3.1 Tg mice. Both human mAb 24.3.1 and IgG1(a) in Tg sera were found to react with human dopamine D2 receptor (D2R). Reactivity of chorea-derived mAb 24.3.1 or SC IgG with D2R was confirmed by dose-dependent inhibitory signaling of D2R as a potential consequence of targeting dopaminergic neurons, reaction with surface-exposed FLAG epitope-tagged D2R, and blocking of Ab reactivity by an extracellular D2R peptide. IgG from SC and a related subset of streptococcal-associated behavioral disorders called "pediatric autoimmune neuropsychiatric disorder associated with streptococci" (PANDAS) with small choreiform movements reacted in ELISA with D2R. Reaction with FLAG-tagged D2R distinguished SC from PANDAS, whereas sera from both SC and PANDAS induced inhibitory signaling of D2R on transfected cells comparably to dopamine. In this study, we define a mechanism by which the brain may be altered by Ab in movement and behavioral disorders. PMID:24184556

  17. In-111 chelate conjugates of human transferrin (HTr) and mouse monoclonal anti human transferrin receptor antibody (. cap alpha. HTrR MoAb) for tumor imaging

    SciTech Connect

    Goodwin, D.A.; Meares, C.F.; Diamanti, C.I.; McCall, M.; McTigue, M.; Torti, F.; Martin, B.

    1984-01-01

    At least one of the major pathways of uptake of the commonly used tumor scanning agent Ga-67 is via the transferrin receptor. This suggested the use of stably radio-labeled HTr, and ..cap alpha..HTrR MoAb for tumor imaging in humans. HTr and mouse ..cap alpha..HTrR MoAb were alkylated with 1-(parabromacetamidobenzyl)-EDTA. The mM Alkylproteins, approx. =1 chelate/molecule were labeled with 1-3 mCi In-111 citrate pH/sub 5/ (Sp Act approx. = 100-300 Ci/m mole). Images were made 24 hours after 1 mCi IV and in some patients blood levels, urine excretion and digitized whole body scans were obtained at 1, 24,48 and 96 hours post injection. Ten patients with biopsy proven prostate cancer were studied with In-111 HTr, and four with In-111 ..cap alpha.. HTrR MoAb; all had positive mets on bone scan. In-111 HTr persisted in the circulation with a T1/2 of approx. = four days, approx. = 5%/day being excreted in the urine, to a total of approx. = 60% in 21 days. Nine of ten scans were false negative due to the high blood background. In-111 ..cap alpha..HTrR disappeared rapidly from the blood; with most in the bone marrow at 24 hours. ROI analysis of three patients showed whole body 94% at 24 hours, 89% at 48 hours, and 82% at 96 hours (T1/2 = 10.7 days); liver 19% at 1 hour, 25% at 24 hours, and 21% at 96 hours; spleen 3% at 1 hour, 8% at 24 hours, 7.3% at 48 hours, and 3% at 96 hours. The high bone marrow background allowed only a few of the bone mets seen as bone scan to be visualized. Other tumor types not located in bone may be more easily seen.

  18. CD69-mediated pathway of lymphocyte activation: anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor alpha/beta

    PubMed Central

    1991-01-01

    The effect of anti-CD69 monoclonal antibodies (mAbs) on the induction of the cytolytic activity in different types of lymphoid effector cells has been investigated. Three anti-CD69 mAbs, including the reference mAb MLR3 and two new mAbs (c227 and 31C4), have been used. All cloned CD3-CD16+ natural killer (NK) cells belonging to different subsets (as defined by the surface expression of GL183 and/or EB6 antigens) were efficiently triggered by anti-CD69 mAbs and lysed P815 mastocytoma cells in a redirected killing assay. Triggering of the cytolytic activity could also be induced in CD3-CD16- NK clones, which fail to respond to other stimuli (including anti-CD16, anti-CD2 mAbs, or phytohemagglutinin). A similar triggering effect was detected in T cell receptor (TCR) gamma/delta+ clones belonging to different subsets. On the other hand, anti-CD69 mAbs could not induce triggering of the cytolytic activity in TCR alpha/beta+ cytolytic clones. Since all thymocytes are known to express CD69 antigen after cell activation, we analyzed a series of phenotypically different cytolytic thymocyte populations and clones for their responsiveness to anti-CD69 mAb in a redirected killing assay. Again, anti-CD69 mAb triggered TCR gamma/delta+ but not TCR alpha/beta+ thymocytes. Anti-CD69 mAb efficiently triggered the cytolytic activity of "early" thymocytes lines or clones (CD3-4-8-7+), which lack all other known pathways of cell activation. Thus, it appears that CD69 molecules may initiate a pathway of activation of cytolytic functions common to a number of activated effector lymphocytes with the remarkable exception of TCR alpha/beta+ cytolytic cells. PMID:1720808

  19. Phase 2, multicenter, open-label study of tigatuzumab (CS-1008), a humanized monoclonal antibody targeting death receptor 5, in combination with gemcitabine in chemotherapy-naive patients with unresectable or metastatic pancreatic cancer

    PubMed Central

    Forero-Torres, Andres; Infante, Jeffrey R; Waterhouse, David; Wong, Lucas; Vickers, Selwyn; Arrowsmith, Edward; He, Aiwu Ruth; Hart, Lowell; Trent, David; Wade, James; Jin, Xiaoping; Wang, Qiang; Austin, TaShara; Rosen, Michael; Beckman, Robert; von Roemeling, Reinhard; Greenberg, Jonathan; Saleh, Mansoor

    2013-01-01

    Tigatuzumab is the humanized version of the agonistic murine monoclonal antibody TRA-8 that binds to the death receptor 5 and induces apoptosis of human cancer cell lines via the caspase cascade. The combination of tigatuzumab and gemcitabine inhibits tumor growth in murine pancreatic xenografts. This phase 2 trial evaluated the efficacy of tigatuzumab combined with gemcitabine in 62 chemotherapy-naive patients with histologically or cytologically confirmed unresectable or metastatic pancreatic cancer. Patients received intravenous tigatuzumab (8 mg/kg loading dose followed by 3 mg/kg weekly) and gemcitabine (1000 mg/m2 once weekly for 3 weeks followed by 1 week of rest) until progressive disease (PD) or unacceptable toxicity occurred. The primary end point was progression-free survival (PFS) at 16 weeks. Secondary end points included objective response rate (ORR) (complete responses plus partial responses), duration of response, and overall survival (OS). Safety of the combination was also evaluated. Mean duration of treatment was 18.48 weeks for tigatuzumab and 17.73 weeks for gemcitabine. The PFS rate at 16 weeks was 52.5% (95% confidence interval [CI], 39.3–64.1%). The ORR was 13.1%; 28 (45.9%) patients had stable disease and 14 (23%) patients had PD. Median PFS was 3.9 months (95% CI, 2.2–5.4 months). Median OS was 8.2 months (95% CI, 5.1–9.6 months). The most common adverse events related to tigatuzumab were nausea (35.5%), fatigue (32.3%), and peripheral edema (19.4%). Tigatuzumab combined with gemcitabine was well tolerated and may be clinically active for the treatment of chemotherapy-naive patients with unresectable or metastatic pancreatic cancer. PMID:24403266

  20. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies

    PubMed Central

    Quetglas, José I.; John, Liza B.; Kershaw, Michael H.; Álvarez-Vallina, Luis; Melero, Ignacio; Darcy, Phillip K.; Smerdou, Cristian

    2012-01-01

    Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies. PMID:23243597

  1. Which is false: oxaliplatin or fluoropyrimidine? An analysis of patients with KRAS wild-type metastatic colorectal cancer treated with first-line epidermal growth factor receptor monoclonal antibody.

    PubMed

    Wen, Feng; Tang, Ruilei; Sang, Yaxiong; Li, Meng; Hu, Qiancheng; Du, Zedong; Zhou, Yi; Zhang, Pengfei; He, Xiaofeng; Li, Qiu

    2013-10-01

    This meta-analysis was performed to determine whether the addition of monoclonal antibodies (mAbs) of epidermal growth factor receptor (EGFR) to oxaliplatin-based chemotherapy treatment improves efficacy in KRAS wild-type metastatic colorectal cancer (mCRC), and whether infusional 5-fluorouracil (5-FU) and oxaliplatin is a preferred combination for EGFR mAbs. Oxaliplatin (including treatment), EGFR mAbs, first-line treatment, KRAS wild-type, and mCRC were used as key words. The PRIME, OPUS, COIN, and NORDIC VII trials were identified by two independent authors. Time-to-event outcomes of overall survival (OS) and progression-free survival (PFS) were analyzed using HRs (hazard ratios) with fixed effect, and response rate (RR) using odd ratios (OR) with fixed effect. A total of 1767 patients who were KRAS wild-type were included in this meta-analysis, with 866 patients in the mAbs and chemotherapy combination group and 901 patients in the chemotherapy alone group. The addition of mAbs to oxaliplatin-based chemotherapy in patients with KRAS wild-type mCRC as first-line treatment resulted in significant improvements in PFS (HR = 0.88; 95% confidence interval (CI), 0.79-0.99; P = 0.03) and response rate (RR) (OR = 1.38; 95% CI, 1.14-1.66; P = 0.009) compared with chemotherapy alone, but the difference in OS was not significant (HR = 0.96; 95% CI, 0.85-1.08; P = 0.48). However, the differences in OS and PFS were not significant when mAbs were added to bolus 5-FU or capecitabine-based regimens compared with chemotherapy alone, whereas PFS improved with an infusional 5-FU and oxaliplatin combination (P = 0.06; PFS, HR = 0.76; 95% CI, 0.65-0.86; P = 0.0002), and even OS was marginally significant, which was consistent with the subgroup analysis of cetuximab and panitumumab. EGFR mAbs combined with oxaliplatin and an infusional 5-FU regimen was associated with significantly improved RR, PFS and OS as first-line treatment in KRAS wild-type mCRC.

  2. Monoclonal antibodies to Actinobacillus actinomycetemcomitans.

    PubMed Central

    Place, D A; Scidmore, N C; McArthur, W P

    1988-01-01

    Murine hybridoma cell lines were developed which synthesized monoclonal antibodies against Actinobacillus actinomycetemcomitans-associated antigens. Monoclonal antibodies specific for an antigen(s) common to all A. actinomycetemcomitans isolates tested but not detected on other gram-negative oral plaque microorganisms or other Actinobacillus species were identified. Monoclonal antibodies specific for each serotype group of A. actinomycetemcomitans which did not bind to other Actinobacillus species or oral plaque microorganisms were also identified. PMID:3356470

  3. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction. PMID:27438459

  4. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  5. Natural monoclonal antibodies and cancer.

    PubMed

    Vollmers, Peter H; Brändlein, Stephanie

    2008-06-01

    Immunity is responsible for recognition and elimination of infectious particles and for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. By using the human hybridoma technology, a series of monoclonal antibodies and several new tumor-specific targets could be identified. A striking phenomenon of immunity against malignant cells is that all so far isolated tumor-specific antibodies were germ-line coded natural IgM antibodies. And neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. These IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors, which are recently patented and preferentially remove malignant cells by inducing apoptosis to avoid inflammatory processes. Our "biology-" or "function-driven" method represents a unique yet powerful approach compared to the typical approaches on screening compounds or antibodies against non-validated targets (mostly differentially expressed). Moreover, the approach creates a competitive patenting strategy of creating proprietary antibodies and validated targets at the same time, which has the potential of further streamlining the discovery of new cancer therapies. PMID:18537750

  6. [Skin manifestations of monoclonal gammopathies].

    PubMed

    Hello, M; Barbarot, S; Néel, A; Connault, J; Graveleau, J; Durant, C; Decaux, O; Hamidou, M

    2014-01-01

    Whatever their aetiology, monoclonal gammopathies can be associated to several clinical features. Mechanisms are various and sometimes unknown. Skin is frequently involved and may represent a challenging diagnosis. Indeed, skin manifestations are either the presenting features and isolated, or at the background of a systemic syndrome. Our objective was to review the various skin manifestations that have been associated with monoclonal gammopathies.

  7. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies. PMID:20954327

  8. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies.

  9. Production of monoclonal antibodies.

    PubMed

    Freysd'ottir, J

    2000-01-01

    The discovery of monoclonal antibodies (mAbs) produced by "hybridoma technology" by George Köhler and Cesar Milstein in 1975 has had a great impact both on basic biological research and on clinical medicine. However, this impact was not immediately recognized. It took around 10 years to appreciate the importance of using these mAbs in various fields of science other than immunology, such as cell biology, biochemistry, microbiology, virology, para-sitology, physiology, genetics, and molecular biology; and also in areas of clinical medicine, such as pathology, hematology, oncology, and infectious disease. The contribution of mAbs to science and clinical medicine was recognized in 1984 by the award of the Nobel Prize for Medicine to Köhler and Milstein.

  10. Monoclonal regulatory T cells provide insights into T cell suppression

    PubMed Central

    Gubser, Céline; Schmaler, Mathias; Rossi, Simona W.; Palmer, Ed

    2016-01-01

    Regulatory T cells (Tregs) have a crucial role in maintaining lymphocyte homeostasis. However an understanding of how Tregs function at a cellular and molecular level has not yet been fully elucidated. Here, we make use of a T cell receptor (TCR) transgenic, Rag−/− mouse expressing a Forkhead-Box-Protein P3 (Foxp3) transgene. This mouse provides a source of monoclonal CD4+ Foxp3+ T cells with a defined specificity. Here we show that monoclonal B3K506 Tregs are functional in vitro and in vivo and clearly require cognate antigen to be suppressive. We further show that the strength of Treg stimulation determines the strength of Treg mediated suppression. Finally we analysed various suppressive mechanisms used by monoclonal Tregs and found that Treg-Tconv proximity is a parameter, which correlates with enhanced suppression. PMID:27210828

  11. The therapeutic monoclonal antibody market

    PubMed Central

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996

  12. The therapeutic monoclonal antibody market.

    PubMed

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼ 70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion.

  13. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  14. Monoclonal antibodies and neuroblastoma.

    PubMed

    Miraldi, F

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.

  15. Asymptomatic monoclonal gammopathies.

    PubMed

    Bories, Claire; Jagannath, Sundar

    2014-09-01

    Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) represent the earlier phases of plasma cell dyscrasias. Their definition is based on absence of end-organ damage with presence of a malignant clone that grows in the bone marrow. They share, as a common feature, the risk of progression to a symptomatic disease. MGUS progression risk is approximately 1% per year, and SMM has a risk of progression of 10% for the first 5 years which tapers off over time. The main purpose of identification of these earlier phases of the plasma cell dyscrasia was to identify patients who do not warrant treatment with chemotherapy, in whom the risk of treatment outweighs the benefit. Over the years, the definitions have not been modified to incorporate developments in imaging (magnetic resonance or positron emission and computed tomography), or genomics to identify patients at highest risk of progression within 2 years, where wait and watch might not be an appropriate option. In the absence of such definition, patients who have only a 50% chance of progression within 2 years are being offered therapy, which might also not be an optimal approach. In this review, we provide an overview of the definition, current prognostic factors, and risk stratifications in asymptomatic gammopathies, and discuss clinical trial outcomes in high-risk SMM. PMID:25486961

  16. Implications of a Vasodilatory Human Monoclonal Autoantibody in Postural Hypotension*

    PubMed Central

    Li, Hongliang; Zuccolo, Jonathan; Kem, David C.; Zillner, Caitlin; Lee, Jiyeon; Smith, Kenneth; James, Judith A.; Cunningham, Madeleine W.; Yu, Xichun

    2013-01-01

    Functional autoantibodies to the autonomic receptors are increasingly recognized in the pathophysiology of cardiovascular diseases. To date, no human activating monoclonal autoantibodies to these receptors have been available. In this study, we describe for the first time a β2-adrenergic receptor (β2AR)-activating monoclonal autoantibody (C5F2) produced from the lymphocytes of a patient with idiopathic postural hypotension. C5F2, an IgG3 isotype, recognizes an epitope in the N terminus of the second extracellular loop (ECL2) of β2AR. Surface plasmon resonance analysis revealed high binding affinity for the β2AR ECL2 peptide. Immunoblotting and immunofluorescence demonstrated specific binding to β2AR in H9c2 cardiomyocytes, CHO cells expressing human β2AR, and rat aorta. C5F2 stimulated cyclic AMP production in β2AR-transfected CHO cells and induced potent dilation of isolated rat cremaster arterioles, both of which were specifically blocked by the β2AR-selective antagonist ICI-118551 and by the β2AR ECL2 peptide. This monoclonal antibody demonstrated sufficient activity to produce postural hypotension in its host. Its availability provides a unique opportunity to identify previously unrecognized causes and new pharmacological management of postural hypotension and other cardiovascular diseases. PMID:24043632

  17. [Monoclonal antibody therapy for allergic asthma].

    PubMed

    Nishikawa, Masanori; Matsuse, Takeshi

    2002-03-01

    Allergic responses at the level of the respiratory system are mostly mediated by IgE-dependent mechanisms. The first selective anti-IgE therapy, a recombinant humanized monoclonal anti-IgE antibody(rhuMAb-E25), binds with high affinity to the Fc epsilon RI receptor binding site on IgE, thereby reducing the amount of free IgE available to bind to Fc epsilon RI receptors on mast cells and basophils. In addition, administration of rhuMAb-E25 indirectly reduces Fc epsilon RI receptor density on cells involved in allergic responses. rhuMAb-E25 has been shown to reduce allergic responses in atopic individuals and to improve symptoms and reduce rescue medication and corticosteroid use in patient with allergic asthma. The clinical effectiveness of rhuMAb-E25 supports the central role of IgE in allergic reaction and the viability of anti-IgE therapy as an effective immunological intervention for allergic asthma.

  18. Ankylosing spondylitis and monoclonal gammopathies.

    PubMed Central

    Renier, G; Renier, J C; Gardembas-Pain, M; Chevailler, A; Boasson, M; Hurez, D

    1992-01-01

    From 1960 to 1990, 557 patients with ankylosing spondylitis (428 men, 129 women) were diagnosed and indexed in the department of rheumatology. Monoclonal gammopathies were found in seven (five men, two women) patients (1.3%). With one exception, ankylosing spondylitis preceded monoclonal gammopathies by many years. The distribution of the isotypes of the mIg found in these seven patients was striking when compared either with previous reports of an association between ankylosing spondylitis and monoclonal gammopathies or with local data on the epidemiology of monoclonal gammopathies: five patients with IgG, four of them of the lambda (lambda) type, and two IgM, both of the kappa (kappa) type were found; no patients with mIgA were recorded. Two patients were HLA-B27 positive and had slight and transient monoclonal gammopathies, whereas three subjects were HLA-B27 negative and had important spikes, corresponding in two subjects to malignant diseases. This observation raises the question of whether the coexistence of HLA-B27 and ankylosing spondylitis might provide a protective action. Epidemiological studies are required to clarify such points. PMID:1417119

  19. Detection of Campylobacter species using monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  20. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-22

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  1. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  2. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  3. Renal involvement in monoclonal gammopathy.

    PubMed

    Al-Hussain, Turki; Hussein, Maged H; Al Mana, Hadeel; Akhtar, Mohammed

    2015-03-01

    Monoclonal gammopathy is produced by neoplastic or non-neoplastic expansion of a clone of plasma cells or B lymphocytes. Monoclonal gammopathy of unknown significance is characterized by low levels of the monoclonal protein and a relatively small population of clonal lymphocytes or plasma cells in the bone marrow. In these cases, the patient is asymptomatic with no evidence of overt myeloma or lymphoma. The abnormal serum protein may be present as a complete immunoglobulin molecule or may consist of ≥1 of its components such as light chains or heavy chains. These proteins may cause a variety of diseases in various tissues and organs, of which the kidney appears to be the most vulnerable. Renal involvement in monoclonal gammopathy may occur as part of a generalized disease such as amyloidosis, immunoglobulin deposition disease, and cryoglobulinemia. In addition, there may be evidence of kidney damage by processes which are renal specific. These include light chain proximal tubulopathy, light chain cast nephropathy, and a variety of glomerulopathies encompassing a wide spectrum of disease patterns. PMID:25664947

  4. Monoclonal Antibodies in Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Waldmann, Thomas A.

    1991-06-01

    Monoclonal antibodies have been applied clinically to the diagnosis and therapy of an array of human disorders, including cancer and infectious diseases, and have been used for the modulation of immune responses. Effective therapy using unmodified monoclonal antibodies has, however, been elusive. Recently, monoclonal antibody-mediated therapy has been revolutionized by advances such as the definition of cell-surface structures on abnormal cells as targets for effective monoclonal antibody action, genetic engineering to create less immunogenic and more effective monoclonal antibodies, and the arming of such antibodies with toxins or radionuclides to enhance their effector function.

  5. Characterization of monoclonal antibodies against human lactoferrin.

    PubMed

    van Berkel, Patrick H C; van Veen, Harrie A; Geerts, Marlieke E J; Nuijens, Jan H

    2002-09-15

    The iron-binding glycoprotein human lactoferrin (hLF) is involved in the host defense against infection and is a modulator of inflammatory reactions. We generated monoclonal antibodies (mAbs) to hLF as tools to assist both structure-function studies and the development of recombinant human lactoferrin for applications in human health care. Binding experiments with ten distinct anti-hLF mAbs to tryptic and recombinant hLF fragments in ELISA and/or on immunoblots revealed that five mAbs bound to conformational epitopes residing in the N-lobe (residues 1 to 334), whereas the other five bound to C-lobe conformational epitopes (residues 335 to 692). None of the mAbs bound to hLF denatured upon reduction. Monoclonal antibody E11 appeared to bind to the arginine-rich N-terminus of hLF, which is the binding site for heparin, bacterial lipopolysaccharide, human lysozyme, DNA and receptors. The dissociation constant of the distinct mAbs for hLF ranged from 0.5 to 18 nM, without differences in affinity for unsaturated or iron-saturated hLF, indicating that the conformational changes subject to incorporation of iron do not seem to affect the exposure and/or conformation of the antibody epitopes. The mAbs did not bind to human transferrin, a protein closely related to hLF in size, primary amino acid sequence and structure. Two C-lobe specific mAbs, E2 and E8, cross-reacted with bovine and/or porcine lactoferrin, indicating that human, bovine and porcine lactoferrin share antigenic determinants. This panel of mAbs will be used to develop quantitative and qualitative immunoassays for hLF and to delineate which regions of hLF are relevant to its anti-infective and anti-inflammatory properties. PMID:12165435

  6. [Industrial production of monoclonal antibodies].

    PubMed

    Baron, D

    1990-10-01

    Murine monoclonal antibodies (mabs) are produced in either mouse ascites or bioreactors (spinner culture, stirred-tank reactor, airlift reactor, hollow-fiber reactor). Human mabs are produced solely in bioreactors. Encapsulation represents a special technology. Hybridoma cells have to be adapted prior to growth in bioreactors. Of crucial importance is the construction of over-producing cell lines by cell- and gene-technological methods. Manipulated cell lines often produce modified mabs.

  7. Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the alpha-emitting radionuclides (212)Bi or (211)At.

    PubMed

    Wesley, Jon N; McGee, Edwin C; Garmestani, Kayhan; Brechbiel, Martin W; Yordanov, Alexander T; Wu, Chuanchu; Gansow, Otto A; Eckelman, William C; Bacher, John D; Flynn, Michael; Goldman, Carolyn K; MacLin, Melvin; Schwartz, Uwe P; Jackson-White, Terri; Phillip, Celeste M; Decker, Jean; Waldmann, Thomas A

    2004-04-01

    To exploit the fact that IL-2 receptors are expressed by T-cells responding to foreign antigens but not by resting T-cells, humanized anti-Tac (HAT) armed with alpha-emitting radionuclides (212)Bi and (211)At was evaluated in a cynomolgus cardiac allograft model. Control graft survival was 8.2+/- 0.5 days compared with 14.0+/-1.3 days (p<0.01) survival for monkeys treated with (212)Bi labeled HAT and 26.7+/-2.4 days survival (p<0.001 versus controls) with (211)At labeled HAT. Thus, (211)At labeled HAT may have application in organ transplantation and in treatment of IL-2 receptor expressing T-cell leukemia. PMID:15028248

  8. Characterization of human T cells reactive with the Mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against V beta 17, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells

    PubMed Central

    1991-01-01

    While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM- reactive human T cells, V beta 17. In addition, a V beta 17- MAM- reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease. PMID:1833503

  9. Monoclonal gammopathy-associated proliferative glomerulonephritis.

    PubMed

    Sethi, Sanjeev; Rajkumar, S Vincent

    2013-11-01

    Monoclonal gammopathy is characterized by circulating monoclonal immunoglobulin owing to clonal proliferation of immunoglobulin-producing B lymphocytes or plasma cells. Clonal proliferation of B lymphocytes is seen in B-cell lymphoma/leukemia, and clonal plasma cell proliferation is seen in multiple myeloma and monoclonal gammopathy of undetermined significance. The monoclonal immunoglobulin in the setting of a B-cell or plasma cell disorder can cause a proliferative glomerulonephritis via 2 mechanisms: (1) glomerular deposition of the monoclonal immunoglobulin with activation of the classical pathway of complement (direct mechanism), resulting in an immunoglobulin-positive C3-positive glomerulonephritis, and (2) glomerular deposition of complement factors of the alternative and terminal pathway via inhibition of alternative pathway-regulating proteins by the monoclonal immunoglobulin (indirect mechanism), resulting in immunoglobulin-negative C3-positive glomerulonephritis (C3 glomerulopathy). Evaluation should include serum and urine electrophoresis and immunofixation as well as serum-free light-chain assay. If a monoclonal immunoglobulin is detected on these tests, bone marrow biopsy or imaging is needed to exclude more advanced plasma cell dyscrasia. Evaluation of alternative pathway of complement should be done in patients with Ig-negative C3-positive glomerulonephritis. If monoclonal gammopathy is due to an underlying malignant disease such as myeloma, lymphoma, or chronic lymphocytic leukemia, then specific treatment should be aimed at treating the malignant disease, with the goal of eradicating the clonal cells producing the immunoglobulin. In contrast, if monoclonal gammopathy is due to a monoclonal gammopathy of undetermined significance, treatment options include bortezomib, cyclophosphamide, and dexamethasone for a non-IgM monoclonal immunoglobulin and rituximab alone or in combination with cyclophosphamide and dexamethasone for an IgM monoclonal

  10. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform

    PubMed Central

    Cortez-Jugo, Christina; Qi, Aisha; Rajapaksa, Anushi; Friend, James R.

    2015-01-01

    Nebulizers have considerable advantages over conventional inhalers for pulmonary drug administration, particularly because they do not require coordinated breath actuation to generate and deliver the aerosols. Nevertheless, besides being less amenable to miniaturization and hence portability, some nebulizers are prone to denature macromolecular drugs due to the large forces generated during aerosolization. Here, we demonstrate a novel portable acoustomicrofluidic device capable of nebulizing epidermal growth factor receptor (EGFR) monoclonal antibodies into a fine aerosol mist with a mass median aerodynamic diameter of approximately 1.1 μm, optimal for deep lung deposition via inhalation. The nebulized monoclonal antibodies were tested for their stability, immunoactivity, and pharmacological properties, which confirmed that nebulization did not cause significant degradation of the antibody. In particular, flow cytometry demonstrated that the antigen binding capability of the antibody is retained and able to reduce phosphorylation in cells overexpressing the EGFR, indicating that the aerosols generated by the device were loaded with stable and active monoclonal antibodies. The delivery of antibodies via inhalation, particularly for the treatment of lung cancer, is thus expected to enhance the efficacy of this protein therapeutic by increasing the local concentration where they are needed. PMID:25945147

  11. Complement in monoclonal antibody therapy of cancer.

    PubMed

    Rogers, Laura M; Veeramani, Suresh; Weiner, George J

    2014-08-01

    Monoclonal antibodies (mAb) have been used as targeted treatments against cancer for more than a decade, with mixed results. Research is needed to understand mAb mechanisms of action with the goal of improving the efficacy of currently used mAbs and guiding the design of novel mAbs. While some mAb-induced tumor cell killing is a result of direct effects on tumor cell signaling, mAb opsonization of tumor cells also triggers activation of immune responses due to complement activation and engagement of antibody receptors on immune effector cells. In fact, complement has been shown to play an important role in modulating the anti-tumor activity of many mAb through complement-dependent cytotoxicity, antibody-dependent cytotoxicity, and through indirect effects by modulating the tumor microenvironment. Complement activity can have both agonistic and antagonistic effects on these processes. How the balance of such effects impacts on the clinical efficacy of mAb therapy remains unclear. In this review, we discuss the mAbs currently approved for cancer treatment and examine how complement can impact their efficacy with a focus on how this information might be used to improve the clinical efficacy of mAb treatment.

  12. Monoclonal antibodies based on hybridoma technology.

    PubMed

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs. PMID:24237029

  13. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-15

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  14. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V

    2013-08-06

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  15. Monoclonal antibodies: their importance to surgeons.

    PubMed

    Estabrook, A; Mesa-Tejada, R

    1989-01-01

    A tremendous technological advance occurred in 1975 when a method was developed to fuse two cells producing a "hybridoma" which secretes a single clone of antibody, having one immunoglobulin (Ig) class, one structure, one affinity, and one specificity for an antigenic determinant. Because monoclonal antibodies are more precise reagents than conventional antisera they open new doors to diagnosis and therapy of disease, and they are useful tools in research. The pathologist uses monoclonals in immunocytochemistry to determine tumor type; the surgeon uses monoclonals for immunosuppression in renal transplantation; the immunologist uses monoclonals to decipher cellular and humoral interactions that could not be appreciated with polyclonal reagents. This review outlines the background of monoclonal antibodies and some of their clinically important uses, both in vitro and in vivo. We also project into the future and describe chimeric antibodies and their possible uses.

  16. TSH RECEPTOR AUTOANTIBODIES

    PubMed Central

    Michalek, Krzysztof; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2009-01-01

    Thyrotropin receptor autoantibodies (TSHR-Abs) of the stimulating variety are the hallmark of Graves’ disease. The presence of immune defects leading to synthesis of TSHR-Abs causes hyperthyroidism and is associated with other extrathyroidal manifestations. Further characterization of these antibodies has now been made possible by the generation of monoclonal antibodies with this unique stimulating capacity as well as similar TSHR-Abs not associated with hyperthyroidism. Their present classification divides TSHR-Abs into stimulating, blocking (competing with TSH binding) and neutral (no signaling). Recent studies using monoclonal TSHR-Abs has revealed that stimulating and blocking antibodies bind to the receptor using mostly conformational epitopes, whilst neutral antibodies utilize exclusively linear peptides. Subtle differences in epitopes for stimulating and blocking antibodies account for the diversity of their biological actions. Recently non-classical signaling elicited by neutral antibodies has also been described, raising the need for a new classification of TSHR-Abs. PMID:19332151

  17. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors.

  18. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors. PMID:11001403

  19. Production and Screening of Monoclonal Peptide Antibodies.

    PubMed

    Trier, Nicole Hartwig; Mortensen, Anne; Schiolborg, Annette; Friis, Tina

    2015-01-01

    Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

  20. Monoclonal antibodies in the treatment of cancer

    SciTech Connect

    Dillman, R.O.

    1984-01-01

    Potential uses of monoclonal antibodies in anti-cancer treatment include passive serotherapy, radioisotope conjugates, toxin-linked conjugates, and chemotherapy-monoclonal antibody conjugates. The bases for these applications have been founded in research with heterologous antisera, and in some cases with monoclonal antibodies in animal tumor models. Human trials with passive serotherapy have already begun in both hematopoietic and solid tumor malignancies. Promising results have been reported in cutaneous T cell lymphoma with anti-T cell monoclonal antibody, and in nodular lymphoma with anti-idiotype monoclonal antibody. Radioisotope conjugate work appears promising for imaging in both animals and humans, and this work will lay the foundation for possible therapeutic application of radio-immunotherapy. Toxin-linked conjugates are promising in vitro and may have application in autologous bone marrow transplantation. Research with chemotherapy conjugates is also underway. Preliminary results suggest that murine monoclonal antibodies will be well tolerated clinically except in the setting of circulating cells which bear the target antigen, where rapid infusions may be associated with intolerable side effects. In certain diseases, production of endogenous anti-mouse antibodies may also limit application. Advances in the technology for human-human hybridoma production may help solve some of these problems. 132 references.

  1. Improved monoclonal antibodies to halodeoxyuridine

    DOEpatents

    Vanderlaan, M.; Dolbeare, F.A.; Gray, J.W.; Thomas, C.B.

    1983-10-18

    The development, method of production, characterization and methods of use of two hybridomas, CIdU-1 (ATCC Accession No. HB-8321) and CIdU-2 (ATCC Accession No. HB-8320), are described. These secrete IgG/sub 1/(K) immunoglobulins that react with halodeoxyuridine (HdU or halodU) such as bromo, chloro, fluoro and iodo deoxyuridine (BrdU, CldU, FdU and IdU), whether these are free in solution or incorporated into single stranded DNA in whole cells. The antibodies do not react with naturally occurring free nucleic acids or with deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polymers. These antibodies are suitable for use in enzyme immunoassays for free CldU, FdU, IdU and BrdU and for detecting cells with these nucleotides incorporated into them. The monoclonal antibodies are useful in the detection of the sensitivity of tumor cells to specific chemotherapeutic agents, in the measurement of the rate of cellular DNA synthesis, in the measurement of the rate of proliferation of normal and malignant cells and in the detection of HPRT deficiency in cells. 1 tab.

  2. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF

    PubMed Central

    Wang, Yanni; Thomson, Christy A.; Allan, Lenka L.; Jackson, Linda M.; Olson, Melanie; Hercus, Timothy R.; Nero, Tracy L.; Turner, Amanda; Parker, Michael W.; Lopez, Angel L.; Waddell, Thomas K.; Anderson, Gary P.; Hamilton, John A.; Schrader, John W.

    2013-01-01

    The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte–macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain. PMID:23620516

  3. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  4. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies.

