Science.gov

Sample records for anti-stokes raman spectroscopy

  1. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  2. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement

    SciTech Connect

    Singh, J.P.; Yueh, Fang-Yu

    1993-10-01

    The Coherent anti-Stokes Raman Spectroscopy system (CARS) has been developed as a laser-based, advanced, combustion-diagnostic technique to measure temperature and major species concentration. Principles of operation, description of the system and its capabilities, and operational details of this instrument are presented in this report.

  3. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  4. Detection of Neutral Species in Silane Plasma Using Coherent Anti-Stokes Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu; Kajiyama, Koichi; Moro, Norio; Sajiki, Kazuaki

    1983-01-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) has been employed for the first time to investigate silane (SiH4) glow-discharge plasma. By measuring ν1 vibrational line of silane as a function of position between the two electrodes, spatial distribution of silane (number density) in the (bulk) plasma has been determined for various gas pressures. It has been demonstrated that CARS is an excellent diagnostic tool for a chemically-active plasma such as silane-based glow discharge.

  5. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  6. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-06-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  7. Coherent Anti-Stokes Raman Spectroscopy of Radio-Frequency Discharge Plasmas of Silane and Disilane

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-01-01

    Coherent anti-Stokes Raman spectroscopy has been employed for the diagnosis of rf discharges of silane (SiH4) and disilane (Si2H6). The signal intensities from silane and disilane have been measured as a function of time after switching on the rf power supplied to SiH4 and Si2H6 gas in a closed reaction chamber. From this measurement, the loss rates of silane and disilane have been determined directly as functions of the rf-power density and gas pressure for the first time. The rate of formation of SiH4 in disilane discharge plasmas has also been determined.

  8. Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Cutler, Andrew D.

    2010-01-01

    WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature.

  9. Single pulse phase-control interferometric coherent anti-StokesRaman scattering spectroscopy (CARS)

    SciTech Connect

    Lim, Sang-Hyun; Caster, Allison G.; Leone, Stephen R.

    2005-09-28

    In coherent anti-Stokes Raman scattering spectroscopy (CARS) experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarization- and phase-controlled pulse shaping technique, the relative phase between the resonant and non-resonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imaginary parts of the background-free resonant CARS spectrum are measured via spectral interferometry between the resonant and non-resonant signals from the same sample. The resonant signal is amplified significantly by homodyne mixing with the non-resonant signal as a local oscillator, greatly improving the detection limit.

  10. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  11. Low-concentration chemical sensing using surface-enhanced coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Xia; Sinyukov, Alexander; Traverso, Andrew; Veronine, Dmitri; Wang, Kai; Xia, Hui; Yang, Wenlong; Yuan, Luqi; Sokolov, Alexei; Scully, Marlan

    2010-10-01

    Measurements of surface enhanced coherent anti-Stokes Raman spectra (CARS) of cyclohexane are carried out. Random aggregates of gold nanoparticles for field enhancement were deposited on a glass substrate and were characterized using atomic force microscopy (AFM). Surface enhancement of the CARS signal by gold nanoparticles is observed. This technique can be used to detect low amounts of chemicals with a higher sensitivity compared to the conventional surface-enhanced Raman spectroscopy (SERS). The lowest detected concentration of cyclohexane in a thin film of methanol was 1%. However, it was not possible to detect any signal from the same sample of cyclohexane without gold nanoparticles using conventional CARS technique. Therefore, surface enhancement is necessary to achieve higher spectroscopy sensitivity. Further studies of nanostructure-enhanced electrical fields are required to quantitatively understand the observed effects and will be performed in the future.

  12. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    SciTech Connect

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-05-15

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm{sup -1} increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  13. Molecular Orientation Analysis of Alkyl Methylene Groups from Quantitative Coherent Anti-Stokes Raman Scattering Spectroscopy.

    PubMed

    Zhang, Chi; Wang, Jie; Jasensky, Joshua; Chen, Zhan

    2015-04-16

    Quantitative data analysis in coherent anti-Stokes Raman scattering (CARS) spectroscopy is important for extracting molecular structural information. We developed a method to derive molecular tilt angle with respect to the surface normal based on quantitative CARS spectral analysis. We showed that the tilt angle of methylene alkyl chains on a surface can be directly obtained from the CH2 symmetric/asymmetric peak ratio in a CARS spectrum. The lipid alkyl chain tilt angle from a lipid monolayer was measured to be ∼0° and was verified by sum frequency generation spectroscopy, which probes the orientations of the lipid methyl end groups. The tilt angle of a silane monolayer alkyl chain was derived to be ∼35°, which agrees with the theoretical prediction. This method is submonolayer sensitive and can also be used to interpret polarization-dependent signals in CARS microscopy. It can be applied to elucidate detailed molecular structure from CARS spectroscopic and microscopic measurements.

  14. Spontaneous Raman and Coherent Anti-Stokes Raman Spectroscopy of Infrared Multiphoton-Excited Molecules.

    NASA Astrophysics Data System (ADS)

    Chen, Kuei-Hsien

    This thesis is a study of infrared multiphoton excitation using spontaneous and coherent anti-Stokes Raman spectroscopy. The spontaneous Raman measurements provide information on the intramolecular vibrational energy distribution over the different modes. This information is complemented by the CARS measurements which make it possible to perform state-specific studies of the vibrational and rotational distribution. For SF_6, the time-resolved spontaneous Raman measurements show complete equilibrium of energy from the pump mode to other vibrational modes. In contrast, for smaller molecules such as CF_2 Cl_2, a nonthermal energy distribution is observed after excitation. These measurements therefore disprove the general belief that the intramolecular energy distribution in infrared multiphoton molecules is always in equilibrium. The CARS measurements on bulk OCS provide values for the anharmonicities and for the energy transfer rates between modes. In addition the spectra show a very fast relaxation of the vibrational energy within the nu_2 mode. For SO_2 , the CARS measurements show that it is the nu_1 symmetric stretching mode and not the overtone excitation of the nu_2 bending mode that is pumped by the CO_2 laser. Moreover, it is shown that the hot bands of SO_2 have been incorrectly assigned up to now. Corrected values for the anharmonicities are given. In the second half of the thesis, a pulsed supersonic molecular beam is added to the infrared multiphoton excitation study. Combined with the state-specific CARS technique, the collisionless and internally cooled molecules in the beam open the door to a more detailed study of the excitation process. Pure rotational CARS is used to study the change in rotational distribution of ethylene due to infrared excitation in the beam. The appearance of rotational holes reveal which rotational states are pumped by the CO _2 laser. For OCS the evolution of the overtone population into a thermal distribution is studied

  15. Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dogariu, A.; Goltsov, A.; Pestov, D.; Sokolov, A. V.; Scully, M. O.

    2008-02-01

    We demonstrate a realistic method for detection of anthrax-type spores in real time based on their chemical fingerprints using coherent anti-Stokes Raman scattering. Specifically, we demonstrate that coherent Raman scattering can be used to successfully identify spores with high accuracy and high selectivity in less than 50ms.

  16. Silane thermometry in radio-frequency discharge plasma by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-03-01

    The rotational temperature of silane molecules in a flowing gas as well as in a radio-frequency discharge plasma of silane has been determined by the analysis of its coherent anti-Stokes Raman spectra. The ν1 Q-band coherent anti-Stokes Raman spectra of silane have been measured under different conditions such as discharge off, discharge on, and electrode heating, and fitted to theoretically calculated curves for various rotational temperatures using a nonlinear least-squares method. The results have shown that discharge power as well as electrode heating increase the rotational temperature of SiH4.

  17. Coherent anti-Stokes Raman spectroscopy temperature measurements in a hydrogen-fueled supersonic combustor

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jarrett, Olin, Jr.; Antcliff, Richard R.; Northam, G. B.; Cutler, Andrew D.; Taylor, David J.

    1993-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) thermometry has been used to obtain static temperature cross sections in a three-dimensional supersonic combustor flowfield. Data were obtained in three spanwise planes downstream of a single normal fuel injector which was located downstream of a rearward-facing step. The freestream flow was nominally Mach 2 and was combustion heated to a total temperature of 1440 K (yielding a static temperature of about 800 K in the freestream) to simulate the inflow to a combustor operating at a flight Mach number of about 5.4. Since a broadband probe laser was used an instantaneous temperature sample was obtained with each laser shot at a repetition rate of 10 Hz. Thus root-mean-square (rms) temperatures and temperature probability density functions (pdf's) were obtained in addition to mean temperatures.

  18. Investigation of a simulated tritium plasma using Coherent Anti-Stokes Raman Spectroscopy

    SciTech Connect

    Siwecki, S.A.; Dosser, L.R.

    1989-11-30

    The production of T{sup {minus}} in a tritium beta plasma occurs when a thermal electron and a tritium molecule undergo a dissociative attachment reaction. A measurement of the T{sup {minus}} concentration in tritium indicated that it was high, but further analysis showed this result to be inconclusive. It was then suggested that a high T{sup {minus}} concentration could arise if tritium molecules undergoing dissociative attachment were vibrationally excited. The reaction rate for such a process is orders of magnitude higher when vibrationally excited molecules are involved. Both the thermal electron and the vibrationally excited molecules are a result of the energy supplied by the beta decay of tritium. A search for the presence of vibrationally excited molecules in a simulated tritium plasma was undertaken using Coherent Anti-Stokes Raman Spectroscopy. The results showed no presence of vibrationally excited molecules and therefore did not support the foregoing hypothesis. 13 refs., 10 figs.

  19. Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.

    1985-10-01

    High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.

  20. Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser.

    PubMed

    Hahn, J W; Park, C W; Park, S N

    1997-09-20

    We develop a modeless dye laser for broadband coherent anti-Stokes Raman spectroscopy (CARS) and investigate the operational characteristics of the modeless laser. The energy efficiency of the modeless laser is 6%, and the beam divergence is 0.65 mrad. We construct a compact movable CARS system with the modeless laser and a graphite tube furnace to assess the accuracy of the CARS temperature. It is found that the difference between the averaged CARS temperature and the radiation temperature measured with an optical pyrometer is <2% at a temperature range from 1000 to 2400 K. We also measure the averaged CARS temperature drift owing to the variation of the spectral distribution of the modeless laser, which is <1.5% during 5 h of operation. PMID:18259536

  1. Pulsed supersonic molecular-beam coherent anti-Stokes Raman spectroscopy of C2H2

    NASA Technical Reports Server (NTRS)

    Duncan, M. D.; Byer, R. L.; Osterlin, P.

    1981-01-01

    A high-resolution coherent anti-Stokes Raman spectrum of C2H2 in a pulsed molecular beam was obtained and the resolved Q-branch spectrum was used to study the properties of the expansion. Cluster formation limited the minimum observed rotational temperature in the pure-acetylene expansion to 30 K.

  2. Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi I.; Yakovlev, Vladislav V.; Sokolov, Alexei V.; Scully, Marlan O.

    2005-11-01

    Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy is used for detection of bacterial spores in aqueous solution. Polarization CARS spectroscopy is employed to suppress the non-resonant background. CARS spectrum recorded in the spectral region from 700 to 1900 cm-1 exhibits all the characteristic features of spontaneous Raman spectrum taken for a solid powder and resembles that one of the dipicolinic acid, which is considered to be the major component of bacterial spores, including anthrax.

  3. Coherent anti-Stokes Raman spectroscopy - Spectra of water vapor in flames

    NASA Technical Reports Server (NTRS)

    Hall, R. J.; Shirley, J. A.; Eckbreth, A. C.

    1979-01-01

    The results of experimental measurements of the coherent anti-Stokes Raman spectra of water vapor in flames are reported. A pulsed, frequency-doubled neodymium laser was used to supply the pump beam and to pump a dye laser to provide a broadband Stokes beam at 6600 A. Spectra were obtained in the postflame region of a premixed methane-air flame in the Raman frequency shift region of the symmetric stretch mode (3651.7 kaysers) at an approximate temperature of 1675 K. A theoretical calculation of the coherent anti-Stokes Raman spectrum of water vapor at this temperature was made, taking into account only isotropic Q-branch transitions, and using the energy level data of Floud et al. (1976). The theoretical prediction is shown essentially to reproduce all qualitative features of the experimental spectrum, and to exhibit a strong temperature dependence.

  4. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration

    PubMed Central

    Moura, Catarina Costa; Tare, Rahul S.; Oreffo, Richard O. C.; Mahajan, Sumeet

    2016-01-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  5. Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, Karina; Kiefer, Johannes

    2016-05-01

    The simultaneous determination of multiple parameters is the key in the characterization of processes and materials that change with time. In combustion environments, the combined measurement of temperature and chemical composition is particularly desirable. In the present work, possible approaches for the simultaneous application of spontaneous Raman scattering (RS) and coherent anti-Stokes Raman scattering (CARS) spectroscopy are proposed and analyzed. While RS provides concentration information of all major species, vibrational CARS is a highly accurate thermometry tool at flame conditions. Five experimentally feasible CARS-RS schemes are identified and discussed with respect to signal intensity, measurement volume, and experimental complexity. From this analysis, one scheme was found to be the best option. It utilizes a broadband dye laser centered at 852 nm as a pump and the fundamental 1064-nm radiation of the Nd:YAG as Stokes laser. The third harmonic is used as CARS probe and RS laser. The experimentally most elegant scheme replaces the third harmonic in the above scheme by the second harmonic hence involving the smallest number of optical components in the setup.

  6. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  7. Tracking Bulk and Interfacial Diffusion Using Multiplex Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy.

    PubMed

    Bailey, Karen A; Schultz, Zachary D

    2016-07-14

    Multiplex coherent anti-Stokes Raman scattering correlation spectroscopy (CARS-CS) is shown as a label-free, chemically specific approach for monitoring the molecular mobility of particles in solution and at interfaces on the millisecond time scale. The CARS spectral range afforded by broadband excitation facilitates a quantitative measurement for the number of particles in the focal volume, whereas the autocorrelation of spectral data elucidates dynamic events, such as diffusion. The measured diffusion coefficients for polymer beads ranging from 100 nm to 1.1 μm in diameter are on the order of 10(-8)-10(-9) cm(2)/s, in good agreement with predicted Stokes-Einstein values. Diffusion at different interfaces shows particles are fastest in bulk medium, marginally slower at the liquid/glass interface, and 1.5-2 times slower rate at the air/liquid interface. Multivariate curve resolution analysis of distinct spectral features in multiplex CARS measurement distinguishes different composition lipid vesicles in a mixture diffusing through the focal volume. The observed diffusion is consistent with results obtained from single particle tracking experiments. This work demonstrates the utility of multiplex CARS correlation spectroscopy for monitoring particle diffusion from different chemical species across diverse interfaces. PMID:27322504

  8. Models for coherent anti-Stokes Raman scattering in Raman devices and in spectroscopy

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Debaes, Christof; Thienpont, Hugo

    2010-06-01

    We present our latest findings on the nature and behavior of CARS in active Raman devices, such as Raman converters and Raman lasers, which operate at exact Raman resonance. We demonstrate that the CARS mechanism in these devices actually comprises two opposite and competing interactions, which respectively create and annihilate phonons in the Raman-active medium. Furthermore, we show that both the phase mismatch of the CARS process and the level of pump depletion determine which of these two interactions takes place along the fields' propagation path in the Raman devices. Finally, we compare this CARS model with the model used by the CARS spectroscopy community, and explain that the difference between both models is mainly due to the fact that "CARS" in the context of Raman devices refers to Ramanresonant four-wave mixing, whereas "CARS" in the context of spectroscopy often denotes a two-step Raman interaction.

  9. CARS (coherent anti-Stokes Raman spectroscopy) detection of gaseous species for diamond deposition process

    SciTech Connect

    Roman, W.C.; Eckbreth, A.C. )

    1989-01-01

    In order to understand the complicated chemical and physical processes that occur during the deposition of hard face coatings such as diamond, diagnostics that are remote, nonintrusive and sensitive to potential chemical species are necessary. One particularly promising approach is coherent anti-Stokes Raman spectroscopy (CARS) useful for measurements of temperature and species concentrations. Results to be described will include CARS measurements on a PACVD reactor used for depositing high quality diamond films. A mixture of acetylene (C{sub 2}H{sub 2}) and Argon, tested over a range of total pressures down to 0.1 Torr, was used to calibrate the CARS system. With the existing CARS system, detectivity of C{sub 2}H{sub 2} to 5 mtorr was demonstrated. This paper describes details of the scanned narrowband colinear CARS system and examples of CARS spectra obtained for CH{sub 4} and C{sub 2}H{sub 2} species under rf PACVD diamond deposition conditions and also using an alternate filament assisted technique.

  10. Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

    2005-01-01

    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  11. Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Weikl, M. C.; Tedder, S. A.; Seeger, T.; Leipertz, A.

    2010-10-01

    High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography.

  12. Coherent anti-Stokes Raman spectroscopy of shock-compressed liquid oxygen

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1989-01-01

    Vibrational spectra of liquid oxygen, shock compressed to several high-pressure/high-temperature states, were obtained using single- pulse multiplex coherent anti-Stokes Raman scattering (CARS). The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for the CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. Up to the maximum shock pressure of 9.6 GPa, the vibrational frequencies were found to increase monotonically with pressure. An empirical fit, which could be used as a pressure/temperature/frequency calibration standard, showed that the Raman frequency shifts could be accurately described by linear pressure and temperature dependences. Above /approx/9 GPa, the liquid oxygen opacity at 632.8 nm increased rapidly, presumably because of proximity (collision)-induced absorption. Calculations showed that the induced absorption did not resonantly enhance the CARS spectra, but did attenuate the laser beams and the CARS signals. 33 refs., 2 figs., 1 tab.

  13. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  14. Ultra-low frequency Stokes and anti-Stokes Raman spectroscopy at 785nm with volume holographic grating filters

    NASA Astrophysics Data System (ADS)

    Carriere, James T.; Havermeyer, Frank

    2012-01-01

    We report the first results of ultra-low frequency Stokes and anti-Stokes Raman spectra at 785nm showing clearly resolved frequency shifts down to 10cm-1 from the excitation line, using commercially available ultra-narrow band notch and ASE suppression filters, and a single stage spectrometer. Near infra-red (NIR) wavelengths are of particular interest for Raman spectroscopy due to the reduced fluorescence observed for most materials. Previously reported attempts to produce ultra-low frequency Raman spectra at 785nm with volume holographic notch filters were largely unsuccessful, due to the fact that these ultra-narrow line notch filters and the wavelength of the laser must be very well matched to be effective. Otherwise, if the filters have any manufacturing errors or the laser wavelength is unstable, insufficient suppression of the Rayleigh scattered light will allow it to overwhelm the Raman signal. Recent improvements in both notch and ASE filters, wavelength-stabilized lasers, and optical system design have enabled low-frequency Raman spectra to be successfully taken at 785nm for several typical materials. Two ultra-narrow line notch filters formed as volume holographic gratings (VHGs) in glass with individually measured optical densities of 4.5 were used to block the Rayleigh scattered light from a matched VHG wavelength stabilized laser. Five discrete peaks below 100cm-1 were simultaneously observed for sulfur in both the Stokes and anti-Stokes regions at 28, 44, 52, 62, and 83cm-1. With no degradation in filter performance over time and extremely narrow spectral transition widths of less than 10cm-1, this relatively simple system is able to make ultra-low frequency Stokes and anti-Stokes Raman measurements at a fraction of the size and cost of traditional triple monochromator systems.

  15. Coherent Anti-Stokes Raman Spectroscopy (cars) Gas Temperature Measurements in a Monodisperse Combusting Droplet Stream.

    NASA Astrophysics Data System (ADS)

    Zhu, Junyong

    1991-06-01

    This dissertation describes a coherent anti-Stokes Raman spectroscopy (CARS) instrument for spatially and temporally resolved non-intrusive temperature measurements in combustion environments. It presents a detailed description of the CARS system development and standard procedures to perform CARS gas temperature measurements,and procedures to analyze the CARS spectra for temperature determination. The dissertation also applies the CARS apparatus developed to a single monodisperse methanol droplet stream flame to demonstrate synchronous CARS temperature measurements. The measurements correlate the temperature field with the droplet position and give the local characteristics of the combusting droplet stream thermal field. These measurements are not possible with conventional thermal probes due to the perturbation caused by the probes and the poor temporal and spatial resolution. These CARS measurements are the first known non-intrusive characterization of the local temperature field near burning droplets. The experiments use a 50 μm diameter nozzle vibrated by a piezoelectric crystal to generate a monodisperse droplet stream with a droplet diameter of about 150 μm and droplet-to-droplet spacing of 10 droplet diameters. A frequency divider divides the crystal vibration frequency of 10 kHz 1000 times to synchronize the CARS laser firing (~ 10 Hz) with the droplet generation process. The results show that there is a small thermal wake behind each droplet in the stream. The temperature profile measured radially outward from the droplet has a local minimum near the droplet surface, rises to a maximum at about 7 droplet diameters away, and then falls to room temperature at a radial distance of 15 mm (100 droplet diameters). The temperature profile measured between two adjacent droplets on the stream axis is nearly flat, suggesting that individual flames do not surround each droplet. The local effects due to the presence of droplets completely disappear about 15 droplet

  16. Coherent anti-Stokes Raman spectroscopy of shock-compressed liquid carbon monoxide

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D. )

    1991-10-15

    Vibrational spectra of liquid carbon monoxide shock compressed to several high pressure/high temperature states were recorded using single-pulse multiplex coherent anti-Stokes Raman scattering. Vibrational frequencies, third-order suceptibility ratios, and linewidths are reported for the fundamental and first excited-state transition. The observed vibrational frequency shift with shock pressure was substantially less than that observed previously in nitrogen, implying a significant difference in the details of their inter- and intramolecular potentials. The transition intensity and linewidth data suggest that thermal equilibrium of the vibrational levels is attained in less than 10 ns at these shock pressures, and the vibrational temperatures obtained are comparable to calculated equation-of-state temperatures. The measured linewidths suggest that the vibrational dephasing time decreased to {similar to}2 ps at our highest pressure shock state.

  17. Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval

    NASA Astrophysics Data System (ADS)

    Camp, Charles H., Jr.; Lee, Young Jong; Cicerone, Marcus T.

    2016-04-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download.

  18. Diagnostics of a capillary discharge of a CO2 waveguide laser by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vakhterov, A. A.; Iliukhin, A. A.; Konev, Iu. B.; Lipatov, N. I.; Pashinin, P. P.

    1985-01-01

    Experimental results are reported from coherent anti-Stokes Raman spectroscopy (CARS) diagnostic studies of capillary discharge in the CO2:N2:He = 1:1:8 working mixture of a CO2 waveguide laser. The CARS scans were used to characterize the translational temperature of the gas and the vibrational temperatures of the discharge plasma components. The data are vital for identifying anharmonic states which reduce the laser power and working mixture lifetime. Data are furnished on the translational temperature and vibrational temperature as functions of the capillary radius. CARS is concluded to be a valid technique for studying the distribution of pump power among the degrees of freedom of the working mixture components, even when dissociation is occurring.

  19. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  20. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Kinnius, Paul J.; Lucht, Robert P.; Gord, James R.

    2008-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (∼85 fs) Stokes and pump beams is used as a measure of gas-phase temperature. This initial frequency-spread dephasing rate of the Raman coherence is completely independent of collisions and depends only on the frequency spread of the Raman transitions at different temperatures. A simple theoretical model based on the assumption of impulsive excitation of Raman coherence is used to extract temperatures from time-resolved fs-CARS experimental signals. The extracted temperatures from fs-CARS signals are in excellent agreement with the theoretical temperatures calculated from an adiabatic equilibrium calculation. The estimated absolute accuracy and the precision of the measurement technique are found to be ±40 K and ±50 K, respectively, over the temperature range 1500-2500 K.

  1. Rotational coherent anti-Stokes Raman spectroscopy (CARS) applied to thermometry in high-pressure hydrocarbon flames

    SciTech Connect

    Vestin, Fredrik; Sedarsky, David; Collin, Robert; Alden, Marcus; Linne, Mark; Bengtsson, Per-Erik

    2008-07-15

    Dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) has been investigated for thermometry under high-pressure and high-temperature conditions, in the product gas of fuel-lean hydrocarbon flames up to 1 MPa. Initial calibration measurements made in nitrogen, oxygen, and air, at pressures up to 1.55 MPa and temperatures up to 1800 K, showed good agreement between experimental and theoretical spectra. In the high-pressure flames, high-quality single-shot spectra were recorded in which nitrogen lines dominated, and peaks from CO{sub 2} and O{sub 2} were also visible. A spectral model including the species N{sub 2}, CO{sub 2}, and O{sub 2}, as well as the best available Raman linewidth models for flame thermometry, were used to evaluate the experimental spectra. Experimental problems as well as considerations related to the spectral evaluation are discussed. This work demonstrates the significant potential of DB-RCARS thermometry for applications in high-pressure and high-temperature environments. (author)

  2. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    SciTech Connect

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  3. Study of a nitriding plasma using coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Lefebvre, M.

    1987-01-01

    The rotational and vibrational distribution of the first levels of excitation of N2 molecular system were measured using Raman diffusion in the discharge of a nitriding plasma. The nitrided specimens were analyzed using metallography and X-ray diffraction.

  4. Coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence (LIF) measurements in a rocket engine plume

    SciTech Connect

    Williams, D.R.; McKeown, D.; Porter, F.M.; Baker, C.A.; Astill, A.G.; Rawley, K.M. . Combustion Dept. Epsilon Research, Buckinghamshire Defence Research Agency, Fort Halstead, Kent )

    1993-07-01

    Coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence (LIF) measurements in the plume of a liquid-fueled rocket engine are compared with the results predicted by a mathematical model of the plume. At most positions, high signal success rates were obtained. Success rates were lower during initial runs, while the system was optimized for operation in the rocket environment, and on axis close to the nozzle where the probing laser beams were severely deflected by the plume. For each position studied, the spectra taken were fitted for temperature and a mean temperature and standard deviation calculated from the results. The mean temperatures were compared with predicted temperature values obtained from a marching procedure parabolic computer program. CARS spectra from water vapor in the plume were also recorded and fitted for temperature and concentration. Excellent agreement between theory and experiment was obtained. Results showed a strong positive correlation between water vapor concentration and temperature at each measurement position--some contributions to this may arise from similarities of the effects of temperature and concentration on spectral shape. However, shear layer mixing and entrainment of cold gas into the plume may significantly affect the composition and temperature of the plume gases. LIF was used to visualize the plume structure. Imaging of the flow field was performed by detecting sodium fluorescence, after the oxidant was seeded with sodium. Images were obtained without excessively high background levels and large fluctuations in the plume structure were observed. This is consistent with the observations from the CARS experiments.

  5. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N(2) thermometry.

    PubMed

    Plath, I; Meier, W; Stricker, W

    1992-01-01

    The application of an unintensified backside-illuminated CCD for the acquisition of broadband single-pulse coherent anti-Stokes Raman spectroscopy (CARS) spectra is demonstrated. This CCD shows a quantum efficiency 5 times higher than a front-illuminated CCD and offers significant advantages compared with intensified linear photodiode array detectors generally used for single-pulse CARS thermometry. It overcomes the main drawbacks of the intensified linear photodiode array detector in single-pulse CARS N(2) spectroscopy: nonlinearity, limited dynamic range, and image persistence. A method for extending the dynamic range is demonstrated in a highly turbulent flame. PMID:19784236

  6. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N2 thermometry

    NASA Astrophysics Data System (ADS)

    Plath, I.; Meier, W.; Stricker, W.

    1992-01-01

    The application of an unintensified backside-illuminated CCD for the acquisition of broadband single-pulse coherent anti-Stokes Raman spectroscopy (CARS) spectra is demonstrated. This CCD shows a quantum efficiency 5 times higher than a front-illuminated CCD and offers significant advantages compared with intensified linear photodiode array detectors generally used for single-pulse CARS thermometry. It overcomes the main drawbacks of the intensified linear photodiode array detector in single-pulse CARS N2 spectroscopy: nonlinearity, limited dynamic range, and image persistence. A method for extending the dynamic range is demonstrated in a highly turbulent flame.

  7. Nonequilibrium vibrational excitation of H2 in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V. A.; De Pascale, O.

    2005-07-01

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient γH of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  8. Nonequilibrium vibrational excitation of H{sub 2} in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    SciTech Connect

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V.A.; De Pascale, O.

    2005-07-15

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient {gamma}{sub H} of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  9. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K

    NASA Astrophysics Data System (ADS)

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-01

    Experiments were performed in the temperature range of 294-1143 K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

  10. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  11. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  12. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  13. Coherent Anti-Stokes Raman scattering with reflective optics

    NASA Technical Reports Server (NTRS)

    Antcliff, R. R.; Jarrett, O., Jr.

    1983-01-01

    Attention is given to the implementation of a novel reflective optics configuration in which the lens normally employed for focusing and crossing the input laser beams in Coherent Anti-Stokes Raman spectroscopy (CARS) is replaced by a spherical mirror, allowing large crossing angles to be obtained with a single focusing device and permitting the laser generation and collection equipment to be located on one side of the sample region. The experimental results obtained demonstrate the feasibility of mirror-based CARS in remote combustion diagnostics.

  14. A shock pressure induced phase transition from liquid to solid of cyclohexane using time-resolved coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oguchi, Shiro; Sato, Akira; Kondo, Ken-Ichi; Nakamura, Kazutaka

    2007-06-01

    The liquid-solid phase transition of cyclohexane has been studied under laser shock compression up to 3.8 GPa by using nanosecond time-resolved Coherent Anti-stokes Raman Spectroscopy (CARS) and laser shock compression. The shock wave is generated by irradiation of 10 ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by optically recording velocity interferometer system (ORVIS). Higher frequency shift of the Raman peaks (ring-breathing, C-C stretching, and CH2 twist modes) was observed at high pressure. At 3.8 GPa, splitting of the peak (CH2 twist mode) due to change in symmetry of surrounding molecules, which corresponds to phase transition to solid IV, was observed at delay time of 20 ns. Rapid liquid-solid phase transition has been directly observed to occur within 20 ns.

  15. Coherent anti-Stokes Raman scattering microscopy in a microcavity

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2007-06-01

    The combination of nonlinear spectroscopy and cavity QED is a stimulating field of research [see, for example, S. M. Spillane et al., Nature 415, 621 (2002)]. In this work, coherent anti-Stokes Raman scattering (CARS) taking place within a microcavity with parallel mirrors, is studied. The interest stems from the fact that CARS is a powerful nonlinear spectroscopic technique, particularly useful in imaging of microscopic samples [A. Zumbusch et al., Phys. Rev. Lett. 82, 4142 (1999)]. The theory of CARS microscopy applied to a sample placed within the microcavity is developed and the calculated CARS power in comparison with its free-space value shows the characteristic oscillation between inhibition and enhancement. If d and lambda indicate the cavity spacing and the anti-Stokes wavelength, inhibition is then found for d smaller than lambda and becomes complete only for microscope objectives operated in dry conditions. It is also found that the first enhancement at d=lambda is more relevant for microscopes with smaller numerical apertures. Higher numerical apertures, instead, reveal weaker cavity effects as a consequence of the larger collection efficiency.

