Science.gov

Sample records for anti-plane s-wave analytical

  1. Calculation of s-Wave Resonances by Means of Analytical Continuation

    NASA Astrophysics Data System (ADS)

    Horáček, Jiří; Ledvinka, Tomáš; Brožek, Pavel

    2010-09-01

    Calculation of s-wave resonances by means of the analytical continuation in the coupling constant is a difficult problem because the position of the critical bifurcation point is unknown. Here we propose a new variant of the method of analytical continuation which avoids this problem completely. The method is applied to a model case which allows for accurate determination of the input data. It is shown that very precise resonance parameters can be obtained in this way.

  2. Debonding of an elastic inhomogeneity of arbitrary shape in anti-plane shear

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Yang, Moxuan; Schiavone, Peter

    2016-08-01

    We investigate the anti-plane shear problem of a curvilinear crack lying along the interface of an arbitrarily shaped elastic inhomogeneity embedded in an infinite matrix subjected to uniform stresses at infinity. Complex variable and conformal mapping techniques are used to derive an analytical solution in series form. The problem is first reduced to a non-homogeneous Riemann-Hilbert problem, the solution of which can be obtained by evaluating the associated Cauchy integral. A set of linear algebraic equations is obtained from the compatibility condition imposed on the resulting analytic function defined in the inhomogeneity and its Faber series expansion. Each of the unknown coefficients in the corresponding analytic functions can then be uniquely determined by solving the linear algebraic equations, which are written concisely in matrix form. The resulting analytical solution is then used to quantify the displacement jump across the debonded section of the interface as well as the traction distribution along the bonded section of the interface. In addition, our solution allows us to obtain mode-III stress intensity factors at the two crack tips. The solution to the anti-plane problem of a partially debonded elliptical inhomogeneity containing a confocal crack is also derived using a similar method.

  3. Teleseismic S wave microseisms.

    PubMed

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-26

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior.

  4. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading

    NASA Astrophysics Data System (ADS)

    Gherrous, M.; Ferdjani, H.

    2016-11-01

    The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.

  5. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.

    PubMed

    Chen, A-Li; Yan, Dong-Jia; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-02-01

    In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed.

  6. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  7. Surface effects in anti-plane deformations of a micropolar elastic solid: integral equation methods

    NASA Astrophysics Data System (ADS)

    Sigaeva, Taisiya; Schiavone, Peter

    2016-03-01

    The theory of linear micropolar elasticity is used in conjunction with a new representation of micropolar surface mechanics to develop a comprehensive model for the deformations of a linearly micropolar elastic solid subjected to anti-plane shear loading. The proposed model represents the surface effect as a thin micropolar film of separate elasticity, perfectly bonded to the bulk. This model captures not only the micro-mechanical behavior of the bulk which is known to be considerable in many real materials but also the contribution of the surface effect which has been experimentally well observed for bodies with significant size-dependency and large surface area to volume ratios. The contribution of the surface mechanics to the ensuing boundary-value problem gives rise to a highly nonstandard boundary condition not accommodated by classical studies in this area. Nevertheless, the corresponding interior and exterior mixed boundary-value problems are formulated and reduced to systems of singular integro-differential equations using a representation of solutions in the form of modified single-layer potentials. Analysis of these systems demonstrates that the classical Noether theorems reduce to Fredholms theorems leading to results on well-posedness of the corresponding mathematical model.

  8. On the topological derivative due to kink of a crack with non-penetration. Anti-plane model

    PubMed Central

    Khludnev, A.M.; Kovtunenko, V.A.; Tani, A.

    2010-01-01

    A topological derivative is defined, which is caused by kinking of a crack, thus, representing the topological change. Using variational methods, the anti-plane model of a solid subject to a non-penetration condition imposed at the kinked crack is considered. The objective function of the potential energy is expanded with respect to the diminishing branch of the incipient crack. The respective sensitivity analysis is provided by a Saint-Venant principle and a local decomposition of the solution of the variational problem in the Fourier series. PMID:22163369

  9. S-wave refraction survey of alluvial aggregate

    USGS Publications Warehouse

    Ellefsen, Karl J.; Tuttle, Gary J.; Williams, Jackie M.; Lucius, Jeffrey E.

    2005-01-01

    An S-wave refraction survey was conducted in the Yampa River valley near Steamboat Springs, Colo., to determine how well this method could map alluvium, a major source of construction aggregate. At the field site, about 1 m of soil overlaid 8 m of alluvium that, in turn, overlaid sedimentary bedrock. The traveltimes of the direct and refracted S-waves were used to construct velocity cross sections whose various regions were directly related to the soil, alluvium, and bed-rock. The cross sections were constrained to match geologic logs that were developed from drill-hole data. This constraint minimized the ambiguity in estimates of the thickness and the velocity of the alluvium, an ambiguity that is inherent to the S-wave refraction method. In the cross sections, the estimated S-wave velocity of the alluvium changed in the horizontal direction, and these changes were attributed to changes in composition of the alluvium. The estimated S-wave velocity of the alluvium was practically constant in the vertical direc-tion, indicating that the fine layering observed in the geologic logs could not be detected. The S-wave refraction survey, in conjunction with independent information such as geologic logs, was found to be suitable for mapping the thickness of the alluvium.

  10. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  11. A simple method of predicting S-wave velocity

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.

  12. Seismic noise frequency dependent P and S wave sources

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.

    2013-12-01

    Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.

  13. Exotic s-wave superconductivity in alkali-doped fullerides.

    PubMed

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-20

    Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.

  14. Exotic s-wave superconductivity in alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-01

    Alkali-doped fullerides ({{A}3}{{\\text{C}}60} with A  =  K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature ({{T}\\text{c}} ) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-{{T}\\text{c}} superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund’s coupling within the {{\\text{C}}60} molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-{{T}\\text{c}} superconductivity.

  15. P- and S-wave delays caused by thermal plumes

    NASA Astrophysics Data System (ADS)

    Maguire, Ross; Ritsema, Jeroen; van Keken, Peter E.; Fichtner, Andreas; Goes, Saskia

    2016-08-01

    Many studies have sought to seismically image plumes rising from the deep mantle in order to settle the debate about their presence and role in mantle dynamics, yet the predicted seismic signature of realistic plumes remains poorly understood. By combining numerical simulations of flow, mineral-physics constraints on the relationships between thermal anomalies and wave speeds, and spectral-element method based computations of seismograms, we estimate the delay times of teleseismic S and P waves caused by thermal plumes. Wave front healing is incomplete for seismic periods ranging from 10 s (relevant in traveltime tomography) to 40 s (relevant in waveform tomography). We estimate P-wave delays to be immeasurably small (<0.3 s). S-wave delays are larger than 0.4 s even for S waves crossing the conduits of the thinnest thermal plumes in our geodynamic models. At longer periods (>20 s), measurements of instantaneous phase misfit may be more useful in resolving narrow plume conduits. To detect S-wave delays of 0.4-0.8 s and the diagnostic frequency dependence imparted by plumes, it is key to minimize the influence of the heterogeneous crust and upper mantle. We argue that seismic imaging of plumes will advance significantly if data from wide-aperture ocean-bottom networks were available since, compared to continents, the oceanic crust and upper mantle are relatively simple.

  16. P- and S-wave Slowness Anomalies in the Mantle

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Thorne, M. S.

    2015-12-01

    Anomalies in the slowness of teleseisms have been observed in numerous studies, with previous efforts focusing on crust and upper mantle sources for their origin. Little attention has been devoted to the global distribution of P- and S-wave slowness anomalies in the deep Earth. In this study, we use large aperture seismic array data to examine slowness anomalies as a function of depth in the lower mantle. We collected seismic recordings from all broadband seismic stations in North America for earthquakes between January 2004 and June 2015 with moment magnitudes between 5.8 and 7.5, event depths greater than 100 km, and epicentral distances from 40° to 90°. We chose the time range to coincide with the Earthscope seismic experiment. The epicentral distance range used in this study ensured the target phases, direct P and S wave arrivals, turned in the mantle at depths ranging from 1000 to 2800 km. The original data set contained 420 events with 171,696 seismograms. We inspected each seismogram manually and discarded traces without clear P or S arrivals. Our final data set consists of 278 events with 129,748 seismograms. For each event, we grouped the data into 3° radius geographic bins and calculated relative time shifts for each bin using the Automated and Interactive Measurement of Body-wave Arrival Times (AIMBAT) technique. AIMBAT is a python tool for measuring teleseismic arrival times based on the multi-channel cross-correlation (MCCC) method. For each bin, we plotted the relative time shifts as a function of epicentral distances and calculated the corresponding least-square regression line. The slowness (dT/dΔ) can be obtained as the slope of the regression line. The slowness values of all geographic bins were collected to build a slowness profile for each event. In order to identify slowness anomalies, these slowness profiles were compared with synthetic slowness profiles calculated using the 2.5-D axi-symmetric finite-difference methods PSVaxi for P waves

  17. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies.

  18. One loop corrections on fragmentation function of 1S wave charmed mesons

    NASA Astrophysics Data System (ADS)

    Sepahvand, Reza; Dadfar, Sareh

    2017-04-01

    We present the contribution of the next to leading order (NLO) corrections in fragmentation a c-quark to 1S wave charmed mesons. These corrections are calculated by using the dimensional regularization method. We use two slicing methods that allow the phase space integrals to be evaluated in 4 dimensions. Technical details are discussed about virtual and real corrections in this scheme. Our numerical calculations show the NLO corrections to D mesons fragmentation function (FF) enhance the fragmentation probability (FP). The production ratio of vector mesons D* and D+* to all states is estimated. At NLO, it is obtained a bit smaller than the one at LO. Finally our analytic results are compared with available experimental data for D0 and D+* mesons.

  19. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Jia; Luan, Xi-Wu; Fang, Gang; Liu, Xin-Xin; Pan, Jun; Wang, Xiao-Jie

    2016-09-01

    Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.

  20. On the relative scattering of P- and S-waves

    NASA Technical Reports Server (NTRS)

    Malin, P. E.; Phinney, R. A.

    1985-01-01

    Using a single-scattering approximation, equations for the scattering attenuation coefficients of P-body and S-body waves are derived. The results are discussed in the light of the energy-renormalization approaches of Wu (1980, 1982) and Sato (1982) to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P-waves to S-waves and S-waves to P-waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average-wavenumber power spectra. The power spectra are approximated with piecewise constant functions, each segment of which contributes to the net frequency-dependent scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behavior associated with each spectral segment, including a transition peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observe such a peak in the apparent attenuation of seismic waves. Both the frequency and distance limits on the accuracy of the theoretical results are given.

  1. Fluctuations electrical conductivity in a granular s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Yousefvand, A.; Zargar Shoushtari, M.

    2017-01-01

    The present study tries to evaluate the fluctuation electrical conductivity in a granular s-wave superconductor at the temperature near to the critical temperature. The evaluation is conducted under the condition of limited tunneling conductance between the grains and small impurity concentration. All the first order fluctuation corrections, involving the nonlocal scattered electron in a granular s-wave superconductor, are calculated in three dimensions and in the limit of clean. Using Green's function theory initially, the Cooperon (impurity vertex), λ (q , ε1 , ε2) , and the fluctuation propagator, Lk (q , Ωk) , are calculated in the presence of impurities. Then, the three distinct contributions of Aslamazov-Larkin, Maki-Thompson, and Density of states are calculated by means of the Kubo formula. Analysis shows that the terms of Aslamazov-Larkin and anomalous Maki-Thompson have positive contributions to the conductivity in the clean limit, whereas the terms of Density of state and the regular Maki-Thompson have negative signs, leading to the reduction of total fluctuation conductivity.

  2. Estimating Moho depth utilizing S-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Ceylan, S.; Rychert, C.; Harmon, N.

    2014-12-01

    H-k stacking method [Zhu and Kanamori, 2000] is a widely used grid search technique for estimating the Moho depth (H) and Vp/Vs (k) beneath a given station. The H-k surface reaches a maximum when the optimum H and k values are used, which is assumed to be the average crustal structure beneath the seismic station. In general, the method is employed in conjunction with P-wave receiver functions. Here, we investigate the usability of H-k stacking method with S-to-P (Sp) conversions and S-wave reverberations within the crust, employing an extended multi-taper deconvolution. We apply the method to southern California, using data recorded between 1990-2011. We compare results with those of prior studies that used P-to-S (Ps) conversions [Zhu and Kanamori, 2000; Yan and Clayton, 2007], applying a smoothing length of 0.5 degrees to reflect lateral Sp sensitivity. P-waves have better potential to resolve lateral variations in Moho depth owing to the higher frequency content and the geometry of Ps ray path. Our results from Sp conversions are in broad agreement with those from Ps, affirming that S-wave receiver functions can be used in conjunction with the H-k stacking method. Consistent with the P-wave receiver function results, crust is thinner beneath the central Transverse Range (30 km) with respect to eastern Transverse Range (33 km) and Peninsular Region (35 km). Our Moho depth observations (35 km) are more compatible with those of Yan and Clayton [2007] (~35 km) than Zhu and Kanamori [2000] (~30 km) beneath Sierra Nevada, most probably due to a larger data set this study and Yan and Clayton [2007] use. Also, results from this study are deeper than those from Ps for the Salton Trough (30-35 km vs. 25 km). In this case, broad receiver function waveform characteristics suggest a more gradual impedance change across the Moho discontinuity and/or a multi-layered crust. We suggest that a combination of P- and S-wave receiver functions can yield more robust crustal thickness

  3. Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations.

    PubMed

    Wang, Xu; Schiavone, Peter

    2014-10-08

    We propose an elegant and concise general method for the solution of a problem involving the interaction of a screw dislocation and a nano-sized, arbitrarily shaped, elastic inhomogeneity in which the contribution of interface/surface elasticity is incorporated using a version of the Gurtin-Murdoch model. The analytic function inside the arbitrarily shaped inhomogeneity is represented in the form of a Faber series. The real periodic function arising from the contribution of the surface mechanics is then expanded as a Fourier series. The resulting system of linear algebraic equations is solved through the use of simple matrix algebra. When the elastic inhomogeneity represents a hole, our solution method simplifies considerably. Furthermore, we undertake an analytical investigation of the challenging problem of a screw dislocation interacting with two closely spaced nano-sized holes of arbitrary shape in the presence of surface stresses. Our solutions quite clearly demonstrate that the induced elastic fields and image force acting on the dislocation are indeed size-dependent.

  4. The s-wave repulsion and deeply bound pionic atoms: fact and fancy

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2003-06-01

    Fits to a large data set of pionic atoms show that the 'missing' s-wave repulsion is accounted for when a density dependence suggested recently by Weise is included in the isovector term of the s-wave pion optical potential. The importance of using large data sets is demonstrated and the role of deeply bound pionic atom states is discussed.

  5. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  6. Complex seismic amplitude inversion for P-wave and S-wave quality factors

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2015-07-01

    Stratum quality factors (P-wave and S-wave quality factors, Qp and Qs) have gradually been utilized in the study of physical state of crust and uppermost mantle, tectonic evolution, hydrogeololgy, gas hydrates, petroleum exploration, etc. Different opinions of the seismic attenuation mechanism result in various approaches to estimate the P-wave and S-wave quality factors. Considering the viscoelasticity of the underground medium, the constitutive matrix of the Earth medium is written as the superposition of homogeneous background medium, elastic perturbation medium and viscoelastic perturbation medium. Under the hypothesis of Born integral and stationary phase approximation, the seismic reflectivity is initially raised in terms of P-wave and S-wave moduli, density, P-wave and S-wave quality factors. Furthermore, incorporating the complex seismic traces with the seismic wavelets at different offsets, a two-step inversion approach is proposed to estimate the P-wave and S-wave quality factors. The AVO/AVA Bayesian inversion approach is suggested to estimate the P-wave modulus and S-wave modulus with the real component of the pre-stack seismic data initially. Taking the estimated P-wave and S-wave moduli as prior information, the P-wave and S-wave quality factors are further estimated with the imaginary component of the complex pre-stack seismic data, which is the quadrature of the original data. Finally, synthetic examples demonstrate that the proposed approach is able to estimate P-wave and S-wave quality factors stably and properly, and two field data examples demonstrate that the proposed approach may work as an efficient approach to fluid identification.

  7. The K-π+ S-wave from the D+→K-π+π+ decay

    NASA Astrophysics Data System (ADS)

    FOCUS Collaboration; Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Casimiro, E.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Moore, J. E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.

    2009-10-01

    Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K-π+ S-wave amplitude from the decay D+→K-π+π+. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K-π+ system.

  8. The K- pi+ S-wave from the D+ --> K- pi+ pi+ Decay

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; /Rio de Janeiro, CBPF /CINVESTAV, IPN /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U. /Indiana U. /Korea U. /Kyungpook National U. /Milan U.

    2009-05-01

    Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K{sup -}{pi}{sup +} S-wave amplitude from the decay D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +}. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K{sup -}{sup +} system.

  9. The K- pi+ S-wave from the D+ --> k- pi+ pi+ Decay

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; /Rio de Janeiro, CBPF /CINVESTAV, IPN /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U. /Indiana U. /Korea U. /Kyungpook National U. /Milan U.

    2009-05-01

    Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K{sup -}{pi}{sup +} S-wave amplitude from the decay D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +}. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K{sup -}{pi}{sup +} system.

  10. Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Wu, Chunquan; Delorey, Andrew; Brenguier, Florent; Hadziioannou, Celine; Daub, Eric G.; Johnson, Paul

    2016-06-01

    We use noise correlation and surface wave inversion to measure the S wave velocity changes at different depths near Parkfield, California, after the 2003 San Simeon and 2004 Parkfield earthquakes. We process continuous seismic recordings from 13 stations to obtain the noise cross-correlation functions and measure the Rayleigh wave phase velocity changes over six frequency bands. We then invert the Rayleigh wave phase velocity changes using a series of sensitivity kernels to obtain the S wave velocity changes at different depths. Our results indicate that the S wave velocity decreases caused by the San Simeon earthquake are relatively small (~0.02%) and access depths of at least 2.3 km. The S wave velocity decreases caused by the Parkfield earthquake are larger (~0.2%), and access depths of at least 1.2 km. Our observations can be best explained by material damage and healing resulting mainly from the dynamic stress perturbations of the two large earthquakes.

  11. Anisotropic Andreev reflection in ferromagnet/s-wave superconductors (FS)

    NASA Astrophysics Data System (ADS)

    Hoegl, Petra; Matos Abiague, Alex; Zutic, Igor; Fabian, Jaroslav

    2015-03-01

    Andreev reflection in FS junctions is a sensitive probe of the junction interface as well as of the spin polarization of the F region. By performing analytical and numerical calculations on widely accepted model systems, with interfacial Rashba and Dresselhaus spin-orbit fields, we show that Andreev reflection spectroscopy is also a sensitive tool of the interfacial spin-orbit coupling. In particular, we find a finite subgap conductance even in half-metallic systems due to the spin-flip Andreev reflection, imposing a triplet proximity effect. Furthermore, we predict a giant magnetic anisotropy of the Andreev reflection--anisotropic Andreev reflection (AAR)--with respect to the orientation of the F magnetization. We analyze the effects of the tunnel barrier strength, the F spin polarization, and the effective mass and Fermi wave vector mismatch. Our results should also have implications for designing Majorana states in semiconductor junctions with superconductors. This work has been supported by DFG SFB 689 and the International Doctorate Program Topological Insulators of the Elite Network of Bavaria.

  12. Strong lateral variations of S-wave velocity in the upper mantle across the western Alps

    NASA Astrophysics Data System (ADS)

    Lyu, Chao; Pedersen, Helle; Paul, Anne; Zhao, Liang

    2016-04-01

    Absolute S-wave velocity gives more insight into temperature and mineralogy than relative P-wave velocity variations (ΔV p/ V p) imaged by teleseismic traveltime tomography. Moreover, teleseismic P-wave tomography has poor vertical but good horizontal resolution. By contrast, the inversion of surface waves dispersion data gives absolute S-wave velocity with a good vertical but relatively poor horizontal resolution. However, the horizontal resolution of surface wave imaging can be improved by using closely spaced stations in mini-arrays. In this work, we use Rayleigh wave phase velocity dispersion data to measure absolute S-wave velocities beneath the CIFALPS profile across the French-Italian western Alps. We apply the array processing technique proposed by Pedersen et al. (2003) to derive Rayleigh wave phase dispersion curves between 20 s and 100 s period in 15 mini-arrays along the CIFALPS line. We estimate a 1-D S-wave velocity model at depth 50-150 km beneath each mini-array by inverting the dispersion curves jointly with receiver functions. The joint inversion helps separating the crustal and mantle contributions in the inversion of dispersion curves. Distinct lithospheric structures and marked lateral variations are revealed beneath the study region, correlating well with regional geological and tectonic features. The average S-wave velocity from 50 to 150 km depth beneath the CIFALPS area is ˜4.48km/s, almost the same as in model AK135, indicating a normal upper mantle structure in average. Lateral variations are dominated by relatively low velocities (˜4.4km/s) in the mantle of the European plate, very low velocities (4.0km/s, i.e. approximately 12% lower than AK135) beneath the Dora Maira internal crystalline massif and high velocities (˜ 5.0km/s, i.e. 12% higher than AK135) beneath the Po plain. The lateral variations of S-wave velocity perturbation show the same features as the P wave tomography (Zhao et al., submitted), but with different amplitudes

  13. Exploiting the symmetries of P and S wave for B → K ∗ μ + μ -

    NASA Astrophysics Data System (ADS)

    Hofer, Lars; Matias, Joaquim

    2015-09-01

    After summarizing the current theoretical status of the four-body decay B → K ∗(→ Kπ) μ + μ -, we apply the formalism of spin-symmetries to the full angular distribution, including the S-wave part involving a broad scalar resonance K 0 ∗ . While we recover in the P-wave sector the known relation between the angular observables P i (') , we find in the S-wave sector two new relations connecting the coefficients of the S-wave angular distribution and reducing the number of independent S-wave observables from six to four. Included in the experimental data analysis, these relations can help to reduce the background from S-wave pollution. We further point out the discriminative power of the maximum of the angular observable P 2 as a charm-loop insensitive probe of right-handed currents. Moreover, we show that in absence of right-handed currents the angular observables P 4 ' and P 5 ' fulfill the relation P 4 ' = βP 5 ' at the position where P 2 reaches its maximum.

  14. Identification and mitigation of T-S waves using localized dynamic surface modification

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Tuna, Burak A.; Dell'Orso, Haley

    2016-06-01

    The control of transition from a laminar to a turbulent flow over a flat plate using localized dynamic surface modifications was explored experimentally in Rensselaer Polytechnic Institute's subsonic wind tunnel. Dynamic surface modification, via a pair of Piezoelectrically Driven Oscillating Surface (PDOS) actuators, was used to excite and control the T-S wave over a flat plate. Creating an upstream, localized small disturbance at the most amplified frequency of fact = 250 Hz led to phase-locking the T-S wave. This enabled observation of the excited T-S wave using phase-locked stereoscopic particle image velocimetry. The growth of the T-S wave as it moved downstream was also measured using this technique (25% growth over four wavelengths of the excited wave). Activation of a downstream PDOS actuator (in addition to the upstream PDOS) at the appropriate amplitude and phase shift resulted in attenuation of the peak amplitude of the coherent velocity fluctuations (by up to 68%) and a substantial reduction of the degree of coherence of the T-S wave. Since the PDOS actuators used in this work were localized, the effect of the control strategy was confined to the region directly downstream of the PDOS actuator.

  15. Impurity scattering rate and coherence factor in vortex core of sign-reversing s -wave superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Kato, Yusuke

    2010-11-01

    We investigate the impurity scattering rates for quasiparticles in vortex cores of sign-reversing s -wave superconductors as a probe to detect the internal phase difference of the order parameters among different Fermi surfaces. The impurity scattering rates and coherence factors are related to quasiparticle interference effect by the scanning tunneling microscopy and spectroscopy technique. With use of the Born and Kramer-Pesch approximations for the Andreev bound states, we show that the sign-reversed forward scatterings are dominant in vortex cores. Owing to the coherence factor in vortex cores of ±s -wave superconductors, the impurity scattering rate of the Andreev bound states has a characteristic distribution on the Fermi surfaces. For comparison, the impurity scattering rates in vortex cores of s -wave and d -wave superconductors are also discussed.

  16. Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Benz, H.M.; Chouet, B.A.; Dawson, P.B.; Lahr, J.C.; Page, R.A.; Hole, J.A.

    1996-01-01

    The three-dimensional P and S wave structure of Redoubt Volcano, Alaska, and the underlying crust to depths of 7-8 km is determined from 6219 P wave and 4008 S wave first-arrival times recorded by a 30-station seismograph network deployed on and around the volcano. First-arrival times are calculated using a finite-difference technique, which allows for flexible parameterization of the slowness model and easy inclusion of topography and source-receiver geometry. The three-dimensional P wave velocity structure and hypocenters are determined simultaneously, while the three-dimensional S wave velocity model is determined using the relocated seismicity and an initial S wave velocity model derived from the P wave velocity model assuming an average Vp/Vs ratio of 1.78. Convergence is steady with approximately 73% and 52% reduction in P and S wave arrival time RMS, respectively, after 10 iterations. The most prominent feature observed in the three-dimensional velocity models derived for both P and S waves is a relative low-velocity, near-vertical, pipelike structure approximately 1 km in diameter that extends from 1 to 6 km beneath sea level. This feature aligns axially with the bulk of seismicity and is interpreted as a highly fractured and altered zone encompassing a magma conduit. The velocity structure beneath the north flank of the volcano between depths of 1 and 6 km is characterized by large lateral velocity variations. High velocities within this region are interpreted as remnant dikes and sills and low velocities as regions along which magma migrates. No large low-velocity body suggestive of a magma chamber is resolved in the the upper 7-8 km of the crust.

  17. Attenuation measurements of ultrasonic P-wave and S-wave in partially frozen unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Matsushima, J.; Suzuki, M.; Kato, Y.; Rokugawa, S.; Kato, A.

    2012-12-01

    Seismic attenuation which controls both the amplitude decay of seismic waves and the accompanying frequency change is a signature of the wave-rock interaction. Seismic attenuation in rocks is a highly variable parameter, which depends on the confining pressure, porosity, degree of fluid saturation, and fluid type. Although seismic attenuation has been widely used to estimate physical conditions and rock properties in various fields, the loss mechanisms responsible for seismic attenuation often are unclear and controversial. To elucidate a plausible mechanism for seismic attenuation, the joint use of both P- and S-waves will provide more helpful information because these two types of waves respond differently to fluid and solid combinations. We have conducted ultrasonic P- and S-wave transmission measurements to examine the influence of ice-brine coexisting system grown in the pore space of unconsolidated sands on ultrasonic P- and S-waves. We observed the variations of a transmitted wave with a frequency content of 100-1000 kHz , changing its temperature from 20°C to -15°C. We use not only impulse-type signals but also sweep-type signals to prevent from the spectral leakage effect caused by the effect of windowing. We concern with attenuation at ultrasonic frequencies of 500-1000 kHz for P-waves and 100-400 kHz for S-waves. Our observation of the variation of the Poisson's ratio and the ratio of P- to S-wave attenuation with changing temperature indicates the possibilities of the joint use of both P- and S-waves to elucidate a plausible mechanism for seismic attenuation.

  18. S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series

    NASA Technical Reports Server (NTRS)

    Bessis, D.; Temkin, A.

    1999-01-01

    We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.

  19. Anomalous fluctuations of s-wave reduced neutron widths of 192,194Pt resonances

    SciTech Connect

    Koehler, Paul Edward; Becvar, F.; Krticka, Milan; Harvey, John A; Guber, Klaus H

    2010-01-01

    We obtained an unprecedentedly large number of s-wave neutron widths through R-matrix analysis of neutron cross-section measurements on enriched Pt samples. Careful analysis of these data rejects the validity of the Porter-Thomas distribution with a statistical significance of at least 99.997%.

  20. Determination of microseismic event azimuth from S-wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Duo; Li, Aibing

    2017-02-01

    P-wave hodogram analysis has been the only reliable method to obtain microseismic event azimuths for one-well monitoring. However, microseismic data usually have weak or even no P-waves due to near double-couple focal mechanisms and limited ray path coverage, which causes large uncertainties in determined azimuths and event locations. To solve this problem, we take advantage of S-waves, which are often much stronger than P waves in microseismic data, and determine event azimuths by analyzing S-wave splitting data. This approach utilizes the positive correlation between the accuracy of event azimuth and the effectiveness of measuring S-wave splitting parameters and finds the optimal azimuth through a grid search. We have demonstrated that event azimuths can be well constrained from S-wave splitting analysis using both synthetic and field microseismic data. This method is less sensitive to noise than the routine P-wave hodogram method and provides a new way of determining microseismic event azimuths.

  1. Generation of High-Frequency P and S Wave Radiation from Underground Explosions

    DTIC Science & Technology

    2011-12-30

    tectonic shear stress or anisotropy in the initial fracture distribution. 15. SUBJECT TERMS Shear waves, Seismic sources, Model seismology, P and S wave...12 7. Damage in a Glass Plate Produced by a Hypervelocity Impact...and tectonic environments. The two obvious sources of uncertainty in Pn/Lg are source effects and path effects. Our work has focused on understanding

  2. Geological structure analysis in Central Java using travel time tomography technique of S waves

    NASA Astrophysics Data System (ADS)

    Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.

    2016-11-01

    Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho.

  3. Study of S-wave ray elastic impedance for identifying lithology and fluid

    NASA Astrophysics Data System (ADS)

    Gong, Xue-Ping; Zhang, Feng; Li, Xiang-Yang; Chen, Shuang-Quan

    2013-06-01

    In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incidence angle or P-wave reflection angle, referred to as SREIS and SREIP, respectively. Our study using elastic models derived from real log measurements shows that SREIP has better capability for lithology and fluid discrimination than SREIS and conventional S-wave elastic impedance (SEI). We evaluate the SREIP feasibility using 25 groups of samples from Castagna and Smith (1994). Each sample group is constructed by using shale, brine-sand, and gas-sand. Theoretical evaluation also indicates that SREIP at large incident angles is more sensitive to fluid than conventional fluid indicators. Real seismic data application also shows that SREIP at large angles calculated using P-wave and S-wave impedance can efficiently characterize tight gas-sand.

  4. Tomographic Imaging of Upper Mantle P- and S-wave Velocity Heterogeneity Beneath the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Y.; Nyblade, A. A.; Rodgers, A.; Al-Amri, A.

    2005-12-01

    We have studied the three-dimensional P- and S-wave velocity structure beneath the Arabian Peninsula estimated from teleseismic travel time delay tomography. We have completed travel time measurements and inversion of a data set provided by King Abdulaziz City for Science and Technology (KACST: 21 broadband stations and 4 short-period stations). We augmented the KACST data with delay times measured from permanent Incorporated Research Institutions for Seismology (IRIS) stations in the region (RAYN, EIL and MRNI) and the 1996 Saudi Arabian PASSCAL Experiment (9 broadband stations). We used 401 earthquakes resulting in 3416 ray paths with P- and PKP-wave arrivals for the P-wave tomography, and 1602 ray paths with S- and SKS-wave arrivals came from 201 earthquakes for the S-wave tomography. Although the total number of rays for the S-wave model is a half of the rays for the P-wave model, the event distribution shows better azimuthal coverage. The P and S wave models yield consistent results. The models show strong low velocity regions beneath the southeastern Arabian Shield and the mid-eastern edge of Arabian Shield. The low velocity anomaly in the southeastern part of the Arabian Shield does not extend north of 21°N and dips to south. It likely represents the northeastern edge of the Afar hotspot. The origin of the low velocity region under the eastern edge of the Arabian Shield is uncertain.

  5. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  6. P and S wave responses of bacterial biopolymer formation in unconsolidated porous media

    NASA Astrophysics Data System (ADS)

    Noh, Dong-Hwa; Ajo-Franklin, Jonathan B.; Kwon, Tae-Hyuk; Muhunthan, Balasingam

    2016-04-01

    This study investigated the P and S wave responses and permeability reduction during bacterial biopolymer formation in unconsolidated porous media. Column experiments with fine sands, where the model bacteria Leuconostoc mesenteroides were stimulated to produce insoluble biopolymer, were conducted while monitoring changes in permeability and P and S wave responses. The bacterial biopolymer reduced the permeability by more than 1 order of magnitude, occupying ~10% pore volume after 38 days of growth. This substantial reduction was attributed to the bacterial biopolymer with complex internal structures accumulated at pore throats. S wave velocity (VS) increased by more than ~50% during biopolymer accumulation; this indicated that the bacterial biopolymer caused a certain level of stiffening effect on shear modulus of the unconsolidated sediment matrix at low confining stress conditions. Whereas replacing pore water by insoluble biopolymer was observed to cause minimal changes in P wave velocity (VP) due to the low elastic moduli of insoluble biopolymer. The spectral ratio analyses revealed that the biopolymer formation caused a ~50-80% increase in P wave attenuation (1/QP) at the both ultrasonic and subultrasonic frequency ranges, at hundreds of kHz and tens of kHz, respectively, and a ~50-60% increase in S wave attenuation (1/QS) in the frequency band of several kHz. Our results reveal that in situ biopolymer formation and the resulting permeability reduction can be effectively monitored by using P and S wave attenuation in the ultrasonic and subultrasonic frequency ranges. This suggests that field monitoring using seismic logging techniques, including time-lapse dipole sonic logging, may be possible.

  7. Detailed p- and s-wave velocity models along the LARSE II transect, Southern California

    USGS Publications Warehouse

    Murphy, J.M.; Fuis, G.S.; Ryberg, T.; Lutter, W.J.; Catchings, R.D.; Goldman, M.R.

    2010-01-01

    Structural details of the crust determined from P-wave velocity models can be improved with S-wave velocity models, and S-wave velocities are needed for model-based predictions of strong ground motion in southern California. We picked P- and S-wave travel times for refracted phases from explosive-source shots of the Los Angeles Region Seismic Experiment, Phase II (LARSE II); we developed refraction velocity models from these picks using two different inversion algorithms. For each inversion technique, we calculated ratios of P- to S-wave velocities (VP/VS) where there is coincident P- and S-wave ray coverage.We compare the two VP inverse velocity models to each other and to results from forward modeling, and we compare the VS inverse models. The VS and VP/VS models differ in structural details from the VP models. In particular, dipping, tabular zones of low VS, or high VP/VS, appear to define two fault zones in the central Transverse Ranges that could be parts of a positive flower structure to the San Andreas fault. These two zones are marginally resolved, but their presence in two independent models lends them some credibility. A plot of VS versus VP differs from recently published plots that are based on direct laboratory or down-hole sonic measurements. The difference in plots is most prominent in the range of VP = 3 to 5 km=s (or VS ~ 1:25 to 2:9 km/s), where our refraction VS is lower by a few tenths of a kilometer per second from VS based on direct measurements. Our new VS - VP curve may be useful for modeling the lower limit of VS from a VP model in calculating strong motions from scenario earthquakes.

  8. P and S-wave tomographic images for the PASSCAL experiments

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Dueker, K.

    2001-12-01

    We present teleseismic P and S-wave tomographic images down to 400 Km for the PASSCAL CD-ROM teleseismic experiment. Our aim is to investigate the structural variations across the Archean-Proterozoic Cheyenne Belt (the North line) and across the Proterozoic-Proterozoic Jemez volcanic lineament (the South line). A full year of teleseismic P and S-wave data was collected from 48 PASSCAL broadband 3-component instruments. S phases were rotated to the direction of maximum linear polarization. A multi-channel cross correlation technique was used to measure the arrival times. We picked 1400 travel-time residuals for the teleseismic S, ScS and SKS phases and 2000 for P. An iterative LSQR matrix solver with Laplacian regulation was applied to invert the data for P and S wave images. Our preliminary results show large peak-to-peak teleseismic residuals, i.e., 2 sec P-time variations and 5 sec S-wave variations. The peak-to-peak S velocity difference reaches 12%. In the CD-ROM North line a fast anomaly appears north of CB, which is consistent with the cold, stable Archean craton. To the south this feature vanishes across the Cheyenne Belt (N 41.25 deg). The south line shows a large low velocity zone extending to 200 km beneath the Jemez volcanic lineament. The P-wave and S-wave images are highly correlated with a dnVp/dlnVs ratio of about 2. Images from two different PASSCAL experiments, the Lodore and Laramie array, share the complexities of the seismic velocity variation beneath the CD-ROM transects. A joint inversion of the P and S and a delta t-star data are proposed to further constrain the thermal state and composition state of the active upper mantle beneath the Wyoming, Colorado and New Mexico regions.

  9. S-wave Ps-Li and Ps-Na scattering

    SciTech Connect

    Chakraborty, Sumana; Ghosh, A.S.; Sinha, Prabal K.

    2004-05-01

    Projectile-elastic, target-elastic, and full close-coupling approximation models have been employed to investigate scattering of ortho-positronium off Li and Na atoms at low energies. Nine different basis sets for each system have been used to find the relative importance of atomic (target and projectile) states on the elastic scattering parameters and the convergence of the predicted results with added eigen- and pseudostates. The s-wave elastic phase shifts, scattering lengths and cross sections of both the systems are reported upto the incident energy k=0.5 a.u. and compared with the corresponding existing theoretical predictions. It has been found that the van der Waals and higher order long-range interactions play a crucial role in predicting s-wave elastic parameters for Ps-alkali-metal-atom systems at low energies.