    PubMed Central

    Holers, V M; Kotzin, B L

    1985-01-01

    We used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. None of the monoclonal autoantibodies appeared to bind to a significant percentage of cells of relatively small cell size, either before or after culture. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Further experiments, including those using aggregated Ig to block antibody binding, strongly indicated that anti-histone antibody binding was not Fc receptor mediated. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations (0.25 micrograms/ml) of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases. Images PMID:3876357

  5. Experiences with monoclonal antibody therapy for allergic asthma.

    PubMed

    Boushey, H A

    2001-08-01

    Identification of the central role IgE plays in the pathogenesis of allergic diseases made it a key target for therapy. The first selective anti-IgE therapy, a unique humanized monoclonal anti-IgE antibody (omalizumab), binds with high affinity to the Fc(epsilon)RI receptor binding site on IgE, thereby reducing the amount of free IgE available to bind to Fc(epsilon)RI receptors on mast calls, basophils, and other cells. In addition, administration of omalizumab indirectly reduces Fc(epsilon)RI receptor density on cells involved in allergic responses. In two bronchoprovocation trials involving patients with mild allergic asthma, omalizumab attenuated both early- and late-phase allergic responses. Omalizumab was subsequently evaluated as a treatment for asthma in large, multicenter, randomized, double-blind phase II and III trials involving patients with moderate to severe asthma who required corticosteroid therapy. When added to treatment with oral or inhaled corticosteroids, omalizumab reduced symptoms and exacerbations, improved lung function and quality of life, and reduced the need for rescue medications. These benefits persisted even in the "corticosteroid reduction" phase of these trials, when omalizumab treatment was shown to allow patients to reduce or discontinue their inhaled and/or oral corticosteroids. These effects of omalizu-mab in improving asthma control, as well as its excellent safety profile, may ultimately make this agent a useful addition to the physician's armamentarium of treatments for asthma.

  6. Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment

    PubMed Central

    Magen, Hila; Muchtar, Eli

    2016-01-01

    Elotuzumab is a monoclonal antibody directed against the SLAMF7 receptor, expressed on normal and malignant plasma cells with a lower expression on other lymphoid cells such as natural killer (NK) cells. Elotuzumab has no significant antimyeloma activity when given as a single agent to patients with relapsed or refractory multiple myeloma (RRMM). However, when combined with other antimyeloma agents, it results in improved response and outcome. Owing to the results from the landmark ELOQUENT-2 phase III clinical trial, which compared lenalidomide and dexamethasone with or without elotuzumab in patients with RRMM, elotuzumab in combination with lenalidomide and dexamethasone was approved by the American Food and Drug Administration (FDA) in November 2015 for multiple myeloma (MM) patients who received one to three prior lines of therapy. This review will give a brief description of the signaling lymphocytic activation molecule (SLAM) family receptors, the unique SLAMF7 receptor and the mechanism of action of elotuzumab. Thereafter, we will give an overview on its antimyeloma activity in preclinical and clinical trials, including its toxicity profile and management thereof. PMID:27493709

  7. Fusion mutants of Newcastle disease virus selected with monoclonal antibodies to the hemagglutinin-neuraminidase.

    PubMed Central

    Iorio, R M; Glickman, R L

    1992-01-01

    The Australia-Victoria (AV) isolate of Newcastle disease virus (NDV) induces fusion from within but not fusion from without. L1, a neuraminidase (NA)-deficient virus derived from AV, has the opposite fusion phenotype from the wild-type virus. It fails to induce the former mode of fusion, but has gained a limited ability to promote the latter. Monoclonal antibodies to antigenic site 23 on the hemagglutinin-neuraminidase (HN) glycoprotein have previously been shown to select variants of the AV isolate that have altered NA activity or receptor-binding affinity. By using an antibody to this site, variants of L1 have been selected. Three of the variants have gained an increased affinity for sialic acid-containing receptors, as evidenced by the resistance of their hemagglutinating activity to the presence of reduced amounts of sialic acid on the surface of chicken erythrocytes. All four variants still have very low levels of NA activity, comparable to that of the parent virus, L1. The alteration in receptor-binding affinity results in a decreased potential for elution from cellular receptors and correlates with an increased ability to promote both modes of fusion. A single amino acid substitution in the HN protein of each variant, responsible for its escape from neutralization, has been identified. These studies identify two HN residues, 193 and 203, at which monoclonal antibody-selected substitution influences the receptor recognition properties of NDV and may influence its ability to promote syncytium formation. Images PMID:1404607

  8. Preparation of astatine-labeled monoclonal antibodies

    SciTech Connect

    Milesz, S.; Norseev, Yu.V.; Szucs, Z. |

    1995-07-01

    In the cationic state astatine forms a stable complex with diethylenetriaminepentaacetic acid. Thanks to this complex, astatine can be bound to monoclonal antibodies of the RYa{sub 1} type. The most favorable conditions for preparing astatine-labeled antibodies are established. The chromatographic analysis and electromigration experiments showed that astatine is firmly linked to a biomolecule in vitro and it did not escape from labeled monoclonal antibodies even under treatment with such highly effective astatine-complexing agent as thiourea. The immune activity of astatine-labeled antibodies did not change even after 20 h.

  9. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  10. Monoclonal antibody technologies and rapid detection assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  11. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Cancer.gov

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  12. Adverse events to monoclonal antibodies used for cancer therapy

    PubMed Central

    Baldo, Brian A

    2013-01-01

    Fifteen monoclonal antibodies (mAbs) are currently registered and approved for the treatment of a range of different cancers. These mAbs are specific for a limited number of targets (9 in all). Four of these molecules are indeed directed against the B-lymphocyte antigen CD20; 3 against human epidermal growth factor receptor 2 (HER2 or ErbB2), 2 against the epidermal growth factor receptor (EGFR), and 1 each against epithelial cell adhesion molecule (EpCAM), CD30, CD52, vascular endothelial growth factor (VEGF), tumor necrosis factor (ligand) superfamily, member 11 (TNFSF11, best known as RANKL), and cytotoxic T lymphocyte-associated protein 4 (CTLA4). Collectively, the mAbs provoke a wide variety of systemic and cutaneous adverse events including the full range of true hypersensitivities: Type I immediate reactions (anaphylaxis, urticaria); Type II reactions (immune thrombocytopenia, neutopenia, hemolytic anemia); Type III responses (vasculitis, serum sickness; some pulmonary adverse events); and Type IV delayed mucocutaneous reactions as well as infusion reactions/cytokine release syndrome (IRs/CRS), tumor lysis syndrome (TLS), progressive multifocal leukoencephalopathy (PML) and cardiac events. Although the term “hypersensitivity” is widely used, no common definition has been adopted within and between disciplines and the requirement of an immunological basis for a true hypersensitivity reaction is sometimes overlooked. Consequently, some drug-induced adverse events are sometimes incorrectly described as “hypersensitivities” while others that should be described are not. PMID:24251081

  13. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  14. Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP.

    PubMed

    Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Ebola virus is the etiological agent of a severe hemorrhagic fever with a high mortality rate. As the only protein exposed on the surface of viral particles, the spike glycoprotein GP is the unique target for neutralizing monoclonal antibodies. In this study, we demonstrate the strong neutralization capacity of the monoclonal antibody #3327 and characterize its activity. GP residues that are required for recognition and neutralization were found to be located both in the internal fusion loop and in the receptor-binding domain. Analysis of Ebola virus entry in the presence of #3327 allows us to hypothesize that this antibody binds to the virus particle before internalization and endosomal processing of GP and likely prevents the final viral fusion step. Importantly, #3327 is able to block entry of virions bearing GP that contain the Q508 escape mutation common to a number of virus-neutralizing antibodies, and therefore provides future perspectives for treatment strategies against Ebola virus infection.

  15. [Current situations and the future prospect of monoclonal antibody products].

    PubMed

    Yamaguchi, Teruhide

    2014-01-01

    Monoclonal antibody products and monoclonal antibody-based biopharmaceuticals have shown considerable effectiveness in the treatment for variety of diseases; cancer, auto-immune/auto-inflammation diseases and so on. Significant advance in monoclonal antibody products for cancer treatments was made with antibody-drug conjugates (ADC), and antibodies for blockade of immune checkpoints. Already 3 ADCs and 2 anti-immune-checkpoint antibodies products have been approved, and these monoclonal antibody-related product pipelines reach over 30. On the other hand, EU approved first monoclonal-antibody biosimilar, RemsimaTM (infliximab), suggesting that other monoclonal-antibody biosmilars will follow to the market. In this paper, several new issues about monoclonal antibody products will be discussed. PMID:25707201

  16. A polymerase chain reaction assay for non-random X chromosome inactivation identifies monoclonal endometrial cancers and precancers.

    PubMed

    Mutter, G L; Chaponot, M L; Fletcher, J A

    1995-02-01

    We hypothesize that endometrial carcinoma and their precursors share a monoclonal growth pattern and tested this thesis with archival paraffin-embedded tissues using a polymerase chain reaction-based assay for non-random X chromosome inactivation. Of the 10 well-differentiated endometrial adenocarcinoma cases with heterozygous markers (HUMARA, X-linked androgen receptor gene), 9 had skewed X inactivation consistent with a monoclonal process, and one contained a structurally altered HUMARA gene. X inactivation skewing similar to that of the tumor was seen in matched control polyclonal tissues of 4 (of 9) cases, caused by the small number of endometrial stem cells at the time of embryonic X inactivation. When the polymerase chain reaction assay was applied to four potential endometrial precancers (atypical endometrial hyperplasia) and matched control tissues, two were inconclusive, and two were found to be monoclonal. We conclude that 1) it is essential to include polyclonal control tissues in X inactivation analyses to determine whether skewing is a specific indicator of monoclonality; and 2) endometrial adenocarcinomas and some putative precancers, atypical endometrial hyperplasia, are monoclonal.

  17. Monoclonal Antibodies to Plant Growth Regulators

    PubMed Central

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  18. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  19. Innovative Monoclonal Antibody Therapies in Multiple Sclerosis

    PubMed Central

    Kieseier, Bernd C.

    2008-01-01

    The recent years have witnessed great efforts in establishing new therapeutic options for multiple sclerosis (MS), especially for relapsing–remitting disease courses. In particular, the application of monoclonal antibodies provide innovative approaches allowing for blocking or depleting specific molecular targets, which are of interest in the pathogenesis of MS. While natalizumab received approval by the US Food and Drug Administration and the European Medicines Agency in 2006 as the first monoclonal antibody in MS therapy, rituximab, alemtuzumab, and daclizumab were successfully tested for relapsing-remitting MS in small cohorts in the meantime. Here, we review the data available from these recent phase II trials and at the same time critically discuss possible pitfalls which may be relevant for clinical practice. The results of these studies may not only broaden our therapeutic options in the near future, but also provide new insights into disease pathogenesis. PMID:21180564

  20. Monoclonal antibodies as blood grouping reagents.

    PubMed

    Voak, D

    1990-04-01

    The large volume requirements for high quality ABO and Rh(D) typing reagents can now be supplied by selected monoclonal antibodies. Superior anti-A and anti-B monoclonal reagents can be prepared, from blends of at least two antibodies, to optimize the intensity of agglutination for slide tests and the potency for the detection of the weaker sub-groups, including Ax and Bw, by tube techniques. New quality control steps have been described for some highly sensitive anti-A/anti-B antibodies to avoid the detection of traces of A on B cells or traces of B on A1 cells, which results from the non-specific activity of A and B transferases. Excellent anti-A,B reagents may also be made by blends of at least two antibodies to optimize both A and B reactions, but the need for their continued use is now debatable. The development of high titre IgM monoclonal anti-D reagents offers simple rapid saline Rh(D) typing of both patients and donors, but they cannot reliably detect weak D (Du) and some D variants, e.g. the epitopes on D category VI cells. However, this can be achieved by blending an IgM anti-D with IgG (polyclonal) anti-D which can detect these types after conversion of negative saline tests to an antiglobulin phase. In addition, high grade Du, D categories and variants can be reliably detected (for typing donors) by selected monoclonal IgM and IgG anti-Ds by use of suitably enhanced tests without the use of an antiglobulin test.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  2. Chemoenzymatic glyco-engineering of monoclonal antibodies

    PubMed Central

    Giddens, John P.; Wang, Lai-Xi

    2016-01-01

    Summary Monoclonal antibodies (mAbs) are an important class of therapeutic glycoproteins widely used for the treatment of cancer, inflammation, and infectious diseases. Compelling data have shown that the presence and fine structures of the conserved N-glycans at the Fc domain can profoundly affect the effector functions of antibodies. However, mAbs are usually produced as mixtures of Fc glycoforms and the control of glycosylation to a favorable, homogeneous status in various host expression systems is still a challenging task. In this chapter, we describe a detailed procedure of chemoenzymatic glyco-engineering of monoclonal antibodies, using rituximab (a therapeutic monoclonal antibody) as a model system. The protocol includes the deglycosylation of a mAb by an endoglycosidase (such as wild type EndoS) to remove the heterogeneous Fc N-glycans, leaving only the innermost GlcNAc or the core-fucosylated GlcNAc at the glycosylation site. Then the deglycosylated IgG serves as an acceptor for an endoglycosidase-catalyzed transglycosylation to add a desired N-glycan to the GlcNAc acceptor to reconstitute a defined, homogeneous natural glycoform of IgG, using a glycosynthase mutant as the enzyme and activated glycan oxazoline as the donor substrate. A semi-synthesis of sialylated and asialylated biantennary N-glycan oxazolines is also described. This detailed procedure can be used for the Fc glycosylation remodeling of other mAbs to provide homogeneous Fc glycoforms for various applications. PMID:26082235

  3. Monoclonal yeast killer toxin-like candidacidal anti-idiotypic antibodies.

    PubMed Central

    Polonelli, L; Séguy, N; Conti, S; Gerloni, M; Bertolotti, D; Cantelli, C; Magliani, W; Cailliez, J C

    1997-01-01

    Rat monoclonal yeast killer toxin (KT)-like immunoglobulin M (IgM) anti-idiotypic antibodies (KT-IdAbs) were produced by idiotypic vaccination with a mouse monoclonal antibody (MAb; MAb KT4) that neutralized a Pichia anomala KT characterized by a wide spectrum of antimicrobial activity. The characteristics of the KT-IdAbs were demonstrated by their capacity to compete with the KT to the idiotype of MAb KT4 and to interact with putative KT cell wall receptors (KTRs) of sensitive Candida albicans cells. The internal-image properties of KT-IdAbs were proven by their killer activity against KT-sensitive yeasts. This lethal effect was abolished by prior adsorption of KT-IdAbs with MAb KT4. These findings stressed the potential importance of antibody-mediated immunoprotection against candidiasis and suggested a feasible experimental approach for producing antimicrobial receptor antibodies without purifying the receptor. KT-IdAbs might represent the basis for producing engineered derivatives with a high potential for effective therapeutic antifungal activity. PMID:9067647

  4. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    PubMed Central

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  5. Taxonomic investigation of Legionella pneumophila using monoclonal antibodies.

    PubMed

    Brindle, R J; Bryant, T N; Draper, P W

    1989-03-01

    A panel of 19 monoclonal antibodies was used to produce patterns of immunofluorescent staining of 468 isolates of Legionella pneumophila. Twelve monoclonal antibodies were selected that divided L. pneumophila into 17 phenons which, in the majority of cases, conform to serogroup divisions. These phenons are more easily defined than the present serogroups, and isolates can be placed in them with little ambiguity. The standardized set of monoclonal antibodies was also used to define the subgroups of serogroup 1. PMID:2654183

  6. Ocular manifestations of monoclonal copper-binding immunoglobulin.

    PubMed

    Shah, Sejal; Espana, Edgar M; Margo, Curtis E

    2014-01-01

    The dense accumulation of copper in Descemet membrane and lens capsule is the characteristic manifestation of a circulating monoclonal antibody with strong affinity for copper. The overproduction of this monoclonal immunoglobulin may be associated with either multiple myeloma or a benign monoclonal gammopathy. Despite prolonged exposure to elevated serum copper, no other tissues in the body are adversely affected by this redox metal. We describe the clinical and pathological findings in a 46-year-old woman with this disorder.

  7. Acute treatment with XMetA activates hepatic insulin receptors and lowers blood glucose in normal mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose tran...

  8. Development and characterisation of monoclonal antibodies reactive with porcine CSF1R (CD115).

    PubMed

    Moffat, L; Rothwell, L; Garcia-Morales, C; Sauter, K A; Kapetanovic, R; Gow, D J; Hume, D A

    2014-11-01

    Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system. CSF1, alongside a second ligand, interleukin-34 (IL-34), acts by binding to a cell surface receptor (CSF1R). We previously cloned and expressed pig CSF1 and IL-34. Here we produced a pig CSF1R-Ig+pFUSE Fc fusion protein and used it as an immunogen to produce three monoclonal antibodies (ROS8G11, ROS3A5 and ROS3B10) targeted against porcine CSF1R. Specific binding of each monoclonal antibody was confirmed by ELISA, Western blot, flow cytometry and immunocytochemistry. The antibodies did not block CSF1 signalling. The surface expression of CSF1R in pig peripheral blood was restricted to CD14-positive monocytes and was also detected on lung macrophages. These antibodies provided an opportunity to investigate the increase of available CSF1R during pig BMDM differentiation. The new monoclonal antibodies provide useful reagents to support the study of monocyte and macrophage biology in the pig.

  9. The Role of Monoclonal Antibodies in the Management of Leukemia

    PubMed Central

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra

    2010-01-01

    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  10. Monoclonal gammopathy-associated pure red cell aplasia.

    PubMed

    Korde, Neha; Zhang, Yong; Loeliger, Kelsey; Poon, Andrea; Simakova, Olga; Zingone, Adriana; Costello, Rene; Childs, Richard; Noel, Pierre; Silver, Samuel; Kwok, Mary; Mo, Clifton; Young, Neal; Landgren, Ola; Sloand, Elaine; Maric, Irina

    2016-06-01

    Pure red cell aplasia (PRCA) is a rare disorder characterized by inhibition of erythroid precursors in the bone marrow and normochromic, normocytic anaemia with reticulocytopenia. Among 51 PRCA patients, we identified 12 (24%) patients having monoclonal gammopathy, monoclonal gammopathy of undetermined significance or smouldering multiple myeloma, with presence of monoclonal protein or abnormal serum free light chains and atypical bone marrow features of clonal plasmacytosis, hypercellularity and fibrosis. Thus far, three patients treated with anti-myeloma based therapeutics have responded with reticulocyte recovery and clinical transfusion independence, suggesting plasma cells play a key role in the pathogenesis of this specific monoclonal gammopathy-associated PRCA. PMID:26999424

  11. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy.

    PubMed

    Ahmed, Mahiuddin; Cheung, Nai-Kong V

    2014-01-21

    Ganglioside GD2 is highly expressed on neuroectoderm-derived tumors and sarcomas, including neuroblastoma, retinoblastoma, melanoma, small cell lung cancer, brain tumors, osteosarcoma, rhabdomyosarcoma, Ewing's sarcoma in children and adolescents, as well as liposarcoma, fibrosarcoma, leiomyosarcoma and other soft tissue sarcomas in adults. Since GD2 expression in normal tissues is restricted to the brain, which is inaccessible to circulating antibodies, and in selected peripheral nerves and melanocytes, it was deemed a suitable target for systemic tumor immunotherapy. Anti-GD2 antibodies have been actively tested in clinical trials for neuroblastoma for over the past two decades, with proven safety and efficacy. The main limitations have been acute pain toxicity associated with GD2 expression on peripheral nerve fibers and the inability of antibodies to treat bulky tumor. Several strategies have been developed to reduce pain toxicity, including bypassing complement activation, using blocking antibodies, or targeting of O-acetyl-GD2 derivative that is not expressed on peripheral nerves. To enhance anti-tumor efficacy, anti-GD2 monoclonal antibodies and fragments have been engineered into immunocytokines, immunotoxins, antibody drug conjugates, radiolabeled antibodies, targeted nanoparticles, T-cell engaging bispecific antibodies, and chimeric antigen receptors. The challenges of these approaches will be reviewed to build a perspective for next generation anti-GD2 therapeutics in cancer therapy.

  12. Tregalizumab – A Monoclonal Antibody to Target Regulatory T Cells

    PubMed Central

    König, Martin; Rharbaoui, Faiza; Aigner, Silke; Dälken, Benjamin; Schüttrumpf, Jörg

    2016-01-01

    Regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells, which are essential for the maintenance of immunological tolerance. The absence or dysfunction of Tregs can lead to autoimmunity and allergies. The restoration of functional Tregs and/or Treg cell numbers represents a novel and attractive approach for the treatment of autoimmune diseases, e.g., rheumatoid arthritis (RA). The CD4 cell surface receptor is a target for modulation of T cell function. Monoclonal antibodies (mAbs) against CD4 have previously been tested for the treatment of autoimmune diseases, including RA. Furthermore, in model systems, anti-CD4 antibodies are able to induce tolerance and mediate immunomodulatory effects through a variety of mechanisms. Despite the availability of innovative and effective therapies for RA, many patients still have persistently active disease or experience adverse events that can limit use. A growing body of evidence suggests that Treg modulation could offer a new therapeutic strategy in RA and other autoimmune disorders. Here, we describe tregalizumab (BT-061), which is a novel, non-depleting IgG1 mAb that binds to a unique epitope of CD4. Tregalizumab represents the first humanized anti-CD4 mAb that selectively induces Treg activation. PMID:26834751

  13. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications

    PubMed Central

    Vacchelli, Erika; Pol, Jonathan; Bloy, Norma; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Galon, Jérôme; Marabelle, Aurélien; Kohrt, Holbrook; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications. PMID:25949870

  14. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  15. Identification of human plasma cells with a lamprey monoclonal antibody

    PubMed Central

    Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho; Tong, Jiefei; Li, Zhihua; Shi, Mengyao; Davani, Dariush; Parsons, Marion; Khan, Srijit; Zhan, Wei; Kyu, Shuya; Grunebaum, Eyal; Campisi, Paolo; Propst, Evan J.; Jaye, David L.; Trudel, Suzanne; Moran, Michael F.; Ostrowski, Mario; Herrin, Brantley R.; Lee, F. Eun-Hyung; Sanz, Ignacio; Cooper, Max D.; Ehrhardt, Götz R.A.

    2016-01-01

    Ab-producing plasma cells (PCs) serve as key participants in countering pathogenic challenges as well as being contributors to autoimmune and malignant disorders. Thus far, only a limited number of PC–specific markers have been identified. The characterization of the unique variable lymphocyte receptor (VLR) Abs that are made by evolutionarily distant jawless vertebrates prompted us to investigate whether VLR Abs could detect novel PC antigens that have not been recognized by conventional Abs. Here, we describe a monoclonal lamprey Ab, VLRB MM3, that was raised against primary multiple myeloma cells. VLRB MM3 recognizes a unique epitope of the CD38 ectoenzyme that is present on plasmablasts and PCs from healthy individuals and on most, but not all, multiple myelomas. Binding by the VLRB MM3 Ab coincides with CD38 dimerization and NAD glycohydrolase activity. Our data demonstrate that the lamprey VLRB MM3 Ab is a unique reagent for the identification of plasmablasts and PCs, with potential applications in the diagnosis and therapeutic intervention of PC or autoimmune disorders. PMID:27152361

  16. Identification of the Integrin VLA-2 as a Receptor for Echovirus 1

    NASA Astrophysics Data System (ADS)

    Bergelson, Jeffrey M.; Shepley, Michael P.; Chan, Bosco M. C.; Hemler, Martin E.; Finberg, Robert W.

    1992-03-01

    Cell surface receptors for echovirus, a common human pathogen, were identified with monoclonal antibodies that protected susceptible cells from infection with echovirus 1. These monoclonal antibodies, which prevented virus attachment to specific receptor sites, recognized the α and β subunits of the integrin VLA-2 (α_2β_1), a receptor for collagen and laminin. RD rhabdomyosarcoma cells expressed little VLA-2, did not bind to 35S-labeled virus, and resisted infection until transfected with complementary DNA encoding the α_2 subunit of VLA-2. Thus, integrins, adhesion receptors important in interactions between cells and with the extracellular matrix, can mediate virus attachment and infection.

  17. 5th Annual Monoclonal Antibodies Conference

    PubMed Central

    2009-01-01

    The conference, which was organized by Visiongain and held at the BSG Conference Center in London, provided an excellent opportunity for participants to exchange views on the development, production and marketing of therapeutic antibodies, and discuss the current business environment. The conference included numerous interactive panel and group discussions on topics such as isotyping for therapeutic antibodies (panel chair: Nick Pullen, Pfizer), prospects for fully human monoclonal antibodies (chair: Christian Rohlff, Oxford BioTherapeutics), perspectives on antibody manufacturing and development (chair: Bo Kara, Avecia), market impact and post-marketing issues (chair: Keith Rodgers, Bodiam Consulting) and angiogenesis inhibitors (chair: David Blakey, AstraZeneca). PMID:20073132

  18. A novel monoclonal antibody specific for cocaine.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Shigetoh, Nobuyuki

    2013-08-01

    Detection systems for the illegal drug cocaine need to have a high sensitivity and specificity for cocaine and to be relatively easy to use. In the current study, a monoclonal antibody (MAb) with a high specificity for cocaine was produced. Enzyme-linked immunosorbent assay and fluorescence quenching immunoassay were used to screen the hybridomas. The MAb S27Y (IgG1) was shown to be sensitive and specific for cocaine and quenched fluorescence. Thus, S27Y has the potential to be used in screening assays for the rapid and sensitive detection of cocaine. PMID:23909419

  19. Anaphylaxis to chemotherapy and monoclonal antibodies.

    PubMed

    Castells, Mariana C

    2015-05-01

    Hypersensitivity reactions are increasingly prevalent, although underrecognized and underreported. Platins induce immunoglobulin E-mediated sensitization; taxenes and some monoclonal antibodies can induce reactions at first exposure. Severe hypersensitivity can preclude first-line therapy. Tryptase level at the time of a reaction is a useful diagnostic tool. Skin testing provides a specific diagnosis. Newer tests are promising diagnostic tools to help identify patients at risk before first exposure. Safe management includes rapid drug desensitization. This review provides information regarding the scope of hypersensitivity and anaphylactic reactions induced by chemotherapy and biological drugs, as well as diagnosis, management, and treatment options. PMID:25841555

  20. Therapeutic antibodies against CGRP or its receptor

    PubMed Central

    Bigal, Marcelo E; Walter, Sarah; Rapoport, Alan M

    2015-01-01

    CGRP is an extensively studied neuropeptide that has been implicated in the pathophysiology of migraine. While a number of small molecule antagonists against the CGRP receptor have demonstrated that targeting this pathway is a valid and effective way of treating migraine, off-target hepatoxicity and formulation issues have hampered the development for regulatory approval of any therapeutic in this class. The development of monoclonal antibodies to CGRP or its receptor as therapeutic agents has allowed this pathway to be re-investigated. Herein we review why CGRP is an ideal target for the prevention of migraine and describe four monoclonal antibodies against either CGRP or its receptor that are in clinical development for the treatment of both episodic and chronic migraine. We describe what has been publically disclosed about their clinical trials and future clinical development plans. PMID:25614243

  1. Kinetics of intralymphatically delivered monoclonal antibodies

    SciTech Connect

    Wahl, R.L.; Geatti, O.; Liebert, M.; Beers, B.; Jackson, G.; Laino, L.; Kronberg, S.; Wilson, B.S.; Beierwaltes, W.H.

    1985-05-01

    Radiolabeled monoclonal antibody (MoAb) administration subcutaneously (sq), so that preferential uptake is to the lymphatics, holds significant promise for the detection of lymph node metastases. Only limited information is available about clearance rates of intralymphatically administered MoAbs. I-131 labeled intact IgG (225.28S), F(ab's)2 (225.28S) or IgM (FT162) were administered sq to anesthetized Balb/C mice. Eight mice were studied with each MoAb, 4 with a foot-pad injection, 4 with an anterior abdominal injection. Gamma camera images were collected into a computer, over the first 6 hrs after injection with the animals anesthetized and immobile. Animals were then allowed to move about freely. Additional images were then acquired out to 48 hrs. Regions of interest wre selected over the injection site and the kinetics of antibody egress determined. Clearance rates from local sq injection sites are influenced by motion and somewhat by location. The class and fragment status of the MoAb appear relatively less important in determining clearance rates from sq injections than they are in determining whole-body clearance after iv injections. Additional studies using Fab fragments and additional monoclonals will be useful in extending these observations.

  2. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    PubMed

    Rajkumar, S Vincent; Lacy, Martha Q; Kyle, Robert A

    2007-09-01

    Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic disorders characterized by monoclonal plasma cell proliferation in the bone marrow in the absence of end-organ damage. Updated diagnostic criteria for these disorders, risk-stratification models to determine prognosis, and the current management of these two entities are discussed in this review. PMID:17367905

  3. Monoclonal antibodies and method for detecting dioxins and dibenzofurans

    DOEpatents

    Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.

    1989-01-01

    Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.

  4. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies

    PubMed Central

    Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J.

    2016-01-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations. PMID:27672407

  5. Structural Insights into the Neutralization Properties of the Fully Human, Anti-interferon Monoclonal Antibody Sifalimumab.

    PubMed

    Oganesyan, Vaheh; Peng, Li; Woods, Robert M; Wu, Herren; Dall'Acqua, William F

    2015-06-12

    We report the three-dimensional structure of human interferon α-2A (IFN-α2A) bound to the Fab fragment of a therapeutic monoclonal antibody (sifalimumab; IgG1/κ). The structure of the corresponding complex was solved at a resolution of 3.0 Å using molecular replacement and constitutes the first reported structure of a human type I IFN bound to a therapeutic antibody. This study revealed the major contribution made by the first complementarity-determining region in each of sifalimumab light and heavy chains. These data also provided the molecular basis for sifalimumab mechanism of action. We propose that its interferon-neutralizing properties are the result of direct competition for IFN-α2A binding to the IFN receptor subunit 1 (IFNAR1) and do not involve inhibiting IFN-α2A binding to the IFN receptor subunit 2 (IFNAR2). PMID:25925951

  6. Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts

    PubMed Central

    Chamorro, Sonia; Vela, Maria; Franco-Villanueva, Ana; Carramolino, Laura; Gutiérrez, Julio; Gómez, Lucio; Lozano, María; Salvador, Beatriz; García-Gallo, Mónica; Martínez-A, Carlos; Kremer, Leonor

    2014-01-01

    Tumor expression of certain chemokine receptors is associated with resistance to apoptosis, migration, invasiveness and metastasis. Because CCR9 chemokine receptor expression is very restricted in healthy tissue, whereas it is present in tumors of distinct origins including leukemias, melanomas, prostate and ovary carcinomas, it can be considered a suitable candidate for target-directed therapy. Here, we report the generation and characterization of 91R, a mouse anti-human CCR9 IgG2b monoclonal antibody that recognizes an epitope within the CCR9 N-terminal domain. This antibody inhibits the growth of subcutaneous xenografts from human acute T lymphoblastic leukemia MOLT-4 cells in immunodeficient Rag2−/− mice. Tumor size in 91R-treated mice was reduced by 85% compared with isotype-matched antibody-treated controls. Tumor reduction in 91R-treated mice was concomitant with an increase in the apoptotic cell fraction and tumor necrotic areas, as well as a decrease in the fraction of proliferating cells and in tumor vascularization. In the presence of complement or murine natural killer cells, 91R promoted in vitro lysis of MOLT-4 leukemia cells, indicating that this antibody might eliminate tumor cells via complement- and cell-dependent cytotoxicity. The results show the potential of the 91R monoclonal antibody as a therapeutic agent for treatment of CCR9-expressing tumors. PMID:24870448

  7. Building better monoclonal antibody-based therapeutics

    PubMed Central

    Weiner, George J.

    2015-01-01

    For 20 years, monoclonal antibodies (mAbs) have been a standard component of cancer therapy, yet there is still much room for improvement. Efforts continue to build better cancer therapeutics based on mAbs. Anti-cancer mAbs function via a variety of mechanisms including directly targeting the malignant cells, modifying the host response to the malignant cells, delivering cytotoxic moieties to the malignant cells or retargeting cellular immunity towards the malignant cells. Characteristics of mAbs that affect their efficacy include antigen specificity, overall structure, affinity for the target antigen and how a mAb component is incorporated into a construct that can trigger target cell death. This article reviews the various approaches to using mAb-based therapeutics to treat cancer, the strategies used to take advantage of the unique potential of each approach, and provides examples of current mAb-based treatments. PMID:25998715

  8. The birth pangs of monoclonal antibody therapeutics

    PubMed Central

    2012-01-01

    This paper examines the development and termination of nebacumab (Centoxin®), a human IgM monoclonal antibody (mAb) drug frequently cited as one of the notable failures of the early biopharmaceutical industry. The non-approval of Centoxin in the United States in 1992 generated major concerns at the time about the future viability of any mAb therapeutics. For Centocor, the biotechnology company that developed Centoxin, the drug posed formidable challenges in terms of safety, clinical efficacy, patient selection, the overall economic costs of health care, as well as financial backing. Indeed, Centocor's development of the drug brought it to the brink of bankruptcy. This article shows how many of the experiences learned with Centoxin paved the way for the current successes in therapeutic mAb development. PMID:22531443

  9. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  10. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  11. A humanized monoclonal antibody targeting Staphylococcus aureus.