  16. Coherent anti-Stokes Raman spectra of oxygen atoms in flames.

    PubMed

    Teets, R E; Bechtel, J H

    1981-10-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to detect oxygen atoms (electronic Raman scattering) and oxygen molecules (rotational Raman scattering) in both hydrogen-oxygen and methane-oxygen flames. The high spectral resolution of CARS is useful for distinguishing the oxygen-atom signals from larger nearby rotational Raman signals. Saturation of the molecular CARS signal that is due to stimulated Raman scattering was observed. This effect limits the sensitivity of the CARS method. PMID:19710736

  17. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    SciTech Connect

    Niu, Kai; Lee, Soo-Y.

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  18. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    NASA Astrophysics Data System (ADS)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  19. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications.

    PubMed

    Krafft, Christoph; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen

    2012-04-01

    A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research.

  20. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen

    2012-04-01

    A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research.

  1. Stimulated anti-Stokes Raman scattering in microdroplets.

    PubMed

    Leach, D H; Chang, R K; Acker, W P

    1992-03-15

    Stimulated anti-Stokes Raman scattering (SARS) generated by one input beam is observed from CCI(4), ethanol, and water droplets. The first-order SARS intensity is approximately 10(4) times lower than the first-order stimulated-Raman-scattering (SRS) intensity for ethanol droplets. Simultaneous detection of SARS and SRS for water droplets shows an occasional lack of correlation between the SARS and SRS spectra.

  2. BRIEF COMMUNICATIONS: Coherent anti-Stokes Raman scattering by excited ions in a laser plasma

    NASA Astrophysics Data System (ADS)

    Gladkov, S. M.; Zheltikov, Aleksei M.; Koroteev, Nikolai I.; Rychev, M. V.; Fedotov, Andrei B.

    1989-07-01

    The coherent anti-Stokes Raman scattering (CARS) method was used in observation of excited Al II, Al III, In II and N II in an optical breakdown plasma. The feasibility of CARS spectroscopy of multiply charged ions in a laser plasma was established.

  3. Experimental demonstration of mode-selective phonon excitation of 6H-SiC by a mid-infrared laser with anti-Stokes Raman scattering spectroscopy

    SciTech Connect

    Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki

    2013-10-28

    Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.

  4. Cars temperature measurements and stability studies of a d. c. nitrogen discharge. Final report, September 1989-July 1991. [CARS (coherent anti-Stokes Raman spectroscopy)

    SciTech Connect

    Millard, M.

    1991-07-01

    The vibrational and rotational temperatures of a 30-Torr, normal glow N2 gas discharge have been measured using a coherent anti-Stokes Raman spectroscopy system in the folded BOXCARS configuration. The discharge was set up in slowly flowing nitrogen between two plane parallel molybdenum electrodes. Current densities of O.047 A/sq cm were used with an E/N of approximately 50 Td. The nearly wall-less discharge was stabilized using a Macor ceramic cap covering the cathode with a 9-mm circular aperture in the center. Measurements were made at spatially resolved locations within the discharge both axially and radially. Theoretical spectra were fit to experimental data in order to obtain the rotational and vibrational temperatures and the relative populations. A detailed study of the spectral line shape of the dye laser used as the probe beam in the CARS system was carried out using the optogalvanic effect in a Fe-Ne hollow-cathode lamp. The spectral line width and lineshape under differing dye pumping schemes were obtained. These measured line widths were greater than expected and showed a non-Gaussian profile for the probe laser. Stability of the nitrogen discharge was also studied in order to determine the conditions under which the discharge remains stable. Instability was noted visually, in the behavior of the CARS signal and the electrode voltage, both of which showed hysteresis. In order to make way for changes in the system in the future, a new CARS system was designed which will allow study of various gasses under differing discharge conditions.

  5. Time-resolved coherent anti-Stokes Raman spectroscopy (CARS) and the measurement of vibrational spectra in shock-compressed molecular materials

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1990-01-01

    We present the use of coherent anti-Stokes Raman scattering (CARS) in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. 11 refs., 5 figs.

  6. Coherent anti-Stokes Raman scattering imaging under ambient light.

    PubMed

    Zhang, Yinxin; Liao, Chien-Sheng; Hong, Weili; Huang, Kai-Chih; Yang, Huaidong; Jin, Guofan; Cheng, Ji-Xin

    2016-08-15

    We demonstrate an ambient light coherent anti-Stokes Raman scattering microscope that allows CARS imaging to be operated under environmental light for field use. The CARS signal is modulated at megahertz frequency and detected by a photodiode equipped with a lab-built resonant amplifier, then extracted through a lock-in amplifier. The filters in both the spectral domain and the frequency domain effectively blocked the room light contamination of the CARS image. In situ hyperspectral CARS imaging of tumor tissue under ambient light is demonstrated. PMID:27519113

  7. Circularly polarized coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Upputuri, Paul Kumar; Lin, Jian; Gong, Li; Liu, Xiang-Yang; Wang, Haifeng; Huang, Zhiwei

    2013-04-15

    We demonstrate circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) microscopy that significantly suppresses the nonresonant background for high-contrast vibrational imaging. Circularly polarized pump and Stokes fields with opposite handedness are used to excite CARS signal. In this case, theoretically the nonresonant CARS signal and resonant CARS signal from isotropic media will completely vanish, while the resonant CARS signal from anisotropic structures can still exist. This allows CARS imaging of anisotropic samples with enhanced resonant contrast. Furthermore, we performed CP-CARS imaging on fibroin fibers from silkworm silk, and the results confirmed its effectiveness in background suppression. PMID:23595452

  8. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    SciTech Connect

    Farrow, R.L.; Rahn, L.A.

    1985-06-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile.

  9. Measurement of vibrational, gas, and rotational temperatures of H2 (X1 Σg+) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H2 in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2W/cm3 have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H2 CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  10. Vibrational mode deactivation rates for gaseous discharge-excited nitrogen(2) on selected surfaces measured with coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Parish, John Walter, Jr.

    2000-09-01

    The disposal rate of nitrogen molecule internal-mode energy, kv , by deactivation in the presence of various surfaces was studied at low pressure and at approximately room temperature using coherent anti-Stokes Raman spectroscopy (CARS). Deactivation is the process whereby vibrational energy is lost one quantum or a few quanta at a time rather than all at once as in quenching. Deactivation coefficients, γv, or loss probabilities, of vibrationally-excited N2(X1Σg +,v) on gold, Pyrex, Teflon and alloys of aluminum, stainless steel and titanium, were calculated from the wall deactivation rate coefficients for the hot band quantum numbers v = 1 to 4 or 5. Vibration states were populated with a 1.5 cm diameter water-cooled-in- glass positive column discharge where the residence time was estimated to be about 60 ms in the tube. The flow rate and pressure were adjusted to optimize the populations and the observed decay. Subsequently, the excited gas was presented via a source tube to a tubular reactor. For precisely controlled residence times, the excited nitrogen would communicate with the reactor interior surface. Only the gas that had been exposed to the surface was measured upon exit from the reactor by a CARS system in the 3-D BOXCARS configuration. Extensive measurements on Pyrex gave γ 1 values between 2.4 × 10-4 and 6.7 × 10-4 depending on the treatment history of the surface. The values for γ4 ranged from 2.9 × 10-4 for the AMS 4943D alloy of titanium to approximately unity for the AMS 312 stainless steel alloy. The low value for titanium can be attributed to the oxide layer. The variation of kv with v was linear or nearly linear in all cases with slopes lower in most cases than the rate of increase of the vibration-translation V-T exchange rate with v. Direct measurement of rates, in this way, detects losses due to homogeneous gas collisions as well as heterogeneous collisions with the surface. An attempt to extract the true value of γv from the data was

  11. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    PubMed Central

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug delivery vehicles, and contrast agents in vivo. In the quest for superior photostability and bio-compatibility, nanodiamonds (NDs) are considered one of the best choices due to their unique structural, chemical, mechanical, and optical properties. So far, mainly fluorescent NDs have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centers with stable optical properties. Here, we show that single non-fluorescing NDs exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and ND size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of NDs internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively. PMID:25305746

  12. Laser-based diagnostics for coal gasification instrumentation. [Coherent anti-Stokes Raman spectroscopy (CARS), laser induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF)

    SciTech Connect

    Taylor, D.J.; Loree, T.R.; Hartford, A. Jr.; Tiee, J.J.

    1984-01-01

    In this program the investigators have investigated the suitability of a number of optical diagnostic techniques for nonintrusive real-time measurements of species concentrations and temperatures of coal gasification streams. They have identified and evaluated several promising techniques including coherent Raman spectroscopy, laser-induced breakdown spectroscopy, and laser-induced fluorescence. They emphasize that these are complementary, rather than competing, diagnostic technologies, as each can provide a different class of data for gasifier operation. The results of their gasifier field tests and supporting laboratory work on these diagnostic techniques have been summarized and recommendations for continued work on optical diagnostics for coal gasification streams are presented. 12 references, 17 figures.

  13. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    SciTech Connect

    Li, Da; Hong, Pengda; Ding, Yujie J.; Liu, Zhaojun; Wang, Lei; Hua, Ping-Rang; Zhang, De-Long

    2015-07-07

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features.

  14. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    SciTech Connect

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H/sub 2/, rovibrational excitation of H/sub 2/ produced by the reaction H + HBr ..-->.. H/sub 2/ + Br, and Br atom production by photolysis of HBr.

  15. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  16. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  17. Measurement of vibrational, gas, and rotational temperatures of H{sub 2} (X{sup 1} {sigma}{sub g}{sup +}) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    SciTech Connect

    Shakhatov, V.A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H{sub 2} in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2 W/cm{sup 3} have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H{sub 2} CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  18. Cars (coherent anti-Stokes Raman scattering) diagnostics in reacting mixtures

    SciTech Connect

    Valentini, J.J. )

    1989-01-01

    Coherent anti-Stokes Raman scattering (CARS) is a coherent optical variant of the inelastic light scattering process known as the Raman effect. CARS spectroscopy possesses the universality of Raman spectroscopy but with greatly enhanced sensitivity. It is insensitive to background luminescence, can be configured to allow remote measurements, has excellent temporal and spatial resolution, and can provide detailed information on both the chemical composition and physical state of gas, liquid, and solid samples. Because of these desirable attributes CARS has become an important optical diagnostic method, in particular for characterizing combustion media, plasmas, and chemically reacting mixtures. This article provides a brief introduction and overview of such applications of CARS, with a particular emphasis on the last of these.

  19. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    NASA Astrophysics Data System (ADS)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  20. Coherent anti-Stokes Raman scattering microscopy of samples probed with Gaussian volumes.

    PubMed

    Marrocco, Michele

    2008-12-25

    Coherent anti-Stokes Raman scattering (CARS) microscopy is becoming increasingly popular to characterize biochemical samples. Within this context, we show that theoretical analysis can still be accomplished under the simple assumption of Gaussian volumes instead of spatial shapes obtainable from diffraction necessary to describe the tight-focusing condition realized within the focus of microscopes with high numerical apertures. The assumption, common in other physical and chemical spectroscopic techniques based on microscopy (e.g., fluorescence correlation spectroscopy, photon counting histogram) and never applied to CARS, is here used to determine the expression of the anti-Stokes electric field. Contrary to the standard approach resorting to numerical methods, we find that either the field is analytical for certain shapes of the Raman scatterer or the numerical reconstruction is strongly limited. In addition, we examine tests against two typical problems found in the literature, namely, a description of CARS radiation patterns and CARS imaging. With regard to the latter, we remark that the loss of spatial symmetry, the treatment of which is onerous in standard CARS microscopy because of possible separations between the microscope focus and the Raman scatterer, can be handled with ease in the limit of Gaussian volumes. An example is considered for polystyrene beads that are usually employed as test model of a CARS response of relevant biochemical samples. PMID:19093820

  1. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system.

    PubMed

    Bégin, Steve; Burgoyne, Bryan; Mercier, Vincent; Villeneuve, Alain; Vallée, Réal; Côté, Daniel

    2011-01-01

    We present a wavelength-swept coherent anti-Stokes Raman scattering (WS-CARS) spectroscopy system for hyperspectral imaging in thick tissue. We use a strategy where the Raman lines are excited sequentially, circumventing the need for a spectrometer. This fibre laser system, consisting of a pump laser synchronized with a rapidly tunable programmable laser (PL), can access Raman lines over a significant fraction of the high wavenumber region (2700-2950 cm(-1)) at rates of up to 10,000 spectral points per second. To demonstrate its capabilities, we have acquired WS-CARS spectra of several samples as well as images and hyperspectral images (HSI) of thick tissue both in forward and epi-detection. This instrument should be especially useful in providing local biochemical information with surrounding context supplied by imaging. PMID:21559141

  2. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation.

    PubMed

    Tu, Haohua; Boppart, Stephen A

    2014-01-01

    Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring.

  3. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system

    PubMed Central

    Bégin, Steve; Burgoyne, Bryan; Mercier, Vincent; Villeneuve, Alain; Vallée, Réal; Côté, Daniel

    2011-01-01

    We present a wavelength-swept coherent anti-Stokes Raman scattering (WS-CARS) spectroscopy system for hyperspectral imaging in thick tissue. We use a strategy where the Raman lines are excited sequentially, circumventing the need for a spectrometer. This fibre laser system, consisting of a pump laser synchronized with a rapidly tunable programmable laser (PL), can access Raman lines over a significant fraction of the high wavenumber region (2700–2950 cm−1) at rates of up to 10,000 spectral points per second. To demonstrate its capabilities, we have acquired WS-CARS spectra of several samples as well as images and hyperspectral images (HSI) of thick tissue both in forward and epi-detection. This instrument should be especially useful in providing local biochemical information with surrounding context supplied by imaging. PMID:21559141

  4. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.

    PubMed Central

    Weidlich, O; Ujj, L; Jäger, F; Atkinson, G H

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These

  5. Holographic coherent anti-Stokes Raman scattering bio-imaging

    PubMed Central

    Shi, Kebin; Edwards, Perry S.; Hu, Jing; Xu, Qian; Wang, Yanming; Psaltis, Demetri; Liu, Zhiwen

    2012-01-01

    CARS holography captures both the amplitude and the phase of a complex anti-Stokes field, and can perform three-dimensional imaging by digitally focusing onto different depths inside a specimen. The application of CARS holography for bio-imaging is demonstrated. It is shown that holographic CARS imaging of sub-cellular components in live HeLa cells can be achieved. PMID:22808443

  6. Anti-Stokes generation in a continuous-wave Raman laser

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil Kathleen

    The continuous-wave Raman laser system differs from other Raman systems in that it uses cavity enhancement to augment the pump laser source rather than a high-power pulsed laser source. Through interactions of the pump laser with the Raman active medium, all Raman systems can produce both red-shifted, Stokes, emission and blue-shifted, anti-Stokes, emission. Previous, continuous-wave Raman laser systems have focused on the Stokes emission. This dissertation presents theory and data on the anti-Stokes emission. Specifically, it investigates the anti-Stokes mode structure and the emitted power as a function of input pump power, detuning, pressure, and mode combination. In order to be able to compare theory to data, the existing semi-classical CW Raman laser theory is extended to include the possibility that the spatial mode of any of the three fields (pump, Stokes, or anti-Stokes) is not the fundamental spatial mode. Numerical simulations of this theory are used to understand the behavior of the CW Raman system. All the data is compared to the theory, with varying degrees of success. The pump laser used in this research is a frequency-doubled Nd:YAG at 532 nm and the Raman active medium is H2. This combination results in Stokes and anti-Stokes wavelengths of 683 nm and 435 nm, respectively. Five methods were found in this research for increasing the amount of anti-Stokes emitted: increasing the input pump power, detuning from gain line-center of the Stokes emission, increasing the reflectivity of the cavity mirrors at the anti-Stokes wavelength, switching to a higher-order spatial mode, and decreasing the H2 pressure within the Raman cavity. In general, it was found that the higher-order anti-Stokes modes did not agree with a single theoretical spatial mode. Superpositions were formed of multiple theoretical spatial modes giving intensity distribution across the profile similar to the measured profile. Three theoretical spatial mode symmetries were investigated

  7. A note on two-phonon coherent anti-stokes Raman scattering

    SciTech Connect

    Shen, Y. R.

    1981-01-01

    Difference-frequency mixing of two pump waves can in principle excite two coherent phonon waves via the parametric process. Finally, only when the phonon excitation is small can the nonlinear susceptibility of two-phonon coherent anti-Stokes Raman scattering be described as proportional to the product of two Raman tensors.

  8. Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Cui, Meng; Skodack, Joshua; Ogilvie, Jennifer P

    2008-11-01

    We report chemical imaging using Fourier transform coherent anti-Stokes Raman scattering (FTCARS) microscopy. Adding a passively phase-stable local field to amplify the weak FTCARS signal, we also demonstrate interferometric FTCARS microscopy, permitting reduced incident power to be used for imaging. We discuss signal-to-noise considerations and the conditions necessary to effectively suppress background noise, allowing FTCARS microscopy that is limited by the shot noise of the detector. We also discuss differences between the signal-to-noise obtainable by time and frequency domain coherent anti-Stokes Raman scattering (CARS) methods. PMID:19122721

  9. Diagnostics of plasmas by CARS (coherent anti-Stokes Raman scattering)

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Pealat, M.; Taran, J. P.

    Some of the most representative results of the coherent anti-Stokes Raman spectroscopy research program on discharges at ONERA are presented. A very short review or the principles or CARS and of the main instrumental characteristics is first given. The results of an analysis or a magnetic multipole-confined H2 discharge are then shown. The kinetics of rotational and vibrational state populations have been followed in the transient regime and the deactivation of the vibrational level v = 1 by the walls measured. Also, O2 in a glow discharge and in a waveguide discharge has been studied. Rotational, vibrational temperatures and the density of the 1Delta state have been monitored as functions of position, pressure, and discharge current.

  10. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Chemnitz, Mario; Baumgartl, Martin; Meyer, Tobias; Jauregui, Cesar; Dietzek, Benjamin; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-11-19

    We present a narrow-bandwidth, widely tunable fiber laser source for coherent anti-Stokes Raman scattering (CARS) spectro-microscopy. The required, synchronized, two-color pulse trains are generated by optical-parametric amplification in a photonic-crystal fiber (PCF). The four-wave-mixing process in the PCF is pumped by a 140ps, alignment-free fiber laser system, and it is seeded by a tunable continuous-wave laser; hence, a high spectral resolution of up to 1cm(-1) is obtained in the CARS process. Since the PCF is pumped close to its zero-dispersion wavelength, a broad parametric gain can be accessed, resulting in a large tuning range for the generated signal and idler wavelengths. CARS spectroscopy and microscopy is demonstrated, probing different molecular vibrational modes within the accessible region between 1200cm(-1) and 3800cm(-1). PMID:23187513

  11. Coherent Anti-Stokes Raman Spectroscopic Thermometry in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Danehy, P. M.; Springer, R. R.; OByrne, S.; Capriotti, D. P.; DeLoach, R.

    2003-01-01

    An experiment has been conducted to acquire data for the validation of computational fluid dynamics codes used in the design of supersonic combustors. The flow in a supersonic combustor, consisting of a diverging duct with a single downstream-angled wail injector, is studied. Combustor entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. The primary measurement technique is coherent anti-Stokes Raman spectroscopy, but surface pressures and temperatures have also been acquired. Modern design of experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and to minimize systematic errors. Temperature maps are obtained at several planes in the flow for a case in which the combustor is piloted by injecting fuel upstream of the main injector and one case in which it is not piloted. Boundary conditions and uncertainties are characterized.

  12. Coherent anti-Stokes Raman scattering in benzene and nitromethane shock-compressed to 10 GPa

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.; Shampine, D.L.; Holt, W.T.

    1985-01-01

    The frequency shifts of the ring-stretching mode of shock-compressed liquid benzene and the CN stretching mode of nitromethane have been measured using coherent anti-Stokes Raman scattering. Shock pressures up to 11 GPa were achieved using a two-stage light gas gun. The frequency shifted Raman signal was generated using single pulse Nd:YAG and broadband-type lasers. 16 refs., 3 figs.

  13. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy.

    PubMed

    Fussell, Andrew; Garbacik, Erik; Offerhaus, Herman; Kleinebudde, Peter; Strachan, Clare

    2013-11-01

    The solid-state form of an active pharmaceutical ingredient (API) in an oral dosage form plays an important role in determining the dissolution rate of the API. As the solid-state form can change during dissolution, there is a need to monitor the oral dosage form during dissolution testing. Coherent anti-Stokes Raman scattering (CARS) microscopy provides rapid, spectrally selective imaging to monitor the oral dosage form during dissolution. In this study, in situ CARS microscopy was combined with inline UV absorption spectroscopy to monitor the solid-state change in oral dosage forms containing theophylline anhydrate undergoing dissolution and to correlate the solid-state change with a change in dissolution rate. The results from in situ CARS microscopy showed that theophylline anhydrate converted to theophylline monohydrate during dissolution resulting in a reduction in the dissolution rate. The addition of methyl cellulose to the dissolution medium was found to delay the theophylline monohydrate growth and changed the morphology of the monohydrate. The net effect was an increased dissolution rate for theophylline anhydrate. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring oral dosage forms undergoing dissolution and correlating changes in solid-state form with changes in dissolution rate. PMID:23994672

  14. Coherent anti-Stokes Raman scattering (CARS) microscopy visualizes pharmaceutical tablets during dissolution.

    PubMed

    Fussell, Andrew L; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J; Offerhaus, Herman L

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  15. Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

    NASA Astrophysics Data System (ADS)

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-06-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process.

  16. Raman scattering and anomalous Stokes-anti-Stokes ratio in MoTe2 atomic layers.

    PubMed

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process. PMID:27324297

  17. Evaluation of turbulence induced noise in coherent anti-Stokes Raman scattering

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.

    1982-01-01

    The effect of turbulence in a transonic wind tunnel on coherent anti-Stokes Raman scattering is considered. The driving pump and Stokes waves are taken to be coaxially propagating Gaussian beam waves which are focused on the Raman active medium through the turbulent boundary layer of the flow tube. The random index of refraction variations in the layer are modeled as phase perturbations of the driving waves which cause a reduction of the mean on-axis field and an increase in the mean diameter of the beams. Effective Gaussian beam parameters are developed and the radiated anti-Stokes power calculated as a function of the phase screen parameters. A significant reduction in signal strength occurs for realistic estimates of the phase screen parameter appropriate to a confined transonic flow. A method for estimating the signal degradation which could be applied to other experimental situations is presented.

  18. Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

    PubMed Central

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process. PMID:27324297

  19. Measurement of vibrational populations in hydrogen plasma by coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Taran, J. P.; Taillet, J.; Bacal, M.; Bruneteau, A. M.

    Coherent anti-Stokes Raman Scattering (CARS) has been applied to the measurement of vibrational populations in a low-pressure H2 plasma. For an electron density of 2 x 10 to the 11th/cu cm and a total pressure of 0.13 mbar, the rotational temperature is found to be 475 K. The population of vibrational states 0, 1 and 2 has a non-Boltzmann distribution.

  20. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    SciTech Connect

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-07-09

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal.

  1. Macrophages interaction with pulmonary surfactant using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Ocampo, Minette; Telesford, Dana Marie; Allen, Heather

    2012-04-01

    Alveolar pulmonary surfactant, composed mostly of phospholipids, is essential for maintenance of normal lung function. However, increased production of lung surfactant can lead to many pulmonary inflammatory disorders. Alveolar macrophages are responsible for the degradation of the surfactant and exhibit increased lipid uptake in inflamated lungs. Owing to their limited clearance capability, excessive accumulation of surfactant may impair their phagocytic function. In this study, the interaction of the macrophages with different lipid components was studied using coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy, a nonlinear vibrational technique which combines spectroscopy and microscopy, allows noninvasive characterization and imaging of chemical species without preparation or labeling. A monolayer of THP-1 macrophages and palmitic acid-d31 on phosphate buffer solution was transferred to a coverslip using the Langmuir-Blodgett method and then imaged using CARS by mapping the CH2 stretch signal of the lipid membrane of the macrophage and C-D stretch signal from palmitic acid-d31. Preliminary results showed CARS images of the macrophage on the solid substrate and thermal degradation of the sample due to long exposure to high laser power. A contrast image is expected to be observed by mapping the CH2 and C-D signals, which can show the lipid interaction and phagocytosis of the macrophage.

  2. Femtosecond Coherent Anti-Stokes Raman Scattering Gas Phase Thermometry at 5 kHz

    NASA Astrophysics Data System (ADS)

    Fineman, Claresta; Lucht, Robert

    2014-05-01

    Understanding the thermal instabilities occurring in turbulent combustion, such as in modern gas turbine combustors, is critical for more reliable and fuel-efficient operation. Non-intrusive laser based spectroscopy methods have been documented as the techniques of choice for turbulent combustion diagnostics. Specifically, femtosecond coherent anti-Stokes Raman scattering (fs-CARS) thermometry has been established for temporal resolution of turbulent fluctuations in flame structure and provides accurate measurements across a wide range of temperatures. Experiments performed to date include 5 kHz pure vibrational N2 chirped probe-pulse fs-CARS thermometry on non-premixed hydrogen jet diffusion flames, methane jet diffusion flames, and the DLR gas turbine model combustor (GTMC). The fs-CARS signal generation process requires precise spatial and temporal overlap of tightly focused pulsed laser beams of less than 100 fs pulse duration. Here, signal loss due to beam steering, pressure fluctuations, or shear layer density gradients can become a problem. The effect of such interferences has been investigated using high velocity flow of compressed nitrogen gas from a converging-diverging nozzle. Resulting changes in fs-CARS spectra have been studied. Funding for this work was provided by the U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences.

  3. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    PubMed

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  4. Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    von Vacano, Bernhard; Buckup, Tiago; Motzkus, Marcus

    2006-08-01

    Single-beam coherent anti-Stokes Raman-scattering (CARS) microspectroscopy achieves a complete CARS scheme with a femtosecond laser. Here, we introduce heterodyne detection in a simple experimental extension: the optical fields driving the CARS process and the local oscillator used for heterodyning are derived from a single beam of ultrashort laser pulses by pulse shaping. The heterodyne signal is amplified by more than 3 orders of magnitude and is linearly dependent on the concentration of Raman scatterers. This dramatically increases the sensitivity of chemically selective detection at microscopic resolution while maintaining the simplicity of the single-beam setup.

  5. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Lefrancois, Simon; Fu, Dan; Holtom, Gary R; Kong, Lingjie; Wadsworth, William J; Schneider, Patrick; Herda, Robert; Zach, Armin; Sunney Xie, X; Wise, Frank W

    2012-05-15

    We present a fiber-format picosecond light source for coherent anti-Stokes Raman scattering microscopy. Pulses from a Yb-doped fiber amplifier are frequency converted by four-wave mixing (FWM) in normal-dispersion photonic crystal fiber to produce a synchronized two-color picosecond pulse train. We show that seeding the FWM process overcomes the deleterious effects of group-velocity mismatch and allows efficient conversion into narrow frequency bands. The source generates more than 160 mW of nearly transform-limited pulses tunable from 775 to 815 nm. High-quality coherent Raman images of animal tissues and cells acquired with this source are presented.

  6. Coherent anti-stokes Raman scattering microscopy for high speed non- staining biomolecular imaging.

    PubMed

    Hashimoto, Mamoru; Minamikawa, Takeo; Araki, Tsutomu

    2013-01-01

    Vibrational microscopy (Raman microscopy and infrared microscopy), which observes molecular vibrations, gives us the information of molecular species without staining because the observed signals are originated from intrinsic molecules of a cell. However, infrared radiation is absorbed with water, and the long wavelength (3-10 μm) limits the spatial resolution to several micrometers. Spontaneous emission of Raman scattering is quite feeble, and the Raman scattering often overlaps with one-photon fluorescence from a specimen. Coherent anti-Stokes Raman scattering (CARS) microscopy, which is one of the nonlinear Raman microscopy, is a method to overcome those problems. In this review, present system of CARS microscopy, the methods of background rejection, and applications are introduced.

  7. Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering

    PubMed Central

    Cleff, Carsten; Gasecka, Alicja; Ferrand, Patrick; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2016-01-01

    Nonlinear optical methods, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, are able to perform label-free imaging, with chemical bonds specificity. Here we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples, as well as an improved chemical selectivity. We quantify the local organization of vibrational bonds on crystalline and biological samples, thus providing information not accessible by spontaneous Raman and stimulated Raman scattering techniques. This work stands for a symmetry-resolved contrast in vibrational microscopy, with potential application in biological diagnostic. PMID:27189667

  8. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    SciTech Connect

    Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  9. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  10. Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Zimmerley, Maxwell; Lin, Chia-Yu; Oertel, David C.; Marsh, Jennifer M.; Ward, Jimmie L.; Potma, Eric Olaf

    2009-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is used to determine the distribution and concentration of selected compounds in intact human hair. By generating images based on ratiometric CARS contrast, quantitative concentration maps of both water and externally applied d-glycine are produced in the cortex of human hair fibers. Both water and d-glycine are found to homogeneously distribute throughout the cortical regions of the hair. The ability to selectively detect molecular agents in hair fibers is of direct relevance to understanding the chemical and physical mechanisms that underlie the performance of hair-care products.

  11. Inverse scattering transform analysis of Stokes-anti-Stokes stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Gerdjikov, V. S.; Kostov, N. A.

    1996-11-01

    A system of Maxwell-Bloch type equations (MBE's), describing stimulated Raman scattering with both Stokes and anti-Stokes waves taken into account, is investigated. We introduce variables S3 and S+/-, which are bilinear in the electromagnetic fields, and prove that the corresponding equations possess Lax representation. This fact is used to obtain additional solutions for S3, S+/- and for the MBE's which include solitons, periodical waves, and self-similarity solutions. The transient and bright threshold solitons are also analyzed.

  12. Coherent anti-Stokes Raman scattering study of the dynamics of a multipolar plasma generator

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Péalat, M.; Taran, J.-P.; Bacal, M.; Berlemont, P.; Skinner, D. A.; Bretagne, J.; Hutcheon, R. J.