  10. J-matrix calculation of electron-helium S-wave scattering

    SciTech Connect

    Konovalov, D. A.; Fursa, D. V.; Bray, I.

    2011-09-15

    The J-matrix approach to electron-atom scattering is revised by merging it with the Fano's multiconfiguration interaction matrix elements [U. Fano, Phys. Rev. 140, A67 (1965)]. The revised method is then applied to the S-wave model of the e-He scattering problem demonstrating remarkable computational efficiency and accuracy. In particular, the method is in complete agreement with the convergent-close-coupling elastic, 2{sup 1,3}S excitation and single ionization cross sections for impact energies in the range 0.1-1000 eV. The S-wave resonance structures in the elastic and 2{sup 1,3}S excitation cross sections are highlighted.

  11. Quasiclassical approach to nonlocal generalized London equation in mixed state of s -wave superconductors

    NASA Astrophysics Data System (ADS)

    Laiho, R.; Safonchik, M.; Traito, K. B.

    2007-05-01

    We extend the Ginsburg-Landau solution for cutoff function in London equation to low temperatures by solving numerically the quasiclassical Eilenberger equations in mixed state of s -wave superconductors. As a result the nonlocal generalized London equation (NGLE) is obtained. The magnetic field and temperature dependence of the cutoff function parameter k1(B,T) are calculated. Due to Kramer-Pesch effect k1 decreases strongly at low temperatures. It is also found that k1 has a minimum at a value of magnetic field depending on temperature. We reduce the NGLE model to an effective local model and calculate the value of an effective penetration depth λeff(B,T) . The sublinear field dependence of λeff is predicted that agrees with experimental μ SR results for the penetration depth of magnetic field in the s -wave superconductor V3Si and NbSe2 .

  12. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  13. Developing Strength Chart of Saturated Concrete by Using Seismic P and S-Wave Velocities in Laboratory

    NASA Astrophysics Data System (ADS)

    Ekinci, B.; Sabbağ, N.; Uyanik, O.; Öncü, Z.; Akdemir, S.; Türker, E.

    2014-12-01

    Determining of concrete strength can be used by destructive or non-destructive methods. Concrete strength is determined with uniaxial compressive test as destructive in laboratory and with Seismic Ultrasonic P- (Compressional) and S-wave (Shear) measurements as non-destructive in-situ or laboratory. In this study, strength of saturated concrete is investigated by using seismic P and S-wave velocities. For this, concrete samples were formed with using the cube samples in size 15x15x15cm. Different strength designs were made for obtain different strengths in these samples. The aim is to create concrete strengths of between the lowest 5MPa and the highest 100 MPa. After the end of the curing time of created the cube concrete samples Seismic P and S waves measurements were made in the laboratory by Ultrasonic test equipment. Hence, P and S wave velocities of the sample were calculated. After these, for determine the strength of the samples uniaxial compression strength test was performed. As a result, P and S wave velocities and concrete strength values of concrete samples were obtained. By correlating these values over %90 exponential relationships were determined. By using this relationship, concrete strength can be determined sensitively from P and S wave velocities. In addition, by using P and S wave velocities elastic parameters values and Poisson's ratio of concrete specimens can be calculated. Keywords: Concrete, Strength, Compressional and Shear-wave velocities, Empirical Relationship

  14. Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Eken, Tuna; Mohanty, Debasis D.; Saikia, Dipankar; Singh, Chandrani; Ravi Kumar, M.

    2016-01-01

    This study presents a total of 12008 shear wave splitting measurements obtained using the reference-station technique applied to direct S-waves from 106 earthquakes recorded at 143 seismic stations of the Hi-CLIMB seismic network. The results reveal significant anisotropy in regions of southern Tibet where null or negligible anisotropy has been hitherto reported from SK(K)S measurements. While the individual fast polarization direction (FPD) at each station are found to be consistent, the splitting time delays (TDs) exhibit deviations particularly at stations located south of the Indus-Tsangpo Suture Zone. The fast polarization directions (FPDs) are oriented (a) NE-SW to E-W to the south of the Indus-Tsangpo Suture Zone (b) NE-SW to ENE-SSW between Bangong-Nujiang Suture Zone and the Indus-Tsangpo Suture Zone (ITSZ) and (c) E-W to the extreme north of the profile. The splitting time delays (δt) vary between 0.45 and 1.3 s south of the ITSZ (<30°N latitude), while they range from 0.9 to 1.4 s north of it. The overall trends are similar to SKS/SKKS results. However, the differences may be due to the not so near vertical paths of direct S waves which may sample the anisotropy in a different way in comparison to SKS waves, or insufficient number of SKS observations. The significant anisotropy (∼ 0.8 s) observed beneath Himalaya reveals a complex deformation pattern in the region and can be best explained by the combined effects of deformation related to shear at the base of the lithosphere and subduction related flows with possible contributions from the crust. Additional measurements obtained using direct S-waves provide new constraints in regions with complex anisotropy.

  15. Global S-Wave Tomography Using Receiver Pairs: An Alternative to Get Rid of Earthquake Mislocation

    NASA Astrophysics Data System (ADS)

    Leveque, J. J.; Zaroli, C.; Schuberth, B. S. A.; Duputel, Z.; Nolet, G.

    2014-12-01

    Global seismic tomography suffers from uncertainties in earthquake parameters routinely published in seismic catalogues. In particular, errors in earthquake location and origin-time may lead to strong biases in measured body-wave delay-times and significantly pollute tomographic models. Common ways of dealing with this issue are to incorporate source parameters as additional unknowns into the linear tomographic equations, or to seek combinations of data to minimise the influence of source mislocations.We propose an alternative, physically-based method to desensitise direct S-wave delay-times to errors in earthquake location and origin-time. Our approach takes advantage of the fact that mislocation delay-time biases depend to first order on the earthquake-receiver azimuth, and to second order on the epicentral distance. Therefore, for every earthquake, we compute S-wave differential delay-times between optimised receiver pairs, such that a large part of their mislocation delay-time biases cancels out (for example origin-time fully subtracts out), while the difference of their sensitivity kernels remains sensitive to the model parameters of interest. Considering realistic, randomly distributed source mislocation vectors, as well as various levels of data noise and different synthetic Earths, we demonstrate that mislocation-related model errors are highly reduced when inverting for such differential delay-times, compared to absolute ones. The reduction is particularly rewarding for imaging the upper-mantle and transition-zone.We conclude that using optimised receiver pairs is a suitable, low cost alternative to get rid of errors on earthquake location and origin-time for teleseismic direct S-wave traveltimes. Moreover, it can partly remove unilateral rupture propagation effects in cross-correlation delay-times, since they are similar to mislocation effects.

  16. Global S-wave tomography using receiver pairs: an alternative to get rid of earthquake mislocation

    NASA Astrophysics Data System (ADS)

    Zaroli, C.; Lévêque, J.-J.; Schuberth, B. S. A.; Duputel, Z.; Nolet, G.

    2014-11-01

    Global seismic tomography suffers from uncertainties in earthquake parameters routinely published in seismic catalogues. In particular, errors in earthquake location and origin-time may lead to strong biases in measured body wave delay-times and significantly pollute tomographic models. Common ways of dealing with this issue are to incorporate source parameters as additional unknowns into the linear tomographic equations, or to seek combinations of data to minimize the influence of source mislocations. We propose an alternative, physically-based method to desensitize direct S-wave delay-times to errors in earthquake location and origin-time. Our approach takes advantage of the fact that mislocation delay-time biases depend to first order on the earthquake-receiver azimuth, and to second order on the epicentral distance. Therefore, for every earthquake, we compute S-wave differential delay-times between optimized receiver pairs, such that a large part of their mislocation delay-time biases cancels out (for example origin-time fully subtracts out), while the difference of their sensitivity kernels remains sensitive to the model parameters of interest. Considering realistic, randomly distributed source mislocation vectors, as well as various levels of data noise and different synthetic Earths, we demonstrate that mislocation-related model errors are highly reduced when inverting for such differential delay-times, compared to absolute ones. The reduction is particularly rewarding for imaging the upper-mantle and transition zone. We conclude that using optimized receiver pairs is a suitable, low cost alternative to get rid of errors on earthquake location and origin-time for teleseismic direct S-wave traveltimes. Moreover, it can partly remove unilateral rupture propagation effects in cross-correlation delay-times, since they are similar to mislocation effects.

  17. Constraining the Lithospheric Structure of the Central Andes Using P- and S- wave Receiver Functions

    NASA Astrophysics Data System (ADS)

    Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2014-12-01

    The Central Andean Plateau (CAP) has elevations in excess of 3 km, and is part of the Andean Cordillera that resulted in part from shortening along the western edge of South America as it was compressed between the subducting Nazca plate and underthrusting Brazilian cratonic lithosphere. We calculated P- and S-wave receiver functions for the Central Andean Uplift and Geodynamics of High Topography (CAUGHT) temporary deployment of broadband seismometers in the Bolivian orocline (12°-20°S) region to investigate crustal thickness and lithospheric structure. Migration of the receiver functions is done using common conversion point (CCP) stacks through a 3D shear velocity model from ambient noise tomography (Ward et al., 2013). The P- and S-wave receiver functions provide similar estimates of the depth to Moho under the CAP. Crustal thicknesses include 60-65 km thick crust underneath the Bolivian Altiplano, crust that varies from ~70 km to ~50 km underneath the Eastern Cordillera and Interandean zone, and thins to 50 to 40 km crust in the Subandes and the edge of the foreland. The variable crustal thickness of the Eastern Cordillera and Interandean zone ranges from >70 km associated with the Los Frailes volcanic field at 19°-20°S to ~55 km beneath the 6 km peaks of the Cordillera Real at ~16°S. From our S-wave receiver functions, that have no multiples that can interfere with deeper structure, we also identify structures below the Moho. Along a SW-NE line that runs near La Paz where we have our highest station density, the S-wave CCP receiver-function stacks show a strong negative polarity arrival at a depth of ~120 km from the eastern edge of the Altiplano to the Subandean zone. We suggest this may be a good candidate for the base of the CAP lithosphere. In addition, above this depth the mantle is strongly layered, suggesting that there is not a simple high velocity mantle lithosphere associated with the continental lithosphere underthrusting the Andean orogen

  18. S-wave K- pi+ system in D+ ---> K- pi+ pi+ decays from Fermilab E791

    SciTech Connect

    Meadows, B.T.; /Cincinnati U.

    2005-06-01

    A new approach to the analysis of three body decays is presented. Model-independent results are obtained for the S-wave K{pi} amplitude as a function of K{pi} invariant mass. These are compared with results from K{sup -}{pi}{sup +} elastic scattering, and the prediction of the Watson theorem, that the phase behavior be the same below K{eta}' threshold, is tested. Contributions from I = 1/2 and I = 3/2 are not resolved in this study. If I = 1/2 dominates, however, the Watson theorem does not describe these data well.

  19. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  20. Coherence of Teleseismic P and S waves Across the Transportable Array

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2012-12-01

    Design of large-aperture broadband arrays and array stacking of waveforms for receiver function studies critically depend on the coherence of waveforms across an array. The coherence of teleseismic P and S waves in the frequency band of 0.05 to 1.6 Hz has been examined using high signal-to-noise teleseisms recorded by the USArray Transportable Array. Instrument-corrected, time-windowed, and rotated P and S waves were filtered in five, single-octave frequency bands and then correlated to determine coherence in each band. The normalized correlation coefficient is used as a measure of relative coherence and plotted as a function of interstation distance, which is used as a proxy for horizontal wavelength. Up to ~100,000 unique station correlation pairs can be found for vertical, radial, and transverse component P and S. Results for the M7.1 2012 March 25 Maule, Chile, earthquake show that teleseismic P waves for stations greater than 30 degrees in distance are highly correlated for interstation distances of up to 10 wavelengths and greater in the band 0.05-0.08 Hz (Correlation coefficients > 0.8). Coherence drops off sharply for the 0.8-1.6Hz band to about 2 wavelengths or less. Coherence shows greater scatter and somewhat smaller values for teleseismic radial and transverse component S-waves for the 0.05-0.2Hz frequency band, with incoherence at higher frequency. The M7.4 2012 March 20 Oaxaca, Mexico, earthquake was generally less than 30 degrees distance from the TA and showed uniformly lower coherence values for P-waves for frequencies greater than 0.2Hz. The relative incoherence between seismic stations is mostly a measure of the variability in velocity structure of the earth. These results show that teleseismic P and S waves are highly coherent over large distances for deep mantle ray turning points but, not surprisingly, wave propagation through the upper mantle shows waveform complexity and velocity heterogeneity. This characteristic of wave propagation in the

  1. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    SciTech Connect

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  2. Holographic s-wave and p-wave Josephson junction with backreaction

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Qiang; Liu, Shuai

    2016-11-01

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  3. Gas hydrate concentration estimated from P- and S-wave velocities

    NASA Astrophysics Data System (ADS)

    Carcione, J. M.; Gei, D.

    2003-04-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site, Mackenzie Delta, Canada, using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a poro-viscoelastic model based on a Biot-type approach. It considers the existence of two solids (grains and gas hydrate) and a fluid mixture and is based on the assumption that hydrate fills the pore space and shows interconnection. The moduli of the matrix formed by gas hydrate are obtained from the percolation model described by Leclaire et al., (1994). An empirical mixing law introduced by Brie et al., (1995) provides the effective bulk modulus of the fluid phase, giving Wood's modulus at low frequency and Voigt's modulus at high frequencies. The dry-rock moduli are estimated from the VSP profile where the rock is assumed to be fully saturated with water, and the quality factors are obtained from the velocity dispersion observed between the sonic and VSP velocities. Attenuation is described by using a constant-Q model for the dry rock moduli. The amount of dissipation is estimated from the difference between the seismic velocities and the sonic-log velocities. We estimate the amount of gas hydrate by fitting the sonic-log and seismic velocities to the theoretical velocities, using the concentration of gas hydrate as fitting parameter. We obtain hydrate concentrations up to 75 %, average values of 43 and 47 % from the VSP P- and S-wave velocities, respectively, and 47 and 42 % from the sonic-log P- and S-wave velocities, respectively. These averages are computed from 897 to 1110 m, excluding the zones where there is no gas hydrate. We found that modeling attenuation is important to obtain reliable results. largeReferences} begin{description} Brie, A., Pampuri, F., Marsala A.F., Meazza O., 1995, Shear Sonic Interpretation in Gas-Bearing Sands, SPE Annual Technical Conference and Exhibition, Dallas, 1995. Carcione, J

  4. Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor

    NASA Astrophysics Data System (ADS)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten; Lange, Dietrich

    2016-12-01

    Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s-1. The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s-1. We find a slight increase of the total crustal thickness from

  5. B s → K (*)ℓ, angular analysis, S-wave contributions and | V ub |

    NASA Astrophysics Data System (ADS)

    Meißner, Ulf-G.; Wang, Wei

    2014-01-01

    We analyse the and decays that are valuable for extracting the CKM matrix element | V ub|. We calculate the differential and integrated partial widths in units of | V ub|2 based on various calculations of hadronic form factors and in particular the latest Lattice QCD calculation of the B s → K * form factors. For the decay , we formulate the general angular distributions with the inclusion of the various partial-wave Kπ contributions. Using the results for the Kπ scalar form factor calculated from unitarized chiral perturbation theory, we explore the S-wave effects on angular distribution variables and demonstrate that they may not be negligible, considering the high precision expected in future measurements. We also briefly discuss the impact of the S-wave ππ contributions in the decay and provide estimates for the mode . The studies of these channels in future can not only be used to determine | V ub|, but may also provide valuable information on the Kπ and ππ phase shifts.

  6. Controlling the s -wave scattering length with nonresonant light: Predictions of an asymptotic model

    NASA Astrophysics Data System (ADS)

    Crubellier, Anne; González-Férez, Rosario; Koch, Christiane P.; Luc-Koenig, Eliane

    2017-02-01

    A pair of atoms interacts with nonresonant light via its anisotropic polarizability. This effect can be used to tune the scattering properties of the atoms. Although the light-atom interaction varies with interatomic separation as 1 /R3 , the effective s -wave potential decreases more rapidly as 1 /R4 such that the field-dressed scattering length can be determined without any formal difficulty. The scattering dynamics are essentially governed by the long-range part of the interatomic interaction and can thus be accurately described by an asymptotic model [A. Crubellier et al., New J. Phys. 17, 045020 (2015), 10.1088/1367-2630/17/4/045020]. Here we use the asymptotic model to determine the field-dressed scattering length from the s -wave radial component of a particular threshold wave function. Applying our theory to the scattering of two strontium isotopes, we calculate the variation of the scattering length with the intensity of the nonresonant light. Moreover, we predict the intensities at which the scattering length becomes infinite for any pair of atoms.

  7. Seismic characterization of fracture compliance in the field using P- and S-wave sources

    NASA Astrophysics Data System (ADS)

    Foord, Greg; Verdon, James P.; Kendall, J.-Michael

    2015-12-01

    Near-surface seismic field experiments using both P- and S-wave sources were carried out to image fractured limestones at two sites in southwest England. We measured P- and S-wave seismic velocities at multiple azimuths to aligned fracture sets, allowing us to determine the seismic anisotropy generated by these fractures. The effect of aligned fractures on seismic anisotropy is commonly modelled in terms of the additional compliance introduced by the fractures. Therefore, an understanding of fracture compliance is crucial both in terms of interpreting observations of anisotropy in the field and in forward modelling the effects of fractures on seismic wave propagation. Of particular concern is (1) the scaling of fracture compliance with fracture length scale, and (2) the controls on the ratio of normal to tangential compliance of the fractures (Ω = ZN/ZT). Our experimental design allows us to image both, and we find that Ω = 0.37 ± 0.06 and Ω = 0.75 ± 0.10 for our two study sites, while the absolute values of the tangential compliance range from 0.66 × 10-11 to 5.0 × 10-11 Pa-1 m.

  8. Tomographic Imaging of Upper Mantle P- and S-wave Velocity Heterogeneity Beneath the Arabian Peninsula

    SciTech Connect

    Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A

    2005-08-30

    We report the estimates of three-dimensional P- and S-wave velocity structure beneath the Arabian Peninsula estimated from travel time delay tomography. We have completed travel time measurements and inversion of a partial data set provided by King Abdulaziz City for Science and Technology (KACST). This study builds on previous work by Benoit et al. (2003) following the methods of VanDecar and Crosson (1990) and VanDecar (1991). Data were collected from the Saudi Arabian National Digital Seismic Network (SANDSN) operated by KACST. The network consists of 38 stations (27 broadband and 11 short-period). We augmented the KACST data with delay times measured from permanent Incorporated Research Institutions for Seismology (IRIS) stations in the region (RAYN, EIL and MRNI) and the 1996 Saudi Arabian PASSCAL Experiment. This study shows the inverted P- and S-wave models computed with the combined data with all three different seismic networks (KASCST, IRIS, and the 1996 Saudi Arabian PASSCAL experiment) with best coverage beneath the Arabian Shield. Tomographic images reveal low velocity features in the upper mantle along a north-south line from the southern Asir region to the northeastern portion of the Arabian Shield.

  9. Studying Kπ S-wave scattering in the K-matrix formalism

    NASA Astrophysics Data System (ADS)

    Li, Long; Zou, Bing-Song; Li, Guang-Lie

    2003-02-01

    We generalize our previous work on ππ scattering to Kπ scattering, and reanalyze the experiment data for Kπ scattering below 1.6 GeV. Without any free parameter, we explain the Kπ I=3/2 S-wave phase shift very well by using t-channel ρ and u-channel K* meson exchange. With the t-channel and u-channel meson exchange fixed as the background term, we fit the Kπ I=1/2 S-wave data of the LASS experiment quite well by introducing one or two s-channel resonances. It is found that there is only one s-channel resonance between the Kπ threshold and 1.6 GeV, i.e., K*0(1430) with a mass around 1438 1486 MeV and a width of about 346 MeV, while the t-channel ρ exchange gives a pole at (450 480i) MeV for the amplitude, rather uncertain due to the limitations of the approach used.

  10. Feshbach enhanced s-wave scattering of fermions: direct observation with optimized absorption imaging

    PubMed Central

    Genkina, D; Aycock, LM; Stuhl, BK; Lu, H-I; Williams, RA; Spielman, IB

    2016-01-01

    We directly measured the normalized s-wave scattering cross-section of ultracold 40K atoms across a magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging the scattered atoms. We extracted the scattered fraction for a range of bias magnetic fields, and measured the resonance location to be B0 = 20.206(15) mT with width Δ = 1.0(5) mT. To optimize the signal-to-noise ratio of atom number in scattering images, we developed techniques to interpret absorption images in a regime where recoil induced detuning corrections are significant. These imaging techniques are generally applicable to experiments with lighter alkalis that would benefit from maximizing signal-to-noise ratio on atom number counting at the expense of spatial imaging resolution. PMID:26903778

  11. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  12. Nonlinear terahertz spectroscopy of Higgs mode in s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Matsunaga, Ryusuke; Shimano, Ryo

    2017-02-01

    We review our recent experiments of ultrafast dynamics in s-wave superconductors Nb1-x Ti x N by using nonlinear terahertz (THz) spectroscopy. The free oscillation of the Higgs mode, i.e. the amplitude mode of the superconducting order parameter, is observed after instantaneous injection of quasiparticles at the superconducting gap edge by an intense monocycle THz pulse. The ultrafast nonequilibrium dynamics of the order parameter under the strong AC driving field with the photon energy tuned below the superconducting gap is also investigated. A resonant nonlinear interaction between the Higgs mode and the electromagnetic field is revealed, as manifested by an efficient THz third-harmonic generation from the superconductor.

  13. Density dependence of the /s-wave repulsion in pionic atoms

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2002-11-01

    Several mechanisms of density dependence of the s-wave repulsion in pionic atoms, beyond the conventional model, are tested by parameter fits to a large (106 points) set of data from 16O to 238U, including 'deeply bound' states in 205Pb. Special attention is paid to the proper choice of nuclear density distributions. A density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant is introduced and found to account for most of the so-called anomalous repulsion. The presence of such an effect might indicate partial chiral symmetry restoration in dense matter. The anomalous repulsion is fully accounted for when an additional relativistic impulse approximation term is included in the potential.

  14. P and S wave tomography of the mantle beneath the United States

    NASA Astrophysics Data System (ADS)

    Schmandt, Brandon; Lin, Fan-Chi

    2014-09-01

    Mantle seismic structure beneath the United States spanning from the active western plate margin to the passive eastern margin was imaged with teleseismic P and S wave traveltime tomography including USArray data up to May 2014. To mitigate artifacts from crustal structure 5-40 s, Rayleigh wave phase velocities were used to create a 3-D starting model. Major features of the final P and S models include two distinct low-velocity anomalies at depths of ~60-300 km beneath the central and northern Appalachians and passive margin. The central Appalachian low-velocity anomaly coincides with Eocene basaltic magmatism, and the northern anomaly is located along the Cretaceous track of the Great Meteor hot spot. At depths of ~300-700 km beneath the central and eastern U.S. large high-velocity anomalies are inferred to be remnants of the Farallon slab that subducted prior to ~40 Ma during the Laramide orogeny.

  15. Quasi-Particle Spectrum around a Single Vortex in Superconductors --- s-Wave Case---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2000-05-01

    Making use of the Bogoliubov-de Gennes equation, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi 2D s-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/ Δ0 is the coherence length (hbar=1). During our numerical calculation, the particle number is conserved for each pFξ0. In particular, we find that there are only 1 or 2 bound states for pFξ0=1. Also, for pFξ0=1, the Kramer-Pesch effect ceases to exist at around T/Tc =~ 0.3.

  16. Optimized {gamma}-Multiplicity Based Spin Assignments of s-Wave Neutron Resonances

    SciTech Connect

    Becvar, F.; Koehler, Paul Edward; Krticka, Milan; Mitchell, G. E.; Ullmann, J. L.

    2011-01-01

    The multiplicity of -ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4 -calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the -emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the -multiplicity data obtained for the 147Sm(n, )148Sm reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined dicebox and geant4 simulations of the fluctuation properties of the multiplicity distributions.

  17. Nonlinear attenuation of S-waves and Love waves within ambient rock

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  18. Scattering of S waves diffracted at the core-mantle boundary: forward modelling

    NASA Astrophysics Data System (ADS)

    Emery, Valérie; Maupin, Valérie; Nataf, Henri-Claude

    1999-11-01

    The lowermost 200-300 km of the Earth's mantle, known as the D'' layer, is an extremely complex and heterogeneous region where transfer processes between the core and the mantle take place. Diffracted S waves propagate over large distances and are very sensitive to the velocity structure of this region. Strong variations of ampli-tudes and waveforms are observed on recordings from networks of broad-band seismic stations. We perform forward modelling of diffracted S waves in laterally heterogeneous structures in order to analyse whether or not these observations can be related to lateral inhomogeneities in D''. We combine the diffraction due to the core and the scattering due to small-scale volumetric heterogeneities (10-100 km) by coupling single scattering (Born approximation) with the Langer approximation, which describes Sdiff wave propagation. The influence on the direct as well as on the scattered wavefields of the CMB as well as of possible tunnelling in the core or in D'' is fully accounted for. The SH and the SV components of the diffracted waves are analysed, as well as their coupling. The modelling is applied in heterogeneous models with different geometries: isolated heterogeneities, vertical cylinders, horizontal inhomogeneities and random media. Amplitudes of scattered waves are weak and only velocity perturbations of the order of 10 per cent over a volume of 240 x 240 x 300 km3 produce visible effects on seismograms. The two polarizations of Sdiff have different radial sensitivities, the SH components being more sensitive to heterogeneities closer to the CMB. However, we do not observe significant time-shifts between the two components similar to those produced by anisotropy. The long-period Sdiff have a poor lateral resolution and average the velocity perturbations in their Fresnel zone. Random small-scale heterogeneities with +/- 10 per cent velocity contrast in the layer therefore have little effect on Sdiff, in contrast to their effect on PKIKP.

  19. P and S Wave Velocity Structure and Vp/Vs Ratios for the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Dunn, M.; Deshon, H.; Powell, C.

    2008-12-01

    Three dimensional P and S wave velocity models have been constructed for the New Madrid Seismic Zone (NMSZ) using double difference local earthquake tomography (tomoDD). TomoDD incorporates catalog arrival times with catalog and waveform cross correlation differential times to solve for P and S wave velocity and for high resolution earthquake locations. For the NMSZ, we utilized 101504 P wave differential times and 67811 S wave differential times from 1157 earthquakes recorded over the time period 2000 to 2007 by the Cooperative NMSZ Network. The NMSZ consists of three intersecting arms of seismicity located in the central United States. There are approximately 200 earthquakes a year in the NMSZ despite the absence of a major plate boundary. Most earthquakes occur along the central Reelfoot Fault leading to uneven source distribution. We use a finite difference travel time calculator combined with an irregular inversion grid of nodes spaced every 5 to 20 kilometers horizontally and 1 to 3 kilometers vertically. Model resolution was examined using chessboard and spike tests and indicated that resolution is highest close to the source region between depths of 5 to 12 kilometers. P and S wave models indicate that velocities close to the source region are slightly low relative to the 1D starting model. The decrease in velocities may be indicative of rock properties, such as increased fluid content and fracturing. A high P and S wave velocity anomaly located away from known faults is associated with a known mafic intrusion to the northwest of seismicity.

  20. Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hasegawa, Akira

    1996-02-01

    Distinct S waves reflected from a midcrustal seismic velocity discontinuity are detected beneath Nikko-Shirane volcano in the southernmost part of the northeastern Japan arc. A detailed travel time analysis of the reflected S waves by using data acquired through a dense seismic network temporarily set up in this region shows that this unusual S wave reflector is distributed over an area of 15 × 15 km2 at depths ranging from 8 to 15 km. The reflector has a conical shape becoming shallow toward the summit of Nikko-Shirane volcano. Observed amplitude spectral ratios of reflected S waves to direct S waves show that the reflector body has a strong velocity contrast to the surrounding medium and its thickness is of the order of 100 m at most. The reflector body is approximated by two thin layers probably filled with partially molten materials. Cutoff depth for shallow seismicity in this area is 3-5 km above the reflector and becomes shallow toward Nikko-Shirane volcano, nearly parallel to the reflector. The depth to brittle-ductile transition zone seems to be prescribed by the existence of the reflector body, which is perhaps a thin magma body.

  1. Analytic materials

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2016-11-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  2. Analytic materials.

    PubMed

    Milton, Graeme W

    2016-11-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90(°) rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  3. Three dimensional P- and S-wave velocity structure along the central Alpine Fault, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Guo, B.; Thurber, C. H.; Roecker, S. W.; Townend, J.; Rawles, C.; Chamberlain, C. J.; Boese, C. M.; Bannister, S.; Feenstra, J.; Eccles, J. D.

    2017-02-01

    The Deep Fault Drilling Project (DFDP) on the central Alpine Fault, South Island, New Zealand, has motivated a broad range of geophysical and geological studies intended to characterize the fault system in the locality of the drill site at various scales. In order to better understand the structural features of the central Alpine Fault, we have developed three-dimensional P- and S-wave velocity (VP and VS) models of the region by double-difference tomography using datasets from multiple seismic networks. In previous work, the quality of the S-wave model has been poor due to the small number of available S-wave picks. We have utilized a new high-accuracy automatic S-wave picker to increase the number of usable S-wave arrivals by more than a factor of two, thereby substantially improving the VS model. Compared to previous studies, our new higher-resolution VP model based on more observations shows a clear VP contrast (higher VP on the southeast hanging wall side) at depths of 5 - 10 km near the DFDP drill sites. With our better resolved VS model, in the same region, we detect a sharply defined high VS body (VS > 3.7 km/s) within the hanging wall. Our earthquake relocations reveal the presence of clusters within and around low-velocity zones in the hanging wall southeast of the Alpine Fault. Together with the improved earthquake locations, the P- and S-wave tomography results reveal the Alpine Fault to be marked by a velocity contrast throughout most of the study region. The fault dips southeastward at about 50^circ from 5 to 15 km depth, as inferred from the velocity structure, seismicity, and observations of fault zone guided waves.

  4. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  6. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  7. Analysis of S Wave Propagation Through a Nonlinear Joint with the Continuously Yielding Model

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Sheng, Qian; Leng, Xianlun

    2017-01-01

    Seismic wave propagation through joints that are embedded in a rock mass is a critical issue for aseismic issues of underground rock engineering. Few studies have investigated nonlinear joints with a continuously yielding model. In this paper, a time-domain recursive method (TDRM) for an S wave across a nonlinear Mohr-Coulomb (MC) slip model is extended to a continuously yielding (CY) model. Verification of the TDRM-based results is conducted by comparison with the simulated results via a built-in model of 3DEC code. Using parametric studies, the effect of normal stress level, amplitude of incident wave, initial joint shear stiffness, and joint spacing is discussed and interpreted for engineering applications because a proper in situ stress level (overburden depth) and acceptable quality of surrounding rock mass are beneficial for seismic stability issues of underground rock excavation. Comparison between the results from the MC model and the CY model is presented both for an idealized impulse excitation and a real ground motion record. Compared with the MC model, complex joint behaviors, such as tangential stiffness degradation, normal stress dependence, and the hysteresis effect, that occurred in the wave propagation can be described with the CY model. The MC model seems to underestimate the joint shear displacement in a high normal stress state and in a real ground motion excitation case.

  8. Advanced global P and S wave body wave tomography for monitoring applications

    NASA Astrophysics Data System (ADS)

    Simmons, Nathan; Myers, Stephen; Johannesson, Gardar; Matzel, Eric; Grand, Stephen

    2016-04-01

    We continue to develop more advanced models of Earth's global seismic structure, specifically focused on improving predictive capabilities for future seismic events (Simmons et al. 2011, 2012, 2015). Our most recent rendition combines high-quality P and S wave body wave travel times into a joint (simultaneous) inversion process to tomographically image Earth's crust and mantle (Simmons et al. 2015). The new model (LLNL-G3D-JPS) consists of 59 surfaces and ~1.6 million model nodes from the surface to the core-mantle boundary, overlaying a 1-D outer and inner core model. The model architecture is aspherical and we directly incorporate Earth's expected hydrostatic shape (ellipticity and mantle stretching). We also explicitly honor surface undulations including the Moho, several internal crustal units, and the upper mantle transition zone undulations as predicated by previous studies. The explicit Earth model design allows for accurate travel time computation using our unique 3-D ray tracing algorithms, capable of tracing more than 20 distinct seismic phases including crustal, regional, teleseismic, and core phases. Thus, we can now incorporate certain secondary (and sometimes exotic) phases into source location determination and other analyses. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-680505.

  9. Spin Hall conductivity in the impure two-dimensional Rashba s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Biderang, M.; Yavari, H.

    2016-06-01

    Based on the Kubo formula approach, the spin Hall conductivity (SHC) of a two-dimensional (2D) Rashba s-wave superconductor in the presence of nonmagnetic impurities is calculated. We will show that by increasing the superconducting gap, the SHC decreases monotonically to zero, while by decreasing the concentration of impurities at zero gap, the SHC closes to the clean limit universal value - e/8 π. As a function of the impurity relaxation rate τ at Tc = 0.1 and γ = 0.01 (γ is the spin-orbit coupling in unit of eV · m), we will show that in the dirty limit (τ → 0) the SHC vanishes, and by increasing the relaxation time (τ → ∞) the SHC depends on the value of superconducting gap (Δ = 1.76Tc√{ 1 -T/Tc }), is changed from zero for full gap to -e/8 π in zero gap. At low temperatures, the SHC goes to zero exponentially and near the critical temperature depending on the concentration of the scattering centers, the SHC will tend to the value of normal state. We will also show that the SHC is independent of spin-orbit coupling (γ) in the clean limit.

  10. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enoughmore » to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2/Λχ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  11. Robust sky light polarization detection with an S-wave plate in a light field camera.

    PubMed

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  12. Effect of soil and bedrock anelasticity on the S-wave amplification function

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Picotti, Stefano; Francese, Roberto; Giorgi, Massimo; Pettenati, Franco

    2016-10-01

    We analyze how intrinsic attenuation and bedrock elasticity affect the amplitude and frequency of the resonance peaks of the S-wave amplification function. The Zener model (with a single relaxation peak) and the constant-Q model are used to describe attenuation. We consider two different cases, namely, the soil is softer than the bedrock (the usual situation, that is, a sediment overlying a stiff formation) and the upper layer is stiffer than the lower half space (e.g., basalt over sediment). The presence of Zener loss in the upper layer causes a shift of the fundamental peak towards the low frequencies, while no shift is observed due to the non-rigid (viscoelastic) character of the half space. In the constant-Q case, the shift to the low frequencies is not significant implying that it is difficult to estimate the attenuation parameters on the basis of the location of the resonance peaks. However, attenuation affects the amplitude of the higher modes, while these modes have the same amplitude of the fundamental mode no matter the degree of elasticity of the half space. Attenuation of the layer and non-rigidity of the half space affect the peaks, with the latter having a stronger effect. Examples are given, where we consider two real cases representing a glacier and an ice stream in Northern Italy and the Antarctic continent, respectively.

  13. Effect of soil and bedrock anelasticity on the S-wave amplification function

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Picotti, Stefano; Francese, Roberto; Giorgi, Massimo; Pettenati, Franco

    2017-01-01

    We analyse how intrinsic attenuation and bedrock elasticity affect the amplitude and frequency of the resonance peaks of the S-wave amplification function. The Zener model (with a single relaxation peak) and the constant-Q model are used to describe attenuation. We consider two different cases, namely, the soil is softer than the bedrock (the usual situation, that is, a sediment overlying a stiff formation) and the upper layer is stiffer than the lower half-space (e.g. basalt over sediment). The presence of Zener loss in the upper layer causes a shift of the fundamental peak towards the low frequencies, while no shift is observed due to the non-rigid (viscoelastic) character of the half-space. In the constant-Q case, the shift to the low frequencies is not significant implying that it is difficult to estimate the attenuation parameters on the basis of the location of the resonance peaks. However, attenuation affects the amplitude of the higher modes, while these modes have the same amplitude of the fundamental mode no matter the degree of elasticity of the half-space. Attenuation of the layer and non-rigidity of the half-space affect the peaks, with the latter having a stronger effect. Examples are given, considering two real cases representing a glacier in Northern Italy and an ice stream in the Antarctic continent.

  14. Crustal attenuation characteristics of S-waves beneath the Eastern Tohoku region, Japan

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad Adeel

    2016-10-01

    An inversion method was applied to crustal earthquakes dataset to find S-wave attenuation characteristics beneath the Eastern Tohoku region of Japan. Accelerograms from 85 shallow crustal earthquakes up to 25 km depth and magnitude range between 3.5 and 5.5 were analyzed to estimate the seismic quality factor Q s. A homogeneous attenuation model Q s for the wave propagation path was evaluated from spectral amplitudes, at 24 different frequencies between 0.5 and 20 Hz by using generalized inversion technique. To do this, non-parametric attenuation functions were calculated to observe spectral amplitude decay with hypocentral distance. Then, these functions were parameterized to estimate Q s. It was found that in Eastern Tohoku region, the Q s frequency dependence can be approximated with the function 33 f 1.22 within a frequency range between 0.5 and 20 Hz. However, the frequency dependence of Q s in the frequency range between 0.5 and 6 Hz is best approximated by Q s ( f) = 36 f 0.94 showing relatively weaker frequency dependence as compared to the relation Q s ( f) = 6 f 2.09 for the frequency range between 6 and 15 Hz. These results could be used to estimate source and site parameters for seismic hazard assessment in the region.

