Sample records for antiangiogenic organoselenium compound

  1. Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells.

    PubMed

    Nian, Hui; Bisson, William H; Dashwood, Wan-Mohaiza; Pinto, John T; Dashwood, Roderick H

    2009-08-01

    Methylselenocysteine (MSC) and selenomethionine (SM) are two organoselenium compounds receiving interest for their potential anticancer properties. These compounds can be converted to beta-methylselenopyruvate (MSP) and alpha-keto-gamma-methylselenobutyrate (KMSB), alpha-keto acid metabolites that share structural features with the histone deacetylase (HDAC) inhibitor butyrate. We tested the organoselenium compounds in an in vitro assay with human HDAC1 and HDAC8; whereas SM and MSC had little or no activity up to 2 mM, MSP and KMSB caused dose-dependent inhibition of HDAC activity. Subsequent experiments identified MSP as a competitive inhibitor of HDAC8, and computational modeling supported a mechanism involving reversible interaction with the active site zinc atom. In human colon cancer cells, acetylated histone H3 levels were increased during the period 0.5-48 h after treatment with MSP and KMSB, and there was dose-dependent inhibition of HDAC activity. The proportion of cells occupying G(2)/M of the cell cycle was increased at 10-50 microM MSP and KMSB, and apoptosis was induced, as evidenced by morphological changes, Annexin V staining and increased cleaved caspase-3, -6, -7, -9 and poly(adenosine diphosphate-ribose)polymerase. P21WAF1, a well-established target gene of clinically used HDAC inhibitors, was increased in MSP- and KMSB-treated colon cancer cells at both the messenger RNA and protein level, and there was enhanced P21WAF1 promoter activity. These studies confirm that in addition to targeting redox-sensitive signaling molecules, alpha-keto acid metabolites of organoselenium compounds alter HDAC activity and histone acetylation status in colon cancer cells, as recently observed in human prostate cancer cells.

  2. Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer.

    PubMed

    Shanmugam, Muthu K; Warrier, Sudha; Kumar, Alan P; Sethi, Gautam; Arfuso, Frank

    2017-01-01

    Neovascularization, also known as angiogenesis, is the process of capillary sprouting from pre-existing blood vessels. This physiological process is a hallmark event in normal embryonic development as blood vessels generally supply both oxygen and nutrients to the cells of the body. Any disruption in this process can lead to the development of various chronic diseases, including cancer. In cancer, aberrant angiogenesis plays a prominent role in maintaining sustained tumor growth to malignant phenotypes and promoting metastasis. The leakiness in the tumor microvasculature is attributed to the tumor cells migrating to distal site organs and forming colonies. In this article, we briefly review the various mediators involved in the angiogenic process and the anti-angiogenic potential of selected natural compounds against various malignancies. Several growth factors and their receptors such as vascular endothelial growth factor and receptor (VEGF/VEGFR), basic fibroblast growth factor and receptor (bFGF/FGFR), angiopoietins, and hypoxia inducible factors facilitate the development of angiogenesis and are attractive anti-cancer targets. Natural products represent a rich diversity of compounds for drug discovery and are currently being actively exploited to target tumor angiogenesis. Agents such as curcumin, artemisinin, EGCG, resveratrol, emodin, celastrol, thymoquinone and tocotrienols all have shown prominent anti-angiogenic effects in the preclinical models of tumor angiogenesis. Several semi-synthetic derivatives and novel nano-formulations of these natural compounds have also exhibited excellent anti-angiogenic activity by increasing bioavailability and delivering the drugs to the sites of tumor angiogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    PubMed

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Product ion distributions for the reactions of NO+ with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    RATIONALE The reactions of NO+ with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO+ ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds – dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M+ cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO+M, formed by ion-molecule association, and [M–H]+ ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)+* adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3, CH4 and/or C2H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile

  5. Bioassay-guided isolation of proanthocyanidins with antiangiogenic activities.

    PubMed

    Pesca, Maria S; Dal Piaz, Fabrizio; Sanogo, Rokia; Vassallo, Antonio; Bruzual de Abreu, Maryan; Rapisarda, Antonio; Germanò, Maria P; Certo, Giovanna; De Falco, Sandro; De Tommasi, Nunziatina; Braca, Alessandra

    2013-01-25

    The proangiogenic members of the vascular endothelial growth factor (VEGF) family and related receptors play a central role in the modulation of pathological angiogenesis. In order to identify plant compounds able to interfere in the VEGFs/VEGFR-1 (Flt-1) recognition by VEGF family members, the extracts of the aerial parts of Campsiandra guayanensis and Feretia apodanthera were screened by a competitive ELISA-based assay. By using this bioassay-oriented approach five proanthocyanindins, including the new natural compounds (2S)-4',5,7-trihydroxyflavan-(4β→8)-afzelechin (1) and (2S)-4',5,7-trihydroxyflavan-(4β→8)-epiafzelechin (2) and the known geranin B (3), proanthocyanidin A2 (4), and proanthocyanidin A1 (5), were isolated. The study of the antiangiogenic activities of compounds 1-5 using ELISA and SPR assays showed compound 1 as being the most active. The antiangiogenic activity of 1 was also confirmed in vivo by the chicken chorioallantoic membrane assay. Our results indicated 1 as a new antiangiogenic compound inhibiting the interaction between VEGF-A or PlGF and their receptor VEGRF-1.