    1992-03-01

    A Coherent Anti-Stokes Raman Spectroscopy (CARS) study of the hydrogen plasma generated by a discharge with magnetic multipolar confinement has been conducted at pressures in the range 0.5-5 Pa. The steady-state radial distribution of the rovibrational populations has been measured. The vibrational temperature is always uniformly distributed and so is the rotational temperature at the lower pressures, while a strong gradient is seen at 5 Pa for the rotation. Time-resolved measurements with the discharge operated in a square-pulse mode give additional insight into the dynamics of the discharge. Some results are compared with the predictions of two computer models of the plasma kinetics. We observe H{2} vibrational excitation by the Joule-heated filament alone (in the absence of the discharge) and show it to be caused primarily by the confined discharge between the filament and its cold positive copper connector. Another interpretation of the presence of vibrationally excited H{2} by recombinative desorption (Hall R.I. et al., Phys. Rev. Lett. 60 (1988) 337) is not comforted by our results, within instrumental sensitivity. The densities of the first rotational levels that the ortho and para forms of H{2} have different electron collisional cross-sections. Under pulsed excitation, the vibrational temperature rises on a time scale of 1-2 ms in agreement with numerical predictions. At switch-off, we show by matching the experimental and theoretical decays that vibrational state v=1 survives 16± 5 wall collisions; meanwhile, the rotation cools very rapidly, probably because of superelastic electronic collisions.

  13. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering.

    PubMed

    Avisar, David; Tannor, David J

    2015-01-28

    Among the major challenges in the chemical sciences is controlling chemical reactions and deciphering their mechanisms. Since much of chemistry occurs in excited electronic states, in the last three decades scientists have employed a wide variety of experimental techniques and theoretical methods to recover excited-state potential energy surfaces and the wavepackets that evolve on them. These methods have been partially successful but generally do not provide a complete reconstruction of either the excited state wavepacket or potential. We have recently proposed a methodology for reconstructing excited-state molecular wavepackets and the corresponding potential energy surface [Avisar and Tannor, Phys. Rev. Lett., 2011, 106, 170405]. In our approach, the wavepacket is represented as a superposition of the set of vibrational eigenfunctions of the molecular ground-state Hamiltonian. We assume that the multidimensional ground-state potential surface is known, and therefore these vibrational eigenfunctions are known as well. The time-dependent coefficients of the basis functions are obtained by experimental measurement of the resonant coherent anti-Stokes Raman scattering (CARS) signal. Our reconstruction strategy has several significant advantages: (1) the methodology requires no a priori knowledge of any excited-state potential. (2) It applies to dissociative as well as to bound excited-state potentials. (3) It is general for polyatomics. (4) The excited-state potential surface is reconstructed simultaneously with the wavepacket. Apart from making a general contribution to the field of excited-state spectroscopy, our method provides the information on the excited-state wavepacket and potential necessary to design laser pulse sequences to control photochemical reactions.

  14. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  15. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Yu; Suhalim, Jeffrey L.; Nien, Chyong Ly; Miljković, Miloš D.; Diem, Max; Jester, James V.; Potma, Eric. O.

    2011-02-01

    The lipid distribution in the mouse meibomian gland was examined with picosecond spectral anti-Stokes Raman scattering (CARS) imaging. Spectral CARS data sets were generated by imaging specific localized regions of the gland within tissue sections at consecutive Raman shifts in the CH2 stretching vibrational range. Spectral differences between the location specific CARS spectra obtained in the lipid-rich regions of the acinus and the central duct were observed, which were confirmed with a Raman microspectroscopic analysis, and attributed to meibum lipid modifications within the gland. A principal component analysis of the spectral data set reveals changes in the CARS spectrum when transitioning from the acini to the central duct. These results demonstrate the utility of picosecond spectral CARS imaging combined with multivariate analysis for assessing differences in the distribution and composition of lipids in tissues.

  16. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.

    PubMed

    Liu, Jun; Zhang, Jun; Kobayashi, Takayoshi

    2008-07-01

    As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands.

  17. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-01

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly

  18. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    SciTech Connect

    Wang Xi; Zhang Aihua; Zhi Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-15

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  19. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Lefrancois, Simon; Fu, Dan; Holtom, Gary R; Kong, Lingjie; Wadsworth, William J; Schneider, Patrick; Herda, Robert; Zach, Armin; Sunney Xie, X; Wise, Frank W

    2012-05-15

    We present a fiber-format picosecond light source for coherent anti-Stokes Raman scattering microscopy. Pulses from a Yb-doped fiber amplifier are frequency converted by four-wave mixing (FWM) in normal-dispersion photonic crystal fiber to produce a synchronized two-color picosecond pulse train. We show that seeding the FWM process overcomes the deleterious effects of group-velocity mismatch and allows efficient conversion into narrow frequency bands. The source generates more than 160 mW of nearly transform-limited pulses tunable from 775 to 815 nm. High-quality coherent Raman images of animal tissues and cells acquired with this source are presented. PMID:22627526

  20. Surface-enhanced coherent anti-Stokes Raman imaging of lipids.

    PubMed

    Fast, Alexander; Kenison, John P; Syme, Christopher D; Potma, Eric O

    2016-08-01

    This work describes in detail a wide-field surface-enhanced coherent anti-Stokes Raman scattering (CARS) microscope, which enables enhanced detection of sample structures in close proximity (∼100  nm) of the substrate interface. Unlike conventional CARS microscopy, where the sample is illuminated with freely propagating light, the current implementation uses evanescent fields to drive Raman coherences across the entire object plane. By coupling the pump and Stokes excitation beams to the surface plasmon-polariton mode at the interface of a 30 nm thick gold film, we obtained strong CARS signals from cholesteryl oleate droplets adhered to the surface. The surface-enhanced CARS imaging system visualizes lipid structures with vibrational selectivity using illumination doses per unit area that are more than four orders of magnitude lower than in point-scanning CARS microscopy. PMID:27505381

  1. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  2. Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers.

    PubMed

    Klarskov, Pernille; Isomäki, Antti; Hansen, Kim P; Andersen, Peter E

    2011-12-19

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectrum with power concentrated around the relevant wavelengths for lipid imaging (648 nm and 1027 nm). This new PCF is characterized by varying the fiber length, the average power, and the pulse width of the fs pump pulses. It was found that the selected PCF design gave a significantly improved spectral distribution compared to an existing PCF for CARS microscopy. Furthermore, the PCF is designed in a twofold symmetric structure allowing for polarization maintaining propagation. Finally, the pulse propagation is investigated numerically showing good agreement with the measured spectrum. From the numerical analysis, the nonlinear effects responsible for the spectral broadening are explained to be soliton fission processes, dispersive waves, and stimulated Raman scattering. PMID:22274252

  3. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Uckermann, Ortrud; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias; Steiner, Gerald

    2014-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging.

  4. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Beadie, Guy; Kattawar, George W.; Reintjes, John F.; Rostovtsev, Yuri; Zubairy, M. Suhail; Scully, Marlan O.

    2005-08-01

    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 107 photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.

  5. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores

    SciTech Connect

    Ooi, C.H. Raymond; Rostovtsev, Yuri; Scully, Marlan O.; Beadie, Guy; Reintjes, John F.; Kattawar, George W.; Zubairy, M. Suhail

    2005-08-15

    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 10{sup 7} photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.

  6. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    PubMed

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  7. Spectral features of anti-Stokes and Stokes modes generated by stimulated Raman scattering in liquid toluene

    NASA Astrophysics Data System (ADS)

    Yadav, Suchita; Kumar, Govind; Vijaya, R.

    2016-10-01

    Stimulated Raman scattering leading to the generation of four first-order Stokes modes at shifts of 862.9, 1035, 2967 and 3086 cm-1, one second-order Stokes mode at a shift of 2032.5 cm-1 and one first-order anti-Stokes mode at a shift of 946.3 cm-1 has been measured in an experiment using liquid toluene. The observed shifts are assigned to the earlier reported Raman shifts of toluene at 786, 1006, 2979, 3060 cm-1 due to ring-breathing mode, ring deformation mode, CH3 stretching mode and CH stretching mode, respectively. Simultaneous measurement of all the Raman modes, including the second-order Stokes and first-order anti-Stokes, and their correct assignment to the vibrational modes of toluene is not reported widely in earlier work. The Raman modes generated from toluene emerge as concentric rings of different diameters. The phase-matching angle for anti-Stokes generation is thus measured and compared with the expected value from calculation. The spectral broadening observed near two of the modes is explained with the help of Raman-active modes of toluene reported earlier by others. Raman shifts, threshold levels, gain and beam profile of all the modes, along with the phase matching of the anti-Stokes mode, are reported.

  8. Simultaneous observation of rotational coherent Stokes Raman scattering and coherent anti-Stokes Raman scattering in air and nitrogen

    NASA Technical Reports Server (NTRS)

    Snow, J. B.; Chang, R. K.; Zheng, J. B.; Leipertz, A.

    1983-01-01

    Rotational coherent Stokes Raman scattering (CSRS) and coherent anti-Stokes Raman scattering (CARS) in air and in nitrogen were observed simultaneously by using broadband generation and detection. In the broadband technique used, the entire CARS and CSRS spectrum was generated in a single laser pulse; the CSRS and CARS signals were dispersed by a spectrograph and detected simultaneously by an optical multichannel analyzer. A three-dimensional phase-matching geometry was used to achieve spatial resolution of the CSRS and CARS beams from the input beams. Under resonant conditions, similar experiments may provide a means of investigating the possible interaction between the CSRS and CARS processes in driving the rotational levels.

  9. Label-Free Cellular Imaging by Broadband Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Parekh, Sapun H.; Lee, Young Jong; Aamer, Khaled A.; Cicerone, Marcus T.

    2010-01-01

    Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600–3200 cm−1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. PMID:20959111

  10. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  11. Coherent anti-Stokes Raman scattering performed on expanding thermal arc plasmas

    NASA Astrophysics Data System (ADS)

    Meulenbroeks, R. F. G.; Engeln, R. A. H.; van der Mullen, J. A. M.; Schram, D. C.

    1996-05-01

    The expanding plasma emanating from a thermal arc plasma source that can be used for deposition of thin films is studied using laser spectroscopic techniques. The argon-hydrogen plasma is characterized by very fast recombination that cannot be explained by atomic processes. To explore this phenomenon, which has been related to wall association of hydrogen atoms and recirculation, CARS (coherent anti-Stokes Raman scattering) is performed on (argon-)hydrogen plasmas. The periphery of the plasma appears to be rich in hydrogen molecules, in accordance with the recirculation model. No highly rovibrationally excited states are detected in the periphery, in spite of the spectrometer's very good sensitivity (0.1 Pa H2 at 300 K). For the plasma, rotational and vibrational temperatures as well as absolute H2 densities are measured. A simple model for the observed (non-Boltzmann) rotational populations is developed.

  12. Coherent anti-Stokes Raman scattering performed on expanding thermal arc plasmas

    SciTech Connect

    Meulenbroeks, R.F.; Engeln, R.A.; van der Mullen, J.A.; Schram, D.C.

    1996-05-01

    The expanding plasma emanating from a thermal arc plasma source that can be used for deposition of thin films is studied using laser spectroscopic techniques. The argon-hydrogen plasma is characterized by very fast recombination that cannot be explained by atomic processes. To explore this phenomenon, which has been related to wall association of hydrogen atoms and recirculation, CARS (coherent anti-Stokes Raman scattering) is performed on (argon-)hydrogen plasmas. The periphery of the plasma appears to be rich in hydrogen molecules, in accordance with the recirculation model. No highly rovibrationally excited states are detected in the periphery, in spite of the spectrometer{close_quote}s very good sensitivity (0.1 Pa H{sub 2} at 300 K). For the plasma, rotational and vibrational temperatures as well as absolute H{sub 2} densities are measured. A simple model for the observed (non-Boltzmann) rotational populations is developed. {copyright} {ital 1996 The American Physical Society.}

  13. Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Wang, Haifeng; Zheng, Wei; Sheppard, Colin, Jr.; Huang, Zhiwei

    2009-09-01

    We propose a unique annular aperture detection scheme in radially polarized coherent anti-Stokes Raman scattering (RP-CARS) microscopy for significantly removing nonresonant background for high contrast vibrational imaging. Our finite-difference time-domain calculations show that the maximum radiation patterns of RP-CARS signals from the scatterers vary with the scatterer's sizes, which are different from nonresonant CARS radiation from surrounding water. By applying appropriate sizes of annular stop apertures in the detection path, the nonresonant background from water can be effectively suppressed, yielding over 110-fold improvements in signal-to-background ratio for the forward-detected RP-CARS, while over 50-fold improvements for the backward RP-CARS detection.

  14. Investigation of microstructured chitosans by coherent anti-Stokes Raman microscopy.

    PubMed

    Dementjev, A; Mordas, G; Ulevičius, V; Gulbinas, V

    2015-03-01

    This work describes application of coherent anti-Stokes Raman scattering (CARS) microscopy technique for analytical characterization of microstructured materials based on chitosan. We demonstrate that nitrogen-hydrogen vibration band in the high wavenumber region of CARS spectrum prevails over response from oxygen-hydrogen vibrations and can be used as a spectral marker of chitosan. The chemically selective imaging is experimentally demonstrated by applying CARS microscopy to discriminate between chitosan and polystyrene microparticles. CARS microscopy was shown to be a valuable tool for characterization of polluted chitosan fibre from utilized engine filter material. A possibility to observe foreign material pieces on the surface of the polluted chitosan fibre is demonstrated and discussed. PMID:25529768

  15. Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy.

    PubMed

    Lu, Fake; Zheng, Wei; Sheppard, Colin; Huang, Zhiwei

    2008-03-15

    We report a novel interferometry-based polarization coherent anti-Stokes Raman scattering (IP-CARS) implementation for effectively suppressing the nonresonant background while significantly amplifying the resonant signal for vibrational imaging. By modulating the phase difference between the two interference CARS signals generated from the same sample and measuring the peak-to-peak intensity of the periodically modulated interference CARS signal, the IP-CARS technique yields a sixfold improvement in the signal-to-background ratio compared with conventional CARS while providing an approximately 20-fold amplification of the resonant CARS signal compared with conventional polarization CARS. We demonstrate this method by imaging 4.69 microm polystyrene beads and unstained human epithelial cells immersed in water. PMID:18347723

  16. Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering.

    PubMed

    Jurna, Martin; Garbacik, Erik T; Korterik, Jeroen P; Herek, Jennifer L; Otto, Cees; Offerhaus, Herman L

    2010-09-15

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements. Second, selectivity is increased via determination of the phase and amplitude, allowing separation of individual molecular components of a sample even when their vibrational bands overlap. Here, using vibrational phase contrast CARS (VPC-CARS), we demonstrate enhanced sensitivity in quantitative measurements of ethanol/methanol mixtures and increased selectivity in a heterogeneous mixture of plastics and water. This powerful technique opens a wide range of possibilities for studies of complicated systems where overlapping resonances limit standard methodologies. PMID:20731373

  17. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion

    SciTech Connect

    Liu Wei; Niu Hanben

    2011-02-15

    We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.

  18. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  19. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  20. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid. PMID:24013358

  1. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology.

    PubMed Central

    Cheng, Ji-Xin; Jia, Y Kevin; Zheng, Gengfeng; Xie, X Sunney

    2002-01-01

    Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast data acquisition and high sensitivity has been developed for vibrational imaging of live cells. High three-dimensional (3D) resolution is achieved with two collinearly overlapped near infrared picosecond beams and a water objective with a high numerical aperture. Forward-detected CARS (F-CARS) and epi-detected CARS (E-CARS) images are recorded simultaneously. F-CARS is used for visualizing features comparable to or larger than the excitation wavelength, while E-CARS allows detection of smaller features with a high contrast. F-CARS and E-CARS images of live and unstained cells reveal details invisible in differential interference-contrast images. High-speed vibrational imaging of unstained cells undergoing mitosis and apoptosis has been carried out. For live NIH 3T3 cells in metaphase, 3D distribution of chromosomes is mapped at the frequency of the DNA backbone Raman band, while the vesicles surrounding the nucleus is imaged by E-CARS at the frequency of the C-H stretching Raman band. Apoptosis in NIH 3T3 cells is monitored using the CARS signal from aliphatic C-H stretching vibration. PMID:12080137

  2. Saturation of vibrational coherent anti-Stokes Raman scattering mediated by saturation of the rotational Raman transition

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2013-04-01

    Saturation of vibrational Raman coherence and coherent anti-Stokes Raman scattering (CARS) using femtosecond (fs) excitation pulses is investigated theoretically. The pump in a typical fs-CARS configuration has a bandwidth of a few hundred cm-1 that can couple tens of rotational states of room-air nitrogen molecules simultaneously, unlike in CARS with longer pulse durations. It is demonstrated that the vibrational coherence and also the vibrational CARS with fs excitation display saturationlike behavior once the rotational coherence is saturated. The Raman saturation threshold for the fs pump is numerically estimated to be at a peak intensity of ˜1022 W/m2, which is six to seven orders of magnitude higher than that in the nanosecond regime. The results are compared with the known saturation thresholds in different pulse-duration regimes and placed in perspective with other nonlinear thresholds reported in fs excitation regimes.

  3. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  4. Multiplex coherent anti-Stokes Raman scattering microscopy on lipid droplets in HeLa cells

    NASA Astrophysics Data System (ADS)

    Rinia, Hilde A.; Burger, Koert N. J.; Bonn, Mischa; Müller, Michiel

    2007-07-01

    Lipid droplets have become a major research topic recently, as they are found to be involved in obesity related diseases. Most of this research has been focused on the localization of the proteins playing a role in lipid droplet formation or breakdown. The role of different lipid species however remains unclear because it is difficult to distinguish different fatty acids with the present microscopy techniques. Coherent Anti-Stokes Raman scattering (CARS) is the non-linear analogue of spontaneous Raman scattering. Multiplex CARS microscopy can provide quantitative, chemical and physical information, making it an excellent tool to study the composition and thermodynamic phase of lipid droplets. To investigate the potential of CARS in this field, we have incubated HeLa cells with four different fatty acids, varying in saturation. The fatty acids were internalized by the cells and stored as lipid droplets, which we imaged with multiplex CARS microscopy. We were able to distinguish either of the fatty acids as such in lipid droplets inside the cells. Furthermore, we found that solid phase fatty acids were fluidized when present in lipid droplets. This illustrates the potential of CARS microscopy to elucidate the possible role of the chemistry of fatty acids in lipid droplet regulation.

  5. Nanosecond coherent anti-Stokes Raman scattering for particle size characterization

    NASA Astrophysics Data System (ADS)

    El Bassri, Farid; Lefort, Claire; Capitaine, Erwan; Louot, Christophe; Pagnoux, Dominique; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Particle size analyzers based on laser scattering commonly make use of light diffraction and scattering around the particle considered in its medium. For particle size below 50 μm, Fraunhofer theory must be abandoned in favor of Mie model, which requires to know the complex refractive index of both the particle and the medium. In this paper, we demonstrate that particle size characterization can be realized by measuring the macroscopic Raman spectral response of the whole set of particles excited by a laser beam. We use a home-made setup based on coherent anti-Stokes Raman scattering (CARS) and having a 0.36 cm-1 spectral resolution, in which the laser source is a dual-output infrared nanosecond supercontinuum source (1064 nm monochromatic pump wave, 1100-1640 nm broadband Stokes wave). The samples are latex beads in water with different diameters (20 nm, 50 nm, 100 nm, 5 μm). The C-H stretching line around 3050 cm-1 is studied. For this vibration, we study the variation of both the CARS central frequency and linewidth as a function of the particles size. A quasi linear increase of the linewidth with the inverse of the diameter is measured. A difference of 15 cm-1 is obtained between beads with diameters of 5 μm and 20 nm respectively. The physical phenomena at the origin of this difference are discussed, especially considering the contributions of the center and of the boundaries of the object to the global Raman response.

  6. Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy

    PubMed Central

    Okuno, Masanari; Kano, Hideaki; Fujii, Kenkichi; Bito, Kotatsu; Naito, Satoru; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2014-01-01

    The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism. PMID:24710120

  7. Imaging the Intact Mouse Cornea Using Coherent Anti-Stokes Raman scattering (CARS)

    PubMed Central

    Ammar, David A.; Lei, Tim C.; Kahook, Malik Y.; Masihzadeh, Omid

    2013-01-01

    Purpose. The aim of this study was to image the cellular and noncellular structures of the cornea and limbus in an intact mouse eye using the vibrational oscillation of the carbon–hydrogen bond in lipid membranes and autofluorescence as label-free contrast agents. Methods. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Sequential images were collected through the full thickness of the cornea and limbal regions. Line scans along the transverse/sagittal axes were also performed. Results. Analysis of multiple CARS/TPAF images revealed that corneal epithelial and endothelial cells could be identified by the lipid-rich plasma membrane CARS signal. The fluorescent signal from the collagen fibers of the corneal stroma was evident in the TPAF channel. The transition from the cornea to sclera at the limbus was marked by a change in collagen pattern (TPAF channel) and thickness of surface cells (CARS channel). Regions within the corneal stroma that lack collagen autofluorescence coincided with CARS signal, indicating the presence of stromal fibroblasts or nerve fibers. Conclusions. The CARS technique was successful in imaging cells in the intact mouse eye, both at the surface and within corneal tissue. Multiphoton images were comparable to histologic sections. The methods described here represent a new avenue for molecular specific imaging of the mouse eye. The lack of need for tissue fixation is unique compared with traditional histology imaging techniques. PMID:23821187

  8. Coherent Anti-Stokes Raman Scattering (CARS) Microscopy: A Novel Technique for Imaging the Retina

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Lei, Tim C.

    2013-01-01

    Purpose. To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Methods. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. Results. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. Conclusions. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice. PMID:23580484

  9. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  10. Coherent anti-Stokes Raman scattering hyperspectral imaging of cartilage aiming for state discrimination of cell

    NASA Astrophysics Data System (ADS)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koich

    2016-07-01

    Noninvasive cell analyses are increasingly important in the medical field. A coherent anti-Stokes Raman scattering (CARS) microscope is the noninvasive imaging equipment and enables to obtain images indicating molecular distribution. However, due to low-signal intensity, it is still challenging to obtain images of the fingerprint region, in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of the fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source generating both pump light and broadband Stokes light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen. The spectrum quality was improved by optical adjustments of the power branching ratio and divergence of Stokes light. Periphery of a cartilage cell was highlighted in a CARS image of proline, and this result suggests correspondence with collagen generated as an extracellular matrix. The possibility of noninvasive analyses by using CARS hyperspectral imaging was indicated.

  11. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  12. Adaptive optics applied to coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Girkin, John M.; Poland, Simon P.; Wright, Amanda J.; Freudiger, Christian; Evans, Conor L.; Xie, X. Sunney

    2008-02-01

    We report on the use of adaptive optics in coherent anti-Stokes Raman scattering microscopy (CARS) to improve the image brightness and quality at increased optical penetration depths in biological material. The principle of the technique is to shape the incoming wavefront in such a way that it counteracts the aberrations introduced by imperfect optics and the varying refractive index of the sample. In recent years adaptive optics have been implemented in multiphoton and confocal microscopy. CARS microscopy is proving to be a powerful tool for non-invasive and label-free biomedical imaging with vibrational contrast. As the contrast mechanism is based on a 3 rd order non-linear optical process, it is highly susceptible to aberrations, thus CARS signals are commonly lost beyond the depth of ~100 μm in tissue. We demonstrate the combination of adaptive optics and CARS microscopy for deep-tissue imaging using a deformable membrane mirror. A random search optimization algorithm using the CARS intensity as the figure of merit determined the correct mirror-shape in order to correct for the aberrations. We highlight two different methods of implementation, using a look up table technique and by performing the optimizing in situ. We demonstrate a significant increase in brightness and image quality in an agarose/polystyrene-bead sample and white chicken muscle, pushing the penetration depth beyond 200 μm.

  13. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  14. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  15. Ab initio study of coherent anti-Stokes Raman scattering (CARS) of the 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) explosive

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdelsalam; Ågren, Hans; Thorvaldsen, Andreas J.; Ruud, Kenneth

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) of the 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) C 3H 6N 6O 6 molecule is studied by ab initio methods. The results are compared to available experimental observations and against calculations and experimental observations of the conventional non-resonant Raman spectrum for RDX. It is found that all intense bands in the observed CARS spectrum and all Raman differential cross sections are well reproduced by the calculations. The features of the resonant CARS signal vary strongly from the corresponding Raman signal, and are obtained with a considerably larger cross section, a fact that could further facilitate the use of CARS spectroscopy in applications of stand-off detection of gaseous samples at ultra-low concentrations.

  16. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  17. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Evans, Conor L.; Potma, Eric O.; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P.; Xie, X. Sunney

    2005-01-01

    Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by combining coherent anti-Stokes Raman scattering (CARS) with video-rate microscopy. Backscattering of the intense forward-propagating CARS radiation in tissue gives rise to a strong epi-CARS signal that makes in vivo imaging possible. This substantially large signal allows for real-time monitoring of dynamic processes, such as the diffusion of chemical compounds, in tissues. By tuning into the CH2 stretching vibrational band, we demonstrate CARS imaging and spectroscopy of lipid-rich tissue structures in the skin of a live mouse, including sebaceous glands, corneocytes, and adipocytes, with unprecedented contrast at subcellular resolution. PMID:16263923

  18. Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography.

    PubMed

    Kamali, Tschackad; Považay, Boris; Kumar, Sunil; Silberberg, Yaron; Hermann, Boris; Werkmeister, René; Drexler, Wolfgang; Unterhuber, Angelika

    2014-10-01

    We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12  μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4  cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform.

  19. Selective probing of vibrational hot states in bromine using time-resolved coherent anti-Stokes Raman scattering.

    PubMed

    Namboodiri, Mahesh; Liebers, Jörg; Kleinekathöfer, Ulrich; Materny, Arnulf

    2012-11-26

    In previous work (Scaria, A.; et al. Chem. Phys. Lett. 2009, 470, 39-43) it was shown that the excitation of the electronic B state in bromine can be characterized by transitions starting from vibrational hot states of the electronic ground X state. This contribution is strongly depending on the specific Franck-Condon factors for the chosen wavelength (in that work 540 nm) used for excitation. For the investigation of the resulting excited state dynamics, a pump-degenerate four-wave mixing (pump-DFWM) experiment was applied. To increase the vibrational selectivity, in the present work we have performed temperature-dependent time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy to probe the B state dynamics of bromine. Also here, the wavelength of the excitation (in this case, the pump laser of the CARS process) was set to 540 nm for all measurements. The hot state contribution is small, even at high temperatures. It can be probed by tuning the Stokes wavelength to resonance. The time delay between the probe pulse and the time-coincident pump/Stokes pulse pair of the CARS process is scanned, giving access to the wave packet dynamics in the excited B state. The experimental observations are supported by quantum dynamical calculations.

  20. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Perney, Nicolas M; Braddick, Lucy; Jurna, Martin; Garbacik, Erik T; Offerhaus, Herman L; Serpell, Louise C; Blanch, Ewan; Holden-Dye, Lindy; Brocklesby, William S; Melvin, Tracy

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro. PMID:22911702

  1. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  2. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  3. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  4. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE PAGESBeta

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.« less

  5. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    SciTech Connect

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparation bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.

  6. Sum frequency generation and coherent anti-Stokes Raman spectroscopic studies on plasma-treated plasticized polyvinyl chloride films.

    PubMed

    Hankett, Jeanne M; Zhang, Chi; Chen, Zhan

    2012-03-13

    Polyvinyl chloride (PVC) is a widely used polymer to which various phthalates are extensively applied as plasticizers. PVC materials are often treated with plasma to vary the hydrophobicity or for cleaning purposes, but little is known of the nature of the surface molecular structures after treatment. This research characterizes molecular surface structures of PVC and bis-2-ethylhexyl phthalate (DEHP)-plasticized PVC films in air before annealing, after annealing, and after exposure to air-generated glow discharge plasma using sum frequency generation (SFG) vibrational spectroscopy. In addition, we compare the vibrational molecular signatures on the surfaces of PVC with DEHP (at a variety of percent loadings) to those of the bulk detected using coherent anti-Stokes Raman scattering (CARS). X-ray photoelectron spectroscopy (XPS) and contact angle measurements have been used to analyze PVC surfaces to supplement SFG data. Our results indicate that DEHP was found on the surfaces of PVC films even at low weight percentages (5 wt %) and that DEHP segregates on surfaces after annealing. The treatment of these films with glow discharge plasma resulted in surface-sensitive reactions involving the removal of chlorine atoms, the addition of oxygen atoms, and C-H bond rearrangement. CARS data demonstrate that the bulk of our films remained undisturbed during the plasma treatment. For the first time, we probed the molecular structure of the surface and the bulk of a PVC material using combined SFG and CARS studies on the same sample in exactly the same environment. In addition, the methodology used in this research can be applied to characterize various plasticizers in a wide variety of polymer systems to understand their surface and bulk structures before and after systematic applications of heat, plasma, or other treatments. PMID:22309397

  7. Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy.

    PubMed

    Ibata, Keiji; Takimoto, Shinichi; Morisaku, Toshinori; Miyawaki, Atsushi; Yasui, Masato

    2011-11-01

    Water can pass through biological membranes via two pathways: simple diffusion through the lipid bilayer, or water-selective facilitated diffusion through aquaporins (AQPs). Although AQPs play an important role in osmotic water permeability (P(f)), the role of AQPs in diffusional water permeability remains unclear because of the difficulty of measuring diffusional water permeability (P(d)). Here, we report an accurate and instantaneous method for measuring the P(d) of a single HeLa S3 cell using coherent anti-Stokes Raman scattering (CARS) microscopy with a quick perfusion device for H(2)O/D(2)O exchange. Ultra-high-speed line-scan CARS images were obtained every 0.488 ms. The average decay time constant of CARS intensities (τ(CARS)) for the external solution H(2)O/D(2)O exchange was 16.1 ms, whereas the intracellular H(2)O/D(2)O exchange was 100.7 ± 19.6 ms. To evaluate the roles of AQP in diffusional water permeability, AQP4 fused with enhanced green fluorescent protein (AQP4-EGFP) was transiently expressed in HeLa S3 cells. The average τ(CARS) for the intracellular H(2)O/D(2)O exchange in the AQP4-EGFP-HeLa S3 cells was 43.1 ± 15.8 ms. We also assessed the cell volume and the cell surface area to calculate P(d). The average P(d) values for the AQP4-EGFP-HeLa S3 cells and the control EGFP-HeLa S3 cells were 2.7 ± 1.0 × 10(-3) and 8.3 ± 2.6 × 10(-4) cm/s, respectively. AQP4-mediated water diffusion was independent of the temperature but was dependent on the expression level of the protein at the plasma membrane. These results suggest the possibility of using CARS imaging to investigate the hydrodynamics of single mammalian cells as well as the regulation of AQPs. PMID:22067168

  8. Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy.