  15. Symmetry reduction and boundary modes for Fe chains on an s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Qin; Wu, Yi-Ming; Liu, Xiong-Jun

    2016-11-01

    We investigate the superconducting phases and boundary modes for a quasi-1D system formed by up to three Fe chains on an s-wave superconductor, motivated by a recent experiment. While the Rashba type spin-orbit coupling together with a magnetic ordering is necessary to drive the system to be of nontrivial topology, we show that the onsite l\\centerdot s spin-orbit term, inter-chain diagonal hopping couplings, and magnetic disorders in the Fe chains are crucial in determining the symmetry classes of superconducting phases, which can be topologically trivial or nontrivial in different parameter regimes. In general multiple low-energy Andreev bound states, as well as a single Majorana zero mode if the phase is topological, are obtained in the ends of Fe chains. The nontrivial symmetry reduction mechanism is uncovered to provide an understanding of the present results, and may explain the zero-bias peak observed in the experiment. The present study can be applied to generic multiple-chain system.

  16. An Evolutionary S-wave Model of the Earth Upper Mantle and Transition Zone

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Dubuffet, F.; Durand, S.

    2015-12-01

    We present 3D2015_03Sv, an evolutionary S-wave model of the upper mantle. At the time of submitting this abstract, the model is based on the waveform modeling of most Rayleigh waves recorded between 1976 and March 2015, and includes 1,330,210 fundamental and higher mode Rayleigh waveforms analyzed at periods between 40 and 400 s. The use of approximate forward theory and modeling allows updating the model with new data on a regular basis, a few days after the publication of the monthly centroid moment tensor (CMT) catalog issued at the Lamont-Doherty Earth Observatory of Columbia University. 3D2015_03Sv contains azimuthal anisotropy and achieves a lateral resolution of ~600 km in the upper mantle. Comparison with other seismic models shows that in the uppermost 200 km, the use of massive datasets with large redundancies allows to average errors, so that it is possible to build models that are consistent up to degree 60. In the transition zone, the number of data decreases and the effect of modeling choices is important. The most recent seismic models agree up to degree 15, which represents an improvement compared to the previous generation of models.

  17. Extended s-wave pairing symmetry on the triangular lattice heavy fermion system

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Wang, Yu-Feng; Zhong, Yin; Luo, Hong-Gang

    2015-10-01

    We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction ( J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral d_{x^2 - y^2 } + id_{xy}-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.

  18. S-wave velocity self-adaptive prediction based on a variable dry rock frame equivalent model

    NASA Astrophysics Data System (ADS)

    Feng-Ying, Yang; Xing-Yao, Yin; Bo, Liu

    2014-08-01

    Seismic velocities are important reservoir parameters in seismic exploration. The Gassmann theory has been widely used to predict velocities of fluid-saturated isotropic reservoirs at low frequency. According to Gassmann theory, dry rock frame moduli are essential input parameters for estimating reservoir velocities. A variable dry rock frame equivalent model called VDEM based on the differential effective medium (DEM) theory is constructed in this paper to obtain the dry rock frame moduli. We decouple the DEM equations by introducing variable parameters, then simplify these decoupled equations to get the equivalent dry rock fame model. The predicted dry rock frame moduli by the VDEM are in good agreement with the laboratory data. The VDEM is also utilized to predict S-wave velocity combined with Gassmann theory. A self-adaptive inversion method is applied to fit the variable parameters with the constraint of P-wave velocity from well logging data. The S-wave velocity is estimated from these inversed parameters. A comparison between the self-adaptive method and the Xu-White model on S-wave velocity estimation is made. The results corroborate that the self-adaptive method is flexible and effective for S-wave velocity prediction.

  19. Form factors and the s-wave component of the two-pion-exchange three-nucleon potential

    SciTech Connect

    Robilotta, M.R.; Isidro Filho, M.P.; Coelho, H.T.; Das, T.K.

    1985-02-01

    We argue that the straightforward introduction of ..pi..N form factors into the s-wave component of the two-pion-exchange three-nucleon potential based on chiral symmetry is not free of problems. These can be avoided by means of a redefinition of the potential which considers its physical content.

  20. High S-wave attenuation anomalies and ringlike seismogenic structures in the lithosphere beneath Altai: Possible precursors of large earthquakes

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2016-12-01

    This paper addresses inhomogeneities in the short-period S-wave attenuation field in the lithosphere beneath Altai. A technique based on the analysis of the amplitude ratios of Sn and Pn waves is used. High S-wave attenuation areas are identified in the West Altai, which are related to the source zones of recent large earthquakes, viz., the 1990 Zaisan earthquake and the 2003 Chuya earthquake. Associated with the Chuya earthquake, a large ringlike seismogenic structure had been formed since 1976. It is also found that ringlike seismogenic structures are confined to high S-wave attenuation areas unrelated to large historical earthquakes. It is supposed that processes paving the way for strong earthquakes are taking place in these areas. The magnitudes of probable earthquakes are estimated using the earlier derived correlation dependences of the sizes of ringlike seismogenic structures and the threshold values of magnitudes on the energy of principal earthquakes with prevailing focal mechanisms taken into consideration. The sources of some earthquakes are likely to occur near to the planned gas pipeline route from Western Siberia to China, which should be taken into account. The relationship of anomalies in the S-wave attenuation field and the ringlike seismogenic structures to a high content of deep-seated fluids in the lithosphere is discussed.

  1. Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc

    SciTech Connect

    Matsumoto, Satoshi; Hasegawa, Akira

    1996-02-10

    This paper investigates the geometry and the features of the midcrustal s wave reflector beneath Nikko-Shirane valcano in detail based on data acquired through seismic observations with a dense station network. The geometry and internal structure of the reflector is discribed.

  2. Analytical testing

    NASA Technical Reports Server (NTRS)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  3. Feasibility of using P- and S-wave Attenuation for Monitoring of Bacterial Clogging in Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Noh, D. H.

    2015-12-01

    Accumulation of bacterial biopolymers in porous media is known to decrease permeability by several orders of magnitude, referred to as bioclogging, thereby altering the hydraulic flow systems of porous media. Successful microbial bioclogging treatments require geophysical monitoring techniques to provide appropriate spatial and temporal information on bacterial growth and activities in the subsurface; such monitoring datasets can be used to evaluate the status of plugged reservoir sections and optimize re-treatment if the plug degrades. This study investigated the variations of P- and S-wave attenuation of porous media for monitoring in-situ accumulation of bacterial biopolymers in sediments. Column experiments, where Leuconostoc mesenterorides were stimulated to produce the insoluble polysaccharide biopolymer (referred to as dextran) in a sand pack, were performed while monitoring changes in permeability as well as P- and S-wave responses. P-wave responses at ultrasonic and sub-ultrasonic frequency ranges (i.e., hundreds of kHz and tens of kHz) and S-wave responses at several kHz were acquired using ultrasonic transducers and bender elements during accumulation of the biopolymer. The permeability of the sand pack was reduced by more than one order of magnitude while the insoluble biopolymer, dextran, produced by Leuconostoc mesenteroides occupied ~10% pore volume. The amplitude of the P-wave signals decreased at the both ultrasonic (hundreds of kHz) and sub-ultrasonic (tens of kHz) frequency ranges; and the spectral ratio calculations confirmed an increase in P-wave attenuation (1/QP) in the both frequency ranges. The amplitude of the S-wave signals significantly increased during the increase in S-wave velocity, possibly due to the increased shear stiffness of the medium. However, the spectral ratio calculation suggested an increase in S-wave attenuation (1/QS) in the several kHz band. The observed changes in permeability and P- and S-wave attenuation were

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  5. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low

  6. Interpretation of S waves generated by near-surface chemical explosions at SAFOD

    USGS Publications Warehouse

    Pollitz, Fred F.; Ellsworth, William L.; Rubinstein, Justin L.

    2015-01-01

    A series of near-surface chemical explosions conducted at the San Andreas Fault Observatory at Depth (SAFOD) were recorded by high-frequency downhole receiver arrays in separate experiments in November 2003 and May 2005. The 2003 experiment involved ∼100  kg shots detonated along a 46-km-long line (Hole–Ryberg line) centered on SAFOD and recorded by 32 three-component geophones in the pilot hole between 0.8 and 2.0 km depth. The 2005 experiment involved ∼36  kg shots detonated at Parkfield Area Seismic Observatory (PASO) stations (at ∼1–8  km offset) recorded by 80 three-component geophones in the main hole between the surface and 2.4 km depth. These data sample the downgoing seismic wavefield and constrain the shallow velocity and attenuation structure, as well as the first-order characteristics of the source. Using forward modeling on a velocity structure designed for the near field, both observed P- and S-wave energy for the PASO shots are identified with the travel times expected for direct and/or reflected phases. Larger-offset recordings from shots along the Hole–Ryberg line reveal substantial SV and SH energy, especially southwest of SAFOD from the source as indicated by P-to-S amplitude ratios. The generated SV energy is interpreted to arise chiefly from P-to-S conversions at subhorizontal discontinuities. This provides a simple mechanism for often-observed low P-to-S amplitude ratios from nuclear explosions in the far field, as originating from strong near-field wave conversions.

  7. Landslide characterization using P- and S-wave seismic refraction tomography - The importance of elastic moduli

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J.

    2016-11-01

    In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface observations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined from SRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio from the SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ratios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics.

  8. Strong-coupling s-wave Superconductor MgB2 : ^11B NMR Study

    NASA Astrophysics Data System (ADS)

    Kotegawa, Hisashi; Ishida, Kenji; Kitaoka, Yoshio; Muranaka, Takahiro; Nakagawa, Norimasa; Takagiwa, Hiroyuki; Akimitsu, Jun

    2002-03-01

    We report nuclear magnetic resonance (NMR) results on the recently discovered superconductor MgB_2. This binary compound exhibits a remarkably high superconducting (SC) transition temperature, Tc of ~40K, and thus attracts a great deal of attention. Numerous theoretical and experimental approaches have been performed in order to investigate SC characteristics in this compound. We have investigated a SC gap structure of MgB2 through the measurement of ^11B nuclear spin-lattice relaxation time, T_1. ^11(1/T_1T) is independent of the temperature (T) in the normal state, and decreases exponentially in the SC state, accompanied with a tiny coherence peak just below T_c. The T dependence of 1/T_1T in the SC state can be accounted for by an s-wave SC model with a large gap size of 2Δ /k_BTc ~ 5 which suggests to be in a strong-coupling regime. We carried out the measurement in Al-doped Mg_1-xAl_xB_2. 1/T1 in the SC state revealed that the size in SC gap is not changed by substituting Al for Mg. The reduction in Tc is shown to be due to the decrease of N(E_F). According to the McMillan equation, the experimental relation between Tc and the relative change in N(E_F) allowed us to estimate a characteristic phonon frequency ω ~ 700K and an electron-phonon coupling constant λ ~ 0.87. These results suggest that the high-Tc superconductivity in MgB2 is mediated by the strong electron-phonon coupling with high-frequency phonons.

  9. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth

    DOE PAGES

    Fisk, Mark D.; Pasyanos, Michael E.

    2016-05-03

    Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as Fmax) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new Fmax criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

  10. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    SciTech Connect

    Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2χ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.

  11. Craton Development and Stabilization: Insights from SE Canada using P and S Wave Tomography

    NASA Astrophysics Data System (ADS)

    Boyce, A.; Bastow, I. D.; Darbyshire, F. A.; Gilligan, A.; Ellwood, A.; Levin, V. L.; Menke, W. H.

    2015-12-01

    Cratons, the ancient cores of the continents, are the longest-lived parts of Earth's surface that have survived thermal and mechanical erosion during multiple Wilson cycles. They are visible in tomographic images due to their thick (>200km), seismically fast keels or roots. The Laurentian keel beneath North America is intriguing since its root is thought to extend beneath both the Archean Superior craton and the Proterozoic Grenville province thus implying that keel formation may not have been restricted to Archean times. In order to address this issue we present a P and S wave relative arrival-time tomographic study using data from seismograph networks in SE Canada and the NE US, stretching from the southern tip of Hudson Bay within the Superior craton to the coastal Phanerozoic Appalachian terranes. The tomographic images display three broad zones of increasing mantle wavespeed from globally "slow" in the Appalachian terranes, to a "fast" Grenville Province and "extremely fast" Superior craton. We observe a linear low-velocity feature resulting from modification of the Laurentian keel by the passage of the Great Meteor hotspot. This feature is progressively offset southwestward with depth, potentially due to viscous coupling with mantle flow. No major plate-scale underthrusting during the Grenville Orogeny is apparent, which contradicts the inferred results from crustal seismic reflection and refraction studies. Our results therefore may have fundamental implications for the nature of the Grenville orogenic collision and cratonic stabilization of North America. The results also support the developing consensus that keels form in two stages: a chemically depleted core of Archean age followed by a thermally developed, less-depleted lithosphere during Proterozoic times, highlighted by an abrupt wavespeed contrast in the tomographic images.

  12. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  13. S-wave anisotropy revealed by airgun seismic surveys using cabled seafloor seismometers in the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Araki, E.; Mikada, H.; Kodaira, S.; Miura, S.; Takahashi, N.; Takaesu, M.; Nakano, M.; Machida, Y.

    2015-12-01

    In the Nankai Trough, Japan, a cabled real-time seismic, geodetic and tsunami observation system, comprising twenty DONET1 seafloor and one IODP C0002G borehole observatories, monitors seismic activity above the seismogenic zone, where mega-thrust earthquakes occur at 100-150 years interval. On Nov. 2013 through June 2015, we conducted three seismic airgun surveys above DONET1 and C0002G seismometers. In this study, we aimed to reveal spatial distribution of S-wave anisotropy, i.e., a proxy of stress state governing the fault dynamics in the subduction zone, from the dataset recorded by the cabled system during these surveys In these surveys, airgun shootings at circular survey lines around each observatory with different radii of 3, 7 and 10 km were carried out. In the observed horizontal components for each shot from 3km radius lines (R3 lines), seismic waveforms in 3.0 to 5.0s after the shot are clearly visible to indicate the up-coming P-S converted waves from the bottom of the shallow sediment, although signal-to-noise ratio decreases with depth due to spherical divergence and to complicated structure such as dipping reflectors. We computed radial and transverse records for each shot-receiver azimuth, and then estimated S-wave anisotropy parameters, i.e., magnitude and azimuth, as a function of depth for R3 lines at thirteen observatories. The obtained results confirm that the distributions of S-wave anisotropy, especially in shallow sediments, have localities: the magnitude of S-wave anisotropy becomes smaller in landward basin than in imbricated thrust zone. The axes of fast S-wave symmetry become closer to subduction direction for results from deep reflections. We plan to conduct more attentive analysis, including error evaluation using repeated shooting dataset to discuss the detectability of temporal change of S-wave anisotropy deepen the present discussion after integrating numerical analysis in complicated structure model with the current method.

  14. Mantle seismic structure beneath the MELT region of the east pacific rise from P and S wave tomography

    PubMed

    Toomey; Wilcock; Solomon; Hammond; Orcutt

    1998-05-22

    Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km.

  15. Impurity effect on Kramer-Pesch core shrinkage in s-wave vortex and chiral p-wave vortex

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuhiko; Kato, Yusuke; Sigrist, Manfred

    2005-04-01

    The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investigated in the Born limit by means of a quasiclassical approach. It is shown that in the chiral p-wave phase the Kramer-Pesch effect displays a certain robustness against impurities owing to a specific quantum effect, while the s-wave phase reacts more sensitively to impurity scattering. This suggests chiral p-wave superconductors as promising candidates for the experimental observation of the Kramer-Pesch effect.

  16. Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle

    NASA Astrophysics Data System (ADS)

    To, Akiko; Capdeville, Yann; Romanowicz, Barbara

    2016-07-01

    mostly overlaps with the northern part of the Pacific large low shear velocity province (LLSVP) revealed in tomographic models. Although the very low amplitudes observed at a distance of about 95° remain unexplained, our results indicate that the boundary of the Pacific LLSVP is sharp, and the amplitude of S waves at these large distances is lowered by strong vertical and/or lateral deflection at the boundary toward the interior of the low velocity province.

  17. S-wave velocity structures and Vp/Vs ratios beneath the South Yellow Sea from ocean bottom seismograph data

    NASA Astrophysics Data System (ADS)

    Zhao, Weina; Zhang, Xunhua; Meng, Xiangjun; Wu, Zhiqiang; Qi, Jianghao; Hao, Tianyao; Zheng, Yanpeng; Kai, Liu

    2017-04-01

    In 2013, a wide-angle seismic survey (OBS2013) was conducted perpendicular to the south coast of the Shandong Peninsula in China, to investigate the crustal structure of the South Yellow Sea (SYS). Previous interpretation of the crustal structure of SYS did not use S-wave and Vp/Vs ratios as a constraint. In this study, we constructed the converted S-wave velocity model and Vp/Vs ratios of the northern SYS. Many receiver gathers showed good reflected and refracted S-phases, particularly in the Qianliyan Uplift. The S-wave crustal structure and Vp/Vs ratios were obtained based on a previous P-wave model which utilized RayInvr software by adjusting travel times. Results demonstrated that the S-wave velocities increased with depth, as in the P-wave model. This paper provided a lithologic interpretation of the velocity model. In the uppermost layer beneath the water, most Vp/Vs ratios were high (> 3). The nappe beneath the northwestern OBS2013 mainly consisted of granite and felsic gneiss. In the North Depression (ND), the Vp/Vs ratios of the marine sedimentary layer displayed the characteristics of carbonate rock. However, in the southeast of the ND, the sediment beneath the continental deposit layer was most likely composed of sandstone. The marine sedimentation in the Central Uplift (CU) mainly probably consisted of carbonate rocks with sandstone. Lack of strata with rich sand in the Permian and Triassic period suggested there was a more drastic uplift in the ND than the one in the CU during the Indo-Chinese epoch.

  18. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. High-temperature thermodynamics of strongly interacting s-wave and p-wave Fermi gases in a harmonic trap

    SciTech Connect

    Peng Shiguo; Li Shiqun; Drummond, Peter D.; Liu Xiaji

    2011-06-15

    We theoretically investigate the high-temperature thermodynamics of a strongly interacting trapped Fermi gas near either s-wave or p-wave Feshbach resonances, using a second-order quantum virial expansion. The second virial coefficient is calculated based on the energy spectrum of two interacting fermions in a harmonic trap. We consider both isotropic and anisotropic harmonic potentials. For the two-fermion interaction, either s-wave or p-wave, we use a pseudopotential parametrized by a scattering length and an effective range. This turns out to be the simplest way of encoding the energy dependence of the low-energy scattering amplitude or phase shift. This treatment of the pseudopotential can be easily generalized to higher partial-wave interactions. We discuss how the second virial coefficient and thermodynamics are affected by the existence of these finite-range interaction effects. The virial expansion result for a strongly interacting s-wave Fermi gas has already been proved very useful. In the case of p-wave interactions, our results for the high-temperature equation of state are applicable to future high-precision thermodynamic measurements for a spin-polarized Fermi gas near a p-wave Feshbach resonance.

  20. Estimation of shallow S-wave velocity structure in the Puli basin, Taiwan, using array measurements of microtremors

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2012-05-01

    The September 21, 1999, Chi-Chi earthquake induced strong shaking, resulting in severe damage in the Puli area. According to Huang and Tarng (2005), the collapse of many structures during the earthquake was very closely related to site effects. Shallow shear-wave velocities are widely used for earthquake ground-motion site characterization. Thus, we investigate S-wave velocity structures for the Puli area by performing microtremor array measurements at 16 sites. Dispersion curves at these sites are calculated using the F-K method (Capon, 1969) for the vertical component; S-wave velocity structures for the Puli area are then estimated by surface wave inversion (Herrmann, 1991). If the S-wave velocity of the bedrock is assumed to be 2000 m/s, the depths of the Quaternary sediments in the Puli area are between 300 m (FAL, PIP) and 870 m (DAH). Moreover, there are 3˜6 distinct interfaces in the shallow velocity structure (0˜1000 m). The depth of the bedrock gradually increases from the edge (SIN, PIP) to the center (PUL, DAH) of the basin and the thickest Quaternary sediments appear near Heng-Chih-Cheng (DAH).

  1. Evidence for serpentinization of the Ionian upper mantle from simultaneous inversion of P- and S-wave arrival times

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Mangano, Giorgio; D'Anna, Giuseppe; Scudero, Salvatore

    2016-12-01

    Simultaneous inversion of P- and S-wave arrival times, collected during a 3-years Ocean Bottom Seismometer with Hydrophone (OBS/H) monitoring campaign, yields 1D P- and S-wave velocity models for the Ionian lithosphere (Central Mediterranean). The 1D model highlights the presence, in the Ionian upper mantle, of two layers characterized by high seismic P-wave velocity (S1 and S2, 6.3-6.7 and 7.5 km/s, respectively). These two layers, with thicknesses of about 3.3 km and 5 km, respectively, and ranging from ∼8 to ∼16 km in depth, are characterized by low S-wave velocity (S1 = 3.05-3.2 km/s, S2 = 3.85 km/s) and high values of VP/VS (S1 = 2.06-2.09, S2 = 1.95). This is a characteristic feature, often encountered in passive margins and is generally interpreted as partly serpentinized peridotite. The VP, VS and VP/VS values of S1 are consistent with 55-65% of serpentinization of the upper mantle, while the S2 ones are consistent with 15-25% of serpentinization. This research provides a crucial hint about the debated nature of the Ionian crust, suggesting its oceanic structure.

  2. s-Wave holographic superconductor in different ensembles and its thermodynamic consistency

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Hou, Defu

    In this paper, we analytically study the consistency between the Ginzburg-Landau theory of the holographic superconductor in different ensembles and the fundamental thermodynamic relation, we derive the equation of motion of the scalar field which depicts the superconducting phase in canonical ensemble (CE) and a consistent formula to connect the holographic order-parameter to the Ginzburg-Landau coefficients in different thermodynamic ensembles, and we also study the spatially nonuniform Helmholtz free energy.

  3. Upper-mantle velocities below the Scandinavian Mountains from P- and S-wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Jacobsen, Bo Holm; England, Richard

    2017-01-01

    The relative traveltime residuals of more than 20 000 arrival times of teleseismic P and S waves measured over a period of more than 10 yr in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield are inverted to 3-D tomograms of P and S velocities and the VP/VS ratio. Resolution analysis documents that good 3-D resolution is available under the dense network south of 64° latitude (Southern Scandes Mountains), and patchier, but highly useful resolution is available further north, where station coverage is more uneven. A pronounced upper-mantle velocity boundary (UMVB) that transects the study region is defined. It runs from SE Norway (east of the Oslo Graben) across the mountains to the Norwegian coast near Trondheim (around the Møre-Trøndelag Fault Complex), after which it follows closely along the coast further north. Seismic velocities in the depth interval 100-300 km change significantly across the UMVB from low relative VP and even lower relative VS on the western side, to high relative VP and even higher relative VS to the east. This main velocity boundary therefore also separates relatively high VP/VS ratio to the west and relatively low VP/VS to the east. Under the Southern Scandes Mountains (most of southern Norway), we find low relative VP, even lower relative VS and hence high VP/VS ratios. These velocities are indicative of thinner lithosphere, higher temperature and less depletion and/or fluid content in a relatively shallow asthenosphere. At first sight, this might support the idea of a mantle buoyancy source for the high topography. Under the Northern Scandes Mountains, we find the opposite situation: high relative VP, even higher relative VS and hence low VP/VS ratios, consistent with thick, dry, depleted lithosphere, similar to that in most of the Baltic Shield area. This demonstrates significant differences in upper-mantle conditions between the Southern

  4. Upper-mantle velocities below the Scandinavian Mountains from P- and S- wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Jacobsen, Bo Holm; England, Richard

    2016-09-01

    The relative traveltime residuals of more than 20,000 arrival-times of teleseismic P- and S-waves measured over a period of more than 10 years in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield are inverted to 3D tomograms of P- and S- velocities and the VP/VS ratio. Resolution analysis documents that good 3D resolution is available under the dense network south of 64° latitude (Southern Scandes Mountains), and patchier, but highly useful resolution is available further north, where station coverage is more uneven. A pronounced upper-mantle velocity boundary (UMVB) that transects the study region is defined. It runs from SE Norway (east of the Oslo Graben) across the mountains to the Norwegian coast near Trondheim (around the Møre-Trøndelag Fault Complex), after which it follows closely along the coast further north. Seismic velocities in the depth interval 100-300 km change significantly across the UMVB from low relative VP and even lower relative VS on the western side, to high relative VP and even higher relative VS to the east. This main velocity boundary therefore also separates relatively high VP/VS ratio to the west and relatively low VP/VS to the east. Under the Southern Scandes Mountains (most of southern Norway) we find low relative VP, even lower relative VS and hence high VP/VS ratios. These velocities are indicative of thinner lithosphere, higher temperature and less depletion and/or fluid content in a relatively shallow asthenosphere. At first sight, this might support the idea of a mantle buoyancy source for the high topography. Under the Northern Scandes Mountains we find the opposite situation: high relative VP, even higher relative VS and hence low VP/VS ratios, consistent with thick, dry, depleted lithosphere, similar to that in most of the Baltic Shield area. This demonstrates significant differences in upper mantle conditions between the Southern

  5. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  6. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  7. Influence of the quantum zero-point motion of a vortex on the electronic spectra of s -wave superconductors

    NASA Astrophysics Data System (ADS)

    Bartosch, Lorenz; Sachdev, Subir

    2006-10-01

    We compute the influence of the quantum zero-point motion of a vortex on the electronic quasiparticle spectra of s -wave superconductors. The vortex is assumed to be pinned by a harmonic potential, and its coupling to the quasiparticles is computed in the framework of BCS theory. Near the core of the vortex, the motion leads to a shift of spectral weight away from the chemical potential, and thereby reduces the zero bias conductance peak; additional structure at the frequency of the harmonic trap is also observed.

  8. Bulk evidence for single-Gap s-wave superconductivity in the intercalated graphite superconductor C6Yb.

    PubMed

    Sutherland, Mike; Doiron-Leyraud, Nicolas; Taillefer, Louis; Weller, Thomas; Ellerby, Mark; Saxena, S S

    2007-02-09

    We report measurements of the in-plane electrical resistivity rho and thermal conductivity kappa of the intercalated graphite superconductor C6Yb down to temperatures as low as Tc/100. When a field is applied along the c axis, the residual electronic linear term kappa0/T evolves in an exponential manner for Hc1s-wave order parameter, and is a strong argument against the possible existence of multigap superconductivity.

  9. p{sub x}+ip{sub y} Superfluid from s-Wave Interactions of Fermionic Cold Atoms

    SciTech Connect

    Zhang Chuanwei; Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.

    2008-10-17

    Two-dimensional (p{sub x}+ip{sub y}) superfluids or superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic atom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a p{sub x}+ip{sub y} superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid.

  10. Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion

    DTIC Science & Technology

    2015-07-20

    MONITOR’S ACRONYM(S) Air Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL /RVBYE 11...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV -PS- TR-2015-0145 AFRL -RV -PS- TR-2015-0145 GENERATION OF HIGH-FREQUENCY P AND S WAVE ENERGY BY ROCK FRACTURE DURING A BURIED EXPLOSION

  11. Pick_sw: a program for interactive picking of S-wave data, version 2.00

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2002-01-01

    Program pick_sw is used to interactively pick travel times from S-wave data. It is assumed that the data are collected using 2 shots of opposite polarity at each shot location. The traces must be in either the SEG-2 format or the SU format. The program is written in the IDL and C programming languages, and the program is executed under the Windows operating system. (The program may also execute under other operating systems like UNIX if the C language functions are re-compiled).

  12. Multiple Andreev reflections in s -wave superconductor-quantum dot-topological superconductor tunnel junctions and Majorana bound states

    NASA Astrophysics Data System (ADS)

    Golub, Anatoly

    2015-05-01

    We calculate the current as a function of applied voltage in a nontopological s -wave superconductor-quantum dot-topological superconductor (TS) tunnel junction. We consider the type of TS which hosts two Majorana bound states (MBSs) at the ends of a semiconductor quantum wire or of a chain of magnetic atoms in the proximity with an s -wave superconductor. We find that the I -V characteristic of such a system in the regime of big voltages has a typical two-dot shape and is ornamented by peaks of multiple Andreev reflections. We also consider the other options when the zero-energy states are created by disorder (hereby Shiba states) or by Andreev zero-energy bound states at the surface of a quantum dot and a superconductor. The later are obtained by tuning the magnetic field to a specific value. Unlike the last two cases the MBS I -V curves are robust to change the magnetic field. Therefore, the magnetic-field dependence of the tunneling current can serve as a unique signature for the presence of a MBS.

  13. Estimations of the S-wave velocity structures in Chia-Yi City, Taiwan, using the array records of microtremors

    NASA Astrophysics Data System (ADS)

    Huang, H.-C.; Wu, C.-F.

    2006-11-01

    Shear-wave velocities (VS) have been widely used for the site characterization of earthquake ground motion. We report here our investigation of the S-wave velocity structures of Chia-Yi City, Taiwan using the array records of microtremors at seven sites. The dispersion curves at these sites were first calculated using the F-K method proposed by Capon (1969); the S-wave velocity structures in Chia-Yi City were then estimated by employing the surface wave inversion technique (Herrmann, 1991). At frequencies lower than about 1 Hz, the propagation directions are concentrated in the northwest and southwest quadrants. The generation of these may be attributed to the ocean waves of the Taiwan Strait. The harder site (CBA) has higher phase velocities, while the softer sites (CWB, SHP and YRU) have lower phase velocities, especially at frequencies between 1 and 5 Hz. The shallow velocity structures (0-1,500 m) can be roughly divided into four to five layers. The depth of the alluvium gradually increases from east to west and from north to south.

  14. Further Study of the π π S-Wave Isoscalar Amplitude Below the K overline K Threshold

    NASA Astrophysics Data System (ADS)

    Kaminski, R.; Lesniak, L.; Rybicki, K.

    2000-04-01

    We continue the analysis of S-wave production amplitudes for the reaction π - p → π + π - n involving the data obtained by the CERN-Cracow-Munich collaboration on a transversely polarized target at 17.2 GeV/c π - momentum. This study deals with the region below the Koverline {K} threshold. In particular, we study the "up-steep" solution containing a narrow S-wave resonance under the ρ (770). This solution exhibits a considerable inelasticity η which does not have any physical interpretation. Assuming that this inelasticity behaviour represents an unlikely fluctuation we impose η ≡ 1 for all data points. This leads to non-physical results in one third of the π + π - effective mass bins and in the remaining mass bins some parameters behave in a queer way. The situation is even worse for the "down-steep" solution. We conclude that the 17.2 GeV data cannot be described by a relatively narrow f0(750). The "down-flat" and "up-flat" solutions which easily pass the η ≡ 1 constraint exhibit a slow increase of phase shifts in the ρ (770) mass range.

  15. Fano-Josephson effect in the junction with DIII-class topological and s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Jiang, Cui; Yi, Guang-Yu; Meng, Guang-Yi; Gong, Wei-Jiang

    2017-04-01

    We investigate the Josephson effects in the junction formed by the direct and indirect couplings between DIII-class topological and s-wave superconductors. As a result, the Josephson current is found to oscillate in period 2 π . The presence of Majorana doublet in the DIII-class superconductor renders the current finite at the case of zero phase difference, with its sign determined by the fermion parity of such a junction. In addition to the dot level and intradot Coulomb interaction, the Fano interference is an important factor to adjust the Josephson current. It is believed that these results will be helpful in understanding the transport properties of the DIII-class superconductor.

  16. The leading twist light-cone distribution amplitudes for the S-wave and P-wave Bc mesons

    NASA Astrophysics Data System (ADS)

    Xu, Ji; Yang, Deshan

    2016-07-01

    The light-cone distribution amplitudes (LCDAs) serve as important nonperturbative inputs for the study of hard exclusive processes. In this paper, we calculate ten LCDAs at twist-2 for the S-wave and P-wave B c mesons up to the next-to-leading order (NLO) of the strong coupling α s and leading order of the velocity expansion. Each one of these ten LCDAs is expressed as a product of a perturbatively calculable distribution and a universal NRQCD matrix-element. By use of the spin symmetry, only two NRQCD matrix-elements will be involved. The reduction of the number of non-perturbative inputs will improve the predictive power of collinear factorization.

  17. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    SciTech Connect

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.

  18. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  19. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  20. S-wave velocity structure and tectonic implications of the northwestern sub-basin and Macclesfield of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaodong; Ruan, Aiguo; Li, Jiabiao; Niu, Xiongwei; Wu, Zhenli; Ding, Weiwei

    2016-10-01

    Based on the optimum P-wave model, the S-wave velocity structure of a wide angle seismic profile (OBS2006-1), across the northwestern sub-basin (NWSB) and the Macclesfield, is simulated by a 2-D ray-tracing method. The results indicate the S-wave velocities in the upper and lower crust of the NWSB are 3.2-3.6 km/s and 3.6-4.0 km/s, with Vp/Vs ratios of 1.82-1.88 and 1.74-1.82, respectively, which reflect typical oceanic crust characteristics. The S-wave velocity in the upper crust of the NWSB is a little higher in the NNW segment than that in the SSE segment, while the lateral variation of Vp/Vs ratio is in the opposite. We suggest that the NWSB might have experienced asymmetrical magma flows during sea floor spreading, which may have blurred the magnetic anomaly lineation. The comparison of S-wave velocities along the northern margin of the SCS shows that the west section is different from the east section, and the northwestern margin has a non-volcanic crust structure. The S-wave structures and P-wave velocity models along the northern margin, Macclesfield and Reed Bank show that the Macclesfield might have a conjugate relationship with the Reed Bank.

  1. Understanding Business Analytics

    DTIC Science & Technology

    2015-01-05

    Business Analytics, Decision Analytics, Business Intelligence, Advanced Analytics, Data Science. . . to a certain degree, to label is to limit - if only... Business Analytics. 2004 2006 2008 2010 2012 2014 Figure 1: Google trending of daily searches for various analytic disciplines “The limits of my

  2. Implementation of an Automatic S-Wave Picker for Local Earthquake Tomography in South-Central Tibet

    NASA Astrophysics Data System (ADS)

    Riddle, E.; Nabelek, J.; Braunmiller, J.

    2012-12-01

    The HiCLIMB broadband seismic experiment (2002-2005) operated 233 stations along an 800 km long north-south line from the Himalayan foreland into the central Tibetan Plateau and in a 350x350 km sub-array within southern Tibet and central and eastern Nepal. From June 2004 to August 2005, over 22,500 local and regional seismic events were recorded throughout the south-central Tibetan Plateau based on automated arrival time picks. This dataset provides an opportunity to jointly invert for crust and upper mantle velocity structure along with earthquake locations using both P and S waves. The automated picks, however, were determined from vertical component data resulting in relatively few S picks of generally low quality. To increase the number of accurate S arrivals, we implemented an automatic S-wave picker, which uses signal attributes from three-component seismic data. The signal attributes used are rectilinearity, directivity relative to incoming P wave, ratio of transverse to overall energy and transverse amplitude. An S pick is declared when the combination of signal attributes reaches a noise dependent threshold. We used manual picks from events throughout south-central Tibet to adjust picking parameters and thresholds to optimize automatic S picks. For shallow events we found Sg can be picked reliably to the Sg/Sn crossover distance of approximately 3° while Sn arrivals are absent. Deep events beneath the southern Tibetan Plateau and the High Himalayas produce clear S arrivals that can be picked to about 5°-6° distance. Applying the S-picker to 584 larger (ML≥2.7), well-recorded events led to about 20,000 S picks; doubling the number of picks and significantly improving their accuracy. Compared to manual picks, the new automatic S picks show average differences of approximately 0.1 s from 0 to 100 km, 0.25 s from 100 to 200 km and 0.5 s from 200 to 250 km distance. This is significantly better than our previous S picks, which, from 100 to 250 km distance

  3. Automated Measurement of P- and S-Wave Differential Times for Imaging Spatial Distributions of Vp/Vs Ratio, with Moving-Window Cross-Correlation Technique

    NASA Astrophysics Data System (ADS)

    Taira, T.; Kato, A.