    PubMed

    Patti, Joseph M

    2004-12-01

    This current presentation describes the in vitro and in vivo characterization of Aurexis (tefibazumab), a humanized monoclonal antibody that exhibits a high affinity and specificity and for the Staphylococcus aureus MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) protein ClfA. Aurexis inhibited ClfA binding to human fibrinogen, and enhanced the opsonophagocytic uptake of ClfA-coated beads. Preclinical in vivo testing revealed that a single administration of Aurexis significantly protected against an IV challenge with a methicillin resistant S. aureus (MRSA) strain in murine septicemia and rabbit infective endocarditis (IE) models. Safety and pharmacokinetic data from a 19-patient phase I study support continued evaluation of Aurexis in phase II studies. PMID:15576200

  12. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  13. Multiple Active States and Oligomerization of CCR5 Revealed by Functional Properties of Monoclonal AntibodiesV⃞

    PubMed Central

    Blanpain, Cédric; Vanderwinden, Jean-Marie; Cihak, Josef; Wittamer, Valérie; Le Poul, Emmanuel; Issafras, Hassan; Stangassinger, Manfred; Vassart, Gilbert; Marullo, Stefano; Schloō̈ndorff, Detlef; Parmentier, Marc; Mack, Matthias

    2002-01-01

    CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains. MC-1 and MC-6 inhibited regulated on activation normal T cell expressed and secreted (RANTES), macrophage inflammatory polypeptide-1β, and Env binding, whereas MC-5 inhibited macrophage inflammatory polypeptide-1β and Env but not RANTES binding. MC-6 induced signaling in different functional assays, suggesting that this monoclonal antibody stabilizes an active conformation of CCR5. Flow cytometry and real-time confocal microscopy showed that MC-1 promoted strong CCR5 endocytosis. MC-1 but not its monovalent isoforms induced an increase in the transfer of energy between CCR5 molecules. Also, its monovalent isoforms bound efficiently, but did not internalize the receptor. In contrast, MC-4 did not prevent RANTES binding or subsequent signaling, but inhibited its ability to promote CCR5 internalization. These results suggest the existence of multiple active conformations of CCR5 and indicate that CCR5 oligomers are involved in an internalization process that is distinct from that induced by the receptor's agonists. PMID:11854425

  14. Characterization of monoclonal antibodies against Naja naja oxiana neurotoxin I.

    PubMed

    Stiles, B G; Sexton, F W; Guest, S B; Olson, M A; Hack, D C

    1994-10-01

    Seven monoclonal antibodies (mAbs) were developed against neurotoxin I (NT-1), a protein from central Asian cobra (Naja naja oxiana) venom which binds specifically to nicotinic acetylcholine receptor (AchR). All of the mAbs cross-reacted with another long-chain post-synaptic neurotoxin, Bungarus multicinctus alpha-bungarotoxin (alpha-BT), but not Naja naja kaouthia alpha-cobratoxin, in an enzyme-linked immunosorbent assay (e.l.i.s.a.). Short-chain post-synaptic neurotoxins like Naja naja atra cobrotoxin, Laticauda semifasciata erabutoxin b, or N. n. oxiana neurotoxin II did not cross-react with the NT-1 mAbs, but an antigen(s) found in Dendroaspis polylepis, Acanthophis antarcticus and Pseudechis australis venoms was immunoreactive. The e.l.i.s.a. readings for dithiothreitol-reduced NT-1 and NT-1 mAbs ranged from 13 to 27% of those for native toxin but reduced alpha-BT was not immunoreactive. Synthetic NT-1 peptides were used in epitope-mapping studies and two, non-contiguous regions (Cys15-Tyr23 and Lys25-Gly33 or Pro17-Lys25 and Asp29-Lys37) were recognized by the NT-1 mAbs. The NT-1 mAbs individually inhibited 31-71% of alpha-BT binding to AchR in vitro and afforded a slight protective effect in vivo with a toxin: antibody mole ratio of 1:1.5. This report is the first to describe mAbs which recognize and protect against a heterologous, long-chain, post-synaptic neurotoxin from snake venom.

  15. Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

    PubMed Central

    Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Yamashita, Akifumi; Kawashita, Norihito; Du, Anariwa; Sasaki, Tadahiro; Nishimura, Mitsuhiro; Misaki, Ryo; Kuhara, Motoki; Boonsathorn, Naphatsawan; Fujiyama, Kazuhito; Okuno, Yoshinobu; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2013-01-01

    Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. PMID:23408886

  16. Monoclonal gammopathy associated membranous glomerulonephritis: A rare entity

    PubMed Central

    Gowda, K. K.; Joshi, K.; Ramachandran, R.; Nada, R.

    2015-01-01

    A 40-year-old male presented with nephrotic syndrome. Light microscopic analysis of the renal biopsy showed thickening of the glomerular capillary wall. Immunofluorescence examination revealed granular deposition of monoclonal immunoglobulin (Ig) G3-kappa and complement C3 along the glomerular basement membrane. Electron microscopy showed subepithelial electron dense deposits, thus confirming membranous glomerulonephritis (MGN) with monoclonal gammopathy. MGN with monoclonal gammopathy is an extremely rare but distinctive entity. This patient was treated with a combination of bortezomib, thalidomide and dexamethasone and showed partial remission of his nephrotic state and dysproteinemia. PMID:25684873

  17. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies

    PubMed Central

    Hutchinson, Alistair P.; Nicklin, Stephen

    2015-01-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  18. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  19. Monoclonal Antibodies Targeting Tumor Growth | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Nanobiology Program, Protein Interaction Group is seeking parties to license or co-develop, evaluate, or commercialize monoclonal antibodies against the insulin-like growth factor for the treatment of cancer.

  20. DEVELOPMENT OF MONOCLONAL ANTIBODIES AGAINST FATHEAD MINNOW (PIMEPHALES PROMELAS) VITELLOGENIN

    EPA Science Inventory

    We have obtained a panel of monoclonal antibodies directed against fathead minnow vitellogenin (Vtg) for use in sensitive ELISAs to quantify the response of exposure in vivo to estrogen or estrogen mimics.

  1. Recent developments in receptor tyrosine kinases targeted anticancer therapy

    PubMed Central

    Raval, Samir H.; Singh, Ratn D.; Joshi, Dilip V.; Patel, Hitesh B.; Mody, Shailesh K.

    2016-01-01

    Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers. PMID:27051190

  2. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies.

    PubMed

    Smith, Scott A; Crowe, James E

    2015-02-01

    The human hybridoma technique offers an important approach for isolation of human monoclonal antibodies. A diversity of approaches can be used with varying success. Recent technical advances in expanding the starting number of human antigen-specific B cells, improving fusion efficiency, and isolating new myeloma partners and new cell cloning methods have enabled the development of protocols that make the isolation of human monoclonal antibodies from blood samples feasible. Undoubtedly, additional innovations that could improve efficiency are possible.

  3. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  4. Understanding the Cellular Function of TRPV2 Channel through Generation of Specific Monoclonal Antibodies

    PubMed Central

    Cohen, Matthew R.; Huynh, Kevin W.; Cawley, Daniel; Moiseenkova-Bell, Vera Y.

    2013-01-01

    Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques. Polyclonal antibodies against TRPV2 have not been properly validated and characterized, which may contribute to conflicting results regarding its function in the cell. Here, we developed monoclonal antibodies using full-length TRPV2 as an antigen. Extensive characterization of these antibodies and comparison to commonly used commercially available TRPV2 antibodies revealed that while monoclonal antibodies generated in our laboratory were suitable for detection of endogenous TRPV2 by western blot, immunoprecipitation and immunocytochemistry, the commercially available polyclonal antibodies we tested were not able to recognize endogenous TRPV2. We used our newly generated and validated TRPV2 antibodies to determine the effects of insulin-like growth factor 1 (IGF-1) on TRPV2 surface expression in heterologous and endogenous expression systems. We found that IGF-1 had little to no effect on trafficking and plasma membrane expression of TRPV2. Overall, these new TRPV2 monoclonal antibodies served to dispel the controversy of the effects of IGF-1 on TRPV2 plasma membrane expression and will clarify the role TRPV2 plays in cellular function. Furthermore, our strategy of using full-length tetrameric TRP channels may allow for the generation of antibodies against other TRP channels of unclear function. PMID:24392006

  5. Monoclonal antibody therapy for Junin virus infection.

    PubMed

    Zeitlin, Larry; Geisbert, Joan B; Deer, Daniel J; Fenton, Karla A; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N; Kuehne, Ana I; Aman, M Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W

    2016-04-19

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  6. Licensed monoclonal antibodies and associated challenges.

    PubMed

    Khan, Amjad Hayat; Sadroddiny, Esmaeil

    2015-12-23

    Monoclonal antibodies (mAbs) are the leading class of targeted therapeutics and remarkably effective in addressing autoimmune diseases, inflammations, infections, and various types of cancer. Several mAbs approved by US food and drug administration (FDA), are available on the market and a number are pending for approval. Luckily, FDA approved mAbs have played a pivotal role in the treatment and prevention of lethal diseases. However, claiming that licensed mAbs are 100% safe is still debatable, because infections, malignancies, anaphylactoid, and anaphylactic reactions are the more frequently associated adverse events. To evaluate benefit to risk ratio of mAbs, it is important for the clinical research staff or physicians to monitor and follow-up the patients who are receiving mAbs dozes. It is recommended that patients, physicians, biopharmaceutical companies, and researchers should keep in touch to highlight and resolve antibody-based adverse events. In this review we underscore the associated challenges of mAbs, approved by FDA from 2007-2014. PMID:27472864

  7. Monoclonal antibody-based therapy for neuroblastoma.

    PubMed

    Cheung, N K

    2000-11-01

    Dose-intensive combination chemotherapy can improve the clinical response of many pediatric solid tumors. However, cure remains elusive. Stage 4 neuroblastoma stands out as an exception. Part of this success is a result of antibody-based strategies, which include immunomagnetic purging of autologous marrow prior to autologous marrow transplantation and immunotherapy directed at minimal residual disease. It is striking that treatment with monoclonal antibodies, even when targeted at a single antigen, namely, ganglioside G(D2), can affect long-term progression-free survival among these patients. The potential role of the idiotype network in tumor control can be exploited clinically. The genetic engineering of these antibodies into novel forms holds great promise for more specific and effective targeting possibilities, including the delivery of cytokines and cells. Preclinical results are also promising. It is expected that the availability of novel antibodies directed at a broader spectrum of pediatric solid tumors will facilitate the successful application of this approach to more patients. Experience with metastatic neuroblastoma has provided proof of this principle. It is likely that other tumors will fall.

  8. In situ production of therapeutic monoclonal antibodies.

    PubMed

    Suscovich, Todd J; Alter, Galit

    2015-02-01

    The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.

  9. Localization of malignant melanoma using monoclonal antibodies

    SciTech Connect

    Wasselle, J.; Becker, J.; Cruse, W.; Espinosa, C.; Cox, C.; Reintgen, D. )

    1991-04-01

    Finding a screening test to evaluate patients with cancer for occult metastatic disease, as well as imaging all known disease, is a goal of research efforts. Twenty-nine evaluable patients with deeply invasive (stage I), regional nodal (stage II), or systemic (stage III) melanoma underwent imaging by administration of a preparation of the antimelanoma antibody labeled with technetium 99m. Scan results indicated that 28 of 32 confirmed metastatic sites were imaged with this technique (88% sensitivity). Analysis of the individual positive sites revealed that nodal basins and visceral metastases accounted for the highest percentage of metastatic sites imaged, with 14 (88%) of 16 nodal basin metastases and all four visceral metastases being detected through imaging. Occult nodal disease was detected in the iliac nodal chain in two of the 29 patients. The imaging of benign tumors and nodal basins not containing disease accounted for a confirmed false-positive rate of 21%. Three (10%) of the 29 scan results were confirmed to be false-negative. In vivo tumor localization with monoclonal antibodies showed a sensitivity similar to that of other roentgenographic procedures for identifying metastatic disease and was useful in two of three patients in identifying occult iliac nodal disease, a region that is difficult to evaluate with physical examination and other imaging modalities.

  10. Clinical laboratory applications of monoclonal antibodies.

    PubMed Central

    Payne, W J; Marshall, D L; Shockley, R K; Martin, W J

    1988-01-01

    Monoclonal antibody (MAb) technology is well recognized as a significant development for producing specific serologic reagents to a wide variety of antigens in unlimited amounts. These reagents have provided the means for developing a number of highly specific and reproducible immunological assays for rapid and accurate diagnosis of an extensive list of diseases, including infectious diseases. The impact that MAbs have had in characterizing infectious disease pathogens, as well as their current and future applications for use in clinical microbiology laboratories, is reviewed. In addition, the advantages (and disadvantages) of the use of MAbs in a number of immunoassays, such as particle agglutination, radioimmunoassays, enzyme-linked immunosorbent assays, immunofluorescent-antibody assays, and immunohistology, are explored, including the use of these reagents in novel test system assays. Also, nucleic acid probe technology is compared with the use of MAbs from the perspective of their respective applications in the diagnosis of infectious disease agents. There is no question that hybridoma technology has the potential to alter significantly the methods currently used in most clinical microbiology laboratories. PMID:3058298

  11. Preparation of Monoclonal Antibodies Against Bovine Haptoglobin

    PubMed Central

    Wang, Caihong; Gu, Cheng; Guo, Donghua; Gao, Jing; Li, Chunqiu; Liu, Na; Geng, Yufei; Su, Mingjun; Wang, Xinyu

    2014-01-01

    Female, 8-week-old BALB/c mice were immunized with purified recombinant proteins of the predicted immunodominant region of bovine haptoglobin (pirBoHp). Two monoclonal antibodies (MAbs), named 1B3 and 6D6, were prepared by conventional B lymphocyte hybridoma technique. Titers of ascitic fluid and cell culture supernatant of MAb 1B3 were 1:9.6×108 and 1:8.2×104, respectively, and that of MAb 6D6 were 1:4.4×105 and 1:1.0×104, respectively. The subtype of MAbs 1B3 and 6D6 was IgG1κ. In Western blot analysis, MAbs 1B3 and 6D6 could recognize the α-chain of native BoHp from plasma of dairy cows. These data indicated that MAbs 1B3 and 6D6 have a potential use for developing diagnostic reagents of BoHp. PMID:25358005

  12. [Monoclonal antibodies from neurological and neuropsychological perspective].

    PubMed

    Piusińska-Macoch, Renata

    2013-05-01

    The role of monoclonal antibodies and other proinflammatory cytokines in the regulatory processes of the central and peripheral nervous system is not yet fully understood. Clinical studies show that they are involved in the pathogenesis of Alzheimer's disease, Parkinson's disease or other neurodegenerative disabilities with cognitive impairments. Genetic basis of these disorders is still in research. In the past few years it has been shown that increased levels of TNF-alpha and IL-6 in plasma play role in patients with ischemic stroke in the acute phase as well as transient ischemic episodes. Also the negative impact of TNF-alpha has been demonstrated on neck and coronary vessels, including the composition of plaques in the carotid arteries. A few reports indicate the involvement of tumor necrosis factor in such complex processes such as emotions, behavior or personality. Recent studies point to the important role of proinflammatory cytokines in the pathogenesis of sleep disorders such as narcolepsy, cataplexy and sleep paralysis. TNF-alpha can also activate nociceptive pathways, causing the intensity of neuropathic pain. However discloses asymmetric subtypes share TNF-1, TNF-2 in the induction and the maintenance of pain. The phenomenon of complex neurohormonal control mechanism support the proinflammatory cytokines is not fully understood and needs further empirical verification. PMID:23894773

  13. Drug Development of Therapeutic Monoclonal Antibodies.

    PubMed

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics. PMID:27342605

  14. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  15. Monoclonal antibody therapy for Junin virus infection

    PubMed Central

    Zeitlin, Larry; Geisbert, Joan B.; Deer, Daniel J.; Fenton, Karla A.; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H.; Velasco, Jesus; Whaley, Kevin J.; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N.; Kuehne, Ana I.; Aman, M. Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W.

    2016-01-01

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  16. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    PubMed

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies.

  17. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9.

    PubMed

    Stein, Evan A; Raal, Frederick

    2014-01-01

    Published phase I and II trials with two fully human monoclonal antibodies to PCSK9 have provided comprehensive evidence that inhibiting PCSK9 is a very effective method to reduce low-density lipoprotein cholesterol (LDL-C). In all populations studied so far, whether on statins or LDL-C-reducing diet alone, with or without a genetic defect in the LDL receptor, and in subjects intolerant to statins, the LDL-C reductions have been large and consistent. Even the most efficacious statin, rosuvastatin, at its highest dose has not achieved such reductions. The clinical trials have established that monoclonal antibody therapy targeted to PCSK9 may be administered subcutaneously every two or four weeks. Current data suggest these drugs will provide an effective therapeutic option for LDL-C reduction and that, if proven safe in phase III trials, they will be as important to LDL-C control, and likely to cardiovascular disease risk reduction, as statins have been over the past three decades. PMID:24422577

  18. [Trastuzumab - a monoclonal antibody - and dendrimers in a targeted therapy for breast cancer].

    PubMed

    Marcinkowska, Monika; Stańczyk, Maciej; Klajnert-Maculewicz, Barbara

    2015-01-01

    Breast cancer is the most frequently occurring cancer in women. It has been confirmed that approximately 30% of patients have overexpression of human epidermal growth factor 2 (HER2) on the surface of tumor cells. Trastuzumab - a recombinant, humanized monoclonal antibody - is directed against this receptor. Its use in traditional chemotherapy (with anthracyclines or taxanes) causes an increase of therapy efficiency. However, the systemic toxicity of the anticancer drugs is still a serious problem. Therefore, new solutions are sought, especially in the field of selective drug transport to tumor cells. Dendrimers are composed of a core and branches. They are the bestknown group of nanoparticles. A lot of publications have shown that they can be used as carriers of various types of molecules, including anticancer drugs. The branched structure provides effective protection against premature release of the drug into the circulatory system. It gives a chance to reduce the dose while maintaining a therapeutic effect, and to reduce the toxicity of the drug for normal cells. Furthermore, the surface of dendrimers can be modified by a monoclonal antibody to achieve a targeted therapy. For that reason synthesis of conjugates of trastuzumab, dendrimers, and anticancer drugs is so crucial. This paper presents an overview of publications about the use of trastuzumab in in vitro, in vivo and clinical studies, as well as the latest developments of biology and chemistry, whose goal is to create the perfect, targeted carrier. PMID:26671922

  19. Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency.

    PubMed

    Aston, Philip J; Derks, Gianne; Raji, Adewale; Agoram, Balaji M; van der Graaf, Piet H

    2011-07-21

    We consider the relationship between the target affinity of a monoclonal antibody and its in vivo potency. The dynamics of the system is described mathematically by a target-mediated drug disposition model. As a measure of potency, we consider the minimum level of the free receptor following a single bolus injection of the ligand into the plasma compartment. From the differential equations, we derive two expressions for this minimum level in terms of the parameters of the problem, one of which is valid over the full range of values of the equilibrium dissociation constant K(D) and the other which is valid only for a large drug dose or for a small value of K(D). Both of these formulae show that the potency achieved by increasing the association constant k(on) can be very different from the potency achieved by decreasing the dissociation constant k(off). In particular, there is a saturation effect when decreasing k(off) where the increase in potency that can be achieved is limited, whereas there is no such effect when increasing k(on). Thus, for certain monoclonal antibodies, an increase in potency may be better achieved by increasing k(on) than by decreasing k(off).

  20. A new tool for monoclonal antibody analysis

    PubMed Central

    An, Yan; Zhang, Ying; Mueller, Hans-Martin; Shameem, Mohammed; Chen, Xiaoyu

    2014-01-01

    Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications. PMID:24927271

  1. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  2. Characterization of monoclonal antibodies against Gnathostoma nipponicum.

    PubMed

    Ikadai, H; Fujii, T; Nagai, T; Yoshioka, K; Nagasao, J; Kudo, N; Oyamada, T

    2003-02-01

    Monoclonal antibodies (mAbs) were produced against the proteins of advanced third-stage larvae (AdL3) of Gnathostoma nipponicum. Six mAbs (Gn2C3, Gn2H3, Gn4C3, Gn4E9, GnSH1, and Gn10B7) were obtained as determined by enzyme-linked immunosorbent assay (ELISA). Gn4E9 and GnSH1 seemed to be genus-specific, as they did not cross-react with Anisakis sp., Dirofilaria immitis, Gongylonema pulchrum, Toxocara canis, Trichinella sp., Trichuris vulpis, Metagonimus sp., or Spirometra erinaceieuropaei by ELISA. Immunohistochemistry showed that Gn2C3, Gn4E9, and Gn5H1 reacted strongly with the central esophagus; Gn2H3 reacted with cuticle,muscle, intestine, and the cervical sac; and Gn4C3 and Gn10B7 reacted with cuticle, muscle, esophagus, intestine, and the cervical sac of AdL3. In Western blotting analysis, Gn2C3, Gn4E9, and Gn5H1 reacted to 60-, 53-, 46-, and 41-kDa proteins; Gn4C3 reacted to the AdL3 protein of G. nipponicum (>42 kDa). Moreover, proteins purified using a mAb Gn4E9 immunoprecipitation method (sizes 60-, 53-, 46-, and 41-kDa) were used as antigens in ELISAs. A significant difference (P < 0.01) was shown between mouse sera infected with G. nipponicum and sera infected with Trichnella sp. or not infected. These results provide a rationale for evaluating esophageal proteins for the development of diagnostic methods for detecting G. nipponicum or Gnathostoma sp. infections.

  3. Cation-exchange chromatography of monoclonal antibodies

    PubMed Central

    Urmann, Marina; Graalfs, Heiner; Joehnck, Matthias; Jacob, Lothar R

    2010-01-01

    A novel cation-exchange resin, Eshmuno™ S, was compared to Fractogel® SO3− (M) and Toyopearl GigaCap S-650M. The stationary phases have different base matrices and carry specific types of polymeric surface modifications. Three monoclonal antibodies (mAbs) were used as model proteins to characterize these chromatographic resins. Results from gradient elutions, stirred batch adsorptions and confocal laser scanning microscopic investigations were used to elucidate binding behavior of mAbs onto Eshmuno™ S and Fractogel® SO3− and the corresponding transport mechanisms on these two resins. The number of charges involved in mAb binding for Eshmuno™ S is lower than for Fractogel® SO3−, indicating a slightly weaker electrostatic interaction. Kinetics from batch uptake experiments are compared to kinetic data obtained from confocal laser scanning microscopy images. Both experimental approaches show an accelerated protein adsorption for the novel stationary phase. The influence of pH, salt concentrations and residence times on dynamic binding capacities was determined. A higher dynamic binding capacity for Eshmuno™ S over a wider range of pH values and residence times was found compared to Fractogel® SO3− and Toyopearl GigaCap S-650M. The capture of antibodies from cell culture supernatant, as well as post-protein A eluates, were analyzed with respect to their host cell protein (hcp) removal capabilities. Comparable or even better hcp clearance was observed at much higher protein loading for Eshmuno™ S than Fractogel® SO3− or Toyopearl GigaCap S-650M. PMID:20559022

  4. Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis

    PubMed Central

    Campbell, Jamie; Lowe, David; Sleeman, Matthew A

    2011-01-01

    Rheumatoid arthritis is one of the commonest autoimmune diseases affecting 0.8% of the population. Over the last decade the treatment of this chronic disease has been revolutionized by the use of monoclonal antibodies and fusion proteins, targeting molecules like tumour necrosis factor alpha. Nevertheless, approximately one-third of subjects fail to respond to these therapies and therefore significant unmet medical need remains. Following a decade of use, clinical, government and regulatory agency expectations have changed for new antibodies therapies entering this highly competitive area. In this review, we discuss the current advances being made in antibody engineering and how they are being considered and used in the development of the next generation of antibodies to meet future expectations of healthcare providers, physicians and patients. Moreover, we discuss how pattern recognition receptors may provide new antibody tractable targets that may break the cycle of autoimmunity in rheumatoid arthritis. PMID:21182494

  5. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future. PMID:17921029

  6. Staining of Langerhans Cells with Monoclonal Antibodies to Macrophages and Lymphoid Cells

    NASA Astrophysics Data System (ADS)

    Haines, Kathleen A.; Flotte, Thomas J.; Springer, Timothy A.; Gigli, Irma; Thorbecke, G. Jeanette

    1983-06-01

    Langerhans cells are Ia-bearing antigen-presenting cells in the epidermis that share many functions with macrophages. We have used monoclonal antibodies to the macrophage antigens, Mac-2 and -3, Ia antigen, Fc fragment receptor, and the common leukocyte antigen CLA to compare the cell surface antigens of these cells with those of interdigitating and follicular dendritic cells and of macrophages in lymphoid tissues. Immunoperoxidase staining was carried out with epidermal sheets from BALB/c mice and epidermal cell suspensions enriched for Langerhans cells by Fc rosetting. Langerhans cells stained for all of these antigens. Comparison with the staining properties of other dendritic cells and macrophages, in combination with previous observations, indicates a close relationship of Langerhans cells to the interdigitating cells of lymphoid tissues.

  7. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future.

  8. Clearance of persistent hepatitis C virus infection using a claudin-1-targeting monoclonal antibody

    PubMed Central

    Mailly, Laurent; Wilson, Garrick K.; Aubert, Philippe; Duong, François H. T.; Calabrese, Diego; Leboeuf, Céline; Fofana, Isabel; Thumann, Christine; Bandiera, Simonetta; Lütgehetmann, Marc; Volz, Tassilo; Davis, Christopher; Harris, Helen J.; Mee, Christopher J.; Girardi, Erika; Chane-Woon-Ming, Béatrice; Ericsson, Maria; Fletcher, Nicola; Bartenschlager, Ralf; Pessaux, Patrick; Vercauteren, Koen; Meuleman, Philip; Villa, Pascal; Kaderali, Lars; Pfeffer, Sébastien; Heim, Markus H.; Neunlist, Michel; Zeisel, Mirjam B.; Dandri, Maura; McKeating, Jane A.; Robinet, Eric; Baumert, Thomas F.

    2015-01-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer1. Cell entry of HCV2 and other pathogens3-5 is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model6 we show that a monoclonal antibody specific for TJ protein claudin-17 eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection via host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy. PMID:25798937

  9. Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines

    PubMed Central

    Prang, N; Preithner, S; Brischwein, K; Göster, P; Wöppel, A; Müller, J; Steiger, C; Peters, M; Baeuerle, P A; da Silva, A J

    2005-01-01

    MT201 is a fully human monoclonal IgG1 antibody with moderate affinity for epithelial cell adhesion molecule (Ep-CAM) being clinically developed for the treatment of carcinomas. Like many other clinically validated IgG1 monoclonal antibodies, MT201 primarily acts by antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we analysed ADCC and CDC induced by MT201 and, as reference, trastuzumab against a panel of nine human breast cancer cell lines expressing distinct surface levels of Ep-CAM and human epithelial growth factor receptor type 2 antigen. Maximal cell lysis by ADCC by MT201 and trastuzumab in the presence of peripheral mononuclear cells did not significantly differ when averaged over the nine cell lines, but showed marked differences with respect to individual cell lines. The extent of cell lysis at intermediate surface target density was highly variable, suggesting a dominant influence of other susceptibility factors. Only one breast cancer cell line was eliminated via CDC, but only by MT201. Resistance to CDC appeared to correlate with high expression levels of complement resistance factors. Our present data as well as recent data on the prevalence and prognostic relevance of Ep-CAM expression in metastatic breast cancer suggest that Ep-CAM-specific monoclonal IgG1 antibodies may have a significant therapeutic potential in the treatment of breast cancer. PMID:15655555

  10. Detection and Quantitation of Afucosylated N-Linked Oligosaccharides in Recombinant Monoclonal Antibodies Using Enzymatic Digestion and LC-MS

    NASA Astrophysics Data System (ADS)

    Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng

    2012-07-01

    The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.

  11. TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis

    PubMed Central

    Lee, Weon Sup; Pyun, Bo-Jeong; Kim, Sung-Woo; Shim, Sang Ryeol; Nam, Ju Ryoung; Yoo, Ji Young; Jin, Younggeon; Jin, Juyoun; Kwon, Young-Guen; Yun, Chae-Ok; Nam, Do-Hyun; Oh, Keunhee; Lee, Dong-Sup; Lee, Sang Hoon; Yoo, Jin-San

    2015-01-01

    Angiogenesis is one of the most important processes for cancer cell survival, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) and its receptor, particularly VEGF receptor-2 (VEGFR-2, or kinase insert domain-containing receptor, KDR), play critical roles in tumor-associated angiogenesis. We developed TTAC-0001, a human monoclonal antibody against VEGFR-2/KDR from a fully human naïve single-chain variable fragment phage library. TTAC-0001 was selected as a lead candidate based on its affinity, ligand binding inhibition and inhibition of VEGFR-2 signal in human umbilical vein endothelial cells (HUVEC). TTAC-0001 inhibited binding of VEGF-C and VEGF-D to VEGFR-2 in addition to VEGF-A. It binds on the N-terminal regions of domain 2 and domain 3 of VEGFR-2. It could inhibit the phosphorylation of VEGFR-2/KDR and ERK induced by VEGF in HUVEC. TTAC-0001 also inhibited VEGF-mediated endothelial cell proliferation, migration and tube formation in vitro, as well as ex vivo vessel sprouting from rat aortic rings and neovascularization in mouse matrigel model in vivo. Our data indicates that TTAC-0001 blocks the binding of VEGFs to VEGFR-2/KDR and inhibits VEGFR-induced signaling pathways and angiogenesis. Therefore, these data strongly support the further development of TTAC-0001 as an anti-cancer agent in the clinic. PMID:25942475

  12. Studies of a Murine Monoclonal Antibody Directed against DARC: Reappraisal of Its Specificity

    PubMed Central

    Smolarek, Dorota; Hattab, Claude; Buczkowska, Anna; Kaczmarek, Radoslaw; Jarząb, Anna; Cochet, Sylvie; de Brevern, Alexandre G.; Lukasiewicz, Jolanta; Jachymek, Wojciech; Niedziela, Tomasz; Grodecka, Magdalena; Wasniowska, Kazimiera; Colin Aronovicz, Yves; Bertrand, Olivier; Czerwinski, Marcin

    2015-01-01

    Duffy Antigen Receptor for Chemokines (DARC) plays multiple roles in human health as a blood group antigen, a receptor for chemokines and the only known receptor for Plasmodium vivax merozoites. It is the target of the murine anti-Fy6 monoclonal antibody 2C3 which binds to the first extracellular domain (ECD1), but exact nature of the recognized epitope was a subject of contradictory reports. Here, using a set of complex experiments which include expression of DARC with amino acid substitutions within the Fy6 epitope in E. coli and K562 cells, ELISA, surface plasmon resonance (SPR) and flow cytometry, we have resolved discrepancies between previously published reports and show that the basic epitope recognized by 2C3 antibody is 22FEDVW26, with 22F and 26W being the most important residues. In addition, we demonstrated that 30Y plays an auxiliary role in binding, particularly when the residue is sulfated. The STD-NMR studies performed using 2C3-derived Fab and synthetic peptide corroborated most of these results, and together with the molecular modelling suggested that 25V is not involved in direct interactions with the antibody, but determines folding of the epitope backbone. PMID:25706384

  13. Unusual Manifestations of Monoclonal Gammopathy: I. Ocular Disease

    PubMed Central

    Balderman, Sophia R.; Lichtman, Marshall A.

    2015-01-01

    Essential monoclonal gammopathy is usually an asymptomatic condition, the characteristics of which have been defined over approximately 70 years of study. It has a known population-attributable risk of undergoing clonal evolution to a progressive, symptomatic B-cell neoplasm. In a very small fraction of patients, the monoclonal immunoglobulin has biophysical characteristics that can lead to tissue deposition syndrome (e.g. Fanconi renal syndrome) or, by chance, have characteristics of an autoantibody that may inactivate critical proteins (e.g. acquired von Willebrand disease). In this report, we describe the very uncommon forms of ocular injury that may accompany essential monoclonal gammopathy, which include crystalline keratopathy, crystal-storing histiocytosis, hypercupremic keratopathy, and maculopathy. The first three syndromes result from uncommon physicochemical alterations of the monoclonal immunoglobulin that favor crystallization or exaggerated copper binding. The last-mentioned syndrome is of uncertain pathogenesis. These syndromes may result in decreased visual acuity. These ocular findings may lead, also, to the diagnosis of monoclonal gammopathy. PMID:26241228

  14. Immunochemical studies of the muscarinic acetylcholine receptor.

    PubMed

    André, C; Marullo, S; Guillet, J G; Convents, A; Lauwereys, M; Kaveri, S; Hoebeke, J; Strosberg, A D

    1987-01-01

    Muscarinic receptors have been purified from calf forebrain plasma cell membranes by affinity chromatography on a dexetimide-agarose gel. SDS-PAGE analysis showed a single 70 kDa band. Monoclonal antibodies have been prepared against these affinity purified 70 kDa protein(s). One antibody, M-35, immunoprecipitated up to 80% of digitonin-solubilized muscarinic receptors. M-35 had agonist-like effects on guinea-pig myometrium: it increased the intracellular cyclic GMP content, decreased prostaglandin-induced cyclic AMP accumulation and caused muscle contractions. The two first effects were inhibited by atropine. M-35 was used to visualize muscarinic receptors at the surface of human fibroblastic cells. In the particular cell line used, the receptors have a low affinity for pirenzepine, were negatively coupled to adenylate cyclase and mediated increase in the phosphatidyl-inositol breakdown. PMID:3040987

  15. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells

    PubMed Central

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C.; San Miguel, Jesus F.; Orfao, Alberto

    2013-01-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  16. Purification and characterization of the human interferon-. gamma. receptor from placenta

    SciTech Connect

    Calderon, J.; Sheehan, K.C.F.; Chance, C.; Thomas, M.L.; Schreiber, R.D. )

    1988-07-01

    Purification of the human interferon-{gamma} (IFN-{gamma}) receptor was facilitated by identification of human placenta as a large-scale receptor source. When analyzed in radioligand binding experiments, intact placental membranes and detergent-solubilized membrane proteins expressed 1.3 and 5.9 {times} 10{sup 12} receptors per mg of protein, respectively, values that were 13-163 times greater than that observed for U937 membranes. Two protocols were followed to purify the IFN-{gamma} receptor from octyl glucoside-solubilized membranes: (i) sequential affinity chromatography over wheat germ agglutinin- and INF-{gamma}-Sepharose and (ii) affinity chromatography over columns containing receptor-specific monoclonal antibody and wheat germ agglutinin. Both procedures resulted in fully active preparations that were 70-90% pure. Purified receptor migrated as a single molecular species of 90 kDa either when analyzed on silver-stained NaDodSO{sub 4}/polyacrylamide gels or when subjected to electrophoretic transfer blot analysis using a labeled IFN-{gamma} receptor-specific monoclonal antibody. The identity of the 90-kDa component as the receptor was confirmed by demonstrating its ability to specifically bind {sup 125}I-labeled IFN-{gamma} following NaDodSO{sub 4}/PAGE and transfer to nitrocellulose. The ligand binding site, the epitope for the receptor-specific monoclonal antibody, and all of the N-linked carbohydrate could be localized to the 55-kDa domain of the molecule.

  17. Peripheral neuropathies associated with monoclonal gammopathies of undetermined significance.

    PubMed

    Kelly, John J

    2008-01-01

    Monoclonal gammopathies (MGs) or plasma cell dyscrasias (PCDs) are hematologic disorders that may affect peripheral nerves. An MG is a proliferation of a single clone of neoplastic or nonneoplastic plasma that usually secretes a monoclonal protein (M-protein) serum or urine. If a diagnosis of monoclonal gammopathy of undetermined significance (MGUS) is established, a sudden increase in M-protein levels can indicate malignant transformation of a benign PCD. Roughly 50% of MGUS neuropathies are associated with an IgM gammopathy and the remaining 50% with IgG- and IgA-MGUS-associated neuropathies. MGUS is the most common of the PCDs associated with neurologic disorders, which are easily approached clinically by classifying them as IgM or non-IgM types.