    PubMed

    Ibata, Keiji; Takimoto, Shinichi; Morisaku, Toshinori; Miyawaki, Atsushi; Yasui, Masato

    2011-11-01

    Water can pass through biological membranes via two pathways: simple diffusion through the lipid bilayer, or water-selective facilitated diffusion through aquaporins (AQPs). Although AQPs play an important role in osmotic water permeability (P(f)), the role of AQPs in diffusional water permeability remains unclear because of the difficulty of measuring diffusional water permeability (P(d)). Here, we report an accurate and instantaneous method for measuring the P(d) of a single HeLa S3 cell using coherent anti-Stokes Raman scattering (CARS) microscopy with a quick perfusion device for H(2)O/D(2)O exchange. Ultra-high-speed line-scan CARS images were obtained every 0.488 ms. The average decay time constant of CARS intensities (τ(CARS)) for the external solution H(2)O/D(2)O exchange was 16.1 ms, whereas the intracellular H(2)O/D(2)O exchange was 100.7 ± 19.6 ms. To evaluate the roles of AQP in diffusional water permeability, AQP4 fused with enhanced green fluorescent protein (AQP4-EGFP) was transiently expressed in HeLa S3 cells. The average τ(CARS) for the intracellular H(2)O/D(2)O exchange in the AQP4-EGFP-HeLa S3 cells was 43.1 ± 15.8 ms. We also assessed the cell volume and the cell surface area to calculate P(d). The average P(d) values for the AQP4-EGFP-HeLa S3 cells and the control EGFP-HeLa S3 cells were 2.7 ± 1.0 × 10(-3) and 8.3 ± 2.6 × 10(-4) cm/s, respectively. AQP4-mediated water diffusion was independent of the temperature but was dependent on the expression level of the protein at the plasma membrane. These results suggest the possibility of using CARS imaging to investigate the hydrodynamics of single mammalian cells as well as the regulation of AQPs.

  9. Dynamical rate theory of enzymatic reactions and triple-resonant coherent anti-Stokes Raman scattering microspectroscopy

    NASA Astrophysics Data System (ADS)

    Min, Wei

    Chapters 2-7 focus on physical enzymology. Despite its long history, recent single-molecule spectroscopy, among many others techniques, has generated new quantitative data that reveal unobserved features of protein dynamics and enzyme catalysis at unprecedented levels. Much of these are beyond the classic framework of transition state theory and Michalis-Menten (MM) enzyme kinetics. Due to the complexity of the problem, theoretical developments in this area have much lagged behind experiments. After an initial experimental characterization on single-molecule protein conformational fluctuations, we then develop a dynamical rate theory for enzyme catalyzed chemical reactions, from a statistical mechanics approach. Towards this goal, we formulate a two-dimensional (2D) multi-surface free energy description of the entire catalytic process that explicitly combines the concept of "fluctuating enzymes" with the MM enzyme kinetics. The outcome of this framework has two folds. On the rate theory side, going much beyond transition state theory, it connects conformational fluctuations to catalysis, allows for the interplay between energetics (e.g. Haldane's stain energy) and dynamics (e.g. Koshland's induced fit), and predicts the time dependence of single-enzyme catalysis. On the enzyme kinetics side, it gives mechanistic and unified understanding of MM and non-MM (both positive and negative cooperativity) kinetics of monomeric enzymes, in term of non-equilibrium steady state cycle on the 2D free energy surface. Chapters 8-11 present the principle and application of a new ultra-sensitive nonlinear optical microspectroscopy, femtosecond (fs) triple-resonant coherent anti-Stokes Raman scattering (CARS), in which the amplitude and phase of input fs laser pulses are optimally shaped to be in triple resonant with the molecular electronic and vibrational transitions to generate a coherent nonlinear signal beam at a new color with a highest possible efficiency. This technique

  10. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy

    SciTech Connect

    Beeker, Willem P.; Lee, Chris J.; Boller, Klaus-Jochen; Gross, Petra; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer L.

    2010-01-15

    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground-state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction limit, can be obtained.

  11. Super-Spatial- and -Spectral-Resolution in Vibrational Imaging via Saturated Coherent Anti-Stokes Raman Scattering

    NASA Astrophysics Data System (ADS)

    Yonemaru, Yasuo; Palonpon, Almar F.; Kawano, Shogo; Smith, Nicholas I.; Kawata, Satoshi; Fujita, Katsumasa

    2015-07-01

    We demonstrate a vibrational microscopy technique with subdiffraction spatial resolution by the use of saturation of coherent anti-Stokes Raman scattering (CARS). The saturated CARS signals effectively produce a reduced point-spread function at harmonic frequencies, which is extracted by temporal modulation of the pump beam and demodulation of the CARS signal. An increase in spectral resolution and suppression of the nonresonant background signal accompany the spatial- resolution enhancement. Our simple, enhanced CARS technique promises to be useful in studying molecules in gas and liquid phases as well as soft condensed-matter systems.

  12. Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for bioimaging

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Er, Kenneth; Huang, Zhiwei

    2012-03-01

    CARS is meritorious in its ability to perform chemical selective imaging, but its spatial resolution is limited by the diffraction limit of light; however, this limit can be broken by combining CARS and near-field scanning microscope. In this work, we report a novel radially polarized near-field coherent anti-Stokes Raman scattering microscopy (RP-NF-CARS), which uses radially polarized light as excitation to enhance the electric field enhancement under a metallic tip, and improves the signal to background ratio compared with that using linearly polarized excitations. We applied RP-NF-CARS to image nano-scale polystyrene beads and biological system.

  13. Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber

    PubMed Central

    Wang, Haifeng; Huff, Terry B.; Cheng, Ji-Xin

    2009-01-01

    We demonstrate laser-scanning coherent anti-Stokes Raman scattering (CARS) imaging with two excitation laser beams delivered by a large-mode-area photonic crystal fiber. The group-velocity dispersion and self-phase modulation effects are largely suppressed due to the large mode area of the fiber and the use of pico-second pulses. The fiber delivery preserves the signal level and image spatial resolution well. High-quality images of live spinal cord tissues are acquired using the fiber-delivered laser source. Our method provides a basic platform for developing a flexible and compact CARS imaging system. PMID:16642124

  14. Imaging with Raman spectroscopy.

    PubMed

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2010-09-01

    Raman spectroscopy, based on the inelastic scattering of a photon, has been widely used as an analytical tool in many research fields. Recently, Raman spectroscopy has also been explored for biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. This review article will provide a brief summary of Raman spectroscopy-based imaging, which includes the use of coherent anti-Stokes Raman spectroscopy (CARS, primarily used for imaging the C-H bond in lipids), surface-enhanced Raman spectroscopy (SERS, for which a variety of nanoparticles can be used as contrast agents), and single-walled carbon nanotubes (SWNTs, with its intrinsic Raman signal). The superb multiplexing capability of SERS-based Raman imaging can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the interrogation of multiple biological events simultaneously in living subjects. The primary limitations of Raman imaging in humans are those also faced by other optical techniques, in particular limited tissue penetration. Over the last several years, Raman spectroscopy imaging has advanced significantly and many critical proof-of-principle experiments have been successfully carried out. It is expected that imaging with Raman Spectroscopy will continue to be a dynamic research field over the next decade.

  15. Raman scattering and anti-Stokes emission from a single spherical microcavity with a CdTe quantum dot monolayer

    NASA Astrophysics Data System (ADS)

    Rakovich, Yu. P.; Donegan, J. F.; Gaponik, N.; Rogach, A. L.

    2003-09-01

    We have studied the Raman and luminescence spectra of a microcavity-quantum dot system consisting of a melamine formaldehyde latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the luminescence spectra of a single microsphere was detected arising from the coupling between the emission from quantum dots and spherical cavity modes. Strong anti-Stokes emission from CdTe quantum dots coupled to the cavity modes was observed using low intensity below band-gap excitation and attributed to the strong field enhancement at the microcavity resonances.

  16. Discrimination of chemical warfare simulants via multiplex coherent anti-Stokes Raman scattering and multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Farrell, Mikella E.; Pellegrino, Paul M.

    2014-02-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) is used to detect several chemical warfare simulants, such as dimethyl methylphosphonate and 2-chloroethyl ethyl sulfide, with high specificity. The spectral bandwidth of the femtosecond laser pulse used in these studies is sufficient to coherently and simultaneously drive all the vibrational modes in the molecule of interest. Evidence shows that MCARS is capable of overcoming common sensitivity limitations of spontaneous Raman scattering, thus allowing for the detection of the target material in milliseconds with standard, uncooled universal serial bus spectrometers as opposed to seconds with cooled, intensified CCD-based spectrometers. In addition, the obtained MCARS spectrum of the investigated sample provides multiple unique signatures. These signatures are used in an off-line multivariate statistical analysis allowing for the material's discrimination with high fidelity.

  17. Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements.

    PubMed

    Dedic, Chloe E; Miller, Joseph D; Meyer, Terrence R

    2014-12-01

    A method for simultaneous ro-vibrational and pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is presented for multi-species detection and improved temperature sensitivity from room temperature to flame conditions. N₂/CH₄ vibrational and N₂/O₂/H₂ rotational Raman coherences are excited simultaneously using fs pump pulses at 660 and 798 nm, respectively, and a common fs Stokes pulse at 798 nm. A fourth narrowband 798 nm ps pulse probes all coherence states at a time delay that minimizes nonresonant background and the effects of collisions. The transition strength is concentration dependent, while the distribution among observed transitions is related to temperature through the Boltzmann distribution. The broadband excitation pulses and multiplexed signal are demonstrated for accurate thermometry from 298 to 2400 K and concentration measurements of four key combustion species.

  18. Coherent anti-Stokes Raman scattering (CARS) spectra, with resonance enhancement, of cytochrome c and vitamin B12 in dilute aqueous solution.

    PubMed

    Nestor, J; Spiro, T G; Klauminzer, G

    1976-10-01

    Coherent anti-Stokes Raman scattering (CARS) spectra have been obtained for ferrocytochrome c and cyano cobalamin in aqueous solution at millimolar concentrations, using a pair of tunable dye lasers pumped by a pulsed nitrogen laser. Resonance enhancement was obtained by tuning the omega1 laser to the visible absorption bands of the samples. The spectral features correspond to those observed in the conventional resonance Raman spectra. It appears that CARS spectroscopy, with its advantageous fluorescence rejection, can be usefully applied to biological samples by exploiting resonance enhancement. While the background scattering from water is 10 times higher than that of benzene and other aromatic solvents, it is actually at the low end of the scale for most liquids. The anomalously low background of aromatic liquids is thought to result from competition by the unusually efficient stimulated Raman scattering which they display. Off-resonance spectra for both cobalamin and cytochrome c contain negative peaks, i.e., absorption bands in the background. These are interpreted as inverse Raman processes induced by the omega1 photons in the presence of the continuum provided by the background scattering. While both CARS and the inverse Raman effect are subject to resonance enhancement, the wavelength dependence of CARS is evidently steeper.

  19. Measurement of vibrational populations in low-pressure hydrogen plasma by coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Taran, J. P. E.; Taillet, J.; Bacal, M.; Bruneteau, A. M.

    1981-04-01

    Vibrational populations in a low-pressure H2 plasma have been measured by coherent anti-Stokes Raman scattering (CARS). The plasma generator is described, and some particulars of the optical arrangement are given. The CARS system is a commercial spectrometer, whose original optical system has been slightly modified for this study, by eliminating the Polarex arrangement for the YAG laser oscillator and by adding a YAG amplifier stage. This has resulted in improved beam quality and enhanced peak power. For an electron density of 2 x 10 to the 11th cm to the 0.001 and a total pressure of 0.13 m bar, the rotational temperature was found to be 475 K. The populations of the vibrational states v equals 0, 1, and 2 have also been measured. Their distribution is non-Boltzmann. The influence of pressure and discharge parameters is discussed.

  20. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    NASA Astrophysics Data System (ADS)

    Weinigel, M.; Breunig, H. G.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Klemp, M.; Lademann, J.; König, K.

    2014-05-01

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma.

  1. Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lu, Fake; Zheng, Wei; Lin, Jian; Huang, Zhiwei

    2010-03-01

    We report on a unique implementation of a dual 4-f paired-gratings spectral filtering of a femtosecond (fs) laser to realize high contrast coherent anti-Stokes Raman scattering (CARS) microscopy and high quality multiphoton microscopy on the same platform for label-free biomolecular imaging. The 4-f gratings filtering enables readily conversion of the 100 fs laser pulse trains into transform-limited 1 picosecond (ps) pulses in the spectral range of 700-1600 nm for CARS imaging. Compared with fs-CARS microscopy, our ps-CARS imaging yields an approximately tenfold improvement in spectral resolution, while a twofold improvement in nonresonant background suppression. High quality second-harmonic generation and two-photon excitation fluorescence imaging can also be acquired in tandem when swapping the 4-f grating filtering from the ps mode to fs mode. We demonstrate this multimodal nonlinear optical microscopy technique by imaging 465 nm polystyrene beads in water and animal liver tissue.

  2. Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer.

    PubMed

    Legesse, Fisseha Bekele; Medyukhina, Anna; Heuke, Sandro; Popp, Jürgen

    2015-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful tool for fast label-free tissue imaging, which is promising for early medical diagnostics. To facilitate the diagnostic process, automatic image analysis algorithms, which are capable of extracting relevant features from the image content, are needed. In this contribution we perform an automated classification of healthy and tumor areas in CARS images of basal cell carcinoma (BCC) skin samples. The classification is based on extraction of texture features from image regions and subsequent classification of these regions into healthy and cancerous with a perceptron algorithm. The developed approach is capable of an accurate classification of texture types with high sensitivity and specificity, which is an important step towards an automated tumor detection procedure. PMID:25797604

  3. Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zi Jian Er, Kenneth; Zheng, Wei; Huang, Zhiwei

    2013-08-01

    We report a radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering (RP-TE-CARS) microscopy technique for high-contrast vibrational imaging of subcellular organelles at nano-scale resolutions. The radially polarized pump and Stokes laser beams are tightly focused onto the sample while a gold-coated metallic probe is placed at the upper surface of the sample to enhance the electric field and CARS signals. The back-scattered CARS signal is measured with the gold-coated nano-tip being stationary at the focal region of laser beams. The RP-TE-CARS signal is ˜6-fold higher than that using linearly polarized laser excitation. We demonstrate the good performance of the RP-TE-CARS technique developed by imaging sub-micron polystyrene beads and mitochondria at nano-scale resolutions.

  4. Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Zhang, Delong; Huff, Terry B.; Wang, Xiaofei; Shi, Riyi; Xu, Xiao-Ming; Cheng, Ji-Xin

    2011-10-01

    In vivo imaging of white matter is important for the mechanistic understanding of demyelination and evaluation of remyelination therapies. Although white matter can be visualized by a strong coherent anti-Stokes Raman scattering (CARS) signal from axonal myelin, in vivo repetitive CARS imaging of the spinal cord remains a challenge due to complexities induced by the laminectomy surgery. We present a careful experimental design that enabled longitudinal CARS imaging of de- and remyelination at single axon level in live rats. In vivo CARS imaging of secretory phospholipase A2 induced myelin vesiculation, macrophage uptake of myelin debris, and spontaneous remyelination by Schwann cells are sequentially monitored over a 3 week period. Longitudinal visualization of de- and remyelination at a single axon level provides a novel platform for rational design of therapies aimed at promoting myelin plasticity and repair.

  5. Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-stokes Raman scattering probe.

    PubMed

    Tong, Ling; Lu, Yanhui; Lee, Robert J; Cheng, Ji-Xin

    2007-08-23

    Coherent anti-Stokes Raman scattering (CARS) microscopy was used to visualize receptor-mediated endocytosis and intracellular trafficking with the aid of a CARS probe. The probe was made of 200-nm polystyrene particles encapsulated in folate-targeted liposomes. By tuning (omega(p) - omega(s)) to 3045 cm(-1), which corresponds to the aromatic C-H stretching vibration, the polystyrene nanoparticles with a high density of aromatic C-H bonds were detected with a high signal-to-noise ratio, while the epi-detected CARS signal from cellular organelles was cancelled by the destructive interference between the resonant contribution from the aliphatic C-H vibration and the nonresonant contribution. Without any photobleaching, the CARS probe allowed single-particle tracking analysis of intracellular endosome transport. No photodamage to cells was observed under the current experimental conditions. These results show the advantages and potential of using a CARS probe to study cellular processes. PMID:17663581

  6. Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma

    PubMed Central

    Tamosaityte, Sandra; Leipnitz, Elke; Geiger, Kathrin D.; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Background Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. Methods Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor's localization, cell proliferation and vascularization. Results The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma. Conclusions CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation. PMID:25198698

  7. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    SciTech Connect

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  8. Hyperspectral coherent anti-Stokes Raman scattering microscopy for in situ analysis of solid-state crystal polymorphs

    NASA Astrophysics Data System (ADS)

    Garbacik, E. T.; Fussell, A. L.; Güres, S.; Korterik, J. P.; Otto, C.; Herek, J. L.; Offerhaus, H. L.

    2013-02-01

    Hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy is quickly becoming a prominent imaging modality because of its many advantages over the traditional paradigm of multispectral CARS. In particular, recording a significant portion of the vibrational spectrum at each spatial pixel allows image-wide spectral analysis at much higher rates than can be achieved with spontaneous Raman. We recently developed a hyperspectral CARS method, the driving principle behind which is the fast acquisition and display of a hyperspectral datacube as a set of intuitive images wherein each material in a sample appears with a unique trio of colors. Here we use this system to image and analyze two types of polymorphic samples: the pseudopolymorphic hydration of theophylline, and the packing polymorphs of the sugar alcohol mannitol. In addition to these solid-state form modifications we have observed spectral variations of crystalline mannitol and diprophylline as functions of their orientations relative to the optical fields. We use that information to visualize the distributions of these compounds in a pharmaceutical solid oral dosage form.

  9. Picosecond coherent anti-Stokes Raman scattering (CARS) study of vibrational dephasing of carbon disulfide and benzene in solution

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Woodward, Anne M.; Stephenson, John C.

    1986-01-01

    The vibrational dephasing of the 656/cm mode (nu1, a1g) of CS2 and the 991/cm mode (nu2, a1g) of benzene have been studied as a function of concentration in mixtures with a number of solvents using a ps time-resolved CARS technique. This technique employs two tunable synchronously-pumped mode-locked dye lasers in a stimulated Raman pump, coherent anti-Stokes Raman probe time-resolved experiment. Results are obtained for CS2 in carbon tetrachloride, benzene, nitrobenzene, and ethanol and for benzene nu2 in CS2. The dephasing rates of CS2 nu1 increase on dilution with the polar solvents and decrease or remain constant on dilution with the nonpolar solvents. The CS2/benzene solutions show a contrasting behavior, with the CS2 nu1 dephasing rate being nearly independent of concentration whereas the benzene nu2 dephasing rate decreases on dilution. These results are compared to theoretical models for vibrational dephasing of polyatomic molecules in solution.

  10. Molecular Orientation in Dry and Hydrated Cellulose Fibers: A Coherent Anti-Stokes Raman Scattering Microscopy Study

    PubMed Central

    Zimmerley, Maxwell; Younger, Rebecca; Valenton, Tiffany; Oertel, David C.; Ward, Jimmie L.; Potma, Eric O.

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orientation of the methylene symmetric stretching vibration, the molecular alignment of cellulose microfibrils is found to be conserved on the micrometer scale. Whereas the molecular orientation in cotton shows modest variability along the fiber, the alignment of the cellulose units in rayon is highly consistent throughout the fiber. The ordered alignment is retained upon fiber hydration. Upon hydration of the cellulose fibers, an anisotropic electronic contribution is observed, which indicates an ordered incorporation of water molecules into the fiber structure. The third-order and second-order electronic polarizability of cellulose I are directed along the axis of the polyglucan chain. No second-order optical response is observed in cellulose II, supporting the antiparallel arrangement of the polyglucan chains in regenerated cellulose. PMID:20684644

  11. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-01

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

  12. Detecting polymeric nanoparticles with coherent anti-stokes Raman scattering microscopy in tissues exhibiting fixative-induced autofluorescence

    NASA Astrophysics Data System (ADS)

    Garrett, N. L.; Godfrey, L.; Lalatsa, A.; Serrano, D. R.; Uchegbu, I. F.; Schatzlein, A.; Moger, J.

    2015-03-01

    Recent advances in pharmaceutical nanotechnology have enabled the development of nano-particulate medicines with enhanced drug performance. Although the fate of these nano-particles can be macroscopically tracked in the body (e.g. using radio-labeling techniques), there is little information about the sub-cellular scale mechanistic processes underlying the particle-tissue interactions, or how these interactions may correlate with pharmaceutical efficacy. To rationally engineer these nano-particles and thus optimize their performance, these mechanistic interactions must be fully understood. Coherent Anti-Stokes Raman scattering (CARS) microscopy provides a label-free means for visualizing biological samples, but can suffer from a strong non-resonant background in samples that are prepared using aldehyde-based fixatives. We demonstrate how formalin fixative affects the detection of polymeric nanoparticles within kidneys following oral administration using CARS microscopy, compared with samples that were snap-frozen. These findings have implications for clinical applications of CARS for probing nanoparticle distribution in tissue biopsies.

  13. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  14. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  15. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  16. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    SciTech Connect

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-06-15

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  17. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

    PubMed

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  18. Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Danehy, Paul M

    2015-09-01

    We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements.

  19. Raman spectroscopies in shock-compressed materials

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Spontaneous Raman spectroscopy, stimulated Raman scattering and coherent anti-Stokes Raman scattering have been used to measure temperatures and changes in molecular vibrational frequencies for detonating and shocked materials. Inverse Raman and Raman induced Kerr effect spectroscopies have been suggested as diagnostic probes for determining and phenomenology of shock-induced chemical reactions. The practicality, advantages, and disadvantages of using Raman scattering techniques as diagnostic probes of microscopic phenomenology through and immediately behind the shock front of shock-compressed molecular systems are discussed.

  20. Label-Free Chemical Imaging of Catalytic Solids by Coherent Anti-Stokes Raman Scattering and Synchrotron-Based Infrared Microscopy

    SciTech Connect

    Kox, M.; Domke, K; Day, J; Rago, G; Stavitski, E; Bonn, M; Weckhuysen, B

    2009-01-01

    Take a look inside: The combination of coherent anti-Stokes Raman scattering and synchrotron-based IR microscopy during the catalytic conversion of thiophene derivatives on zeolite crystals yields space- and time-resolved chemically specific information without the need for labeling (see picture). The thiophene reactant is mostly present in the center of the crystal, and the product is aligned within the straight pores of the zeolites.

  1. In vivo lipid saturation study of C. elegans using quantitative broadband coherent anti-Stokes Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Littleton, Bradley; Kavanagh, Thomas; Nie, Yu; Abbate, Vincenzo; Hylands, Peter; Sturzenbaum, Stephen; Richards, David

    2016-03-01

    In vivo lipid saturation maps of microscopic nematodes (Caenorhabditis elegans) have been produced using our novel Spectral Interferometric Polarisation Coherent anti-Stokes Raman Scattering (SIP-CARS) imaging technique. This technique employs simple passive polarisation optics and a balanced homodyne detection scheme to exploit symmetries in the CARS polarisation response resulting in the complete cancellation of the non-resonant background (NRB) and real component of the CARS signal (with no prior or post assumptions as regards to their form). The remaining imaginary component of the CARS response is linear with analyte concentration and directly relatable to the spontaneous Raman spectrum [1]. Furthermore, the resonant CARS signal is interferometrically amplified by the non-resonant response, a necessity for rapid imaging at biologically relevant powers [2]. This technique permits acquisition of a broad NRB-free spectrum, in excess of 1800cm-1, in a single exposure at each pixel. This allows simultaneous determination of lipid droplet saturation, from the fingerprint region, and lipid order, from the C-H stretch region from which maps can be readily constructed. Additionally exploiting the dispersive nature of our signal collection two-photon autofluorescence can be isolated and images subsequently produced. We have successfully applied this technique to identify differences in lipid saturation distributions in selective C. elegans mutants and demonstrated that the technique is sufficiently sensitive to detect the effects of lipid metabolism altering drugs on wild type C. elegans. [1] Littleton et al, Phys Rev Lett, 111, 103902 (2013) [2] Parekh et al, Biophys J, 99, 2695-2704 (2010)

  2. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Guildenbecher, Daniel R

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments. PMID:27409125

  3. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Guildenbecher, Daniel R

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.

  4. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

    DOE PAGESBeta

    Kearney, Sean P.; Guildenbecher, Daniel R.

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps)more » laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Lastly, the results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.« less

  5. Exploring the interactions between peptides and lipid bilayers using coherent anti-Stokes Raman scattering and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Mari, M.; Mouras, R.; Downes, A.; Elfick, A.

    2011-06-01

    We have used a versatile and powerful microscope[1] for multi-modal biomedical imaging on which we combine Coherent Anti-Stokes Raman Scattering (CARS) with Two Photon Excitation Fluorescence (TPEF) using a Nd: YVO4 pump laser. We acquired 2PEF, CARS, and phase contrast images of Multilamellar Vesicles (MLVs) and Giant Unilamellar Vesicles (GUVs), as well as Raman spectra of the constituent lipids. A wide range of peptides are harmful to cells by altering the structure of the biological membranes. This effect depends on the composition of the membrane and the chemical structure of the peptide. The peptide we studied is the beta amyloid Aβ which is a major component of the amyloid plaques deposited on neuronal membranes of Alzheimer's disease (AD) patients. AD is neurodegenerative disorder in which the hallmark symptoms include cognitive decline and dementia[2] and is characterized by the formation of extracellular amyloid fibrils on the neuronal membranes of the brain. Many questions still remain unanswered concerning the destabilization of cellular ionic homeostasis due to pores formed during the interactions of lipid membranes with peptides. In this project, biomimics of cell membranes are used. The structures that best mimic the plasma membranes are MLVs or GUVs. These vesicles are formed using the gentle hydration technique[3] or the electroformation technique[4] respectively and are composed of phospholipids such as DOPC, DPPC, D62PPC and their binary mixtures. The MLVs and GUVs imaging by CARS and TPEF microscopy not only permits the direct imaging of the leakage phenomenon caused by the toxic peptide (Aβ) on the lipid bilayer, but also records simultaneously the lateral structure of the bilayer and peptide distribution in the plane across the membrane.

  6. Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: Saturation and Stark effects

    NASA Astrophysics Data System (ADS)

    Chai, Ning; Lucht, Robert P.; Kulatilaka, Waruna D.; Roy, Sukesh; Gord, James R.

    2010-08-01

    A theoretical analysis of electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) of NO is described. The time-dependent density-matrix equations for the nonlinear ERE-CARS process are derived and manipulated into a form suitable for direct numerical integration. In the ERE-CARS configuration considered in this paper, the pump and Stokes beams are far from electronic-resonance. The visible 532 and 591 nm laser beams are used to excite Q-branch Raman resonances in the vibrational bands of the X Π2 electronic state of NO. An ultraviolet probe beam at 236 nm is used to excite P-, Q-, or R-branch transitions in the (v '=0, v″=1) band of the A Σ2+-X Π2 electronic system of NO molecule. Experimental spectra are obtained either by scanning the ultraviolet probe beam while keeping the Stokes frequency fixed (probe scans) or by scanning the Stokes frequency while keeping the probe frequency fixed (Stokes scans). The calculated NO ERE-CARS spectra are compared with experimental spectra, and good agreement is observed between theory and experiment in terms of spectral peak locations and relative intensities. The effects of saturation of the two-photon Raman-resonant Q-branch transitions, the saturation of a one-photon electronic-resonant P-, Q-, or R-branch transitions in the A Σ2+-X Π2 electronic system, and the coupling of these saturation processes are investigated. The coupling of the saturation processes for the probe and Raman transitions is complex and exhibits behavior similar to that observed in the electromagnetic induced transparency process. The probe scan spectra are significantly affected by Stark broadening due to the interaction of the pump and Stokes radiation with single-photon resonances between the upper vibration-rotation probe level in the A Σ2+ electronic levels and vibration-rotation levels in higher lying electronic levels. The ERE-CARS signal intensity is found to be much less sensitive to variations in the

  7. Ultrafast saturation of electronic-resonance-enhanced coherent anti-Stokes Raman scattering and comparison for pulse durations in the nanosecond to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2016-02-01

    The saturation threshold of a probe pulse in an ultrafast electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman spectroscopy (CARS) configuration is calculated. We demonstrate that while the underdamping condition is a sufficient condition for saturation of ERE-CARS with the long-pulse excitations, a transient gain must be achieved to saturate the ERE-CARS signal for the ultrafast probe regime. We identify that the area under the probe pulse can be used as a definitive parameter to determine the criterion for a saturation threshold for ultrafast ERE-CARS. From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold of ERE-CARS is compared for a wide range of probe-pulse durations from the 10-ns to the 10-fs regime. The theory explains both qualitatively and quantitatively the saturation thresholds of resonant transitions and also gives a predictive capability for other pulse duration regimes. The presented criterion for the saturation threshold will be useful in establishing the design parameters for ultrafast ERE-CARS.

  8. Imaging the Effects of Prostaglandin Analogues on Cultured Trabecular Meshwork Cells by Coherent Anti-Stokes Raman Scattering

    PubMed Central

    Lei, Tim C.; Masihzadeh, Omid; Kahook, Malik Y.; Ammar, David A.