    2013-12-01

    A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers

  4. Resolution Analysis and Jointly Inverted P- and S-Wave Models of Japan's Crust and Upper Mantle.

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2014-12-01

    Seismic tomography is the most powerful tool for imaging the internal structure of the Earth, and the deployment of dense arrays over the last decade provides opportunities for investigating the interior with exceptionally high resolution. We use travel-time data from regional earthquakes recorded by the Hi-net array in Japan to constrain the elastic properties of the crust and the upper mantle. The large number of high-quality recordings allows refined resolution through the increase of the number of model parameters. However, large amount of data also gives rise to significant challenges. It makes manual picking and reviewing impractical, and these picks are neither errorless nor objective. We address this problem by developing and applying a wavelet-based automatic algorithm to pick the arrival time of both compressional and shear waves and to obtain estimates of the picking uncertainty. Additionally, both forward and inverse calculations require significant computational resources. We use parallel computing implemented in a distributed memory cluster. Forward problem is solved under the high-frequency approximation of wave equation by calculating P and S wave ray paths using a combination of graph theory and pseudo-bending method. We incorporate finite frequency effects by calculating the first Fresnel volume of each travel-time measurement based upon its dominant frequency that is also provided by the automatic picking algorithm. The inverse problem similarly presents difficulties as the number of model parameters increases. Among the most prominent issues is the computational difficulty of explicitly calculating the model and data resolution matrices. These matrices are of great importance in quantifying the spatial resolution of the method and in designing the inverse problem, but they are computational expensive, if not almost impossible, to determine. We attempt to remedy these problems by taking advantage of recent computational developments and

  5. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  6. Validation of S-wave Velocity beneath the Ise Bay, Central Japan, Using Continuous Short-period Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Hayashida, T.; Yoshimi, M.; Horikawa, H.

    2014-12-01

    We have applied seismic interferometry to three-component ambient noise data recorded around the Ise bay area, central Japan, to validate published three-dimensional S-wave velocity models. For the bay area, detailed seismic velocity structure models have been constructed based on P-wave reflection surveys. There is no direct information on the S-wave velocities beneath the bay and the parameters are assigned by reference to those in a land area. We used one-year continuous data from 20 permanent stations of the NIED Hi-net (High-sensitivity seismograph network) to obtain stacked cross-correlation functions (CCFs) of ambient noise between station pairs that cross the bay. The CCFs were calculated, using one-hour data in the radial-radial (R-R), transverse-transverse (T-T) and vertical-vertical (Z-Z) directions for time lags of ±500s. Horizontal distances between the stations range form 15 km to 103 km. Although the Hi-net stations deploy seismometers with the natural period of 1 s, we found that the yearly stacked CCFs for selected 101 Hi-net station pairs are comparable with those derived from neighboring broadband seismic stations in the frequency range between 0.1 and 0.5 Hz, by deconvolving the instrument response. The CCFs shows clear Rayleigh waves from all directions in the R-R and Z-Z components, and clear Love waves in the T-T component with reasonable signal-to-noise ratios. The derived group velocities and waveforms of the wave trains are variable in the higher frequency range (> 0.2 Hz), indicating deep sedimentary basin beneath the bay. We compared obtained group velocities with theoretical ones to find systematic differences between the expected structure model from the CCFs and the published models in the northwest part of the bay, while the agreements are generally good for many other station pairs. This result indicates that the seismic interferometry technique provides valuable information for validation and improvement of a velocity structure

  7. Amplitude Anomalies of S Waves Caused by Low Shear Velocity Structures at the Base of the Mantle

    NASA Astrophysics Data System (ADS)

    To, A.; Capdeville, Y.; Romanowicz, B. A.

    2015-12-01

    Previous studies have shown that the direct S and Sdiff waveforms of earthquakes in Papua New Guinea region recorded by seismographs in Northern America are distorted due to sampling slow shear velocity anomalies at the base of the mantle. The emergence of postcursours to the S/Sdiff waves and the travel time anomalies have been reasonably explained by placing a ultra low velocity zone (ULVZ) in southwest of Hawaii. In this study, we focused on the amplitude anomalies of the S/Sdiff waveforms. The direct S phase show very low amplitude at stations in Southern California, at the distance and azimuth around 90 and 55 degrees from the earthquake. The amplitude is as low as 10% of the synthetic amplitude of a standard 1D model, especially at higher frequency range above 0.025 Hz. We first checked and confirmed that the anomalies are not due to errors in the focal mechanism, which is used to calculate the reference synthetic waveforms. Also we checked that the amplitude anomalies are unlikely to be caused by the structures near the earthquake or near the stations, by looking at the amplitude of the depth phases or waveforms of other earthquakes. We assumed that the anomalies are produced by the focusing and defocusing effect of sampling 3D heterogeneous at the base of the mantle, and searched for the causal structures. Full 3D synthetic waveforms are calculated down to 8 seconds for tens of structural models with slow anomalies of different size and velocity reduction placed on the core-mantle boundary (CMB). The result shows that existing tomographic models do not fully explain the observed amplitude anomalies. Stronger shear velocity anomalies are required. The previously proposed thin large ULVZ placed on the CMB southwest of Hawaii partly explains the observed amplitude reduction, even at the distance as short as 90 degrees from the earthquake. This result indicates the significance of finite frequency effect of the ULVZ structure to the S waves, since the ray

  8. The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure

    NASA Astrophysics Data System (ADS)

    Yano, Tomoko; Tanimoto, T.; Rivera, L.

    2009-10-01

    The particle motion of surface waves, in addition to phase and group velocities, can provide useful information for S-wave velocity structure in the crust and upper mantle. In this study, we applied a new method to retrieve velocity structure using the ZH ratio, the ratio between vertical and horizontal surface amplitudes of Rayleigh waves. Analysing data from the GEOSCOPE network, we measured the ZH ratios for frequencies between 0.004 and 0.05 Hz (period between 20 and 250s) and inverted them for S-wave velocity structure beneath each station. Our analysis showed that the resolving power of the ZH ratio is limited and final solutions display dependence on starting models; in particular, the depth of the Moho in the starting model is important in order to get reliable results. Thus, initial models for the inversion need to be carefully constructed. We chose PREM and CRUST2.0 in this study as a starting model for all but one station (ECH). The eigenvalue analysis of the least-squares problem that arises for each step of the iterative process shows a few dominant eigenvalues which explains the cause of the inversion's initial-model dependence. However, the ZH ratio is unique in having high sensitivity to near-surface structure and thus provides complementary information to phase and group velocities. Application of this method to GEOSCOPE data suggest that low velocity zones may exist beneath some stations near hotspots. Our tests with different starting models show that the models with low-velocity anomalies fit better to the ZH ratio data. Such low velocity zones are seen near Hawaii (station KIP), Crozet Island (CRZF) and Djibuti (ATD) but not near Reunion Island (RER). It is also found near Echery (ECH) which is in a geothermal area. However, this method has a tendency to produce spurious low velocity zones and resolution of the low velocity zones requires further careful study. We also performed simultaneous inversions for volumetric perturbation and

  9. Fast wavefield decomposition of volcano-tectonic earthquakes into polarized P and S waves by Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S.

    2016-10-01

    In the present work a new approach for the analysis of polarization of seismic signals is proposed. The method is based on Independent Component Analysis and allows the identification and separation of the basic sources, which are naturally polarized into the vertical and horizontal planes. The results from the case study of a swarm of volcano-tectonic earthquakes occurred at Campi Flegrei in October 2015 are impressive: a clear separation of the P- and S-wave seismic phases in the time domain is obtained. In addition, the efficiency of the method in retrieving the polarization parameters is demonstrated by the comparison with other standard techniques. The presented approach provides wavefield decomposition and polarization analysis in a single step, thus avoiding a priori cumbersome filtering procedures and segmentation of the signals. It is useful for discriminating and analysing different seismic phases and can be applied to a variety of volcanic and tectonic signals, therefore it can strongly support all the studies on propagation and source mechanism. Moreover, due to its fastness and robustness this stand-alone tool can be routinely used in the volcano monitoring practice.

  10. Majorana fermions in ferromagnetic chains on the surface of bulk spin-orbit coupled s-wave superconductors

    PubMed Central

    Hui, Hoi-Yin; Brydon, P. M. R.; Sau, Jay D.; Tewari, S.; Sarma, S. Das

    2015-01-01

    Majorana fermion (MF) excitations in solid state system have non-Abelian statistics which is essential for topological quantum computation. Previous proposals to realize MF, however, generally requires fine-tuning of parameters. Here we explore a platform which avoids the fine-tuning problem, namely a ferromagnetic chain deposited on the surface of a spin-orbit coupled s-wave superconductor. We show that it generically supports zero-energy topological MF excitations near the two ends of the chain with minimal fine-tuning. Depending on the strength of the ferromagnetic moment in the chain, the number of MFs at each end, n, can be either one or two, and should be revealed by a robust zero-bias peak (ZBP) of height 2 ne2/h in scanning tunneling microscopy (STM) measurements which would show strong (weak) signals at the ends (middle) of the chain. The role of an approximate chiral symmetry which gives an integer topological invariant to the system is discussed. PMID:25743763

  11. Shallow P- and S-wave velocities and site resonances in the St. Louis region, Missouri-Illinois

    USGS Publications Warehouse

    Williams, R.A.; Odum, J.K.; Stephenson, W.J.; Herrmann, Robert B.

    2007-01-01

    As part of the seismic hazard-mapping efforts in the St. Louis metropolitan area we determined the compressional and shear-wave velocities (Vp and Vs) to about a 40-m depth at 17 locations in this area. The Vs measurements were made using high-resolution seismic refraction and reflection methods. We find a clear difference in the Vs profiles between sites located on the river floodplains and those located in the upland urban areas of St. Louis. Vs30 (average Vs to 30-m depth) values in floodplain areas range from 200 to 290 m/s (NEHRP category D) and contrast with sites on the upland areas of St. Louis, which have Vs30 values ranging from 410 to 785 m/s (NEHRP categories C and B). The lower Vs30 values and earthquake recordings in the floodplains suggest a greater potential for stronger and more prolonged ground shaking in an earthquake. Spectral analysis of a M3.6 earthquake recorded on the St. Louis-area ANSS seismograph network indicates stronger shaking and potentially damaging S-wave resonant frequencies at NEHRP category D sites compared to ground motions at a rock site located on the Saint Louis University campus. ?? 2007, Earthquake Engineering Research Institute.

  12. s-wave scattering for deep potentials with attractive tails falling off faster than -1/r{sup 2}

    SciTech Connect

    Mueller, Tim-Oliver; Kaiser, Alexander; Friedrich, Harald

    2011-09-15

    For potentials with attractive tails, as occur in typical atomic interactions, we present a simple formula for the s-wave phase shift {delta}{sub 0}. It exposes a universal dependence of {delta}{sub 0}(E) on the potential tail and the influence of effects specific to a given potential, which enter via the scattering length a, or equivalently, the noninteger part {Delta}{sub th} of the threshold quantum number n{sub th}. The formula accurately reproduces {delta}{sub 0}(E) from threshold up to the semiclassical regime, far beyond the validity of the effective-range expansion. We derive the tail functions occurring in the formula for {delta}{sub 0}(E) and demonstrate the validity of the formula for attractive potential tails proportional to 1/r{sup 6} or to 1/r{sup 4}, and also for a mixed potential tail consisting of a 1/r{sup 4} term together with a non-negligible 1/r{sup 6} contribution.

  13. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca3Ir4Sn13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca3Ir4Sn13 and Sr3Ir4Sn13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca1-xSrx)3Ir4Sn13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  14. Study of tunneling process effects on the fluctuation conductivity of a granular s-wave superconductor in nanometer-scale

    NASA Astrophysics Data System (ADS)

    Yousefvand, A.; salehi, H.; Shoushtari, M. Zargar

    2016-12-01

    We investigate thermal transport in a granular s-wave dirty superconductor at nanometer-scale in 3d in the limit of large tunneling conductance, JT ≫ 1 at near and far from the critical temperature. Calculations is carried out by using Green's function, we obtain the impurity vertex (Cooperon) and fluctuations propagator in the presence of impurities. Then, by concerning Kubo formula we evaluate the three distinct contributions of the Aslamazov-Larkin (AL), Maki-Thompson (MT) and density of states (DOS). The distinctive contributions to fluctuations conductivity depend differently on the tunneling because of their different natures. Therefore, we will show that in the limit of ε ≪ JTη/Tc, where η is the mean level spacing in a grain and ɛ = ln T/Tc ≃(T -Tc) /Tc is the reduced temperature, the tunneling is effective also there is a crossover to the specific behavior of a homogeneous system, as T → Tc, from the point of view of the fluctuating Cooper pairs. In the limit of ε ≫ JTη/Tc, the tunneling is not effective, and the system behaves as an ensemble of real zero-dimensional grains.

  15. Superconducting transition temperatures and coherence length in non-s-wave pairing materials correlated with spin-fluctuation mediated interaction

    NASA Astrophysics Data System (ADS)

    Angilella, G. G.; March, N. H.; Pucci, R.

    2002-03-01

    Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non-s-wave pairing materials, with coherence length ξ and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14 598 (1999)] have each focused on the concept of a spin-fluctuation temperature Tsf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that kBTsf~ħ2/m*ξ2. This demonstrates that ξ is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely, the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-two-dimensional ruthenate Sr2RuO4, with Tc~1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.

  16. Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region, NW Turkey

    NASA Astrophysics Data System (ADS)

    Karagoz, Ozlem; Chimoto, Kosuke; Citak, Seckin; Ozel, Oguz; Yamanaka, Hiroaki; Hatayama, Ken

    2015-11-01

    In this study, we aimed to explore the S-wave velocity structure of shallow soils using microtremors in order to estimate site responses in Tekirdag and surrounding areas (NW Turkey). We collected microtremor array data at 44 sites in Tekirdag, Marmara Ereglisi, Corlu, and Muratlı. The phase velocities of Rayleigh waves were estimated from the microtremor data using a Spatial Autocorrelation method. Then, we applied a hybrid genetic simulated annealing algorithm to obtain a 1D S-wave velocity structure at each site. Comparison between the horizontal-to-vertical ratio of microtremors and computed ellipticities of the fundamental mode Rayleigh waves showed good agreement with validation models. The depth of the engineering bedrock changed from 20 to 50 m in the Tekirdag city center and along the coastline with a velocity range of 700-930 m/s, and it ranged between 10 and 65 m in Marmara Ereglisi. The average S-wave velocity of the engineering bedrock was 780 m/s in the region. We obtained average S-wave velocities in the upper 30 m to compare site amplifications. Empirical relationships between the AVs30, the site amplifications, and also average topographic slopes were established for use in future site effects microzonation studies in the region.

  17. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  18. Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Haopeng; Zhu, Liangbao; Su, Youjin

    2016-08-01

    We used teleseismic data recorded by a permanent seismic network in Yunnan, SE Tibet, and measured the interstation Rayleigh wave phase velocity between 10 and 60 s. A two-step inversion scheme was used to invert for the 3D S-wave velocity and azimuthal anisotropy structure of 10-110 km. The results show that there are two low velocity channels between depths of 20-30 km in Yunnan and that the fast axes are sub-parallel to the strikes of the low velocity channels, which supports the crustal flow model. The azimuthal anisotropy pattern is quite complicated and reveals a complex crust-mantle coupling mechanism in Yunnan. The N-S trending Lüzhijiang Fault separates the Dianzhong Block into two parts. In the western Dianzhong Block, the fast axis of the S-wave changes with depth, which indicates that the crust and the lithospheric mantle are decoupled. In the eastern Dianzhong Block and the western Yangtze Craton, the crust and the lithospheric mantle may be decoupled because of crustal flow, despite a coherent S-wave fast axis at depths of 10-110 km. In addition, the difference between the S-wave fast axis in the lithosphere and the SKS splitting measurement suggests that the lithosphere and the upper mantle are decoupled there. In the Baoshan Block, the stratified anisotropic pattern suggests that the crust and the upper mantle are decoupled.

  19. Prediction of maximum P- and S-wave amplitude distributions incorporating frequency- and distance-dependent characteristics of the observed apparent radiation patterns

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo

    2016-10-01

    Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P- and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent P- and S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P- and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P- and S-wave amplitudes over a wide frequency and distance ranges successfully.[Figure not available: see fulltext.

  20. Analytics for Education

    ERIC Educational Resources Information Center

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  1. Let's Talk... Analytics

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  2. Correlation of 1- to 10-Hz earthquake resonances with surface measurements of S-wave reflections and refractions in the upper 50 m

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Cranswick, E.; Meremonte, M.E.; Odum, J.K.

    2000-01-01

    Resonances observed in earthquake seismograms recorded in Seattle, Washington, the central United States and Sherman Oaks, California, are correlated with each site's respective near-surface seismic velocity profile and reflectivity determined from shallow seismic-reflection/refraction surveys. In all of these cases the resonance accounts for the highest amplitude shaking at the site above 1 Hz. These results show that imaging near-surface reflections from the ground surface can locate impedance structures that are important contributors to earthquake ground shaking. A high-amplitude S-wave reflection, recorded 250-m northeast and 300-m east of the Seattle Kingdome earthquake-recording station, with a two-way travel time of about 0.23 to 0.27 sec (about 18- to 22-m depth) marks the boundary between overlying alluvium (VS < 180 m/sec) and a higher velocity material (VS about 400 m/sec). This reflector probably causes a strong 2-Hz resonance that is observed in the earthquake data for the site near the Kingdome. In the central United States, S-wave reflections from a high-impedance boundary (an S-wave velocity increase from about 200 m/sec to 2000 m/sec) at about 40-m depth corresponds to a strong fundamental resonance at about 1.5 Hz. In Sherman Oaks, strong resonances at about 1.0 and 4 Hz are consistently observed on earthquake seismograms. A strong S-wave reflector at about 40-m depth may cause the 1.0 Hz resonance. The 4.0-Hz resonance is possibly explained by constructive interference between the first overtone of the 1.0-Hz resonance and a 3.25- to 3.9-Hz resonance calculated from an areally consistent impedance boundary at about 10-m depth as determined by S-wave refraction data.

  3. High-resolution P and S-wave Velocity Structures from Elastic Full Waveform Inversion of Multi-Component Ocean Bottom Cable Seismic Data

    NASA Astrophysics Data System (ADS)

    Sears, T.; Singh, S. C.; Barton, P.

    2007-12-01

    Full waveform inversion is becoming a realistic option with the advent of modern computing facilities, both in global and exploration seismology. Over the last ten years, we have developed a series of elastic full waveform inversion algorithm and have applied to a variety of acquisition geometry. The forward modelling is based on the finite difference approximation to the full elastic wave equation in the time domain, which can incorporate converted waves, refraction, and attenuation. The inversion algorithm is based on the minimisation of observed data with synthetic data in a least-squares sense, and requires a cross-correlation of the back propagation of residual with forward propagated wavefield in a background media. Starting with the background velocity obtained using travel time inversion, we first invert wide-angle and low frequency data, which provides medium wavelength velocity structure, and then invert near offset and high frequencies that leads to high-resolution P- and S-wave velocity structure. We first invert vertical component data to obtain short wavelength P- and S-wave velocities, which are constrained by amplitude versus offset behaviour of the P-P reflection, and then invert horizontal component data to obtain very-high resolution S-wave velocity structure, which is constrained by P-S reflection. Finally, we invert all the data simultaneously to have consistency over the data and model space. We found that the high-resolution S-wave velocity image is far superior than the P-wave velocity image and provides information that may not be present in the P-wave velocity image. Combined P and S-wave velocity structure could be used to quantify sub-surface lithology and fluid saturation and pressure. In this presentation we will highlight the challenges faced during the development of our waveform inversion and their implication for the global seismology problems.

  4. The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wookey, James

    2016-12-01

    Observations of shear wave splitting provide unambiguous evidence of the presence of anisotropy in the Earth's lowermost mantle, a region known as D″. Much recent work has attempted to use these observations to place constraints on strain above the core-mantle boundary (CMB), as this may help map flow throughout the mantle. Previously, this interpretation has relied on the assumption that waves can be modelled as infinite-frequency rays, or that the Earth is radially symmetric. Due to computational constraints it has not been possible to test these approximations until now. We use fully 3-D, generally anisotropic simulations of ScS waves at the frequencies of the observations to show that ray methods are sometimes inadequate to interpret the signals seen. We test simple, uniform models, and for a D″ layer as thin as 50 km, significant splitting may be produced, and we find that recovered fast orientations usually reflect the imposed fast orientation above the CMB. Ray theory in these cases provides useful results, though there are occasional, notable differences between forward methods. Isotropic models do not generate apparent splitting. We also test more complex models, including ones based on our current understanding of mineral plasticity and elasticity in D″. The results show that variations of anisotropy over even several hundred kilometres cause the ray-theoretical and finite-frequency calculations to differ greatly. Importantly, models with extreme mineral alignment in D″ yield splitting times not dissimilar to observations (δt ≤ 3 s), suggesting that anisotropy in the lowermost mantle is probably much stronger than previously thought-potentially ˜10 per cent shear wave anisotropy or more. We show that if the base of the mantle is as complicated as we believe, future studies of lowermost mantle anisotropy will have to incorporate finite-frequency effects to fully interpret observations of shear wave splitting.

  5. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  6. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  7. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  8. S-wave resonances below the Ps(n = 2) excitation threshold of the e+ - He system embedded in Debye plasma

    NASA Astrophysics Data System (ADS)

    Ghoshal, Arijit; Ho, Yew Kam

    2016-12-01

    S-wave resonances in positron-helium system, embedded in Debye plasma, have been investigated using the stabilization method. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. A model potential has been used to describe the interaction between the outer electron with the He+ ionic core. Two resonances below the Ps( n = 2) - He+ threshold have been identified. For the unscreened case, our results are in nice agreement with some of the most accurate results available in the literature. To the best of our knowledge, such an investigation on S-wave resonance states, lying below the Ps( n = 2) excitation threshold, of the positron-helium system embedded in Debye plasma environment is the first reported in the literature.

  9. Effect of surface charge and s-wave component on (001) surface and bulk states of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Pasanai, K.

    2017-01-01

    The local densities of the (001) surface and bulk states (LDOS) of thin YBa2Cu3O7-δ films were studied based on the self-consistent tight binding model. The CuO-chain and CuO2-plane layers were considered to be a coupling between bands, and then the input surface charge density and the s-wave sub-dominant component were included in the material. In the calculation process, the surface and bulk states were determined, for comparison. It was found that the size of the superconducting gap of a plane layer at the surface increased with an increasing input of the surface charge density, but the LDOS in the bulk were not affected much by this change. When the s-wave component was included in the material, it affected several peaks in the LDOS. This caused some peaks to split while some other peaks became sharper.

  10. Shallow seismic exploration of the Keuper layers outcropping on the shoulders of the Rhine Graben using P and S waves

    NASA Astrophysics Data System (ADS)

    Akimova, T.; Marthelot, J.-M.; Zillmer, M.

    2012-04-01

    We have performed several seismic P and S waves profiles in Keuper layers outcropping on the shoulders of the Rhine Graben in order to investigate if the lithological and structural heterogeneity that characterize these layers can be detected at depths less than 100m. These shale and limestone layers contain anhydrite levels and are offset by faults that constitute potential hazards for shallow geothermal drilling. 7 short profiles have been done in the Keuper layers outcropping in Grünern (Baden-Württemberg), and 3 profiles in similar layers outcropping on the opposite shoulder of the Rhine Graben in Flexbourg (Alsace) where ancient gypsum mining is known. We are using a hammer and between 48 to 72 vertical geophones for the P profiles, an Elvis horizontal vibrator (30-160 Hz) and 48 to 72 horizontal geophones for the S profiles. Intervals between geophones and shots varying from 50 cm to 2 m were used. For each profile, the recording spread is at a fixed location. First refracted arrivals are observed up to the maximum offset of 100m. Travel times are adjusted with a layered model with dipping interfaces. The surface layer is characterized by a thickness from 1 to 7 m and velocities VP = 300 m/s and VS = 160 m/s. The underlying layer is characterized by a thickness from 6 to 10 m and velocities VP = 880 m/s and VS = 360 m/s. P velocity larger than 2000 m/s is observed below. The first arrivals indicate the existence of shallow lateral velocity variations. Undulations of the interfaces or the presence of low velocity lenses in the shallow layer are apparent in the refracted arrival times. Strong reflections of refracted waves observed on one profile indicate the existence of steep discontinuities that may indicate subvertical faults. Despite using small spatial sampling of shots and geophones, it has proven difficult to detect shallow reflections except on one P wave profile located close to the ancient gypsum mine in Flexbourg. There, clear reflections from

  11. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  12. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  13. From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba, K)Fe2As2

    SciTech Connect

    Reid, J.-Ph.; Juneau-Fecteau, A.; Gordon, R.T.; Rene de Cotret, S.; Doiron-Leyraud, N.; Luo, X.G.; Shakeripour, H.; Chang, J.; Tanatar, Makariy A.; Kim, Hyunsoo; Prozorov, Ruslan; Saito, T.; Fukazawa, H.; Kohori, Y.; Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H.; Shen, B.; Wen, H.-W.; Taillefer, Louis

    2012-07-17

    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.

  14. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  15. A Comparison Study of the Amplification Characteristics of the Seismic Observation Sites Using Coda Wave, Background Noise, and S-Wave Energy from Fukuoka Earthquakes Series

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2014-12-01

    Since design response spectrum does not reflect local soil characteristics, site specific response spectrum from observed ground motions appears relatively higher than design response spectrum at high frequency range. These problems have been pointed out from the domestic seismic design industry. Among various estimation methods, this study used the method H/V ratio of ground motion for estimating site amplification. The method has been extended to background noise, Coda waves and S waves recently for estimating site amplification. This study applied the method to the 3 kinds of seismic energy simultansously, that is, background noise, Coda wave energy and S waves. This study analysed more than 267 background noises from 15 macro earthquakes including main Fukuoka earthquake (2005/03/20, M=6.5) and then compared results from background noise, Coda wave energy, and S waves, at the specific seismic station, for all the 8 main domestic seismic stations(KRA, GSU, GKP1, TJN, HKU, HSB, SNU, and KHD). The results showed that, at the specific sesimic station, most of the domestic seismic stations showed similar results among 3 different seismic energies. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies using different method can give us much information about dynamic amplification of domestic sites characteristics and site classification.

  16. EMPIRICAL OBSERVATIONS OF EARTHQUAKE-EXPLOSION DISCRIMINATION USING P/S RATIOS AND IMPLICATIONS FOR THE SOURCES OF EXPLOSION S-WAVES

    SciTech Connect

    Walter, W R; Matzel, E; Pasyanos, M; Harris, D B; Gok, R; Ford, S R

    2007-06-28

    We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S. The earliest simple source models predicted P/S wave amplitudes for explosions should be much larger than for earthquakes across the body wave spectrum. However empirical observations show the separation of explosions from earthquakes using regional P/S amplitudes is strongly frequency dependent, with relatively poor separation at low frequencies ({approx} 1 Hz) and relatively good separation at high frequencies (> {approx}3 Hz). We demonstrate this using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world e.g. Nevada, Lop Nor, Novaya Zemlya, Semipalatinsk, India, Pakistan, and North Korea. We show this pattern appears to have little dependence on the point source variability revealed by longer period surface wave modeling. For example regional waveform modeling shows strong tectonic release from the May 1998 India test in contrast with very little tectonic release in the recent North Korea test, but the P/S discrimination behavior is similar in both events, using the limited regional data available. While accepted explosion P-wave models have been available for many years, the frequency behavior of the P/S discriminant has inspired a variety of competing models to explain how explosions generate S-waves. We briefly review some of these models in the context of the P/S discriminant observations. One hypothesis is that S-waves are generated mainly from conversion of P-waves and surface waves, so S-waves from explosions can be predicted from the P-wave models via a frequency dependent transfer function. A different hypothesis is that significant generation of S-waves comes from the CLVD (compensated linear vector dipole) component created by spall above the explosion. A recent model by Fisk (2006) shows the explosion S-wave spectra can be modeled using the P

  17. P-wave and S-wave traveltime residuals in Caledonian and adjacent units of Northern Europe and Greenland

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Holm Jacobsen, Bo; Kind, Rainer; Tilmann, Frederik; England, Richard; Bom Nielsen, Søren

    2014-05-01

    This work combines P-wave and S-wave travel time residuals from in total 477 temporary and 56 permanent stations deployed across Caledonian and adjacent units in Northern Europe and Greenland (Tor, Gregersen et al. 2002; SVEKALAPKO, Sandoval et al., 2003; CALAS, Medhus et al, 2012a; MAGNUS, Weidle et al. 2010; SCANLIPS south, England & Ebbing 2012; SCANLIPS north, Hejrani et al. 2012; JULS Hejrani et al. 2013; plus permanent stations in the region). We picked data from 2002 to 2012 (1221 events) using a cross correlation technique on all waveforms recorded for each event. In this way we achieve maximum consistency of relative residuals over the whole region (Medhus et al. 2012b). On the European side 18362 P-wave travel time residuals was delivered. In East Greenland 1735 P-wave residuals were recovered at the Central Fjord array (13 stations) and 2294 residuals from the sparse GLISN-array (23 stations). Likewise, we picked a total of 6034 residuals of the SV phase (For the Tor and SVEKALAPKO projects we used data from Amaru et al. 2008). Relative residuals within the region are mainly due to sub-crustal uppermost mantle velocity anomalies. A dominant subvertical boundary was detected by Medhus et al. (2012), running along the Tornquist zone, east of the Oslo Graben and crossing under high topography of the southern Scandes. We delineated this boundary in more detail, tracking it towards the Atlantic margin north of Trondheim. Further north (Scanlips north), a similar subvertical upper mantle boundary seems to be present close to the coast, coinciding with the edge of the stretched crust. The North German Caledonides were probed by the new JULS (JUtland Lower Saxony) profile which closes the gap between Tor and CALAS arrays. Mantle structure found by the Tor project was confirmed, and modelling was extended to the eastern edge of the North Sea. References: Amaru, M. L., Spakman, W., Villaseñor, A., Sandoval, S., Kissling, E., 2008, A new absolute arrival time data

  18. Intraplate Basaltic Volcanism in the Basin and Range, USA: Relationship to Low-Velocity S- wave Anomalies and Asthenospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Tibbetts, A. K.; Smith, E. I.; Conrad, C.; Lee, C.; Plank, T.; Yang, Y.

    2009-05-01

    Pliocene to Recent intraplate mafic volcanic rocks of the Basin and Range Province mostly formed by asthenospheric melting, as can be seen by melting temperatures. Here asthenosphere is defined by mantle rheology and temperature and not by geochemistry. The duration of melting in a volcanic field may be related to the size and shape of pockets of low velocity asthenosphere moving under the areas of volcanism. Seismic S- wave velocity profiles constrained by ambient noise and earthquake tomography of the mantle (Yang et al., 2008) show low velocity pockets, which may correspond to higher temperatures and/or higher water contents. By applying an asthenospheric flow velocity of 5 cm/yr east (Silver and Holt 2002, Conrad et al., 2007), the distance the mantle has moved since the time of volcanism can be calculated for basalts of known age. Past positions of low-velocity anomalies in the asthenosphere combined with depths and temperatures of melting calculated using the silica-liquid geobarometer (Lee et al., 2009) were used to determine if a low velocity anomaly existed under an area of volcanism at the depth of melting and time of eruption. The data constraints used for calculating depths and temperatures of melting are dry, MgO > 7.5 wt. %, SiO2 > 44 wt.%, and Fe as 90% Fe2+. Depths and temperatures of melting were calculated for several basalt fields of known age. Ages, temperatures, and depths are as follows: Death Valley 4 Ma, 1295-1350°C, and 42-63 km; Crater Flat 80 ka, 1 Ma, 3.8 Ma, 1388-1415°C, and 80-90 km; Lunar Crater 2.9-5.7 Ma, 1414-1480°C, and 80-121 km; Reveille 3.8-4.6 Ma, 1458-1516°C, and 110-140 km; Coso 0.23-5.3 Ma, 1244-1399°C, and 39.6-72 km; Big Pine 0.9-1.8 Ma, 1276-1356°C, and 42-72 km; Long Valley 0.4-3.2 Ma, 1289- 1323°C, and 44-50 km; Cima 0.3-8.3 Ma, 1330-1376°C, and 53-82 km; Snow Canyon <10,000 years, 1470-1485°C, and 75-85 km. Ages were converted to km of mantle motion and to degrees of longitude and plotted on seismic profiles

  19. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-06

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  20. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  1. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  2. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  3. Learning Analytics Considered Harmful

    ERIC Educational Resources Information Center

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  4. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  5. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  6. Validating Analytical Methods

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)

  7. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2016-03-01

    We determined P and S wave velocity tomography of the Japan subduction zone down to a depth of 700 km by conducting joint inversions of a large number of high-quality arrival-time data of local earthquakes and teleseismic events which are newly collected for this study. We also determined 2-D phase-velocity images of fundamental mode Rayleigh waves at periods of 20-150 s beneath Japan and the surrounding oceanic regions using amplitude and phase data of teleseismic Rayleigh waves. A detailed 3-D S-wave tomography of the study region is obtained by jointly inverting S-wave arrival times of local and teleseismic events and the Rayleigh-wave phase-velocity data. Our inversion results reveal the subducting Pacific and Philippine Sea slabs clearly as dipping high-velocity zones from a 1-D starting velocity model. Prominent low-velocity (low-V) anomalies are revealed in the mantle wedge above the slabs and in the mantle below the Pacific slab. The distinct velocity contrasts between the subducting slabs and the surrounding mantle reflect significant lateral variations in temperature as well as water content and/or the degree of partial melting. The low-V anomalies in the mantle wedge are attributed to slab dehydration and corner flows in the mantle wedge. A sheet-like low-V zone is revealed under the Pacific slab beneath NE Japan, which may reflect hot upwelling from the deeper mantle and subduction of a plume-fed asthenosphere as well. Our present results indicate that joint inversions of different seismic data are very effective and important for obtaining robust tomographic images of the crust and mantle.

  8. On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio

    NASA Astrophysics Data System (ADS)

    Moczo, Peter; Kristek, Jozef; Galis, Martin; Pazak, Peter

    2010-07-01

    Numerical modelling of seismic motion in sedimentary basins often has to account for P-wave to S-wave speed ratios as large as five and even larger, mainly in sediments below groundwater level. Therefore, we analyse seven schemes for their behaviour with a varying P-wave to S-wave speed ratio. Four finite-difference (FD) schemes include (1) displacement conventional-grid, (2) displacement-stress partly-staggered-grid, (3) displacement-stress staggered-grid and (4) velocity-stress staggered-grid schemes. Three displacement finite-element schemes differ in integration: (1) Lobatto four-point, (2) Gauss four-point and (3) Gauss one-point. To compare schemes at the most fundamental level, and identify basic aspects responsible for their behaviours with the varying speed ratio, we analyse 2-D second-order schemes assuming an elastic homogeneous isotropic medium and a uniform grid. We compare structures of the schemes and applied FD approximations. We define (full) local errors in amplitude and polarization in one time step, and normalize them for a unit time. We present results of extensive numerical calculations for wide ranges of values of the speed ratio and a spatial sampling ratio, and the entire range of directions of propagation with respect to the spatial grid. The application of some schemes to real sedimentary basins in general requires considerably finer spatial sampling than usually applied. Consistency in approximating first spatial derivatives appears to be the key factor for the behaviour of a scheme with respect to the P-wave to S-wave speed ratio.

  9. Triplet pair amplitude in a trapped s -wave superfluid Fermi gas with broken spin rotation symmetry. II. Three-dimensional continuum case

    NASA Astrophysics Data System (ADS)

    Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji

    2016-10-01

    We extend our recent work [Y. Endo et al., Phys. Rev. A 92, 023610 (2015)], 10.1103/PhysRevA.92.023610 for a parity-mixing effect in a model of two-dimensional lattice fermions to a realistic three-dimensional ultracold Fermi gas. Including effects of broken local spatial inversion symmetry by a trap potential within the framework of the real-space Bogoliubov-de Gennes theory at T =0 , we point out that an odd-parity p -wave Cooper-pair amplitude is expected to have already been realized in previous experiments on an (even-parity) s -wave superfluid Fermi gas with spin imbalance. This indicates that when one suddenly changes the s -wave pairing interaction to an appropriate p -wave one by using a Feshbach technique in this case, a nonvanishing p -wave superfluid order parameter is immediately obtained, which is given by the product of the p -wave interaction and the p -wave pair amplitude that has already been induced in the spin-imbalanced s -wave superfluid Fermi gas. Thus, by definition, the system is in the p -wave superfluid state, at least just after this manipulation. Since the achievement of a p -wave superfluid state is one of the most exciting challenges in cold Fermi gas physics, our results may provide an alternative approach to this unconventional pairing state. In addition, since the parity-mixing effect cannot be explained as far as one deals with a trap potential in the local density approximation (LDA), it is considered as a crucial example which requires us to go beyond the LDA.

  10. S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.

    PubMed

    Villalobos-Escobar, Gina P; Castro, Raúl R

    2014-01-01

    We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S  = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.