  18. Complete De Novo Assembly of Monoclonal Antibody Sequences

    PubMed Central

    Tran, Ngoc Hieu; Rahman, M. Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216–441 AA, at 100% coverage, and 96.64–100% accuracy. PMID:27562653

  19. [Monoclonal gammopathy and primary colonic mantle cell lymphoma].

    PubMed

    Mohamed, G; Kochlef, A; Gargouri, D; Kilani, A; Elloumi, H; Ouakaa, A; Belhadj, N; Romani, M; Kharrat, J; Ghorbel, A

    2009-03-01

    The association of a monoclonal gammopathy (MG) with a B cell non-Hodgkin's lymphoma (NHL) is a well-known phenomenon. It has been recognized in many subtypes of primary gastrointestinal lymphoma but its association with primary colonic mantle cell lymphoma has never been yet described. We report a 65-year-old man who presented with an exudative ascites and constipation. Serum electrophoresis showed a monoclonal peak in the gamma region of 45g/L and immunoelectrophoresis confirmed the presence of monoclonal gammopathy of IgM kappa type. Bone marrow aspirate was normal. Radiologic and endoscopic investigations evidenced a primary colonic mantle cell lymphoma. Although the association of an MG with an NHL and, in particular, to a primitive digestive location appears a rare phenomenon, endoscopic investigations in patients with MG appears legitimate in the presence of any digestive sign.

  20. Characterization and utilization of a monoclonal antibody against pancreatic carcinoma

    SciTech Connect

    Kurtzman, S.H.; Sindelar, W.F.; Atcher, R.W.; Mitchell, J.B.; DeGraff, W.G.; Gamson, J.; Russo, A.; Friedman, A.M.; Hines, J.J.

    1994-10-01

    A monoclonal antibody was produced against a human pancreatic adenocarcinoma line and was found to react with several different human carcinomas by immunoperoxidase staining of fixed tissues. The original cells used to generate the monoclonal antibody were treated with detergent to lyse the cell membrane. A membrane associated protein of molecular weight 35kD was isolated from this detergent lysed preparation and found to be recognized by the monoclonal antibody. The binding constant of the antigen antibody reaction on the cells is 5 x 10{sup {minus}5}. It was further determined that there are 700,000 binding sites per cell. Kinetics of the antigen-antibody reaction under several conditions were also explored.

  1. A perspective of monoclonal antibodies: Past, present, and future

    SciTech Connect

    DeLand, F.H. )

    1989-07-01

    In 1975, the development of the technique to produce monoclonal antibodies revolutionized the approach to cancer detection and therapy. Hundreds of monoclonal antibodies to the epitopes of tumor cells have been produced, providing more specific tools for probing the cellular elements of cancer. At the same time, these tools have disclosed greater complexity in the character of these cells and stimulated further investigation. Although there are antibodies to specific epitopes of neoplastic cells, this purity has not provided the improved detection and therapy of cancer first expected. Technical manipulations have provided limited improvement in results, but more sophisticated techniques, such as biologic response modifiers, may be required to attain clinical results that can be universally applied. The intense research in monoclonal antibodies and their application does offer promise that the goal of improved cancer detection and therapy will be forthcoming. 58 references.

  2. Complete De Novo Assembly of Monoclonal Antibody Sequences.

    PubMed

    Tran, Ngoc Hieu; Rahman, M Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216-441 AA, at 100% coverage, and 96.64-100% accuracy. PMID:27562653

  3. Considerations for the development of therapeutic monoclonal antibodies.

    PubMed

    Swann, Patrick G; Tolnay, Mate; Muthukkumar, Subramanian; Shapiro, Marjorie A; Rellahan, Barbara L; Clouse, Kathleen A

    2008-08-01

    An increasing number of Investigational New Drug (IND) applications for therapeutic monoclonal antibodies (mAbs) have been submitted to US FDA over the past several years. Monoclonal antibodies and related products are under development for a wide range of indications. In addition, the diversity of antibody-related products is increasing including IgG2/IgG4 subclasses and engineered Fc regions to enhance or reduce antibody effector functionality. Recent findings highlight the need to more fully characterize these products and their activity. Advances in product characterization tools, immunogenicity assessments, and other bioanalytical assays can be used to better understand product performance and facilitate development. PMID:18586093

  4. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  5. Identification of a heparin-binding protein using monoclonal antibodies that block heparin binding to porcine aortic endothelial cells.

    PubMed Central

    Patton, W A; Granzow, C A; Getts, L A; Thomas, S C; Zotter, L M; Gunzel, K A; Lowe-Krentz, L J

    1995-01-01

    The binding of heparin or heparan sulphate to a variety of cell types results in specific changes in cell function. Endothelial cells treated with heparin alter their synthesis of heparan sulphate proteoglycans and extracellular matrix proteins. In order to identify a putative endothelial cell heparin receptor that could be involved in heparin signalling, anti-(endothelial cell) monoclonal antibodies that significantly inhibit heparin binding to endothelial cells were prepared. Four of these antibodies were employed in affinity-chromatographic isolation of a heparin-binding protein from detergent-solubilized endothelial cells. The heparin-binding protein isolated from porcine aortic endothelial cells using four different monoclonal antibodies has an M(r) of 45,000 assessed by SDS/PAGE. The 45,000-M(r) heparin-binding polypeptide is isolated as a multimer. The antibody-isolated protein binds to heparin-affinity columns as does the pure 45,000-M(r) polypeptide, consistent with its identification as a putative endothelial heparin receptor. Images Figure 2 Figure 3 PMID:7487882

  6. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition.

    PubMed

    Luu, Kenneth T; Bergqvist, Simon; Chen, Enhong; Hu-Lowe, Dana; Kraynov, Eugenia

    2012-06-01

    In the drug discovery and development setting, the ability to accurately predict the human pharmacokinetics (PK) of a candidate compound from preclinical data is critical for informing the effective design of the first-in-human trial. PK prediction is especially challenging for monoclonal antibodies exhibiting nonlinear PK attributed to target-mediated drug disposition (TMDD). Here, we present a model-based method for predicting the PK of PF-03446962, an IgG2 antibody directed against human ALK1 (activin receptor-like kinase 1) receptor. Systems parameters as determined experimentally or obtained from the literature, such as binding affinity (k(on) and k(off)), internalization of the drug-target complex (k(int)), target degradation rate (k(deg)), and target abundance (R(0)), were directly integrated into the modeling and prediction. NONMEM 7 was used to model monkey PK data and simulate human PK profiles based on the construct of a TMDD model using a population-based approach. As validated by actual patient data from a phase I study, the human PK of PF-03446962 were predicted within 1- to 2-fold of observations. Whereas traditional approaches fail, this approach successfully predicted the human PK of a monoclonal antibody exhibiting nonlinearity because of TMDD. PMID:22414855

  7. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition.

    PubMed

    Luu, Kenneth T; Bergqvist, Simon; Chen, Enhong; Hu-Lowe, Dana; Kraynov, Eugenia

    2012-06-01

    In the drug discovery and development setting, the ability to accurately predict the human pharmacokinetics (PK) of a candidate compound from preclinical data is critical for informing the effective design of the first-in-human trial. PK prediction is especially challenging for monoclonal antibodies exhibiting nonlinear PK attributed to target-mediated drug disposition (TMDD). Here, we present a model-based method for predicting the PK of PF-03446962, an IgG2 antibody directed against human ALK1 (activin receptor-like kinase 1) receptor. Systems parameters as determined experimentally or obtained from the literature, such as binding affinity (k(on) and k(off)), internalization of the drug-target complex (k(int)), target degradation rate (k(deg)), and target abundance (R(0)), were directly integrated into the modeling and prediction. NONMEM 7 was used to model monkey PK data and simulate human PK profiles based on the construct of a TMDD model using a population-based approach. As validated by actual patient data from a phase I study, the human PK of PF-03446962 were predicted within 1- to 2-fold of observations. Whereas traditional approaches fail, this approach successfully predicted the human PK of a monoclonal antibody exhibiting nonlinearity because of TMDD.

  8. Binding of monoclonal antibody to CD16 causes calcium mobilization in large granular lymphocytes but inhibits NK killing.

    PubMed Central

    Macintyre, E A; Wallace, D W; O'Flynn, K; Abdul-Gaffar, R; Tetteroo, P A; Morgan, G; Linch, D C

    1989-01-01

    A monoclonal antibody (mAb), CLB/FcR gran I, reactive with the CD16 Fc receptor (FcRlo/FcRIII) of human cells, leads to calcium mobilization in large granular lymphocytes (LGL) but not in granulocytes. Identical responses are obtained with F(ab')2 fragments of this antibody, indicating that the response is independent of Fc-FcR binding, and that bivalent cross-linking of this receptor is adequate for optimal calcium mobilization. The calcium response was greater in CD3- LGL compared to CD3+ LGL, although the response was augmented in the latter cells by prior rosetting with sheep red blood cells (SRBC). Calcium mobilization in CD3- LGL induced by CLB/FcR gran I is associated with inhibition of natural killer cell (NK) killing, and inhibition of the enhanced NK killing induced by the anti-CD2 low-density monoclonal antibody, 9.1. This supports the view that the NK-enhancing activity of 9.1 is due to simultaneous binding to CD2 and CD16, and may in fact be transduced through the CD16 molecule. The variable reported effects of anti-CD16 antibodies on NK killing are likely to reflect the epitope bound rather than the isotype of antibody used, since F(ab')2 fragments of CLB/FcR gran I also inhibit NK killing. PMID:2564843

  9. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy

    SciTech Connect

    Kozak, R.W.; Atcher, R.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Waldmann, T.A.

    1986-01-01

    Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy.

  10. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    NASA Astrophysics Data System (ADS)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  11. Laboratory guidelines for the diagnosis and follow-up of patients with monoclonal gammopathies.

    PubMed

    Bravo García-Morato, M; Padilla-Merlano, B; Nozal, P; Espiño, M; Juárez, C; Villar, L M; López-Trascasa, M

    2016-04-01

    We present guidelines from the Immunochemistry group of the Spanish Society for Immunology that are designed to provide a practical tool for the diagnosis and follow-up of monoclonal gammopathies. We review the clinical and analytical features of various monoclonal gammopathies, international consensus guidelines and techniques used to detect and follow-up monoclonal components. PMID:26481802

  12. Laboratory guidelines for the diagnosis and follow-up of patients with monoclonal gammopathies.

    PubMed

    Bravo García-Morato, M; Padilla-Merlano, B; Nozal, P; Espiño, M; Juárez, C; Villar, L M; López-Trascasa, M

    2016-04-01

    We present guidelines from the Immunochemistry group of the Spanish Society for Immunology that are designed to provide a practical tool for the diagnosis and follow-up of monoclonal gammopathies. We review the clinical and analytical features of various monoclonal gammopathies, international consensus guidelines and techniques used to detect and follow-up monoclonal components.

  13. Immunoelectron microscopy of rabbit haemorrhagic disease virus using monoclonal antibodies.

    PubMed

    Valícek, L; Smíd, B; Rodák, L

    1992-12-01

    Five monoclonal antibodies (MoAbs) to rabbit haemorrhagic disease virus (RHDV), prepared and tested in ELISA, immunoperoxidase (IP) and immunofluorescence (IF) test previously, reacted specifically in immunoelectron microscopy (IEM), too. No differences in binding of individual MoAbs with full or empty RHDV particles were found by IEM.

  14. Aged venous thrombi: radioimmunoimaging with fibrin-specific monoclonal antibody

    SciTech Connect

    Rosebrough, S.F.; Grossman, Z.D.; McAfee, J.G.; Kudryk, B.J.; Subramanian, G.; Ritter-Hrncirik, C.A.; Witanowski, L.S.; Tillapaugh-Fay, G.; Urrutia, E.

    1987-02-01

    Radioimmunoimaging of fresh canine venous thrombi with a murine monoclonal antibody specific for human and dog fibrin has been reported. Successful imaging of canine deep venous thrombi 1, 3, and 5 days old at the time of antibody injection is reported. Images were positive in all dogs, and the uptake of fibrin-specific antibody was equivalent to that of fresh thrombi.

  15. Plasmodium falciparum: characterization of defined antigens by monoclonal antibodies.

    PubMed Central

    Perrin, L H; Ramirez, E; Er-Hsiang, L; Lambert, P H

    1980-01-01

    Monoclonal antibodies directed against Plasmodium falciparum detect stage-specific, species-specific and common antigenic determinants of Plasmodia. These antibodies provide new tools for purification and characterization of Plasmodium falciparum antigens in relation to future procedures for immunoprophylaxis. Images Fig. 2 PMID:6160002

  16. Serological classification of Neisseria gonorrhoeae with monoclonal antibodies.

    PubMed Central

    Tam, M R; Buchanan, T M; Sandström, E G; Holmes, K K; Knapp, J S; Siadak, A W; Nowinski, R C

    1982-01-01

    Hybrid cells producing monoclonal antibodies against antigens of Neisseria gonorrhoeae were obtained by the polyethylene glycol-mediated fusion of mouse myeloma cells and lymphocytes from mice immunized with gonococcal protein I or outer membrane proteins. From four fusions, 16 phenotypically stable, independently cloned hybrid cell lines were selected for continued study. Each of the cell lines produced a characteristically different monoclonal antibody which reacted in immunoprecipitation assays with a unique antigenic determinant on protein I of the outer membrane complex of the bacteria. In antibody binding, immunofluorescence, and coagglutination assays these antibodies each reacted with a restricted group of N. gonorrhoeae strains. None of the monoclonal antibodies reacted with 17 other different species of Neisseria or with Branhamella catarrhalis. When tested on 34 N. gonorrhoeae reference serotyping strains, the monoclonal antibodies demonstrated serological relationships between the strains which paralleled those observed with conventional polyvalent antisera. These antibodies now provide standardized reagents for the rapid and precise serological characterization of many strains of N. gonorrhoeae. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 PMID:6807844

  17. Monoclonal gammopathy and smoldering multiple myeloma: diagnosis, staging, prognosis, management.

    PubMed

    Hillengass, Jens; Moehler, Thomas; Hundemer, Michael

    2011-01-01

    Monoclonal gammopathy of unknown significance (MGUS) as one of the most common premalignant disorders and smoldering multiple myeloma (sMM) are both caused by a proliferation of monoclonal plasma cells leading to a detectable serum monoclonal protein and/or excess of plasma cells in the bone marrow. Prerequisite for the diagnosis is that plasma cell disease does not cause clinical symptoms. Cytogenetic aberrations are detectable in the majority of patient in the clonally expanded plasma cells. MGUS consistently proceeds symptomatic MM. The lifetime risk of progression into symptomatic multiple myeloma lies between 15% and 59% for patients with MGUS or sMM. Prognostic parameters for development of symptomatic multiple myeloma from MGUS or sMM are concentration of monoclonal protein, bone marrow plasmocytosis, a non- IgG subtype and an abnormal free-light chain ratio. Detection of more than 1 focal lesion in whole body MRI, 95% or more of bone marrow plasma cells displaying an aberrant phenotype in flow cytometry and an evolving clinical course in two consecutive follow-up visits are additional prognostic parameters for sMM. Currently there is no accepted secondary prevention strategy available for sMM and MGUS progression. Future studies are required to combine increasing knowledge on risk factors and molecular pathogenesis with targeted agents to prevent progression. PMID:21509683

  18. Palladium-109 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  19. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  20. Bacterial surface antigens defined by monoclonal antibodies: the methanogens

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Magarinos, M.C.; Jovell, R.J.; Kandler, O.

    1982-01-01

    The methanogens (MB) are unique microbes of great evolutionary interest with applications in biotechnology-bioengineerings and are important in digestive processes. Their cell-wall composition is distinctively different from that of Eubacteria, e.g. the Methanobacteriaceae possess the peptidoglycan pseudomurein rather than murein. The range of cell-wall compositions among MB and their evolutionary and functional significance is not well known. The authors undertook a systematic study of the MB's surface structure using monoclonal antibodies through the following steps: (1) generation of hybridomas that produce antibody to several MB from 3 of their 4 families; (2) development of immunoenzymatic assays for MB's antigens and antibodies; (3) determination of the fine specificity of monoclonal antibodies by inhibition-blocking tests using cell-wall extracts and compounds of known structure; thus a set of monoclonal probes of predetermined specificity was assembled; and (4) resolution of surface determinants of MB representative of the Methanobacteriaceae using the monoclonal probes. Specific markers of MB strains were characterized. Two epitopes were identified within the pseudomurein molecule.

  1. Development and evaluation of monoclonal antibodies for paxilline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrati...

  2. A mouse monoclonal antibody against Alexa Fluor 647.

    PubMed

    Wuethrich, Irene; Guillen, Eduardo; Ploegh, Hidde L

    2014-04-01

    Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.

  3. Treating atopic asthma with the anti-IgE monoclonal antibody.

    PubMed

    D'Amato, G

    2002-04-01

    Omalizumab is a nonanaphylactogenic humanized murine monoclonal antibody which binds to circulating immunoglobulin (Ig)E but does not bind to IgE bound to inflammatory cells because in this case the epitope on IgE against which omalizumab is directed is already attached to cell receptors and is masked. By binding to free circulating IgE omalizumab prevents the allergic and asthmatic responses that are mediated by the interaction of IgE with high affinity and low affinity receptors on a variety of cell types. To support entry into therapy of human allergic diseases a series of safety and efficacy studies have been conducted with omalizumab in subjects affected by atopic asthma and these trials revealed that omalizumab is well tolerated, resulting in a dose-dependent decrease in serum free IgE levels. Omalizumab exhibited a prolonged pharmacological effect without inducing anaphylaxis, blunted the early- and late-phase responses to inhaled allergen, reduced the symptoms of asthma improving lung function and quality of life and reduced corticosteroid use.

  4. Combined Yeast-derived β-Glucan with Anti-tumor Monoclonal Antibody for Cancer Immunotherapy

    PubMed Central

    Liu, Jingjing; Gunn, Lacey; Hansen, Richard; Yan, Jun

    2009-01-01

    β-Glucan is an immuno-stimulating agent that has been used to treat cancer and infectious disease for many years with varying and unpredictable efficacy. Recent studies have unraveled the action mode of yeast-derived β-glucan in combination with anti-tumor monoclonal antibodies (mAbs) in cancer therapy. It has demonstrated that particulate or large molecular weight soluble β-glucans are ingested and processed by macrophages. These macrophages secrete the active moiety that primes neutrophil complement receptor 3 (CR3) to kill iC3b-opsonized tumor cells. In vitro and in vivo data demonstrate that successful combination therapy requires complement activation and deposition on tumors and CR3 expression on granulocytes. Pre-clinical animal studies have demonstrated the efficacy of combined β-glucan with anti-tumor mAbs therapy in terms of tumor regression and long-term survival. Clinical trials are underway using anti-epidermal growth factor receptor mAb (Erbitux) in combination with β-glucan for metastatic colorectal cancer. This review provides a brief overview of this combination therapy in cancer and describes in detail the β-glucan composition and structure, mechanism of action, and preclinical studies in human carcinoma xenograft models. It is proposed that the addition of β-glucan will further improve the therapeutic efficacy of anti-tumor mAbs in cancer patients. PMID:19454271

  5. Correspondence: The association between morphea profunda and monoclonal gammopathy: A case series.

    PubMed

    Endo, Justin; Strickland, Nicole; Grewal, Simer; Vandergriff, Travis; Keenan, Thomas; Longley, B Jack; Jacobe, Heidi

    2016-01-01

    It is known that eosinophilic fasciitis can be associated with monoclonal gammopathy. There is clinical similarity between eosinophilic fasciitis and morphea profunda, but it is unclear whether morphea profunda might be associated with monoclonal gammopathy. The temporal quantification of gammopathy in morphea profunda has not been well characterized. We describe four patients with morphea profunda that were associated with monoclonal gammopathy. Three were associated with monoclonal IgG protein and one with IgM. No patients in our series developed myeloma. In conclusion, the association of monoclonal gammopathy is not unique to eosinophilic fasciitis and scleromyxedema. Further studies are necessary to characterize further the relationship between the two conditions. PMID:27136633

  6. Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer

    PubMed Central

    2009-01-01

    Background RAI3 is an orphan G-protein coupled receptor (GPCR) that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens. Methods We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA), western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147) and normal breast tissues (n = 44) using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50) as well as lymph node metastases (n = 3) for RAI3 mRNA expression. Results The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival. Conclusion We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic analysis of RAI3

  7. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function

    PubMed Central

    Chung, Amy W.; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K.; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E.; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2015-01-01

    Objective To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Design Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein–Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4+ binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Methods Each mAb was assayed for antibody-binding affinity to gp140SF162, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcgRIIa, FcgRIIb and FcgRIIIa receptors. Antibody glycan profiles were determined by HPLC. Results Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcgRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcgRIIIa and ADCC activity, independent of the specificity of the mAb. Conclusions Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection. PMID:25160934

  8. A monoclonal antibody directed against a granule membrane glycoprotein (GMP-140/PADGEM, P-selectin, CD62P) inhibits ristocetin-induced platelet aggregation.

    PubMed

    Boukerche, H; Ruchaud-Sparagano, M H; Rouen, C; Brochier, J; Kaplan, C; McGregor, J L

    1996-02-01

    P-selectin (also called CD62, GMP-140, PADGEM, CD62P) is a recently described member of a family of vascular adhesion receptors expressed by activated platelets and endothelial cells that are involved in leucocyte cell adhesion. The aim of this study was to characterize a new monoclonal antibody (LYP7) directed against activated human blood platelets that inhibits ristocetin-induced platelet aggregation. Immunoadsorbent affinity chromatography and immunoprecipitation studies showed that LYP7 (IgG1) bound a surface-labelled glycoprotein (GP) which changed its apparent molecular mass (M(r)) on reduction from 138 kD (situated below GPIIb) to 148 kD (above GPIIb alpha). LYP7 and S12, a monoclonal antibody directed against P-selectin immunoprecipitated the same band. Using ELISA assay, purified P-selectin was shown to bind LYP7 and S12 monoclonal antibodies. Binding sites of 125I-labelled LYP7, which was greatly increased on thrombin-stimulated (2 U/ml) washed platelets (10825 +/- 2886, mean +/- SD) Kd = 1.5 +/- 0.5 nM) compared to resting platelets (2801 +/- 1278, mean +/- SD) (Kd = 1.5 +/- 0.6 nM), was found to be normal on thrombin-stimulated platelets taken from a patient with grey platelet syndrome or a patient with Glanzmann thrombasthenia. LYP7 (IgG1, F(ab')2 or Fab fragments) inhibited ristocetin-induced platelet aggregation of platelets in a dose-dependent fashion without affecting the binding of von Willebrand (vWf) factor. However, agglutination of formaldehyde-fixed platelets induced by ristocetin was not affected by monoclonal antibody LYP7. In addition, the binding of thrombin-activated platelets to neutrophils was inhibited by monoclonal antibody LYP7. These results strongly suggest that P-selectin, by promoting cell-cell contact, may play an active role in platelet-platelet interactions. PMID:8603015

  9. Monoclonal Antibody Testing for Cancer Metastasis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Malignant cells are characterized by the ability to invade surrounding normal tissues. Tumor invasion is abetted by proteolytic enzymes that have been correlated with recurrent disease and metastasis. These enzymes are involved in a cascade of proteolytic interactions with other enzymes and inhibitors which allow cancer cells to dissolve surrounding extracellular matrix, thereby enabling the cells to rapidly invade adjacent tissues and migrate to metastatic sites distant from the primary tumor. Among these proteases are the plasminogen activators (PA), collagenase IV, faminase, and in some cases cathepsin D, which together mediate key steps in the invasion process of metastasis. Cells which have the selective advantage for invasion and metastasis are those capable of regulating their proteolytic activity and proliferation. Cells in the process of invasion would be probably down-regulated for proliferation, but subsequent to attachment and adhesion at a distant site, would then be in a proliferative mode, up-regulating DNA replication. Urokinase (uPA) can be present in the tissues in several molecular forms. The inactive proenzyme is a single chain protein (scuPA) that is cleaved at Lys. 158 to form the double chain, high molecular weight active form (HMW-uPA) of 54 kD. A low molecular weight form (LMW-uPA) can also be produced by cleavage of the HMW-U PA at Lys. 135 - Lys. 136 giving a 35 kD active enzyme. Recently, it has been shown that the HMW active form of urokinase, bound to the tumor cell membrane, is responsible for the local lysis of the extracellular matrix, hence the tissue invasion mechanism for metastasis (Andreasen et al, 19861. Receptor- (membrane) bound uPA is twice as efficient (catalytically) as free fluid-phase uPA. Tho unbound uPA and the LMW form is not responsible for most of the local dissolution of extracellular matrix in the immediate vicinity of the metastatic tumor cell. High levels of urokinase (greater than 3.49 ng/mg of total protein

  10. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  11. MFR, a Putative Receptor Mediating the Fusion of Macrophages

    PubMed Central

    Saginario, Charles; Sterling, Hyacinth; Beckers, Cornelius; Kobayashi, Ruji; Solimena, Michele; Ullu, Elisabetta; Vignery, Agnès

    1998-01-01

    We had previously identified a macrophage surface protein whose expression is highly induced, transient, and specific, as it is restricted to actively fusing macrophages in vitro and in vivo. This protein is recognized by monoclonal antibodies that block macrophage fusion. We have now purified this protein and cloned its corresponding cDNA. This protein belongs to the superfamily of immunoglobulins and is similar to immune antigen receptors such as the T-cell receptor, B-cell receptor, and viral receptors such as CD4. We have therefore named this protein macrophage fusion receptor (MFR). We show that the extracellular domain of MFR prevents fusion of macrophages in vitro and therefore propose that MFR belongs to the fusion machinery of macrophages. MFR is identical to SHPS-1 and BIT and is a homologue of P84, SIRPα, and MyD-1, all of which have been recently cloned and implicated in cell signaling and cell-cell interaction events. PMID:9774638

  12. [Increases in pharmaceutical expenditures of PHI by monoclonal antibodies].

    PubMed

    Wild, F

    2013-06-01

    The dynamics of one of the most innovative segments of health care and its impact on pharmaceutical expenditure of private health insurance (PHI) is examined on the basis of drug prescription data from private health insurance companies. The study shows that the increase in pharmaceutical expenditure can be explained partly by the new treatment possibilities available with monoclonal antibodies. The per capita expenditure on drugs with monoclonal antibodies increased by 255% from 2006 to 2010 in private health insurance, while the corresponding expenditure of all pharmaceuticals has risen by only 19% in the same period. In the coming years, growth on this scale will be a challenge for all payers in the health system. PMID:23926705

  13. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  14. Papuloerythroderma associated with monoclonal gammopathy of undetermined significance.

    PubMed

    Fujimura, Taku; Okuyama, Ryuhei; Ogawa, Eisaku; Aiba, Setsuya

    2009-04-01

    We describe a 73-year-old Japanese man with papuloerythroderma overlapped with monoclonal gammopathy of undetermined significance (MGUS). Clinically, prominent erythroderma was associated with disseminated pruriginous papules, which were characteristically spared on the axillary and inguinal regions, the cubital and popliteal fossae as well as abdominal and small positional folds. Histopathologically, there was a significant perivascular infiltrate of lymphohistiocytic cells intermingled with eosinophils in the upper dermis. A biochemical profile revealed the presence of immunoglobulin G kappa chain type monoclonal protein in the serum but the absence of hematological neoplasms. We diagnosed the patient as papuloerythroderma with MGUS, and treated him with narrow-band ultraviolet B and topical steroid. His skin changes were improved, but the sharp gamma-globulin peak remained in the electrophoresis of serum protein. This case suggests an association between papuloerythroderma and MGUS. PMID:19348662

  15. [Current status regarding detection of monoclonal component in Japan].

    PubMed

    Yamada, Toshiyuki

    2010-04-01

    Monoclonal immunoglobulin component (M-component) presence is suspected based on serum protein analysis using cellulose acetate membrane electrophoresis, and finally clarified by determining its immunoglobulin class using immunoelectrophoresis (IEP) or immunofixation (IFE). M-component presence is essential for diagnosing multiple myeloma (MM) and primary macroglobulinemia; however, since it is also found in non-malignant conditions, called MGUS (monoclonal gammopathy of undetermined significance), the differentiation of MGUS from malignant diseases is often important. Bence Jones protein (BJP), once detected, can support the diagnoses of MM and primary AL-amyloidosis. In the latter condition, which is often difficult to diagnose, BJP is very helpful. The newly developed method measuring free immunoglobulin light chains can effectively indicate the presence of BJP in serum. The detection of BJP in urine is still important. Capillary electrophoresis combined with immunoabsorption can detect BJP in non-concentrated urine. It may be time to take such new methods into consideration in Japan.

  16. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  17. Biosimilar monoclonal antibodies in lymphoma: a critical appraisal.

    PubMed

    Rioufol, Catherine; Salles, Gilles

    2015-05-01

    Rituximab, an anti-CD20 monoclonal antibody, revolutionized the treatment of lymphoma. Although newer generation anti-CD20 monoclonal antibodies are being examined, patent expiries and patient demand have fueled the development of rituximab biosimilars. The development of such agents is both an important and difficult undertaking. By definition, although they aim to have safety and efficacy comparable with their reference agents, biosimilars are not exact replicas of those agents, and small changes in nonclinical and preclinical properties may ultimately affect in vivo activity. Consideration must be given to the complex mechanisms of action, sensitive patient populations that may be treated, and appropriate clinical trial endpoints. Furthermore, extrapolation of indications is multifaceted, deserving close examination. This review represents a critical look at biosimilars in lymphoma and their safety, efficacy and long-term effects on patient outcomes. PMID:25818308

  18. Adverse events of monoclonal antibodies used for cancer therapy.

    PubMed

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  19. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  20. Papuloerythroderma associated with monoclonal gammopathy of undetermined significance.

    PubMed

    Fujimura, Taku; Okuyama, Ryuhei; Ogawa, Eisaku; Aiba, Setsuya

    2009-04-01

    We describe a 73-year-old Japanese man with papuloerythroderma overlapped with monoclonal gammopathy of undetermined significance (MGUS). Clinically, prominent erythroderma was associated with disseminated pruriginous papules, which were characteristically spared on the axillary and inguinal regions, the cubital and popliteal fossae as well as abdominal and small positional folds. Histopathologically, there was a significant perivascular infiltrate of lymphohistiocytic cells intermingled with eosinophils in the upper dermis. A biochemical profile revealed the presence of immunoglobulin G kappa chain type monoclonal protein in the serum but the absence of hematological neoplasms. We diagnosed the patient as papuloerythroderma with MGUS, and treated him with narrow-band ultraviolet B and topical steroid. His skin changes were improved, but the sharp gamma-globulin peak remained in the electrophoresis of serum protein. This case suggests an association between papuloerythroderma and MGUS.

  1. Adverse Events of Monoclonal Antibodies Used for Cancer Therapy

    PubMed Central

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  2. [Monoclonal antibodies, overview and outlook of a promising therapeutic option].

    PubMed

    Herschel, Tom; El-Armouche, Ali; Weber, Silvio

    2016-09-01

    Rising numbers of approved monoclonal antibodies for cancer, autoimmune and cardiovascular disease treatment underline the growing importance of this therapeutic option which has been discovered in the late 19th century. However, clinical trials and commercial use started in the late 20th century. The specific mode of action and clinical advantages over standard strategies signify a big step forward not only in terms of treating cancer but various other diseases like psoriasis and multiple sclerosis. New developments in the field of biologicals raise hope for an even broader scope of applications and options for currently untreatable diseases. The following article summarizes the historical development, the status-quo of clinical approvement and current development of monoclonal antibody therapy. PMID:27642741

  3. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF. PMID:22808513

  4. Monoclonal platelet antigen capture assays (MAIPA) and reagents: a statement.

    PubMed

    Kaplan, C; Freedman, J; Foxcroft, Z; Husebekk, A; Metcalfe, P; Muniz-Diaz, E; Ouwehand, W; Panzer, S; Rozman, P; Skogen, B

    2007-11-01

    This statement concerning the monoclonal-specific immobilization of platelet antigens (MAIPA) has been written on behalf of the International Society of Blood Transfusion--Working Party on Platelet Immunology. The MAIPA technique is considered as the gold standard reference technique in platelet immunology. The assay performed with reagents labelled for 'research only' is acceptable as long as it is regularly evaluated by participation of laboratories in national or international workshops held with reference laboratories. PMID:18070272

  5. Mouse monoclonal antibodies against Phytolacca americana antiviral protein PAP I.

    PubMed

    Kaloyanova, D; Kyurkchiev, S; Xu, J; Abouhaidar, M; Ivanov, I

    1999-08-01

    Four hybridoma lines are constructed producing monoclonal antibodies against the pokeweed (Phytolacca americana) antiviral protein PAP I. Two of the antibodies, 4E8 and 5D3, are characterized in more detail. They recognize amino acid sequences rather than conformational changes and their epitopes are 65% distinct. One of these antibodies (5D3) is used to study localization of recombinant PAP I in Escherichia coli cells by immuno-gold electron microscopy.

  6. Smoldering multiple myeloma and monoclonal gammopathy of undetermined significance.

    PubMed

    Bladé, Joan; Rosiñol, Laura

    2006-05-01

    Smoldering multiple myeloma (SMM) consists of the presence of a serum M protein of 30 g/L or more and/or 10% or more bone marrow plasma cells (BMPCs), with no clinical manifestations or symptoms of myeloma. It accounts for approximately 10% of all myelomas, and the median time to progression to a symptomatic multiple myeloma ranges from 2 to 3 years. The main factors for progression are the plasma cell mass (M-protein size and percent of BMPCs), the spinal MRI pattern, the plasma cell proliferative index, and the variant of SMM ("evolving" vs "nonevolving"). Although treatment with thalidomide is promising (based on the results of two phase II trials), outside the context of a clinical trial, a watch-and-wait approach with clinical evaluation every 4 months is recommended until evident symptomatic disease progression occurs. Patients with monoclonal gammopathy of undetermined significance (MGUS) have a serum M protein lower than 30 g/L and a proportion of BMPCs of less than 10%, with no clinical findings or symptoms attributable to the monoclonal gammopathy. MGUS has a high prevalence, and its annual rate of malignant transformation is 1%, such that the actuarial probability of progression to a symptomatic monoclonal gammopathy at 25 years of follow-up is as high as 40%. The factors associated with a higher probability of malignant transformation are a relatively high plasma cell mass, immunoglobulin A M-protein type, and the "evolving" variant. It is recommended that patients with MGUS are monitored annually. Importantly, patients with asymptomatic monoclonal gammopathies must not be treated before the development of overt multiple myeloma. PMID:16615879

  7. Cooperative Immunoassays: Ultrasensitive Assays with Mixed Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ehrlich, Paul H.; Moyle, William R.