  6. Binding of a cyclic organoselenium compound with gold nanoparticles (GNP) and its effect on electron transfer properties.

    PubMed

    Kumar, Pavitra V; Singh, Beena G; Maiti, Nandita; Iwaoka, Michio; Priyadarsini, K Indira

    2014-12-15

    Binding of a cyclic organoselenium compound, DL-trans-3,4-dihydroxy-1-selenolane (DHSred) with gold nanoparticles (GNP) of different sizes was studied by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), surface enhanced Raman spectroscopy (SERS) and zeta-potential (ζ) measurements. GNP of different size were synthesized by varying the reaction conditions and their size was determined by DLS and TEM techniques. The absorption spectral data showed red shift in the surface plasmon resonance (SPR) band indicating increase in the size of GNP on binding to DHSred. SERS studies confirmed that the binding of DHSred with GNP is through selenium center with planar orientation of DHSred on the GNP surface. The product of the number of binding sites (n) in GNP and the binding constant (K) was estimated for GNP of different particle size. The zeta potential (ζ) value of GNP decreased marginally in the presence of DHSred. Further, the binding of DHSred with GNP was found to enhance its reactivity with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS(·-)) and the reactivity increased with decrease in the GNP size. Such enhancement in the reducing ability may have a greater impact on the antioxidant activity of DHSred. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Nuclear blebbing of biologically active organoselenium compound towards human cervical cancer cell (HeLa): in vitro DNA/HSA binding, cleavage and cell imaging studies.

    PubMed

    Rizvi, Masood Ahmad; Zaki, Mehvash; Afzal, Mohd; Mane, Manoj; Kumar, Manjeet; Shah, Bhahwal Ali; Srivastav, Saurabh; Srikrishna, Saripella; Peerzada, Ghulam Mustafa; Tabassum, Sartaj

    2015-01-27

    New pharmacophore organoselenium compound (1) was designed, synthesized and characterized by various spectroscopic methods (IR, ESI-MS, (1)H, (13)C and (77)Se NMR) and further confirmed by X-ray crystallography. Compound 1 consists of two 3,5-bis(trifluoromethyl)phenyl units which are connected to the selenium atom via the organometallic C-Se bond. In vitro DNA binding studies of 1 was investigated by absorption and emission titration methods which revealed that 1 recognizes the minor groove of DNA in accordance with molecular docking studies with the DNA duplex. Gel electrophoretic assay demonstrates the ability of 1 to cleave pBR322 DNA through hydrolytic process which was further validated by T4 religation assay. To understand the drug-protein interaction of which ultimate molecular target was DNA, the affinity of 1 towards HSA was also investigated by the spectroscopic and molecular modeling techniques which showed hydrophobic interaction in the subdomain IIA of HSA. Furthermore, the intracellular localization of 1 was evidenced by cell imaging studies using HeLa cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.

    PubMed

    Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola

    2017-12-01

    Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.

  9. Anti-angiogenic activity of Entada africana root.

    PubMed

    Germanò, Maria Paola; Certo, Giovanna; D'Angelo, Valeria; Sanogo, Rokia; Malafronte, Nicola; De Tommasi, Nunziatina; Rapisarda, Antonio

    2015-01-01

    Entada africana roots are used in African traditional medicine for various diseases including inflammation. This application may be mediated through anti-angiogenic effects. Thus, in this study the anti-angiogenic activity of E. africana root extracts (n-hexane, chloroform, chloroform/methanol and methanol) was preliminarily evaluated by the quantitative determination of endogenous alkaline phosphatase in zebrafish embryos. A bioactivity-guided fractionation of chloroform/methanol extract yielded apigenin and robinetin as the main constituents from the most active fractions. In addition, a marked reduction on capillary formation was evidenced in chick chorioallantoic membrane after treatment with the active fractions or isolated compounds. Results obtained in this study suggest that the anti-angiogenic effects of E. africana root may account for its use in inflammatory diseases and other related pathological conditions.

  10. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  11. Identification of methionine aminopeptidase 2 as a molecular target of the organoselenium drug ebselen and its derivatives/analogues: Synthesis, inhibitory activity and molecular modeling study.

    PubMed

    Węglarz-Tomczak, Ewelina; Burda-Grabowska, Małgorzata; Giurg, Mirosław; Mucha, Artur

    2016-11-01

    A collection of twenty-six organoselenium compounds, ebselen and its structural analogues, provided a novel approach for inhibiting the activity of human methionine aminopeptidase 2 (MetAP2). This metalloprotease, being responsible for the removal of the amino-terminal methionine from newly synthesized proteins, plays a key role in angiogenesis, which is essential for the progression of diseases, including solid tumor cancers. In this work, we discovered that ebselen, a synthetic organoselenium drug molecule with anti-inflammatory, anti-oxidant and cytoprotective activity, inhibits one of the main enzymes in the tumor progression pathway. Using three-step synthesis, we obtained twenty-five ebselen derivatives/analogues, ten of which are new, and tested their inhibitory activity toward three neutral aminopeptidases (MetAP2, alanine and leucine aminopeptidases). All of the tested compounds proved to be selective, slow-binding inhibitors of MetAP2. Similarly to ebselen, most of its analogues exhibited a moderate potency (IC 50 =1-12μM). Moreover, we identified three strong inhibitors that bind favorably to the enzyme with the half maximal inhibitory concentration in the submicromolar range. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  13. The possible role of chemotherapy in antiangiogenic drug resistance.