  11. Scalar resonances in a unitary {pi}{pi} S-wave model for D{sup +} {r_arrow} {pi}{sup+}{pi}{sup-}{pi}{sup+}.

    SciTech Connect

    Boito, D. R.; Dedonder, J.-P.; El-Bennich, B.; Leitner, O.; Loiseau, B.; Physics; Univ. Autonoma de Barcelona; Univ. de Sao Paulo; Univ. Paris; Pl. Jussieu; Lab. Nazionali de Frascati

    2009-02-19

    We propose a model for D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f{sub 0}(600)/{sigma} and f{sub 0}(980). The weak decay amplitude for D{sup +} {yields} R{pi}{sup +}, where R is a resonance that subsequently decays into {pi}{sup +}{pi}{sup -}, is constructed in a factorization approach. In the S wave, we implement the strong decay R {yields} {pi}{sup +}{pi}{sup -} by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m{sub {pi}{pi}}{sup 2} from threshold to about 3 GeV{sup 2}. In order to reproduce the experimental Dalitz plot for D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +}, we include contributions beyond the S wave. For the P wave, dominated by the {rho}(770){sup 0}, we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f{sub 2}(1270) and {rho}(1450){sup 0}. The major achievement is a good reproduction of the experimental m{sub {pi}{pi}}{sup 2} distribution, and of the partial as well as the total D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D {yields} {sigma} transition form factor at q{sup 2} = m{sub {pi}}{sup 2}.

  12. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  13. Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in an s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuhiko; Higashi, Yoichi; Nakai, Noriyuki; Suematsu, Hisataka

    2013-01-01

    We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer-Pesch effect) in a single-band s-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the impurity effect inside a vortex core in the unitary limit is weaker than in the Born one when a system is in the moderately clean regime, which results in a stronger core shrinkage in the unitary limit than in the Born one.

  14. Visual Analytics 101

    SciTech Connect

    Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.

    2016-06-13

    This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics

  15. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena; Kozhevnikov, Vladimir; Melnikova, Valentina; Solovey, Oksana

    2016-12-01

    Correlations between seismicity, seismotectonic deformation (STD) field and velocity structure of the crust and the upper mantle in the Baikal rift and the adjacent areas of the Siberian platform and the Mongol-Okhotsk fold belt have been investigated. The 3D S-wave velocity structure up to the depths of 500 km has been modeled using a representative sample of Rayleigh wave group velocity dispersion curves (about 3200 paths) at periods from 10 to 250 s. The STD pattern has been reconstructed from mechanisms of large earthquakes, and is in good agreement with GPS and structural data. Analysis of the results has shown that most of large shallow earthquakes fall in regions of low S-wave velocities in the uppermost mantle (western Mongolia and areas of recent mountain building in southern Siberia) and in zones of their relatively high lateral variations (northeastern flank of the Baikal rift). In the first case the dominant STD regime is compression manifested in a mixture of thrust and strike-slip deformations. In the second case we observe a general predominance of extension.

  16. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Hu, Jiangping; Yuan, Jing

    2016-10-01

    Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1 g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high- T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high- T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high- T c superconductivity.

  17. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  18. ENVIRONMENTAL ANALYTICAL CHEMISTRY OF ...

    EPA Pesticide Factsheets

    Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosystems as well as their role in unplanned human exposure. The relationship between personal actions and the occurrence of PPCPs in the environment is clear-cut and comprehensible to the public. In this overview, we attempt to examine the separations aspect of the analytical approach to the vast array of potential analytes among this class of compounds. We also highlight the relationship between these compounds and endocrine disrupting compounds (EDCs) and between PPCPs and EDCs and the more traditional environmental analytes such as the persistent organic pollutants (POPs). Although the spectrum of chemical behavior extends from hydrophobic to hydrophilic, the current focus has shifted to moderately and highly polar analytes. Thus, emphasis on HPLC and LC/MS has grown and MS/MS has become a detection technique of choice with either electrospray ionization or atmospheric pressure chemical ionization. This contrasts markedly with the bench mark approach of capillary GC, GC/MS and electron ionization in traditional environmental analysis. The expansion of the analyte list has fostered new vigor in the development of environmental analytical chemistry, modernized the range of tools appli

  19. AN INVESTIGATION TO DOCUMENT MORROW RESERVOIRS THAT CAN BE BETTER DETECTED WITH SEISMIC SHEAR (S) WAVES THAN WITH COMPRESSIONAL (P) WAVES

    SciTech Connect

    Thomas Cottman

    2001-10-19

    Pennsylvanian-age Morrow reservoirs are a key component of a large fluvial-deltaic system that extends across portions of Colorado, Kansas, Oklahoma, and Texas. A problem that operators have to solve in some Morrow plays in this multi-state area is that many of the fluvial channels within the Morrow interval are invisible to seismic compressional (P) waves. This P-wave imaging problem forces operators in such situations to site infill, field-extension, and exploration wells without the aid of 3-D seismic technology. The objective of this project was to develop and demonstrate seismic technology that can improve drilling success in Morrow plays. Current P-wave technology commonly results in 80-percent of Morrow exploration wells not penetrating economic reservoir facies. Studies at Colorado School of Mines have shown that some of the Morrow channels that are elusive as P-wave targets create robust shear (S) wave reflections (Rampton, 1995). These findings caused Visos Energy to conclude that exploration and field development of Morrow prospects should be done by a combination of P-wave and S-wave seismic imaging. To obtain expanded information about the P and S reflectivity of Morrow facies, 9-component vertical seismic profile (9-C VSP) data were recorded at three locations along the Morrow trend. These data were processed to create P and S images of Morrow stratigraphy. These images were then analyzed to determine if S waves offer an alternative to P waves, or perhaps even an advantage over P waves, in imaging Morrow reservoir targets. The study areas where these field demonstrations were done are defined in Figure 1. Well A was in Sherman County, Texas; well B in Clark County, Kansas; and well C in Cheyenne County, Colorado. Technology demonstrated at these sites can be applied over a wide geographical area and influence operators across the multi-state region spanned by Morrow channel plays. The scope of the investigation described here is significant on the

  20. Temporal variation of the Rayleigh admittance: Implication for S-wave velocity changes in the toe of the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi

    2016-04-01

    A cabled seafloor network with 20 stations (DONET: Dense Oceanfloor Network System for Earthquake and Tsunamis) has been constructed on the accretionary prism at the Nankai subduction zone of Japan between March 2010 and August 2011, which means that the observation period became more than 4 years. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, we estimated the Rayleigh admittance at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement in the frequency band of microseisms, particularly for the fundamental Rayleigh mode of 0.1-0.2 Hz. The pattern of the transfer function depends on the S-wave velocity structure at shallow depths beneath stations (Ruan et al., 2014, JGR). Therefore, plotting the Rayleigh admittance as functions of time and frequency, we investigated temporal variations of S-wave velocity within the accretionary prism. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In the frequency domain, we smoothed the two kinds of spectra (displacement and pressure) with ±2 neighboring samples, and estimated the amplitude transfer function of displacement/pressure. Here, we used the ambient noise of the two records. To display their temporal variations, we plot the averaged transfer function with intervals of 7 days. As a result, we found a long-term temporal variation of the Rayleigh admittance at two stations. These stations are located at the southern part of the array and near the trench, where the activities of very-low frequency earthquakes (VLFEs) within the accretionary prism on 2004, 2009, and 2011 have been previously reported. The admittance at a frequency of 0.1 Hz has gradually decreased during the observation period, which

  1. The upper mantle structure of the central Rio Grande rift region from teleseismic P and S wave travel time delays and attenuation

    USGS Publications Warehouse

    Slack, P.D.; Davis, P.M.; Baldridge, W.S.; Olsen, K.H.; Glahn, A.; Achauer, U.; Spence, W.

    1996-01-01

    The lithosphere beneath a continental rift should be significantly modified due to extension. To image the lithosphere beneath the Rio Grande rift (RGR), we analyzed teleseismic travel time delays of both P and S wave arrivals and solved for the attenuation of P and S waves for four seismic experiments spanning the Rio Grande rift. Two tomographic inversions of the P wave travel time data are given: an Aki-Christofferson-Husebye (ACH) block model inversion and a downward projection inversion. The tomographic inversions reveal a NE-SW to NNE-SSW trending feature at depths of 35 to 145 km with a velocity reduction of 7 to 8% relative to mantle velocities beneath the Great Plains. This region correlates with the transition zone between the Colorado Plateau and the Rio Grande rift and is bounded on the NW by the Jemez lineament, a N52??E trending zone of late Miocene to Holocene volcanism. S wave delays plotted against P wave delays are fit with a straight line giving a slope of 3.0??0.4. This correlation and the absolute velocity reduction imply that temperatures in the lithosphere are close to the solidus, consistent with, but not requiring, the presence of partial melt in the mantle beneath the Rio Grande rift. The attenuation data could imply the presence of partial melt. We compare our results with other geophysical and geologic data. We propose that any north-south trending thermal (velocity) anomaly that may have existed in the upper mantle during earlier (Oligocene to late Miocene) phases of rifting and that may have correlated with the axis of the rift has diminished with time and has been overprinted with more recent structure. The anomalously low-velocity body presently underlying the transition zone between the core of the Colorado Plateau and the rift may reflect processes resulting from the modern (Pliocene to present) regional stress field (oriented WNW-ESE), possibly heralding future extension across the Jemez lineament and transition zone.

  2. Automatic Detection, and P- and S-wave Picking Algorithm: an application to the 2009 L'Aquila (Central Italy) earthquake sequence

    NASA Astrophysics Data System (ADS)

    Aldersons, F.; Chiaraluce, L.; di Stefano, R.; Piccinini, D.; Valoroso, L.

    2009-12-01

    In order to process the enormous amount of digital waveforms continuously recorded at permanent and temporary seismic stations in Italy as quickly as possible, we implemented a semi-automatic procedure in order to identify local earthquakes and to provide consistently-weighted P- and S-wave arrival times. Local earthquake detection is obtained by a STA/LTA ratio-based algorithm applied to 3-component seismograms from individual stations. A minimum of 4 triggered stations are required to declare a seismic event. This setting proves to be extremely effective to detect a very large number of very low magnitude earthquakes (ML>1.5) with a small number of false alarms. The automatic picking system Mannekenpix (Aldersons, 2004), originally working on vertical component data, has been improved to tackle 3-component data. In order to increase the reliability of P-wave and S-wave picking, the system is now virtually capable of discriminating P-wave samples and S-wave samples, among noise samples. This Identification is performed by a C5 decision tree (Quinlan, 1993) derived from training data. Five groups of predicting variables are included: Energy, Polarization, Spectral Power, Skewness and Kurtosis. In addition, the SEDSL algorithm (Magotra et al., 1989) is also used as a predictor. The picking procedure requires a preliminary calibration derived from a reference subset of high-quality manual picks. After calibration, the picking system is statistically able to mimic the picking by a human analyst and to provide consistent uncertainty estimates translated into picking weights. We illustrate very satisfying results of the successful automatic procedure showing P- and S-phase automatic readings for the L’Aquila sequence. These readings are fully comparable to those of a good human analyst allowing high quality earthquake locations of many low-magnitude events in an extremely short space of time. Within a day of continuous recordings, we obtain around 2600 triggers, 75

  3. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  4. Competing on talent analytics.

    PubMed

    Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy

    2010-10-01

    Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.

  5. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part A: Interval Logs

    SciTech Connect

    Steller, Robert; Diehl, John

    2007-02-01

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohay serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.

  6. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  7. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd2As2: 75As NMR-NQR measurements

    NASA Astrophysics Data System (ADS)

    Ding, Q.-P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-01

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T ) dependence of the nuclear spin lattice relaxation rates (1 /T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1 /T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T , confirming a conventional s -wave SC. In addition, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  8. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays

    PubMed Central

    Lin, Cheng-Horng

    2016-01-01

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km3. The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017–2020. PMID:28008931

  9. Enhanced zero-bias conductance peak and splitting at mesoscopic interfaces between an s-wave superconductor and a 3D Dirac semimetal

    NASA Astrophysics Data System (ADS)

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Thakur, Gohil S.; Ganguli, Ashok K.; Sheet, Goutam

    2016-12-01

    Mesoscopic point contacts between elemental metals and the topological 3D Dirac semimetal Cd3As2 have been recently shown to be superconducting with unconventional pairing while Cd3As2 itself does not superconduct. Here we show that the same superconducting phase at mesoscopic interfaces on Cd3As2 can be induced with a known conventional superconductor Nb where a pronounced zero-bias conductance peak is observed which undergoes splitting in energy under certain conditions. The observations are consistent with the theory of the emergence of Andreev bound states due to the presence of a pair potential with broken time reversal symmetry. The data also indicate the possibility of Majorana bound states as expected at the interfaces between s-wave superconductors and topologically non-trivial materials with a high degree of spin-orbit coupling.

  10. S-wave Approach for \\varvec{nnp} and \\varvec{ppn} Systems with Phenomenological Correction for Singlet \\varvec{NN} Potentials

    NASA Astrophysics Data System (ADS)

    Vlahovic, B.; Suslov, V. M.; Filikhin, I.

    2017-03-01

    Three-nucleon systems are considered assuming the neutrons and protons to be distinguishable particles. The configuration space Faddeev equations within the s-wave approach are applied for studying bound state and scattering problems. The phenomenological Malfliet-Tjon MT I-III and Afnan-Tang ATS3 NN potentials are used with scaling factors chosen to reproduce the singlet nn, pp and np experimental scattering lengths. Numerical evaluation for the charge symmetry breaking energy is found to be about 50 keV for ^3H and ^3He nuclei. To determine any effects related to the nn ( pp) and np potential differences, the nd and pd breakup scattering calculations were performed at E_{lab}=4.0 and 14.1 MeV. We found the effects due to potential differences are small but noticeable. We discuss the dependence of calculated inelasticities and phase-shifts with respect to the chosen value for cutoff radius.

  11. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    SciTech Connect

    Ann R. Dallman; Neary, Vincent S.

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  12. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays.

    PubMed

    Lin, Cheng-Horng

    2016-12-23

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km(3). The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.

  13. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Horng

    2016-12-01

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km3. The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017–2020.

  14. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGES

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; ...

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  15. Monitoring the analytic surface.

    PubMed

    Spence, D P; Mayes, L C; Dahl, H

    1994-01-01

    How do we listen during an analytic hour? Systematic analysis of the speech patterns of one patient (Mrs. C.) strongly suggests that the clustering of shared pronouns (e.g., you/me) represents an important aspect of the analytic surface, preconsciously sensed by the analyst and used by him to determine when to intervene. Sensitivity to these patterns increases over the course of treatment, and in a final block of 10 hours shows a striking degree of contingent responsivity: specific utterances by the patient are consistently echoed by the analyst's interventions.

  16. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  17. Mantle Composition and Temperature of Western North America Revealed from Direct P and S Wave Velocities of KLB-1 Peridotite to the Condition of Transition Zone

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chen, T.; Qi, X.; Zou, Y.; Liebermann, R. C.; Li, B.

    2015-12-01

    Comparing the elasticity of candidate compositional models with seismic profiles (e.g., PREM and AK135) is one of the most important geophysical approaches to constrain the mineralogical composition of the mantle. However in such averaging schemes (e.g., Voigt-Reuss-Hill), it is difficult to take into account all of the mineralogical and chemical complexities; we therefore undertook elasticity study of a natural mantle rock sample at high pressures and temperatures. In this study, a series of polycrystalline aggregates of peridotite KLB-1 (from Kilbourne Hole, New Mexico) were hot-pressed at pressures of 3-15 GPa and temperatures of 1200-1400°C. Scanning electron microscopy (SEM), Electron Microprobe Analysis (EPMA) and X-ray diffraction (XRD) were used to characterize the texture, grain size, and composition of these well-sintered specimens. For the first time in history, the P and S wave velocities of a pyrolitic multiphase aggregate were directly measured at mantle transition zone pressures and temperatures using ultrasonic interferometry. Based on the phase fractions from EPMA and the P and S wave velocities from in situ measurement at high pressure and high temperature, the velocities of the KLB-1 peridotite along 1200-1400 oC adiabatic mantle geotherms were obtained and compare well with the seismic models of western North America, the region where these peridotite KLB-1 samples were collected. The comparison with regional seismic models of western North America (e.g., GCA and TNA/TNA2) as well as global seismic models (PREM and AK135) place unprecedented constraints on the composition, temperature and density profiles for the upper mantle in this region, which can help us understand the nature of thermal and tectonic processes of the Rio Grande Rift.

  18. Analytical Services Management System

    SciTech Connect

    Church, Shane; Nigbor, Mike; Hillman, Daniel

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.

  19. Analytics: Changing the Conversation

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2013-01-01

    In this third and concluding discussion on analytics, the author notes that we live in an information culture. We are accustomed to having information instantly available and accessible, along with feedback and recommendations. We want to know what people think and like (or dislike). We want to know how we compare with "others like me."…

  20. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  1. Social Learning Analytics

    ERIC Educational Resources Information Center

    Buckingham Shum, Simon; Ferguson, Rebecca

    2012-01-01

    We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…

  2. Raman-scattering measurements and theory of the energy-momentum spectrum for underdoped Bi2Sr2CaCuO(8+δ) superconductors: evidence of an s-wave structure for the pseudogap.

    PubMed

    Sakai, S; Blanc, S; Civelli, M; Gallais, Y; Cazayous, M; Méasson, M-A; Wen, J S; Xu, Z J; Gu, G D; Sangiovanni, G; Motome, Y; Held, K; Sacuto, A; Georges, A; Imada, M

    2013-09-06

    We reveal the full energy-momentum structure of the pseudogap of underdoped high-Tc cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B2g Raman response at finite energies in terms of a pseudogap appearing in the single-electron excitation spectra above the Fermi level in the nodal direction of momentum space. This result suggests an s-wave pseudogap (which never closes in the energy-momentum space), distinct from the d-wave superconducting gap. Recent tunneling and photoemission experiments on underdoped cuprates also find a natural explanation within the s-wave pseudogap scenario.

  3. Requirements for Predictive Analytics

    SciTech Connect

    Troy Hiltbrand

    2012-03-01

    It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

  4. Multifunctional nanoparticles: analytical prospects.

    PubMed

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  5. Avatars in Analytical Gaming

    SciTech Connect

    Cowell, Andrew J.; Cowell, Amanda K.

    2009-08-29

    This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

  6. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  7. Ultrasound in analytical chemistry.

    PubMed

    Priego Capote, F; Luque de Castro, M D

    2007-01-01

    Ultrasound is a type of energy which can help analytical chemists in almost all their laboratory tasks, from cleaning to detection. A generic view of the different steps which can be assisted by ultrasound is given here. These steps include preliminary operations usually not considered in most analytical methods (e.g. cleaning, degassing, and atomization), sample preparation being the main area of application. In sample preparation ultrasound is used to assist solid-sample treatment (e.g. digestion, leaching, slurry formation) and liquid-sample preparation (e.g. liquid-liquid extraction, emulsification, homogenization) or to promote heterogeneous sample treatment (e.g. filtration, aggregation, dissolution of solids, crystallization, precipitation, defoaming, degassing). Detection techniques based on use of ultrasonic radiation, the principles on which they are based, responses, and the quantities measured are also discussed.

  8. Analytic Modeling of Insurgencies

    DTIC Science & Technology

    2014-08-01

    influenced by interests and utilities. 4.1 Carrots and Sticks An analytic model that captures the aforementioned utilitarian aspect is presented in... carrots ” x. A dynamic utility-based model is developed in [26] in which the state variables are the fractions of contrarians (supporters of the...Unanticipated Political Revolution," Public Choice, vol. 61, pp. 41-74, 1989. [26] M. P. Atkinson, M. Kress and R. Szechtman, " Carrots , Sticks and Fog

  9. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  10. Competing on analytics.

    PubMed

    Davenport, Thomas H

    2006-01-01

    We all know the power of the killer app. It's not just a support tool; it's a strategic weapon. Companies questing for killer apps generally focus all their firepower on the one area that promises to create the greatest competitive advantage. But a new breed of organization has upped the stakes: Amazon, Harrah's, Capital One, and the Boston Red Sox have all dominated their fields by deploying industrial-strength analytics across a wide variety of activities. At a time when firms in many industries offer similar products and use comparable technologies, business processes are among the few remaining points of differentiation--and analytics competitors wring every last drop of value from those processes. Employees hired for their expertise with numbers or trained to recognize their importance are armed with the best evidence and the best quantitative tools. As a result, they make the best decisions. In companies that compete on analytics, senior executives make it clear--from the top down--that analytics is central to strategy. Such organizations launch multiple initiatives involving complex data and statistical analysis, and quantitative activity is managed atthe enterprise (not departmental) level. In this article, professor Thomas H. Davenport lays out the characteristics and practices of these statistical masters and describes some of the very substantial changes other companies must undergo in order to compete on quantitative turf. As one would expect, the transformation requires a significant investment in technology, the accumulation of massive stores of data, and the formulation of company-wide strategies for managing the data. But, at least as important, it also requires executives' vocal, unswerving commitment and willingness to change the way employees think, work, and are treated.

  11. Fabricating Cotton Analytical Devices.

    PubMed

    Lin, Shang-Chi; Hsu, Min-Yen; Kuan, Chen-Meng; Tseng, Fan-Gang; Cheng, Chao-Min

    2016-08-30

    A robust, low-cost analytical device should be user-friendly, rapid, and affordable. Such devices should also be able to operate with scarce samples and provide information for follow-up treatment. Here, we demonstrate the development of a cotton-based urinalysis (i.e., nitrite, total protein, and urobilinogen assays) analytical device that employs a lateral flow-based format, and is inexpensive, easily fabricated, rapid, and can be used to conduct multiple tests without cross-contamination worries. Cotton is composed of cellulose fibers with natural absorptive properties that can be leveraged for flow-based analysis. The simple but elegant fabrication process of our cotton-based analytical device is described in this study. The arrangement of the cotton structure and test pad takes advantage of the hydrophobicity and absorptive strength of each material. Because of these physical characteristics, colorimetric results can persistently adhere to the test pad. This device enables physicians to receive clinical information in a timely manner and shows great potential as a tool for early intervention.

  12. Anisotropic feature inferred from receiver functions and S-wave splitting in and around the high strain rate zone, central Japan

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Takeda, T.; Sekiguchi, S.

    2012-12-01

    By the recent dense GPS observation, the high strain rate zone (HSRZ) crossing the central Japan was discovered. In the HSRZ, E-W compressive stress field is observed, and large earthquakes with M>6 are frequently occurred. In this study, we try to reveal depth-dependent anisotropic feature in this region by using teleseismic receiver functions (RFs) and S-wave splitting information. As a target, we select NIED Hi-net stations N.TGWH and N.TSTH, which are located inside and outside of the HSRZ respectively. For RF analysis, we choose M>5.5 teleseismic events from October 2000 to November 2011. Low-pass filters with fc = 1 and 2 Hz are applied to estimate RFs. In the radial RFs, we find clear positive phase arrivals at 4 to 4.5 s in delay time for both stations. Since this time delay corresponds to 35 km-depth velocity discontinuity existence, these phases may be the converted phases generated at the Moho discontinuity. Seeing the back-azimuth paste-ups of the transverse RFs, we can find polarity changes of later phases at 4 to 4.5 s in delay time at the N.TSTH station. This polarity change occurs for direction of N0E (north), N180E (south), and N270E (west). Although we have no data in N90E (east) direction, this feature implies that anisotropic rocks may exist around the Moho. In order to check this feature, we consider 6-layered subsurface model and compare synthetic RFs with the observation. The first three layers are for thick sediments and upper crust including a dipping velocity interface. The fourth, fifth and sixth layer corresponds to the mid crust, lower crust and uppermost mantle, respectively. The best model infers that the mid- and lower-crust beneath the N.TSTH station should have strong anisotropy whose fast axis directs to the N-S, though the fast axis in the uppermost mantle seems to show E-W direction. Moreover, to explain the observation, the symmetric axes in the lower crust and the uppermost mantle should be dipping about 20 degrees. To check

  13. P and S wave velocity measurements on sediments from the hanging-wall of megasplay fault, NantroSEIZE Stage 1

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M. W.

    2010-12-01

    The evolution of elastic moduli in an accretionary prism setting provides insight into diagenetic and strengthening processes related to mechanical porosity decrease, cementation, strain history, and fluid release. Variability within the accretionary complex and along the decollement may have implications for wedge geometry, fluid migration, and seismogenesis. In this study, we describe the results of laboratory measurements of P-wave and S-wave velocities through sediments obtained from Sites C0001, C0002 and C0004. All sites are located in the hanging wall of the Mega-splay fault in the Nankai accretionary prism. We also made textural observations to examine the relationship between acoustic properties and textures, both within core samples and in the context of core-log-seismic integration. Our measurement procedure is as follows: Pore fluid pressure of 500kPa was applied and confining pressure was changed to control the effective pressure. The maximum effective pressure was estimated for each sample from the accumulation of the bulk density of sediments and hydrostatic pore fluid pressure at the depth of recovery. 1MHz Lead Zirconate Titanate (PZT) shear wave transducers are used in a source-receiver pair to measure wavespeed. PZT in a shear orientation generates a weak compressional mode in addition to its primary shear mode. This allowed us to identify P and S-wave arrivals in each test. The error can be as large as ~2 µs (about 5% error). Porosities are corrected to remove smectite effects from the on-board measured porosity. Porosity ranges ~0.6 - ~0.45, ~0.37 - ~0.27, and ~0.47 - ~0.39 for Site C0001, C0002, and C0004, respectively. P-wave velocity covered ~1630 km/s - 1990 km/s, ~2010 km/s - ~2370 km/s, and ~1700 km/s - ~2200 km/s for Site C0001, C0002 and Site C0004, respectively. S-wave velocity ranges from ~720 - ~950 m/s for Site C0002 samples and from ~650 - ~940 m/s for Site C0004. The Vp/Vs ratio ranged from ~2.4 - ~2.7 for Site C0002 and from ~2

  14. A compendium of P- and S-wave velocities from surface-to-borehole logging; summary and reanalysis of previously published data and analysis of unpublished data

    USGS Publications Warehouse

    Boore, David M.

    2003-01-01

    For over 28 years, the U.S. Geological Survey (USGS) has been acquiring seismic velocity and geologic data at a number of locations in California, many of which were chosen because strong ground motions from earthquakes were recorded at the sites. The method for all measurements involves picking first arrivals of P- and S-waves from a surface source recorded at various depths in a borehole (as opposed to noninvasive methods, such as the SASW method [e.g., Brown et al., 2002]). The results from most of the sites are contained in a series of U.S. Geological Survey Open-File Reports (see References). Until now, none of the results have been available as computer files, and before 1992 the interpretation of the arrival times was in terms of piecemeal interval velocities, with no attempt to derive a layered model that would fit the travel times in an overall sense (the one exception is Porcella, 1984). In this report I reanalyze all of the arrival times in terms of layered models for P- and for S-wave velocities at each site, and I provide the results as computer files. In addition to the measurements reported in the open-file reports, I also include some borehole results from other reports, as well as some results never before published. I include data for 277 boreholes (at the time of this writing; more will be added to the web site as they are obtained), all in California (I have data from boreholes in Washington and Utah, but these will be published separately). I am also in the process of interpreting travel time data obtained using a seismic cone penetrometer at hundreds of sites; these data can be interpreted in the same way of those obtained from surface-to-borehole logging. When available, the data will be added to the web site (see below for information on obtaining data from the World Wide Web (WWW)). In addition to the basic borehole data and results, I provide information concerning strong-motion stations that I judge to be close enough to the boreholes

  15. Estimation of shallow S-wave velocity structure using microtremor array exploration at temporary strong motion observation stations for aftershocks of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Chimoto, Kosuke; Yamanaka, Hiroaki; Tsuno, Seiji; Miyake, Hiroe; Yamada, Nobuyuki

    2016-12-01

    Shallow S-wave velocity V S profiles were estimated for 26 temporary strong motion observation sites surrounding the epicenters of a sequence of the 2016 Kumamoto earthquake. The microtremor array method was used to gather the dispersion characteristics of Rayleigh waves. V S profiles were obtained by inverting the dispersion curves for each site and those of three permanent strong motion stations that recorded the sequence of seismic events. The shallow V S profiles near two of the permanent strong motion stations in the town of Mashiki were almost identical. However, the V S profiles at other stations varied. The V S profiles were found to have the common feature of the uppermost low-velocity layer being widely distributed from Mashiki to the village of Minami-Aso, and it was especially thick in the areas that suffered heavy damage. This low-velocity layer was a major contributor to the site amplification. The horizontal-to-vertical spectral ratios of the microtremors indicate that both the shallow soil and deep sedimentary layers may control the site response characteristics over a broad frequency range.[Figure not available: see fulltext.

  16. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s -wave dark matter annihilation from Planck results

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter feff⟨σ v ⟩/mχ. Using new results (paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide feff values for photons and e+e- pairs injected at keV-TeV energies; the feff value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck collaboration to be applied to arbitrary dark matter models with s -wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard.edu/epsilon.

  17. Determination of the S-Wave Pi Pi Scattering Lengths From a Study of K - to Pi - Pi0 Pi0 Decays

    SciTech Connect

    Batley, J.R.; Culling, A.J.; Kalmus, G.; Lazzeroni, C.; Munday, D.J.; Slater, M.W.; Wotton, S.A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; /CERN /Dubna, JINR /Pisa, Scuola Normale Superiore /Dubna, JINR /Dubna, JINR /Birmingham U. /Dubna, JINR /CERN /Dubna, JINR /Dubna, JINR /Sofiya U. /Dubna, JINR /Dubna, JINR /Dubna, JINR /INFN, Perugia /Dubna, JINR /Dubna, JINR /Northwestern U. /Dubna, JINR /Chicago U., EFI /Marseille, CPPM /Chicago U., EFI /Edinburgh U. /George Mason U. /Edinburgh U. /Ferrara U. /INFN, Ferrara /Florence U. /INFN, Florence /Florence U. /INFN, Florence /Pisa, Scuola Normale Superiore /INFN, Florence /Modena U. /INFN, Florence /INFN, Florence /Urbino U. /INFN, Florence /Mainz U., Inst. Phys. /Bonn U. /Mainz U., Inst. Phys. /Northwestern U. /SLAC /Northwestern U. /Northwestern U. /Royal Holloway, U. of London /Northwestern U. /Northwestern U. /UCLA /Perugia U. /INFN, Perugia /Frascati /Perugia U. /INFN, Perugia /INFN, Perugia /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Barcelona, IFAE /Pisa U. /INFN, Pisa /DSM, DAPNIA, Saclay /DSM, DAPNIA, Saclay /CERN /DSM, DAPNIA, Saclay /Siegen U. /INFN, Turin /Turin U. /INFN, Turin /Bern U. /Turin U. /INFN, Turin /CERN /Turin U. /INFN, Turin /Madrid, CIEMAT /Vienna, OAW

    2012-03-29

    We report the results from a study of the full sample of {approx}6.031 x 10{sup 7} K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} decays recorded by the NA48/2 experiment at the CERN SPS. As first observed in this experiment, the {pi}{sup 0}{pi}{sup 0} invariant mass (M{sub 00}) distribution shows a cusp-like anomaly in the region around M{sub 00} = 2m{sub +}, where m{sub +} is the charged pion mass. This anomaly has been interpreted as an effect due mainly to the final state charge exchange scattering process {pi}{sup +}{pi}{sup -} {yields} {pi}{sup 0}{pi}{sup 0} in K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup +}{pi}{sup -} decay. Fits to the M{sub 00} distribution using two different theoretical formulations provide the presently most precise determination of a{sub 0} - a{sub 2}, the difference between the {pi}{pi} S-wave scattering lengths in the isospin I = 0 and I = 2 states. Higher-order {pi}{pi} rescattering terms, included in the two formulations, allow also an independent, though less precise, determination of a{sub 2}.

  18. Measurement of the I=1/2 Kπ S -wave amplitude from Dalitz plot analyses of ηc→KK¯π in two-photon interactions

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2016-01-20

    Here we study the processes γγ→Kmore » $$0\\atop{S}$$K±π∓ and γγ→K+K-π0 using a data sample of 519 fb-1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e- collider at center-of-mass energies at and near the Υ(nS) (n=2, 3, 4) resonances. We observe ηc decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the I=1/2 Kπ S-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behavior for the phase up to a mass of 1.5 GeV/c2. In contrast, the amplitudes show very marked differences. Lastly, the data require the presence of a new a0(1950) resonance with parameters m=1931±14±22 MeV/c2 and Γ=271±22±29 MeV.« less

  19. A Simultaneous Multi-phase Approach to Determine P-wave and S-wave Attenuation of the Crust and Upper Mantle

    SciTech Connect

    Pasyanos, M E; Walter, W R; Matzel, E M

    2009-02-26

    We have generalized the methodology of our regional amplitude tomography from the Lg phase to the four primary regional phases (Pn, Pg, Sn, Lg). Differences in the geometrical spreading, source term, site term, and travel paths are accounted for, while event source parameters such as seismic moment are consistent among phases. In the process, we have developed the first regional attenuation model that uses the amplitudes of four regional phases to determine a comprehensive P-wave and S-wave attenuation model of the crust and upper mantle. When applied to an area encompassing the Middle East, eastern Europe, western Asia, south Asia, and northeast Africa for the 1-2 Hz passband, we find large differences in the attenuation of the lithosphere across the region. The tectonic Tethys collision zone has high attenuation, while stable outlying regions have low attenuation. While crust and mantle Q variations are often consistent, we do find several notable areas where they differ considerably, but are appropriate given the region's tectonic history. Lastly, the relative values of Qp and Qs indicate that scattering Q is likely the dominant source of attenuation in the crust at these frequencies.

  20. Stress-induced spatiotemporal variations in anisotropic structures beneath Hakone volcano, Japan, detected by S wave splitting: A tool for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Honda, Ryou; Yukutake, Yohei; Yoshida, Akio; Harada, Masatake; Miyaoka, Kazuki; Satomura, Mikio

    2014-09-01

    Hakone volcano, located at the northern tip of the Izu-Mariana volcanic arc, Japan, has a large caldera structure containing numerous volcanic hot springs. Earthquake swarms have occurred repeatedly within the caldera. The largest seismic swarm since the commencement of modern seismic observations (in 1968) occurred in 2001. We investigated the anisotropic structure of Hakone volcano based on S wave splitting analysis and found spatiotemporal changes in the splitting parameters accompanying the seismic swarm activity. Depth-dependent anisotropic structures are clearly observed. A highly anisotropic layer with a thickness of ~1.5 km is located beneath the Koziri (KZR) and Kozukayama (KZY) stations. The anisotropic intensity in the region reaches a maximum of 6-7% at a depth of 1 km and decreases markedly to less than 1% at a depth of 2 km. The anisotropic intensity beneath Komagatake station (KOM) decreases gradually from a maximum of 6% at the surface to 0% at a depth of 5 km but is still greater than 2.5% at a depth of 3 km. At KZY, the anisotropic intensity along a travel path of which the back azimuth was the south decreased noticeably after the 2001 seismic swarm activity. During the swarm activity, tilt meters and GPS recorded the crustal deformation. The observed decrease in anisotropic intensity is presumed to be caused by the closing of microcracks by stress changes accompanying crustal deformation near the travel path.

  1. Probe-type of superconductivity by impurity in materials with short coherence length: the s-wave and η-wave phases study

    NASA Astrophysics Data System (ADS)

    Ptok, Andrzej; Jerzy Kapcia, Konrad

    2015-04-01

    The effects of a single non-magnetic impurity on superconducting states in the Penson-Kolb-Hubbard model have been analyzed. The investigations have been performed within the Hartree-Fock mean field approximation in two steps: (i) the homogeneous system is analysed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.

  2. Theoretical and numerical comparison of 3D numerical schemes for their accuracy with respect to P-wave to S-wave speed ratio

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Chen, X.; Zhang, Z.

    2012-04-01

    Numerical modeling of earthquake ground motion in sedimentary basins and valleys often has to account for the P-wave to S-wave speed ratios (VP/VS) as large as five and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 - the unconsolidated lake sediments in Ciudad de México are a good example. At the same time, accuracy of the numerical schemes with respect to VP/VS has not been sufficiently analyzed. The numerical schemes are often applied without adequate check of the accuracy. We present theoretical analysis and numerical comparison of 18 3D numerical time-domain explicit schemes for modeling seismic motion for their accuracy with the varying VP/VS. The schemes are based on the finite-difference, spectral-element, finite-element and discontinuous-Galerkin methods. All schemes are presented in a unified form. Theoretical analysis compares accuracy of the schemes in terms of local errors in amplitude and vector difference. In addition to the analysis we compare numerically simulated seismograms with exact solutions for canonical configurations. We compare accuracy of the schemes in terms of the local errors, grid dispersion and full wavefield simulations with respect to the structure of the numerical schemes.

  3. Petrophysical approach for S-wave velocity prediction based on brittleness index and total organic carbon of shale gas reservoir: A case study from Horn River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung

    2017-01-01

    When finding the "sweet spot" of a shale gas reservoir, it is essential to estimate the brittleness index (BI) and total organic carbon (TOC) of the formation. Particularly, the BI is one of the key factors in determining the crack propagation and crushing efficiency for hydraulic fracturing. There are several methods for estimating the BI of a formation, but most of them are empirical equations that are specific to particular rock types. We estimated the mineralogical BI based on elemental capture spectroscopy (ECS) log and elastic BI based on well log data, and we propose a new method for predicting S-wave velocity (VS) using mineralogical BI and elastic BI. The TOC is related to the gas content of shale gas reservoirs. Since it is difficult to perform core analysis for all intervals of shale gas reservoirs, we make empirical equations for the Horn River Basin, Canada, as well as TOC log using a linear relation between core-tested TOC and well log data. In addition, two empirical equations have been suggested for VS prediction based on density and gamma ray log used for TOC analysis. By applying the empirical equations proposed from the perspective of BI and TOC to another well log data and then comparing predicted VS log with real VS log, the validity of empirical equations suggested in this paper has been tested.