    2013-01-01

    Purpose. The aim of this study was to nondestructively monitor morphological changes to the lipid membranes of primary cultures of living human trabecular meshwork cells (hTMC) without the application of exogenous label. Methods. Live hTMC were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). The hTMC were treated with a commercial formulation of latanoprost (0.5 μg/mL) for 24 hours before imaging. Untreated cells and cells treated with vehicle containing the preservative benzalkonium chloride (BAK; 2 μg/mL) were imaged as controls. After CARS/TPAF imaging, hTMC were fixed, stained with the fluorescent lipid dye Nile Red, and imaged by conventional confocal microscopy to verify lipid membrane structures. Results. Analysis of CARS/TPAF images of hTMC treated with latanoprost revealed multiple intracellular lipid membranes absent from untreated or BAK-treated hTMC. Treatment of hTMC with sodium fluoride or ouabain, agents shown to cause morphological changes to hTMC, also did not induce formation of intracellular lipid membranes. Conclusions. CARS microscopy detected changes in living hTMC morphology that were validated by subsequent histological stain. Prostaglandin-induced changes to hTMC involved rearrangement of lipid membranes within these cells. These in vitro results identify a novel biological response to a class of antiglaucoma drugs, and further experiments are needed to establish how this effect is involved in the hypotensive action of prostaglandin analogues in vivo. PMID:23900606

  9. Dynamical study of the water penetration process into a cellulose acetate film studied by coherent anti-Stokes Raman scattering (CARS) microspectroscopy

    NASA Astrophysics Data System (ADS)

    Fujisawa, Rie; Ohno, Tomoya; Kaneyasu, Junya F.; Leproux, Philippe; Couderc, Vincent; Kita, Hiroshi; Kano, Hideaki

    2016-07-01

    The penetration process of water into a cellulose acetate film was traced in real time by coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The Cdbnd O stretch mode was red-shifted due to hydrogen-bond formation. We also found that two Raman bands at 1605 cm-1 and 1665 cm-1 emerged only in the early stage of the water penetration process. Based on the combined analysis of the experimental and computational studies, these bands at 1605 cm-1 and 1665 cm-1 were assigned as the OH bend mode due to hydrogen-bonded penetrated water and hydrogen-bonded OH groups in pyranose rings, respectively.

  10. Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2016-02-01

    A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.

  11. Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator.

    PubMed

    Yoo, Yong Shim; Lee, Dong-Hoon; Cho, Hyuck

    2007-11-15

    We propose and demonstrate a novel differential two-signal technique of coherent anti-Stokes Raman scattering (CARS) imaging microscopy using a picosecond (ps) optical parametric oscillator (OPO). By adjusting a Lyot filter inside the cavity, we operated the OPO oscillating in two stable modes separated by a few nanometers. The CARS images generated by the two modes are separated by a spectrograph behind the microscope setup, and their differential image is directly obtained by balanced lock-in detection. The feasibility of the technique is experimentally verified by imaging micrometer-sized polystyrene beads immersed in water. PMID:18026271

  12. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  13. Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Dedic, Chloe E; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-02-27

    Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model.

  14. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  15. In planta imaging of Δ9-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garbacik, Erik T.; Korai, Roza P.; Frater, Eric H.; Korterik, Jeroen P.; Otto, Cees; Offerhaus, Herman L.

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ9-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  16. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis.

    PubMed

    Khmaladze, Alexander; Jasensky, Joshua; Price, Erika; Zhang, Chi; Boughton, Andrew; Han, Xiaofeng; Seeley, Emily; Liu, Xinran; Banaszak Holl, Mark M; Chen, Zhan

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy can be used as a powerful imaging technique to identify chemical compositions of complex samples in biology, biophysics, medicine, and materials science. In this work we developed a CARS microscopic system capable of hyperspectral imaging. By employing an ultrafast laser source, a photonic crystal fiber, and a scanning laser microscope together with spectral detection by a highly sensitive back-illuminated cooled charge-coupled device (CCD) camera, we were able to rapidly acquire and process hyperspectral images of live cells with chemical selectivity. We discuss various aspects of hyperspectral CARS image analysis and demonstrate the use of singular value decomposition methods to characterize the cellular lipid content. PMID:25198903

  17. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  18. In planta imaging of Δ⁹-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Garbacik, Erik T; Korai, Roza P; Frater, Eric H; Korterik, Jeroen P; Otto, Cees; Offerhaus, Herman L

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ⁹-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  19. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    SciTech Connect

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurements with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.

  20. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.

    PubMed

    Mytskaniuk, Vasyl; Bardin, Fabrice; Boukhaddaoui, Hassan; Rigneault, Herve; Tricaud, Nicolas

    2016-01-01

    Laser scanning microscopes combining a femtosecond Ti:sapphire laser and an optical parametric oscillator (OPO) to duplicate the laser line have become available for biologists. These systems are primarily designed for multi-channel two-photon fluorescence microscopy. However, without any modification, complementary non-linear optical microscopy such as second-harmonic generation (SHG) or third harmonic generation (THG) can also be performed with this set-up, allowing label-free imaging of structured molecules or aqueous medium-lipid interfaces. These techniques are well suited for in-vivo observation, but are limited in chemical specificity. Chemically selective imaging can be obtained from inherent vibration signals based on Raman scattering. Confocal Raman microscopy provides 3D spatial resolution, but it requires high average power and long acquisition time. To overcome these difficulties, recent advances in laser technology have permitted the development of nonlinear optical vibrational microscopy, in particular coherent anti-Stokes Raman scattering (CARS). CARS microscopy has therefore emerged as a powerful tool for biological and live cell imaging, by chemically mapping lipids (via C-H stretch vibration), water (via O-H stretch vibrations), proteins or DNA. In this work, we describe the implementation of the CARS technique on a standard OPO-coupled multiphoton laser scanning microscope. It is based on the in-time synchronization of the two laser lines by adjusting the length of one of the laser beam path. We present a step-by-step implementation of this technique on an existing multiphoton system. A basic background in experimental optics is helpful and the presented system does not require expensive supplementary equipment. We also illustrate CARS imaging obtained on myelin sheaths of sciatic nerve of rodent, and we show that this imaging can be performed simultaneously with other nonlinear optical imaging, such as standard two-photon fluorescence technique

  1. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  2. In vivo monitoring specialized hepatocyte-like cells in Drosophila by coherent anti-Stokes Raman scattering (CARS) and two-photon excitation fluorescence (TPE-F) microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-03-01

    A group of specialized cells in Drosophila called oenocyte, sharing certain similar properties of hepatocytes in mammals, is known to play an important role in lipid metabolism. During starvation, the lipids are released from the fat body, and oenocytes then would accumulate lipid droplets and probably further oxidize them into shorter fatty acids chain as an energy source. Any genetic defect in lipid metabolism may result in different responses of oenocytes to starvation. To investigate this process in vivo, we used coherent anti-Stokes Raman scattering (CARS) and two-photon excitation fluorescence (TPE-F) microscopy to monitor oenocytes in living Drosophila larvae during starvation. We identified oenocytes by their intrinsic fluorescence and visualized lipid droplets by CARS signals at ~2845 cm-1 without any labeling. Compared with the wild-type, mutants with defects in lipid metabolism show different accumulation of lipid droplets in oenocytes. While some mutant accumulates much less lipid droplets in oenocytes during starvation, some has many lipid droplets in oenocytes even though they were fed with plenty of foods. Unlike traditional tissue staining, in vivo imaging allows us to specifically monitor the changes in individual, and provides us more information on the dynamic process of lipid metabolism in Drosophila.

  3. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  4. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Yi, Yung-Hsiang; Chien, Cheng-Hao; Chen, Wei-Wen; Ma, Tian-Hsiang; Liu, Kuan-Yu; Chang, Yu-Sun; Chang, Ta-Chau; Lo, Szecheng J

    2014-01-01

    Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals. PMID:23979461

  5. Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-11-01

    Pure rotational coherent anti-Stokes Raman scattering measurements of pure CO2 have been performed in a temperature range from 300 to 773 K and for pressure from 0.1 to 5 MPa for the purpose of time-resolved CO2 thermometry. Particular emphasis was put on the comparison of several linewidth approximations to model the experimental spectra. Generally good agreement of the temperature mean values with the thermocouple reference has been found for all models over almost the whole pressure and temperature range investigated. The standard deviations, which increased with temperature, were comparable with or better than the results gained for single-shot measurements of pure N2 or O2-N2 mixtures. Yet for high particle densities close to the critical point of CO2 the limitation of the models became obvious, owing to the strongly increased influence of motional narrowing effects. The characteristics of these effects have been demonstrated by measurements even closer to the critical conditions.

  6. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Yi, Yung-Hsiang; Chien, Cheng-Hao; Chen, Wei-Wen; Ma, Tian-Hsiang; Liu, Kuan-Yu; Chang, Yu-Sun; Chang, Ta-Chau; Lo, Szecheng J.

    2014-01-01

    Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals.

  7. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    NASA Astrophysics Data System (ADS)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  8. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  9. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  10. Impact of refractive index mismatches on coherent anti-Stokes Raman scattering and multiphoton autofluorescence tomography of human skin in vivo.

    PubMed

    Weinigel, M; Breunig, H G; Darvin, M E; Klemp, M; Röwert-Huber, J; Lademann, J; König, K

    2015-09-01

    Optical non-linear multimodal tomography is a powerful diagnostic imaging tool to analyse human skin based on its autofluorescence and second-harmonic generation signals. Recently, the field of clinical non-linear imaging has been extended by adding coherent anti-Stokes Raman scattering (CARS)-a further optical sectioning method for the detection of non-fluorescent molecules. However, the heterogeneity of refractive indices of different substances in complex tissues like human skin can have a strong influence on CARS image formation and requires careful clinical interpretation of the detected signals. Interestingly, very regular patterns are present in the CARS images, which have no correspondence to the morphology revealed by autofluorescence at the same depth. The purpose of this paper is to clarify this phenomenon and to sensitize users for possible artefacts. A further part of this paper is the detailed comparison of CARS and autofluorescence images of healthy human skin in vivo covering the complete epidermis and part of the upper dermis by employing the flexible medical non-linear tomograph MPTflex CARS. PMID:26305454

  11. Longitudinal, 3D in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy –normal function and response to cryotherapy

    PubMed Central

    Jung, Yookyung; Tam, Joshua; Jalian, H. Ray; Anderson, R. Rox; Evans, Conor L.

    2014-01-01

    Sebaceous glands perform complex functions, and are centrally involved in the pathogenesis of acne vulgaris. Current techniques for studying sebaceous glands are mostly static in nature, whereas the gland’s main function – excretion of sebum via the holocrine mechanism – can only be evaluated over time. We present a longitudinal, real-time alternative – the in vivo, label-free imaging of sebaceous glands using Coherent Anti-Stokes Raman Scattering (CARS) microscopy, which is used to selectively visualize lipids. In mouse ears, CARS microscopy revealed dynamic changes in sebaceous glands during the holocrine secretion process, as well as in response to damage to the glands caused by cooling. Detailed gland structure, plus the active migration of individual sebocytes and cohorts of sebocytes were measured. Cooling produced characteristic changes in sebocyte structure and migration. This study demonstrates that CARS microscopy is a promising tool for studying the sebaceous gland and its associated disorders in three-dimensions in vivo. PMID:25026458

  12. Coherent anti-Stokes Raman scattering microscope with a high-signal-to-noise ratio, high stability, and high-speed imaging for live cell observation

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi; Takimoto, Shinichi; Hashimoto, Takeshi

    2007-02-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which can produce images of specific molecules without staining, has attracted the attention of researchers, as it matches the need for molecular imaging and pathway analysis of live cells. In particular, there have been an increasing number of CARS experimental results regarding lipids in live cells, which cannot be fluorescently tagged while keeping the cells alive. One of the important applications of lipid research is for the metabolic syndrome. Since the metabolic syndrome is said to be related to the lipids in lipocytes, blood, arterial vessels, and so on, the CARS technique is expected to find application in this field. However, CARS microscopy requires a pair of picosecond laser pulses, which overlap both temporally and spatially. This makes the optical adjustments of a CARS microscope challenging. The authors developed a CARS unit that includes optics for easy and stable adjustment of the overlap of these laser pulses. Adding the CARS unit to a laser scanning microscope provides CARS images of a high signal-to-noise ratio, with an acquisition rate as high as 2 microseconds per pixel. Thus, images of fast-moving lipid droplets in Hela cells were obtained.

  13. Flexible and stable optical parametric oscillator based laser system for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Zhang, Wei; Parsons, Maddy; McConnell, Gail

    2010-06-01

    The characteristics of a stable and flexible laser system based on a synchronously pumped optical parametric oscillator (OPO) is presented. This OPO can offer very stable operation with both approximately 1 ps and approximately 300 fs outputs over a broad wavelength range, i.e., 920-1200 nm. Combining the pump tuning with the OPO tuning, a total Raman range of 1900-5500 cm(-1) is accessible. For maximum spectral sensitivity, the CARS microsope based on the ps laser system is presented in detail. The lateral resolution of the microscope is diffraction limited to be about 390 nm. Fast wavelength switching (sub-second) between two Raman vibrational frequencies, i.e., 2848 cm(-1) for C--H aliphatic vibrations and 3035 cm(-1) for C--H aromatic vibrations is presented as an example, although this also extends to other Raman frequencies. The possibility of obtaining a multimodal imaging system based on the fs laser system is also discussed. PMID:19941296

  14. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-07-01

    Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.

  15. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.

    PubMed

    Engel, Sascha R; Koegler, Andreas F; Gao, Yi; Kilian, Daniel; Voigt, Michael; Seeger, Thomas; Peukert, Wolfgang; Leipertz, Alfred

    2012-09-01

    For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O(2)-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles. PMID:22945152

  16. Application of a high power Yb fiber-based laser compatible with commercial optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Hage, Charles-Henri; Boisset, Simon; Ibrahim, Ali; Morin, Franck; Hoenninger, Clemens; Grunske, Tobias; Souissi, Sami; Heliot, Laurent; Leray, Aymeric

    2014-06-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful tool for chemical analysis at a subcellular level, frequently used for imaging lipid dynamics in living cells. We report a high-power picosecond fiber-based laser and its application for optical parametric oscillator (OPO) pumping and CARS microscopy. This fiber-based laser has been carefully characterized. It produces 5 ps pulses with 0.8 nm spectral width at a 1,030 nm wavelength with more than 10 W of average power at 80 MHz repetition rate; these spectral and temporal properties can be slightly modified. We then study the influence of these modifications on the spectral and temporal properties of the OPO. We find that the OPO system generates a weakly spectrally chirped signal beam constituted of 3 ps pulses with 0.4 nm spectral width tunable from 790 to 930 nm optimal for CARS imaging. The frequency doubling unconverted part is composed of 7-8 ps pulses with 0.75 nm spectral width compatible with CARS imaging. We also study the influence of the fiber laser properties on the CARS signal generated by distilled water. In agreement with theory, we find that shorter temporal pulses allow higher peak powers and thus higher CARS signal, if the spectral widths are less than 10 cm(-1) . We demonstrate that this source is suitable for performing CARS imaging of living cells during several hours without photodamages. We finally demonstrate CARS imaging on more complex aquatic organisms called copepods (micro-crustaceans), on which we distinguish morphological details and lipid reserves.

  17. Fiber bundle based endomicroscopy prototype with two collection channels for simultaneous coherent anti-Stokes Raman scattering and second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhengfan; Satira, Zachary A.; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Wong, Kelvin; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.

    2014-02-01

    Label-free multiphoton imaging is promising for replacing biopsy and could offer new strategies for intraoperative or surgical applications. Coherent anti-Stokes Raman scattering (CARS) imaging could provide lipid-band contrast, and second harmonic generation (SHG) imaging is useful for imaging collagen, tendon and muscle fibers. A combination of these two imaging modalities could provide rich information and this combination has been studied by researchers to investigate diseases through microscopy imaging. The combination of these two imaging modalities in endomicroscopy imaging has been rarely investigated. In this research, a fiber bundle consisted of one excitation fiber and 18 collection fibers was developed in our endomicroscopy prototype. The 18 collection fibers were divided into two collection channels with 9 fibers in each channel. These two channels could be used together as one channel for effective signal collection or used separately for simplifying detection part of the system. Differences of collection pattern of these two channels were investigated. Collection difference of central excitation fiber and surrounding 18 fibers was also investigated, which reveals the potential ability of this system to measure forward to backward (F/B) ratio in SHG imaging. CARS imaging of mouse adipocyte and SHG imaging of mouse tail tendon were performed to demonstrate the CARS and SHG tissue imaging performance of this system. Simultaneous CARS and SHG imaging ability of this system was demonstrated by mouse tail imaging. This fiber bundle based endomicroscopy imaging prototype, offers a promising platform for constructing efficient fiber-based CARS and SHG multimodal endomicroscopes for label free intraoperative imaging applications.

  18. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  19. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  20. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    NASA Astrophysics Data System (ADS)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  1. Multimodal imaging of living cells with multiplex coherent anti-stokes raman scattering (CARS), third-order sum frequency generation (TSFG) and two-photon excitation fluorescence (TPEF) using a nanosecond white-light laser source.

    PubMed

    Segawa, Hiroki; Okuno, Masanari; Leproux, Philippe; Couderc, Vincent; Ozawa, Takeaki; Kano, Hideaki

    2015-01-01

    The subnanosecond "white-light laser" source has been applied to multimodal, multiphoton, and multiplex spectroscopic imaging (M(3) spectroscopic imaging) with coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and two-photon excitation fluorescence (TPEF). As the proof-of-principle experiment, we performed simultaneous imaging of polystyrene beads with TSFG and TPEF. This technique is then applied to live cell imaging. Mouse L929 fibroblastic cells are clearly visualized by CARS, TSFG, and TPEF processes. M(3) spectroscopic imaging provides various and unique cellular information with different image contrast based on each multiphoton process.

  2. Multimodal imaging of living cells with multiplex coherent anti-stokes raman scattering (CARS), third-order sum frequency generation (TSFG) and two-photon excitation fluorescence (TPEF) using a nanosecond white-light laser source.

    PubMed

    Segawa, Hiroki; Okuno, Masanari; Leproux, Philippe; Couderc, Vincent; Ozawa, Takeaki; Kano, Hideaki

    2015-01-01

    The subnanosecond "white-light laser" source has been applied to multimodal, multiphoton, and multiplex spectroscopic imaging (M(3) spectroscopic imaging) with coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and two-photon excitation fluorescence (TPEF). As the proof-of-principle experiment, we performed simultaneous imaging of polystyrene beads with TSFG and TPEF. This technique is then applied to live cell imaging. Mouse L929 fibroblastic cells are clearly visualized by CARS, TSFG, and TPEF processes. M(3) spectroscopic imaging provides various and unique cellular information with different image contrast based on each multiphoton process. PMID:25864673

  3. Laser-Raman spectroscopy of living cells

    NASA Astrophysics Data System (ADS)

    Webb, Sydney J.

    1980-04-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1, has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1, from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced “collective” Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell “time clock” may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis.

  4. Flame studies with the coherent anti-Stokes Raman spectroscopy technique

    SciTech Connect

    Goss, L.P.; Switzer, G.L.

    1980-01-01

    Results of various studies on propane- and acetylene-fueled flames utilizing the laboratory CARS system at the AFWAL Aero Propulsion Laboratory are reported. The burner built for these studies was especially adapted for flame seeding and stability. The studies conducted include: (1) a comparison of sodium-line-reversal utilizing CARS single-shot thermometry, (2) temperature profiling of the acetylene- and propane-fueled flames, (3) referencing-scheme studies for number density determinations, (4) an oxygen study of the flame with background suppression, and (5) simultaneous single-shot measurements of number density and temperature on the propane-fueled flame.

  5. Coherent and spontaneous Raman spectroscopy in shocked and unshocked liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Schiferl, D.; Chatelet, M.; Turner, T.P.; Shaner, J.W.; Shampine, D.L.; Holt, W.T.

    1985-01-01

    Coherent and non-coherent Raman spectroscopy is being used to study the structure and energy transfer in molecular liquids at high pressures. Stimulated Raman scattering, coherent anti-Stokes Raman scattering, and Raman induced Kerr effect scattering measurements have been performed in liquid benzene and liquid nitromethane shocked to pressures up to 11 GPa. Frequency shifts were observed for the 992 cm/sup -1/ ring stretching mode of benzene and the 920 cm/sup -1/ CN stretching mode of nitromethane. Results of these dynamic experiments are compared to spontaneous Raman scattering measurements made in a high temperature diamond anvil cell. Also, a picosecond infrared pump/spontaneous anti-Strokes Raman probe experiment is being used to measure CH stretch vibrational relaxation times in liquid halogenated methanes statically compressed to a few tenths GPa. 87 refs., 17 figs.

  6. Electronically tunable coherent Raman spectroscopy using acousto-optics tunable filter.

    PubMed

    Petrov, Georgi I; Meng, Zhaokai; Yakovlev, Vladislav V

    2015-09-21

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, we demonstrated a novel instrumentation to the broadband coherent Raman spectroscopy. System's tunability allows assessing Raman transitions ranging from <400 cm(-1) to 4500 cm(-1). We validated the use of the new instrumentation by collecting coherent anti-Stokes spectra and stimulated Raman spectra of various samples. PMID:26406668

  7. Electric Field in a Plasma Channel in a High-Pressure Nanosecond Discharge in Hydrogen: A Coherent Anti-Stokes Raman Scattering Study

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Tskhai, S.; Krasik, Ya. E.

    2013-12-01

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×105 Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ˜100 kV and a duration of ˜5 ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30 kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  8. THz-Raman: accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis, and monitoring

    NASA Astrophysics Data System (ADS)

    Heyler, Randy A.; Carriere, James T. A.; Havermeyer, Frank

    2013-05-01

    Structural analysis via spectroscopic measurement of rotational and vibrational modes is of increasing interest for many applications, since these spectra can reveal unique and important structural and behavioral information about a wide range of materials. However these modes correspond to very low frequency (~5cm-1 - 200cm-1, or 150 GHz-6 THz) emissions, which have been traditionally difficult and/or expensive to access through conventional Raman and Terahertz spectroscopy techniques. We report on a new, inexpensive, and highly efficient approach to gathering ultra-low-frequency Stokes and anti-Stokes Raman spectra (referred to as "THz-Raman") on a broad range of materials, opening potential new applications and analytical tools for chemical and trace detection, identification, and forensics analysis. Results are presented on explosives, pharmaceuticals, and common elements that show strong THz-Raman spectra, leading to clear discrimination of polymorphs, and improved sensitivity and reliability for chemical identification.

  9. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  10. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  11. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  12. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  13. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

  14. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems. PMID:23736451

  15. Simultaneous and time-resolved temperature and relative CO2-N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-09-10

    Pure rotational coherent anti-Stokes Raman-scattering (CARS) measurements have been performed in binary CO2-N2 and ternary CO2-O2-N2 mixtures in a temperature range between 300 and 773 K and pressures from 0.1 to 5 MPa to prove its potential for simultaneous single-shot thermometry and multispecies concentration measurements. In pressurized systems the CO2 component has a strong spectral influence on the pure rotational CARS spectra. Because of this dominance, pure rotational CARS proves to be a sensitive tool to measure in high-pressure combustion systems and the relative CO2-N2 concentration in the lower temperature range simultaneously with the temperature and the relative O2-N2 concentration. The evaluation of the spectra utilized a least-sum-squared differences fit of the spectral shape, weighted either constantly or inversely with respect to the normalized signal intensity. The results of the simultaneous temperature and relative CO2-N2 and O2-CO2-N2 concentration measurements provided a good accuracy and precision both in temperature and in concentrations. Because of the strong increase in the relative spectral contribution of CO2 with rising pressure, the precision of the CO2 concentration determination is in general significantly improved toward higher pressures, thus also clearly enhancing the CO2 detectability. The influence of temperature, O2 and CO2 concentration, pressure, and the evaluation techniques employed on both the accuracy and the precision is explained as well as their cross dependencies. The influence and limitations of the approximations used to model the CO2 molecule are discussed.

  16. Single-pulse coherent Raman spectroscopy in shock-compressed benzene

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Schiferl, D.; Shaner, J.W.

    1983-01-01

    Single-pulse backwards stimulated Raman and reflected broadband coherent anti-Stokes Raman spectroscopy (BSRC and RBBCARS) have been used to measure the vibrational frequency shifts of the 992 cm/sup -1/ ring-stretching mode of liquid benzene shock-compressed to pressures up to 1.2 GPa. The resulting shifts of approx. 7.5 cm/sup -1//GPa in the dynamic experiments are compared to spontaneous Raman-scattering measurements of heated samples compressed in a diamond-anvil cell. RBBCARS was used to simultaneously measure the ring-stretching mode vibrational frequencies of liquid benzene/liquid perdeuterobenzene mixtures shock-compressed to pressures up to 1.53 GPa. Additional experiments that demonstrate the difficulty of using polarization-sensitive coherent Raman techniques, such as Raman-induced Kerr effect spectroscopy (RIKES), in shock-compressed samples are described.

  17. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm−1 to 4500 cm−1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  18. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  19. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  20. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.

    PubMed

    Balois, Maria Vanessa; Hayazawa, Norihiko; Catalan, Francesca Celine; Kawata, Satoshi; Yano, Taka-Aki; Hayashi, Tomohiro

    2015-11-01

    Local temperature of a nanoscale volume is precisely determined by tip-enhanced terahertz Raman spectroscopy in the low temperature range of several tens of degrees. Heat generated by the tip-enhanced electric field is directly transferred to single-walled carbon nanotubes by heat conduction and radiation at the nanoscale. This heating modulates the intensity ratio of anti-Stokes/Stokes Raman scattering of the radial breathing mode of the carbon nanotube based on the Boltzmann distribution at elevated temperatures. Owing to the low-energy feature of the radial breathing mode, the local temperature of the probing volume has been successfully extracted with high sensitivity. The dependence of the temperature rise underneath the tip apex on the incident power coincides with the analytical results calculated by finite element method based on the tip enhancement effect and the consequent steady-state temperature via Joule heat generation. The results show that the local temperature at the nanoscale can be controlled in the low temperature range simply by the incident laser power while exhibiting a sufficiently high tip enhancement effect as an analytical tool for thermally sensitive materials (e.g., proteins, DNA). Graphical Abstract Tip-enhanced THz Raman spectroscopy detects the low frequency Raman mode both in Stokes and anti-Stokes shifts, which precisely reflects the local temperature of the sample volume. PMID:26164304

  1. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.

    PubMed

    Balois, Maria Vanessa; Hayazawa, Norihiko; Catalan, Francesca Celine; Kawata, Satoshi; Yano, Taka-Aki; Hayashi, Tomohiro

    2015-11-01

    Local temperature of a nanoscale volume is precisely determined by tip-enhanced terahertz Raman spectroscopy in the low temperature range of several tens of degrees. Heat generated by the tip-enhanced electric field is directly transferred to single-walled carbon nanotubes by heat conduction and radiation at the nanoscale. This heating modulates the intensity ratio of anti-Stokes/Stokes Raman scattering of the radial breathing mode of the carbon nanotube based on the Boltzmann distribution at elevated temperatures. Owing to the low-energy feature of the radial breathing mode, the local temperature of the probing volume has been successfully extracted with high sensitivity. The dependence of the temperature rise underneath the tip apex on the incident power coincides with the analytical results calculated by finite element method based on the tip enhancement effect and the consequent steady-state temperature via Joule heat generation. The results show that the local temperature at the nanoscale can be controlled in the low temperature range simply by the incident laser power while exhibiting a sufficiently high tip enhancement effect as an analytical tool for thermally sensitive materials (e.g., proteins, DNA). Graphical Abstract Tip-enhanced THz Raman spectroscopy detects the low frequency Raman mode both in Stokes and anti-Stokes shifts, which precisely reflects the local temperature of the sample volume.

  2. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  3. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  4. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    PubMed Central

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm−1) with spectral resolution of 10 cm−1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  5. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  6. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy

    SciTech Connect

    Patuwo, Michael Y.; Lee, Soo-Y.

    2013-12-21

    We present the time-frame calculated photoabsorption spectrum (ABS), spontaneous Raman excitation profile (REP), femtosecond stimulated Raman spectroscopy (FSRS) spectrum, and femtosecond stimulated Raman excitation profile (FSREP) results of a two-mode and three-mode, three-electronic-states model Hamiltonians containing conical intersections (CIs) along its two upper diabatic electronic states, e{sub 1} (dark) and e{sub 2} (bright), with and without coupling (nonadiabatic dynamics) along an asymmetric mode. For every electronic state in each model, there is one coupling mode and the rest of the modes are symmetric tuning modes. The CI appears in the Hamiltonian as off-diagonal entries to the potential term that couple the two upper states, in the form of a linear function of the coupling mode. We show that: (a) the ABS, REP, and FSREP for Stokes and anti-Stokes lines contain similar information about the e{sub 1} and e{sub 2} vibrational bands, (b) the FSRS spectra feature narrow stationary peaks and broader moving peaks contributed by the different resonant components of the third-order polarization terms from perturbation theory, and (c) a relatively strong and narrow stationary band of the allowed first overtone of the asymmetric coupling mode is observed in the Stokes FSREP in the e{sub 1} energy region with coupling to e{sub 2}.

  7. Observation of anomalous Stokes versus anti-Stokes ratio in MoTe2 atomic layers

    NASA Astrophysics Data System (ADS)

    Goldstein, Thomas; Chen, Shao-Yu; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    We grow hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor, with chemical vapor transport methods and investigate its atomic layers with Stokes and anti-Stokes Raman scattering. We report observation of all six types of zone center optical phonons. Quite remarkably, the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, creating an illusion of 'negative temperature'. This effect is tunable, and can be switched from anti-Stokes enhancement to suppression by varying the excitation wavelength. We interpret this observation to be a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center, which are robust even for multiple layers of MoTe2. The intense anti-Stokes Raman scattering provides a cooling channel for the crystal and opens up opportunities for laser cooling of atomically thin TMDC semiconductor devices. Supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and Office of Emerging Frontiers in Research and Innovation (EFRI-1433496).

  8. Single-shot detection of bacterial endospores via coherent Raman spectroscopy

    PubMed Central

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav O.; Murawski, Robert K.; Sautenkov, Vladimir A.; Dogariu, Arthur; Sokolov, Alexei V.; Scully, Marlan O.

    2008-01-01

    Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al. (2007) Science 316:265–268] yield single-shot identification of a small sample of Bacillus subtilis endospores (≈104 spores). The results convey the utility of the technique and its potential for “on-the-fly” detection of biohazards, such as Bacillus anthracis. The application of optimized coherent anti-Stokes Raman scattering scheme to problems requiring chemical specificity and short signal acquisition times is demonstrated. PMID:18184801

  9. Resonance Raman spectroscopy.

    PubMed

    Li, Jiang; Kitagawa, Teizo

    2014-01-01

    Flavin is a general name given to molecules having the heteroaromatic ring system of 7,8-dimethylisoalloxazine but practically means riboflavin (Rfl), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) in biological systems, whose structures are illustrated in Fig. 1, together with the atomic numbering scheme and ring numbering of the isoalloxazine moiety. As the isoalloxazine skeleton cannot be synthesized in human cells, it is obtained from diet as Rfl (vitamin B2). FAD and FMN can act as cofactors in flavoenzymes but Rfl does not. Most flavoenzymes catalyze redox reactions of substrates (Miura, Chem Rec 1:183-194, 2001). When O2 serves as the oxidant in the oxidation half cycle of an enzymic reaction, the enzyme is called "flavo-oxidase" but when others do, the enzyme is called "flavo-dehydrogenase." The difference between the two types of oxidative catalysis arises from delicate differences in the π-electron distributions in the isoalloxazine ring, which can be revealed by Raman spectroscopy (Miura, Chem Rec 1:183-194, 2001). Since a flavin is an extremely versatile molecule, the scientific field including chemistry, biochemistry, and enzymology is collectively called "flavonology." It was found recently, however, that the flavin also acts as a chromophore to initiate light-induced DNA repair and signal transductions (Sancar, Chem Rev 103:2203-2237, 2003).