    1983-07-01

    Mixtures of certain monoclonal antibodies appear to bind human chorionic gonadotropin in a ``cooperative'' fashion because they form circular complexes with the hormone. Experiments illustrate how this property might be exploited to develop very sensitive immunoassays for human chorionic gonadotropin or any other antigen. Since the assays are not based on competitive inhibition between radiolabeled and unlabeled antigen, they are much more sensitive than a traditional radioimmunoassay in which either one of the same antibodies is used alone.

  8. Monoclonal antibodies against plant proteins recognise animal intermediate filaments.

    PubMed

    Parke, J M; Miller, C C; Cowell, I; Dodson, A; Dowding, A; Downes, M; Duckett, J G; Anderton, B J

    1987-01-01

    Four monoclonal antibodies were raised against polypeptides present in a high-salt detergent-insoluble fraction from cells of Chlamydomonas reinhardtii. Indirect immunofluorescence microscopy of fibroblasts and epithelial cells grown in culture using these plant antibodies revealed staining arrays identical to those obtained with well characterised antibodies to animal intermediate filaments. Immunofluorescence microscopy of Chlamydomonas with these monoclonal antibodies and a monoclonal antibody that recognises all animal intermediate filaments (anti-IFA) gave a diffuse, patchy cytoplasmic staining pattern. Both the plant antibodies and anti-IFA stained interphase onion root tip cells in a diffuse perinuclear pattern. In metaphase through to telophase, the labelling patterns colocalised with those of microtubules. Labelling of the phragmoplast was also detected but not staining of the preprophase band. On Western blots of various animal cell lines and tissues, all the antibodies labelled known intermediate filament proteins. On Western blots of whole Chlamydomonas proteins, all the antibodies labelled a broad band in the 57,000 Mr range, and three antibodies labelled bands around 66,000 and 140,000 Mr but with variable intensities. On Western blots of whole onion root tip proteins, all the antibodies labelled 50,000 Mr (two to three bands) polypeptides and a diffuse band around 60,000 Mr and three of the antibodies also labelled several polypeptides in the 90,000-200,000 Mr range. The consistent labelling of these different bands by several different monoclonal antibodies recognising animal intermediate filaments makes these polypeptides putative plant intermediate filament proteins. PMID:2446785

  9. Boronated monoclonal antibody conjugates for neutron capture therapy

    SciTech Connect

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    This paper describes the effectiveness of /sup 10/B-labeled monoclonal antibodies against Colo-38 human melanoma in vitro. The authors obtained high boron to antibody ratios while maintaining antibody activity by using dextran intermediate carriers to link /sup 10/B to the antibody. They developed a double cell quasi-competitive binding bioassay to minimize the effects of nonspecific binding of boronated complexes to cells. 1 fig., 2 tabs.

  10. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  11. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  12. Monoclonal antibody to an integral membrane protein, the lactose permease.

    PubMed

    Eash, J; Villarejo, M R

    1983-02-01

    A monoclonal IgG antibody directed against the lactose permease was produced from animals inoculated with membranes of a lac Y plasmid strain. The appropriate antibody was selected by a series of ELISA assays in which membranes, purified permease, or a lac Y-Z chimeric protein was the immobilized antigen. The antibody recognizes a portion of the permease exposed on the surface of membrane vesicles but does not inhibit lactose transport.

  13. Drug-induced graves disease from CTLA-4 receptor suppression.

    PubMed

    Borodic, Gary; Hinkle, David M; Cia, Yihong

    2011-01-01

    Monoclonal antibody, ipilimumab, useful for treatment of metastatic melanoma, blocks CTLA-4 mediated T-cell suppression and can also cause a Graves ophthalmopathy like syndrome. Epidemiologic study has linked variant polymorphisms of CTLA-4 receptor gene to the presence of thyroid eye disease. The combination of these observations suggests CTLA-4 mediated T-cell functions are important to the pathogenesis of thyroid-associated eye disease. PMID:21242854

  14. Drug-induced graves disease from CTLA-4 receptor suppression.

    PubMed

    Borodic, Gary; Hinkle, David M; Cia, Yihong

    2011-01-01

    Monoclonal antibody, ipilimumab, useful for treatment of metastatic melanoma, blocks CTLA-4 mediated T-cell suppression and can also cause a Graves ophthalmopathy like syndrome. Epidemiologic study has linked variant polymorphisms of CTLA-4 receptor gene to the presence of thyroid eye disease. The combination of these observations suggests CTLA-4 mediated T-cell functions are important to the pathogenesis of thyroid-associated eye disease.

  15. Monoclonal antibodies as probes of epithelial membrane polarization

    PubMed Central

    1985-01-01

    Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody-antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen. PMID:4066753

  16. Clinical utility of radiolabeled monoclonal antibodies in prostate cancer.

    PubMed

    David, Kevin A; Milowsky, Matthew I; Kostakoglu, Lale; Vallabhajosula, Shankar; Goldsmith, Stanley J; Nanus, David M; Bander, Neil H

    2006-03-01

    Prostate cancer represents an ideal target for radioimmunotherapy based on the pattern of spread, including bone marrow and lymph nodes, sites that typically receive high levels of circulating antibody, and the small volume of disease, ideally suited for antibody delivery and antigen access. This review explores possible antibody targets in prostate cancer and focuses on the potential role for radioimmunotherapy by highlighting several clinical trials involving radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591. Prostate-specific membrane antigen, a highly prostate-restricted transmembrane glycoprotein with increased expression in high-grade, metastatic, and hormone-refractory disease, represents an ideal target for monoclonal antibody therapy in prostate cancer. Radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591 trials using the radiometals yttrium-90 and lutetium-177 have demonstrated manageable myelotoxicity, no significant nonhematologic toxicity, excellent targeting of soft-tissue and bone metastases, and preliminary efficacy including prostate-specific antigen and measurable disease responses. Additional studies are under way to better define the activity of radiolabeled antibody therapy as well as the role for fractionated therapy and combination approaches with taxane-based chemotherapy.

  17. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    PubMed

    Kyle, Robert A; Rajkumar, S Vincent

    2010-04-01

    Monoclonal gammopathy of undetermined significance (MGUS) is characterized by the presence of a serum monoclonal (M) protein level less than 3 g/dL, less than 10% clonal plasma cells in the bone marrow, and the absence of hypercalcemia, renal insufficiency, anemia, or bone lesions attributable to a clonal plasma cell disorder. Patients may be tested for a monoclonal gammopathy by serum protein electrophoresis, immunofixation, and the free light chain (FLC) assay. The prevalence of MGUS is 3% for persons more than 50 years of age and 5% in those more than 70 years of age. The risk of progression to multiple myeloma or a related disorder is 1% per year. The size and type of M protein, the number of bone marrow plasma cells, and the results of the FLC ratio are independent risk factors for progression. Smoldering multiple myeloma (SMM) is a more advanced premalignant phase than MGUS and is characterized by more than 3 g/dL of serum M protein, more than 10% clonal plasma cells in the bone marrow, or both, with no evidence of end-organ damage. PMID:20425398

  18. Monoclonal Antibodies to Shigella Lipopolysaccharide Are Useful for Vaccine Production.

    PubMed

    Lin, Jisheng; Smith, Mark A; Benjamin, William H; Kaminski, Robert W; Wenzel, Heather; Nahm, Moon H

    2016-08-01

    There is a significant need for an effective multivalent Shigella vaccine that targets the most prevalent serotypes. Most Shigella vaccines under development utilize serotype-specific lipopolysaccharides (LPSs) as a major component based on protection and epidemiological data. As vaccine formulations advance from monovalent to multivalent, assays and reagents need to be developed to accurately and reproducibly quantitate the amount of LPSs from multiple serotypes in the final product. To facilitate this effort, we produced 36 hybridomas that secrete monoclonal antibodies (MAbs) against the O antigen on the LPS from Shigella flexneri 2a, Shigella flexneri 3a, and Shigella sonnei We used six of these monoclonal antibodies for an inhibition enzyme-linked immunosorbent assay (iELISA), measuring LPSs with high sensitivity and specificity. It was also demonstrated that the Shigella serotype-specific MAbs were useful for bacterial surface staining detected by flow cytometry. These MAbs are also useful for standardizing the serum bactericidal assay (SBA) for Shigella Functional assays, such as the in vitro bactericidal assay, are necessary for vaccine evaluation and may serve as immunological correlates of immunity. An S. flexneri 2a-specific monoclonal antibody killed S. flexneri 2b isolates, suggesting that S. flexneri 2a LPS may induce cross-protection against S. flexneri 2b. Overall, the Shigella LPS-specific MAbs described have potential utility to the vaccine development community for assessing multivalent vaccine composition and as a reliable control for multiple immunoassays used to assess vaccine potency.

  19. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  20. Prognostic Value of Sex-Hormone Receptor Expression in Non-Muscle-Invasive Bladder Cancer

    PubMed Central

    Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-01-01

    Purpose We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. Materials and Methods We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. Results A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. Conclusion We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence. PMID:25048477

  1. [Progress in preparation of small monoclonal antibodies of knock out technique].

    PubMed

    Liu, Jing; Mao, Xin-min; Li, Lin-lin; Li, Xin-xia; Wang, Ye; Lan, Yi

    2015-10-01

    With the application of monoclonal antibody technology more and more widely, its production technology is becoming more and more perfect. Small molecule monoclonal antibody technology is becoming a hot research topic for people. The application of traditional Chinese medicine small molecule monoclonal antibody technology has been more and more widely, the technology for effective Chinese medicine component knockout provide strong technical support. The preparation of monoclonal antibodies and small molecule knockout technology are reviewed in this paper. The preparation of several steps, such as: in the process of preparation of antigen, hapten carrier coupling, coupling ratio determination and identification of artificial antigen and establishment of animal immunization and hybridoma cell lines of monoclonal antibody, the large-scale preparation; small molecule monoclonal antibody on Immune in affinity chromatography column method is discussed in detail. The author believes that this technology will make the traditional Chinese medicine research on a higher level, and improve the level of internationalization of Chinese medicine research. PMID:26975094

  2. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    PubMed Central

    2012-01-01

    Background The epidermal growth factor receptor (EGFR) is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib. PMID:23234355

  3. Characterization of group II avian adenoviruses with a panel of monoclonal antibodies.

    PubMed Central

    van den Hurk, J V; van Drunen Littel-van den Hurk, S

    1988-01-01

    The interaction between a panel of ten monoclonal antibodies and hemorrhagic enteritis virus, a group II avian adenovirus, was determined. The monoclonal antibodies reacted with all nine isolates of group II avian adenoviruses, but not with any of five types of group I avian adenoviruses. All ten monoclonal antibodies recognized antigenic determinants on the hexon protein of hemorrhagic enteritis virus when analyzed by immunoprecipitation and immunoblotting. They reacted only with the native hexon protein and not with protein denatured by sodium dodecyl sulfate or guanidine-HCl/urea treatment combined with reduction and carboxymethylation. Based on the results of competitive binding assays, the panel of monoclonal antibodies could be subdivided into two groups, which recognized different antigenic domains of the hemorrhagic enteritis virus hexon protein. The monoclonal antibodies in group 1 neutralized hemorrhagic enteritis virus infectivity while the monoclonal antibodies of group 2 did not. Group 1 consisted of eight monoclonal antibodies which could be further subdivided into subgroups 1A, 1B, 1C and 1D. The subdivision of the monoclonal antibodies was based on the degree of blocking in the competitive binding assays and differences in their ability to induce enhancement. In general, the monoclonal antibodies had a higher avidity for the virulent isolate of hemorrhagic enteritis virus than for the avirulent hemorrhagic enteritis virus isolate. Images Fig. 1. Fig. 2. Fig. 4. PMID:2461793

  4. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed Central

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-01-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. Images PMID:2903125

  5. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-12-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. PMID:2903125

  6. Somatostatin receptors.

    PubMed

    Srikant, C B; Patel, Y C

    1985-01-01

    It is now well established that the biological actions of tetradecapeptide somatostatin (somatostatin-14, S-14) are receptor-mediated. These receptors were first quantified in GH4C pituitary tumor cells using [125I-Tyr1] S-14 as radioligand which was found to exhibit high non-specific binding to membrane receptor preparations from normal tissues. Our studies have shown that [125I-Tyr11] S-14 in which the radiolabel is situated away from the N-terminus exhibits significantly lower non-specific binding and therefore is more suitable for S-14 receptor studies. In the CNS, highest concentration of S-14 receptors was found in the cerebral cortex, followed by thalamus, hypothalamus, striatum, amygdala and hippocampus while medulla-pons, cerebellum and spinal cord exhibited negligible binding. Outside the CNS membrane receptors for S-14 have been characterized in pituitary, adrenal cortex and pancreatic acini. In all these tissues a single class of high affinity binding sites for S-14 were present, the receptors in pancreatic acinar cells exhibiting significantly greater affinity for binding S-14 than in other tissues.

  7. Chemoradiotherapy of cancer using boronated monoclonal antibodies. Progress report, December 1, 1982-November 30, 1983

    SciTech Connect

    Soloway, A.H.

    1984-01-01

    The feasibility was established of using antibodies for the delivery of /sup 10/B. Problems faced included 1) preservation of antibody activity following boronation, 2) antigenic receptor site density of the target cells, and 3) delivery of a critical number of /sup 10/B atoms per cell. The linkage of a heavily boronated polymeric species to antibody by means of a single functional group allow for the delivery of a large number /sup 10/B atoms per antibody molecule without a significant reduction in affinity. Both the polyclonally derived anti-thymocyte globulin (ATG) and the monoclonal anti-colorectal carcinoma antibody (17-1A) recognize antigens that are expressed with a density of approximately 10/sup 6/ epitopes per cell. The major concept that we advance is that just as effective cancer chemotherapy is based on the use of a combination of drugs, similarly a combination of compounds could be employed to deliver the requisite amount of /sup 10/B to tumor target cells. This could include compounds such as Na/sub 2/B/sub 12/H/sub 11/Sh together with boronated antibodies directed against tumor associated antigens. (DT)

  8. Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus.

    PubMed

    Chen, Zhe; Wang, Jianmin; Bao, Linlin; Guo, Li; Zhang, Weijia; Xue, Ying; Zhou, Hongli; Xiao, Yan; Wang, Jianwei; Wu, Fan; Deng, Ying; Qin, Chuan; Jin, Qi

    2015-01-01

    The recently identified avian-originated influenza H7N9 virus causes severe pulmonary disease and may lead to death in humans. Currently, treatment options for the prevention and control of fatal H7N9 infections in humans remain limited. Here we characterize two human monoclonal antibodies (HuMAbs), HNIgGA6 and HNIgGB5, by screening a Fab antibody phage library derived from patients who recovered from H7N9 infection. Both antibodies exhibit high neutralizing activity against H7N9 virus in cells. Two amino acids in the receptor-binding site, 186V and 226L, are crucial for the binding of these two HuMAbs to viral haemagglutinin antigens. Prophylaxis with HNIgGA6 and HNIgGB5 confers significant immunity against H7N9 virus in a mouse model and significantly reduces the pulmonary virus titre. When administered post infection, therapeutic doses of the HuMAbs also provide robust protection against lethality. These antibodies might represent a potential alternative or adjunct to H7N9 pandemic interventions. PMID:25819694

  9. Production and characterization of monoclonal antibodies against rat platelet GPIIb/IIIa

    SciTech Connect

    Miyazaki, H.; Tamura, S.; Sudo, T.; Suzuki, T. )

    1990-09-15

    Four murine monoclonal antibodies against rat platelets were produced by fusion of spleen cells from mice intravenously immunized with whole rat platelets. All four antibodies immunoprecipitated two major platelet membrane proteins with apparent molecular weights of 130,000 and 82,000 (nonreduced) and of 120,000 and 98,000 (reduced), which were structurally analogous to human glycoprotein (GP) IIb/IIIa, i.e. rat GPIIb/IIIa. Two of four antibodies, named P9 and P55, strongly inhibited adenosine diphosphate (ADP)-induced aggregation of washed rat platelets and caused approximately 50% inhibition of human fibrinogen binding to ADP-stimulated rat platelets, suggesting that rat GPIIb/IIIa serves as a fibrinogen receptor in ADP-induced aggregation. In contrast, two other antibodies, named P14 and P34, themselves caused aggregation of rat platelets in platelet-rich plasma (PRP) and the secretion of 14C-serotonin from 14C-serotonin-labeled PRP. These results indicate that rat GPIIb/IIIa plays an important role in platelet aggregation.

  10. A Cancer-specific Monoclonal Antibody Recognizes the Aberrantly Glycosylated Podoplanin

    PubMed Central

    Kato, Yukinari; Kaneko, Mika Kato

    2014-01-01

    Podoplanin (PDPN/Aggrus/T1α), a platelet aggregation-inducing mucin-like sialoglycoprotein, is highly expressed in many cancers and normal tissues. A neutralizing monoclonal antibody (mAb; NZ-1) can block the association between podoplanin and C-type lectin-like receptor-2 (CLEC-2) and inhibit podoplanin-induced cancer metastasis, but NZ-1 reacts with podoplanin-expressing normal cells such as lymphatic endothelial cells. In this study, we established a cancer-specific mAb (CasMab) against human podoplanin. Aberrantly glycosylated podoplanin including keratan sulfate or aberrant sialylation, which was expressed in LN229 glioblastoma cells, was used as an immunogen. The newly established LpMab-2 mAb recognized both an aberrant O-glycosylation and a Thr55-Leu64 peptide from human podoplanin. Because LpMab-2 reacted with podoplanin-expressing cancer cells but not with normal cells, as shown by flow cytometry and immunohistochemistry, it is an anti-podoplanin CasMab that is expected to be useful for molecular targeting therapy against podoplanin-expressing cancers. PMID:25080943

  11. Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play

    PubMed Central

    Lambour, Jennifer; Naranjo-Gomez, Mar; Piechaczyk, Marc; Pelegrin, Mireia

    2016-01-01

    Monoclonal antibodies (mAbs), which currently constitute the main class of biotherapeutics, are now recognized as major medical tools that are increasingly being considered to fight severe viral infections. Indeed, the number of antiviral mAbs developed in recent years has grown exponentially. Although their direct effects on viral blunting have been studied in detail, their potential immunomodulatory actions have been overlooked until recently. The ability of antiviral mAbs to modulate antiviral immune responses in infected organisms has recently been revealed. More specifically, upon recognition of their cognate antigens, mAbs form immune complexes (ICs) that can be recognized by the Fc receptors expressed on different immune cells of infected individuals. This binding may be followed by the modulation of the host immune responses. Harnessing this immunomodulatory property may facilitate improvements in the therapeutic potential of antiviral mAbs. This review focuses on the role of ICs formed with different viral determinants and mAbs in the induction of antiviral immune responses in the context of both passive immunotherapies and vaccination strategies. Potential deleterious effects of ICs on the host immune response are also discussed. PMID:27530750

  12. TRAIL-R2 Superoligomerization Induced by Human Monoclonal Agonistic Antibody KMTR2.

    PubMed

    Tamada, Taro; Shinmi, Daisuke; Ikeda, Masahiro; Yonezawa, Yasushi; Kataoka, Shiro; Kuroki, Ryota; Mori, Eiji; Motoki, Kazuhiro

    2015-01-01

    The fully human monoclonal antibody KMTR2 acts as a strong direct agonist for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2), which is capable of inducing apoptotic cell death without cross-linking. To investigate the mechanism of direct agonistic activity induced by KMTR2, the crystal structure of the extracellular region of TRAIL-R2 and a Fab fragment derived from KMTR2 (KMTR2-Fab) was determined to 2.1 Å resolution. Two KMTR2-Fabs assembled with the complementarity-determining region 2 of the light chain via two-fold crystallographic symmetry, suggesting that the KMTR2-Fab assembly tended to enhance TRAIL-R2 oligomerization. A single mutation at Asn53 to Arg located at the two-fold interface in the KMTR2 resulted in a loss of its apoptotic activity, although it retained its antigen-binding activity. These results indicate that the strong agonistic activity, such as apoptotic signaling and tumor regression, induced by KMTR2 is attributed to TRAIL-R2 superoligomerization induced by the interdimerization of KMTR2. PMID:26672965

  13. Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer.

    PubMed

    Beyer, Ines; van Rensburg, Ruan; Strauss, Robert; Li, ZongYi; Wang, Hongjie; Persson, Jonas; Yumul, Roma; Feng, Qinghua; Song, Hui; Bartek, Jiri; Fender, Pascal; Lieber, André

    2011-11-15

    The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neu-positive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy.

  14. A Monoclonal Antibody Based Capture ELISA for Botulinum Neurotoxin Serotype B: Toxin Detection in Food

    PubMed Central

    Stanker, Larry H.; Scotcher, Miles C.; Cheng, Luisa; Ching, Kathryn; McGarvey, Jeffery; Hodge, David; Hnasko, Robert

    2013-01-01

    Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT), produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A – H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs) capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture) ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD’s) for individual antibodies ranging from 10 to 48 × 10−11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D.), ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule) and readily detects toxin in those food samples tested. PMID:24253240

  15. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  16. Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells.

    PubMed

    Corti, Davide; Lanzavecchia, Antonio

    2014-10-01

    In this article, we highlight the advantages of isolating human monoclonal antibodies from the human memory B cells and plasma cell repertoires by using high-throughput cellular screens. Memory B cells are immortalized with high efficiency using Epstein-Barr virus (EBV) in the presence of a toll-like receptor (TLR) agonist, while plasma cells are maintained in single-cell cultures by using interleukin 6 (IL-6) or stromal cells. In both cases, multiple parallel assays, including functional assays, can be used to identify rare cells that produce antibodies with unique properties. Using these methods, we have isolated potent and broadly neutralizing antibodies against a variety of viruses, in particular, a pan-influenza-A-neutralizing antibody and an antibody that neutralizes four different paramyxoviruses. Given the high throughput and the possibility of directly screening for function (rather than just binding), these methods are instrumental to implement a target-agnostic approach to identify the most effective antibodies and, consequently, the most promising targets for vaccine design. This approach is exemplified by the identification of unusually potent cytomegalovirus-neutralizing antibodies that led to the identification of the target, a pentameric complex that we are developing as a candidate vaccine. PMID:26104354

  17. The potential role of anti-PCSK9 monoclonal antibodies in the management of hypercholesterolemia.

    PubMed

    Lepor, Norman E; Contreras, Laurn; Desai, Chirag; Kereiakes, Dean J

    2014-01-01

    Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability in developed nations, and it is rising rapidly in other parts of the developing world. Levels of low-density lipoprotein cholesterol (LDL-C) are directly correlated with atherogenic risk, and statin-based therapy is the most common management for these patients. However, many patients exhibit resistance to and/or adverse effects from statin therapy, and there is a need for adjunctive therapies or statin alternatives for these patients. The recently discovered human protein proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in LDL-C metabolism. PCSK9 promotes LDL receptor (LDL-R) degradation with a consequent reduction in LDL-R density and an increase in LDL-C levels. Consequently, PCSK9 inhibition to reduce LDL-C levels has become a primary focus for drug development. Numerous clinical trials focusing on monoclonal antibodies against PCSK9 have demonstrated efficacy equal to or greater than statin therapy for lowering LDL-C levels. Long-term trials are underway to assess safety, tolerability, and ability to reduce ASCVD. PMID:25662924

  18. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits.

    PubMed

    Robinson, James E; Hastie, Kathryn M; Cross, Robert W; Yenni, Rachael E; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Smira, Ashley A; Garry, Courtney E; Bradley, Benjamin T; Yu, Haini; Shaffer, Jeffrey G; Boisen, Matt L; Hartnett, Jessica N; Zandonatti, Michelle A; Rowland, Megan M; Heinrich, Megan L; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C; Andersen, Kristian G; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J; Fonnie, Richard; Jalloh, Simbirie C; Kargbo, Brima; Vandi, Mohamed A; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A; Okokhere, Peter O; Follarin, Onikepe A; Schieffelin, John S; Pitts, Kelly R; Geisbert, Joan B; Kulakoski, Peter C; Wilson, Russell B; Happi, Christian T; Sabeti, Pardis C; Gevao, Sahr M; Khan, S Humarr; Grant, Donald S; Geisbert, Thomas W; Saphire, Erica Ollmann; Branco, Luis M; Garry, Robert F

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  19. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    SciTech Connect

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki; Oshita, Masatoshi; Ideno, Shoji; Yunoki, Mikihiro; Kuhara, Motoki; Yamamoto, Naomasa; Okuno, Yoshinobu; Ikuta, Kazuyoshi

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  20. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    PubMed

    Liao-Chan, Sindy; Daine-Matsuoka, Barbara; Heald, Nathan; Wong, Tiffany; Lin, Tracey; Cai, Allen G; Lai, Michelle; D'Alessio, Joseph A; Theunissen, Jan-Willem

    2015-01-01

    Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs) that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  1. Epitope Characterization of Sero-Specific Monoclonal Antibody to Clostridium botulinum Neurotoxin Type A

    PubMed Central

    Ballegeer, Erin; Weedmark, Kelly A.; Elias, M.D.; Al-Saleem, Fetweh H.; Ancharski, Denise M.; Simpson, Lance L.; Berry, Jody D.

    2011-01-01

    Botulinum neurotoxins (BoNTs) are extremely potent toxins that can contaminate foods and are a public health concern. Anti-BoNT antibodies have been described that are capable of detecting BoNTs; however there still exists a need for accurate and sensitive detection capabilities for BoNTs. Herein, we describe the characterization of a panel of eight monoclonal antibodies (MAbs) generated to the non-toxic receptor-binding domain of BoNT/A (HC50/A) developed using a high-throughput screening approach. In two independent hybridoma fusions, two groups of four IgG MAbs were developed against recombinant HC50/A. Of these eight, only a single MAb, F90G5-3, bound to the whole BoNT/A protein and was characterized further. The F90G5-3 MAb slightly prolonged time to death in an in vivo mouse bioassay and was mapped by pepscan to a peptide epitope in the N-terminal subdomain of HC50/A (HCN25/A) comprising amino acid residues 985WTLQDTQEIKQRVVF999, an epitope that is highly immunoreactive in humans. Furthermore, we demonstrate that F90G5-3 binds BoNT/A with nanomolar efficiency. Together, our results indicate that F90G5-3 is of potential value as a diagnostic immunoreagent for BoNT/A capture assay development and bio-forensic analysis. PMID:22149274

  2. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants

    PubMed Central

    Dashivets, Tetyana; Thomann, Marco; Rueger, Petra; Knaupp, Alexander; Buchner, Johannes; Schlothauer, Tilman

    2015-01-01

    Therapeutic performance of recombinant antibodies relies on two independent mechanisms: antigen recognition and Fc-mediated antibody effector functions. Interaction of Fc-fragment with different FcR triggers antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity and determines longevity of the antibody in serum. In context of therapeutic antibodies FcγRs play the most important role. It has been demonstrated that the Fc-attached sugar moiety is essential for IgG effector functionality, dictates its affinity to individual FcγRs and determines binding to different receptor classes: activating or inhibitory. In this study, we systematically analyze effector functions of monoclonal IgG1 and its eight enzymatically engineered glycosylation variants. The analysis of interaction of glycovariants with FcRs was performed for single, as well as for antigen-bound antibodies and IgGs in a form of immune complex. In addition to functional properties we addressed impact of glycosylation on the structural properties of the tested glycovariants. We demonstrate a clear impact of glycosylation pattern on antibody stability and interaction with different FcγRs. Consistent with previous reports, deglycosylated antibodies failed to bind all Fcγ-receptors, with the exception of high affinity FcγRI. The FcγRII and FcγRIIIa binding activity of IgG1 was observed to depend on the galactosylation level, and hypergalactosylated antibodies demonstrated increased receptor interaction. Sialylation did not decrease the FcγR binding of the tested IgGs; in contrast, sialylation of antibodies improved binding to FcγRIIa and IIb. We demonstrate that glycosylation influences to some extent IgG1 interaction with FcRn. However, independent of glycosylation pattern the interaction of IgG1 with a soluble monomeric target surprisingly resulted in an impaired receptor binding. Here, we demonstrate, that immune complexes (IC), induced by multimeric ligand, compensated for the

  3. A novel member of the integrin receptor family mediates Arg-Gly-Asp- stimulated neutrophil phagocytosis

    PubMed Central

    1989-01-01

    Human neutrophils (PMN) express a heterodimeric receptor that has ligand binding specificity for the Arg-Gly-Asp (RGD) sequence within many adhesive proteins. A monoclonal antibody, B6H12, which binds to this receptor, inhibits both RGD-mediated ligand binding and stimulation of IgG-mediated phagocytosis by fibronectin, fibrinogen, vitronectin, von Willebrand's factor, and collagen type IV. By several criteria this receptor is neither a known very late antigen, a known cytoadhesin (gp IIb/IIIa-vitronectin receptor), nor a member of the LFA- 1, Mac-1, p150,95 group of integrin receptors. Ligand binding via this receptor is rapidly inactivated by products of the myeloperoxidase- hydrogen peroxide-halide system of PMN. We conclude that this receptor, for which we propose the name leukocyte response integrin, is a signal- transducing molecule on PMN which may have a significant early role in modulation of PMN function at inflammatory sites. PMID:2785522

  4. Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer

    PubMed Central

    Julien, Daniel C; Behnke, Steven; Wang, Guankui; Murdoch, Gordon K

    2011-01-01

    Due to their excellent specificity for a single epitope, monoclonal antibodies (mAbs) present a means of influencing the function of cells at the molecular level. In particular they show great promise in the treatment of cancer because they can inhibit cancer cell proliferation, tumor angiogenesis, invasiveness and malignant spread of cancerous cells. Many mAbs are in various stages of testing and 11 are currently marketed in the US or Europe for the treatment of cancers that express particular antigens such as human epidermal growth factor receptor-2, CD20, epidermal growth factor receptor and vascular endothelial growth factor. Strategies to conjugate mAbs to toxins, radioactive isotopes and chemotherapeutic drugs to improve efficacy are under intense investigation and numerous immunoconjugates have been studied in the clinical setting. However, the molecules have limitations, and so nanomaterials (NMs), which potentially offer more flexibility of design and functionality in providing platforms for binding of multiple therapeutic agents in a single structure, are being examined as an alternative. Studies utilizing mAb-targeted NMs have shown that they exhibit focused targeting, improved pharmacokinetics and improved “passive” drug delivery via leaky vasculature. Nevertheless, before they can be utilized to treat cancer, potential NM toxicity must be thoroughly investigated. Thus, rigorous testing of NM-mAb conjugates in both in vitro and in vivo systems is underway to determine how NM-mAb conjugates will interact with cells and tissues of the body. In this review, we discuss the broad range of nanomaterials that are under investigation as potential platforms for the presentation of mAbs either as single therapeutics or in combination with other drugs and their advantages and limitations in specifically targeting cancer. PMID:21814040

  5. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    PubMed

    Ye, Xiaohua; Fan, Chen; Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-03-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  6. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and. alpha. -bungarotoxin

    SciTech Connect

    Conti-Tronconi, B.M.; Tang, Fen; Diethelm, B.M.; Spencer, S.R. ); Reinhardt-Maelicke, S.; Maelicke, A. )

    1990-07-03

    Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) {alpha} subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, the authors used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind {alpha}-bungarotoxin ({alpha}-BTX) and several {alpha}-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the {alpha}-subunit, and bind to AChR in a mutually exclusive fashion with {alpha}-BTX. The binding of WF5 and W2 to Torpedo AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. Peptides {alpha}181-200 and {alpha}55-74 both inhibited binding of {sup 125}I-{alpha}-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound {alpha}-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR {alpha} subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region.

  7. Anti-CD25 monoclonal antibody Fc variants differentially impact regulatory T cells and immune homeostasis.

    PubMed

    Huss, David J; Pellerin, Alex F; Collette, Brian P; Kannan, Arun K; Peng, Liaomin; Datta, Abhishek; Wipke, Brian T; Fontenot, Jason D

    2016-07-01

    Interleukin-2 (IL-2) is a critical regulator of immune homeostasis through its non-redundant role in regulatory T (Treg) cell biology. There is major interest in therapeutic modulation of the IL-2 pathway to promote immune activation in the context of tumour immunotherapy or to enhance immune suppression in the context of transplantation, autoimmunity and inflammatory diseases. Antibody-mediated targeting of the high-affinity IL-2 receptor α chain (IL-2Rα or CD25) offers a direct mechanism to target IL-2 biology and is being actively explored in the clinic. In mouse models, the rat anti-mouse CD25 clone PC61 has been used extensively to investigate the biology of IL-2 and Treg cells; however, there has been controversy and conflicting data on the exact in vivo mechanistic function of PC61. Engineering antibodies to alter Fc/Fc receptor interactions can significantly alter their in vivo function. In this study, we re-engineered the heavy chain constant region of an anti-CD25 monoclonal antibody to generate variants with highly divergent Fc effector function. Using these anti-CD25 Fc variants in multiple mouse models, we investigated the in vivo impact of CD25 blockade versus depletion of CD25(+) Treg cells on immune homeostasis. We report that immune homeostasis can be maintained during CD25 blockade but aberrant T-cell activation prevails when CD25(+) Treg cells are actively depleted. These results clarify the impact of PC61 on Treg cell biology and reveal an important distinction between CD25 blockade and depletion of CD25(+) Treg cells. These findings should inform therapeutic manipulation of the IL-2 pathway by targeting the high-affinity IL-2R.

  8. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody

    PubMed Central

    Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-01-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  9. Combination of neutralizing monoclonal antibodies against Hepatitis C virus E2 protein effectively blocks virus infection.