  4. MERRA Analytic Services

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  5. Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross Section Near Threshold in e(+)e(-) Annihilation.

    PubMed

    Beneke, Martin; Kiyo, Yuichiro; Marquard, Peter; Penin, Alexander; Piclum, Jan; Steinhauser, Matthias

    2015-11-06

    We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.

  6. Quality Indicators for Learning Analytics

    ERIC Educational Resources Information Center

    Scheffel, Maren; Drachsler, Hendrik; Stoyanov, Slavi; Specht, Marcus

    2014-01-01

    This article proposes a framework of quality indicators for learning analytics that aims to standardise the evaluation of learning analytics tools and to provide a mean to capture evidence for the impact of learning analytics on educational practices in a standardised manner. The criteria of the framework and its quality indicators are based on…

  7. Learning Analytics: Readiness and Rewards

    ERIC Educational Resources Information Center

    Friesen, Norm

    2013-01-01

    This position paper introduces the relatively new field of learning analytics, first by considering the relevant meanings of both "learning" and "analytics," and then by looking at two main levels at which learning analytics can be or has been implemented in educational organizations. Although integrated turnkey systems or…

  8. The analytic renormalization group

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2016-08-01

    Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2 πk / β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct "Analytic Renormalization Group" linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk | < μ (with the possible exception of the zero mode G0), together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk | ≥ μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

  9. Analytic pion form factor

    NASA Astrophysics Data System (ADS)

    Lomon, Earle L.; Pacetti, Simone

    2016-09-01

    The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of timelike data. The description of high-q2 data, in the timelike region, requires one more meson with ρ quantum numbers than listed in the 2014 Particle Data Group review.

  10. VERDE Analytic Modules

    SciTech Connect

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates served within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.

  11. Normality in Analytical Psychology

    PubMed Central

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  12. [Analytical epidemiology of urolithiasis].

    PubMed

    Kodama, H; Ohno, Y

    1989-06-01

    In this paper, urolithiasis is reviewed from the standpoint of analytical epidemiology, which examines a statistical association between a given disease and a hypothesized factor with an aim of inferring its causality. Factors incriminated epidemiologically for stone formation include age, sex, occupation, social class (level of affluence), season of the year and climate, dietary and fluid intake and genetic prodisposition. Since some of these factors are interlinked, they are broadly classified into five categories and epidemiologically looked over here. Genetic predisposition is essentially endorsed by the more frequent episodes of stone formation in the family members of stone formers, as compared to non-stone formers. Nevertheless, some environmental factors (likely to be dietary habits) shared by family members are believed to be relatively more important than genetic predisposition. A hot, sunny climate may influence stone formation through inducing dehydration with increased perspiration and increased solute concentration with decreased urine volume, coupled with inadequate liquid intake, and possibly through the greater exposure to ultraviolet radiation which eventually results in an increased vitamin D production, conceivably correlated with seasonal variation in calcium and oxalate excretion to the urine. Urinary tract infections are importantly involved in the formation of magnesium ammonium phosphate stones in particular. The association with regional water hardness is still in controversy. Excessive intake of coffee, tea and alcoholic beverages seemingly increase the risk of renal calculi, though not consistently confirmed. Many dietary elements have been suggested by numerous clinical and experimental investigations, but a few elements are substantiated by analytical epidemiological investigations. An increased ingestion of animal protein and sugar and a decreased ingestion of dietary fiber and green-yellow vegetables are linked with the higher

  13. Aftershock Observation of the 2014 South Napa Earthquake and Shallow S-wave Velocity Structure Obtained by Passive Surface Wave Method at Three Sites

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Roughley, C.; Craig, M. S.

    2014-12-01

    A M6.0 earthquake occurred in South Napa County on August 24, 2014. We recorded aftershocks and conducted S-wave velocity (VS) surveys using a passive surface method at three sites in Napa.On the day of the earthquake, we confirmed surface rupture for at least 5 km. Seismographs were deployed at three locations the day after the mainshock; on east side of Napa Valley (CSUEB-3), the west side (CSUEB-2), and at Stone Bridge School (CSUEB-1 SBS), which is located directly on the line of surface rupture (Fig. 1). The seismographs recorded continuous data for two weeks. At least 60 aftershocks with magnitudes between 1.0 and 3.9 were recorded. Preliminary analysis indicates a difference in local amplification of horizontal ground motion for 1-5 Hz, with amplitudes on the west side of Napa Valley larger than those on the east side. A passive surface wave survey using the two-station spatial autocorrelation (2ST-SPAC) method was conducted at each of the aftershock observation sites. At each site, one seismograph was established at a fixed location and recorded ambient noise for the duration of the survey. A second seismograph was placed at a series of different locations, with the distance from the fixed station ranging from 5 to 40 m. At each measurement location, ambient noise was recorded for intervals ranging from 5 to 20 minutes using a 10 ms sample rate, for a total of approximately one hour of data acquisition per site. The vertical component of ambient noise was used in the SPAC analysis to calculate phase velocity. Fig. 2 shows a VS profile at Stone Bridge School (CSUEB-1), which consists of two layers; the first with VS of about 150 m/sec and the second with VS of 400-500 m/sec. Depth to the second layer is about 20 m.

  14. Surface electronic structure and evidence of plain s -wave superconductivity in (L i0.8F e0.2)OHFeSe

    NASA Astrophysics Data System (ADS)

    Yan, Y. J.; Zhang, W. H.; Ren, M. Q.; Liu, X.; Lu, X. F.; Wang, N. Z.; Niu, X. H.; Fan, Q.; Miao, J.; Tao, R.; Xie, B. P.; Chen, X. H.; Zhang, T.; Feng, D. L.

    2016-10-01

    (L i0.8F e0.2)OHFeSe is a newly discovered intercalated iron-selenide superconductor with a Tc above 40 K, which is much higher than the Tc of bulk FeSe (8 K). Here we report a systematic study of (L i0.8F e0.2)OHFeSe by low temperature scanning tunneling microscopy (STM). We observed two kinds of surface terminations, namely FeSe and (L i0.8F e0.2)OH surfaces. On the FeSe surface, the superconducting state is fully gapped with double coherence peaks, and a vortex core state with split peaks near EF is observed. Through quasiparticle interference (QPI) measurements, we clearly observed intra- and interpocket scatterings in between the electron pockets at the M point, as well as some evidence of scattering that connects Γ and M points. Upon applying the magnetic field, the QPI intensity of all the scattering channels are found to behave similarly. Furthermore, we studied impurity effects on the superconductivity by investigating intentionally introduced impurities and intrinsic defects. We observed that magnetic impurities such as Cr adatoms can induce in-gap states and suppress superconductivity. However, nonmagnetic impurities such as Zn adatoms do not induce visible in-gap states. Meanwhile, we show that Zn adatoms can induce in-gap states in thick FeSe films, which is believed to have an s±-wave pairing symmetry. Our experimental results suggest it is likely that (L i0.8F e0.2)OHFeSe is a plain s -wave superconductor, whose order parameter has the same sign on all Fermi surface sections.

  15. S-wave velocities and anisotropy of typical rocks from Yunkai metamorphic complex and constraints on the composition of the crust beneath Southern China

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Wang, Qian; Shao, Tongbin; Endo, Hiroto; Michibayashi, Katsuyoshi; Salisbury, Matthew H.

    2016-08-01

    In order to constrain the interpretation of seismic data from receiver functions and deep profiles of the crust beneath southern China (Cathaysia and Yangtze blocks), we have measured S-wave velocities (Vs) and splitting as a function of hydrostatic confining pressure up to 650 MPa for 22 representative samples (i.e., granite, diorite, felsic gneiss and mylonite, amphibolite, schist, and marble) from the Yunkai metamorphic complex (China) that represent the crystalline basement beneath the region. The experimental data were combined with electron backscattering diffraction (EBSD) analysis of rock-forming minerals to constrain variations of Vp/Vs ratios and understand the origin of seismic anisotropy. The crusts beneath the Yangtze and Cathaysia blocks have different average thicknesses (H = 35.4 ± 6.3 km and 29.8 ± 1.8 km, respectively) but display almost the same Vp/Vs values (1.73 ± 0.08 and 1.74 ± 0.04, respectively). These ratios correspond to an average of bimodally distributed granitic and gabbroic lithologies which are dominant, respectively, in the upper and lower crusts, instead a homogeneous andesitic composition of the overall crust. Positive and negative correlations between H and Vp/Vs occur in west and east parts of southern China, respectively. The negative correlation indicates basaltic underplating from a partially molten mantle wedge above the subducting Pacific plate into the southern China crust, whereas the positive correlation implies that much larger thinning strain has taken place in the high temperature mafic lower crust (high temperature) than in the low temperature felsic upper crust during Mesozoic-Cenozoic tectonic extension.

  16. Finite frequency effects on apparent S-wave splitting in the D″ layer: comparison between ray theory and full-wave synthetics

    NASA Astrophysics Data System (ADS)

    Borgeaud, Anselme F. E.; Konishi, Kensuke; Kawai, Kenji; Geller, Robert J.

    2016-10-01

    We conduct a numerical experiment to investigate potential bias in measurements of S-wave splitting (apparent differences between the arrival times of SH and SV phases) for waves propagating close to the core-mantle boundary (CMB) in the D″ layer. The bias is defined as the discrepancy between shear wave splitting measured from finite frequency synthetic seismograms (`apparent splitting') and the splitting predicted by ray theory, which is a high-frequency approximation. For simple isotropic models, we find biases which are typically between 0.5 and 4 s, depending on the model, the Q structure and the dominant period of the synthetics. The bias increases for lower frequencies or lower Q values. The epicentral distance at which the bias starts depends on the frequency and the Q structure. We also compute synthetics for models based on mineral physics (using the elastic constants under lower-mantle pressure and temperature conditions, taking into account the phase transition from Mg-perovskite to Mg-post-perovskite) and geodynamics (the thermal boundary layer) and find that the depth of the positive velocity jump associated with the phase transition and the depth range over which the velocity decreases (due to temperature increases) in the thermal boundary layer significantly influence the wavefield in the lowermost mantle. For example, in cold regions beneath subduction zones, wavefields for SH and SV differ greatly due to the steep velocity decrease close to the CMB. For complex models, apparent splitting can also arise from the possibility that low amplitude direct phases might be overlooked, and larger amplitude later phases might instead incorrectly be picked as the direct arrival. Biases of the type investigated in this study combine with other sources of uncertainty for splitting in D″ (e.g. the correction for upper-mantle anisotropy and the difference between SH and SV ray paths) to make a precise evaluation of the anisotropy in D″ difficult.

  17. Quasiparticle spin relaxation with superconducting velocity-tunable state in GaAs(100) quantum wells in proximity to s -wave superconductor

    NASA Astrophysics Data System (ADS)

    Yu, T.; Wu, M. W.

    2016-11-01

    We investigate the quasiparticle spin relaxation with superconducting-velocity-tunable state in GaAs (100) quantum wells in proximity to an s -wave superconductor. We first present the influence of the supercurrent on the quasiparticle state in GaAs (100) quantum wells, which can be tuned by the superconducting velocity. Rich features such as the suppressed Cooper pairings, large quasiparticle density and nonmonotonically tunable momentum current can be realized by varying the superconducting velocity. In the degenerate regime, the quasiparticle Fermi surface is composed by two arcs, referred to as Fermi arcs, which are contributed by the electron- and holelike branches. The D'yakonov-Perel' spin relaxation is then explored, and intriguing physics is revealed when the Fermi arc emerges. Specifically, when the order parameter tends to zero, it is found that the branch-mixing scattering is forbidden in the quasielectron band. When the condensation process associated with the annihilation of the quasielectron and quasihole is slow, this indicates that the electron- and holelike Fermi arcs in the quasielectron band are independent. The open structure of the Fermi arc leads to the nonzero angular average of the effective magnetic field due to the spin-orbit coupling, which acts as an effective Zeeman field. This Zeeman field leads to spin oscillations even in the strong-scattering regime. Moreover, in the strong-scattering regime, we show that the open structure of the Fermi arc also leads to the insensitiveness of the spin relaxation to the momentum scattering, in contrast to the conventional motional narrowing situation. Nevertheless, with a finite order parameter, the branch-mixing scattering can be triggered, opening the interbranch spin relaxation channel, which is dominant in the strong-scattering regime. In contrast to the situation with an extremely small order parameter, due to the interbranch channel, the spin oscillations vanish and the spin relaxation

  18. Analytic integrable systems: Analytic normalization and embedding flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    In this paper we mainly study the existence of analytic normalization and the normal form of finite dimensional complete analytic integrable dynamical systems. More details, we will prove that any complete analytic integrable diffeomorphism F(x)=Bx+f(x) in (Cn,0) with B having eigenvalues not modulus 1 and f(x)=O(|) is locally analytically conjugate to its normal form. Meanwhile, we also prove that any complete analytic integrable differential system x˙=Ax+f(x) in (Cn,0) with A having nonzero eigenvalues and f(x)=O(|) is locally analytically conjugate to its normal form. Furthermore we will prove that any complete analytic integrable diffeomorphism defined on an analytic manifold can be embedded in a complete analytic integrable flow. We note that parts of our results are the improvement of Moser's one in J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956) 673-692 and of Poincaré's one in H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré, II, Rend. Circ. Mat. Palermo 11 (1897) 193-239. These results also improve the ones in Xiang Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differential Equations 244 (2008) 1080-1092 in the sense that the linear part of the systems can be nonhyperbolic, and the one in N.T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett. 9 (2002) 217-228 in the way that our paper presents the concrete expression of the normal form in a restricted case.

  19. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    NASA Astrophysics Data System (ADS)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  20. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    USGS Publications Warehouse

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  1. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of

  2. COMBINING A NEW 3-D SEISMIC S-WAVE PROPAGATION ANALYSIS FOR REMOTE FRACTURE DETECTION WITH A ROBUST SUBSURFACE MICROFRACTURE-BASED VERIFICATION TECHNIQUE

    SciTech Connect

    Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray

    2004-02-01

    Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.

  3. Title of abstract - Different approaches to the determining of 3-d P and S wave velocity structures of the crust beneath Northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Kryukova, O.

    2003-04-01

    The seismic images of the crust beneath Northern Tien Shan (NTS) are obtained with using of different sets of data and several algorithms for solution of local earthquake tomography problem. The NTS is a very interesting region from geophysical point if view due to high seismic activity caused by interplate collision: Tien Shan and Kazakh. A rectangular region under investigation is constrained by lines 41.90o N - 43.40o N and 73.50o E- 76.50o E. 14661 P and 14436 S wave arrival times recorded 12 seismic stations of the Kyrgyzstan Broadband Network (KNET) from local earthquake in 1991-1999 years are used. In addition, data from 267 local earthquake recorded over a period of about 20 years by a regional arrays of 93 seismographs in NTS are involved in inversions. 1-d optimal velocity models and stations delays are estimated with help of program VELEST (E.Kissling, 1995). Block parameterization of model and ray tracing described by Thurber and Ellsworth (1980) are used for determination of 3-d velocity structure and relocation of events as one of the approaches (programs S.Roecker Sphypit90 and Sphrel3d). Other approach consists in application linear or cubic B spline interpolation of velocity function and ray tracing Um and Thurber (1987) for the solution of forward problem (program C.Thurber et al. Simulps and own program). The data resolution analysis and statistical analysis of models was carried out. Calculated P wave tomographic models were compared with tomographic models S.Roecker et al. (1993), S.Ghose et al. (1998) and T.Sabitova (1996). The main result is the confirmation of existence of different seismic velocity structure beneath Kyrgyz Range and Chu Basin. Using various sets of date and methods for reconstruction velocity model is effective in reveal of more reliable velocity heterogeneities in the domain of research. The author is grateful to dr. I. Kitov for help and to dr. I.Sanina for useful discussion.

  4. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  5. A Comparison Study of the Dynamic Amplification Characteristics of the Major Domestic Seismic Observation Sites using Background Noise and S-wave Energy of Ground Motions from 15 Fukuoka Earthquakes Series

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kwon, Y.

    2015-12-01

    Observed ground motions are mainly composed of 3 main factors such as seismic source, seismic wave attenuation and site amplification. Among them, site amplification is also important factor and should be considered to estimate soil-structure dynamic interaction with more reliability. Though various estimation methods are suggested, this study used the method by Castro et. al.(1997) for estimating site amplification. This method has been extended to background noise, coda waves and S waves recently for estimating site amplification. This study applied the Castro et. al.(1997)'s method to the background noise. This study analysed more than 298 background noises from 15 macro earthquakes including main Fukuoka earthquake (2005/03/20, M=6.5) and then compared to results from S waves(2013), at 8 main domestic seismic stations. The results showed that most of the domestic seismic stations gave similar results to those from S waves(2013). Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies can give us much information about dynamic amplification of domestic sites characteristics and site classification.

  6. The Case for Assessment Analytics

    ERIC Educational Resources Information Center

    Ellis, Cath

    2013-01-01

    Learning analytics is a relatively new field of inquiry and its precise meaning is both contested and fluid (Johnson, Smith, Willis, Levine & Haywood, 2011; LAK, n.d.). Ferguson (2012) suggests that the best working definition is that offered by the first Learning Analytics and Knowledge (LAK) conference: "the measurement, collection,…

  7. Analytics for Cyber Network Defense

    SciTech Connect

    Plantenga, Todd.; Kolda, Tamara Gibson

    2011-06-01

    This report provides a brief survey of analytics tools considered relevant to cyber network defense (CND). Ideas and tools come from elds such as statistics, data mining, and knowledge discovery. Some analytics are considered standard mathematical or statistical techniques, while others re ect current research directions. In all cases the report attempts to explain the relevance to CND with brief examples.

  8. Understanding Education Involving Geovisual Analytics

    ERIC Educational Resources Information Center

    Stenliden, Linnea

    2013-01-01

    Handling the vast amounts of data and information available in contemporary society is a challenge. Geovisual Analytics provides technology designed to increase the effectiveness of information interpretation and analytical task solving. To date, little attention has been paid to the role such tools can play in education and to the extent to which…

  9. Group Analytic Psychotherapy in Brazil.

    PubMed

    Penna, Carla; Castanho, Pablo

    2015-10-01

    Group analytic practice in Brazil began quite early. Highly influenced by the Argentinean Pichon-Rivière, it enjoyed a major development from the 1950s to the early 1980s. Beginning in the 1970s, different factors undermined its development and eventually led to its steep decline. From the mid 1980s on, the number of people looking for either group analytic psychotherapy or group analytic training decreased considerably. Group analytic psychotherapy societies struggled to survive and most of them had to close their doors in the 1990s and the following decade. Psychiatric reform and the new public health system have stimulated a new demand for groups in Brazil. Developments in the public and not-for-profit sectors, combined with theoretical and practical research in universities, present promising new perspectives for group analytic psychotherapy in Brazil nowadays.

  10. Crustal structures across Canada Basin and southern Alpha Ridge of the Arctic Ocean from P- and S-wave sonobuoy wide-angle studies

    NASA Astrophysics Data System (ADS)

    Chian, D.; Shimeld, J.; Jackson, R.; Hutchinson, D. R.; Mosher, D. C.

    2010-12-01

    tectonostratigraphic seismic marker, "bisque", which is recorded by nearly all SB as the strongest reflector after the seafloor. Strong S-wave refractions (named PsP), doubly-converted in the bisque layer and refracted from middle and lower crustal levels, are also observed along southern Alpha Ridge. This facilitates detailed modeling for Poisson's ratios that can help differentiate between a continental or oceanic origin for crust. Surprisingly, a Poisson's ratio of 0.25 (typical for continental origin) is clearly obtained for some SB that have a lower crustal velocity of 6.0-6.6 km/s; yet a Poisson's ratio of 0.28 (typically for oceanic origin) is obtained for lower crust of 6.8-7.0 km/s along southern Alpha Ridge. Further south, where the sedimentary sequence is much thicker (~6.5 km) in comparison with southern Alpha Ridge (0.4-1.4 km), the evidence for PsP waves is less convincing because of interference from other sedimentary layer refractions, including doubly-refracted phases.

  11. Source Spectra of Near Kamchatka Earthquakes: Recovering them from S-Wave Spectra, and Determination of Scaling for Three Corner Frequencies

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2016-05-01

    We describe a procedure for mass determination of the "source-controlled f max"—an important though not conventional parameter of earthquake source spectrum, relabeled here as "the third corner frequency," f c3, and discuss the results of its application. f max is the upper cutoff frequency of Fourier acceleration spectrum of a record of a local earthquake; both source and path attenuation contribute to f max. Most researchers believe the role of attenuation (" κ" parameter) to be dominating or exclusive. Still, source effect on f max is sometimes revealed. If real, it may be important for source physics. To understand better the f max phenomena, the constituents of f max must be accurately separated. With this goal, we process seismograms of moderate earthquakes from Kamchatka subduction zone. First, we need reliable estimates of attenuation to recover source spectra. To this goal, an iterative processing procedure is constructed, that adjusts the attenuation model until the recovered source acceleration spectra become, on the average, flat up either to f c3, or up to the high-frequency limit of the frequency range analyzed. The latter case occurs when f c3 is non-existent or unobservable. Below f c3, the double-corner source spectral model is thought to be valid, and the lower bound of acceleration spectral plateau is considered as the second corner frequency of earthquake source spectrum, fc2. The common corner frequency, f c1, is also estimated. Following this approach, more than 500 S-wave spectra of M = 4-6.5 Kamchatka earthquakes with hypocentral distances 80-220 km were analyzed. In about 80 % of the cases, f c3 is clearly manifested; the remaining cases show, at high frequency, flat source acceleration spectra. In addition, in about 2/3 of cases, f c2 is clearly above f c1, showing that double-corner spectra may dominate even at moderate magnitudes. Scaling behavior was examined for each of the corners. The f c1 vs. M 0 trend is common and close to

  12. Relationship Between Low-Velocity S-wave Anomalies, Asthenospheric Dynamics and Basaltic Volcanism in the Intraplate Setting of the Basin and Range, USA

    NASA Astrophysics Data System (ADS)

    Tibbetts, A. K.; Smith, E. I.; Conrad, C. P.; Lee, C.; Plank, T.; Yang, Y.

    2009-12-01

    Pliocene to Recent intraplate mafic volcanic rocks of the Basin and Range Province mostly formed by asthenospheric melting, as determined from calculated melting temperatures ranging from 1249-1521 degrees C. Here asthenosphere is defined by mantle rheology and temperature and not by geochemistry. The duration of melting in a volcanic field may be related to the size and shape of pockets of low velocity asthenosphere moving under the areas of volcanism. Seismic S-wave velocity profiles constrained by ambient noise and earthquake tomography of the mantle (Yang et al., 2008) show low velocity pockets, which may correspond to higher temperatures and/or higher water contents. The lack of wider scale volcanism in the Basin and Range despite large scale anomalies indicates that the anomalies are not the only cause of melting. The observed smaller scale magmatism can be explained by circulatory flow driven by the small scale structure of the anomalies causing localized melting within the anomalies. By applying an asthenospheric shear flow velocity of 0 cm/yr at the base of the lithosphere and 5 cm/yr east at depth (Silver & Holt 2002, Conrad et al., 2007), the distance the mantle has moved since the time of volcanism can be calculated for basalts of known age. Past positions of low-velocity anomalies in the asthenosphere combined with depths and temperatures of melting calculated using the silica-liquid geobarometer (Lee et al., 2009) were used to determine if a low velocity anomaly existed under an area of volcanism at the depth of melting and time of eruption. The data constraints used for calculating depths and temperatures of melting are dry, MgO > 7.5 wt.%, SiO2 > 44 wt.%, and Fe as 90% Fe2+. Depths and temperatures of melting were calculated for San Francisco in AZ; Amboy, Pisgah, Death Valley, Coso, Big Pine, Cima, Long Valley, in CA; Crater Flat, Lunar Crater, Reveille in NV; and Black Rock, Hurricane, Snow Canyon, UT; and others all of which have known ages. Ages

  13. Laboratory Workhorse: The Analytical Balance.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    1979-01-01

    This report explains the importance of various analytical balances in the water or wastewater laboratory. Stressed is the proper procedure for utilizing the equipment as well as the mechanics involved in its operation. (CS)

  14. Trends in Analytical Scale Separations.

    ERIC Educational Resources Information Center

    Jorgenson, James W.

    1984-01-01

    Discusses recent developments in the instrumentation and practice of analytical scale operations. Emphasizes detection devices and procedures in gas chromatography, liquid chromatography, electrophoresis, supercritical fluid chromatography, and field-flow fractionation. (JN)

  15. Labour Market Driven Learning Analytics

    ERIC Educational Resources Information Center

    Kobayashi, Vladimer; Mol, Stefan T.; Kismihók, Gábor

    2014-01-01

    This paper briefly outlines a project about integrating labour market information in a learning analytics goal-setting application that provides guidance to students in their transition from education to employment.

  16. Liposomes: Technologies and Analytical Applications

    NASA Astrophysics Data System (ADS)

    Jesorka, Aldo; Orwar, Owe

    2008-07-01

    Liposomes are structurally and functionally some of the most versatile supramolecular assemblies in existence. Since the beginning of active research on lipid vesicles in 1965, the field has progressed enormously and applications are well established in several areas, such as drug and gene delivery. In the analytical sciences, liposomes serve a dual purpose: Either they are analytes, typically in quality-assessment procedures of liposome preparations, or they are functional components in a variety of new analytical systems. Liposome immunoassays, for example, benefit greatly from the amplification provided by encapsulated markers, and nanotube-interconnected liposome networks have emerged as ultrasmall-scale analytical devices. This review provides information about new developments in some of the most actively researched liposome-related topics.

  17. Cautions Concerning Electronic Analytical Balances.

    ERIC Educational Resources Information Center

    Johnson, Bruce B.; Wells, John D.

    1986-01-01

    Cautions chemists to be wary of ferromagnetic samples (especially magnetized samples), stray electromagnetic radiation, dusty environments, and changing weather conditions. These and other conditions may alter readings obtained from electronic analytical balances. (JN)

  18. Clean Water Act Analytical Methods

    EPA Pesticide Factsheets

    EPA publishes laboratory analytical methods (test procedures) that are used by industries and municipalities to analyze the chemical, physical and biological components of wastewater and other environmental samples required by the Clean Water Act.

  19. Analytic Methods in Investigative Geometry.

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2001-01-01

    Suggests an alternative proof by analytic methods, which is more accessible than rigorous proof based on Euclid's Elements, in which students need only apply standard methods of trigonometry to the data without introducing new points or lines. (KHR)

  20. An overview of city analytics

    PubMed Central

    Higham, Desmond J.; Batty, Michael; Bettencourt, Luís M. A.; Greetham, Danica Vukadinović; Grindrod, Peter

    2017-01-01

    We introduce the 14 articles in the Royal Society Open Science themed issue on City Analytics. To provide a high-level, strategic, overview, we summarize the topics addressed and the analytical tools deployed. We then give a more detailed account of the individual contributions. Our overall aims are (i) to highlight exciting advances in this emerging, interdisciplinary field, (ii) to encourage further activity and (iii) to emphasize the variety of new, public-domain, datasets that are available to researchers. PMID:28386454

  1. Analytic elements of smooth shapes

    NASA Astrophysics Data System (ADS)

    Strack, Otto D. L.; Nevison, Patrick R.

    2015-10-01

    We present a method for producing analytic elements of a smooth shape, obtained using conformal mapping. Applications are presented for a case of impermeable analytic elements as well as for head-specified ones. The mathematical operations necessary to use the elements in practical problems can be carried out before modeling of flow problems begins. A catalog of shapes, along with pre-determined coefficients could be established on the basis of the approach presented here, making applications in the field straight forward.

  2. Visual Analytics Technology Transition Progress

    SciTech Connect

    Scholtz, Jean; Cook, Kristin A.; Whiting, Mark A.; Lemon, Douglas K.; Greenblatt, Howard

    2009-09-23

    The authors provide a description of the transition process for visual analytic tools and contrast this with the transition process for more traditional software tools. This paper takes this into account and describes a user-oriented approach to technology transition including a discussion of key factors that should be considered and adapted to each situation. The progress made in transitioning visual analytic tools in the past five years is described and the challenges that remain are enumerated.

  3. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  4. 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio

    NASA Astrophysics Data System (ADS)

    Moczo, Peter; Kristek, Jozef; Galis, Martin; Chaljub, Emmanuel; Etienne, Vincent

    2011-12-01

    We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave propagation and earthquake motion for their behaviour with a varying P-wave to S-wave speed ratio (VP/VS). The second-order schemes include three finite-difference, three finite-element and one discontinuous-Galerkin schemes. The fourth-order schemes include three finite-difference and two spectral-element schemes. All schemes are second-order in time. We assume a uniform cubic grid/mesh and present all schemes in a unified form. We assume plane S-wave propagation in an unbounded homogeneous isotropic elastic medium. We define relative local errors of the schemes in amplitude and the vector difference in one time step and normalize them for a unit time. We also define the equivalent spatial sampling ratio as a ratio at which the maximum relative error is equal to the reference maximum error. We present results of the extensive numerical analysis. We theoretically (i) show how a numerical scheme sees the P and S waves if the VP/VS ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and (iii) compare the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial derivatives. We find that four of the tested schemes have errors in amplitude almost independent on the VP/VS ratio. The homogeneity of the approximations to the second mixed and non-mixed spatial derivatives in terms of the coefficients of the leading terms of their truncation errors as well as the absolute values of the coefficients are key factors for the behaviour of the schemes with increasing VP/VS ratio. The dependence of the errors in the vector difference on the VP/VS ratio should be accounted for by a proper (sufficiently dense) spatial sampling.

  5. Climate Analytics as a Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Duffy, Daniel Q.; McInerney, Mark A.; Webster, W. Phillip; Lee, Tsengdar J.

    2014-01-01

    Climate science is a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-performance computing and data-proximal analytics with scalable data management, cloud computing virtualization, the notion of adaptive analytics, and a domain-harmonized API to improve the accessibility and usability of large collections of climate data. MERRA Analytic Services (MERRA/AS) provides an example of CAaaS. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of key climate variables. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, CAaaS is providing the agility required to meet our customers' increasing and changing data management and data analysis needs.

  6. Analytical Sociology: A Bungean Appreciation

    NASA Astrophysics Data System (ADS)

    Wan, Poe Yu-ze

    2012-10-01

    Analytical sociology, an intellectual project that has garnered considerable attention across a variety of disciplines in recent years, aims to explain complex social processes by dissecting them, accentuating their most important constituent parts, and constructing appropriate models to understand the emergence of what is observed. To achieve this goal, analytical sociologists demonstrate an unequivocal focus on the mechanism-based explanation grounded in action theory. In this article I attempt a critical appreciation of analytical sociology from the perspective of Mario Bunge's philosophical system, which I characterize as emergentist systemism. I submit that while the principles of analytical sociology and those of Bunge's approach share a lot in common, the latter brings to the fore the ontological status and explanatory importance of supra-individual actors (as concrete systems endowed with emergent causal powers) and macro-social mechanisms (as processes unfolding in and among social systems), and therefore it does not stipulate that every causal explanation of social facts has to include explicit references to individual-level actors and mechanisms. In this sense, Bunge's approach provides a reasonable middle course between the Scylla of sociological reification and the Charybdis of ontological individualism, and thus serves as an antidote to the untenable "strong program of microfoundations" to which some analytical sociologists are committed.

  7. The transfer of analytical procedures.

    PubMed

    Ermer, J; Limberger, M; Lis, K; Wätzig, H

    2013-11-01

    Analytical method transfers are certainly among the most discussed topics in the GMP regulated sector. However, they are surprisingly little regulated in detail. General information is provided by USP, WHO, and ISPE in particular. Most recently, the EU emphasized the importance of analytical transfer by including it in their draft of the revised GMP Guideline. In this article, an overview and comparison of these guidelines is provided. The key to success for method transfers is the excellent communication between sending and receiving unit. In order to facilitate this communication, procedures, flow charts and checklists for responsibilities, success factors, transfer categories, the transfer plan and report, strategies in case of failed transfers, tables with acceptance limits are provided here, together with a comprehensive glossary. Potential pitfalls are described such that they can be avoided. In order to assure an efficient and sustainable transfer of analytical procedures, a practically relevant and scientifically sound evaluation with corresponding acceptance criteria is crucial. Various strategies and statistical tools such as significance tests, absolute acceptance criteria, and equivalence tests are thoroughly descibed and compared in detail giving examples. Significance tests should be avoided. The success criterion is not statistical significance, but rather analytical relevance. Depending on a risk assessment of the analytical procedure in question, statistical equivalence tests are recommended, because they include both, a practically relevant acceptance limit and a direct control of the statistical risks. However, for lower risk procedures, a simple comparison of the transfer performance parameters to absolute limits is also regarded as sufficient.

  8. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  9. Analytical approximations for spiral waves

    SciTech Connect

    Löber, Jakob Engel, Harald

    2013-12-15

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +} with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.

  10. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  11. Analytical approximations for spiral waves.

    PubMed

    Löber, Jakob; Engel, Harald

    2013-12-01

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R(0). For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R(+)) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R(+) with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.

  12. A Survey of Risk Analytics

    NASA Astrophysics Data System (ADS)

    Picoult, Evan

    2003-03-01

    Risk Analytical Units within Wall Street firms are responsible for developing the methods used to quantify the different forms of risk inherent in the firms' activities. This talk is an overview of risk analytics. It will cover: the function and validation of valuation models; the measurement of market risk; and the measurement of the different aspects of and forms of credit risk, including the simulation of the potential counterparty credit exposure of derivatives, the estimation of obligor default probability and the simulation of the potential loss distribution of loan portfolios. Risk Analytics is an applied field that integrates finance theory, mathematics and statistical analysis. It is a field in that has attracted many physicists and one in which many physicists have flourished. The talk will conclude with an analysis of why this is so.

  13. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Navidi, Fatemeh; Beard, Daniel A.; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  14. Analytical chemistry of nitric oxide.

    PubMed

    Hetrick, Evan M; Schoenfisch, Mark H

    2009-01-01

    Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.

  15. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  16. Exact analytical solutions for ADAFs

    NASA Astrophysics Data System (ADS)

    Habibi, Asiyeh; Abbassi, Shahram; Shadmehri, Mohsen

    2017-02-01

    We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is Trϕ. Furthermore, we assume that the value of viscosity coefficient α varies with θ. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.

  17. Measurements of the S-wave fraction in B 0 → K + π - μ + μ - decays and the B 0 → K ∗(892)0 μ + μ - differential branching fraction

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2016-11-01

    A measurement of the differential branching fraction of the decay B 0 → K ∗(892)0 μ + μ - is presented together with a determination of the S-wave fraction of the K + π - system in the decay B 0 → K +π- μ + μ -. The analysis is based on pp-collision data corresponding to an integrated luminosity of 3 fb-1 collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, q 2. Precise theoretical predictions for the differential branching fraction of B 0 → K ∗(892)0 μ + μ - decays are available for the q 2 region 1 .1 < q 2 < 6 .0 GeV2 /c 4. In this q 2 region, for the K +π- invariant mass range 796 < m Kπ < 996 MeV /c 2, the S-wave fraction of the K +π- system in B 0 → K +π- μ + μ - decays is found to be {F}S=0.101± 0.017(stat)± 0.009(syst), and the differential branching fraction of B 0 → K ∗(892)0 μ + μ - decays is determined to be dB/d{q}^2=(0.{392}_{-0.019}^{+0.020}(stat)± 0.010(syst)± 0.027(norm))× 1{0}^{-7}{c}^4/{GeV}^2.

  18. FPI: FM Success through Analytics

    ERIC Educational Resources Information Center

    Hickling, Duane

    2013-01-01

    The APPA Facilities Performance Indicators (FPI) is perhaps one of the most powerful analytical tools that institutional facilities professionals have at their disposal. It is a diagnostic facilities performance management tool that addresses the essential questions that facilities executives must answer to effectively perform their roles. It…

  19. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-02

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

  20. Analytical Sociology: A Bungean Appreciation

    ERIC Educational Resources Information Center

    Wan, Poe Yu-ze

    2012-01-01

    Analytical sociology, an intellectual project that has garnered considerable attention across a variety of disciplines in recent years, aims to explain complex social processes by dissecting them, accentuating their most important constituent parts, and constructing appropriate models to understand the emergence of what is observed. To achieve…

  1. An Overview of Learning Analytics

    ERIC Educational Resources Information Center

    Clow, Doug

    2013-01-01

    Learning analytics, the analysis and representation of data about learners in order to improve learning, is a new lens through which teachers can understand education. It is rooted in the dramatic increase in the quantity of data about learners and linked to management approaches that focus on quantitative metrics, which are sometimes antithetical…

  2. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  3. Generative CAI in Analytical Geometry.