  10. Blood analysis by Raman spectroscopy.

    PubMed

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media. PMID:18033426

  11. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.; Lyons, Brendon; Wilson, Kristina C.; Du, Yong; McCamant, David W.

    2009-12-01

    We present a classical theoretical treatment of a two-dimensional Raman spectroscopy based on the initiation of vibrational coherence with an impulsive Raman pump and subsequent probing by two-pulse femtosecond stimulated Raman spectroscopy (FSRS). The classical model offers an intuitive picture of the molecular dynamics initiated by each laser pulse and the generation of the signal field traveling along the probe wave vector. Previous reports have assigned the observed FSRS signals to anharmonic coupling between the impulsively driven vibration and the higher-frequency vibration observed with FSRS. However, we show that the observed signals are not due to anharmonic coupling, which is shown to be a fifth-order coherent Raman process, but instead due to cascades of coherent Raman signals. Specifically, the observed vibrational sidebands are generated by parallel cascades in which a coherent anti-Stokes or Stokes Raman spectroscopy (i.e., CARS or CSRS) field generated by the coherent coupling of the impulsive pump and the Raman pump pulses participates in a third-order FSRS transition. Additional sequential cascades are discussed that will give rise to cascade artifacts at the fundamental FSRS frequencies. It is shown that the intended fifth-order FSRS signals, generated by an anharmonic coupling mechanism, will produce signals of ˜10-4 ΔOD (change in the optical density). The cascading signals, however, will produce stimulated Raman signal of ˜10-2 ΔOD, as has been observed experimentally. Experiments probing deuterochloroform find significant sidebands of the CCl3 bend, which has an E type symmetry, shifted from the A1 type C-D and C-Cl stretching modes, despite the fact that third-order anharmonic coupling between these modes is forbidden by symmetry. Experiments probing a 50:50 mixture of chloroform and d-chloroform find equivalent intensity signals of low-frequency CDCl3 modes as sidebands shifted from both the C-D stretch of CDCl3 and the C-H stretch of

  12. Raman spectroscopy in halophile research.

    PubMed

    Jehlička, Jan; Oren, Aharon

    2013-12-10

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well.

  13. Raman spectroscopy in halophile research

    PubMed Central

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  14. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    SciTech Connect

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  15. Raman spectroscopy of shocked water

    SciTech Connect

    Holmes, N.C.; Mitchell, A.C.; Nellis, W.J.; Graham, W.B.; Walrafen, G.E.

    1983-07-01

    Raman scattering has been used extensively to study the vibrational and rotational properties of molecules under a variety of conditions. Here, interest is in the behavior of water molecules shocked to high pressures and temperatures. Behind the shock front the water molecules undergo changes in bonding and the molecules may become ionized. Raman spectroscopy can be used to determine the molecular species behind the shock front. In addition, changes in Raman spectra can yield information regarding inter- and intramolecular potentials and the temperature behind the shock front.

  16. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  17. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  18. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-01

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2.

  19. Non-centrosymmetric Y(HCOO)3 · 2 H2O crystal. A new inorganic material for Raman lasers with large frequency shift of three promoting vibration modes of its [O-CH-O]- formate anions: effective high-order Stokes and anti-Stokes generation and cascaded self-frequency [(3)(SRS) (2)(SHG, SFM)] and [(2)(SHG, SFM) (3)(SRS)] conversions

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Bohatý, L.; Becker, P.; Eichler, H. J.; Hanuza, J.; Maczka, M.; Ueda, K.; Takaichi, K.; Rhee, H.; Gad, G. M. A.

    2004-11-01

    Efficient multi-phonon steady-state stimulated Raman scattering (SRS) was excited in the novel (3)-active crystal of orthorhombic yttrium formate dihydrate, Y(HCOO)3 . 2 H2O, at room temperature under picosecond laser pumping in the visible and near-IR regions. Besides high-order Stokes and anti-Stokes generation in this non-centrosymmetric crystal, several cascaded second ((2))- and third (χ(3))-order nonlinear interactions were observed under 1 μm pumping. Among them are self-frequency χ(2) χ(3) conversion effects by simultaneous second harmonic generation (SHG) and SRS, as well as χ(3) χ(2) lasing action by successive SRS + SHG and SRS + SFM (sum-frequency mixing). All the recorded Raman-induced lasing wavelengths were identified and attributed to the SRS-promoting optical vibration modes wSRS1 1395 cm-1, wSRS2 1377 cm-1 and wSRS3 2895 cm-1 of the [O-HC-O]- ionic groups of the crystal. The measured large Raman frequency shifts and estimated moderately high steady-state Raman gain coefficient for the first Stokes generation (gSt1-1ssR ≥ 7.5 cm GW-1) in the visible of the first SRS-promoting mode, as well as the fact that it is easy to grow large crystals of Y(HCOO)3 . 2 H2O make this material attractive for a number of new applications in modern quantum electronics and nonlinear optics. Y(HCOO)3 . 2 H2O offers the largest Raman frequency shifts among all known SRS-active inorganic crystals.

  20. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  1. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  2. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  3. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  4. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  5. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2016-06-01

    Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.

  6. Improving sensitivity and source attribution of homemade explosives with low-frequency/THz-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Carriere, James T. A.; Havermeyer, Frank; Heyler, Randy A.

    2014-05-01

    Rapid identification and source attribution of homemade explosives (HMEs) is vital to national defense and homeland security efforts. Since HMEs can be prepared in a variety of methods with different component ingredients, telltale traces can be left behind in the final structural form of the material. These differences manifest as polymorphs, isomers, conformers or even contaminants that can all impact the low energy vibrational modes of the molecule. Conventional Raman spectroscopy systems confine their measurements to the "chemical fingerprint" region and are unable to detect low frequency Raman signals (<200cm-1) where these low energy modes are found. This gap in sensitivity limits the conclusions that can be drawn from a single Raman measurement and creates the need for multiple measurement techniques to confirm any results. We present results from a new rugged, portable approach that is capable of extending the range of Raman to include these low frequency signals down to ~5cm-1, plus complementary anti-Stokes spectra, with measurement times on the order of seconds. We demonstrate the diversity of signals that lie in this region that directly correlate to the molecular structure of the material, resulting in a new Raman "structural fingerprint" region. By correlating the measured results with known samples from a spectral library, rapid identification of the specific method of manufacture can be made.

  7. Raman spectroscopy peer review report

    SciTech Connect

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs.

  8. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  9. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  10. Raman spectroscopy for identification of wood species

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gurovich, A. M.; Kostrin, D. K.; Selivanov, L. M.; Simon, V. A.; Stuchenkov, A. B.; Paltcev, A. V.; Uhov, A. A.

    2016-08-01

    This article discusses the application of Raman spectroscopy for identification of wood species. Use of Raman spectroscopy allows increasing the certainty of determining the type of wood compared to the analysis of spectra of diffuse reflectance. Raman spectrums of different wood samples when irradiated by laser radiation are shown. Ways to improve the determination reliability of wood species due to the modernization of the identification technique are discussed. The stages of data processing, allowing carrying out correct further analysis are described.

  11. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  12. Anti-Stokes Fluorescent Probe with Incoherent Excitation

    PubMed Central

    Li, Yang; Zhou, Shifeng; Dong, Guoping; Peng, Mingying; Wondraczek, Lothar; Qiu, Jianrong

    2014-01-01

    Although inorganic anti-Stokes fluorescent probes have long been developed, the operational mode of today's most advanced examples still involves the harsh requirement of coherent laser excitation, which often yields unexpected light disturbance or even photon-induced deterioration during optical imaging. Here, we demonstrate an efficient anti-Stokes fluorescent probe with incoherent excitation. We show that the probe can be operated under light-emitting diode excitation and provides tunable anti-Stokes energy shift and decay kinetics, which allow for rapid and deep tissue imaging over a very large area with negligible photodestruction. Charging of the probe can be achieved by either X-rays or ultraviolet-visible light irradiation, which enables multiplexed detection and function integration with standard X-ray medical imaging devices. PMID:24518662

  13. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  14. Erratum: Coherent Anti-Stokes Raman Spectroscopy of Highly Compressed Solid Deuterium at 300K: Evidence for a New Phase and Implication for the Band Gap

    SciTech Connect

    Baer, B J; Evans, W J; Yoo, C

    2009-03-02

    In our original Letter, we were inconsistent in our application of the deuterium equation of state (EOS). In this Erratum we recalculated the EOS to the parameters from Hemley et al. [Phys. Rev. B 42, 6458 (1990)]. The consequence of this change is minimal. The scale of the difference is smaller, but the evidence for phase I' remains. The corrected Fig. 3 graphs are provided.

  15. Raman spectroscopy: the gateway into tomorrow's virology.

    PubMed

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-06-28

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  16. Raman spectroscopy: the gateway into tomorrow's virology

    PubMed Central

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  17. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  18. Axillary lymph node analysis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jenny; Christie-Brown, Jonathan; Sammon, Alastair; Stone, Nicholas

    2004-07-01

    Raman Spectroscopy is an optical diagnostic technique applied in this study to classify axillary lymph nodes from breast cancer patients as positive or negative for metastases. The mapping technique in this study is 81% sensitive and 97% specific for the correct classification of positive lymph nodes. Raman spectral images of lymph node sections are constructed to facilitate interpretation of tissue features.

  19. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  20. Occlusal caries detection using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Bulou, A.

    2008-02-01

    The tooth enamel, because of its hydroxyapatite composition, must present a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry and will increase much more scattering of light. This will reduce the anisotropy of the Raman spectra. Because of the difference between high sensitivity to polarization of the 959 cm -1 Raman peak in sound enamel and low sensitivity in carried enamel, Raman polarized spectroscopy could be a useful method to early detect teeth caries.

  1. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  2. Raman spectroscopy in pharmaceutical product design.

    PubMed

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-07-15

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.

  3. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals. PMID:20419294

  4. Plasma diagnostics using coherent anti-stokes Raman spectroscoy

    NASA Astrophysics Data System (ADS)

    Lynn, W. F.; Yaney, P. P.; Goss, L. P.; Kizirnis, S. W.

    1986-08-01

    Non-Boltzmann population distributions between the rotational and vibrational levels of N2 in a transverse hollow-cathode discharge were observed using CARS and a scanned probe laser. A planar, crossed beam geometry was used which allowed high spatial resolution. The apparent rotational and vibrational temperatures were determined to be near 900 K and 1500 K, respectively, with a clear dependence upon position. The estimated uncertainty is ±75 K. Deviations from previously reported tempertures in positive-column discharges is attributed to differences in electron energy distribution.

  5. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  6. Mobile Raman spectroscopy in astrobiology research.

    PubMed

    Vandenabeele, Peter; Jehlička, Jan

    2014-12-13

    Raman spectroscopy has proved to be a very useful technique in astrobiology research. Especially, working with mobile instrumentation during fieldwork can provide useful experiences in this field. In this work, we provide an overview of some important aspects of this research and, apart from defining different types of mobile Raman spectrometers, we highlight different reasons for this research. These include gathering experience and testing of mobile instruments, the selection of target molecules and to develop optimal data processing techniques for the identification of the spectra. We also identify the analytical techniques that it would be most appropriate to combine with Raman spectroscopy to maximize the obtained information and the synergy that exists with Raman spectroscopy research in other research areas, such as archaeometry and forensics.

  7. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  8. Estimating atomic sizes with Raman spectroscopy.

    PubMed

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

  9. Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials

    SciTech Connect

    Fernandez, Joaquin; Balda, Rolindes

    2006-07-21

    We report the first observation of anti-Stokes laser-induced cooling in the Er{sup 3+} ratio KPb{sub 2}Cl{sub 5} crystal and in the Er{sup 3+} ratio CNBZn (CdF{sub 2}-CdCl{sub 2}-NaF-BaF{sub 2}-BaCl{sub 2}-ZnF{sub 2}) glass. The internal cooling efficiencies have been calculated by using photothermal deflection spectroscopy. Thermal scans acquired with an infrared thermal camera proved the bulk cooling capability of the studied samples. The implications of these results are discussed.

  10. Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1-x(OH)x)2SiO4: many-phonon χ(3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔χ(3) Raman-induced interactions under single- and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Rhee, H.; Eichler, H. J.; Yoneda, H.; Shirakawa, A.; Ueda, K.; Rückamp, R.; Bohatý, L.; Becker, P.

    2013-07-01

    Natural crystals of topaz, Al2(F1-x(OH)x)2SiO4 were found to be an attractive Raman gain material and a subject for the investigation of different χ(3)-nonlinear optical effects. We present several manifestations of photon-phonon interactions related to SRS and RFWM processes initiated by picosecond excitations at room and cryogenic (≈9 K) temperature. Among them are octave-spanning Stokes and anti-Stokes generation in the visible and near-IR spectral range, combined SRS-active phonon modes, cross-cascaded up-conversion, χ(3)↔χ(3) lasing, as well as THG via self-sum frequency parametric generation. All recorded Raman-induced lasing lines are identified and attributed to the promoting χ(3)-vibration transitions. Based on the experimental data, theoretical simulations employing Fourier analysis are performed to demonstrate the potential of wide SRS frequency combs in terms of ultra-short pulse generation. On the 50th anniversary of the discovery of stimulated Raman scattering.

  11. High pressure-temperature Raman spectroscopy of H2-H2O clathrate.

    NASA Astrophysics Data System (ADS)

    Somayazulu, Maddury; Levedahl, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Hemley, Russell

    2007-03-01

    The melting curve of the C2 clathrate H2-H2O has been determined by in-situ Raman spectroscopy measurements in an externally heated diamond anvil cell. We have determined the melting curve to a maximum pressure of 27 GPa. These are the first measurements on the melting line in this clathrate. Depending on the stoichiometry of the starting mixture of H2 and H2O, we are able to study either a mixture of C2 and H2O or C2 and H2. In either case, we were able to pinpoint the melting of the clathrate from the measurements of the molecular stretching mode (vibron) in the clathrate. In the case of C2 + Ice VII, we observe the vibron in the clathrate at a frequency higher than in pure H2 at the same pressure. We have cross-calibrated the melting temperatures using the Stokes-anti Stokes ratio of the diamond first order and Raman active TO phonon of cubic Boron Nitride. We find that the clathrate melts well above the H2 melting at all pressures studied indicating that the stabilization of this clathrate at high pressures is indeed due to interactions between the host and guest molecules.

  12. Towards Single-Shot Detection of Bacterial Endospores via Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav; Murawski, Robert; Sautenkov, Vladimir; Sokolov, Alexei; Scully, Marlan

    2007-10-01

    Recent advances in coherent anti-Stokes Raman scattering (CARS) spectroscopy hold exciting promise to make the most out of now readily available ultrafast laser sources. Techniques have been devised to mitigate the nonresonant four-wave-mixing in favor of informative Raman-resonant signal. In particular, a hybrid technique for CARS (see Science 316, 265 (2007)) brings together the advantages of coherent broadband pump-Stokes excitation of molecular vibrations and their time-delayed but frequency-resolved probing via a spectrally narrowed and shaped laser pulse. We apply this technique to the problem of real-time detection of warfare bioagents and report single-shot acquisition of a distinct CARS spectrum from a small volume of B. subtilis endospores (˜10^4 spores), a harmless surrogate for B. anthracis. We study the dependence of the CARS signal on the energy of the ultrashort preparation pulses and find the limit on the pulse energy fluence (˜0.2 J/cm^2), imposed by the laser-induced damage of the spores.

  13. Tip-Enhanced Raman Spectroscopy (TERS)

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno

    Tip-enhanced Raman spectroscopy is a vibrational spectroscopy with hitherto unprecedented sensitivity and spatial resolution. Since the enhancement is mainly provided by the near-field excited at the apex of a suitable tip, TERS appears to be a widely applicable spectroscopy and microscopy tool, in contrast to its parents, surface-enhanced Raman spectroscopy (SERS) and scanning near-field optical microscopy (SNOM). TER scattering has been observed for a number of molecules adsorbed at various substrates, including single-crystalline metal surfaces, showing thereby a more than million-fold enhancement of the Raman scattering. It is important to note that the field-enhancement provides, beyond TERS, promising avenues for applications to other optical techniques, such as tip-enhanced CARS, two-photon fluorescence and infrared scattering-type near-field microscopy.

  14. Raman spectroscopy of white wines.

    PubMed

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines.

  15. Airborne chemistry coupled to Raman spectroscopy.

    PubMed

    Santesson, Sabina; Johansson, Jonas; Taylor, Lynne S; Levander, Ia; Fox, Shannon; Sepaniak, Michael; Nilsson, Staffan

    2003-05-01

    In this paper, the use of airborne chemistry (acoustically levitated drops) in combination with Raman spectroscopy is explored. We report herein the first Raman studies of crystallization processes in levitated drops and the first demonstration of surface-enhanced Raman scattering (SERS) detection in this medium. Crystallization studies on the model compounds benzamide and indomethacin resulted in the formation of two crystal modifications for each compound, suggesting that this methodology may be useful for investigation of polymorphs. SERS detection resulted in a signal enhancement of 27 000 for benzoic acid and 11 000 for rhodamine 6-G. The preliminary results presented here clearly indicate that several important applications of the combination between Raman spectroscopy and acoustic drop levitation can be expected in the future. PMID:12720359

  16. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  17. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  18. Analysis of lipsticks using Raman spectroscopy.

    PubMed

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation.

  19. Analysis of lipsticks using Raman spectroscopy.

    PubMed

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation. PMID:24053867

  20. Raman spectroscopy under extreme conditions

    SciTech Connect

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  1. UV Raman spectroscopy of hydrocarbons.

    PubMed

    Loppnow, G R; Shoute, L; Schmidt, K J; Savage, A; Hall, R H; Bulmer, J T

    2004-11-15

    In this paper, the UV Raman spectra of a large number of saturated and alkyl-substituted monocyclic, bicyclic and polycyclic aromatic hydrocarbons are obtained at 220 and 233 nm excitation wavelengths. Also included are nitrogen- and sulphur-containing hydrocarbons. The spectra obtained are fluorescence free, even for such highly fluorescent compounds as perylene, consistent with earlier reports of UV Raman spectra of hydrocarbons. The hydrocarbon UV Raman spectra exhibit greatly improved signal-to-noise ratio when in the neat liquid or solution state compared with the neat solid state, suggesting that some surface degradation occurs under the conditions used here. Assignments are given for most of the bands and clear marker bands for the different classes of hydrocarbons are readily observable, although their relative intensities vary greatly. These results are discussed in the context of structure and symmetry to develop a consistent, molecular-based model of vibrational group frequencies. PMID:15482987

  2. Raman spectroscopy of diamond and doped diamond.

    PubMed

    Prawer, Steven; Nemanich, Robert J

    2004-11-15

    The optimization of diamond films as valuable engineering materials for a wide variety of applications has required the development of robust methods for their characterization. Of the many methods used, Raman microscopy is perhaps the most valuable because it provides readily distinguishable signatures of each of the different forms of carbon (e.g. diamond, graphite, buckyballs). In addition it is non-destructive, requires little or no specimen preparation, is performed in air and can produce spatially resolved maps of the different forms of carbon within a specimen. This article begins by reviewing the strengths (and some of the pitfalls) of the Raman technique for the analysis of diamond and diamond films and surveys some of the latest developments (for example, surface-enhanced Raman and ultraviolet Raman spectroscopy) which hold the promise of providing a more profound understanding of the outstanding properties of these materials. The remainder of the article is devoted to the uses of Raman spectroscopy in diamond science and technology. Topics covered include using Raman spectroscopy to assess stress, crystalline perfection, phase purity, crystallite size, point defects and doping in diamond and diamond films.

  3. Raman and multichannel Raman spectroscopy of biological systems

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Caramazza, R.; Fagnano, C.

    1991-05-01

    Raman and multichannel Raman spectroscopy are molecular techniques able to monitor the bulk and surface structure of a biomaterial, in a non destructive and non invasive way, giving therefore useful information on physical and chemical aspects of biocompatibility. The same techniques can also be adequately used for the characterization of the biomaterial-host tissue interface, hence providing structural information on the biochemical aspect of biocompatibility. Moreover, multichannel Raman spectroscopy can also determine "in vivo" and "in situ" the bulk and surface structure of a biomaterial and the molecular interactions between biomaterials and tissues. Useful information at a molecular level on the biomaterial-tissue system can so be deduced. In particular, the application of traditional Paman spectroscopy to bioactive glasses (glasses derived from Hench's bioglass and meta and oligophosphates of calcium by themselves and with the addition of sodium and aluminium) useful in orthopedics and the application to hydrophobic (PMMA) and hydrophilic (PHEMA and PVP) organic polymers useful in ophthalmology are shown. Instead the applications of multichannel Paman spectroscopy are elucidated in the case of intraocular lenses (lOLs) based on PMMA and contact lenses (CLs) based on hydrophi I ic polymers.

  4. Applications of Raman spectroscopy to library heritage.

    PubMed

    Bicchieri, M; Nardone, M; Sodo, A

    2001-01-01

    This work reports some different applications of Raman spectroscopy, a high sensitive non-destructive technique, to the conservation of Library Heritage. By Raman spectroscopy we were able to detect the chemical mechanisms leading to cellulose degradation, identifying the different functional groups formed during the paper ageing. This kind of information is fundamental to choose a suited restoration treatment. A second reported application is the identification of pigments used to decorate paper and parchments. We report some results obtained from analysis of a XV and a XIII century illuminations.

  5. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  6. Applications of Raman spectroscopy to library heritage.

    PubMed

    Bicchieri, M; Nardone, M; Sodo, A

    2001-01-01

    This work reports some different applications of Raman spectroscopy, a high sensitive non-destructive technique, to the conservation of Library Heritage. By Raman spectroscopy we were able to detect the chemical mechanisms leading to cellulose degradation, identifying the different functional groups formed during the paper ageing. This kind of information is fundamental to choose a suited restoration treatment. A second reported application is the identification of pigments used to decorate paper and parchments. We report some results obtained from analysis of a XV and a XIII century illuminations. PMID:11836947

  7. Temperature dependence of sapphire fiber Raman scattering

    DOE PAGESBeta

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  8. Revisiting the Young's double slit experiment for background-free nonlinear Raman spectroscopy and microscopy.

    PubMed

    Gachet, David; Brustlein, Sophie; Rigneault, Hervé

    2010-05-28

    In the Young's double slit experiment, the spatial shift of the interference pattern projected onto a screen is directly related to the phase difference between the fields diffracted by the two slits. We apply this property to fields emitted by nonlinear processes and thus demonstrate background-free coherent anti-Stokes Raman scattering microscopy near an axial interface between a resonant and a nonresonant medium. This method is relevant to remove the nonresonant background in other coherent resonant processes.

  9. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes–anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  10. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes-anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  11. Fast, non-linear optical-scattering spectroscopy in shock-compressed organic liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Schiferl, D.; Shaner, J.W.

    1983-01-01

    Nanosecond stimulated Raman and coherent anti-Stokes Raman scattering spectroscopy have been used to determine molecular vibrational frequency shifts and changes of phase in shock-compressed organic liquids. Results of dynamic experiments are compared to static Raman scattering measurements of samples, compressed and heated in a diamond-anvil cell. Objectives of the experiments are to determine the molecular structure and ultimately the energy transfer mechanisms in shock-compressed condensed phase materials.

  12. Theory of femtosecond stimulated Raman spectroscopy.

    PubMed

    Lee, Soo-Y; Zhang, Donghui; McCamant, David W; Kukura, Philipp; Mathies, Richard A

    2004-08-22

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth approximately 1-3 ps Raman pump pulse with a continuum approximately 30-50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  13. High fidelity nanohole enhanced Raman spectroscopy.

    SciTech Connect

    Bahns, J. T.; Guo, Q.; Gray, S. K.; Jaeger, H. M.; Chen, L.; Montgomery, J. M.; Univ. of Chicago

    2009-01-01

    Surface enhanced Raman spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein, we report the development of exceptionally high-fidelity hole-enhanced Raman spectroscopy (HERS) from ordered, 2D hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f {approx} 2-15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step toward making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large-scale source of highly uniform hot spots.

  14. Disposable sheath that facilitates endoscopic Raman spectroscopy.

    PubMed

    Wang, Wenbo; Short, Michael; Tai, Isabella T; Zeng, Haishan

    2016-02-01

    In vivo endoscopic Raman spectroscopy of human tissue using a fiber optic probe has been previously demonstrated. However, there remain several technical challenges, such as a robust control over the laser radiation dose and measurement repeatability during endoscopy. A decrease in the signal to noise was also observed due to aging of Raman probe after repeated cycles of harsh reprocessing procedures. To address these issues, we designed and tested a disposable, biocompatible, and sterile sheath for use with a fiber optic endoscopic Raman probe. The sheath effectively controls contamination of Raman probes between procedures, greatly reduces turnaround time, and slows down the aging of the Raman probes. A small optical window fitted at the sheath cap maintained the measurement distance between Raman probe end and tissue surface. To ensure that the sheath caused a minimal amount of fluorescence and Raman interference, the optical properties of materials for the sheath, optical window, and bonding agent were studied. The easy-to-use sheath can be manufactured at a moderate cost. The sheath strictly enforced a maximum permissible exposure standard of the tissue by the laser and reduced the spectral variability by 1.5 to 8.5 times within the spectral measurement range.

  15. Disposable sheath that facilitates endoscopic Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Short, Michael; Tai, Isabella T.; Zeng, Haishan

    2016-02-01

    In vivo endoscopic Raman spectroscopy of human tissue using a fiber optic probe has been previously demonstrated. However, there remain several technical challenges, such as a robust control over the laser radiation dose and measurement repeatability during endoscopy. A decrease in the signal to noise was also observed due to aging of Raman probe after repeated cycles of harsh reprocessing procedures. To address these issues, we designed and tested a disposable, biocompatible, and sterile sheath for use with a fiber optic endoscopic Raman probe. The sheath effectively controls contamination of Raman probes between procedures, greatly reduces turnaround time, and slows down the aging of the Raman probes. A small optical window fitted at the sheath cap maintained the measurement distance between Raman probe end and tissue surface. To ensure that the sheath caused a minimal amount of fluorescence and Raman interference, the optical properties of materials for the sheath, optical window, and bonding agent were studied. The easy-to-use sheath can be manufactured at a moderate cost. The sheath strictly enforced a maximum permissible exposure standard of the tissue by the laser and reduced the spectral variability by 1.5 to 8.5 times within the spectral measurement range.

  16. Surface enhanced Raman spectroscopy on copper hydrosols.

    PubMed

    Angebranndt, M J; Winefordner, J D

    1992-06-01

    Surface enhanced Raman spectroscopy (SERS) allows the detection of trace quantities of molecular species adsorbed onto a surface. The potential use of silver colloids as substrates for analytical SERS measurements is demonstrated. Detection limits and other analytical figures of merit for pyridine, p-aminobenzoic acid and p-nitrobenzoic acid are presented.

  17. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  18. Raman Spectroscopy of Bone and Cartilage

    NASA Astrophysics Data System (ADS)

    Morris, Michael

    This chapter will reviews the Raman spectroscopy of the subject tissues. After a brief introduction to the structure, biology, and function of these tissues, we will describe the spectra and band assignments of the tissues and then summarize applications to studies of tissue development, mechanical function and competence, and pathology. Both metabolic diseases and genetic disorders will be covered.

  19. Raman spectroscopy of 'Bisphenol A'

    NASA Astrophysics Data System (ADS)

    Ullah, Ramzan; Zheng, Yuxiang

    2016-03-01

    Raman spectra (95 - 3000 cm-1) of 'Bisphenol A' are presented. Absorption peaks have been assigned by Density Functional Theory (DFT) with B3LYP 6 - 311 ++ G (3df, 3pd) and wB97XD 6 - 311 ++ G (3df, 3pd). B3LYP 6 - 311 ++ G (3df, 3pd) gives frequencies which are nearer to experimental frequencies than wB97XD 6 - 311 ++ G (3df, 3pd) which involves empirical dispersion. Scale factor for wB97XD 6 - 311 ++ G (3df, 3pd) is found out to be 0.95008 by least squares fit.

  20. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  1. Raman spectroscopy in head and neck cancer

    PubMed Central

    2010-01-01

    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target. PMID:20923567

  2. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  3. Candida parapsilosis biofilm identification by Raman spectroscopy.

    PubMed

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-12-22

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.

  4. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    PubMed Central

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  5. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  6. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  7. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  8. Remote adjustable focus Raman spectroscopy probe

    SciTech Connect

    Schmucker, J.E.; Blasi, R.J.; Archer, W.B.

    1999-12-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  9. Characterization of Kevlar Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  10. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  11. Drug stability analysis by Raman spectroscopy.

    PubMed

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-01-01

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety. PMID:25533308

  12. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.

    PubMed

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2016-06-23

    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles. PMID:27049293

  13. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.

    PubMed

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2016-06-23

    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles.

  14. Raman spectroscopy for analysis of thorium compounds

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-01

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including e.g. ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  15. Detecting changes during pregnancy with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  16. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  17. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  18. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis

    PubMed Central

    Sharma, Amit; Sharma, Shruti; Zarrow, Anna; Schwartz, Robert A; Lambert, W Clark

    2016-01-01

    Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management. PMID:26955087

  19. Waterborne pathogen detection using Raman spectroscopy.

    PubMed

    Tripathi, Ashish; Jabbour, Rabih E; Treado, Patrick J; Neiss, Jason H; Nelson, Matthew P; Jensen, Janet L; Snyder, A Peter

    2008-01-01

    Raman spectroscopy is being evaluated as a candidate technology for waterborne pathogen detection. We have investigated the impact of key experimental and background interference parameters on the bacterial species level identification performance of Raman detection. These parameters include laser-induced photodamage threshold, composition of water matrix, and organism aging in water. The laser-induced photodamage may be minimized by operating a 532 nm continuous wave laser excitation at laser power densities below 2300 W/cm(2) for Grampositive Bacillus atrophaeus (formerly Bacillus globigii, BG) vegetative cells, 2800 W/cm(2) for BG spores, and 3500 W/cm(2) for Gram-negative E. coli (EC) organisms. In general, Bacillus spore microorganism preparations may be irradiated with higher laser power densities than the equivalent Bacillus vegetative preparations. In order to evaluate the impact of background interference and organism aging, we selected a biomaterials set comprising Gram-positive (anthrax simulants) organisms, Gram-negative (plague simulant) organisms, and proteins (toxin simulants) and constructed a Raman signature classifier that identifies at the species level. Subsequently, we evaluated the impact of tap water and storage time in water (aging) on the classifier performance when characterizing B. thuringiensis spores, BG spores, and EC cell preparations. In general, the measured Raman signatures of biological organisms exhibited minimal spectral variability with respect to the age of a resting suspension and water matrix composition. The observed signature variability did not substantially degrade discrimination performance at the genus and species levels. In addition, Raman chemical imaging spectroscopy was used to distinguish a mixture of BG spores and EC cells at the single cell level.