    PubMed

    Bocci, Guido; Loupakis, Fotios

    2012-05-01

    The use of antiangiogenic drugs for cancer treatment was welcomed because of the hypothesis that they would be much less likely to lose their therapeutic activity as a result of tumor-acquired resistance over time. Unfortunately, the clinical experience has shown that acquired resistance to antiangiogenic therapeutic strategies is possible since many patients whose tumors initially respond to drugs such as bevacizumab (a monoclonal antibody against VEGF), sorafenib, or sunitinib (tyrosine kinase inhibitors targeting VEGF receptors and PDGF receptors) or metronomic chemotherapy (e.g. low dose cyclophosphamide) become nonresponsive, often within months of therapy initiation. Indeed, the role of associated antineoplastic chemotherapy in antiangiogenic resistance seems to be ignored by the previous studies and the real part played by these drugs has to be written yet. The studies undertaken on antiangiogenic resistance mainly involved mechanisms directly related to the antiangiogenic drugs alone and as such lead one to ask whether the acquired resistance to angiogenesis pathway-targeting might also be mediated by the chemotherapeutic drugs usually associated (at least into the clinic) with these types of drugs. The proposed hypothesis is concerning the possibility that the acquired resistance to antiangiogenic therapy could be actively and heavily modulated by the choice of the associated chemotherapeutic drug. The chemotherapeutic compounds may delay or accelerate the process through the induction, upregulation or downregulation of pro-angiogenic or anti-angiogenic factors or their receptors in the tumor, endothelial and other type of cells of the tumor microenvironment. In conclusion, the consequences of our hypothesis could be promptly translated into the preclinical studies and verified in clinical trials, involving cancer patients resistant to chemotherapy plus antiangiogenic drug schedules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Antioxidant and antiangiogenic activities of the essential oils of Myristica fragrans and Morinda citrifolia.

    PubMed

    Piaru, Suthagar Pillai; Mahmud, Roziahanim; Abdul Majid, Amin Malik Shah; Mahmoud Nassar, Zeyad Daoud

    2012-04-01

    Toinvestigate the anti-angiogenic activity and antioxidant properties of Myristica fragrans (M. fragrans) (nutmeg) and Morinda citrifolia (M. citrifolia)(mengkudu) oils. The nutmeg and megkudu essential oils were obtained by steam distillation. The antioxidant activities of both essential oils were determined by beta-carotene/linoleic acid bleaching assay and reducing power while the anti-angiogenic activity was investigated using rat aortic ring assay using various concentrations. The results showed that nutmeg oil has higher antioxidant activity than mengkudu oil. The nutmeg oil effectively inhibited the oxidation of linoleic acid with (88.68±0.1)% while the inhibition percentage of oxidation of linoleic acid of the mengkudu oil is (69.44±0.4)%. The nutmeg oil and mengkudu oil showed reducing power with an EC(50) value of 181.4 μg/mL and 3 043.0 μg/mL, respectively. The antiangiogenic activity of nutmeg oil showed significant antiangiogenic activity with IC(50) of 77.64 μg/mL comparing to mengkudu oil which exhibits IC(50) of 109.30 μg/mL. Bioactive compound(s) will be isolated from the nutmeg essential oil to be developed as antiangiogenic drugs. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. A Low Molecular Weight Protein from the Sea Anemone Anemonia viridis with an Anti-Angiogenic Activity

    PubMed Central

    Loret, Erwann P.; Luis, José; Nuccio, Christopher; Villard, Claude; Mansuelle, Pascal; Lebrun, Régine; Villard, Pierre Henri

    2018-01-01

    Sea anemones are a remarkable source of active principles due to a decentralized venom system. New blood vessel growth or angiogenesis is a very promising target against cancer, but the few available antiangiogenic compounds have limited efficacy. In this study, a protein fraction, purified from tentacles of Anemonia viridis, was able to limit endothelial cells proliferation and angiogenesis at low concentration (14 nM). Protein sequences were determined with Edman degradation and mass spectrometry in source decay and revealed homologies with Blood Depressing Substance (BDS) sea anemones. The presence of a two-turn alpha helix observed with circular dichroism and a trypsin activity inhibition suggested that the active principle could be a Kunitz-type inhibitor, which may interact with an integrin due to an Arginine Glycin Aspartate (RGD) motif. Molecular modeling showed that this RGD motif was well exposed to solvent. This active principle could improve antiangiogenic therapy from existing antiangiogenic compounds binding on the Vascular Endothelial Growth Factor (VEGF). PMID:29671760

  16. Two cyclic hexapeptides from Penicillium sp. FN070315 with antiangiogenic activities.

    PubMed

    Jang, Jun-Pil; Jung, Hye Jin; Han, Jang Mi; Jung, Narae; Kim, Yonghyo; Kwon, Ho Jeong; Ko, Sung-Kyun; Soung, Nak-Kyun; Jang, Jae-Hyuk; Ahn, Jong Seog