    ERIC Educational Resources Information Center

    Uttal, William R.; And Others

    A generative computer-assisted instruction system is being developed to tutor students in analytical geometry. The basis of this development is the thesis that a generative teaching system can be developed by establishing and then stimulating a simplified, explicit model of the human tutor. The goal attempted is that of a computer environment…

  4. Analytical Utility of Campylobacter Methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Advisory Committee on Microbiological Criteria for Foods (NACMCF, or the Committee) was asked to address the analytical utility of Campylobacter methodologies in preparation for an upcoming United States Food Safety and Inspection Service (FSIS) baseline study to enumerate Campylobacter...

  5. Exploratory Analysis in Learning Analytics

    ERIC Educational Resources Information Center

    Gibson, David; de Freitas, Sara

    2016-01-01

    This article summarizes the methods, observations, challenges and implications for exploratory analysis drawn from two learning analytics research projects. The cases include an analysis of a games-based virtual performance assessment and an analysis of data from 52,000 students over a 5-year period at a large Australian university. The complex…

  6. Microcomputer Applications in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    The first part of this paper addresses the following topics: (1) the usefulness of microcomputers; (2) applications for microcomputers in analytical chemistry; (3) costs; (4) major microcomputer systems and subsystems; and (5) which microcomputer to buy. Following these brief comments, the major focus of the paper is devoted to a discussion of…

  7. Cognitive Analytics Driven Personalized Learning

    ERIC Educational Resources Information Center

    Gudivada, Venkat N.

    2017-01-01

    Various types of structured data collected by learning management systems such as Moodle have been used to improve student learning outcomes. Learning analytics refers to an assortment of data analysis methods used for this task. These methods typically do not consider unstructured data such as blogs, discussions, e-mail, and course messages.…

  8. Analytic redundancy management for SCOLE

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.

    1988-01-01

    The objective of this work is to develop a practical sensor analytic redundancy management scheme for flexible spacecraft and to demonstrate it using the SCOLE experimental apparatus. The particular scheme to be used is taken from previous work on the Grid apparatus by Williams and Montgomery.

  9. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  10. 7 CFR 98.4 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to.... Army Individual Protection Directorate's Military Specifications, approved analytical test...

  11. 7 CFR 98.4 - Analytical methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture... Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to perform analyses... Protection Directorate's Military Specifications, approved analytical test methods noted therein, U.S....

  12. 7 CFR 98.4 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to.... Army Individual Protection Directorate's Military Specifications, approved analytical test...

  13. Analytical Plan for Roman Glasses

    SciTech Connect

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  14. Visual Analytics for MOOC Data.

    PubMed

    Qu, Huamin; Chen, Qing

    2015-01-01

    With the rise of massive open online courses (MOOCs), tens of millions of learners can now enroll in more than 1,000 courses via MOOC platforms such as Coursera and edX. As a result, a huge amount of data has been collected. Compared with traditional education records, the data from MOOCs has much finer granularity and also contains new pieces of information. It is the first time in history that such comprehensive data related to learning behavior has become available for analysis. What roles can visual analytics play in this MOOC movement? The authors survey the current practice and argue that MOOCs provide an opportunity for visualization researchers and that visual analytics systems for MOOCs can benefit a range of end users such as course instructors, education researchers, students, university administrators, and MOOC providers.

  15. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  16. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  17. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the

  18. Analytical methods under emergency conditions

    SciTech Connect

    Sedlet, J.

    1983-01-01

    This lecture discusses methods for the radiochemical determination of internal contamination of the body under emergency conditions, here defined as a situation in which results on internal radioactive contamination are needed quickly. The purpose of speed is to determine the necessity for medical treatment to increase the natural elimination rate. Analytical methods discussed include whole-body counting, organ counting, wound monitoring, and excreta analysis. 12 references. (ACR)

  19. Analytical Relativity of Black Holes

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    The successful detection and analysis of gravitational wave (GW) signals from coalescing binary black holes necessitates the accurate prior knowledge of the form of the GW signals. This knowledge can be acquired through a synergy between Analytical Relativity (AR) methods and Numerical Relativity (NR) ones. We describe here the most promising AR formalism for describing the motion and radiation of coalescing binary black holes, the Effective One Body (EOB) method, and discuss its comparison with NR simulations.

  20. Analytical optical scattering in clouds

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.

    1989-01-01

    An analytical optical model for scattering of light due to lightning by clouds of different geometry is being developed. The self-consistent approach and the equivalent medium concept of Twersky was used to treat the case corresponding to outside illumination. Thus, the resulting multiple scattering problem is transformed with the knowledge of the bulk parameters, into scattering by a single obstacle in isolation. Based on the size parameter of a typical water droplet as compared to the incident wave length, the problem for the single scatterer equivalent to the distribution of cloud particles can be solved either by Mie or Rayleigh scattering theory. The super computing code of Wiscombe can be used immediately to produce results that can be compared to the Monte Carlo computer simulation for outside incidence. A fairly reasonable inverse approach using the solution of the outside illumination case was proposed to model analytically the situation for point sources located inside the thick optical cloud. Its mathematical details are still being investigated. When finished, it will provide scientists an enhanced capability to study more realistic clouds. For testing purposes, the direct approach to the inside illumination of clouds by lightning is under consideration. Presently, an analytical solution for the cubic cloud will soon be obtained. For cylindrical or spherical clouds, preliminary results are needed for scattering by bounded obstacles above or below a penetrable surface interface.

  1. Green analytical chemistry--theory and practice.

    PubMed

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  2. Technical, analytical and computer support

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a rigorous mathematical model for the design and performance analysis of cylindrical silicon-germanium thermoelectric generators is reported that consists of two parts, a steady-state (static) and a transient (dynamic) part. The material study task involves the definition and implementation of a material study that aims to experimentally characterize the long term behavior of the thermoelectric properties of silicon-germanium alloys as a function of temperature. Analytical and experimental efforts are aimed at the determination of the sublimation characteristics of silicon germanium alloys and the study of sublimation effects on RTG performance. Studies are also performed on a variety of specific topics on thermoelectric energy conversion.

  3. Predictive analytics can support the ACO model.

    PubMed

    Bradley, Paul

    2012-04-01

    Predictive analytics can be used to rapidly spot hard-to-identify opportunities to better manage care--a key tool in accountable care. When considering analytics models, healthcare providers should: Make value-based care a priority and act on information from analytics models. Create a road map that includes achievable steps, rather than major endeavors. Set long-term expectations and recognize that the effectiveness of an analytics program takes time, unlike revenue cycle initiatives that may show a quick return.

  4. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  5. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  6. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  7. 7 CFR 94.303 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  8. 7 CFR 94.303 - Analytical methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  9. 7 CFR 94.303 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  10. Analytics: What We're Hearing

    ERIC Educational Resources Information Center

    Oblinger, Diana

    2012-01-01

    Over the last few months, EDUCAUSE has been focusing on analytics. As people hear from experts, meet with association members, and watch the marketplace evolve, a number of common themes are emerging. Conversations have shifted from "What is analytics?" to "How do we get started, and how do we use analytics well?" What people are hearing from…

  11. 7 CFR 94.303 - Analytical methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  12. Visual and Analytic Strategies in Geometry

    ERIC Educational Resources Information Center

    Kospentaris, George; Vosniadou, Stella; Kazic, Smaragda; Thanou, Emilian

    2016-01-01

    We argue that there is an increasing reliance on analytic strategies compared to visuospatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics…

  13. 7 CFR 94.303 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  14. 7 CFR 93.4 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain Citrus Products § 93.4 Analytical methods. (a) The majority of analytical methods for citrus products are found in the Official Methods of Analysis of AOAC...-2417. (b) Other analytical methods for citrus products may be used as approved by the AMS...

  15. 7 CFR 93.4 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain Citrus Products § 93.4 Analytical methods. (a) The majority of analytical methods for citrus products are found in the Official Methods of Analysis of AOAC...-2417. (b) Other analytical methods for citrus products may be used as approved by the AMS...

  16. 7 CFR 93.4 - Analytical methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain Citrus Products § 93.4 Analytical methods. (a) The majority of analytical methods for citrus products are found in the Official Methods of Analysis of AOAC...-2417. (b) Other analytical methods for citrus products may be used as approved by the AMS...

  17. Modern Analytical Chemistry in the Contemporary World

    ERIC Educational Resources Information Center

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  18. Application and Evaluation of Analytic Gaming

    SciTech Connect

    Riensche, Roderick M.; Martucci, Louis M.; Scholtz, Jean; Whiting, Mark A.

    2009-08-31

    We describe an "analytic gaming" framework and methodology, and introduce formal methods for evaluation of the analytic gaming process. This process involves conception, development, and playing of games that are informed by predictive models and driven by players. Evaluation of analytic gaming examines both the process of game development and the results of game play exercises.

  19. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  20. The Mars Analytical Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Waite, J. H.; Chassefiere, E.; Sacks, R.; Block, B.; Scherer, S.; Young, D. T.; Miller, G. P.; Nicks, D. K.; Beauchamp, P. M.; Croonquist, A.; Berthelier, J.-J.; Jambon, A.

    2004-11-01

    Future missions to Mars will offer the opportunity to continue the search for organic molecules accessible from the surface, and to better quantify the cycling of volatile elements through geochemical pathways. This presentation describes an analytical instrument suite that is designed to measure elemental, isotopic, and potential organic signatures contained in the atmosphere and near surface reservoirs on Mars. The Mars Analytical Chemistry Experiment (MACE) combines two unique mass-spectrometer-based instruments to accomplish these measurements. The first instrument combines a sample handling system with a reusable pyrolysis oven for processing solid materials. Evolved volatile gases from the pyrolyzer are either oxidized for elemental analysis, or sent through a preconcentrator into a two-dimensional gas chromatograph for separation of organics. The processed gas stream is them sent to a high resolution dynamic time-of-flight mass spectrometer for detection. The second instrument is designed primarily for direct atmospheric measurements, using a combination of catalyst beds, getters, and cryogenic traps to separate and concentrate species of interest, such as noble gases. Concentrated gases are subsequently detected with a second mass spectrometer. This instrument can also be used to analyze evolved gases from the pyrolyzer in the first instrument. A breadboard version of each of these instruments has been demonstrated in the laboratory. In this presentaion, we will discuss the design, applicability, and capabilities of the MACE suite in more detail.

  1. Automation and quality in analytical laboratories

    SciTech Connect

    Valcarcel, M.; Rios, A.

    1994-05-01

    After a brief introduction to the generic aspects of automation in analytical laboratories, the different approaches to quality in analytical chemistry are presented and discussed to establish the following different facets emerging from the combination of quality and automation: automated analytical control of quality of products and systems; quality control of automated chemical analysis; and improvement of capital (accuracy and representativeness), basic (sensitivity, precision, and selectivity), and complementary (rapidity, cost, and personnel factors) analytical features. Several examples are presented to demonstrate the importance of this marriage of convenience in present and future analytical chemistry. 7 refs., 4 figs.

  2. Using business analytics to improve outcomes.

    PubMed

    Rivera, Jose; Delaney, Stephen

    2015-02-01

    Orlando Health has brought its hospital and physician practice revenue cycle systems into better balance using four sets of customized analytics: Physician performance analytics gauge the total net revenue for every employed physician. Patient-pay analytics provide financial risk scores for all patients on both the hospital and physician practice sides. Revenue management analytics bridge the gap between the back-end central business office and front-end physician practice managers and administrators. Enterprise management analytics allow the hospitals and physician practices to share important information about common patients.

  3. The "Journal of Learning Analytics": Supporting and Promoting Learning Analytics Research

    ERIC Educational Resources Information Center

    Siemens, George

    2014-01-01

    The paper gives a brief overview of the main activities for the development of the emerging field of learning analytics led by the Society for Learning Analytics Research (SoLAR). The place of the "Journal of Learning Analytics" is identified. Analytics is the most significant new initiative of SoLAR.

  4. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  5. Streaming Analytics and Data Engineering

    SciTech Connect

    2016-06-06

    SADE is a software package for rapidly assembling analytic pipelines to manipulate data. The packages consists of the engine that manages the data and coordinates the movement of data between the tasks performing a function? a set of core libraries consisting of plugins that perform common tasks? and a framework to extend the system supporting the development of new plugins. Currently through configuration files, a pipeline can be defined that maps the routing of data through a series of plugins. Pipelines can be run in a batch mode or can process streaming data? they can be executed from the command line or run through a Windows background service. There currently exists over a hundred plugins, over fifty pipeline configurations? and the software is now being used by about a half-dozen projects.

  6. Serious Gaming for Predictive Analytics

    SciTech Connect

    Riensche, Roderick M.; Paulson, Patrick R.; Danielson, Gary R.; Unwin, Stephen D.; Butner, R. Scott; Miller, Sarah M.; Franklin, Lyndsey; Zuljevic, Nino

    2009-03-24

    We describe a methodology and architecture to support the development of games in a predictive analytics context. These games serve as part of an overall family of systems designed to gather input knowledge, calculate results of complex predictive technical and social models, and explore those results in an engaging fashion. The games provide an environment shaped and driven in part by the outputs of the models, allowing users to exert influence over a limited set of parameters, and displaying the results when those actions cause changes in the underlying model. We have crafted a prototype system in which we are implementing test versions of games driven by models in such a fashion, using a flexible architecture to allow for future continuation and expansion of this work.

  7. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  8. Analytical Chemistry as an Information Science.

    DTIC Science & Technology

    1981-06-01

    AD-AIOS 433 WASHINGTON UNIV SEATTLE LAB OR CHEMOMETRICS /7/ ANALYTICAL CHEMISTRY AS AN INFORMATION SCIENCE Ul NAb7/ .JUN 81 B A KO WALSKI NUUUIA 75C...AN INFORMATION SCIENCE by B. R. Kowalski Prepared for Publication in Trends in Analytical Chemistry University of Washington Department of Chemistry...S. TYPE OF REPORT & PERIOD COVERED Technical Report - Interim ANALYTICAL CHEMISTRY AS AN INFORMATION SCIENCE , 2/1981 - 6/1981 6. PERFORMING ORG

  9. Analytical Chemistry in Microenvironments: Single Nerve Cells.

    DTIC Science & Technology

    1992-03-16

    AD-A251 491 * - OFFICE OF NAVAL RESEARCH GRANT or CONTRACT N00014-90-J-1161 R & T Code 4133030 Technical Report No. 012 Analytical Chemistry in...AGENCY USE ONLY (Leave oldnk) 2. REPORT DATE 1. R EP O R T T Y P E AND DATES COVERED 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Analytical Chemistry in...CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT unclassified unclassified unclassified ANALYTICAL CHEMISTRY IN

  10. Teaching social responsibility in analytical chemistry.

    PubMed

    Valcárcel, M; Christian, G D; Lucena, R

    2013-07-02

    Analytical chemistry is key to the functioning of a modern society. From early days, ethics in measurements have been a concern and that remains today, especially as we have come to rely more on the application of analytical science in many aspects of our lives. The main aim of this Feature is to suggest ways of introducing the topic of social responsibility and its relation to analytical chemistry in undergraduate or graduate chemistry courses.

  11. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  12. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  13. Measurement of the I =1 /2 K π S -wave amplitude from Dalitz plot analyses of ηc→K K ¯π in two-photon interactions

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Pennington, M. R.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2016-01-01

    We study the processes γ γ →KS0K±π∓ and γ γ →K+K-π0 using a data sample of 519 fb-1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e- collider at center-of-mass energies at and near the Υ (n S ) (n =2 , 3, 4) resonances. We observe ηc decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the I =1 /2 K π S -wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behavior for the phase up to a mass of 1.5 GeV /c2. In contrast, the amplitudes show very marked differences. The data require the presence of a new a0(1950 ) resonance with parameters m =1931 ±14 ±22 MeV /c2 and Γ =271 ±22 ±29 MeV .

  14. Analytical design of intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.; Valavanis, Kimon P.

    1987-01-01

    The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.

  15. Risk analytics for hedge funds

    NASA Astrophysics Data System (ADS)

    Pareek, Ankur

    2005-05-01

    The rapid growth of the hedge fund industry presents significant business opportunity for the institutional investors particularly in the form of portfolio diversification. To facilitate this, there is a need to develop a new set of risk analytics for investments consisting of hedge funds, with the ultimate aim to create transparency in risk measurement without compromising the proprietary investment strategies of hedge funds. As well documented in the literature, use of dynamic options like strategies by most of the hedge funds make their returns highly non-normal with fat tails and high kurtosis, thus rendering Value at Risk (VaR) and other mean-variance analysis methods unsuitable for hedge fund risk quantification. This paper looks at some unique concerns for hedge fund risk management and will particularly concentrate on two approaches from physical world to model the non-linearities and dynamic correlations in hedge fund portfolio returns: Self Organizing Criticality (SOC) and Random Matrix Theory (RMT).Random Matrix Theory analyzes correlation matrix between different hedge fund styles and filters random noise from genuine correlations arising from interactions within the system. As seen in the results of portfolio risk analysis, it leads to a better portfolio risk forecastability and thus to optimum allocation of resources to different hedge fund styles. The results also prove the efficacy of self-organized criticality and implied portfolio correlation as a tool for risk management and style selection for portfolios of hedge funds, being particularly effective during non-linear market crashes.

  16. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  17. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  18. Analytic Model of Reactive Flow

    SciTech Connect

    Souers, P C; Vitello, P

    2004-08-02

    A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.

  19. Analytic Model of Reactive Flow

    SciTech Connect

    Souers, P C; Vitello, P

    2004-11-15

    A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.

  20. ANALYTICAL CHEMISTRY RESEARCH NEEDS FOR ...

    EPA Pesticide Factsheets

    The consensus among environmental scientists and risk assessors is that the fate and effects of pharmaceutical and personal care products (PPCPS) in the environment are poorly understood. Many classes of PPCPs have yet to be investigated. Acquisition of trends data for a suite of PPCPs (representatives from each of numerous significant classes), shown to recur amongst municipal wastewater treatment plants across the country, may prove of key importance. The focus of this paper is an overview of some of the analytical methods being developed at the Environmenental Protection Agency and their application to wastewater and surface water samples. Because PPCPs are generally micro-pollutants, emphasis is on development of enrichment and pre- concentration techniques using various means of solid-phase extraction. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCP

  1. Teaching Analytical Chemistry with Automatic Analyzers

    ERIC Educational Resources Information Center

    Schubert, Leo

    1972-01-01

    Discusses the advantages of using automated analytical procedures in providing rapid, inexpensive alternatives to traditional methods and in teaching skills used in many professions and industry. (CP)

  2. Size separation of analytes using monomeric surfactants

    DOEpatents

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  3. An analytic Pade-motivated QCD coupling

    SciTech Connect

    Martinez, H. E.; Cvetic, G.

    2010-08-04

    We consider a modification of the Minimal Analytic (MA) coupling of Shirkov and Solovtsov. This modified MA (mMA) coupling reflects the desired analytic properties of the space-like observables. We show that an approximation by Dirac deltas of its discontinuity function {rho} is equivalent to a Pade(rational) approximation of the mMA coupling that keeps its analytic structure. We propose a modification to mMA that, as preliminary results indicate, could be an improvement in the evaluation of low-energy observables compared with other analytic couplings.

  4. Finite Plane and Anti-Plane Elastostatic Fields with Discontinuous Deformation Gradients Near the Tip of a Crack.

    DTIC Science & Technology

    1982-07-01

    which makes no use of the hodograph transformation. The advantage of the procedure used here lies in its applicability to the plane strain Mode I problem...solutions of the displacement equation of equilibrium valid on overlapping domains . The final solution is then generated by a consistent matching...y(x)=x+u(x) for all xE%, (1.1)1 is a mappi;: of 9 onto a domain 6* in which u(x) is the displace- ment field. We assume the transformation (1.1) to be

  5. Analytical techniques and instrumentation: A compilation. [analytical instrumentation, materials performance, and systems analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is presented covering the areas of: (1) analytical instrumentation useful in the analysis of physical phenomena; (2) analytical techniques used to determine the performance of materials; and (3) systems and component analyses for design and quality control.

  6. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  7. A Functional Analytic Approach to Group Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, Luc

    2009-01-01

    This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…

  8. Microgenetic Learning Analytics Methods: Workshop Report

    ERIC Educational Resources Information Center

    Aghababyan, Ani; Martin, Taylor; Janisiewicz, Philip; Close, Kevin

    2016-01-01

    Learning analytics is an emerging discipline and, as such, benefits from new tools and methodological approaches. This work reviews and summarizes our workshop on microgenetic data analysis techniques using R, held at the second annual Learning Analytics Summer Institute in Cambridge, Massachusetts, on 30 June 2014. Specifically, this paper…

  9. Science and Technology Text Mining: Analytical Chemistry

    DTIC Science & Technology

    2001-01-01

    mainly) from analytical chemistry, will be presented. KEYWORDS: text mining; information retrieval; bibliometrics ; computational linguistics; information...analytical chemistry, will be presented. 15. SUBJECT TERMS text mining; information retrieval; bibliometrics ; computational linguistics; information...records. Our definition includes three components: 1) Bibliometrics ; 2) Computational Linguistics; 3) Clustering. For multi-field structured records

  10. When Learning Analytics Meets E-Learning

    ERIC Educational Resources Information Center

    Czerkawski, Betul C.

    2015-01-01

    While student data systems are nothing new and most educators have been dealing with student data for many years, learning analytics has emerged as a new concept to capture educational big data. Learning analytics is about better understanding of the learning and teaching process and interpreting student data to improve their success and learning…

  11. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 92.112 Section 92.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases...

  12. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 89.312 Section 89.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF....312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The...

  13. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The...

  14. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 91.312 Section 91.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.312 Analytical...

  15. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The...

  16. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 91.312 Section 91.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration...

  17. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 92.112 Section 92.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical...

  18. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 90.312 Section 90.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The...

  19. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 90.312 Section 90.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded....

  20. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 89.312 Section 89.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded....

  1. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 92.112 Section 92.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical...

  2. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The...

  3. Culture-Sensitive Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, L.

    2008-01-01

    Functional analytic psychotherapy (FAP) is defined as behavior-analytically conceptualized talk therapy. In contrast to the technique-oriented educational format of cognitive behavior therapy and the use of structural mediational models, FAP depends on the functional analysis of the moment-to-moment stream of interactions between client and…

  4. Method and apparatus for detecting an analyte

    DOEpatents

    Allendorf, Mark D [Pleasanton, CA; Hesketh, Peter J [Atlanta, GA

    2011-11-29

    We describe the use of coordination polymers (CP) as coatings on microcantilevers for the detection of chemical analytes. CP exhibit changes in unit cell parameters upon adsorption of analytes, which will induce a stress in a static microcantilever upon which a CP layer is deposited. We also describe fabrication methods for depositing CP layers on surfaces.

  5. The Evolving Leadership Path of Visual Analytics

    SciTech Connect

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  6. Technology Enhanced Analytics (TEA) in Higher Education

    ERIC Educational Resources Information Center

    Daniel, Ben Kei; Butson, Russell

    2013-01-01

    This paper examines the role of Big Data Analytics in addressing contemporary challenges associated with current changes in institutions of higher education. The paper first explores the potential of Big Data Analytics to support instructors, students and policy analysts to make better evidence based decisions. Secondly, the paper presents an…

  7. Demonstrating Success: Web Analytics and Continuous Improvement

    ERIC Educational Resources Information Center

    Loftus, Wayne

    2012-01-01

    As free and low-cost Web analytics tools become more sophisticated, libraries' approach to user analysis can become more nuanced and precise. Tracking appropriate metrics with a well-formulated analytics program can inform design decisions, demonstrate the degree to which those decisions have succeeded, and thereby inform the next iteration in the…

  8. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-12-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  9. Exact Analytical Solutions for Elastodynamic Impact

    DTIC Science & Technology

    2015-11-30

    ARL-RP-0559 ● NOV 2015 US Army Research Laboratory Exact Analytical Solutions for Elastodynamic Impact by George A Gazonas...ARL-RP-0559 ● NOV 2015 US Army Research Laboratory Exact Analytical Solutions for Elastodynamic Impact by George A Gazonas...

  10. Features Students Really Expect from Learning Analytics

    ERIC Educational Resources Information Center

    Schumacher, Clara; Ifenthaler, Dirk

    2016-01-01

    In higher education settings more and more learning is facilitated through online learning environments. To support and understand students' learning processes better, learning analytics offers a promising approach. The purpose of this study was to investigate students' expectations toward features of learning analytics systems. In a first…

  11. TOPICAL REVIEW: Analytic representations in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2006-02-01

    Various Euclidean, hyperbolic and elliptic analytic representations are introduced and relations among them are discussed. The Bargmann analytic representation in the complex plane is considered and its relation to other phase-space methods for the harmonic oscillator is reviewed. The general theory that relates the growth of analytic functions with the density of their zeros is applied to Bargmann functions and it leads to theorems on the completeness of sequences of Glauber coherent states. Two hyperbolic analytic representations in the unit disc, based on SU(1, 1) coherent states and also on phase states are introduced. A third analytic representation in the complex plane based on Barut-Girardello states is also considered and transformations which relate it to the other ones are studied. In the case of systems with finite-dimensional Hilbert space, an elliptic analytic representation in the extended complex plane and also another analytic representation based on theta functions are introduced. The Berezin formalism in the Euclidean, hyperbolic and elliptic cases is discussed. Contour analytic representations in these three cases are also presented.

  12. Divulging Personal Information within Learning Analytics Systems

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Schumacher, Clara

    2015-01-01

    The purpose of this study was to investigate if students are prepared to release any personal data in order to inform learning analytics systems. Besides the well-documented benefits of learning analytics, serious concerns and challenges are associated with the application of these data driven systems. Most notably, empirical evidence regarding…

  13. Empire: An Analytical Category for Educational Research

    ERIC Educational Resources Information Center

    Coloma, Roland Sintos

    2013-01-01

    In this article Roland Sintos Coloma argues for the relevance of empire as an analytical category in educational research. He points out the silence in mainstream studies of education on the subject of empire, the various interpretive approaches to deploying empire as an analytic, and the importance of indigeneity in research on empire and…

  14. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  15. An Analytic Approach to Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Magradze, B. A.

    The two-loop invariant (running) coupling of QCD is written in terms of the Lambert W function. The analyticity structure of the coupling in the complex Q2-plane is established. The corresponding analytic coupling is reconstructed via a dispersion relation. We also consider some other approximations to the QCD β-function, when the corresponding couplings are solved in terms of the Lambert function. The Landau gauge gluon propagator has been considered in the renormalization group invariant analytic approach (IAA). It is shown that there is a nonperturbative ambiguity in determination of the anomalous dimension function of the gluon field. Several analytic solutions for the propagator at the one-loop order are constructed. Properties of the obtained analytical solutions are discussed.

  16. Quench in superconducting magnets. 2: Analytic solution

    NASA Astrophysics Data System (ADS)

    Shajii, A.; Freidberg, J. P.

    1994-09-01

    A set of analytic solutions for the Quencher model, as described in Part 1 (Shajii and Freidberg, 1994), is presented in this paper. These analytic solutions represent the first such results that remain valid for the long time scales of interest during a quench process. The assumptions and the resulting simplifications that lead to the analytic solutions are discussed, and the regimes of validity of the various approximations are specified. The predictions of the analytic results are shown to be in very good agreement with numerical as well as experimental results. Important analytic scaling relations are verified by such comparisons, and the consequences of some of these scalings on currently designed superconducting magnets are discussed.

  17. Writing analytic element programs in Python.

    PubMed

    Bakker, Mark; Kelson, Victor A

    2009-01-01

    The analytic element method is a mesh-free approach for modeling ground water flow at both the local and the regional scale. With the advent of the Python object-oriented programming language, it has become relatively easy to write analytic element programs. In this article, an introduction is given of the basic principles of the analytic element method and of the Python programming language. A simple, yet flexible, object-oriented design is presented for analytic element codes using multiple inheritance. New types of analytic elements may be added without the need for any changes in the existing part of the code. The presented code may be used to model flow to wells (with either a specified discharge or drawdown) and streams (with a specified head). The code may be extended by any hydrogeologist with a healthy appetite for writing computer code to solve more complicated ground water flow problems.

  18. DREAMING THE ANALYTIC SESSION: A CLINICAL ESSAY.

    PubMed

    Ogden, Thomas H

    2017-01-01

    This is a clinical paper in which the author describes analytic work in which he dreams the analytic session with three of his patients. He begins with a brief discussion of aspects of analytic theory that make up a good deal of the context for his clinical work. Central among these concepts are (1) the idea that the role of the analyst is to help the patient dream his previously "undreamt" and "interrupted" dreams; and (2) dreaming the analytic session involves engaging in the experience of dreaming the session with the patient and, at the same time, unconsciously (and at times consciously) understanding the dream. The author offers no "technique" for dreaming the analytic session. Each analyst must find his or her own way of dreaming each session with each patient. Dreaming the session is not something one works at; rather, one tries not to get in its way.

  19. The Computer-Aided Analytic Process Model. Operations Handbook for the Analytic Process Model Demonstration Package

    DTIC Science & Technology

    1986-01-01

    Research Note 86-06 THE COMPUTER-AIDED ANALYTIC PROCESS MODEL : OPERATIONS HANDBOOK FOR THE ANALYTIC PROCESS MODEL DE ONSTRATION PACKAGE Ronald G...ic Process Model ; Operations Handbook; Tutorial; Apple; Systems Taxonomy Mod--l; Training System; Bradl1ey infantry Fighting * Vehicle; BIFV...8217. . . . . . . .. . . . . . . . . . . . . . . . * - ~ . - - * m- .. . . . . . . item 20. Abstract -continued companion volume-- "The Analytic Process Model for

  20. Developing Guidelines for Assessing Visual Analytics Environments

    SciTech Connect

    Scholtz, Jean

    2011-07-01

    In this paper, we develop guidelines for evaluating visual analytic environments based on a synthesis of reviews for the entries to the 2009 Visual Analytics Science and Technology (VAST) Symposium Challenge and from a user study with professional intelligence analysts. By analyzing the 2009 VAST Challenge reviews we gained a better understanding of what is important to our reviewers, both visualization researchers and professional analysts. We also report on a small user study with professional analysts to determine the important factors that they use in evaluating visual analysis systems. We then looked at guidelines developed by researchers in various domains and synthesized these into an initial set for use by others in the community. In a second part of the user study, we looked at guidelines for a new aspect of visual analytic systems – the generation of reports. Future visual analytic systems have been challenged to help analysts generate their reports. In our study we worked with analysts to understand the criteria they used to evaluate the quality of analytic reports. We propose that this knowledge will be useful as researchers look at systems to automate some of the report generation.1 Based on these efforts, we produced some initial guidelines for evaluating visual analytic environment and for evaluation of analytic reports. It is important to understand that these guidelines are initial drafts and are limited in scope because of the type of tasks for which the visual analytic systems used in the studies in this paper were designed. More research and refinement is needed by the Visual Analytics Community to provide additional evaluation guidelines for different types of visual analytic environments.

  1. Gapped superconductivity with all symmetries in InSb (110) quantum wells in proximity to s -wave superconductor in Fulde-Ferrell-Larkin-Ovchinnikov phase or with a supercurrent

    NASA Astrophysics Data System (ADS)

    Yang, F.; Wu, M. W.

    2017-02-01

    We show that all the singlet even-frequency, singlet odd-frequency, triplet even-frequency, and triplet odd-frequency pairings, together with the corresponding order parameters (gaps), can be realized in InSb (110) spin-orbit-coupled quantum well in proximity to s -wave superconductor in Fulde-Ferrell-Larkin-Ovchinnikov phase or with a supercurrent. It is revealed that with the singlet even-frequency order parameter induced by the proximity effect, triplet even-frequency pairing is induced due to the broken spin-rotational symmetry by the spin-orbit coupling. Since the translational symmetry is broken by the center-of-mass momentum of Cooper pair in Fulde-Ferrell-Larkin-Ovchinnikov phase or with a supercurrent, the singlet odd-frequency pairing can be induced. With the translational and spin-rotational asymmetries, the triplet odd-frequency pairing is also realized. Then, we show that the corresponding order parameters can be obtained from the self-energy of the electron-electron Coulomb interaction with the dynamic screening. The singlet and the induced triplet even-frequency order parameters are found to exhibit the conventional s - and p -wave characters in the momentum space, respectively. Whereas for the induced odd-frequency order parameters in quantum well, the singlet and triplet ones show the p - and d -wave characters, respectively. Moreover, the p -wave character of the singlet odd-frequency order parameter exhibits anisotropy with respect to the direction of the center-of-mass momentum. While for the triplet one, we find that dx2- and dx y-wave characters can be obtained with respect to the direction of the center-of-mass momentum. We show that at proper density, the singlet even-frequency order parameter is suppressed and the induced singlet odd-frequency, triplet even-frequency, and triplet odd-frequency ones can be detected experimentally.

  2. Site amplification factors of whole Japan area estimated from spectral ratio of direct S-wave and their application to the real-time prediction of ground motion in Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Ogiso, M.; Aoki, S.; Hoshiba, M.

    2014-12-01

    For applying the real-time prediction of ground motion proposed by Hoshiba (2013a, JGR) to Earthquake Early Warning, it is necessary to correct a site amplification factor in an observed waveform. In this study, we aim to estimate site amplification factors at whole area of Japan, and apply the real-time correction proposed by Hoshiba (2013b, BSSA) of site amplification factors to investigate their validity. To estimate site amplification factors, we used the spectral ratio of direct S-wave at two adjunct stations. We constructed a network with many pairs of stations, then solved the equations of the network in a least square sense. As a result, we successfully estimated site amplification factors almost whole of the Japan area, except a part of Hokkaido and Kyushu region, and Islands area. Next, we applied the real-time correction of site amplification factors in the observed waveforms of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0). Distribution of site-corrected seismic intensity calculated in time domain (Kunugi et al., 2008) showed clear distance-dependent relation of seismic intensity, which was not found in the distribution of non-corrected seismic intensity. Finally, we compared the two waveforms recorded in the Ishikari Plain, Hokkaido region, Japan, with correction of site amplification factors. The features of waveform in one station was well reproduced from the waveform of other station with the correction of site amplification factor. Although there are some subjects, e.g. nonlinear behavior of the ground with strong ground motion and azimuth dependency of site amplification factors which are not considered in this study, estimated site amplification factors in this study is effective in real-time prediction of ground motion.

  3. On Accuracy of the Finite-difference, Finite-element and Spectral-element Schemes for Modeling Seismic Motion in Media With a Large P-wave to S-wave Speed Ratio

    NASA Astrophysics Data System (ADS)

    Moczo, Peter; Kristek, Jozef; Pazak, Peter; Galis, Martin; Chaljub, Emmanuel

    2010-05-01

    The P-wave to S-wave speed ratios (Vp/Vs) as large as 5 and even larger often have to be accounted for in numerical modeling of seismic motion in structurally and rheologically realistic models of sedimentary basins and valleys. Although sediments with large Vp/Vs usually do not make a major part of the computational region, their effect can be significant because they are at or very close to the free surface. However, the accuracy of the numerical schemes with respect to varying Vp/Vs is not often addressed in studies presenting schemes. In order to identify the very basic inherent aspects of the numerical schemes responsible for their behavior with varying Vp/Vs ratio, we included the most basic 2nd-order 2D numerical schemes on a uniform grid in a homogeneous medium. Although basic in the specified sense, the schemes comprise the decisive features for accuracy of wide class of numerical schemes. We also included 3D higher-order schemes. We investigated the following schemes (FD - finite-difference, FE - finite-element): FD displacement conventional grid, FD optimally-accurate displacement conventional grid, FD displacement-stress partly-staggered grid, FD displacement-stress staggered-grid, FD velocity-stress staggered-grid, FE Lobatto integration, FE Gauss integration, spectral element. We defined and calculated local errors of the schemes in amplitude and polarization normalized for a unit time. Extensive numerical calculations for wide ranges of values of the Vp/Vs ratio, spatial sampling ratio and stability ratio, and entire range of directions of propagation with respect to the spatial grid led to interesting and surprising findings. In parallel with the numerical results and their analysis we compare the numerical schemes themselves in terms of their inherent structures, applied approximations, and truncation errors.

  4. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Aoi, Shin; Kunugi, Takashi; Suzuki, Wataru; Kimura, Takeshi

    2017-02-01

    We analyzed S-wave horizontal-to-vertical (S-H/V) spectral ratios at six ocean bottom seismograph (OBS) sites of K-NET located in the Sagami Bay area of Japan for nonlinear site responses. The degree of nonlinearity was computed by comparing the S-H/V spectral ratios for strong motions (PGA ≥ 20 cm/s2) with those for weak motions (PGA < 20 cm/s2). Our analyses, which showed that the weak-motion S-H/V spectral ratios differ from site to site, indicate that the underlying site geology is not uniform at the OBS sites. It was found that the threshold PGA causing a nonlinear site response is generally different from site to site. Recordings having horizontal PGAs greater than about 50-150 cm/s2 display clear signatures of nonlinear site effects, i.e., the shift of predominant frequencies to lower ones and/or the decrease in high-frequency spectral ratios. We also found that the degree of nonlinearity is generally larger at the OBS sites due to the smaller threshold motions that cause a nonlinear site response compared with the available data at land sites. The above findings suggest the possibility of a widespread nonlinear site response at the OBS sites for offshore earthquakes with a large magnitude. However, frequencies lower than about 2 Hz are not affected by the nonlinear site response in the analyzed data ranges (PGA < 467 cm/s2). These results indicate the need for careful utilization of recorded strong motions at OBS sites for applications such as real-time ground motion predictions as front detections.