  20. Raman spectroscopy of C-irradiated graphite

    SciTech Connect

    Hembree, D.M. Jr.; Pedraza, D.F.; Romanoski, G.R.; Withrow, S.P.; Annis, B.K.

    1994-09-01

    Highly oriented pyrolytic graphite samples were irradiated with C{sup +} ions at 35 keV in a direction normal to the basal plane and subsequently annealed up to 1373 K. Substantial surface topography changes were observed at fluences of 5 {times} 10{sup 18} ions/m{sup 2} and higher using scanning electron and atomic force microscopies. Intricate networks of surface cracks and ridges developed after high dose implantation. A systematic study of the irradiation effects was conducted using Raman spectroscopy. Microstructural changes in irradiated regions were first detected at a dose of 1 {times} 10{sup 17} ions/m{sup 2} through the appearance of the Raman D-line at {approx}1360 cm{sup {minus}1}. The intensity of this line increases while that of the Raman G-line at 1580 cm{sup {minus}1} decreases as the irradiation dose is increased or the irradiation temperature is decreased. After irradiation at 280K to a fluence of 5 {times} 10{sup 19} ions/m{sup 2} or higher the first order spectrum exhibits one single line at a wavelength intermediate between the D- and G-lines. Damage recovery upon thermal annealing depends not only on the initial damage state but also on the annealing temperature sequence. Samples irradiated to a damage level where two distinct Raman peaks are no longer resolvable exhibited upon direct annealing at a high temperature two distinct Raman lines. By contrast, pre-annealing these highly irradiated specimens at lower temperatures produced less pronounced changes in the Raman spectra. Pre-annealing appears to stabilize damage structures that are more resistant to high-temperature annealing than those induced by irradiation.

  1. Micro-Raman Spectroscopy for the Determination of Local Temperature Increases in TiO2 Thin Films due to the Effect of Radiation.

    PubMed

    Gallardo, Juan Jesús; Navas, Javier; Zorrilla, David; Alcántara, Rodrigo; Valor, Diego; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2016-07-01

    This study applied a classic method involving Raman spectroscopy and the use of Stokes and anti-Stokes peaks to measure the temperature of TiO2 thin films found in dye-sensitized solar cells (DSSCs). In addition, three mathematical formulae were used and analyzed to estimate the increase in temperature generated solely by the effect of the radiation. The tests and calculations performed showed an increase in the temperature of the TiO2 film. That is, the films were heated by the radiation they were exposed to. A temperature increase of up to 30 K was detected for the sample with a single layer of TiO2, and over 40 K for the sample with three layers for the highest radiation powers used, and greater increases in temperature were observed in the thicker films.

  2. Applications of Raman Spectroscopy to Virology and Microbial Analysis

    NASA Astrophysics Data System (ADS)

    Harz, Michaela; Stöckel, Stephan; Ciobotă, Valerian; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    This chapter reports from the utilization of Raman spectroscopic techniques like Raman microscopy, Raman optical activity (ROA), UV-resonance Raman (UVRR)-spectroscopy, surface enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS) for the investigation of viruses and microorganisms, especially bacteria and yeasts for medical and pharmaceutical applications. The application of these Raman techniques allows for the analysis of chemical components of cells and subcellular regions, as well as the monitoring of chemical differences occurring as a result of the growth of microorganisms. In addition, the interaction of microorganisms with active pharmaceutical agents can be investigated. In combination with chemometric methods Raman spectroscopy can also be applied to identify microorganisms both in micro colonies and even on single cells.

  3. Raman spectroscopy for diagnosis of glioblastoma multiforme

    NASA Astrophysics Data System (ADS)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  4. Electronic resonances in broadband stimulated Raman spectroscopy

    PubMed Central

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process. PMID:26728791

  5. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  6. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  7. Signal contrast in coherent Raman scattering: Optical phonons versus biomolecules

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2012-09-01

    We show that the limiting contrast of the coherent anti-Stokes Raman scattering (CARS) signal with respect to the coherent background due to nonresonant four-wave mixing is controlled by the Q factor of the Raman mode and is independent of the parameters of laser pulses. High-Q phonon modes of semiconductor nanoparticles, such as diamond nanoprobes, can therefore substantially enhance the contrast of CARS images, as well as the sensitivity of CARS spectroscopy and microscopy compared to typical Raman-active vibrations of organic molecules in biotissues.

  8. Examining surface and bulk structures using combined nonlinear vibrational spectroscopies.

    PubMed

    Zhang, Chi; Wang, Jie; Khmaladze, Alexander; Liu, Yuwei; Ding, Bei; Jasensky, Joshua; Chen, Zhan

    2011-06-15

    We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer. PMID:21685990

  9. Ultrafast time resolved vibrational spectroscopy in liquid systems

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Hofmann, M.; Weidlich, K.; Graener, H.

    1996-04-01

    The ultrafast dynamics of small molecules in the liquid phase can successfully be studied tracing the relaxation pathways of vibrational excess energy. Two complementing experimental techniques, picosecond IR double resonance spectroscopy and time resolved incoherent Anti-Stokes Raman spectroscopy, are very powerful tools for such studies. The capabilities of investigations combining these methods are discussed on the example of new experimental data on liquid dichloromethane (CH2Cl2).

  10. Lignin analysis by FT-Raman spectroscopy

    SciTech Connect

    Agarwal, U.P.; Obst, J.R.; Cannon, A.B.

    1996-10-01

    Traditional methods of lignin analysis, such as Klason (acid insoluble) lignin determinations, give satisfactory results, are widely accepted, and often are considered as standard analyses. However, the Klason lignin method is laborious and time consuming; it also requires a fairly large-amount of isolated analyte. FT-Raman spectroscopy offers an opportunity to simplify and speed up lignin analyses. FT-Raman data for a number of hardwoods (angiosperms) and softwoods (gymnosperms) are compared with data obtained using other analytical methods, including Klason lignin (with corrections for acid soluble lignin), acetyl bromide, and FT-IR determinations. In addition, 10 different specimens of Nothofagus dombeyii (chosen because of the widely varying syringyl:guaiacyl monomer compositions of their lignins) were also analyzed. Lignin monomer compositions were determined by thioacidolysis of by nitrobenzene oxidation.

  11. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  12. Detection of bacterial endospores by means of ultrafast coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry Sergeyevich

    This work is devoted to formulation and development of a laser spectroscopic technique for rapid detection of biohazards, such as Bacillus anthracis spores. Coherent anti-Stokes Raman scattering (CARS) is used as an underlying process for active retrieval of species-specific characteristics of an analyte. Vibrational modes of constituent molecules are Raman-excited by a pair of ultrashort, femtosecond laser pulses, and then probed through inelastic scattering of a third, time-delayed laser field. We first employ the already known time-resolved CARS technique. We apply it to the spectroscopy of easy-to-handle methanol-water mixtures, and then continue building our expertise on solutions of dipicolinic acid (DPA) and its salts, which happen to be marker molecules for bacterial spores. Various acquisition schemes are evaluated, and the preference is given to multi-channel frequency-resolved detection, when the whole CARS spectrum is recorded as a function of the probe pulse delay. We demonstrate a simple detection algorithm that manages to differentiate DPA solution from common interferents. We investigate experimentally the advantages and disadvantages of near-resonant probing of the excited molecular coherence, and finally observe the indicative backscattered CARS signal from DPA and NaDPA powders. The possibility of selective Raman excitation via pulse shaping of the preparation pulses is also demonstrated. The analysis of time-resolved CARS experiments on powders and B. subtilis spores, a harmless surrogate for B. anthracis, facilitates the formulation of a new approach, where we take full advantage of the multi-channel frequency-resolved acquisition and spectrally discriminate the Raman-resonant CARS signal from the background due to other instantaneous four-wave mixing (FWM) processes. Using narrowband probing, we decrease the magnitude of the nonresonant FWM, which is further suppressed by the timing of the laser pulses. The devised technique, referred to as

  13. Laser irradiation effects on the CdTe/ZnTe quantum dot structure studied by Raman and AFM spectroscopy

    SciTech Connect

    Zielony, E.; Placzek-Popko, E.; Henrykowski, A.; Gumienny, Z.; Kamyczek, P.; Jacak, J.; Nowakowski, P.; Karczewski, G.

    2012-09-15

    Micro-Raman spectroscopy has been applied to investigate the impact of laser irradiation on semiconducting CdTe/ZnTe quantum dots (QDs) structures. A reference sample (without dots) was also studied for comparison. Both samples were grown by molecular beam epitaxy technique on the p-type GaAs substrate. The Raman spectra have been recorded for different time of a laser exposure and for various laser powers. The spectra for both samples exhibit peak related to the localized longitudinal (LO) ZnTe phonon of a wavenumber equal to 210 cm{sup -1}. For the QD sample, a broad band corresponding to the LO CdTe phonon related to the QD-layer appears at a wavenumber of 160 cm{sup -1}. With increasing time of a laser beam exposure and laser power, the spectra get dominated by tellurium-related peaks appearing at wavenumbers around 120 cm{sup -1} and 140 cm{sup -1}. Simultaneously, the ZnTe surface undergoes rising damage, with the formation of Te aggregates at the pinhole edge as reveal atomic force microscopy observations. Local temperature of irradiated region has been estimated from the anti-Stokes/Stokes ratio of the Te modes intensity and it was found to be close or exceeding ZnTe melting point. Thus, the laser damage can be explained by the ablation process.

  14. Simultaneous Conoscopic Holography and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum

  15. Characterization of Thalidomide using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  16. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  17. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  18. Disease recognition by infrared and Raman spectroscopy.

    PubMed

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis.

  19. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  20. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  1. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  2. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  3. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  4. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  5. Coherent Raman Studies of Shocked Liquids

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Brown, Kathryn; Dang, Nhan; Bolme, Cynthia; Moore, David

    2013-06-01

    Transient vibrational spectroscopies offer the potential to directly observe time dependent shock induced chemical reaction kinetics. We report recent experiments that couple a hybrid picosecond/femtosecond coherent anti-Stokes Raman spectroscopy (CARS) diagnostic with our tabletop ultrafast laser driven shock platform. Initial results on liquids shocked to 20 GPa suggest that sub-picosecond dephasing at high pressure and temperature may limit the application of this nonresonant background free version of CARS. Initial results using interferometric CARS to increase sensitivity and overcome these limitations will be presented.

  6. Raman spectroscopy: an evolving technique for live cell studies.

    PubMed

    Smith, Rachael; Wright, Karen L; Ashton, Lorna

    2016-06-21

    One of the most exciting developments in Raman spectroscopy in the last decade has been its application to cells and tissues for diagnostic and pharmaceutical applications, and in particular its use in the analysis of cellular dynamics. Raman spectroscopy is rapidly advancing as a cell imaging method that overcomes many of the limitations of current techniques and is earning its place as a routine tool in cell biology. In this review we focus on important developments in Raman spectroscopy that have evolved into the exciting technique of live-cell Raman microscopy and highlight some of the most recent and significant applications to cell biology.

  7. The hallmarks of breast cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  8. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  9. Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sil, Sanchita; Umapathy, Siva

    2014-06-01

    Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 90°, 135°, and 180°, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

  10. Raman spectroscopy of hypersonic shock waves

    PubMed

    Ramos; Mate; Tejeda; Fernandez; Montero

    2000-10-01

    Raman spectroscopy is shown to be an efficient diagnostic methodology for the study of hypersonic shock waves. As a test, absolute density and rotational population profiles have been measured across five representative normal shock waves of N2 generated in a free jet, spanning the Mach number range 7.7

  11. Study on residual stress in carbon fibres by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hanchen; Wang, Qiuping; Wu, Junfang; Zhang, Chonghui; Wang, Jing; Tang, Yuanhe

    2008-12-01

    Based on the principle that residual stress in crystal lattice leads to change of distance among atoms, an approximate linear relationship between Raman shift and suffered strain of fibers is deduced. According to the stress-strain curve, a linear relationship between the stress and Raman shift is also deduced, and the ratio coefficient of the stress and Raman frequency shift is given. In high intensity carbon fibers, different spectra of the carbon fibers are obtained by Raman spectroscopy. The approximate linear relationship between the carbon fiber tensile strain and Raman shift is validated and the stress factor is given as well. Both the theoretic and experimental results show that the stress factor is -486.7GPa.mm. The experiment results also show that the Raman spectroscopy is a very effective method for the microstructure residual stress measurement. This method for residual stress measurement by Raman shift is able to be used in textile, biology, materials etc..

  12. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  13. Raman spectroscopy of human saliva for acute myocardial infarction detection

    NASA Astrophysics Data System (ADS)

    Chen, Maowen; Chen, Yuanxiang; Wu, Shanshan; Huang, Wei; Lin, Jinyong; Weng, Guo-Xing; Chen, Rong

    2014-09-01

    Raman spectroscopy is a rapidly non-invasive technique with great potential for biomedical research. The aim of this study was to evaluate the feasibility of using Raman spectroscopy of human saliva for acute myocardial infarction (AMI) detection. Raman spectroscopy measurements were performed on two groups of saliva samples: one group from patients (n=30) with confirmed AMI and the other group from healthy controls (n=31). The diagnostic performance for differentiating AMI saliva from normal saliva was evaluated by multivariate statistical analysis. The combination of principal component analysis (PCA) and linear discriminate analysis (LDA) of the measured Raman spectra separated the spectral features of the two groups into two distinct clusters with little overlaps, rendering the sensitivity of 80.0% and specificity of 80.6%. The results from this exploratory study demonstrated that Raman spectroscopy of human saliva can serve as a potentially clinical tool for rapid AMI detection and screening.

  14. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy

    PubMed Central

    Sun, Mengtao; Zhang, Zhenglong; Zheng, Hairong; Xu, Hongxing

    2012-01-01

    With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS (HV-TERS) to investigate the plasmon-driven in-situ chemical reaction of 4-nitrobenzenethiol dimerizing to dimercaptoazobenzene. The chemical reactions can be controlled by the plasmon intensity, which in turn can be controlled by the incident laser intensity, tunneling current and bias voltage. The temperature of such a chemical reaction can also be obtained by the clearly observed Stokes and Anti-Stokes HV-TERS peaks. Our findings offer a new way to design a highly efficient HV-TERS system and its applications to chemical catalysis and synthesis of molecules, and significantly extend the studies of chemical reactions. PMID:22970339

  15. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Mengtao; Zhang, Zhenglong; Zheng, Hairong; Xu, Hongxing

    2012-09-01

    With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS (HV-TERS) to investigate the plasmon-driven in-situ chemical reaction of 4-nitrobenzenethiol dimerizing to dimercaptoazobenzene. The chemical reactions can be controlled by the plasmon intensity, which in turn can be controlled by the incident laser intensity, tunneling current and bias voltage. The temperature of such a chemical reaction can also be obtained by the clearly observed Stokes and Anti-Stokes HV-TERS peaks. Our findings offer a new way to design a highly efficient HV-TERS system and its applications to chemical catalysis and synthesis of molecules, and significantly extend the studies of chemical reactions.

  16. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Placek, I.; BroŻek-Płuska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  17. Raman spectroscopy of gliomas: an exploratory study

    NASA Astrophysics Data System (ADS)

    Shenoy, Mahesh; Hole, Arti R.; Shridhar, E.; Moiyadi, Aliasgar V.; Krishna, C. Murali

    2014-03-01

    Gliomas are extremely infiltrative type of brain cancers, the borders of which are difficult to locate. Gliomas largely consist of tumors of astrocytic or oligodendroglial lineage. Usually stereotactic surgery is performed to obtain tumor tissue sample. Complete excision of these tumors with preservation of uninvolved normal areas is important during brain tumor surgeries. The present study was undertaken to explore feasibility of classifying abnormal and normal glioma tissues with Raman spectroscopy (RS). RS is a nondestructive vibrational spectroscopic technique, which provides information about molecular composition, molecular structures and molecular interactions in tissue. Postoperated 33 (20-abnormal and 13-normal) gliomas tissue samples of different grades were collected under clinical supervision. Five micron section from tissue sample was used for confirmatory histopathological diagnosis while the remaining tissue was placed on CaF2 window and spectra were acquired using a fiberoptic-probe-coupled HE-785 Raman-spectrometer. Spectral acquisition parameters were laser power-80mW, integration-20s and averaged over 3 accumulations. Spectra were pre-processed and subjected to unsupervised Principal-Component Analysis (PCA) to identify trends of classification. Supervised PC-LDA (Principal-Component-Linear-Discriminant Analysis) was used to develop standard-models using spectra of 12 normal and abnormal specimens each. Leave-one-out crossvalidation yielded classification-efficiency of 90% and 80% for normal and abnormal conditions, respectively. Evaluation with an independent-test data-set comprising of 135 spectra of 9 samples provided sensitivity of 100% and specificity of 70%. Findings of this preliminary study may pave way for objective tumor margin assessment during brain surgery.

  18. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  19. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  20. Investigation of biomineralization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  1. Sensitivity of Raman spectroscopy to normal patient variability

    PubMed Central

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-01-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease. PMID:22112136

  2. Sensitivity of Raman spectroscopy to normal patient variability

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  3. Clinical instrumentation and applications of Raman spectroscopy

    PubMed Central

    Pence, Isaac

    2016-01-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye – direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient’s skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy – light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of

  4. Clinical instrumentation and applications of Raman spectroscopy.

    PubMed

    Pence, Isaac; Mahadevan-Jansen, Anita

    2016-04-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering

  5. Clinical instrumentation and applications of Raman spectroscopy.

    PubMed

    Pence, Isaac; Mahadevan-Jansen, Anita

    2016-04-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering

  6. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  7. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  8. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  9. [Identification of B jade by Raman spectroscopy].

    PubMed

    Zu, En-dong; Chen, Da-peng; Zhang, Peng-xiang

    2003-02-01

    Raman spectroscopy has been found to be a useful tool for identification of bleached and polymer-impregnated jadeites (so-called B jade). The major advantage of this system over classical methods of gem testing is the non-destructive identification of inclusions in gemstones and the determination of organic fracture filling in jade. Fissures in jadeites have been filled with oils and various resins to enhance their clarity, such as paraffin wax, paraffin oil, AB glue and epoxy resins. They show different peaks depending on their chemical composition. The characteristic spectrum ranges from 1,200-1,700 cm-1 to 2,800-3,100 cm-1. The spectra of resins show that they all have four strongest peaks related with phenyl: two C-C stretching modes at 1,116 and 1,609 cm-1, respectively, one C-H stretching mode at 3,069 cm-1, and a in-plane C-H bending mode at 1,189 cm-1. In addition, other two -CH2, -CH3 stretching modes at 2,906 and 2,869 cm-1, respectively, are very similar to paraffin. Therefore, the peaks at 1,116, 1,609, 1,189 and 3,069 cm-1 are important in distinguishing resin from paraffin, and we can identify B jade depending on them.

  10. [Identification of B jade by Raman spectroscopy].

    PubMed

    Zu, En-dong; Chen, Da-peng; Zhang, Peng-xiang

    2003-02-01

    Raman spectroscopy has been found to be a useful tool for identification of bleached and polymer-impregnated jadeites (so-called B jade). The major advantage of this system over classical methods of gem testing is the non-destructive identification of inclusions in gemstones and the determination of organic fracture filling in jade. Fissures in jadeites have been filled with oils and various resins to enhance their clarity, such as paraffin wax, paraffin oil, AB glue and epoxy resins. They show different peaks depending on their chemical composition. The characteristic spectrum ranges from 1,200-1,700 cm-1 to 2,800-3,100 cm-1. The spectra of resins show that they all have four strongest peaks related with phenyl: two C-C stretching modes at 1,116 and 1,609 cm-1, respectively, one C-H stretching mode at 3,069 cm-1, and a in-plane C-H bending mode at 1,189 cm-1. In addition, other two -CH2, -CH3 stretching modes at 2,906 and 2,869 cm-1, respectively, are very similar to paraffin. Therefore, the peaks at 1,116, 1,609, 1,189 and 3,069 cm-1 are important in distinguishing resin from paraffin, and we can identify B jade depending on them. PMID:12939970

  11. Raman Spectroscopy for the Investigation of Carbon Based Black Pigments

    NASA Astrophysics Data System (ADS)

    Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P.

    2014-06-01

    Carbon based black pigments play an important role among artists' materials. The disordered structure of these materials is investigated by means of Raman spectroscopy, which helps in the comprehension of their production processes.

  12. Biosignature Detection with Raman Spectroscopy on Future Martian Missions

    NASA Astrophysics Data System (ADS)

    Angell, J. P.; Gulick, V. C.

    2016-09-01

    Raman spectroscopy shows great potential in instrumentation for future Mars missions to detect both minerals and biosignatures, and the lack of sample preparation could allow for small pockets of biosignatures to be found.

  13. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol.

    PubMed

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-21

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  14. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  15. Vibrational spectroscopy of shock-compressed liquid CO

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D.

    1991-01-01

    Single-pulse, multiplex, coherent anti-Stokes Raman spectroscopy (CARS) was used to observe the vibrational spectra of liquid CO shock compressed to several pressures and temperatures up to 9.9 GPa and 2010 K. The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities and Raman line widths. A comparison of these data with result in the isoelectronic and materially very similar N{sub 2} show a significant difference in vibrational frequency shift with pressure. 21 refs., 2 figs.

  16. Analysis of Arctic Carbonates Profiles by Raman Spectroscopy using Exomars Raman Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Sansano, A.; López, G.; Medina, J.; Rull, F.

    2011-10-01

    This work details the analysis performed by Raman spectroscopy on carbonate samples from the Svalbard Islands (Norway) in the Arctic. This place is considered a potential Martian analog because the carbonate formation show close similarities with the formation in ALH84001 meteorite. The results obtained illustrate the performances of the Raman instrument included in the Exomars (ESA) mission.

  17. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  18. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  19. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd

  20. Quantitative Raman spectroscopy in turbid media

    NASA Astrophysics Data System (ADS)

    Reble, Carina; Gersonde, Ingo; Andree, Stefan; Eichler, Hans Joachim; Helfmann, Jürgen

    2010-05-01

    Intrinsic Raman spectra of biological tissue are distorted by the influences of tissue absorption and scattering, which significantly challenge signal quantification. A combined Raman and spatially resolved reflectance setup is introduced to measure the absorption coefficient μa and the reduced scattering coefficient μs' of the tissue, together with the Raman signals. The influence of μa and μs' on the resonance Raman signal of β-carotene is measured at 1524 cm-1 by tissue phantom measurements and Monte Carlo simulations for μa=0.01 to 10 mm-1 and μs'=0.1 to 10 mm-1. Both methods show that the Raman signal drops roughly proportional to 1/μa for μa>0.2 mm-1 in the measurement geometry and that the influence of μs' is weaker, but not negligible. Possible correction functions dependent on the elastic diffuse reflectance are investigated to correct the Raman signal for the influence of μa and μs', provided that μa and μs' are measured as well. A correction function based on the Monte Carlo simulation of Raman signals is suggested as an alternative. Both approaches strongly reduce the turbidity-induced variation of the Raman signals and allow absolute Raman scattering coefficients to be determined.

  1. Optical remote sensing of water temperature using Raman spectroscopy.

    PubMed

    Artlett, C P; Pask, H M

    2015-12-14

    A detailed investigation into the use of Raman spectroscopy for determining water temperature is presented. The temperature dependence of unpolarized Raman spectra is evaluated numerically, and methods based on linear regression are used to determine the accuracy with which temperature can be obtained from Raman spectra. These methods were also used to inform the design and predict the performance of a two-channel Raman spectrometer, which can predict the temperature of mains supply water to an accuracy of ± 0.5 °C. PMID:26698976

  2. Clinical cancer diagnosis using optical fiber-delivered coherent anti-stokes ramon scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    This thesis describes the development of a combined label-free imaging and analytical strategy for intraoperative characterization of cancer lesions using the coherent anti-Stokes Raman scattering imaging (CARS) technique. A cell morphology-based analytical platform is developed to characterize CARS images and, hence, provide diagnostic information using disease-related pathology features. This strategy is validated for three different applications, including margin detection for radical prostatectomy, differential diagnosis of lung cancer, as well as detection and differentiation of breast cancer subtypes for in situ analysis of margin status during lumpectomy. As the major contribution of this thesis, the developed analytical strategy shows high accuracy and specificity for all three diseases and thus has introduced the CARS imaging technique into the field of human cancer diagnosis, which holds substantial potential for clinical translations. In addition, I have contributed a project aimed at miniaturizing the CARS imaging device into a microendoscope setup through a fiber-delivery strategy. A four-wave-mixing (FWM) background signal, which is caused by simultaneous delivery of the two CARS-generating excitation laser beams, is initially identified. A polarization-based strategy is then introduced and tested for suppression of this FWM noise. The approach shows effective suppression of the FWM signal, both on microscopic and prototype endoscopic setups, indicating the potential of developing a novel microendoscope with a compatible size for clinical use. These positive results show promise for the development of an all-fiber-based, label-free imaging and analytical platform for minimally invasive detection and diagnosis of cancers during surgery or surgical-biopsy, thus improving surgical outcomes and reducing patients' suffering.

  3. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  4. On the Contribution of Raman Spectroscopy to Forensic Science

    NASA Astrophysics Data System (ADS)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  5. Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

    2013-10-01

    Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog

  6. Micro-Raman spectroscopy on oral tissues

    NASA Astrophysics Data System (ADS)

    Zenone, F.; Lepore, M.; Perna, G.; Carmone, P.; Riccio, R.; Gaeta, G. M.; Capozzi, V.

    2006-02-01

    Micro-Raman Spectroscopy (μ-RS) provides a unique tool in medicine for a not invasive and real time analysis of biological tissue for biopsy and "in vivo" investigation. Based on the evaluation of molecular vibration frequencies, the μ-RS is able to detect the main molecular bonds of protein constituents, as the C-H and C-C ones. Changes in frequency or in the relative intensity of the vibration modes revealed by μ-RS can be related to changes of chemical bond and of protein structure induced by pathology. The μ-RS has been performed on samples of oral tissue from informed patients, affected by pemphigus vulgaris (an oral pathology) in an advanced regression state. The biopsies were thin slices (about 1mm thick) with 6mm diameter. The sample was measured through a 170 μm thick cover-glass. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a Peltier cell and with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a long focal length 50X optical objective. The main protein bonds are clearly detectable in the considered samples and this give important information on the integrity and on the state of tissue components (lipids and proteins), and consequently on the occurrence of pathology. The potential application of this method for in vivo analysis is an invaluable alternative to biopsy and pathological examinations for many medical application as screening diagnostic, therapy progress examination, and surgical support.

  7. [Sorting oleaginous yeast by using optical manipulation and Raman spectroscopy].

    PubMed

    Li, Zi-Da; Chen, Liang; Meng, Ling-Jing; Liu, Jun-Xian; Wang, Gui-Wen

    2011-04-01

    Extensive research has been carried out in an effort to screen the oleaginous microorganisms. Here, Raman spectroscopy and laser tweezers were used to sort oleaginous yeast from mixed yeast cells. The preprocessing of subtracted background, 17 points S-G smoothing filter, polynomial fitting baseline correction and vector normalization were performed and the main features information of intracellular substances from the Raman spectroscopy of yeast cells was extracted by combining principal component analysis. Based on the distinguished composition of oleaginous yeast and non-oleaginous different yeast, a sorting model was established. The test yeast cell in optical trapping was distinguished real-time by the model referring to its Raman spectra. The cells distinguished as oleaginous yeast were collected by means of optical manipulation. The sorted oleaginous yeast cells were verified by microbial culture and Sudan black B test. The result illustrates that Raman spectroscopy combined with optical manipulation is an effective technique for sorting oleaginous yeast and other economic microorganisms.

  8. Isolation and identification of bacteria by means of Raman spectroscopy.

    PubMed

    Pahlow, Susanne; Meisel, Susann; Cialla-May, Dana; Weber, Karina; Rösch, Petra; Popp, Jürgen

    2015-07-15

    Bacterial detection is a highly topical research area, because various fields of application will benefit from the progress being made. Consequently, new and innovative strategies which enable the investigation of complex samples, like body fluids or food stuff, and improvements regarding the limit of detection are of general interest. Within this review the prospects of Raman spectroscopy as a reliable tool for identifying bacteria in complex samples are discussed. The main emphasis of this work is on important aspects of applying Raman spectroscopy for the detection of bacteria like sample preparation and the identification process. Several approaches for a Raman compatible isolation of bacterial cells have been developed and applied to different matrices. Here, an overview of the limitations and possibilities of these methods is provided. Furthermore, the utilization of Raman spectroscopy for diagnostic purposes, food safety and environmental issues is discussed under a critical view. PMID:25895619

  9. Raman spectroscopy for label-free identification of calciphylaxis.

    PubMed

    Lloyd, William R; Agarwal, Shailesh; Nigwekar, Sagar U; Esmonde-White, Karen; Loder, Shawn; Fagan, Shawn; Goverman, Jeremy; Olsen, Bjorn R; Jumlongras, Dolrudee; Morris, Michael D; Levi, Benjamin

    2015-08-01

    Calciphylaxis is a painful, debilitating, and premorbid condition, which presents as calcified vasculature and soft tissues. Traditional diagnosis of calciphylaxis lesions requires an invasive biopsy, which is destructive, time consuming, and often leads to exacerbation of the condition and infection. Furthermore, it is difficult to find small calcifications within a large wound bed. To address this need, a noninvasive diagnostic tool may help clinicians identify ectopic calcified mineral and determine the disease margin. We propose Raman spectroscopy as a rapid, point-of-care, noninvasive, and label-free technology to detect calciphylaxis mineral. Debrided calciphylactic tissue was collected from six patients and assessed by microcomputed tomography (micro-CT). Micro-CT confirmed extensive deposits in three specimens, which were subsequently examined with Raman spectroscopy. Raman spectra confirmed that deposits were consistent with carbonated apatite, consistent with the literature. Raman spectroscopy shows potential as a noninvasive technique to detect calciphylaxis in a clinical environment. PMID:26263412

  10. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  11. Non-centrosymmetric molybdates CsLiMoO4 and CsLiMoO4.H2O: crystal growth, polymorphism, efficient Stokes and anti-Stokes generation and cascaded self-frequency [(3)(SRS) (2)(SFM)] conversion effects

    NASA Astrophysics Data System (ADS)

    Becker, P.; Bohatý, L.; Fröhlich, R.; Eichler, H. J.; Ueda, K.; Takaichi, K.; Hanuza, J.; Maczka, M.; Rhee, H.; Kaminskii, A. A.