    2017-01-01

    In the course of searching for angiogenesis inhibitors from microorganisms, two cyclic peptides, PF1171A (1) and PF1171C (2) were isolated from the soil fungus Penicillium sp. FN070315. In the present study, we investigated the antiangiogenic efficacy and associated mechanisms of 1 and 2 in vitro using human umbilical vein endothelial cells (HUVECs). Compounds 1 and 2 inhibited the proliferation of HUVECs at concentrations not exhibiting cytotoxicity. Moreover, 1 and 2 significantly suppressed vascular endothelial growth factor (VEGF)-induced migration, invasion, proliferation and tube formation of HUVECs as well as neovascularization of the chorioallantoic membrane in developing chick embryos. We also identified an association between the antiangiogenic activity of 1 and 2 and the downregulation of both the phosphorylation of VEGF receptor 2 and the expression of hypoxia inducible factor-1α at the protein level. Taken together, these results further suggest that compounds 1 and 2 will be promising angiogenesis inhibitors.

  17. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less

  18. Synthesis, SAR and biological evaluation of a novel series of 1-(2-chloroethyl)-1-nitroso-3-(2-(3-oxobenzoelenazol-2(3H)-yl)ethyl) urea: Organoselenium compounds for cancer therapy.

    PubMed

    Ye, S; Zheng, X; Hu, T; Zeng, H

    2016-06-30

    Thioredoxin reductase 1 (TrxR1) is an important potential anticancer drug target and closely related to both carcinogenesis and cancer progression. Ethaselen (BBSKE), a novel organoselenium compound inhibiting TrxR1 with selective antitumor effect, while its symmetrical structure results in poor solubility. Carmustine (BCNU), a DNA cross-link agent and also a deactivator of TrxR, is with high toxicity and low selectivity which limit its clinical application to some extents. Herein, a novel compound, 1-(2-chloroethyl)-1-nitroso-3-(2-(3-oxobenzoelenazol-2(3H)-yl)ethyl)urea(4a-1), which was designed through the combination of Ethaselen and Carmustine, showed good solubility, good tagetability, low toxicity and excellent antitumor activity by synergism. Using the structure of 4a-1 as a key active scaffold, a series of novel 1-(2-chloroethyl)-1-nitroso-3-(2-(3-oxobenzoelenazol-2(3H)-yl)ethyl)urea was designed, synthesized and evaluated to explore the structure-activity relationships (SARs) of these inhibitors and to improve their antitumor activities. Notably, 1-(2-chloroethyl)-3-(2-(6-fluoro-3-oxobenzoselenazol-2(3H)-yl)ethyl)-1-nitrosourea(4b-1) was found to exhibit more potent antitumor activities comparable to 4a-1 against all the four cancer cell lines, including Mia PaCa-2, PANC-1, RKO, LoVo. These results have highlighted compound 4b-1 as a new potential lead candidate for future development of novel potent broad-spectrum antitumor agents. In addition, a SAR model was established to conduct further structural modification.

  19. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues.

    PubMed

    Nuti, Elisa; Bassani, Barbara; Camodeca, Caterina; Rosalia, Lea; Cantelmo, AnnaRita; Gallo, Cristina; Baci, Denisa; Bruno, Antonino; Orlandini, Elisabetta; Nencetti, Susanna; Noonan, Douglas M; Albini, Adriana; Rossello, Armando

    2017-09-29

    Angiogenesis induction is a hallmark of cancer. Antiangiogenic properties of Xanthohumol (XN), a naturally occurring prenylated chalcone from hops, have been widely reported. Here we describe the synthesis and study the antiangiogenic activity in vitro of a series of XN derivatives, where different substituents on the B-ring of the chalcone scaffold were inserted. The new XN derivatives inhibited human umbilical-vein endothelial cell (HUVEC) proliferation, adhesion, migration, invasion and their ability to form capillary-like structures in vitro at 10 μM concentration. The preliminary results indicate that the phenolic OH group in R, present in natural XN, is not necessary for having antiangiogenic activity. In fact, the most effective compound from this series, 13, was characterized by a para-methoxy group in R and a fluorine atom in R 2 on B-ring. This study paves the way for future development of synthetic analogues of XN to be used as cancer angiopreventive and chemopreventive agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative.

    PubMed

    Zhang, Yanli; Zhang, Hui; Chen, Jingbo; Zhao, Haixia; Zeng, Xianghui; Zhang, Hongbin; Qing, Chen

    2012-02-01

    This study showed that 13-chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315), a gibberellin derivative, possessed high antitumor and antiangiogenic activity in vitro and in vivo. Cytotoxicity assays showed that GA-13315 was a potential and efficient antitumor compound, with inhibitory concentration 50 (IC(50)) values ranging from 0.13 to 30.28 μg/ml in 12 human tumor cell lines, and it showed moderate toxicity to peripheral blood mononuclear cells with an IC(50) value of 14.2 μg/ml. Administration of 0.5 or 2.5 mg/kg GA-13315 for 23 days significantly inhibited tumor growth of human non-small cell lung tumor (A549) xenografts, with relative growth rates ranging from 29.91% to 35.05%. Acute toxicity was determined in ICR mice, and the lethal dose 50 (LD(50)) was 4.19 g/kg after intragastric administration. The high antitumor potency of GA-13315 occurred in parallel with its antiangiogenic activity. In vitro, GA-13315 inhibited recombinant human epithelial growth factor-induced chemotactic motility and capillary-like tube formation of primary cultured human endothelial cells. Furthermore, GA-13315 decreased the factor VIII(+) microvessel density and vascular endothelial growth factor expression in A549 tumors, indicating its antiangiogenic efficacy in vivo. These results indicate that the antiangiogenic activity of GA-13315 contributes to its anticancer properties. Further studies are needed to investigate the use of GA-13315 as an anticancer drug.