  5. Aquatic concentrations of chemical analytes compared to ...

    EPA Pesticide Factsheets

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes. Purpose: to provide sc

  6. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  7. Visual Text Analytics for Impromptu Analysts

    SciTech Connect

    Love, Oriana J.; Best, Daniel M.; Bruce, Joseph R.; Dowson, Scott T.; Larmey, Christopher S.

    2011-10-23

    The Scalable Reasoning System (SRS) is a lightweight visual analytics framework that makes analytical capabilities widely accessible to a class of users we have deemed “impromptu analysts.” By focusing on a deployment of SRS, the Lessons Learned Explorer (LLEx), we examine how to develop visualizations around analytical-oriented goals and data availability. We discuss how to help impromptu analysts to explore deeper patterns. Through designing consistent interactions, we arrive at an interdependent view capable of showcasing patterns. With the combination of SRS widget visualizations and interactions around the underlying textual data, we aim to transition the casual, infrequent user into a viable–albeit impromptu–analyst.

  8. Analytic process and dreaming about analysis.

    PubMed

    Sirois, François

    2016-12-01

    Dreams about the analytic session feature a manifest content in which the analytic setting is subject to distortion while the analyst appears undisguised. Such dreams are a consistent yet infrequent occurrence in most analyses. Their specificity consists in never reproducing the material conditions of the analysis as such. This paper puts forward the following hypothesis: dreams about the session relate to some aspects of the analyst's activity. In this sense, such dreams are indicative of the transference neurosis, prefiguring transference resistances to the analytic elaboration of key conflicts. The parts taken by the patient and by the analyst are discussed in terms of their ability to signal a deepening of the analysis.

  9. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  10. Analytical study of comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Albee, A. L.

    1989-01-01

    Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.

  11. Analytical and Radiochemistry for Nuclear Forensics

    SciTech Connect

    Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott; Podlesak, David; Tandon, Lav

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  12. Sensor for detecting and differentiating chemical analytes

    DOEpatents

    Yi, Dechang; Senesac, Lawrence R.; Thundat, Thomas G.

    2011-07-05

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  13. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    EPA Science Inventory

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  14. Analytical chemistry: Sweet solution to sensing

    NASA Astrophysics Data System (ADS)

    Sia, Samuel K.; Chin, Curtis D.

    2011-09-01

    Glucose meters allow rapid and quantitative measurement of blood sugar levels for diabetes sufferers worldwide. Now a new method allows this proven technology to be used to quantify a much wider range of analytes.

  15. Analytical and test equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of innovations in testing and measuring technology for both the laboratory and industry. Topics discussed include spectrometers, radiometers, and descriptions of analytical and test equipment in several areas including thermodynamics, fluid flow, electronics, and materials testing.

  16. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  17. Analytical prediction of aerospace vehicle vibration environments

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Piersol, A. G.

    1981-01-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  18. DNA detection using origami paper analytical devices

    PubMed Central

    Ellington, Andrew D.; Crooks, Richard M.

    2013-01-01

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs. analyte concentration was observed with an extrapolated limit of detection < 5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems. PMID:24070108

  19. Methods of Analyte Concentration in a Capillary

    NASA Astrophysics Data System (ADS)

    Kubalczyk, Paweł; Bald, Edward

    Online sample concentration techniques in capillary electrophoresis separations have rapidly grown in popularity over the past few years. During the concentration process, diluted analytes in long injected sample are concentrated into a short zone, then the analytes are separated and detected. A large number of contributions have been published on this subject proposing many names for procedures utilizing the same concentration principles. This chapter brings a unified view on concentration, describes the basic principles utilized, and shows a list of recognized current operational procedures. Several online concentration methods based on velocity gradient techniques are described, in which the electrophoretic velocities of the analyte molecules are manipulated by field amplification, sweeping and isotachophoretic migration, resulting in the online concentration of the analyte.

  20. DNA detection using origami paper analytical devices.

    PubMed

    Scida, Karen; Li, Bingling; Ellington, Andrew D; Crooks, Richard M

    2013-10-15

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs analyte concentration was observed with an extrapolated limit of detection <5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems.

  1. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part...

  2. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part...

  3. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part...

  4. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part...

  5. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part...

  6. Physiological and Anatomical Visual Analytics (PAVA) Background

    EPA Pesticide Factsheets

    The need to efficiently analyze human chemical disposition data from in vivo studies or in silico PBPK modeling efforts, and to see complex disposition data in a logical manner, has created a unique opportunity for visual analytics applid to PAD.

  7. Hanford analytical services quality assurance requirements documents

    SciTech Connect

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  8. Collaborative Analytical Toolbox version 1.0

    SciTech Connect

    2008-08-21

    The purpose of the Collaborative Analytical Toolbox (CAT) is to provide a comprehensive, enabling, collaborative problem solving environment that enables users to more effectively apply and improve their analytical and problem solving capabilities. CAT is a software framework for integrating other tools and data sources. It includes a set of core services for collaboration and information exploration and analysis, and a framework that facilitates quickly integrating new ideas, techniques, and tools with existing data sources.

  9. Analytic Coleman-de Luccia Geometries

    SciTech Connect

    Dong, Xi; Harlow, Daniel; /Stanford U., ITP /Stanford U., Phys. Dept.

    2012-02-16

    We present the necessary and sufficient conditions for a Euclidean scale factor to be a solution of the Coleman-de Luccia equations for some analytic potential V ({psi}), with a Lorentzian continuation describing the growth of a bubble of lower-energy vacuum surrounded by higher-energy vacuum. We then give a set of explicit examples that satisfy the conditions and thus are closed-form analytic examples of Coleman-de Luccia geometries.

  10. Building Adoption of Visual Analytics Software

    SciTech Connect

    Chinchor, Nancy; Cook, Kristin A.; Scholtz, Jean

    2012-01-05

    Adoption of technology is always difficult. Issues such as having the infrastructure necessary to support the technology, training for users, integrating the technology into current processes and tools, and having the time, managerial support, and necessary funds need to be addressed. In addition to these issues, the adoption of visual analytics tools presents specific challenges that need to be addressed. This paper discusses technology adoption challenges and approaches for visual analytics technologies.

  11. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  12. Analytical calculation of two-dimensional spectra.

    PubMed

    Bell, Joshua D; Conrad, Rebecca; Siemens, Mark E

    2015-04-01

    We demonstrate an analytical calculation of two-dimensional (2D) coherent spectra of electronic or vibrational resonances. Starting with the solution to the optical Bloch equations for a two-level system in the 2D time domain, we show that a fully analytical 2D Fourier transform can be performed if the projection-slice and Fourier-shift theorems of Fourier transforms are applied. Results can be fit to experimental 2D coherent spectra of resonances with arbitrary inhomogeneity.

  13. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  14. Graph analytics-lessons learned and challenges ahead.

    PubMed

    Pak Chung Wong; Chaomei Chen; Gorg, C; Shneiderman, B; Stasko, J; Thomas, J

    2011-01-01

    Lessons learned from developing four graph analytics applications reveal good research practices and grand challenges for future research. The application domains include electric-power-grid analytics, social-network and citation analytics, text and document analytics, and knowledge domain analytics.

  15. Paired Pulse Voltammetry for differentiating complex analytes

    PubMed Central

    Jang, Dong Pyo; Kim, Inyong; Chang, Su-Youne; Min, Hoon Ki; Arora, Kanika; Marsh, Michale P.; Hwang, Sun-Chul; Kimble, Christopher J.; Bennet, Kevin E.

    2012-01-01

    Although fast-scan cyclic voltammetry (FSCV) has contributed to important advances in neuroscience research, the technique is encumbered by significant analytical challenges. Confounding factors such as pH change and transient effects at the microelectrode surface make it difficult to discern the analytes represented by complex voltammograms. Here we introduce paired-pulse voltammetry (PPV), that mitigates the confounding factors and simplifies the analytical task. PPV consists of a selected binary waveform with a specific time gap between each of its two comprising pulses, such that each binary wave is repeated, while holding the electrode at a negative potential between the waves. This allows two simultaneous yet very different voltammograms (primary and secondary) to be obtained, each corresponding to the two pulses in the binary waveform. PPV was evaluated in the flow cell to characterize three different analytes, (dopamine, adenosine, and pH changes). The peak oxidation current decreased by approximately 50%, 80%, and 4% for dopamine, adenosine, and pH, in the secondary voltammogram compared with primary voltammogram, respectively. Thus, the influence of pH changes could be virtually eliminated using the difference between the primary and secondary voltammograms in the PPV technique, which discriminates analytes on the basis of their adsorption characteristics to the carbon fiber electrode. These results demonstrate that PPV can be effectively used for differentiating complex analytes. PMID:22299131

  16. Developing Guidelines for Assessing Visual Analytics Environments

    SciTech Connect

    Scholtz, Jean

    2011-09-22

    Visual analytic systems can be evaluated from a user perspective with quantitative metrics (i.e., time to complete the analysis or the accuracy of the solution found). However, qualitative measures are also useful in a user assessment. These include such measures as the utility of the interactive visualizations in the analysis process and the user's assessment of the efficiency of the analytic process. Quantitative measures can be found if data sets with embedded ground truth are used for analysis. Qualitative measures are more elusive. In this paper we report on an experiment with professional analysts who ranked five of submissions to the VAST 2009 Challenge and provided the rationale for their rankings. Their comments were used in conjunction with a meta-analysis of the 2009 VAST Challenge reviews to produce a set of guidelines for visual analytic systems. As visual analytic software is expected to eventually help in all aspects of analysis, we expect to see future systems provide more help with generating the final report. Hence, researchers also need to have an understanding of what makes a good analytic product. Therefore we asked the analysts to rank the situational assessments of four grand challenge entries and to provide comments on those assessments. We used these comments to produce guidelines for researchers to use in evaluating their analytic reports.

  17. Organic materials able to detect analytes

    NASA Technical Reports Server (NTRS)

    Rose, Aimee (Inventor); Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Madigan, Conor Francis (Inventor)

    2012-01-01

    The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).

  18. Regional crustal structures along several paths in India and its surrounding regions using local P- and S-wave travel times and regional waveforms recorded from the March 28, 1999 Chamoli earthquake sequence

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Ichinose, G. A.; Kayal, J. R.; Bhattacharya, S. N.; Shukla, A. K.

    2001-12-01

    The March 28, 1999 Chamoli earthquake (Mw 6.8) in northwest India generated a large sequence of aftershocks (M_ w> 4.0) which were recorded by a temporary network ofshort-period stations deployed by various organizations, namely India Meteorological Department (IMD), Geological Survey of India (GSI), National Geophysical Research Institute (NGRI) and Wadia Institute of Himalayan Geology (WIHG) in India. We inverted the local P- and S-wave arrival times from about 20 local stations jointly for all available aftershocks implementing a technique which optimizes both earthquake locations and crustal velocity model. Of these, seven events were recorded by more than 5 stations locating within 5o of the epicenters withazimuthal gap not greater than 90o. We used these events to compute the station correctionsfor local stations and applied these station corrections to relocate the entire sequence of the Chamoli aftershocks. The relocation vectors which indicate the direction toward which the events would move from the reference locations (in this case the GSI locations) suggest that for the majority of the seismic events they show movement towards the epicentral locations of the mainshock. The new locations of these events also show improvements in the error ellipse measurements. We have also investigated variations in crustal models using regional broadband seismograms from the mainshock recorded by the IMD stations in India (IMD, 2000). Using a crustal model developed earlier by Bhattacharya using surface-wave dispersion for northern India as a starting model, we conducted a systematic analysis of surface-wave dispersion characteristics recorded at these broadband stations. We synthesized f-k seismograms andexamined the relative amplitude of the Pnl waves to the surface waves and their absolutetravel-time differences. We used focal mechanism and depth that were independently determined by modeling teleseismic depth phases, pP and sP, and by modeling regional seismograms

  19. The forensic validity of visual analytics

    NASA Astrophysics Data System (ADS)

    Erbacher, Robert F.

    2008-01-01

    The wider use of visualization and visual analytics in wide ranging fields has led to the need for visual analytics capabilities to be legally admissible, especially when applied to digital forensics. This brings the need to consider legal implications when performing visual analytics, an issue not traditionally examined in visualization and visual analytics techniques and research. While digital data is generally admissible under the Federal Rules of Evidence [10][21], a comprehensive validation of the digital evidence is considered prudent. A comprehensive validation requires validation of the digital data under rules for authentication, hearsay, best evidence rule, and privilege. Additional issues with digital data arise when exploring digital data related to admissibility and the validity of what information was examined, to what extent, and whether the analysis process was sufficiently covered by a search warrant. For instance, a search warrant generally covers very narrow requirements as to what law enforcement is allowed to examine and acquire during an investigation. When searching a hard drive for child pornography, how admissible is evidence of an unrelated crime, i.e. drug dealing. This is further complicated by the concept of "in plain view". When performing an analysis of a hard drive what would be considered "in plain view" when analyzing a hard drive. The purpose of this paper is to discuss the issues of digital forensics and the related issues as they apply to visual analytics and identify how visual analytics techniques fit into the digital forensics analysis process, how visual analytics techniques can improve the legal admissibility of digital data, and identify what research is needed to further improve this process. The goal of this paper is to open up consideration of legal ramifications among the visualization community; the author is not a lawyer and the discussions are not meant to be inclusive of all differences in laws between states and

  20. Analytical quality by design: a tool for regulatory flexibility and robust analytics.

    PubMed

    Peraman, Ramalingam; Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT).

  1. Analytical Quality by Design: A Tool for Regulatory Flexibility and Robust Analytics

    PubMed Central

    Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT). PMID:25722723

  2. Climate Analytics as a Service. Chapter 11

    NASA Technical Reports Server (NTRS)

    Schnase, John L.

    2016-01-01

    Exascale computing, big data, and cloud computing are driving the evolution of large-scale information systems toward a model of data-proximal analysis. In response, we are developing a concept of climate analytics as a service (CAaaS) that represents a convergence of data analytics and archive management. With this approach, high-performance compute-storage implemented as an analytic system is part of a dynamic archive comprising both static and computationally realized objects. It is a system whose capabilities are framed as behaviors over a static data collection, but where queries cause results to be created, not found and retrieved. Those results can be the product of a complex analysis, but, importantly, they also can be tailored responses to the simplest of requests. NASA's MERRA Analytic Service and associated Climate Data Services API provide a real-world example of climate analytics delivered as a service in this way. Our experiences reveal several advantages to this approach, not the least of which is orders-of-magnitude time reduction in the data assembly task common to many scientific workflows.

  3. Single-analyte to multianalyte fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Lavigne, John J.; Metzger, Axel; Niikura, Kenichi; Cabell, Larry A.; Savoy, Steven M.; Yoo, J. S.; McDevitt, John T.; Neikirk, Dean P.; Shear, Jason B.; Anslyn, Eric V.

    1999-05-01

    The rational design of small molecules for the selective complexation of analytes has reached a level of sophistication such that there exists a high degree of prediction. An effective strategy for transforming these hosts into sensors involves covalently attaching a fluorophore to the receptor which displays some fluorescence modulation when analyte is bound. Competition methods, such as those used with antibodies, are also amenable to these synthetic receptors, yet there are few examples. In our laboratories, the use of common dyes in competition assays with small molecules has proven very effective. For example, an assay for citrate in beverages and an assay for the secondary messenger IP3 in cells have been developed. Another approach we have explored focuses on multi-analyte sensor arrays with attempt to mimic the mammalian sense of taste. Our system utilizes polymer resin beads with the desired sensors covalently attached. These functionalized microspheres are then immobilized into micromachined wells on a silicon chip thereby creating our taste buds. Exposure of the resin to analyte causes a change in the transmittance of the bead. This change can be fluorescent or colorimetric. Optical interrogation of the microspheres, by illuminating from one side of the wafer and collecting the signal on the other, results in an image. These data streams are collected using a CCD camera which creates red, green and blue (RGB) patterns that are distinct and reproducible for their environments. Analysis of this data can identify and quantify the analytes present.

  4. Applications of Business Analytics in Healthcare

    PubMed Central

    Ward, Michael J.; Marsolo, Keith A.

    2014-01-01

    The American healthcare system is at a crossroads, and analytics, as an organizational skill, figures to play a pivotal role in its future. As more healthcare systems capture information electronically and as they begin to collect more novel forms of data, such as human DNA, how will we leverage these resources and use them to improve human health at a manageable cost? In this article, we argue that analytics will play a fundamental role in the transformation of the American healthcare system. However, there are numerous challenges to the application and use of analytics, namely the lack of data standards, barriers to the collection of high-quality data, and a shortage of qualified personnel to conduct such analyses. There are also multiple managerial issues, such as how to get end users of electronic data to employ it consistently for improving healthcare delivery, and how to manage the public reporting and sharing of data. In this article, we explore applications of analytics in healthcare, barriers and facilitators to its widespread adoption, and how analytics can help us achieve the goals of the modern healthcare system: high-quality, responsive, affordable, and efficient care. PMID:25429161

  5. Analytic thinking reduces belief in conspiracy theories.

    PubMed

    Swami, Viren; Voracek, Martin; Stieger, Stefan; Tran, Ulrich S; Furnham, Adrian

    2014-12-01

    Belief in conspiracy theories has been associated with a range of negative health, civic, and social outcomes, requiring reliable methods of reducing such belief. Thinking dispositions have been highlighted as one possible factor associated with belief in conspiracy theories, but actual relationships have only been infrequently studied. In Study 1, we examined associations between belief in conspiracy theories and a range of measures of thinking dispositions in a British sample (N=990). Results indicated that a stronger belief in conspiracy theories was significantly associated with lower analytic thinking and open-mindedness and greater intuitive thinking. In Studies 2-4, we examined the causational role played by analytic thinking in relation to conspiracist ideation. In Study 2 (N=112), we showed that a verbal fluency task that elicited analytic thinking reduced belief in conspiracy theories. In Study 3 (N=189), we found that an alternative method of eliciting analytic thinking, which related to cognitive disfluency, was effective at reducing conspiracist ideation in a student sample. In Study 4, we replicated the results of Study 3 among a general population sample (N=140) in relation to generic conspiracist ideation and belief in conspiracy theories about the July 7, 2005, bombings in London. Our results highlight the potential utility of supporting attempts to promote analytic thinking as a means of countering the widespread acceptance of conspiracy theories.

  6. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.

  7. Collection of analytes from microneedle patches.

    PubMed

    Romanyuk, Andrey V; Zvezdin, Vasiliy N; Samant, Pradnya; Grenader, Mark I; Zemlyanova, Marina; Prausnitz, Mark R

    2014-11-04

    Clinical medicine and public health would benefit from simplified acquisition of biological samples from patients that can be easily obtained at point of care, in the field, and by patients themselves. Microneedle patches are designed to serve this need by collecting dermal interstitial fluid containing biomarkers without the dangers, pain, or expertise needed to collect blood. This study presents novel methods to collect biomarker analytes from microneedle patches for analysis by integration into conventional analytical laboratory microtubes and microplates. Microneedle patches were made out of cross-linked hydrogel composed of poly(methyl vinyl ether-alt-maleic acid) and poly(ethylene glycol) prepared by micromolding. Microneedle patches were shown to swell with water up to 50-fold in volume, depending on degree of polymer cross-linking, and to collect interstitial fluid from the skin of rats. To collect analytes from microneedle patches, the patches were mounted within the cap of microcentrifuge tubes or formed the top of V-bottom multiwell microplates, and fluid was collected in the bottom of the tubes under gentle centrifugation. In another method, microneedle patches were attached to form the bottom of multiwell microplates, thereby enabling in situ analysis. The simplicity of biological sample acquisition using microneedle patches coupled with the simplicity of analyte collection from microneedles patches integrated into conventional analytical equipment could broaden the reach of future screening, diagnosis, and monitoring of biomarkers in healthcare and environmental/workplace settings.

  8. Applications of Business Analytics in Healthcare.

    PubMed

    Ward, Michael J; Marsolo, Keith A; Froehle, Craig M

    2014-09-01

    The American healthcare system is at a crossroads, and analytics, as an organizational skill, figures to play a pivotal role in its future. As more healthcare systems capture information electronically and as they begin to collect more novel forms of data, such as human DNA, how will we leverage these resources and use them to improve human health at a manageable cost? In this article, we argue that analytics will play a fundamental role in the transformation of the American healthcare system. However, there are numerous challenges to the application and use of analytics, namely the lack of data standards, barriers to the collection of high-quality data, and a shortage of qualified personnel to conduct such analyses. There are also multiple managerial issues, such as how to get end users of electronic data to employ it consistently for improving healthcare delivery, and how to manage the public reporting and sharing of data. In this article, we explore applications of analytics in healthcare, barriers and facilitators to its widespread adoption, and how analytics can help us achieve the goals of the modern healthcare system: high-quality, responsive, affordable, and efficient care.

  9. Dielectric barrier discharges in analytical chemistry.

    PubMed

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J

    2011-06-21

    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  10. Analytical and Computational Aspects of Collaborative Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    Bilevel problem formulations have received considerable attention as an approach to multidisciplinary optimization in engineering. We examine the analytical and computational properties of one such approach, collaborative optimization. The resulting system-level optimization problems suffer from inherent computational difficulties due to the bilevel nature of the method. Most notably, it is impossible to characterize and hence identify solutions of the system-level problems because the standard first-order conditions for solutions of constrained optimization problems do not hold. The analytical features of the system-level problem make it difficult to apply conventional nonlinear programming algorithms. Simple examples illustrate the analysis and the algorithmic consequences for optimization methods. We conclude with additional observations on the practical implications of the analytical and computational properties of collaborative optimization.

  11. Analytical Chemistry Core Capability Assessment - Preliminary Report

    SciTech Connect

    Barr, Mary E.; Farish, Thomas J.

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  12. Quality by design compliant analytical method validation.

    PubMed

    Rozet, E; Ziemons, E; Marini, R D; Boulanger, B; Hubert, Ph

    2012-01-03

    The concept of quality by design (QbD) has recently been adopted for the development of pharmaceutical processes to ensure a predefined product quality. Focus on applying the QbD concept to analytical methods has increased as it is fully integrated within pharmaceutical processes and especially in the process control strategy. In addition, there is the need to switch from the traditional checklist implementation of method validation requirements to a method validation approach that should provide a high level of assurance of method reliability in order to adequately measure the critical quality attributes (CQAs) of the drug product. The intended purpose of analytical methods is directly related to the final decision that will be made with the results generated by these methods under study. The final aim for quantitative impurity assays is to correctly declare a substance or a product as compliant with respect to the corresponding product specifications. For content assays, the aim is similar: making the correct decision about product compliance with respect to their specification limits. It is for these reasons that the fitness of these methods should be defined, as they are key elements of the analytical target profile (ATP). Therefore, validation criteria, corresponding acceptance limits, and method validation decision approaches should be settled in accordance with the final use of these analytical procedures. This work proposes a general methodology to achieve this in order to align method validation within the QbD framework and philosophy. β-Expectation tolerance intervals are implemented to decide about the validity of analytical methods. The proposed methodology is also applied to the validation of analytical procedures dedicated to the quantification of impurities or active product ingredients (API) in drug substances or drug products, and its applicability is illustrated with two case studies.

  13. Analytical chemistry and measurement science: (What has DOE done for analytical chemistry. )

    SciTech Connect

    Shults, W.D.

    1989-01-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ''high impact'' research/development areas that either originated within or were brought to maturity within the DOE laboratories. ''High impact'' means they lead to new subdisciplines or to new ways of doing business. 21 refs.

  14. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    DOE R&D Accomplishments Database

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  15. Analytical chemistry and measurement science; (What DOE has done for analytical chemistry)

    SciTech Connect

    Shults, W.D. . Analytical Chemistry Div.)

    1989-11-01

    Over the past forty years, analytical scientists within the Department of Energy (DOE) complex have had impact on the field of analytical chemistry. This paper suggests six research/development areas that either originated within or were brought to maturity with the DOE laboratories. These areas have lead to new subdisciplines or to new ways of doing business.

  16. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  17. Retail video analytics: an overview and survey

    NASA Astrophysics Data System (ADS)

    Connell, Jonathan; Fan, Quanfu; Gabbur, Prasad; Haas, Norman; Pankanti, Sharath; Trinh, Hoang

    2013-03-01

    Today retail video analytics has gone beyond the traditional domain of security and loss prevention by providing retailers insightful business intelligence such as store traffic statistics and queue data. Such information allows for enhanced customer experience, optimized store performance, reduced operational costs, and ultimately higher profitability. This paper gives an overview of various camera-based applications in retail as well as the state-ofthe- art computer vision techniques behind them. It also presents some of the promising technical directions for exploration in retail video analytics.

  18. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  19. Analytical studies of coherent electron cooling

    SciTech Connect

    Wang,G.; Blaskiewicz, M.; Litvinenko, V.N.

    2009-05-04

    Under certain assumptions and simplifications, we studied a few physics processes of Coherent Electron Cooling using analytical approach. In the modulation process, the effect due to merging the ion beam with the electron beam is studied under single kick approximation. In the free electron laser (FEL) amplifier, we studied the amplification of the electron density modulation using 1D analytical approach. Both the electron charge density and the phase space density are derived in the frequency domain. The solutions are then transformed into the space domain through Fast Fourier Transformation (FFT).

  20. Analytical and simulator study of advanced transport

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Rickard, W. W.

    1982-01-01

    An analytic methodology, based on the optimal-control pilot model, was demonstrated for assessing longitidunal-axis handling qualities of transport aircraft in final approach. Calibration of the methodology is largely in terms of closed-loop performance requirements, rather than specific vehicle response characteristics, and is based on a combination of published criteria, pilot preferences, physical limitations, and engineering judgment. Six longitudinal-axis approach configurations were studied covering a range of handling qualities problems, including the presence of flexible aircraft modes. The analytical procedure was used to obtain predictions of Cooper-Harper ratings, a solar quadratic performance index, and rms excursions of important system variables.

  1. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  2. Analytic Approximation to Randomly Oriented Spheroid Extinction

    DTIC Science & Technology

    1993-12-01

    104 times faster than by the T - matrix code . Since the T-matrix scales as at least the cube of the optical size whereas the analytic approximation is...coefficient estimate, and with the Rayleigh formula. Since it is difficult estimate the accuracy near the limit of stability of the T - matrix code some...additional error due to the T - matrix code could be present. UNCLASSIFIED 30 Max Ret Error, Analytic vs T-Mat, r= 1/5 0.0 20 25 10 ~ 0.5 100 . 7.5 S-1.0

  3. Analytical study of twin-jet shielding

    NASA Technical Reports Server (NTRS)

    Gerhold, C. H.

    1982-01-01

    Progress in the refinement and evaluation of an analytical jet shielding model are summarized. The model consists of a point noise source impinging on a cylinder of heated flow in which the temperature and velocity are uniform across the cross section of the jet. The shielding jet is infinite in extent along the jet axis and the radius of the jet is constant. The analytical model was compared to experimental data for a point noise source impinging on an ambient temperature, subsonic jet and on a subsonic simulated hot jet using helium as the flow medium. Results of these comparisons are discussed.

  4. Spatial Analytic Interfaces: Spatial User Interfaces for In-Situ Visual Analytics.

    PubMed

    Ens, Barrett; Irani, Pourang

    2016-03-18

    As wearable devices gain acceptance, we ask "What do user interfaces look like in a post-smartphone world?" and "Can these future interfaces support sophisticated interactions in a mobile context?" In stark contrast to the micro-interactions of current wearable interfaces lies visual analytics. A hallmark of such platforms is the ability to simultaneously view multiple linked visualizations of diverse datasets. We draw from visual analytic concepts to address the growing need of individuals to manage information on personal devices. We propose Spatial Analytic Interfaces to leverage the benefits of spatial interaction to enable everyday visual analytic tasks to be performed in-situ, at the most beneficial place and time. We explore the possibilities for such interfaces using head-worn display technology, to integrate multiple information views into the user's physical environment. We discuss current developments and propose research goals for the successful development of SUI for in-situ visual analytics.

  5. Analytic Measures for Evaluating Managerial Writing.

    ERIC Educational Resources Information Center

    Rogers, Priscilla S.

    1994-01-01

    Describes the addition of a writing performance assessment to the Graduate Management Admission Test (GMAT), and how development of the Analysis of Argument measure and the Persuasive Adaptiveness measure helps explain the holistic writing score given during grading of the GMAT. Correlates holistic and analytic scores, revealing a positive…

  6. Reimagining Khan Analytics for Student Coaches

    ERIC Educational Resources Information Center

    Cunningham, Jim

    2015-01-01

    In this paper, I describe preliminary work on a new research project in learning analytics at Arizona State University. In conjunction with an innovative remedial mathematics course using Khan Academy and student coaches, this study seeks to measure the effectiveness of visualized data in assisting student coaches as they help remedial math…

  7. Analytical Tools for Behavioral Influences Operations

    DTIC Science & Technology

    2003-12-01

    NASIC’s Investment in Analytical Capabilities ....................................................... 56 6.2 Study Limitations...early guidance and organizational contacts to get us started in this effort. They provided a basic cultural/ institutional /psychological framework for the...get started. This project is envisioned as a foundation for future work by NASIC analysts. They will use the tools identified in this study to

  8. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1514 Section...

  9. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Analytical gases. 86.1514 Section...

  10. Analytical Production and Collimation of Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Lee, W. H.

    2005-09-01

    The structure and evolution of jet-like structures under a variety of physical conditions is a problem that generally requires numerical modelling. However, in certain cases valuable insight can be gained from purely hydrodynamical analytical solutions which exhibit outflows of varying characteristics. We show here several solutions of this type, applicable to various accretion scenarios.

  11. 7 CFR 91.23 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417. (f) Manual of Analytical... Practices of the American Oil Chemists' Society (AOCS), American Oil Chemists' Society, P.O. Box 3489, 2211... INTERNATIONAL, Volumes I & II, AOAC INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD...

  12. 7 CFR 91.23 - Analytical methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417. (f) Manual of Analytical... Practices of the American Oil Chemists' Society (AOCS), American Oil Chemists' Society, P.O. Box 3489, 2211... INTERNATIONAL, Volumes I & II, AOAC INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD...

  13. 7 CFR 91.23 - Analytical methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417. (f) Manual of Analytical... Practices of the American Oil Chemists' Society (AOCS), American Oil Chemists' Society, P.O. Box 3489, 2211... INTERNATIONAL, Volumes I & II, AOAC INTERNATIONAL, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD...

  14. Analytical Research on Developmental Aspects of Metamemory.

    ERIC Educational Resources Information Center

    Plude, Dana J.; Nelson, Thomas O.; Scholnick, Ellin K.

    1998-01-01

    Reviews selected pioneering findings in the child-developmental and adulthood-aging literature and evaluates them within the framework of Nelson (Thomas O.) and Narens' (Louis) (1990) theory of metamemory. Makes suggestions for conceptually-based analytical research to help specify the mechanisms that underlie developmental differences in…

  15. Ethical and Privacy Principles for Learning Analytics

    ERIC Educational Resources Information Center

    Pardo, Abelardo; Siemens, George

    2014-01-01

    The massive adoption of technology in learning processes comes with an equally large capacity to track learners. Learning analytics aims at using the collected information to understand and improve the quality of a learning experience. The privacy and ethical issues that emerge in this context are tightly interconnected with other aspects such as…

  16. Digital Analytics in Professional Work and Learning

    ERIC Educational Resources Information Center

    Edwards, Richard; Fenwick, Tara

    2016-01-01

    In a wide range of fields, professional practice is being transformed by the increasing influence of digital analytics: the massive volumes of big data, and software algorithms that are collecting, comparing and calculating that data to make predictions and even decisions. Researchers in a number of social sciences have been calling attention to…

  17. Contemporary Privacy Theory Contributions to Learning Analytics

    ERIC Educational Resources Information Center

    Heath, Jennifer

    2014-01-01

    With the continued adoption of learning analytics in higher education institutions, vast volumes of data are generated and "big data" related issues, including privacy, emerge. Privacy is an ill-defined concept and subject to various interpretations and perspectives, including those of philosophers, lawyers, and information systems…

  18. Analytic Solutions of the Vector Burgers Equation

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Schmahl, Edward J.; Musielak, Z. E.

    1996-01-01

    The well-known analytical solution of Burgers' equation is extended to curvilinear coordinate systems in three dimensions by a method that is much simpler and more suitable to practical applications than that previously used. The results obtained are applied to incompressible flow with cylindrical symmetry, and also to the decay of an initially linearly increasing wind.

  19. Putting an Ethical Lens on Learning Analytics

    ERIC Educational Resources Information Center

    West, Deborah; Huijser, Henk; Heath, David

    2016-01-01

    As learning analytics activity has increased, a variety of ethical implications and considerations have emerged, though a significant research gap remains in explicitly investigating the views of key stakeholders, such as academic staff. This paper draws on ethics-related findings from an Australian study featuring two surveys, one of…

  20. Analytic technique: a reconsideration of the concept.

    PubMed

    Grossman, Lee

    2014-06-01

    Lipton's 1977 paper on "The Advantages of Freud's Technique …" is taken as a starting point to reconsider the concept of analytic technique itself. How an analyst works may be construed in terms of rules of the analyst's behavior, of principles underlying the analyst's behavior, or of the analyst's attitude that shapes how he or she acts on technical principles. The author argues that the analyst's attitude while acting on technical principles is an integral part of analytic praxis, and that it is a function of the analyst's character. As such, it is not generalizable as a "technique," yet it is often the case that an analyst will rationalize his or her character traits and think of them as a reproducible "technique." This has important consequences for teaching and supervising. The author suggests that the very idea of a reproducible analytic technique may inhibit the analyst's development of his or her own analytic voice. Other aspects of theorizing may also represent a conceptual confusion between what is personal and characterological and what is generalizable.

  1. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1998-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  2. Temporal Learning Analytics for Adaptive Assessment

    ERIC Educational Resources Information Center

    Papamitsiou, Zacharoula; Economides, Anastasios A.

    2014-01-01

    Accurate and early predictions of student performance could significantly affect interventions during teaching and assessment, which gradually could lead to improved learning outcomes. In our research, we seek to identify and formalize temporal parameters as predictors of performance ("temporal learning analytics" or TLA) and examine…

  3. ESTIMATING UNCERTAINITIES IN FACTOR ANALYTIC MODELS

    EPA Science Inventory

    When interpreting results from factor analytic models as used in receptor modeling, it is important to quantify the uncertainties in those results. For example, if the presence of a species on one of the factors is necessary to interpret the factor as originating from a certain ...

  4. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING...

  5. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING...

  6. 7 CFR 93.4 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 93.4 Section 93.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING...

  7. 7 CFR 93.4 - Analytical methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Analytical methods. 93.4 Section 93.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING...

  8. Biodiesel Analytical Methods: August 2002--January 2004

    SciTech Connect

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  9. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    2001-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  10. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1999-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  11. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    1996-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  12. Constraint-Referenced Analytics of Algebra Learning

    ERIC Educational Resources Information Center

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  13. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  14. Analytical Methods for Trace Metals. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…

  15. A Data Protection Framework for Learning Analytics

    ERIC Educational Resources Information Center

    Cormack, Andrew

    2016-01-01

    Most studies on the use of digital student data adopt an ethical framework derived from human-subject research, based on the informed consent of the experimental subject. However, consent gives universities little guidance on using learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses…

  16. 40 CFR 141.89 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.89 Analytical methods. (a) Analyses for lead, copper, pH, conductivity, calcium, alkalinity, orthophosphate, silica, and...

  17. 40 CFR 141.89 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.89 Analytical methods. (a) Analyses for lead, copper, pH, conductivity, calcium, alkalinity, orthophosphate, silica, and...

  18. Effectiveness of Analytic Smoothing in Equipercentile Equating.

    ERIC Educational Resources Information Center

    Kolen, Michael J.

    1984-01-01

    An analytic procedure for smoothing in equipercentile equating using cubic smoothing splines is described and illustrated. The effectiveness of the procedure is judged by comparing the results from smoothed equipercentile equating with those from other equating methods using multiple cross-validations for a variety of sample sizes. (Author/JKS)

  19. Analyticity and Features of Semantic Interaction.

    ERIC Educational Resources Information Center

    Steinberg, Danny D.

    The findings reported in this paper are the result of an experiment to determine the empirical validity of such semantic concepts as analytic, synthetic, and contradictory. Twenty-eight university students were presented with 156 sentences to assign to one of four semantic categories: (1) synthetic ("The dog is a poodle"), (2) analytic…

  20. Resilience: A Meta-Analytic Approach

    ERIC Educational Resources Information Center

    Lee, Ji Hee; Nam, Suk Kyung; Kim, A-Reum; Kim, Boram; Lee, Min Young; Lee, Sang Min

    2013-01-01

    This study investigated the relationship between psychological resilience and its relevant variables by using a meta-analytic method. The results indicated that the largest effect on resilience was found to stem from the protective factors, a medium effect from risk factors, and the smallest effect from demographic factors. (Contains 4 tables.)