    2005-10-01

    New nonlinear-laser properties of the non-centrosymmetric cubic crystals CsLiMoO4 and CsLiMoO4 .H2O were studied by stimulated Raman scattering spectroscopy (SRS). Multiple Stokes and anti-Stokes generation sidebands in the visible and near-IR under picosecond laser pumping have been observed for the first time. All recorded Raman induced lasing components were identified and attribute to two of the SRS-promoting A1(1)-stretching (SRS1 925 cm-1) and E(2)-bending (SRS2 310 cm-1) vibration modes of the units of the crystals. The estimation measurement of the steady-state Raman gain coefficients in the near-IR region for both first Stokes generations in the CsLiMoO4.H2O crystal showed that they are not less than 3.1 cm . GW-1. Besides of high-order Stokes and anti-Stokes lasing in this hydrated molybdate cascaded (3) (2) sum-frequency mixing interaction was observed under one-micron pumping. Large single crystals of optical quality of both compounds were grown and characterized with respect to their structure and structural stability. Ferroic phase transitions, that occur in CsLiMoO4 are suppressed in the novel compound CsLiMoO4.H2O. We classify these molybdates as attractive SRS-active crystalline materials.

  12. Differentiation of lipsticks by Raman spectroscopy.

    PubMed

    Salahioglu, Fatma; Went, Michael J

    2012-11-30

    Dispersive Raman spectra have been obtained using a Raman microscope and an excitation wavelength of 632.8 nm from 69 lipsticks of various colours and from a range of manufacturers without any pre-treatment of the samples. 10% of the samples were too fluorescent to give Raman spectra. 22% of the samples gave spectra which were unique to the brand and colour within the collected sample set. The remaining 68% of the samples gave spectra which could be classified into seven distinct groups. Discrimination of red lipsticks by this technique was the most difficult. The spectra of deposited lipstick samples remained unchanged over a period of a least a year.

  13. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  14. [Current views on surface enhanced Raman spectroscopy in microbiology].

    PubMed

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  15. Anti-Stokes luminescence in the light of second order perturbation theory

    SciTech Connect

    Bhattacharya, Rupak Pal, Bipul Bansal, Bhavtosh

    2014-11-10

    Anti-Stokes photoluminescence is measured in high-quality GaAs quantum wells. The primary pathway for interband optical absorption and hence emission under subbandgap photoexcitation is the optical phonon-mediated second-order electric dipole transition. This conclusion is drawn from the remarkable agreement between predictions of second-order perturbation calculation and the measured intensity of anti-Stokes photoluminescence, both as function of the detuning wavelength and temperature. The results are of direct relevance to laser cooling of solids where phonon-assisted upconversion is a necessary condition.

  16. Evaluation of thyroid tissue by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  17. Remote cure monitoring of polymeric resins by laser Raman spectroscopy

    SciTech Connect

    Hong, K.C.; Vess, T.M.; Lyon, R.E.; Myrick, M.L.

    1993-05-01

    The validity of using Raman spectroscopy to monitor the cure chemistries of amine-cured epoxy is demonstrated by correlating NIR absorbance measurements with Raman measurements for a concentration series of bisphenol-A diglycidylether in its own reaction product with diethylamine. The intensity of a normalized Raman peak at 1240 cm{sup {minus}l}, assigned to the epoxide functionality, was found to be linearly related to the concentration of epoxide groups in the resin mixtures. Also, it is shown that the Ciba-Geigy Matrimid 5292 system can be monitored by ex-situ FT-Raman spectroscopy by observing changes in the carbonyl stretching (1773 cm{sup {minus}1}) or the C=C stretching of maleimide (1587 cm{sup {minus}1}) during the cure reaction.

  18. Histochemical analysis of biological tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manoharan, Ramasamy; Wang, Yang; Feld, Michael S.

    1996-02-01

    This paper reviews the application of the Raman spectroscopic technique for analysis of biological tissue. The advantages and disadvantages of visible, near-IR and UV excitations are described, and the problems and prospects of using these methodologies for disease diagnosis are addressed. In situ analysis of tissue proteins, lens, cornea, blood constituents, biological stones and several hard tissues is reviewed, and the potentials for diagnosing arterial disease, and cancer in gynecological tissues, soft tissues, breast, colon, bladder and brain are also presented. Recent technological advances in instrumentation allow the use of Raman spectroscopy for real time histochemical analysis of tissues. The capability of Raman microspectroscopy for providing spatial information about the distribution of biochemical constituents in tissues has been demonstrated. The work reviewed indicates the promise of Raman spectroscopy for endoscopic imaging and real-time quantitation of biochemical constituents in clinical situations.

  19. Anisotropic Raman Spectroscopy of Few-Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Wu, Wangran; Maassen, Jesse; Luo, Zhe; Lundstrom, Mark; Xu, Xianfan; Ye, Peide

    Much recent research of black phosphorus (BP) and phosphorene has been focused on their unique anisotropy of this novel 2D material in terms of electrical, optical and thermal properties. Here we report the emerging Raman spectroscopy measurements of BP with respect to its isolation from bulk BP down to single layer phosphorene. The found frequency shift of BP in Raman spectra is to be correlated with atomic motion of modes, which can be explained by applying classical model of coupled harmonic oscillators. Raman intensity of different modes has also been included in our studies, which is confirmed as a solid strategy to quickly determine BP layer thickness. In addition, more information of their mechanical properties can also be obtained from Raman spectroscopy. The work was supported in part by NSF ECCS-1449270, NSF/AFOSR EFRI 2DARE Program, and ARO W911NF-15-1-0574.

  20. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    PubMed

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-01

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy. PMID:26956027

  1. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.

    PubMed

    Schmidt, Mikolaj K; Esteban, Ruben; González-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2016-06-28

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of phonon-stimulated Raman scattering and a counterintuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this QED framework opens a venue to analyze the correlations of photons emitted from a plasmonic cavity. PMID:27203727

  2. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.

    PubMed

    Schmidt, Mikolaj K; Esteban, Ruben; González-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2016-06-28

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of phonon-stimulated Raman scattering and a counterintuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this QED framework opens a venue to analyze the correlations of photons emitted from a plasmonic cavity.

  3. Proximal and point detection of contaminated surfaces using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Christesen, Steven D.; Tripathi, Ashish; Emmons, Erik D.; Wilcox, Phillip G.; Emge, Darren K.; Pardoe, Ian J.; Fountain, Augustus W., III

    2011-11-01

    We are actively investigating the use of Raman spectroscopy for proximal standoff detection of chemicals and explosive materials on surfaces. These studies include Raman Chemical Imaging of contaminated fingerprints for forensic attribution and the assessments of commercial handheld or portable Raman instruments operating with near-infrared (IR) as well as ultraviolet (UV) laser excitation specifically developed for on-the-move reconnaissance of chemical contamination. As part of these efforts, we have measured the Raman cross sections of chemical agents, toxic industrial chemicals, and explosives from the UV to NIR. We have also measured and modeled the effect interrogation angle has on the Raman return from droplets on man-made surfaces. Realistic droplet distributions have been modeled and tested against variations in surface scan patterns and laser spot size for determining the optimum scan characteristics for detection of relevant surface contamination.

  4. Monitoring the influence of antibiotic exposure using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Zemanek, Pavel; Bernatova, Silvie; Jezek, Jan; Sery, Mojmir; Jakl, Petr; Siler, Martin; Ruzicka, Filip

    2014-03-01

    Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

  5. Remote Raman spectroscopy for planetary exploration: a review.

    PubMed

    Angel, S Michael; Gomer, Nathaniel R; Sharma, Shiv K; McKay, Chris

    2012-02-01

    In this review, we discuss the current state of standoff Raman spectroscopy as it applies to remote planetary applications, including standoff instrumentation, the technique's ability to identify biologically and geologically important analytes, and the feasibility to make standoff Raman measurements under various planetary conditions. This is not intended to be an exhaustive review of standoff Raman and many excellent papers are not mentioned. Rather it is intended to give the reader a quick review of the types of standoff Raman systems that are being developed and that might be suitable for astrospectroscopy, a look at specific analytes that are of interest for planetary applications, planetary measurement opportunities and challenges that need to be solved, and a brief discussion of the feasibility of making surface and plume planetary Raman measurements from an orbiting spacecraft. PMID:22449277

  6. Ultimate sensing resolution of water temperature by remote Raman spectroscopy.

    PubMed

    Oh, Myoung-Kyu; Kang, Hoonsoo; Yu, Nan Ei; Kim, Bok Hyeon; Kim, JoonHeon; Lee, JoonSeok; Hyung, Gi Woo

    2015-04-01

    The limit of sensing resolution of water temperature by remote Raman spectroscopy was investigated experimentally. A remote Raman spectrometer, which employed a telescope of 20 cm in pupil size and the second harmonic generation (SHG) of a Q-switched Nd:YAG laser, was used for the measurement. By analyzing the broad O-H stretching Raman band located near 3500  cm⁻¹, a parameter which is in second-order polynomial relation with water temperature from 13°C to 50°C could be obtained. The resolution of our remote Raman temperature sensor was better than ±0.2°C with measurement time shorter than 10 s. The influence of the Raman signal's signal-to-noise ratio on the resolution and salinity effect on the accuracy of temperature sensing were also investigated. PMID:25967170

  7. Single bacteria identification by Raman spectroscopy.

    PubMed

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-01-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300 cm⁻¹. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24 mm². The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ~90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications. PMID:25028774

  8. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  9. Detection of biosignatures in silicified rocks using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, F.; Westall, F.

    2013-09-01

    In this study, we demonstrate the usefulness of Raman spectroscopy, and in particular Raman mapping, as a very powerful tool for the study of both organic matter and minerals associated with silicified biological remains. Our investigations concern silicified organic matter, microorganisms and biological remains of various origins and ages, ranging from the metacherts of Isua, Greenland, 3.8 Ga, to silicified wood from the Petrified Forest National Park, Arizona, USA, 225 Ma.

  10. Shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Li, Jian Feng; Huang, Yi Fan; Ding, Yong; Yang, Zhi Lin; Li, Song Bo; Zhou, Xiao Shun; Fan, Feng Ru; Zhang, Wei; Zhou, Zhi You; Wu, De Yin; Ren, Bin; Wang, Zhong Lin; Tian, Zhong Qun

    2010-03-18

    Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants. PMID:20237566

  11. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  12. Raman spectroscopy and X-ray diffraction studies on celestite

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Hua; Yu, Shu-Cheng; Huang, Eugene; Lee, Pei-Lun

    2010-10-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4. Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  13. Raman spectroscopy of polyhedral carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Codorniu Pujals, Daniel; Arias de Fuentes, Olimpia; Desdín García, Luis F.; Cazzanelli, Enzo; Caputi, Lorenzo S.

    2015-09-01

    The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

  14. Pharmaceutical Analysis from Start to Finish by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Donahue, Michael; Smith, Wayne; Patient, Michael; Farquharson, Stuart

    2010-08-01

    During the past decade Raman spectroscopy has become a widely used analytical tool in the laboratory, process environment and on-line. This is largely due to the fact that virtually every chemical produces a unique Raman signature, sample preparation is generally not required, and analyses can be performed in 1 minute or less. This presentation will describe the value of fluorescent free and x-axis stable Raman spectra in confirming the identity of raw materials, tracking reaction kinetics during drug discovery and product synthesis, monitoring and controlling batch and continuous feed reactors, and determining product properties using chemometrics.

  15. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions.

  16. Time-resolved Raman spectroscopy for in situ planetary mineralogy.

    PubMed

    Blacksberg, Jordana; Rossman, George R; Gleckler, Anthony

    2010-09-10

    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

  17. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions. PMID:27301326

  18. Detection of Sphingomyelin Clusters by Raman Spectroscopy.

    PubMed

    Shirota, Koichiro; Yagi, Kiyoshi; Inaba, Takehiko; Li, Pai-Chi; Murata, Michio; Sugita, Yuji; Kobayashi, Toshihide

    2016-09-01

    Sphingomyelin (SM) is a major sphingolipid in mammalian cells that forms specific lipid domains in combination with cholesterol (Chol). Using molecular-dynamics simulation and density functional theory calculation, we identified a characteristic Raman band of SM at ∼1643 cm(-1) as amide I of the SM cluster. Experimental results indicate that this band is sensitive to the hydration of SM and the presence of Chol. We showed that this amide I Raman band can be utilized to examine the membrane distribution of SM. Similarly to SM, ceramide phosphoethanolamine (CerPE) exhibited an amide I Raman band in almost the same region, although CerPE lacks three methyl groups in the phosphocholine moiety of SM. In contrast to SM, the amide I band of CerPE was not affected by Chol, suggesting the importance of the methyl groups of SM in the SM-Chol interaction. PMID:27602727

  19. Differentiation of lipsticks by Raman spectroscopy.

    PubMed

    Salahioglu, Fatma; Went, Michael J

    2012-11-30

    Dispersive Raman spectra have been obtained using a Raman microscope and an excitation wavelength of 632.8 nm from 69 lipsticks of various colours and from a range of manufacturers without any pre-treatment of the samples. 10% of the samples were too fluorescent to give Raman spectra. 22% of the samples gave spectra which were unique to the brand and colour within the collected sample set. The remaining 68% of the samples gave spectra which could be classified into seven distinct groups. Discrimination of red lipsticks by this technique was the most difficult. The spectra of deposited lipstick samples remained unchanged over a period of a least a year. PMID:22959771

  20. Raman spectroscopy of blood in-vitro

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  1. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  2. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  3. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips.

  4. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips. PMID:27607994

  5. Picosecond Resonance Raman Spectroscopy of Visual Pigments.

    NASA Astrophysics Data System (ADS)

    Carlsen, William Frederick

    We have constructed a picosecond Raman spectrometer to obtain information about primary events in visual excitation. The excitation source at 532 nm is a frequency doubled modelocked Nd:YAG laser optimized for short pulses, high repetition rates, and high pulse to pulse stability. The sample illumination geometry is optimized for pulsed Raman measurements using low magnification light collection and optical multi-channel detection. This instrument gives high signal to noise ratios and high data rates. The visual pigment rhodopsin was studied with this picosecond Raman instrument. We found that within 20 picoseconds of absorbing a photon, low wavenumber Raman bands characteristic of the first photo-intermediate bathorhodopsin appear. This scattering at 853, 875, and 920 wavenumbers arises from enhanced hydrogen out of plane vibrations from a strained all-trans configuration of the retinal chromophore in the protein. Furthermore, bands characteristic of isorhodopsin appear within the 10 picosecond pulse. We therefore conclude that the 11-cis retinal chromophore of rhodopsin isomerizes to a strained all-trans configuration and can further isomerize to a 9-cis form on absorbing a second photon, all within 20 picoseconds. Measurements starting with isorhodopsin show that the reverse process, 9-cis to trans to 11-cis, can also occur within 20 picoseconds. The resonance Raman spectra of bathorhodopsin formed from rhodopsin, however, exhibits consistent small differences from that of bathorhodopsin formed from isorhodopsin. Spectra of corresponding pigments deuterated at the retinal 12 carbon position also show slight differences. These data suggest that the bathorhodopsins formed from rhodopsin and isorhodopsin are initially different. They appear, however, to converge to a common intermediate by the end of 20 picoseconds. This resonance Raman study reveals that much of the isomerization of retinal takes place within a few picoseconds of the absorption of a photon by

  6. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  7. Dengue blood analysis by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Anwar, S.; Firdous, S.; Ahmed, M.; Rasheed, R.; Nawaz, M.

    2012-06-01

    In this work Raman spectra of normal and dengue infected serum and whole blood were analyzed. In normal whole blood and serum characteristic peaks were observed when excited at 442 and 532 nm. In dengue whole blood and serum all peaks found to be blue shifted with reduced Raman intensity. Dengue whole blood and serum shows two peaks at 1614 and 1750 cm-1 which are due to presence of Immunoglobulin antibodies IgG and IgM. Whole study provides a route of information for diagnosis of dengue viral infection.

  8. Characterization of oil-producing microalgae using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, O.; Zemánek, P.; Jonáš, A.; Telle, H. H.

    2011-10-01

    Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry.

  9. Deep UV Resonance Raman Spectroscopy for Characterizing Amyloid Aggregation.

    PubMed

    Handen, Joseph D; Lednev, Igor K

    2016-01-01

    Deep UV resonance Raman spectroscopy is a powerful technique for probing the structure and formation mechanism of protein fibrils, which are traditionally difficult to study with other techniques owing to their low solubility and noncrystalline arrangement. Utilizing a tunable deep UV Raman system allows for selective enhancement of different chromophores in protein fibrils, which provides detailed information on different aspects of the fibrils' structure and formation. Additional information can be extracted with the use of advanced data treatment such as chemometrics and 2D correlation spectroscopy. In this chapter we give an overview of several techniques for utilizing deep UV resonance Raman spectroscopy to study the structure and mechanism of formation of protein fibrils. Clever use of hydrogen-deuterium exchange can elucidate the structure of the fibril core. Selective enhancement of aromatic amino acid side chains provides information about the local environment and protein tertiary structure. The mechanism of protein fibril formation can be investigated with kinetic experiments and advanced chemometrics.

  10. Near-field Raman spectroscopy using a tetrahedral SNOM tip

    NASA Astrophysics Data System (ADS)

    Klein, Stefan; Reichert, Joachim; Fuchs, Harald; Fischer, Ulrich

    2006-04-01

    An example of near-field Raman spectroscopy based on the tip-enhancement at an apertureless tetrahedral scanning near-field optical tip (t-tip) is presented. Tip-enhanced Raman spectroscopy (TERS) is based on the excitation of localized surface plasmons (LSP) in the cavity of tip and surface. The LSP provide a highly confined and large field enhancement at the tip apex which allows molecular spectroscopy at the nanoscale. The t-tip consists, in contrast to other TERS configurations which use opaque tips, of a gold coated glass tip which is irradiated from the inside. We demonstrate TERS spectra of the dye malachite green isothiocyanate and show an increased bleaching of the dye in presence of the tip. Data analysis show that the actual experimental conditions support moderate enhancement of the Raman signal.

  11. Raman Spectroscopy Studies of Normal and Burned Biological Tissue

    NASA Astrophysics Data System (ADS)

    Zarnani, Faranak; Maass, David; Idris, Ahamed; Glosser, Robert

    2011-03-01

    Burn injuries are a significant medical problem, and need to be treated quickly and precisely. Burned skin needs to be removed early, within hours (less than 24 hrs) of injury, when the margins of the burn are still hard to define. Studies show that treating and excising burn wounds soon after the injury prevents the wound from becoming deeper, reduces the release of proinflammatory mediators, and reduces or prevents the systemic inflammatory reaction syndrome. Also, removing burned skin prepares the affected region for skin grafting. Raman spectroscopy could be used as an objective diagnostic method that will assist burn surgeons in removing burned skin precisely. As a first step in developing a diagnostic tool, we present Raman spectroscopy information from normal and burned ex vivo rat skin, and a comparison of our findings. Raman spectroscopy is explored for its specificity and sensitivity.

  12. Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons.

    PubMed

    Zhang, Qing; Liu, Xinfeng; Utama, M Iqbal Bakti; Xing, Guichuan; Sum, Tze Chien; Xiong, Qihua

    2016-01-13

    Phonon-assisted anti-Stokes emission and its stimulated emission in polar semiconductor ZnTe are demonstrated via the annihilation of phonons as a result of strong exciton-phonon coupling. The findings are not only important for developing high-power radiation-balanced lasers, but are also promising for manufacturing ultraefficient solid-state laser coolers. PMID:26573758

  13. Characterization of uranium tetrafluoride (UF4) with Raman spectroscopy

    DOE PAGESBeta

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  14. In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molecular vibrations using nonlinear Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagashima, Yu; Suzuki, Takayuki; Terada, Sumio; Tsuji, Shoji; Misawa, Kazuhiko

    2011-01-01

    Halogenated volatile anesthetics are frequently used for inhaled anesthesia in clinical practice. No appropriate biological method has been available for visualizing their localization in action. Therefore, despite their frequent use, the mechanism of action of these drugs has not been fully investigated. We measured coherent anti-Stokes Raman scattering (CARS) spectra of sevoflurane and isoflurane, two of the most representative volatile anesthetics, and determined the low-frequency vibrational modes without nonresonant background disturbance. Molecular dynamics calculations predict that these modes are associated with multiple halogen atoms. Because halogen atoms rarely appear in biological compounds, the entire spectral landscape of these modes is expected to be a good marker for investigating the spatial localization of these drugs within the intracellular environment. Using live squid giant axons, we could detect the unique CARS spectra of sevoflurane for the first time in a biological setting.

  15. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  16. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  17. Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.

    2004-07-01

    We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.

  18. Time-resolved resonance Raman spectroscopy: exploring reactive intermediates.

    PubMed

    Sahoo, Sangram Keshari; Umapathy, Siva; Parker, Anthony W

    2011-10-01

    The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single "do-it-all" technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-μs) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy. PMID:21986070

  19. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  20. [Study on the treatment turquoise using Raman spectroscopy].

    PubMed

    Chen, Quan-li; Yuan, Xin-qiang; Chen, Jing-zhong; Qi, Li-jian

    2010-07-01

    Due to a variety of the enhancement and treatment turquoises discovered in gem markets, the identification of turquoise is becoming more and more difficult. By using laser Raman spectroscopy analysis, the characteristics of Raman spectra of the pressed and filled turquoises were studied. The results show that laser Raman spectroscopy is an effective technique to identify the enhancement and treatment turquoises and the natural ones, moreover, it's a non-destructive testing method. The Raman spectra of the enhancement and treatment turquoises are resulted mainly from the vibrational mode and frequency of water, hydroxyl units, PO4 tetrahedron and CH2 units. Besides, they have the characteristic Raman spectra peaks at 2,937, 2,883 and 1,451 cm(-1) which are attributed to the stretching vibration and the bending vibration of CH2, respectively. These characteristic Raman vibration bands, it will help to distinguish the natural turquoises and the treatment ones. The study provides a new train of thought on the rapid, accurate, and non-destructive identification of turquoise. PMID:20827971

  1. [Study on the treatment turquoise using Raman spectroscopy].

    PubMed

    Chen, Quan-li; Yuan, Xin-qiang; Chen, Jing-zhong; Qi, Li-jian

    2010-07-01

    Due to a variety of the enhancement and treatment turquoises discovered in gem markets, the identification of turquoise is becoming more and more difficult. By using laser Raman spectroscopy analysis, the characteristics of Raman spectra of the pressed and filled turquoises were studied. The results show that laser Raman spectroscopy is an effective technique to identify the enhancement and treatment turquoises and the natural ones, moreover, it's a non-destructive testing method. The Raman spectra of the enhancement and treatment turquoises are resulted mainly from the vibrational mode and frequency of water, hydroxyl units, PO4 tetrahedron and CH2 units. Besides, they have the characteristic Raman spectra peaks at 2,937, 2,883 and 1,451 cm(-1) which are attributed to the stretching vibration and the bending vibration of CH2, respectively. These characteristic Raman vibration bands, it will help to distinguish the natural turquoises and the treatment ones. The study provides a new train of thought on the rapid, accurate, and non-destructive identification of turquoise.

  2. Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.

    2009-03-01

    Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.

  3. Direct observation of the cyclic dimer in liquid acetic acid by probing the C=O vibration with ultrafast coherent Raman spectroscopy.

    PubMed

    Lütgens, Matthias; Friedriszik, Frank; Lochbrunner, Stefan

    2014-09-01

    We present a comparison of spontaneous Raman and ultrafast coherent anti-Stokes Raman scattering (CARS) spectra of the C=O vibration of liquid acetic acid. The former technique cannot clearly reveal the number of contributions in the spectrum. However, the additional time and spectrally resolved CARS experiment supports strictly the existence of four modes, which proves the coexistence of more than one H-bonded configuration in liquid acetic acid. A comparably slowly dephasing mode which is obscured by a broad band in the linear Raman spectrum is assigned to the cyclic dimer and can be observed freed from all other contributions by ultrafast CARS.

  4. Novel developments in laser diode Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Claps, Ricardo Javier

    2000-11-01

    This thesis presents the last developments of a laser diode Raman spectrometer for gases, gas flows and vapors, at medium-low pressures. Results are shown for atmospheric gases under STP conditions, and also gas flows from nozzles in subsonic-sonic regimes. The system is unique in that it uses a high power laser diode passively locked by an external grating cavity in Littman/Metcalf configuration, with side-band modes suppressed by 1:10-5, and a reduced bandwidth of <500MHz. The use of Rb vapor cells as notch filters with unprecedented narrow bandwidth (<7 cm-1), allow to collect Stokes and a-Stokes rotational Raman spectra simultaneously. The spectrometer is used to perform studies of thermodynamic equilibrium of gas flows; further studies of samples seeded in the flow (alkali- halides) are discussed, together with potential applications for environmental and industrial monitoring.

  5. Raman spectroscopy for bacterial identification and characterization

    NASA Astrophysics Data System (ADS)

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk.; Šerý, Mojmír.; Ježek, Jan; Krzyžánek, Vladislav; Zemánek, Pavel; Ružička, Filip

    2012-01-01

    The main goal of our investigation is to use Raman tweezers technique so that the responce of Raman scattering on microorganisms suspended in liquid media (bacteria, algae and yeast cells in microfluidic chips) can be used to identify different species. The investigations presented here include identification of different bacteria strains (biofilm-positive and biofilm-negative) and yeast cells by using principal component analysis (PCA). The main driving force behind our investigation was a common problem in the clinical microbiology laboratory - how to distinguish between contaminant and invasive isolates. Invasive bacterial/yeast isolates can be assumed to form a biofilm, while isolates which do not form a biofilm can be treated as contaminant. Thus, the latter do not represent an important virulence factor.

  6. Raman spectroscopy and oral exfoliative cytology

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  7. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2016-02-01

    Oxidation on Mars is primarily caused by the high influx of cosmic and solar radiation which interacts with the Martian surface. The evidence of this can be seen in the ubiquitous red colouration of the Martian sediment. This radiation will destroy most signals of life in the top few metres of the Martian surface. If organic carbon (one of the building blocks of life) is present within the accessible Martian sediments, it is very likely that it will have experienced some oxidation. ESA's ExoMars mission set to fly in 2018, has on board a miniaturised Raman spectrometer. As Raman spectroscopy is sensitive to carbonaceous material and will be primarily used to characterise organics, it is essential that the effect oxidation has on the Raman carbon signal is assessed. Oxidised carbonaceous shales were analysed using Raman spectroscopy to assess this issue. Results show that haematite has a band which occurs in the same frequency as the carbon D band, which cannot be distinguished from each other. This can lead to a misidentification of the carbon D band and a misinterpretation of the carbon order. Consequently, caution must be taken when applying Raman spectroscopy for organic carbon analysis in oxidised terrestrial and extraterrestrial environments, including on Mars.

  8. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  9. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  10. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture.

  11. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture. PMID:27338230

  12. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    PubMed Central

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-01-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies. PMID:27725756

  13. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  14. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  15. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  16. Imaging EGFR distribution using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, L.; Chen, X. K.; Smith, A.; Korbelik, M.; Zeng, H.; Lee, P. W. K.; Hewitt, K. C.

    2009-02-01

    The purpose of this study is to explore the feasibility of using Surface Enhanced Raman Spectroscopy (SERS) to image the distribution of Epidermal Growth Factor Receptor (EGFR) in cells. To accomplish this task, 30 nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per ml) are incubated with cells (106 per ml) of the A431 human epidermoid carcinoma cell line and normal human bronchial epithelial (NHBE) cells. Using the 632.8 nm excitation line of a He-Ne laser, Raman spectroscopy measurements are performed using a point mapping scheme. SERS signals are observed with an overall enhancement of 4-7 orders of magnitude. Raman intensity maps of the 1480 and 1583 cm-1 peaks correlate well with the expected distribution of AuNPs and EGFR. Normal cells show little to no enhancement. The results therefore present a simple yet effective means to image EGFR over-expression.

  17. Raman spectroscopy for in-situ monitoring of electrode processes

    SciTech Connect

    Varma, R; Cook, G M; Yao, N P

    1982-04-01

    The theoretical and experimental applications of Raman spectroscopic techniques to the study of battery electrode processes are described. In particular, the potential of Raman spectroscopy as an in-situ analytical tool for the characterization of the structure and composition of electrode surface layers at electrode-electrolyte interfaces during electrolysis is examined. It is anticipated that this understanding of the battery electrode processes will be helpful in designing battery active material with improved performance. The applications of Raman spectroscopy to the in-situ study of electrode processes has been demonstrated in a few selected areas, including: (1) the anodic corrosion of lead in sulfuric acid and (2) the anodization and sulfation of tetrabasicleadsulfate in sulfuric acid. Preliminary results on the anodization of iron and on the electrochemical behavior of nickel positive-electrode active material in potassium hydroxide electrolytes are presented in the Appendix.

  18. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy.

    PubMed

    Iversen, Jens A; Ahring, Birgitte K

    2014-11-01

    Process control automation in the emerging biorefinery industry may be achieved by applying effective methods for monitoring compound concentrations during the production processes. This study examines the application of Raman spectroscopy with an excitation wavelength of 785nm and an immersion probe for in situ monitoring the progression of pretreatment, hydrolysis and fermentation processes in the production of lignocellulosic ethanol. Raman signals were attenuated by light scattering cells and lignocellulosic particulates, which the quantification method to some degree could correct for by using an internal standard in the spectra. Allowing particulates to settle by using a slow stirring speed further improved results, suggesting that Raman spectroscopy should be used in combination with continuous separation when used to monitor process mixtures with large amounts of particulates. The root mean square error of prediction (RMSE) of ethanol and glucose measured in real-time was determined to be 0.98g/L and 1.91g/L respectively.

  19. Raman-spectroscopy-based biosensing for applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  20. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    PubMed

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)