    PubMed

    Bose, Mihika; Mullick, Ranajoy; Das, Soma; Das, Saumitra; Karande, Anjali A

    2016-09-15

    Hepatitis C virus (HCV) represents a major global health threat. The envelope glycoproteins, E1-E2 of HCV play an important role in infection by binding to hepatocyte surface receptors leading to viral entry. Several regions on the E1-E2 are conserved for maintaining structural stability, despite the high mutation rate of HCV. Identification of antigenic determinants in these domains would aid in the development of anti-virals. The present study was aimed to delineate neutralizing epitopes by generating monoclonal antibodies (mAbs) to envelope proteins that can block virus binding and entry. Using HCV-like particles (HCV-LPs) corresponding to genotype 3a (prevalent in India), we obtained three mAbs specific for the E2 protein that significantly inhibited virus binding to hepatoma cells. Using overlapping protein fragments and peptides of the E2 protein, the epitopes corresponding to the mAbs were delineated. MAbs H6D3 and A10F2 recognise sequential linear epitopes, whereas, mAb E3D8 recognises a discontinuous epitope. The epitope of mAb E3D8 overlaps with the CD81 receptor-binding site and that of mAb A10F2 with the hypervariable region 2 of the E2 protein. The epitopes corresponding to these mAbs are distinct and unique. A combination of these antibodies significantly inhibited HCV binding and entry in both HCV pseudoparticle (in vitro) and HCV cell culture (ex vivo) system compared to the mAbs alone (P<0.0001). In conclusion, our findings support the potential of employing a cocktail of neutralizing mAbs in the management of HCV infection. PMID:27574733

  10. Monoclonal IgA Antibodies for Aflatoxin Immunoassays.

    PubMed

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2-50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  11. Serological classification of Neisseria gonorrhoeae with monoclonal antibody coagglutination reagents.

    PubMed Central

    Coghill, D V; Young, H

    1987-01-01

    A total of 357 clinical isolates of Neisseria gonorrhoeae from 286 patients were classified serologically using two independently developed panels of monoclonal coagglutination reagents. The Pharmacia (Ph) Diagnostics panel comprised 14 reagents, five specific for serogroup WI strains and nine specific for serogroup WII/III strains, whereas the Genetic Systems (GS) panel comprised 14 reagents, seven specific for serogroup WI strains and seven specific for serogroup WII/III strains. Serogroup WI represented 45% and WII/III represented 55% of the patients. Using the monoclonal antibody reagents, the serogroups could be further subdivided into so-called serovars. The Ph reagents identified four WI serovars and 21 WII/III serovars, whereas the GS reagents identified 10 WI serovars and 18 WII/III serovars. By combining the results obtained with each panel, 15 Ph/GS WI serovars and 33 Ph/GS WII/III serovars were recognised. In the WI isolates, one predominating serovar was recognised, whereas in the WII/III isolates, no single serovar predominated and a much greater variety of serovars was identified. The serovar patterns for men and women patients were very similar, except for one WII/III serovar that was 10 times more common in isolates from men than from women. Most isolates from different anatomical sites in the same patient were of the same serogroup and serovar. Two double infections were found. One patient had a genital infection with serogroup WII/III and a rectal infection with serogroup WI. Another patient with genital, rectal, and throat infections with serogroup WI was found to have gonococci of different GS serovars at each site. It was concluded that the level of discrimination achieved with the monoclonal antibody reagents should prove to be valuable in studying the micro epidemiology of gonococcal infection. PMID:3115886

  12. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    PubMed Central

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  13. The use of combinations of monoclonal antibodies in clinical oncology.

    PubMed

    Henricks, Linda M; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H

    2015-12-01

    Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future.

  14. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.

    PubMed

    Oltolina, Francesca; Gregoletto, Luca; Colangelo, Donato; Gómez-Morales, Jaime; Delgado-López, José Manuel; Prat, Maria

    2015-02-10

    Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.

  15. Production of Monoclonal Antibodies in Plants for Cancer Immunotherapy

    PubMed Central

    Moussavou, Ghislain; Ko, Kisung; Lee, Jeong-Hwan; Choo, Young-Kug

    2015-01-01

    Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants. PMID:26550566

  16. Jet injection of a monoclonal antibody: A preliminary study.

    PubMed

    Hogan, N Catherine; Cloutier, A M; Hunter, I W

    2015-01-01

    Monoclonal antibodies (mAbs) represent a major group of biotherapeutics. The high concentration and volume of drug administered together with a shift to administration via the subcutaneous route have generated interest in alternative delivery technologies. The feasibility of using a novel, highly controllable jet injection technology to deliver a mAb is presented. The effect of delivery parameters on protein structure were evaluated and compared with delivery using a conventional needle and syringe. Injection of mAb into a rat model showed that jet injection using the device resulted in more rapid absorption and longer duration of exposure.

  17. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  18. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  19. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions.

    PubMed

    Rodgers, Kyla R; Chou, Richard C

    2016-11-01

    Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date. PMID:27460206

  20. A monoclonal antibody distinguishes two types of phosphatidylinositol 4-kinase.

    PubMed Central

    Endemann, G C; Graziani, A; Cantley, L C

    1991-01-01

    A monoclonal antibody has been developed against the type II PtdIns 4-kinase from bovine brain. This antibody, 4C5G, causes greater than 90% inhibition of the type II PtdIns 4-kinase from bovine brain, rat brain and human erythrocytes. However, it fails to inhibit type III PtdIns 4-kinase from bovine brain or PtdIns 3-kinase from rat liver. These results suggest that type II and type III PtdIns 4-kinases are distinct gene products, and that 4C5G will be useful in studying the function of the type II PtdIns 4-kinase. PMID:1846531

  1. Development of monoclonal antibodies in China: overview and prospects.

    PubMed

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Hu, Hao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  2. Monoclonal antibodies to hepatitis B surface antigen: production and characterization.

    PubMed

    Hlozánek, I; Dostálová, V; Korec, E; Zelený, V; König, J; Nĕmecek, V

    1986-01-01

    Hybridomas secreting anti-HBsAg antibodies were produced by fusion of the mouse myeloma cell line SP2/0 with lymphocytes from mice immunized with purified HBsAg. All clones produced antibodies of the IgG1 idiotype that react with the subtype a determinant of HBsAg. An enzyme immunoassay for detection of HBsAg in human sera using monoclonal antibodies was developed and compared with commercial Sevatest ELISA HBsAg/micro I kit for detection of HBsAg in clinical serum samples. PMID:3527770

  3. Development of Monoclonal Antibodies in China: Overview and Prospects

    PubMed Central

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  4. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.

  5. Large-scale production of monoclonal antibodies in suspension culture.

    PubMed

    Backer, M P; Metzger, L S; Slaber, P L; Nevitt, K L; Boder, G B

    1988-10-01

    Monoclonal antibodies are being manufactured for clinical trials in suspension culture at the 1300-L scale. Suspension culture offers some advantages relative to high-density mammalian cell culture methods; in particular, the ability to closely monitor the behavior of cells in a homogeneous environment. Computer control and on-line mass spectrography of exit gases provide instantaneous information about the culture metabolic activity. Air sparging and agitation by marine impeller provide aeration sufficient to maintain a constant dissolved oxygen tension at cell concentrations up to 5.0 x 10(6) cells/mL without causing apparent cell damage.

  6. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R. . Dept. of Radiology)

    1989-12-01

    The overall objective of this research project is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Both diagnostic and therapeutic applications of labeled MAbs could be improved as a result of knowledge obtained through the exploitation of the advantageous imaging characteristics associated with PET. By labeling MAbs with positron-emitting nuclides, it should be possible to quantitate the dynamics of their three-dimensional distribution in vivo. Our long-term goals are to apply this approach. 3 tabs.

  7. Current status of tumor imaging with monoclonal antibodies.

    PubMed

    Blend, M J

    1991-12-01

    Although the full potential of MoAb imaging has yet to be realized, technologic advances continue with great intensity at a number of academic and industrial research institutions. Continuous production of MoAbs will eventually yield a variety of highly specific antibodies and novel approaches for improving cancer detection. As new diagnostic and therapeutic methods continue to be developed, MoAbs will begin to play a major role as targeted carriers, provided adequate funding from industry and government can be readily obtained. At present, the future of monoclonal antibodies in diagnosis and therapy for cancer patients appears promising. PMID:1790666

  8. Characterization of rabbit cells by monoclonal and polyclonal antibodies.

    PubMed Central

    Ponsard, D C; Cinader, B; Chou, C T; Dubiski, S

    1986-01-01

    Reagents for the identification of rabbit cell markers have been developed at a relatively slow rate. In this paper, rabbit cells are being characterized by polyclonal antibodies against a T-cell antigen (RTLA), a B-cell antigen (RABELA) and an analogue of murine Ia antigen. A number of monoclonal antibodies, specific for lymphocytes and/or bone marrow and/or polymorphonuclear leucocytes, have been used for the analysis of cells with identifiable membrane antigens. Populations that have cells with two of the above antigens in the membranes were identified. To these ends, complement-mediated cell kill by antisera alone and in mixtures was employed. PMID:3489667

  9. Harnessing Fc receptor biology in the design of therapeutic antibodies.

    PubMed

    Sondermann, Peter; Szymkowski, David E

    2016-06-01

    The antibody Fc domain engages the small family of Fc receptors, expressed on cells of the immune system and beyond, to stimulate a rich diversity of positive and negative cell-mediated effector functions. The emergence of monoclonal antibodies for the treatment of various pathologic conditions has provided additional insights into Fc receptor biology, and has suggested new strategies to exploit Fc receptor interactions to create improved therapeutics. While most therapeutic IgGs approved to date have retained a native IgG Fc domain, the knowledge gained over the last decades has provided the opportunity to design tailored and more efficacious immunotherapies exhibiting fewer side effects and longer half-life. This review summarizes recent advances made in the design of biologics that modulate or exploit Fc receptor-IgG interactions, and describes innovative drugs currently under investigation in clinical trials that have been precisely tuned to achieve a desired therapeutic effect. PMID:27038127

  10. Somatostatin receptors.

    PubMed

    Patel, Y C; Srikant, C B

    1997-12-01

    The diverse biological effects of somatostatin (SRIF) are mediated by a family of G protein-coupled receptors (termed sst) that are encoded by five nonallelic genes located on separate chromosomes. The receptors can be further divided into two subfamilies: sst(2,3,5) react with octapeptide and hexapeptide SRIF analogues and belong to one subclass; sst(1,4) react poorly with these compounds and fall into another subclass. This review focuses on the molecular pharmacology and function of these receptors, with particular emphasis on the ligand-binding domain, subtype-selective analogues, agonist-dependent receptor regulation and desensitization responses, subtype-specific effector coupling, and signal transduction pathways responsible for inhibiting cell secretion and cell growth or induction of apoptosis.

  11. Lipoxin receptors.

    PubMed

    Romano, Mario; Recchia, Irene; Recchiuti, Antonio

    2007-01-01

    Lipoxins (LXs) represent a class of arachidonic acid (AA) metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO) and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2) in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL). In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1). This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed. PMID:17767357

  12. Evaluation of commercial antibodies against human sphingosine-1-phosphate receptor 1.

    PubMed

    Talmont, Franck; Moulédous, Lionel

    2014-05-01

    Sphingosine-1-phosphate receptor 1 (S1P1), also called endothelial differentiation gene 1, plays an important role in migration, proliferation, and survival of several types of cells including endothelial cells and lymphocytes and is involved in multiple sclerosis. Two commercial rabbit anti-S1P1 antibodies (polyclonal and monoclonal) were tested on CHO cells expressing S1P1 receptors fused to the green fluorescent protein at the C-terminal end and on Pichia pastoris and HEK cells expressing cmyc-tagged S1P1. Polyclonal antibodies did not give any signal by Western blot, immunofluorescence, and flow cytofluorometry. Monoclonal antibodies were able to reveal an unspecific band by Western blot performed on various cell types. Consequently, in our hands and using our protocols, we show that these antibodies did not specifically detect S1P1 receptors.

  13. Selection of cell lines resistant to anti-transferrin receptor antibody: evidence for a mutation in transferrin receptor.

    PubMed Central

    Lesley, J F; Schulte, R J

    1984-01-01

    Some anti-murine transferrin receptor monoclonal antibodies block iron uptake in mouse cell lines and inhibit cell growth. We report here the selection and characterization of mutant murine lymphoma cell lines which escape this growth inhibition by anti-transferrin receptor antibody. Growth assays and immunoprecipitation of transferrin receptor in hybrids between independently derived mutants or between mutants and antibody-susceptible parental cell lines indicate that all of the selected lines have a similar genetic alteration that is codominantly expressed in hybrids. Anti-transferrin receptor antibodies and transferrin itself still bind to the mutant lines with saturating levels and Kd values very similar to those of the parental lines. However, reciprocal clearing experiments by immunoprecipitation and reciprocal blocking of binding to the cell surface with two anti-transferrin receptor antibodies indicate that the mutant lines have altered a fraction of their transferrin receptors such that the growth-inhibiting antibody no longer binds, whereas another portion of their transferrin receptors is similar to those of the parental lines and binds both antibodies. These results argue that the antibody-selected mutant cell lines are heterozygous in transferrin receptor expression, probably with a mutation in one of the transferrin receptor structural genes. Images PMID:6092931

  14. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies

    PubMed Central

    Cao, Yanguang

    2014-01-01

    Target-mediated drug disposition (TMDD) usually accounts for nonlinear pharmacokinetics (PK) of drugs whose distribution and/or clearance are affected by their targets owing to high affinity and limited capacity. TMDD is frequently reported for monoclonal antibodies (mAb) for such reason. Minimal physiologically-based pharmacokinetic models (mPBPK), which accommodate the unique PK behaviors of mAb, provide a general approach for analyzing mAbs PK and predicting mAb interstitial concentrations in two groups of tissues. This study assessed the feasibility of incorporating TMDD into mPBPK models to consider target-binding in either plasma (cTMDD) or interstitial fluid (ISF) (pTMDD). The dose-related signature profiles of the pTMDD model reveal a parallel early decay phase, in contrast with the cTMDD model that exhibits a faster initial decline for low doses. The parallel early phase in the pTMDD model is associated with the slow perivascular extravasation of mAb, which restricts the initial decline regardless of interstitial target-mediated elimination. The cTMDD and pTMDD models both preserve the long terminal phase that is typically perceived in conventional two-compartment (2CM) and TMDD models. Having TMDD in ISF impacts the typical relationships between plasma concentrations and receptor occupancy, and between saturation of apparent nonlinear clearance and saturation of receptors. The vascular reflection coefficient (σv) was found to affect receptor occupancy in ISF. In the cTMDD model, saturation of nonlinear clearance is equivalent to saturation of receptors. However, in the pTMDD model, they are no longer equal and all parameters pertaining to receptors or receptor binding (Rtotal, KD, Kss, kint) shifts such relationships. Different TMDD models were utilized in analyzing PK for seven mAbs from digitized literature data. When the target is in plasma, the cTMDD model performed similarly to the 2CM and TMDD models, but with one less system parameter. When the

  15. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses

    PubMed Central

    Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Howell, Katie A.; Patel, Sonal J.; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R.; Frei, Julia C.; Nyakatura, Elisabeth K.; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L.; Froude, Jeffrey W.; Saphire, Erica Ollmann; Herbert, Andrew S.; Wirchnianski, Ariel S.; Lear-Rooney, Calli M.; Alter, Galit; Dye, John M.; Glass, Pamela J.; Warfield, Kelly L.

    2015-01-01

    ABSTRACT The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus

  16. Efficient generation of human IgA monoclonal antibodies.

    PubMed

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  17. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  18. Quantitation of residual mouse DNA in monoclonal antibody based products.

    PubMed

    Per, S R; Aversa, C R; Sito, A F

    1990-01-01

    The identification and characterization of cell substrates and testing of bulk and final products is an important issue which must be addressed by manufacturers. In view of the fact that hundreds of applications for Investigational New Drugs (IND) have been submitted over the past few years, there is an obvious need for testing of these products. Detection of DNA by molecular hybridization has been used for various applications including the quantitation and characterization of DNA in biological products. We have developed a precise assay based on hybridization for the detection and quantitation of residual genomic DNA. In order to reduce protein interference, a specific pretreatment method for isolation of DNA in monoclonal antibody based products was implemented. We have used the assay to evaluate levels of contaminating DNA in prepared lots of monoclonal antibodies. Validation experiments demonstrated a sensitivity below 10 pg DNA using nick-translated 32P-labelled genomic DNA probes. The assay allows accurate quantitation of residual DNA in biologics.

  19. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  20. Bothropic antivenom based on monoclonal antibodies, is it possible?

    PubMed

    Frauches, Thiago S; Petretski, Jorge H; Arnholdt, Andrea C V; Lasunskaia, Elena B; de Carvalho, Eulógio C Q; Kipnis, Thereza L; da Silva, Wilmar D; Kanashiro, Milton M

    2013-09-01

    Neutralizing monoclonal antibodies against three major toxic components of Bothrops atrox venom were produced and tested. The mAbs against phospholipase A2, hemorrhagic metalloprotease, and thrombin-like enzymes were produced in large amounts and purified with caprylic acid followed by ammonium sulfate precipitation. Purified mAbs were analyzed by SDS-PAGE and their ability to neutralize the respective toxins was tested. Five Swiss mice were injected i.p. with 13.5 mg of pooled mAbs and challenged via s.c. route with venom. Survival rate was recorded for the next 48 h. All mice treated and challenged with venom survived, whereas only one mouse in the control group survived. Bleeding time in mice treated with mAbs was similar to that observed in control mice. Our results show that monoclonal antibodies neutralized the lethal toxicity of Bothrops venom and indicate that there is a reasonable possibility of developing antivenoms based on humanized mAbs to treat victims of venomous animals in the future. PMID:23732123

  1. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    SciTech Connect

    Stanley, H.A.; Reese, R.T.

    1985-09-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using /sup 125/T-antibodies were done.

  2. Labeling of cerebral amyloid in vivo with a monoclonal antibody.

    PubMed

    Walker, L C; Price, D L; Voytko, M L; Schenk, D B

    1994-07-01

    We assessed the ability of a murine monoclonal antibody to bind selectively to beta-amyloid in the brains of living nonhuman primates. To circumvent the blood-brain barrier, we injected unlabeled antibody 10D5 (murine whole IgG1 and/or Fab fragments) into the cerebrospinal fluid of the cisterna magna in three aged monkeys. A control animal was given an intracisternal injection of nonimmune mouse whole IgG plus Fab. Twenty-four hours later, the animals were perfused and prepared for immunohistochemical detection of bound murine immunoglobulin in brain. All three experimental animals showed selective binding of 10D5 to approximately 5-15% of amyloid deposits in cerebral cortex, primarily near the cortical surface. There was no labeling in the control animal. In vivo-labeled deposits were confirmed to be beta-amyloid by electron microscopy and by in vitro immunohistochemistry in adjacent sections. The animals tolerated the injection well, although some polymorphonuclear leukocytes infiltrated portions of the subarachnoid space and superficial neocortex. These results provide the first demonstration that it may be feasible to selectively direct a tagged monoclonal antibody to beta-amyloid in the brain for therapeutic or diagnostic purposes. With enhancement of labeling efficiency, the method also may be useful for studying the progression of beta-amyloidosis in experimental animals using emission tomography. PMID:8021711

  3. Development of biodegradable nanocarriers loaded with a monoclonal antibody.

    PubMed

    Gdowski, Andrew; Ranjan, Amalendu; Mukerjee, Anindita; Vishwanatha, Jamboor

    2015-02-12

    Treatments utilizing monoclonal antibody therapeutics against intracellular protein-protein interactions in cancer cells have been hampered by several factors, including poor intracellular uptake and rapid lysosomal degradation. Our current work examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. Nanoparticles were formulated and then characterized using a number of physical and biological parameters. The average nanoparticle size ranged from 221 to 252 nm with a low polydispersity index. Encapsulation efficiency of 16%-22% and antibody loading of 0.3%-1.12% were observed. The antibody molecules were released from the nanoparticles in a sustained manner and upon release maintained functionality. Our studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

  4. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography.

    PubMed

    Pavon, Jorge Alexander; Li, Xiaojuan; Chico, Steven; Kishnani, Umesh; Soundararajan, Soundara; Cheung, Jason; Li, Huijuan; Richardson, Daisy; Shameem, Mohammed; Yang, Xiaoyu

    2016-01-29

    Analysis of oxidation of monoclonal antibodies (mAbs) in most cases relies on peptide mapping and LC-MS, which is time consuming and labor-intensive. A robust chromatography based method that is able to resolve and quantitate mAb oxidation variants due to oxidized methionine or tryptophan is highly desired. Here we developed a novel mixed mode chromatography method using the unique property of Sepax Zenix SEC-300MK column to analyze mAb oxidation levels. The separation of oxidized species relied upon the mixed mode of size exclusion and hydrophobic interaction between the resin and antibodies. The chromatography was performed in a regular SEC mobile phase, PBS, containing NaCl at a concentration (0-2.4M) specific for individual antibodies. This method was able to resolve and quantitate the oxidized antibodies as prepeaks, of either methionine-oxidized species induced by the common oxidants TBHP, tryptophan-oxidized species triggered by AAPH, or oxidized species by UV photo-irradiation. The prepeaks were further characterized by SEC-MALLS as monomers and confirmed by LC-MS as oxidized antibody variants with a mass increase of 16 or 32Da. This method has been successfully applied to monitor multiple monoclonal antibodies of IgG1, IgG2, and IgG4 subclasses. PMID:26774436

  5. Practical considerations for nonclinical safety evaluation of therapeutic monoclonal antibodies

    PubMed Central

    Lynch, Carmel M; Hart, Bruce W

    2009-01-01

    Monoclonal antibodies (mAbs) are a well established class of therapeutics as evidenced by a large number of FDA approved mAbs for the treatment of cancers and autoimmune diseases. Monoclonal antibodies that are molecularly engineered for enhanced functions and pharmacokinetic properties are routinely being considered for development by many biotechnology companies. Safety evaluation of current generation of mAbs poses new challenges due to the highly complex nature of engineering aspects and variability induced by the diverse recombinant cell systems to generate them. This review provides a basic outline for nonclinical safety evaluation of therapeutic antibodies. Important considerations for planning a preclinical program, the types of nonclinical safety studies, and a general timeline for their conduct in relation to clinical trials are described. A list of relevant regulatory documents issued by government agencies is also provided. Adoption of these principles will greatly enhance the quality and relevance of the nonclinical safety data generated and will facilitate future development of mAb therapeutics. PMID:20046568

  6. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  7. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies.

    PubMed

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G

    1993-04-01

    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting

  8. Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface

    DOEpatents

    Meagher, Richard B.; Laterza, Vince

    2006-12-12

    The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.

  9. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed Central

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-01-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. Images PMID:2893776

  10. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-03-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. PMID:2893776

  11. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, L.H.; Vanderlaan, M.; Watkins, B.E.

    1994-08-02

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples. 13 figs.

  12. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.

    1994-01-01

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples.

  13. [Monoclonal gammopathies of indetermined significance: diagnosis and clinical follow-up guidelines].

    PubMed

    Parreira, Joana; Lúcio, Paulo; João, Cristina; Macedo, Ana; Sarmento, Ana Bela; Geraldes, Catarina; Gonçalves, Cristina; Esteves, Graça

    2014-01-01

    The Portuguese group of multiple myeloma of the Portuguese Society of Hematology proposes a national protocol for diagnosis and clinical follow-up of monoclonal gammopathies. The proposed protocol aims to standardize clinical management of monoclonal gammopathies. Furthermore, it would also define the major risk factors for progression to Multiple Myeloma that require a precocious close articulation between general practitioners and a Hematology Clinic.

  14. Immunological properties and biological function of monoclonal antibodies to tobacco mosaic virus.

    PubMed

    Dietzgen, R G

    1986-01-01

    Monoclonal antibodies to TMV vulgare produced in hybridoma cultures as well as in ascitic fluid were characterized according to their reactivity with the virion and/or the coat protein monomer thus revealing specificity for epitopes, cryptotopes or neotopes. Different patterns of crossreactivity of these monoclonal antibodies with TMV strains dahlemense and Holmes' Ribgrass occurred. Some monoclonal antibodies showed stronger reactivity with these strains than with the immunizing strain. The monoclonal antibodies were TMV-specific as they did not react with ArMV and PLRV and proteins of healthy tobacco plants. The monoclonal antibodies were of the IgG2a or IgM isotype. The specific activity (Ext405nm/hour/100 micrograms MCA) with the immunizing virus and its coat protein monomers was determined as characteristic property of each monoclonal antibody. A monoclonal antibody specific for the C-terminal epitope of TMV coat protein was selected by means of the corresponding chemically synthesized tetrapeptide. With this monoclonal antibody infectivity of TMV was neutralized.

  15. Scintigraphy of normal mouse ovaries with monoclonal antibodies to ZP-2, the major zona pellucida protein

    SciTech Connect

    East, I.J.; Keenan, A.M.; Larson, S.M.; Dean, J.

    1984-08-31

    The zona pellucida is an extracellular glycocalyx, made of three sulfated glycoproteins, that surrounds mammalian oocytes. Parenterally administered monoclonal antibodies specific for ZP-2, the most abundant zona protein, localize in the zona pellucida. When labeled with iodine-125, these monoclonal antibodies demonstrate a remarkably high target-to-nontarget tissue ratio and provide clear external radioimaging of ovarian tissue.

  16. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  17. Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution.

    PubMed Central

    Hill, J M; Ruff, M R; Weber, R J; Pert, C B

    1985-01-01

    We have characterized and visualized the binding of 125I-labeled transferrin to sections of rat brain. This saturable, reversible, high-affinity (Kd = 1 X 10(-9) M) binding site appears indistinguishable from transferrin receptors previously characterized in other tissues. Moreover, a monoclonal antibody raised to rat lymphocyte transferrin receptors could immunoprecipitate recovered intact transferrin solubilized from labeled brain slices, indicating that labeling was to the same molecular entity previously characterized as the transferrin receptor. The pattern of transferrin receptor distribution visualized in brain with both 125I-labeled transferrin and an anti-transferrin receptor monoclonal antibody are almost indistinguishable but differ from the pattern of iron distribution. Iron-rich brain areas generally receive neuronal projections from areas with abundant transferrin receptors, suggesting that iron may be transported neuronally. However, many brain areas with a high density of transferrin receptors appear unrelated to iron uptake and neuronal transport and form a receptor distribution pattern similar to that of other known neuropeptides. This "neuropeptide-like" distribution pattern suggests that transferrin may have neuromodulatory, perhaps behavioral, function in brain. Images PMID:2989832

  18. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  19. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1.

    PubMed Central

    Collins, J K; Butcher, A C; Riegel, C A; McGrane, V; Blair, C D; Teramoto, Y A; Winston, S

    1984-01-01

    Monoclonal antibodies were used to study neutralizing determinants on polypeptides of bovine herpesvirus 1. Two of three monoclonal antibodies which recognized nonoverlapping epitopes on a glycoprotein of 82,000 daltons were found to neutralize. A second group of monoclonal antibodies that individually precipitated five viral glycopolypeptides ranging in size from 102,000 to 55,000 daltons also neutralized. Two monoclonal antibodies which were the most efficient in neutralization recognized a non-glycosylated protein of 115,000 daltons which was the major polypeptide on the virus. A fourth group of monoclonal antibodies precipitated a non-glycosylated polypeptide of 91,000 daltons and several smaller polypeptides, but these antibodies demonstrated only limited neutralizing activity. Images PMID:6208375

  20. Proliferative glomerulonephritis associated with monoclonal immune deposits: A case report and review of literature

    PubMed Central

    Fatima, R.; Jha, R.; Gowrishankar, S.; Narayen, G.; Rao, B. S.

    2014-01-01

    Proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) is a newly recognized entity caused by monoclonal deposition of IgG. PGNMID resembles immune complex glomerulonephritis (GN) on light and electron microscopy. The monotypic immunoglobulin deposits seen on immunofluorescence (IF) clinches the diagnosis. We report a case of proliferative GN associated MGRS and review the relevant literature. The patient had significant proteinuria and elevated serum creatinine. The renal biopsy showed proliferative GN with focal crescents and monoclonal immune deposits confirming a diagnosis of PGNMID. Serum work up showed no monoclonal proteins. Proliferative GN as a manifestation of a monoclonal gammopathy needs to be borne in mind especially in renal biopsies of older patients. PMID:25484532

  1. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  2. Primary B-CLL resistance to NK cell cytotoxicity can be overcome in vitro and in vivo by priming NK cells and monoclonal antibody therapy.

    PubMed

    Veuillen, Caroline; Aurran-Schleinitz, Thérèse; Castellano, Rémy; Rey, Jérôme; Mallet, Françoise; Orlanducci, Florence; Pouyet, Laurent; Just-Landi, Sylvaine; Coso, Diane; Ivanov, Vadim; Carcopino, Xavier; Bouabdallah, Réda; Collette, Yves; Fauriat, Cyril; Olive, Daniel

    2012-06-01

    Despite recent advances with monoclonal antibody therapy, chronic lymphocytic leukemia (CLL) remains incurable. Natural killer (NK) cells are potent antitumoral effectors, particularly against hematological malignancies. Defective recognition of B-CLL leukemic cells by NK cells has been previously described. Here, we deciphered the mechanisms that hamper NK cell-mediated clearance of B-CLL and evaluated the potential of NK cells as therapeutic tools for treatment of CLL. First of all, leukemic B cells resemble to normal B cells with a weak expression of ligands for NK receptors. Conversely, NK cells from B-CLL patients were functionally and phenotypically competent, despite a decrease of expression of the activating receptor NKp30. Consequently, resting allogeneic NK cells were unable to kill leukemic B cells in vitro. These data suggest that patients' NK cells cannot initiate a proper immune reaction due to a lack of leukemic cell recognition. We next set up a xenotransplantation mouse model to study NK-CLL cell interactions. Together with our in vitro studies, in vivo data revealed that activation of NK cells is required in order to control B-CLL and that activated NK cells synergize to enhance rituximab effect on tumor load. This study points out the requirements for immune system manipulation for treatment of B-CLL in combination with monoclonal antibody therapy.

  3. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

    PubMed

    Glassman, Patrick M; Balthasar, Joseph P

    2016-08-01

    Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations

  4. Legionella micdadei and Legionella dumoffii monoclonal antibodies for laboratory diagnosis of Legionella infections.

    PubMed Central

    Cercenado, E; Edelstein, P H; Gosting, L H; Sturge, J C

    1987-01-01

    Two different monoclonal antibodies directed against Legionella micdadei and L. dumoffii (Genetic Systems Corp., Seattle, Wash.) were evaluated for their specificity and ability to detect L. micdadei and L. dumoffii in human and animal clinical samples and bacterial isolates in an indirect immunofluorescence assay. All three frozen sputum samples and all three Formalin-fixed sputum and liver samples from patients with culture-documented L. micdadei pneumonia were positive when tested with the L. micdadei monoclonal antibody. A Formalin-preserved lung sample from a patient with culture-documented L. dumoffii pneumonia was positive with its homologous monoclonal antibody. No cross-staining reactions were found with either monoclonal antibody on any of 25 human sputum samples tested from patients without Legionella infections. A total of 66 Legionella strains and 56 non-Legionella strains including 22 Pseudomonas strains and 34 other bacterial strains were studied. No cross-staining reactions were found except in Staphylococcus aureus Cowan 1 ATCC 12598. The lower limit of detection in seeded sputum samples was about 7 X 10(4) cells per ml for both monoclonal antibodies. Lung and tracheal lavage specimens from L. micdadei- or L. dumoffii-infected guinea pigs showed specific staining only with their respective monoclonal antibodies. The monoclonal antibodies stained homologous bacteria slightly less intensely than did the polyclonal antisera, but the signal-to-noise ratio was considerably higher for the monoclonal antibodies. No differences in sensitivity of staining of clinical specimens or bacterial isolates were noted between the monoclonal antibodies and the polyclonal reagents for L. micdadei and L. dumoffii (Centers for Disease Control, Atlanta, Ga., and BioDx, Denville, N.J. These monoclonal antibodies ae sensitive and specific, making them good candidates for laboratory diagnostic purposes. PMID:3320084

  5. Yeast-Derived β-Glucan Augments the Therapeutic Efficacy Mediated by Anti–Vascular Endothelial Growth Factor Monoclonal Antibody in Human Carcinoma Xenograft Models

    PubMed Central

    Salvador, Carolina; Li, Bing; Hansen, Richard; Cramer, Daniel E.; Kong, Maiying; Jun, Yan

    2008-01-01

    Purpose Bevacizumab is a recombinant IgG1humanized monoclonal antibody against vascular endothelial growth factor (VEGF). Its proposed mechanism of action is independent of immune effector functions. Many human carcinomas not only secrete VEGF but also express membrane-bound VEGF. In addition, VEGF receptors are expressed on tumor cells. It is hypothesized that bevacizumab could bind membrane-bound VEGF or VEGF-VEGF receptor complexes on tumors, thereby initiating potential immunologic consequences. We previously showed that yeast-derived β-glucan functions with antitumor antibodies that activate complement to recruit complement receptor 3– expressing leukocytes capable of mediating complement receptor 3– dependent cellular cytotoxicity of tumors opsonized with iC3b. In the current study, the therapeutic efficacy mediated by combining bevacizumab with yeast-derived β-glucan was studied in human carcinoma xenograft models. Experimental Design Human tumor cell lines were screened for membrane-bound VEGF expression both in vitro and in vivo. Complement activation mediated by bevacizumab was examined. Tumor cell lines positive or negative for membrane-bound VEGF expression were implanted in severe combined immunodeficient mice to establish xenograft models. Tumor-bearing mice were treated with different regimens. Tumor regression and long-term survival were recorded. Results Human ovarian carcinoma SKOV-3 cells expressed membrane-bound VEGF both in vitro and in vivo. Bevacizumab was bound to membrane-bound VEGF, activated complement, and synergized with β-glucan to elicit cellular cytotoxicity in vitro. In vivo study showed that β-glucan could significantly augment the therapeutic efficacy mediated by bevacizumab. Conclusions Yeast-derived β-glucan can synergize with anti-VEGF monoclonal antibody bevacizumab for the treatment of cancer with membrane-bound VEGF expression. PMID:18281559

  6. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    SciTech Connect

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-09-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining (/sup 3/H)nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure (/sup 3/H)nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-(/sup 3/H)nicotine-binding characteristics.

  7. Classification method for heterogeneity in monoclonal cell population

    NASA Astrophysics Data System (ADS)

    Aburatani, S.; Tashiro, K.; Kuhara, S.

    2015-09-01

    Monoclonal cell populations are known to be composed of heterogeneous subpopulations, thus complicating the data analysis. To gain clear insights into the mechanisms of cellular systems, biological data from a homogeneous cell population should be obtained. In this study, we developed a method based on Latent Profile Analysis (LPA) combined with Confirmatory Factor Analysis (CFA) to divide mixed data into classes, depending on their heterogeneity. In general cluster analysis, the number of measured points is a constraint, and thereby the data must be classified into fewer groups than the number of samples. By our newly developed method, the measured data can be divided into groups depending on their latent effects, without constraints. Our method is useful to clarify all types of omics data, including transcriptome, proteome and metabolic information.