  1. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Tran, Phat L; Hammond, Adrienne A; Mosley, Thomas; Cortez, Janette; Gray, Tracy; Colmer-Hamood, Jane A; Shashtri, Mayank; Spallholz, Julian E; Hamood, Abdul N; Reid, Ted W

    2009-06-01

    Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.

  2. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    PubMed

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  3. [Anti-angiogenic drugs].

    PubMed

    Sato, Yasufumi

    2010-06-01

    Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.

  4. Homoisoflavonoids as potential antiangiogenic agents for retinal neovascularization.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Gayen, Shovanlal; Jha, Tarun

    2017-11-01

    A number of people worldwide have been suffering from ocular neovascularization that may be treated by a variety of drugs but these may possess adverse effects. Therefore, small antiangiogenic molecules with higher potency and lower toxic effects are intended. However, homoisoflavonoids of natural origin show the potential antiangiogenic effect in ocular neovascularization. These homoisoflavonoids are judged quantitatively in terms of statistical validation through multi-chemometric modeling approaches for the betterment and refinement of their structures required for higher antiangiogenic activity targeted to ocular neovascularization. These approaches may be utilized to design better antiangiogenic homoisoflavonoids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Targeting acid sphingomyelinase with anti-angiogenic chemotherapy.

    PubMed

    Jacobi, Jeanna; García-Barros, Mónica; Rao, Shyam; Rotolo, Jimmy A; Thompson, Chris; Mizrachi, Aviram; Feldman, Regina; Manova, Katia; Bielawska, Alicja; Bielawska, Jacek; Fuks, Zvi; Kolesnick, Richard; Haimovitz-Friedman, Adriana

    2017-01-01

    Despite great promise, combining anti-angiogenic and conventional anti-cancer drugs has produced limited therapeutic benefit in clinical trials, presumably because mechanisms of anti-angiogenic tissue response remain only partially understood. Here we define a new paradigm, in which anti-angiogenic drugs can be used to chemosensitize tumors by targeting the endothelial acid sphingomyelinase (ASMase) signal transduction pathway. We demonstrate that paclitaxel and etoposide, but not cisplatin, confer ASMase-mediated endothelial injury within minutes. This rapid reaction is required for human HCT-116 colon cancer xenograft complete response and growth delay. Whereas VEGF inhibits ASMase, anti-VEGFR2 antibodies de-repress ASMase, enhancing endothelial apoptosis and drug-induced tumor response in asmase +/+ , but not in asmase -/- , hosts. Such chemosensitization occurs only if the anti-angiogenic drug is delivered 1-2h before chemotherapy, but at no other time prior to or post chemotherapy. Our studies suggest that precisely-timed administration of anti-angiogenic drugs in combination with ASMase-targeting anti-cancer drugs is likely to optimize anti-tumor effects of systemic chemotherapy. This strategy warrants evaluation in future clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Plants and their active compounds: natural molecules to target angiogenesis.

    PubMed

    Lu, Kai; Bhat, Madhavi; Basu, Sujit

    2016-07-01

    Angiogenesis, or new blood vessel formation, is an important process in the pathogenesis of several diseases and thus has been targeted for the prevention and treatment for many disorders. However, the anti-angiogenic agents that are currently in use are mainly synthetic compounds and humanized monoclonal antibodies, which are either expensive or toxic, thereby limiting their use in many patients. Therefore, it is necessary to identify less toxic, inexpensive, novel and effective anti-angiogenic molecules. Several studies have indicated that natural plant products can meet these criteria. In this review, we discuss the anti-angiogenic properties of natural compounds isolated from plants and the molecular mechanisms by which these molecules act. Finally, we summarize the advantages of using plant products as anti-angiogenic agents. Compared with currently available anti-angiogenic drugs, plant products may not only have similar therapeutic potential but are also inexpensive, less toxic, and easy to administer. However, novel and effective strategies are necessary to improve their bioavailability for clinical use.

  7. Design of novel artemisinin-like derivatives with cytotoxic and anti-angiogenic properties

    PubMed Central

    Soomro, Shahid; Langenberg, Tobias; Mahringer, Anne; Konkimalla, V Badireenath; Horwedel, Cindy; Holenya, Pavlo; Brand, Almut; Cetin, Canan; Fricker, Gert; Dewerchin, Mieke; Carmeliet, Peter; Conway, Edward M; Jansen, Herwig; Efferth, Thomas

    2011-01-01

    Abstract Artemisinins are plant products with a wide range of medicinal applications. Most prominently, artesunate is a well tolerated and effective drug for treating malaria, but is also active against several protozoal and schistosomal infections, and additionally exhibits anti-angiogenic, anti-tumorigenic and anti-viral properties. The array of activities of the artemisinins, and the recent emergence of malaria resistance to artesunate, prompted us to synthesize and evaluate several novel artemisinin-like derivatives. Sixteen distinct derivatives were therefore synthesized and the in vitro cytotoxic effects of each were tested with different cell lines. The in vivo anti-angiogenic properties were evaluated using a zebrafish embryo model. We herein report the identification of several novel artemisinin-like compounds that are easily synthesized, stable at room temperature, may overcome drug-resistance pathways and are more active in vitro and in vivo than the commonly used artesunate. These promising findings raise the hopes of identifying safer and more effective strategies to treat a range of infections and cancer. PMID:20629994

  8. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    PubMed Central

    Pinto, Mauricio P.; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H.; Owen, Gareth I.

    2016-01-01

    Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses. PMID:27608016

  9. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells.

    PubMed

    Pinto, Mauricio P; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H; Owen, Gareth I

    2016-09-06

    Tumor angiogenesis is widely recognized as one of the "hallmarks of cancer". Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  10. Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma.

    PubMed

    Jones, Robin L; Katz, Daniela; Loggers, Elizabeth T; Davidson, Darin; Rodler, Eve T; Pollack, Seth M

    2017-08-29

    Chondrosarcoma is the most common bone sarcoma in adults. Conventional chondrosarcoma, the commonest histological subtype, is largely resistant to anthracycline-based chemotherapy. There have been anecdotal reports of durable clinical benefit with antiangiogenic agents in this disease. A retrospective search of patients treated at three sarcoma referral centers was performed to identify patients with advanced chondrosarcoma treated with antiangiogenic agents. The aim of this study was to evaluate the efficacy and safety of antiangiogenic agents in advanced chondrosarcoma. Ten patients were identified; seven with conventional, one each with clear cell, extraskeletal mesenchymal chondrosarcoma and extraskeletal myxoid chondrosarcoma. The median progression-free survival for patients with conventional and clear cell sarcoma was 22.6 months. Median overall survival has not been met. Antiangiogenic therapy was well tolerated in this series of patients. Our retrospective data suggest that antiangiogenic therapy can provide prolonged clinical benefit in advanced chondrosarcoma patients. Further prospective trials are required to precisely define the role of this class of agent in advanced chondrosarcoma.

  11. Breast cancer: the role of angiogenesis and antiangiogenic therapy.

    PubMed

    Miller, Kathy D; Dul, Carrie L

    2004-10-01

    Angiogenesis plays a role in breast cancer development. Preclinical and clinical evidence is reviewed. Development of targeted antiangiogenic agents provides new challenges to clinical trial design. Current antiangiogenic therapy with traditional agents and novel agents are classified and reviewed.

  12. Biomarkers of response and resistance to antiangiogenic therapy

    PubMed Central

    Jain, Rakesh K.; Duda, Dan G.; Willett, Christopher G.; Sahani, Dushyant V.; Zhu, Andrew X.; Loeffler, Jay S.; Batchelor, Tracy T.; Sorensen, A. Gregory

    2011-01-01

    No validated biological markers (or biomarkers) currently exist for appropriately selecting patients with cancer for antiangiogenic therapy. Nor are there biomarkers identifying escape pathways that should be targeted after tumors develop resistance to a given antiangiogenic agent. A number of potential systemic, circulating, tissue and imaging biomarkers have emerged from recently completed phase I–III studies. Some of these are measured at baseline (for example VEGF polymorphisms), others are measured during treatment (such as hypertension, MRI-measured Ktrans, circulating angiogenic molecules or collagen IV), and all are mechanistically based. Some of these biomarkers might be pharmacodynamic (for example, increase in circulating VEGF, placental growth factor) while others have potential for predicting clinical benefit or identifying the escape pathways (for example, stromal-cell-derived factor 1α, interleukin-6). Most biomarkers are disease and/or agent specific and all of them need to be validated prospectively. We discuss the current challenges in establishing biomarkers of antiangiogenic therapy, define systemic, circulating, tissue and imaging biomarkers and their advantages and disadvantages, and comment on the future opportunities for validating biomarkers of antiangiogenic therapy. PMID:19483739

  13. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM)

    PubMed Central

    Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L.; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio

    2016-01-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment. PMID:27706074

  14. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal.

    PubMed

    Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L; Choi, Hyun-Jin; Hansen, Jean M; Dalton, Heather J; Stone, Rebecca L; Cho, Min Soon; Nick, Alpa M; Nagaraja, Archana S; Gutschner, Tony; Gharpure, Kshipra M; Mangala, Lingegowda S; Rupaimoole, Rajesha; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N; Wu, Sherry Y; Pecot, Chad V; Burns, Alan R; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K

    2016-05-02

    Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management.

  15. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal

    PubMed Central

    Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L.; Hansen, Jean M.; Dalton, Heather J.; Stone, Rebecca L.; Cho, Min Soon; Nick, Alpa M.; Nagaraja, Archana S.; Gutschner, Tony; Gharpure, Kshipra M.; Mangala, Lingegowda S.; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N.; Wu, Sherry Y.; Pecot, Chad V.; Burns, Alan R.; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K.