  8. Effect of polyol sugars on the stabilization of monoclonal antibodies.

    PubMed

    Nicoud, Lucrèce; Cohrs, Nicholas; Arosio, Paolo; Norrant, Edith; Morbidelli, Massimo

    2015-02-01

    We investigate the impact of sugars and polyols on the heat-induced aggregation of a model monoclonal antibody whose monomer depletion is rate-limited by protein unfolding. We follow the kinetics of monomer consumption by size exclusion chromatography, and we interpret the results in the frame of two mechanistic schemes describing the enhanced protein stability in the presence of polyols. It is found that the stabilization effect increases with increasing polyol concentration with a comparable trend for all of the tested polyols. However, the stabilization effect at a given polyol concentration is polyol specific. In particular, the stabilization effect increases as a function of polyol size until a plateau is reached above a critical polyol size corresponding to six carbon atoms. Our results show that the stabilization by polyols does not depend solely on the volume fraction filled by the polyol molecules, but is also affected by the polyol chemistry. PMID:25645712

  9. Monoclonal antibody-defined human pancreatic cancer-associated antigens.

    PubMed

    Schmiegel, W H; Kalthoff, H; Arndt, R; Gieseking, J; Greten, H; Klöppel, G; Kreiker, C; Ladak, A; Lampe, V; Ulrich, S

    1985-03-01

    Three pancreatic cancer-associated antigens were characterized by use of monoclonal antibodies in immunobinding studies with various cellular and soluble target antigens, in immunoprecipitation, and in immunoperoxidase staining. C54-0 represents a tumor-associated Mr 122,000 antigen, which appears to be widely distributed on various epithelial tumors and to a lower extent on normal tissue. C1-N3 antigen exhibited a more restricted distribution, reacting with pancreatic and various gastrointestinal tract tumors as well as with chronically inflamed pancreatic tissue. The most specific antigen expression was observed for C1-P83 antigen, found on all exocrine tumors of the pancreas, but not on normal or chronically inflamed pancreatic tissue.

  10. Specificity of monoclonal antibodies to Campylobacter jejuni lipopolysaccharide antigens.

    PubMed

    Brooks, B W; Mihowich, J G; Blais, B W; Yamazaki, H

    1998-01-01

    Monoclonal antibodies (Mabs) were produced to the lipopolysaccharide antigens of Campylobacter jejuni strain 1249 (Penner serotype O:2/63). A polymyxin-cloth based enzyme immunoassay (pCEIA) was used for initial screening and for evaluating the specificity of these antibodies. Seven Mabs reacted with at least 11 and as many as 14 of 15 C. jejuni strains (representing 8 different Penner serotypes). These seven Mabs did not cross-react with any of 16 non-Campylobacter bacteria commonly encountered in food, with only two exceptions. Several combinations of these Mabs in pairs reacted with all 15 C. jejuni strains. These results suggest that pCEIA employing two of these Mabs in combination is potentially useful for detection of Campylobacter jejuni in foods and other samples.

  11. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  12. [Systemic radiotherapy using monoclonal antibodies. Options and problems].

    PubMed

    Sautter-Bihl, M L; Wannenmacher, M; Bihl, H

    1993-06-01

    Radiolabeled monoclonal antibodies (MAbs), by virtue of their tumor specificity, offer the prospect of localized, highly targeted radiation treatment of malignant tumors. To date, a large number of radioimmunotherapy (RIT) studies have been reported in experimental and clinical settings showing the potential of this therapeutic strategy. This includes RIT-trials in hepatoma, cholangiocarcinoma, ovarian carcinoma, brain tumors, melanoma, neuroblastoma and especially Hodgkin's and non-Hodgkin's lymphomas. Despite very promising results in some of these studies, radioimmunotherapy is currently still in a developmental status. Selective accumulation of MAbs at tumor sites-a prerequisite for effective radioimmunotherapy-is a complex process. Many factors such as antigen heterogeneity, distinct antibody features (affinity, subclass, fragment size, etc.), labeling techniques, tumor physiology and competing antigens were identified in the last years using theoretical and experimental tumor models. Strategies to improve these critical parameters are currently under investigation in order to increase the efficacy of radioimmunotherapy.

  13. Target Therapy in Hematological Malignances: New Monoclonal Antibodies

    PubMed Central

    Szymczyk, Agnieszka; Pawlowski, Johannes

    2014-01-01

    Apart from radio- and chemotherapy, monoclonal antibodies (MoAbs) represent a new, more selective tool in the treatment of hematological malignancies. MoAbs bind with the specific antigens of the tumors. This interaction is a basis for targeted therapies which exhibit few side effects and significant antitumor activity. This review provides an overview of the functional characteristics of MoAbs, with some examples of their clinical application. The promising results in the treatment of hematological malignancies have led to the more frequent usage of MoAbs in the therapy. Development of MoAbs is a subject of extensive research. They are a promising method of cancer treatment in the future. PMID:27433507

  14. Diagnostic use of anti-modified nucleoside monoclonal antibody.

    PubMed

    Itoh, K; Ishiwata, S; Ishida, N; Mizugaki, M

    1992-10-01

    By use of monoclonal antibodies (MoAbs) termed APU-6 and AMA-2, we determined the usefulness of urinary modified nucleosides, pseudouridine and 1-methyladenosine, as markers for malignancy. In patients with leukemia and other forms of cancer, these nucleosides elevated significantly and reflected the disease status of patients. The immunohistochemical analysis showed that cancer cells were specifically stained with the MoAbs. Chemical identification of the cellular components reactive with the MoAbs revealed that APU-6-associated antigens were mainly rRNA and AMA-2-associated antigens were mainly tRNA. These results suggest that APU-6 and AMA-2 would be useful tools for clinical and biological studies of cancer.

  15. [Monoclonal antibodies for the treatment of multiple sclerosis].

    PubMed

    Sánchez-Seco, Victoria Galán; Casanova Peño, Ignacio; Arroyo González, Rafael

    2014-12-01

    Until the mid 1990s, with the appearance of interferon beta and glatiramer acetate, there was no treatment for multiple sclerosis (MS). However, due to their moderate therapeutic potential in some patients, a broad search was continued to find new and more effective treatment strategies, largely concentrated on monoclonal antibodies (MOAB). Natalizumab, the first MOAB for the treatment of MS, was approved at the end of 2004, representing a major advance in the field of neuroimmunology. Today, there is broad experience with natalizumab and other MOAB (alemtuzumab, daclizumab, rituximab, ocrelizumab, ofatumumab and anti-lingo-1) that are pending commercialization or are under phase II or III of development with promising results. The present review analyzes the efficacy and safety results of all these drugs. PMID:25732947

  16. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection

    NASA Astrophysics Data System (ADS)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  17. Monoclonal antibodies and the transformation of blood typing

    PubMed Central

    Marks, Lara

    2014-01-01

    Today, when monoclonal antibodies (mAbs) have become one of the most important classes of therapeutic drugs, it is easy to forget how much they have transformed our healthcare in other ways. One of the first clinical areas, as this paper shows, where mAbs made their mark was in the field of blood typing. The adoption of mAbs for this purpose was done with little public fanfare or funding. Nonetheless, it radically transformed the accuracy and cost of blood typing and shifted the procedure away from a dependence on reagents made from human blood donated by volunteers. This paper argues that the development of mAbs as reagents for blood typing laid the foundation for the first large-scale production of mAbs thereby paving the way to the advent of mAb diagnostics and therapeutics. PMID:25484059

  18. Monoclonal Antibodies Against NS2B of Japanese Encephalitis Virus.

    PubMed

    Dong, Qian; Xu, Qiuping; Ruan, Xindi; Huang, Shaomei; Cao, Shengbo

    2015-04-01

    Japanese encephalitis (JE) is one of the most important viral encephalitis, caused by the Japanese encephalitis virus (JEV). The function of non-structural protein 2B (NS2B) mostly remains unclear. In our study, NS2B of Japanese encephalitis virus (JEV) was expressed in Escherichia coli and purified by dialysis. After fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from NS2B protein immunized mice, three clones of monoclonal antibodies (MAbs), named 1B9, 3E12, and 4E6, were generated. The specificity and sensitivity of MAbs were demonstrated by ELISA, indirect immunofluorescence assay, and Western blot. These MAbs will be useful in further exploration of the functions of NS2B and the pathogenesis of Japanese encephalitis virus. PMID:25897607

  19. Infectious Complications Associated with Monoclonal Antibodies and Related Small Molecules

    PubMed Central

    Salvana, Edsel Maurice T.; Salata, Robert A.

    2009-01-01

    Summary: Biologics are increasingly becoming part of routine disease management. As more agents are developed, the challenge of keeping track of indications and side effects is growing. While biologics represent a milestone in targeted and specific therapy, they are not without drawbacks, and the judicious use of these “magic bullets” is essential if their full potential is to be realized. Infectious complications in particular are not an uncommon side effect of therapy, whether as a direct consequence of the agent or because of the underlying disease process. With this in mind, we have reviewed and summarized the risks of infection and the infectious disease-related complications for all FDA-approved monoclonal antibodies and some related small molecules, and we discuss the probable mechanisms involved in immunosuppression as well as recommendations for prophylaxis and treatment of specific disease entities. PMID:19366915

  20. A review of monoclonal antibody therapies in lymphoma.

    PubMed

    Teo, Esmeralda Chi-yuan; Chew, Yveline; Phipps, Colin

    2016-01-01

    Monoclonal antibodies (moAb) represent a novel way of delivering therapy through specific target antigens expressed on lymphoma cells and minimizes the collateral damage that is common with conventional chemotherapy. The paradigm of this approach is the targeting of CD20 by rituximab. Since its FDA approval in 1997, rituximab has become the standard of care in almost every line of therapy in most B-cell lymphomas. This review will briefly highlight some of the key rituximab trials while looking more closely at the evidence that is bringing other antibodies, including next generation anti-CD20 moAbs, and anti-CD30 moAbs, among others to the forefront of lymphoma therapy. PMID:26318093

  1. Mass Spectrometry for the Biophysical Characterization of Therapeutic Monoclonal Antibodies

    PubMed Central

    Zhang, Hao; Cui, Weidong; Gross, Michael L.

    2014-01-01

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecular drugs (150-600 Da) that have rigid structures, mAbs (~150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. PMID:24291257

  2. Monoclonal antibodies against the human leukemia cell line K 562.

    PubMed

    Böttger, V; Hering, S; Jantscheff, P; Micheel, B

    1985-01-01

    Three monoclonal antibodies raised against K 562, a cell line originally established from a patient with chronic myeloid leukemia (CML) in terminal blast crisis, were selected according to their distinct reaction pattern. Whereas two antibodies (ZIK-C1-A/C5 and ZIK-C1-A/H5 also designated C and H) recognized antigens, present on K 562 cells and other immature and mature hematopoietic cells (cell lines and normal blood and bone marrow cells), antibody ZIK-C1-A/D9 also designated Y showed an exclusive binding to K 562 cells. The results obtained (here and in the following paper) indicate, that antibody ZIK-C1-A/D9 defines an early differentiation antigen of hematopoiesis or a leukemia-associated antigen.

  3. Characterization of human sperm surface antigens with monoclonal antibodies.

    PubMed

    Wolf, D P; Sokoloski, J E; Dandekar, P; Bechtol, K B

    1983-10-01

    Monoclonal antibodies (McAb) against human ejaculated sperm were developed from mice immunized with sperm membrane preparations. A solid-phase radioimmunoassay, with dried sperm as antigen, was employed in McAb screening. The tissue and species specificity of monoclonal antibodies HS 2, 4 and 6 were evaluated after absorption of antibody preparations with heterologous sperm, human serum or seminal plasma or cells from other human organs. The sensitivity of HS 2, 4 and 6 antigens to trypsin exposure was determined: HS 4 antigen was highly sensitive while HS 2 and 6 were not. The regional distribution of McAb 4 on intact sperm cells was determined by immunofluorescence staining. HS 4 may be a sperm-coating antigen based on its presence on sperm and in seminal plasma. This possibility led to an investigation of its role in sperm capacitation. HS 4 antibody binding was reduced when capacitated sperm were compared with noncapacitated cells. HS 4 antibody, when present during capacitation and insemination, was without effect on sperm motility or fusion with zona-free hamster eggs. Trypsin removal of as much as 60% of HS 4 antigen from the cell population also did not impact on sperm function. To identify the molecular correlate of HS 4 antigen, membrane components were extracted from washed sperm with Nonidet P-40, concentrated by acetone precipitation and analyzed electrophoretically in SDS-urea on 10% polyacrylamide slab gels. Immunoassays on protein blots with peroxidase-coupled second antibody identified a single reactive species in the molecular weight range of 130,000. Multiple reactive components were detected in blot transfers of seminal plasma.

  4. Functional domains of the poliovirus receptor

    SciTech Connect

    Koike, Satoshi; Ise, Iku; Nomoto, Akio )

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  5. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies.

    PubMed

    Wang, Weirong; Vlasak, Josef; Li, Yunsong; Pristatsky, Pavlo; Fang, Yulin; Pittman, Tamara; Roman, Jeanette; Wang, Yang; Prueksaritanont, Thomayant; Ionescu, Roxana

    2011-03-01

    IgG monoclonal antibodies (mAbs) consist of two Fab fragments and one Fc fragment. The Fab fragments contain the variable regions and are responsible for drug specificity (via antigen binding); the Fc fragment contains constant regions and is responsible for effector functions (via interactions with Fcγ receptors) and extended serum half-life (via interaction with the neonatal Fc receptor, FcRn). There are two conserved methionine (Met) residues located in the FcRn binding site of the Fc fragment. It has been shown previously that oxidation of these two Met residues decreases the binding affinity to FcRn. We have further evaluated the impact of Met oxidation on serum half-lives of two humanized IgG1 mAbs in transgenic mice with human FcRn. Variable oxidation levels were obtained by several procedures: exposure to an oxidizing agent, accumulation during extended refrigerated storage, or chromatographic separation. Our results show that Met oxidation can result in a significant reduction of the serum circulation half-life and the magnitude of the change correlates well with the extent of Met oxidation and changes in FcRn binding affinities. The relatively low levels of Met oxidation accumulated during 3 years of refrigerated storage had minimal impact on FcRn binding and no detectable impact on the serum half-life.

  6. Detection of monoclonal T populations in patients with KIR-restricted chronic lymphoproliferative disorder of NK cells

    PubMed Central

    Gattazzo, Cristina; Teramo, Antonella; Passeri, Francesca; De March, Elena; Carraro, Samuela; Trimarco, Valentina; Frezzato, Federica; Berno, Tamara; Barilà, Gregorio; Martini, Veronica; Piazza, Francesco; Trentin, Livio; Facco, Monica; Semenzato, Gianpietro; Zambello, Renato

    2014-01-01

    The etiology of chronic large granular lymphocyte proliferations is largely unknown. Although these disorders are characterized by the expansion of different cell types (T and natural killer) with specific genetic features and abnormalities, several lines of evidence suggest a common pathogenetic mechanism. According to this interpretation, we speculated that in patients with natural killer-type chronic lymphoproliferative disorder, together with natural killer cells, also T lymphocytes undergo a persistent antigenic pressure, possibly resulting in an ultimate clonal T-cell selection. To strengthen this hypothesis, we evaluated whether clonal T-cell populations were detectable in 48 patients with killer immunoglobulin-like receptor-restricted natural killer-type chronic lymphoproliferative disorder. At diagnosis, in half of the patients studied, we found a clearly defined clonal T-cell population, despite the fact that all cases presented with a well-characterized natural killer disorder. Follow-up analysis confirmed that the TCR gamma rearrangements were stable over the time period evaluated; furthermore, in 7 patients we demonstrated the appearance of a clonal T subset that progressively matures, leading to a switch between killer immunoglobulin-like receptor-restricted natural killer-type disorder to a monoclonal T-cell large granular lymphocytic leukemia. Our results support the hypothesis that a common mechanism is involved in the pathogenesis of these disorders. PMID:25193965

  7. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes.

    PubMed

    Sano, Kohei; Nakajima, Takahito; Miyazaki, Kiminori; Ohuchi, Yuya; Ikegami, Takashi; Choyke, Peter L; Kobayashi, Hisataka

    2013-05-15

    The ability to switch optical imaging probes from the quenched (off) to the active state (on) has greatly improved target to background ratios. The optimal activation efficiency of an optical probe depends on complete quenching before activation and complete dequenching after activation. For instance, monoclonal antibody-indocyanine green (mAb-ICG) conjugates, which are promising agents for clinical translation, are normally quenched, but can be activated when bound to a cell surface receptor and internalized. However, the small fraction of commonly used ICG derivative (ICG-Sulfo-OSu) can bind noncovalently to its mAb and is, thus, gradually released from the mAb leading to relatively high background signal especially in the liver and the abdomen. In this study, we re-engineered a mAb-ICG conjugate, (Panitumumab-ICG) using bifunctional ICG derivatives (ICG-PEG4-Sulfo-OSu and ICG-PEG8-Sulfo-OSu) with short polyethylene glycol (PEG) linkers. Higher covalent binding (70-86%) was observed using the bifunctional ICG with short PEG linkers resulting in less in vivo noncovalent dissociation. Panitumumab-ICG conjugates with short PEG linkers were able to detect human epidermal growth factor receptor 1 (EGFR)-positive tumors with high tumor-to-background ratios (15.8 and 6.9 for EGFR positive tumor-to-negative tumor and tumor-to-liver ratios, respectively, at 3 d postinjection).

  8. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    PubMed

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L; Fusco, Deborah L; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S; Bishop-Lilly, Kimberly A; Broder, Christopher C; Nikolov, Dimitar B

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  9. Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin

    PubMed Central

    Wang, Meng; Zhang, Dian-Cai; Wang, Shen-Tian; Li, Ming-Long

    2016-01-01

    In this work, we prepared a panel of monoclonal anti-idiotypic antibodies to ovine prolactin (oPRL) by the hybridoma technique. Among these antibodies, one anti-idotypic antibody (designated B7) was chosen for further characterization by a series of experiments. We first demonstrated that B7 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assays. Subsequently, the results of a competitive receptor-binding assay confirmed that B7 could specifically bind to the prolactin receptor (PRLR) expressed on target cells. Finally, we examined its biological activities in CHO-PRLR and Nb2 cells and observed that B7 could activate Janus kinase 2-signal transducer and activator of transcription signalling in CHO-PRLR and Nb2 cells and induce BaF3 proliferation. The present study suggests that i) B7 can serve as a PRLR agonist or PRL mimic and has potential applications in regulating mammary gland development, milk production and maintenance of lactation in domestic animals and ii) B7 may be a biological reagent that can be used to explore the mechanism of PRLR-mediated intracellular signalling. PMID:26949959

  10. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras

    PubMed Central

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia

    2016-01-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  11. The in vivo fate of a /sup 211/At labelled monoclonal antibody with known specificity in a murine system

    SciTech Connect

    Vaughan, A.T.M.; Bateman, W.J.; Fisher, D.R.

    1982-11-01

    A monoclonal antibody reactive against the human transferrin receptor has been labelled with the alpha and X ray emitting isotope Astatine 211. The labelling procedure does not affect the ability of the product to bind to the transferrin receptor on the human leukemic cell line HL60. Using a direct binding assay, /sup 211/At labelled antibody can be specifically inhibited from binding to its target cells by excess unlabelled antibody. Furthermore, the binding inhibition demonstrated in this system correlates to enhanced clonogenic survival of these cells, indicating that very few atoms of /sup 211/At/cell are required for cell death. Data obtained from labelled antibody injected into mice show that the labelled product in serum retains the ability to bind to HL60 cells in vitro, although tissue distributions of the injected activity implies that some of the radiolabel is lost from the protein. Despite this loss of label, preliminary experiments on the localization of labelled antibody to HL60 cells growing s/c in nude mice show that tumor tissue has a higher specific activity than all other tissues, other than blood, after 12 hours. This suggests that further work on the nature of label degradation in vivo is warranted in the context of potential therapeutic and diagnostic studies.

  12. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras.

    PubMed

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia; Ahlborg, Niklas

    2016-09-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  13. [Monoclonal gammopathy of undetermined significance (MGUS) in Mexican mestizos: one institution's experience].

    PubMed

    Ruiz-Delgado, Guillermo J; Gómez Rangel, J David

    2004-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) is defined as presence of serum monoclonal protein at a concentration of 3 g per deciliter or less, no monoclonal protein or only moderate amounts of monoclonal light chains in urine, absence of lytic bone lesions, anemia, hypercalemia, and renal insufficiency related with monoclonal protein, and with a proportion of plasma cells in bone marrow of 10% or less. In Caucasian population, MGUS affects about 3% of individuals > 70 years of age, whereas in Mexican mestizos this figure is substantially lower (0.7%); on the other hand, MGUS represents in Mexico only 2.4% of all monoclonal gammopathies. In a total of 9081 individuals studied prospectively at the Centro de Hematología y Medicina Interna de Puebla throughout a 20-year period, 11 patients with MGUS were identified. Median age was 70 years (range 43-83 years). Patients have been followed in periods ranging from 6 to 3270 days (median, 308 days). Two patients evolved into overt multiple myeloma at 308 and 1687 days after diagnosis of MGUS. Overall median survival (SV) of the group has not been reached, whereas 3270 days overall SV is 91%. After discussing underreporting, biasing, and other confounding factors, it would seem that MGUS, like other monoclonal gammopathies, is less frequent in Mexican mestizos than in Caucasians. Routine screening studies to identify the condition should result in increased numbers of patients.

  14. Anti-nicastrin monoclonal antibodies elicit pleiotropic anti-tumour pharmacological effects in invasive breast cancer cells.

    PubMed

    Filipović, Aleksandra; Lombardo, Ylenia; Faronato, Monica; Fronato, Monica; Abrahams, Joel; Aboagye, Eric; Nguyen, Quang-De; d'Aqua, Barbara Borda; Ridley, Anne; Green, Andrew; Rahka, Emad; Ellis, Ian; Recchi, Chiara; Przulj, Natasa; Sarajlić, Anida; Alattia, Jean-Rene; Fraering, Patrick; Deonarain, Mahendra; Coombes, R Charles

    2014-11-01

    The goal of targeted cancer therapies is to specifically block oncogenic signalling, thus maximising efficacy, while reducing side-effects to patients. The gamma-secretase (GS) complex is an attractive therapeutic target in haematological malignancies and solid tumours with major pharmaceutical activity to identify optimal inhibitors. Within GS, nicastrin (NCSTN) offers an opportunity for therapeutic intervention using blocking monoclonal antibodies (mAbs). Here we explore the role of anti-nicastrin monoclonal antibodies, which we have developed as specific, multi-faceted inhibitors of proliferation and invasive traits of triple-negative breast cancer cells. We use 3D in vitro proliferation and invasion assays as well as an orthotopic and tail vail injection triple-negative breast cancer in vivo xenograft model systems. RNAScope assessed nicastrin in patient samples. Anti-NCSTN mAb clone-2H6 demonstrated a superior anti-tumour efficacy than clone-10C11 and the RO4929097 small molecule GS inhibitor, acting by inhibiting GS enzymatic activity and Notch signalling in vitro and in vivo. Confirming clinical relevance of nicastrin as a target, we report evidence of increased NCSTN mRNA levels by RNA in situ hybridization (RNAScope) in a large cohort of oestrogen receptor negative breast cancers, conferring independent prognostic significance for disease-free survival, in multivariate analysis. We demonstrate here that targeting NCSTN using specific mAbs may represent a novel mode of treatment for invasive triple-negative breast cancer, for which there are few targeted therapeutic options. Furthermore, we propose that measuring NCSTN in patient samples using RNAScope technology may serve as companion diagnostic for anti-NCSTN therapy in the clinic. PMID:25248409

  15. Modeling bispecific monoclonal antibody interaction with two cell membrane targets indicates the importance of surface diffusion

    PubMed Central

    Sengers, Bram G.; McGinty, Sean; Nouri, Fatma Z.; Argungu, Maryam; Hawkins, Emma; Hadji, Aymen; Weber, Andrew; Taylor, Adam; Sepp, Armin

    2016-01-01

    ABSTRACT We have developed a mathematical framework for describing a bispecific monoclonal antibody interaction with two independent membrane-bound targets that are expressed on the same cell surface. The bispecific antibody in solution binds either of the two targets first, and then cross-links with the second one while on the cell surface, subject to rate-limiting lateral diffusion step within the lifetime of the monovalently engaged antibody-antigen complex. At experimental densities, only a small fraction of the free targets is expected to lie within the reach of the antibody binding sites at any time. Using ordinary differential equation and Monte Carlo simulation-based models, we validated this approach against an independently published anti-CD4/CD70 DuetMab experimental data set. As a result of dimensional reduction, the cell surface reaction is expected to be so rapid that, in agreement with the experimental data, no monovalently bound bispecific antibody binary complexes accumulate until cross-linking is complete. The dissociation of the bispecific antibody from the ternary cross-linked complex is expected to be significantly slower than that from either of the monovalently bound variants. We estimate that the effective affinity of the bivalently bound bispecific antibody is enhanced for about 4 orders of magnitude over that of the monovalently bound species. This avidity enhancement allows for the highly specific binding of anti-CD4/CD70 DuetMab to the cells that are positive for both target antigens over those that express only one or the other We suggest that the lateral diffusion of target antigens in the cell membrane also plays a key role in the avidity effect of natural antibodies and other bivalent ligands in their interactions with their respective cell surface receptors. PMID:27097222

  16. Identification of a Monoclonal Antibody That Attenuates Antiphospholipid Syndrome-Related Pregnancy Complications and Thrombosis.

    PubMed

    Mineo, Chieko; Lanier, Lane; Jung, Eunjeong; Sengupta, Samarpita; Ulrich, Victoria; Sacharidou, Anastasia; Tarango, Cristina; Osunbunmi, Olutoye; Shen, Yu-Min; Salmon, Jane E; Brekken, Rolf A; Huang, Xianming; Thorpe, Philip E; Shaul, Philip W

    2016-01-01

    In the antiphospholipid syndrome (APS), patients produce antiphospholipid antibodies (aPL) that promote thrombosis and adverse pregnancy outcomes. Current therapy with anticoagulation is only partially effective and associated with multiple complications. We previously discovered that aPL recognition of cell surface β2-glycoprotein I (β2-GPI) initiates apolipoprotein E receptor 2 (apoER2)-dependent signaling in endothelial cells and in placental trophoblasts that ultimately promotes thrombosis and fetal loss, respectively. Here we sought to identify a monoclonal antibody (mAb) to β2-GPI that negates aPL-induced processes in cell culture and APS disease endpoints in mice. In a screen measuring endothelial NO synthase (eNOS) activity in cultured endothelial cells, we found that whereas aPL inhibit eNOS, the mAb 1N11 does not, and instead 1N11 prevents aPL action. Coimmunoprecipitation studies revealed that 1N11 decreases pathogenic antibody binding to β2-GPI, and it blocks aPL-induced complex formation between β2-GPI and apoER2. 1N11 also prevents aPL antagonism of endothelial cell migration, and in mice it reverses the impairment in reendothelialization caused by aPL, which underlies the non-thrombotic vascular occlusion provoked by disease-causing antibodies. In addition, aPL inhibition of trophoblast proliferation and migration is negated by 1N11, and the more than 6-fold increase in fetal resorption caused by aPL in pregnant mice is prevented by 1N11. Furthermore, the promotion of thrombosis by aPL is negated by 1N11. Thus, 1N11 has been identified as an mAb that attenuates APS-related pregnancy complications and thrombosis in mice. 1N11 may provide an efficacious, mechanism-based therapy to combat the often devastating conditions suffered by APS patients. PMID:27463336

  17. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics.

  18. Intracellular Reprogramming of Expression, Glycosylation, and Function of a Plant-Derived Antiviral Therapeutic Monoclonal Antibody

    PubMed Central

    Lee, Kyung-Jin; Kim, Young-Kwan; So, Yang-Kang; Ryu, Jae-Sung; Oh, Seung-Han; Han, Yeon-Soo; Ko, Kinarm; Choo, Young-Kug; Park, Sung-Joo; Brodzik, Robert; Lee, Kyoung-Ki; Oh, Doo-Byoung; Hwang, Kyung-A; Koprowski, Hilary; Lee, Yong Seong; Ko, Kisung

    2013-01-01

    Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAbPs), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAbP SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAbP SO57 with KDEL (mAbPK) were significantly higher than those of mAbP SO57 without KDEL (mAbP) regardless of the transcription level. The Fc domains of both purified mAbP and mAbPK and hybridoma-derived mAb (mAbH) had similar levels of binding activity to the FcγRI receptor (CD64). The mAbPK had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAbP had mainly Golgi type glycans (96.8%) similar to those seen with mAbH. Confocal analysis showed that the mAbPK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAbP with KDEL in the ER. Both mAbP and mAbPK disappeared with similar trends to mAbH in BALB/c mice. In addition, mAbPK was as effective as mAbH at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAbP by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant. PMID:23967055

  19. Monoclonal antibody-based enzyme immunoassays for the sensitive detection of s-triazines in water

    NASA Astrophysics Data System (ADS)

    Hock, Bertold; Giersch, Thomas; Kramer, Karl-Josef

    1993-03-01

    Immunoassays in pesticide residue analysis significantly profit from the monoclonal antibody (mAb) technology because a sufficient supply of standardized antibodies can be provided. For the production of atrazine-specific mAbs hybridoma cells were produced by fusion of mouse myeloma cells and spleen cells from mice which were immunized with 4-chloro-6-ethylamino- 1,3,5-triazine-2-(6-aminohexanoic acid) coupled to keyhole limped hemocyanin. After screening with a competitive enzyme immunoassay (EIA) a mAb with high binding affinity towards atrazine was selected. A sensitive EIA was developed detecting atrazine with a range from 0.05 to 1 (mu) g/l with a test midpoint of 0.1 (mu) g/l. The mAb cross-reacts predominantly with propazine (136%). Since this herbicide is not used in most European countries, the test allows a rapid and inexpensive screening for atrazine in the ppt range. Another EIA has been constructed for the detection of terbuthylazine. The limiting factor in EIA development is the screening for cell lines secreting mAbs with high affinity and selectivity towards the analyte. Super paramagnetic beads being coated with suitable immonoconjugates are shown to bind to hybridomas presenting hapten-specific receptors on their surface. Hybridomas secreting hapten-specific mAbs can be removed by a magnet and be cloned subsequently by standard procedures. A considerable demand of mAbs is expected in the future due to new emerging techniques such as immunosensors.

  20. Clinical use of anti-vascular endothelial growth factor monoclonal antibodies in metastatic colorectal cancer.

    PubMed

    Chase, Judy L

    2008-11-01

    Abstract Vascular endothelial growth factor (VEGF) is the most potent proangiogenic factor and has been identified as an important target of cancer therapy. Blocking endothelial cell VEGF activity inhibits tumor angiogenesis; normalizes tumor vasculature, facilitating improved chemotherapy delivery; and prevents the recruitment of progenitor cells from the bone marrow. Bevacizumab, the only United States Food and Drug Administration (FDA)-approved anti-VEGF agent, is a monoclonal antibody that inhibits the binding of VEGF to VEGF receptors. The addition of bevacizumab to standard first- and second-line chemotherapy regimens for the treatment of metastatic colorectal cancer improves overall and progression-free survival times and increases the time to disease progression. Studies are evaluating bevacizumab as adjuvant therapy. The optimal bevacizumab dosage is unknown, but 5 mg/kg every 2 weeks is currently recommended for initial therapy. A surrogate efficacy marker is needed to optimize bevacizumab use, both for dose and patient selection; the clinical applicability of several surrogate efficacy markers is being evaluated. Generally, bevacizumab is well tolerated; however, several serious adverse effects that may occur (e.g., hypertensive crisis) can usually be appropriately prevented or managed. Although current recommendations suggest the administration of the first bevacizumab dose over 90 minutes to prevent infusion-related hypersensitivity reactions, recent study results show that 5 and 10 mg/kg can safely be administered over 10 and 20 minutes, respectively. Whether the addition of bevacizumab to metastatic colorectal cancer treatment regimens is a cost-effective treatment option is unknown; health economic studies are needed. When used for FDA-approved indications or for off-label indications being evaluated in select clinical trials, Medicare reimburses for bevacizumab therapy. PMID:18980549

  1. Induction of human complement activation without cytolysis by mouse monoclonal antibodies to human leukocyte antigens.

    PubMed

    Sugita, K; Majdic, O; Stockinger, H; Holter, W; Burger, R; Knapp, W

    1987-04-01

    Ten monoclonal antibodies to human leukocyte subsets that had previously been shown to lyse their respective target cells in the presence of rabbit serum as complement source were evaluated for their cytolytic capacity with human complement. Four of the ten were lytic with human complement. All were of IgM type. Antibodies were also evaluated for their capacity to induce C3 binding to target cells. With this method we could demonstrate that, indeed, 3 of the 6 noncytolytic antibodies had the capacity to initiate the human complement activation process and to induce C3 binding. Two of these 3 antibodies were of IgM class (VIT3 and VIM13), one of IgG3 (562). From the practical point of view the most interesting of these 3 antibodies is the nonmitogenic anti-CD3 pan-T cell antibody VIT3. Therefore, this antibody was analyzed in more detail. VIT3 antibody concentrations needed to induce detectable C3 binding to human T cells are very low (down to 1 ng VIT3/ml). Human serum as complement source can also be considerably (100X) diluted before C3 binding becomes undetectable. Activation of C3 is a prerequesite for VIT3-induced C3 binding, and bound C3 seems to lack the C3a fragment. Bound C3, in contrast to the quickly occuring antigenic modulation of the CD3 complex and the simultaneous disappearance of the antibody coat, remains expressed also after prolonged incubation at 37 degrees C. C3 fragments bound to T cells after activation with VIT3 are also recognized by cells bearing C3 receptors of types CR1 and CR2. PMID:3576673

  2. Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape

    PubMed Central

    Ferris, Robert L.; Jaffee, Elizabeth M.; Ferrone, Soldano

    2010-01-01

    Purpose Tumor antigen (TA) –targeted monoclonal antibodies (mAb), rituximab, trastuzumab, and cetuximab, are clinically effective for some advanced malignancies, especially in conjunction with chemotherapy and/or radiotherapy. However, these results are only seen in a subset (20% to 30%) of patients. We discuss the immunologic mechanism(s) underlying these clinical findings and their potential role in the variability in patients' clinical response. Methods We reviewed the evidence indicating that the effects of TA-targeted mAb-based immunotherapy are mediated not only by inhibition of signaling pathways, but also by cell-mediated cytotoxicity triggered by the infused TA-targeted mAb. We analyzed the immunologic variables that can influence the outcome of antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro and in animal model systems. We also analyzed the correlation reported between these variables and the clinical response to mAb-based immunotherapy. Results Of the variables that influence ADCC mediated by TA-targeted mAb, only polymorphisms of Fcγ receptors (FcγR) expressed by patients' lymphocytes were correlated with clinical efficacy. However, this correlation is not absolute and is not observed in all malignancies. Thus other variables may be responsible for the antitumor effects seen in mAb-treated patients. We discuss the evidence that triggering of TA-specific cellular immunity by TA-targeted mAb, in conjunction with immune escape mechanisms used by tumor cells, may contribute to the differential clinical responses to mAb-based immunotherapy. Conclusion Identification of the mechanism(s) underlying the clinical response of patients with cancer treated with TA-targeted mAb is crucial to optimizing their application in the clinic and to selecting the patients most likely to benefit from their use. PMID:20697078

  3. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant.

    PubMed

    Zeitlin, Larry; Pettitt, James; Scully, Corinne; Bohorova, Natasha; Kim, Do; Pauly, Michael; Hiatt, Andrew; Ngo, Long; Steinkellner, Herta; Whaley, Kevin J; Olinger, Gene G

    2011-12-20

    No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 μg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 μg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 μg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.

  4. Unexpected interference in cell surface staining by monoclonal antibodies to unrelated antigens.

    PubMed

    De Vita, Martina; Catzola, Valentina; Buzzonetti, Alexia; Fossati, Marco; Battaglia, Alessandra; Zamai, Loris; Fattorossi, Andrea

    2014-10-01

    Background: The possible occurrence of an erroneous immunophenotyping due to interference between monoclonal antibodies (MoAbs) is often overlooked when the epitopes are assumed to be not close to each other. This is particularly important when exploring immune cell populations whose identification is still investigational. The commonly held view is that myeloid derived suppressor cells (MDSC) can be identified as either HLA-DR(neg) (/dim) cells or interleukin-4 receptor-α (CD124)(+) cells among peripheral blood monocytes. We made the serendipitous observation that the fluorescence signal provided by the PE-CD124 MoAb was attenuated when the PE-CF594-HLA-DR MoAb was added to the staining tube. Methods: Peripheral blood mononuclear cells (PBMC) from healthy donors were stained with the PE-CD124 MoAb and, as control, PE -CD40, -CD4 and -CD14, and either the PE-CF594-HLA-DR MoAb or its unlabeled form. B cells, which also express CD124, were analyzed for comparison. Results: The PE-CF594-HLA-DR MoAb but not its unlabeled form reduced PE-CD124 MoAb staining on monocytes and B cells. No other monocyte and B cell surface marker staining was affected by the PE-CF594-HLA-DR MoAb. The PE-CF594-HLA-DR MoAb interfered with the PE-CD124 MoAb likely because of steric hindrance by bulky fluorochromes, although a quenching due to fluorescence resonance energy transfer might also cooperate to the PE-CD124 MoAb staining attenuation. Conclusions: Present observations highlight the importance of interference between MoAbs as a source of error when analyzing multicolor flow cytometry data. © 2014 Clinical Cytometry Society. PMID:25270399

  5. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics. PMID:25445515

  6. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system.

    PubMed

    Guilleminault, L; Azzopardi, N; Arnoult, C; Sobilo, J; Hervé, V; Montharu, J; Guillon, A; Andres, C; Herault, O; Le Pape, A; Diot, P; Lemarié, E; Paintaud, G; Gouilleux-Gruart, V; Heuzé-Vourc'h, N

    2014-12-28

    Monoclonal antibodies (mAbs) are usually delivered systemically, but only a small proportion of the drug reaches the lung after intravenous injection. The inhalation route is an attractive alternative for the local delivery of mAbs to treat lung diseases, potentially improving tissue concentration and exposure to the drug while limiting passage into the bloodstream and adverse effects. Several studies have shown that the delivery of mAbs or mAb-derived biopharmaceuticals via the airways is feasible and efficient, but little is known about the fate of inhaled mAbs after the deposition of aerosolized particles in the respiratory system. We used cetuximab, an anti-EGFR antibody, as our study model and showed that, after its delivery via the airways, this mAb accumulated rapidly in normal and cancerous tissues in the lung, at concentrations twice those achieved after intravenous delivery, for early time points. The spatial distribution of cetuximab within the tumor was heterogeneous, as reported after i.v. injection. Pharmacokinetic (PK) analyses were carried out in both mice and macaques and showed aerosolized cetuximab bioavailability to be lower and elimination times shorter in macaques than in mice. Using transgenic mice, we showed that FcRn, a key receptor involved in mAb distribution and PK, was likely to make a greater contribution to cetuximab recycling than to the transcytosis of this mAb in the airways. Our results indicate that the inhalation route is potentially useful for the treatment of both acute and chronic lung diseases, to boost and ensure the sustained accumulation of mAbs within the lungs, while limiting their passage into the bloodstream. PMID:25451545

  7. Identification of a Monoclonal Antibody That Attenuates Antiphospholipid Syndrome-Related Pregnancy Complications and Thrombosis

    PubMed Central

    Mineo, Chieko; Lanier, Lane; Jung, Eunjeong; Sengupta, Samarpita; Ulrich, Victoria; Sacharidou, Anastasia; Tarango, Cristina; Osunbunmi, Olutoye; Shen, Yu-Min; Salmon, Jane E.; Brekken, Rolf A.; Huang, Xianming; Shaul, Philip W.

    2016-01-01

    In the antiphospholipid syndrome (APS), patients produce antiphospholipid antibodies (aPL) that promote thrombosis and adverse pregnancy outcomes. Current therapy with anticoagulation is only partially effective and associated with multiple complications. We previously discovered that aPL recognition of cell surface β2-glycoprotein I (β2-GPI) initiates apolipoprotein E receptor 2 (apoER2)-dependent signaling in endothelial cells and in placental trophoblasts that ultimately promotes thrombosis and fetal loss, respectively. Here we sought to identify a monoclonal antibody (mAb) to β2-GPI that negates aPL-induced processes in cell culture and APS disease endpoints in mice. In a screen measuring endothelial NO synthase (eNOS) activity in cultured endothelial cells, we found that whereas aPL inhibit eNOS, the mAb 1N11 does not, and instead 1N11 prevents aPL action. Coimmunoprecipitation studies revealed that 1N11 decreases pathogenic antibody binding to β2-GPI, and it blocks aPL-induced complex formation between β2-GPI and apoER2. 1N11 also prevents aPL antagonism of endothelial cell migration, and in mice it reverses the impairment in reendothelialization caused by aPL, which underlies the non-thrombotic vascular occlusion provoked by disease-causing antibodies. In addition, aPL inhibition of trophoblast proliferation and migration is negated by 1N11, and the more than 6-fold increase in fetal resorption caused by aPL in pregnant mice is prevented by 1N11. Furthermore, the promotion of thrombosis by aPL is negated by 1N11. Thus, 1N11 has been identified as an mAb that attenuates APS-related pregnancy complications and thrombosis in mice. 1N11 may provide an efficacious, mechanism-based therapy to combat the often devastating conditions suffered by APS patients. PMID:27463336

  8. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  9. Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01▿†

    PubMed Central

    Li, Yuxing; O'Dell, Sijy; Walker, Laura M.; Wu, Xueling; Guenaga, Javier; Feng, Yu; Schmidt, Stephen D.; McKee, Krisha; Louder, Mark K.; Ledgerwood, Julie E.; Graham, Barney S.; Haynes, Barton F.; Burton, Dennis R.; Wyatt, Richard T.; Mascola, John R.

    2011-01-01

    The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike. PMID:21715490

  10. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85.

    PubMed

    Škerlová, Jana; Král, Vlastimil; Kachala, Michael; Fábry, Milan; Bumba, Ladislav; Svergun, Dmitri I; Tošner, Zdeněk; Veverka, Václav; Řezáčová, Pavlína

    2015-08-01

    The hyaluronate receptor CD44 plays role in cell adhesion and migration and is involved in tumor metastasis. The extracellular domain of CD44 comprises the hyaluronate-binding domain (HABD) and the membrane-proximal stem region; the short intracellular portion interacts with adaptor proteins and triggers signaling pathways. Binding of hyaluronate to CD44 HABD induces an allosteric conformational change, which results in CD44 shedding. A poorly characterized epitope in human CD44 HABD is recognized by the murine monoclonal antibody MEM-85, which cross-blocks hyaluronate binding to CD44 and also induces CD44 shedding. MEM-85 is of therapeutic interest, as it inhibits growth of lung cancer cells in murine models. In this work, we employed a combination of biophysical methods to determine the MEM-85 binding epitope in CD44 HABD and to provide detailed insight into the mechanism of MEM-85 action. In particular, we constructed a single-chain variable fragment (scFv) of MEM-85 as a tool for detailed characterization of the CD44 HABD-antibody complex and identified residues within CD44 HABD involved in the interaction with scFv MEM-85 by NMR spectroscopy and mutational analysis. In addition, we built a rigid body model of the CD44 HABD-scFv MEM-85 complex using a low-resolution structure obtained by small-angle X-ray scattering. The MEM-85 epitope is situated in the C-terminal part of CD44 HABD, rather than the hyaluronate-binding groove, and the binding of MEM-85 induces a structural reorganization similar to that induced by hyaluronate. Therefore, the mechanism of MEM-85 cross-blocking of hyaluronate binding is likely of an allosteric, relay-like nature. PMID:26066970

  11. The multichain interleukin 2 receptor: A target for immunotherapy in lymphoma, autoimmune disorders, and organ allografts

    SciTech Connect

    Waldmann, T.A. )

    1990-01-12

    The use of chemotherapeutic agents has cured some types of human cancer. However, many types of cancer either are initially unresponsive or subsequently acquire resistance to chemotherapy. Many in vitro studies have shown selective high-affinity binding of monoclonal antibodies to tumor cells. However, such monoclonal antibodies have to data been relatively ineffective. In the case selected for presentation, the authors used the anti-Tac monoclonal antibody. This antibody is directed against the receptor for IL-2, a receptor expressed on ATL cells but not resting cells. The authors developed alternative cytotoxic agents that could be conjugated to anti-Tac and are effective when bound to the surface of Tac-expressing cells. In one case, they showed that {sup 212}Bi, an {alpha}-emitting radionuclide, conjugated to anti-Tac was well suited for this role. In parallel studies, they bound the {beta}-emitting {sup 90}Y to anti-Tac using chelates that did not permit elution of radiolabeled yttrium from the monoclonal antibody. Rhesus monkeys that received xenografts of cynomolgus hearts showed a marked prolongation of xenograft survival following administration of {sup 90}Y-labeled anti-Tac. Thus, {sup 212}Bi-labeled anti-Tac and {sup 90}Y-labeled anti-Tac are potentially effective and specific immunocytotoxic agents for the elimination of Tac-expressing cells.

  12. Influence of unlabeled monoclonal anti-mouse antibody on the clearance rate of radiolabeled mouse monoclonal antibody

    SciTech Connect

    Wahl, R.L.; Laino, L.; Jackson, G.; Fisher, S.; Beierwaltes, W.H.

    1985-05-01

    High blood background levels of intact radiolabeled monoclonal antibody (MoAb) after intravenous (iv) injection are problematic. The injection of unlabeled polyclonal antimouse Abs following injection with labeled MoAbs produces accelerated MoAb clearance. This study evaluates a Mo antimouse Ab for efficacy of accelerating radio MoAb clearance. HB-58 is a rat/mouse MoAb which binds strongly to mouse kappa light chains present in 95% of murine monoclonals. It is unreactive with rat, rabbit or human kappa chains. Six rats were injected iv with 30 ..mu..Ci (approximately 6 ..mu..g) of I-125 UPC-10, a non-specific IgG2ak MoAb that is bound to well by HB-58. No alteration was seen in the clearance of UPC-10 in any of the animals, regardless of the injection type or amount on the second day. In addition, no increase in liver or spleen activity was seen in those rats that received HB-58. The lack of change in rate of clearance and biodistribution of UPC-10 after the iv injection of a purified, specific, anti-mouse MoAb is in marked contrast to the accelerated clearance reported following polyclonal anti-mouse antibody administration. This may be due to the inability of MoAbs to cross link. These preliminary studies suggest that Mo anti-mouse Abs, at these dose levels, are not useful in achieving increased rates of radiolabeled murine MoAb clearance.

  13. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity

    PubMed Central

    Kwong, Ka Yin; Baskar, Sivasubramanian; Zhang, Hua; Mackall, Crystal L.; Rader, Christoph

    2008-01-01

    Summary In humans, NKG2D is an activating receptor on NK cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in IgG format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, i.e. the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives. PMID:18809410

  14. The Use of Humanized Monoclonal Antibodies for the Prevention of Respiratory Syncytial Virus Infection

    PubMed Central

    Arcuri, Santo; Galletti, Silvia; Faldella, Giacomo

    2013-01-01

    Monoclonal antibodies are widely used both in infants and in adults for several indications. Humanized monoclonal antibodies (palivizumab) have been used for many years for the prevention of respiratory syncytial virus infection in pediatric populations (preterm infants, infants with chronic lung disease or congenital heart disease) at high risk of severe and potentially lethal course of the infection. This drug was reported to be safe, well tolerated and effective to decrease the hospitalization rate and mortality in these groups of infants by several clinical trials. In the present paper we report the development and the current use of monoclonal antibodies for prophylaxis against respiratory syncytial virus. PMID:23840240

  15. Reactivities of serotyping monoclonal antibodies with culture-adapted human rotaviruses.

    PubMed Central

    Ward, R L; McNeal, M M; Clemens, J D; Sack, D A; Rao, M; Huda, N; Green, K Y; Kapikian, A Z; Coulson, B S; Bishop, R F

    1991-01-01

    Rotaviruses collected in Bangladesh during 1985 to 1986 were culture adapted and used in a comparative serotyping study with three groups of monoclonal antibodies, all of which reacted with the major neutralization protein (VP7) of serotype 1, 2, 3, or 4. The goals were to determine which monoclonal antibodies most accurately predicted the serotype and why large variations in serotyping efficiencies have occurred with these monoclonal antibodies in previous studies. The 143 rotavirus isolates used in this study belonged to 69 different electropherotypes; and 44, 23, 21, and 55 isolates were identified as serotype 1 through 4, respectively, by neutralization with serotype-specific hyperimmune antisera. Serotyping specificity by enzyme-linked immunosorbent assay with monoclonal antibodies was 100% consistent with results found by neutralization with polyclonal antisera, but large differences were observed in the sensitivities of the different monoclonal antibodies. Monoclonal antibodies 5E8 (serotype 1), 1C10 (serotype 2), 159 (serotype 3), RV3:1 (serotype 3), ST-3:1 (serotype 4), and ST-2G7 (serotype 4) reacted with all the isolates of the corresponding serotype for which there were sufficient infectious particles. Monoclonal antibody 2F1 (serotype 2) was much less sensitive and reacted with only five serotype 2 isolates, but these were among those with the highest titers. Monoclonal antibodies RV4:2 (serotype 1), KU6BG (serotype 1), RV5:3 (serotype 2), and S2-2G10 (serotype 2), on the other hand, failed to react with between one and three isolates of the corresponding serotypes which had high titers, apparently because of epitope changes in these isolates. Effects of epitope variation were, however, most apparent with monoclonal antibodies 2C9 (serotype 1) and YO-1E2 (serotype 3), which reacted with one and no isolates of the corresponding serotypes, respectively. Cross-neutralization of escape mutants indicated that the serotype 1 monoclonal antibodies 5E8, 2C9

  16. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.

    PubMed

    Alvarado, Gabriela; Crowe, James E

    2016-01-01

    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies. PMID:27464688

  17. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy

    SciTech Connect

    Fawwaz, R.A.; Wang, T.S.T.; Srivastava, S.C.; Rosen, J.M.; Ferrone, S.; Hardy, M.A.; Alderson, P.O.

    1984-07-01

    Palladium-109, a beta-emitting radionuclide, was chelated to the monoclonal antibody 225.28S to the high molecular weight antigen associated with human melanoma. Injection of the radiolabeled monoclonal antibody into nude mice bearing human melanoma resulted in significant accumulation of the radiolabel in the tumors: 19% injected dose/g; 38:1 and 61:1 tumor-to-blood ratios at 24 and 48 hr, respectively. The localization of the radiolabeled antibody in liver and kidney also was high, but appreciably lower than that achieved in tumor. These results suggest Pd-109-labeled monoclonal antibody to tumor-associated antigens may have potential applications in tumor immunotherapy.

  18. Autoimmune anti-androgen-receptor antibodies in human serum.

    PubMed Central

    Liao, S; Witte, D

    1985-01-01

    Circulating autoantibodies to human and rat androgen receptors are present at high titers in the blood sera of some patients with prostate diseases. The antibodies from some serum samples were associated with a purified IgG fraction and interacted with the 3.8S cytosolic androgen-receptor complexes of rat ventral prostate to form 9- to 12S units. Other serum samples, however, formed 14- to 19S units, suggesting that other immunoglobulins might be involved. In the presence of an anti-human immunoglobulin as a second antibody, the androgen-receptor-antibody complexes could be immunoprecipitated. The antibodies interacted with the nuclear and the cytosolic androgen-receptor complexes, either the DNA-binding or the nonbinding form, but not with receptors for estradiol, progestin, or dexamethasone from a variety of sources. Human testosterone/estradiol-binding globulin, rat epididymal androgen-binding protein, or rat prostate alpha-protein (a nonreceptor steroid-binding protein) also did not interact with the antibodies to form immunoprecipitates. About 37% of male and 3% of female serum samples screened had significant antibody titer. The chance of finding serum with a high titer is much better in males older than 66 years than in the younger males or females at all ages. The presence of the high-titer antibodies may make it possible to prepare monoclonal antibodies to androgen receptors without purification of the receptors for immunization. PMID:3866227

  19. Monoclonal antibody-targeted superantigens: a different class of anti-tumor agents.

    PubMed Central

    Dohlsten, M; Hedlund, G; Akerblom, E; Lando, P A; Kalland, T

    1991-01-01

    The bacterial superantigen staphylococcal enterotoxin (SE) A (SEA) directs cytotoxic T lymphocytes (CTLs) expressing particular sequences of the T-cell receptor (TCR) beta chain to lyse tumor cells expressing major histocompatibility complex (MHC) class II molecules, which serve as receptors for SEs. We now report that chemical conjugates of SEA and the colon carcinoma-reactive monoclonal antibodies (mAbs) C215 or C242 mediate T cell-dependent destruction of colon carcinoma cells lacking MHC class II molecules. SEA was covalently linked to the mAbs C215 and C242 via a PEG-based hydrophilic spacer. The C215-SEA conjugate targeted CD4+ as well as CD8+ CTLs to lyse a panel of colon carcinoma cells lacking MHC class II molecules. T-cell recognition of mAb-SEA conjugates was SEA specific, since SEB-selective T-cell lines with potent cytotoxic activity towards Raji cells coated with SEB did not respond to the C215-SEA conjugate. Unconjugated SEA did not induce T-cell lysis of MHC class II- colon carcinoma cells but efficiently directed CTLs against MHC class II+ Raji cells and certain interferon-treated MHC class II+ colon carcinoma cells. These results suggest that SEA-mAb conjugates retain the SEA-related selectivity for certain TCR beta-chain variable region (V beta) sequences but, in contrast to unconjugated SEA, mediate the TCR interaction in a MHC class II-independent manner. The cytotoxic activity mediated by C215-SEA and C242-SEA conjugates was blocked by excess of C215 mAb and C242 mAb, respectively, showing that the specificity in the targeting of mAb-SEA conjugates is defined by the antigen reactivity of the mAb. These results demonstrate that bacterial superantigens may be successfully conjugated to mAb with preserved T cell-activating capacity. The circumvention of MHC class II binding of SEs by conjugation to mAb suggests that such conjugates may find general application as antitumor agents, taking advantage of the extreme T cell-activating potency of

  20. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?

    PubMed

    Mathivet, Thomas; Mazot, Pierre; Vigny, Marc

    2007-12-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.

  1. Epstein-Barr virus receptor expression on human CD8+ (cytotoxic/suppressor) T lymphocytes.

    PubMed

    Sauvageau, G; Stocco, R; Kasparian, S; Menezes, J

    1990-02-01

    In 1977 we showed that cells of a human lymphocytic leukaemia-derived T line (Molt-4) have receptors for Epstein-Barr virus (EBV). More recently, EBV-positive human T cell lymphomas have been recognized and human T cell lines containing the EBV genome have been established in vitro. To understand better the interaction of EBV with T cells, we decided to determine first whether human peripheral blood T lymphocytes express receptors for EBV. Using flow cytometry we examined the binding of both lymphocyte-transforming (B95-8) and non-transforming (P3HR-1) strains of EBV to T lymphocyte subpopulations, using a double labelling technique with T cell-specific phycoerythrinated monoclonal antibodies (Leu 2a) and fluoresceinated viral preparation. Our results suggest that, in general, about 50% of the CD8+ (or suppressor/cytotoxic) T cell subpopulation from both EBV-seropositive and -seronegative individuals can bind EBV. EBV receptor expression on these T cells was about 10 and 51 times less than that on Molt-4 and Raji (an EBV receptor-positive B cell line) cells, respectively. The specificity of this binding was demonstrated by the inhibition of attachment of viral preparations preincubated with a monoclonal antibody directed against the viral ligand (gp240/350), and by preincubating these target T cells with unlabelled virus. We were unable to detect EBV-induced antigens in infected T cells, suggesting that, as in Molt-4 cells, virus internalization may not occur in fresh T cells and/or that the virus receptor may not be completely functional. We were also unable to detect C3d (or CR2) receptors on these T cells, or to inhibit virus attachment by treating the targets with an anti-CR2 monoclonal antibody (OKB7), suggesting that the EBV receptor on CD8+ peripheral blood lymphocytes is different from that on B cells. PMID:2155291

  2. Natalizumab: AN 100226, anti-4alpha integrin monoclonal antibody.

    PubMed

    2004-01-01

    Natalizumab [AN 100226, anti-alpha4 integrin monoclonal antibody, Antegren] is a humanised monoclonal antibody that blocks alpha4beta1 integrin-mediated leukocyte migration. Natalizumab is in phase III trials for the treatment of multiple sclerosis in North America and the UK, and for the treatment of Crohn's disease also in the UK. It may have potential in the treatment of other immune-related inflammatory disease. Elan Corporation intends to examine the potential of natalizumab in rheumatoid arthritis and ulcerative colitis. 4beta1 integrin on circulating leukocytes binds to vascular cell adhesion molecule-1, which is expressed at high levels in the blood vessels in the CNS during exacerbations of multiple sclerosis. This allows leukocytes expressing alpha4beta1 integrin (very late antigen-4) to move from the peripheral blood into the CNS. Inflammatory proteins and other factors released from lymphocytes in the brain lead to the progression of symptoms. A limitation of natalizumab is that it must be injected and cannot be administered orally. Scientists have transformed the large anti-alpha4 monoclonal antibody into much smaller, drug-like molecules suitable for oral administration. Protein Design Labs has granted a worldwide nonexclusive licence under its antibody humanisation patents to Elan Pharmaceuticals for natalizumab. Biogen Inc. has entered into an agreement with Elan for a worldwide exclusive collaboration to develop, manufacture and commercialise natalizumab for multiple sclerosis and Crohn's disease and rheumatoid arthritis. Development of natalizumab is also being funded, in part, by Axogen (acquired by Elan in 1999). In November 2003, Biogen and IDEC Pharmaceuticals merged to form Biogen Idec. Elan repurchased royalty rights on a package of products, including natalizumab, from Autoimmune Disease Research Company. Elan and Genzyme Transgenics Corporation signed an agreement to produce natalizumab in GTC's genetically engineered goats, which will

  3. Role of anti-IgE monoclonal antibody (omalizumab) in the treatment of bronchial asthma and allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro

    2006-03-01

    IgE molecules play a crucial role in allergic respiratory diseases and may cause chronic airway inflammation in asthma through activation of effector cells via high-affinity (FcepsilonRI) or low-affinity (FcepsilonRII) IgE receptors. Since the discovery of IgE antibodies our understanding of the mechanisms of allergy has improved to such an extent that we can differentiate allergic/atopic from intrinsic respiratory diseases. Therapeutic anti-IgE antibodies, able to reduce free IgE levels and to block the binding of IgE to FcepsilonRI without crosslinking IgE and triggering degranulation of IgE-sensitized cells have been developed. This non-anaphylactogenic anti-IgE monoclonal antibody (omalizumab) binds IgE at the same site as these antibodies bind FcepsilonRI and FcepsilonRII. Consequently, omalizumab inhibits IgE effector functions by blocking IgE binding to high-affinity receptors on IgE effector cells and does not cause mast cell or basophil activation because it cannot bind to IgE on cell surfaces where the FcepsilonR1 receptor already masks the anti-IgE epitope. Studies in patients with atopic asthma showed that omalizumab decreases serum IgE levels and allergen-induced bronchoconstriction during both the early and late-phase responses to inhaled allergen. In several clinical controlled trials omalizumab resulted effective in reducing asthma-related symptoms, decreasing corticosteroid use and improving quality of life of asthmatic patients. Recent studies show the benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled by optimal pharmacological therapy. The anti-IgE approach to asthma treatment has several advantages, including concomitant treatment of other IgE-mediated diseases such as allergic rhinitis, a favorable safety profile and a convenient dosing frequency.

  4. Chimeric antigen receptor therapy for cancer.

    PubMed

    Barrett, David M; Singh, Nathan; Porter, David L; Grupp, Stephan A; June, Carl H

    2014-01-01

    Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor-based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer.

  5. An autoinflammatory neurological disease due to interleukin 6 hypersecretion

    PubMed Central

    2013-01-01

    Autoinflammatory diseases are rare illnesses characterized by apparently unprovoked inflammation without high-titer auto-antibodies or antigen-specific T cells. They may cause neurological manifestations, such as meningitis and hearing loss, but they are also characterized by non-neurological manifestations. In this work we studied a 30-year-old man who had a chronic disease characterized by meningitis, progressive hearing loss, persistently raised inflammatory markers and diffuse leukoencephalopathy on brain MRI. He also suffered from chronic recurrent osteomyelitis of the mandible. The hypothesis of an autoinflammatory disease prompted us to test for the presence of mutations in interleukin-1−pathway genes and to investigate the function of this pathway in the mononuclear cells obtained from the patient. Search for mutations in genes associated with interleukin-1−pathway demonstrated a novel NLRP3 (CIAS1) mutation (p.I288M) and a previously described MEFV mutation (p.R761H), but their combination was found to be non-pathogenic. On the other hand, we uncovered a selective interleukin-6 hypersecretion within the central nervous system as the likely pathogenic mechanism. This is also supported by the response to the anti-interleukin-6receptor monoclonal antibody tocilizumab, but not to the recombinant interleukin-1−receptor antagonist anakinra. Exome sequencing failed to identify mutations in other genes known to be involved in autoinflammatory diseases. We propose that the disease described in this patient might be a prototype of a novel category of autoinflammatory diseases characterized by prominent neurological involvement. PMID:23432807

  6. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment.

    PubMed

    Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J; Heffernan, James R; Kotov, Dmitri I; Martinov, Tijana; Osum, Kevin C; Ruggiero, Jenna L; Rust, Blake J; Landry, Samuel J; Jenkins, Marc K; McLachlan, James B; Fife, Brian T

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide-MHCII complexes. PMID:27292946

  7. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment

    PubMed Central

    Spanier, Justin A.; Frederick, Daniel R.; Taylor, Justin J.; Heffernan, James R.; Kotov, Dmitri I.; Martinov, Tijana; Osum, Kevin C.; Ruggiero, Jenna L.; Rust, Blake J.; Landry, Samuel J.; Jenkins, Marc K.; McLachlan, James B.; Fife, Brian T.

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide–MHCII complexes. PMID:27292946

  8. Preparation of species-specific murine monoclonal antibodies against the yeast phase of Paracoccidioides brasiliensis.

    PubMed Central

    Figueroa, J I; Hamilton, A J; Bartholomew, M A; Harada, T; Fenelon, L; Hay, R J

    1990-01-01

    A panel of four murine monoclonal antibodies showing species specificity for the yeast phase of the pathogenic dimorphic fungus Paracoccidioides brasiliensis was produced by using a modification of the standard monoclonal antibody technology. This involved the use of the immunosuppressive drug cyclophosphamide to suppress the immune response of test animals to fungi showing cross-reactivity, i.e., to Histoplasma capsulatum. One monoclonal antibody, P4, which had a high titer by enzyme-linked immunosorbent assay, was shown to recognize a linear antigenic epitope of P. brasiliensis at a molecular size of 70,000 to 75,000 daltons by Western blot (immunoblot) analysis. The potential use of these monoclonal antibodies, which are the first species-specific probes to P. brasiliensis that have been produced, in the field of serodiagnosis is discussed. Images PMID:2394802

  9. Proliferative glomerulonephritis with monoclonal immunoglobulin deposition disease: The utility of routine staining with immunoglobulin light chains

    PubMed Central

    Gowda, K. K.; Nada, R.; Ramachandran, R.; Joshi, K.; Tewari, R.; Kohli, H. S.; Jha, V.; Gupta, K. L.

    2015-01-01

    Proliferative glomerulonephritis occurring as a consequence of monoclonal glomerular deposits of IgG is uncommon. It is a form of renal involvement in monoclonal gammopathy that mimics immune complex glomerulonephritis. Here, we report the first series of proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) from the Indian subcontinent highlighting use of light chain immunofluorescence (IF) in routine renal biopsy interpretation. We retrieved 6 patients diagnosed as proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) out of 160 biopsies (3.7%) with membranoproliferative patterns over 5 1/2 years (2009–2014), one of whom had recurrence 6 months post-renal transplant. Four (67%) patients presented with rapidly progressive renal failure and two (33%) with nephrotic syndrome. None of these patients had overt multiple myeloma. The predominant histologic pattern was membranoproliferative with all the biopsies showing IgG3 Kappa deposits on IF. The deposits were primarily subendothelial on electron microscopy. PMID:26664209

  10. Anti-Mesothelin Monoclonal Antibodies for the Treatment of Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute, Laboratory of Molecular Biology is seeking parties interested in collaborative research to further co-develop monoclonal antibodies for the treatment of mesothelin-expressing cancers.

  11. Two monoclonal antibodies raised against different epitopes of chloroplast fructose-1. 6-bisphosphatase (FBPase)

    SciTech Connect

    Hermoso, R.; Fonolla, J.; Lopez-Gorge, J. ); Ruiz-Cabello, F.; Garrido, F. )

    1990-05-01

    Two monoclonal antibodies (GR-BP5 and GR-BP8) were obtained by fusion of spleen cells of mice immunized against pea photosynthetic FBPase with cells of myeloma NSI. Both mAbs showed by double immunodiffusion a {chi} light chain, and the GR-BP8 secreted an IgM. By Western-blotting and immunoprecipitation of the in vivo labelled pea FBPase, GR-BP5 and GR-BP8 showed specificity for the chloroplast enzyme. Competition binding of the {sup 125}I-labelled mAbs against pea FBPase showed specific binding sites to different epitopes of the enzyme molecule. Cross reaction assays between both monoclonal antibodies and pea and spinach chloroplast FBPases showed a 90-100% homology in the corresponding epitopes of both enzymes. Preliminary assays showed a moderate inhibition of FBPase by GR-BP5 monoclonal antibody, but a weak enhancement by the GR-BP8 monoclonal one.

  12. [Discovery of a monoclonal gammopathy in 2 brothers and its classification by electroimmunodiffusion].

    PubMed

    Mari, S; Zepponi, E; Nardone, G; Milano, R; Guanciale, C; Ranieri, M

    1980-06-01

    In this work the finding of a monoclonal band in two brothers is communicated. The electroimmunoprecipitation has been used for the typification. This technique seemed to be simple, rapid and of immediate interpretation. PMID:6787654

  13. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite™) assays for diagnosing and monitoring monoclonal gammopathies.

    PubMed

    Kraj, Maria

    2014-01-01

    Immunofixation (IFE) is a standard method for detecting monoclonal immunoglobulins and characterizing its isotype. Recently clonality can also be determined by using immunoglobulin (Ig) heavy chain/light chain immunoassays - HLC, HevyliteTM. HLC separately measures in pairs light chain types of each intact Ig class generating ratios of monoclonal Ig/uninvolved polyclonal Ig concentrations. Studies have shown that HLC and IFE are complementary methods. HLC assays quantify monoclonal proteins and identify monoclonality. It is possible to predict prognosis in multiple myeloma and to monitor response to treatment using HLC ratio. HLC ratio may serve as a parameter for myeloma induced immunoparesis and serve as a new marker for validating remission depth and relapse probabilities.

  14. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  15. A simple method for the production of anti-C3d monoclonal antibody.

    PubMed

    Cruz, Carlos; León, Graciela

    2007-12-01

    Production of monoclonal antibodies to C3d usually involves the purification of protein. Our method does not require C3 purification; it relies on attachment of C3b to mouse erythrocytes by activation of alternative pathways and further conversion in C3d. We prepared human complement-coated mouse red cells and sensitized mice of the same strain with our own schedule of immunization and applied the classical methods to obtain a mouse monoclonal antibody. We obtained a clone called BMS-11 which produces a monoclonal antibody of IgM class, to C3d with a title of 1:500000. The monoclonal antibody obtained has shown that it is suitable for use as an antiglobulin reagent.

  16. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  17. Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.

    NASA Astrophysics Data System (ADS)

    Minkoff, Marjorie Sue

    A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the

  18. Identification of a gp130 cytokine receptor critical site involved in oncostatin M response.

    PubMed

    Olivier, C; Auguste, P; Chabbert, M; Lelièvre, E; Chevalier, S; Gascan, H

    2000-02-25

    Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes. PMID:10681548

  19. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  20. Monoclonal Antibody-Directed Effector Cells Selectively Lyse Human Melanoma Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schulz, Gregor; Bumol, Thomas F.; Reisfeld, Ralph A.

    1983-09-01

    Monoclonal antibody 9.2.27 (mAb 9.2.27) directed to a chondroitin sulfate proteoglycan on human melanoma cells was able to suppress tumor growth in athymic (nu/nu) mice more effectively when bound with polyethylene glycol to murine effector cells than when injected alone. These ``armed'' effector cells also proved more effective than the monoclonal antibody in eliciting antibody-dependent cellular cytotoxicity against human melanoma target cells in vitro.