    2016-01-01

    Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management. PMID:27064283

  16. Novel prodrugs of tegafur that display improved anticancer activity and antiangiogenic properties.

    PubMed

    Engel, Dikla; Nudelman, Abraham; Tarasenko, Nataly; Levovich, Inesa; Makarovsky, Igor; Sochotnikov, Segev; Tarasenko, Igor; Rephaeli, Ada

    2008-01-24

    New and more potent prodrugs of the 5-fluorouracyl family derived by hydroxymethylation or acyloxymethylation of 5-fluoro-1-(tetrahydro-2-furanyl)-2,4(1H,3H)-pyrimidinedione (tegafur, 1) are described. The anticancer activity of the butyroyloxymethyl-tegafur derivative 3 and not that of tegafur was attenuated by the antioxidant N-acetylcysteine, suggesting that the increased activity of the prodrug is in part mediated by an increase of reactive oxygen species. Compound 3 in an in vitro matrigel assay was found to be a more potent antiangiogenic agent than tegafur. In vivo 3 was significantly more potent than tegafur in inhibiting 4T1 breast carcinoma lung metastases and growth of HT-29 human colon carcinoma tumors in a mouse xenograft. In summary, the multifunctional prodrugs of tegafur display selectivity toward cancer cells, antiangiogenic activity, and anticancer activities in vitro and in vivo, superior to those of tegafur. 5-fluoro-1-(tetrahydro-2-furanyl)-2,4(1 H,3 H)-pyrimidinedione (tegafur, 1), the oral prodrug of 5-FU, has been widely used for treatment of gastrointestinal malignancies with modest efficacy. The aim of this study was to develop and characterize new and more potent prodrugs of the 5-FU family derived by hydroxymethylation or acyloxymethylation of tegafur. Comparison between the effect of tegafur and the new prodrugs on the viability of a variety of cancer cell lines showed that the IC50 and IC90 values of the novel prodrugs were 5-10-fold lower than those of tegafur. While significant differences between the IC50 values of tegafur were observed between the sensitive HT-29 and the resistant LS-1034 colon cancer cell lines, the prodrugs affected them to a similar degree, suggesting that they overcame drug resistance. The increased potency of the prodrugs could be attributed to the antiproliferative contribution imparted by formaldehyde and butyric acid, released upon metabolic degradation. The anticancer activity of the butyroyloxymethyl

  17. Assessment of the risk of antiangiogenic agents before and after surgery.

    PubMed

    Bailey, Christina E; Parikh, Alexander A

    2018-05-08

    Angiogenesis plays a critical role in the growth, progression, and metastasis of numerous solid tumor types, and thus, antiangiogenic agents have been studied for many years as potential therapeutic agents. Many different antiangiogenic agents, including monoclonal antibodies and multi-targeted tyrosine kinase inhibitors (TKIs), have been approved for various oncology indications, and promising clinical activity has been demonstrated. However, some of these agents have also been associated with serious safety concerns. Because angiogenesis is an important step in the wound healing process, agents targeting the angiogenesis pathway may interfere with wound healing, thus increasing the risk of surgical wound complications, such as dehiscence, surgical site bleeding, and wound infection. Nevertheless, antiangiogenic agents can be safely used in the perioperative setting if oncologists and surgeons are educated on the biology and pharmacokinetics of these agents. This review discusses the available published literature regarding surgical complications associated with the use of antiangiogenic agents and provides updated clinical recommendations on the optimal timing between surgery and antiangiogenic therapy. Due to the paucity of data surrounding this topic, current and future clinical trials need to evaluate prospectively the potential risks for surgical complications associated with antiangiogenic therapies to establish specific guidelines for their safe and effective use within the surgical oncology community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities.

    PubMed

    Dao, Pascal; Jarray, Rafika; Smith, Nikaia; Lepelletier, Yves; Le Coq, Johanne; Lietha, Daniel; Hadj-Slimane, Réda; Herbeuval, Jean-Philippe; Garbay, Christiane; Raynaud, Françoise; Chen, Huixiong

    2014-06-28

    FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity.

    PubMed

    Dao, Pascal; Jarray, Rafika; Le Coq, Johanne; Lietha, Daniel; Loukaci, Ali; Lepelletier, Yves; Hadj-Slimane, Réda; Garbay, Christiane; Raynaud, Françoise; Chen, Huixiong

    2013-08-15

    We report herein the synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK (focal adhesion kinase) inhibitors and the evaluation of their anti-angiogenic activity on HUVEC cells. Generally, the effects of these compounds on endothelial cells could be correlated with their kinase inhibitory activity. The most efficient compounds displayed inhibition of viability against HUVEC cells in the micromolar range, as observed with TAE-226, which was designed by Novartis Pharma AG. X-ray crystallographic analysis of the co-crystal structure for compound 34 revealed that the mode of interaction with the FAK kinase domain is highly similar to that observed in the complex of TAE-226. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells

    PubMed Central

    Norton, Kerri-Ann; Han, Zheyi; Popel, Aleksander S; Pandey, Niranjan B

    2014-01-01

    Angiogenesis, the formation of new blood vessels, is an essential step for cancer progression, but antiangiogenic therapies have shown limited success. Therefore, a better understanding of the effects of antiangiogenic treatments on endothelial cells is necessary. In this study, we evaluate the changes in cell surface vascular endothelial growth factor receptor (VEGFR) expression on endothelial cells in culture treated with the antiangiogenic tyrosine kinase inhibitor drug sunitinib, using quantitative flow cytometry. We find that proangiogenic VEGFR2 cell surface receptor numbers are increased with sunitinib treatment. This proangiogenic effect might account for the limited effects of sunitinib as a cancer therapy. We also find that this increase is inhibited by brefeldin A, an inhibitor of protein transport from the endoplasmic reticulum to the Golgi apparatus. The complex dynamics of cell surface VEGFRs may be important for successful treatment of cancer with antiangiogenic therapeutics. PMID:25228815

  1. Anti-angiogenic activity of Morinda citrifolia extracts and its chemical constituents.

    PubMed

    Beh, Hooi-Kheng; Seow, Lay-Jing; Asmawi, Mohd Zaini; Abdul Majid, Amin Malik Shah; Murugaiyah, Vikneswaran; Ismail, Norhayati; Ismail, Zhari

    2012-01-01

    Morinda citrifolia L. has been used for the treatment of a wide variety of diseases, including cancer. This study was undertaken to evaluate the anti-angiogenic effect of M. citrifolia fruits and leaves. Anti-angiogenic activity was evaluated in vivo using the chick chorioallantoic membrane assay. Bioactivity-guided fractionation and isolation were performed to identify the active constituent, and high-performance liquid chromatography analysis was then used to quantify the amount of this active constituent in the active extracts and fraction. The methanol extracts of fruits and leaves of M. citrifolia and the subsequent chloroform fraction of the fruit methanolic extract were found to have potential anti-angiogenic activity and were more potent compared to suramin. Scopoletin was identified as one of the chemical constituents that may be partly responsible for the anti-angiogenic activity of M. citrifolia fruits. The present findings further support the use of M. citrifolia in cancer or other pathological conditions related to angiogenesis.

  2. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment.

    PubMed

    Kinose, Yasuto; Sawada, Kenjiro; Makino, Hiroshi; Ogura, Tomonori; Mizuno, Tomoko; Suzuki, Noriko; Fujikawa, Tomoyuki; Morii, Eiichi; Nakamura, Koji; Sawada, Ikuko; Toda, Aska; Hashimoto, Kae; Isobe, Aki; Mabuchi, Seiji; Ohta, Tsuyoshi; Itai, Akiko; Morishige, Ken-ichirou; Kurachi, Hirohisa; Kimura, Tadashi

    2015-04-01

    The prolongation of progression-free survival (PFS) in patients with advanced ovarian cancer by antiangiogenic therapy has been shown in several clinical trials. However, although an anti-VEGF antibody (bevacizumab) is the only option currently available, its efficacy is limited and it is not cost effective for use in all patients. Therefore, the development of a novel antiangiogenic drug, especially composed of small-molecule compounds, could be a powerful armament for ovarian cancer treatment. As NF-κB signaling has the potential to regulate VEGF expression, we determined to identify whether VEGF expression is associated with NF-κB activation and to investigate the possibility of a novel IKKβ inhibitor, IMD-0354 (IMMD Inc.), as an antiangiogenic drug. Tissue microarrays from 94 ovarian cancer tissues were constructed and immunohistochemical analyses performed. We revealed that IKK phosphorylation is an independent prognostic factor (PFS: 26.1 vs. 49.8 months, P = 0.011), and is positively correlated with high VEGF expression. In in vitro analyses, IMD-0354 robustly inhibited adhesive and invasive activities of ovarian cancer cells without impairing cell viabilities. IMD-0354 significantly suppressed VEGF production from cancer cells, which led to the inhibition of angiogenesis. In a xenograft model, the treatment of IMD-0354 significantly inhibited peritoneal dissemination with a marked reduction of intratumoral blood vessel formation followed by the inhibition of VEGF expression from cancer cells. IMD-0354 is a stable small-molecule drug and has already been administered safely to humans in other trials. Antiangiogenic therapy targeting IKKβ is a potential future option to treat ovarian cancer. ©2015 American Association for Cancer Research.

  3. Anticancer effects of garlic and garlic-derived compounds for breast cancer control.

    PubMed

    Tsubura, Airo; Lai, Yen-Chang; Kuwata, Maki; Uehara, Norihisa; Yoshizawa, Katsuhiko

    2011-03-01

    Garlic and garlic-derived compounds reduce the development of mammary cancer in animals and suppress the growth of human breast cancer cells in culture. Oil-soluble compounds derived from garlic, such as diallyl disulfide (DADS), are more effective than water-soluble compounds in suppressing breast cancer. Mechanisms of action include the activation of metabolizing enzymes that detoxify carcinogens, the suppression of DNA adduct formation, the inhibition of the production of reactive oxygen species, the regulation of cell-cycle arrest and the induction of apoptosis. Selenium-enriched garlic or organoselenium compounds provide more potent protection against mammary carcinogenesis in rats and greater inhibition of breast cancer cells in culture than natural garlic or the respective organosulfur analogues. DADS synergizes the effect of eicosapentaenoic acid, a breast cancer suppressor, and antagonizes the effect of linoleic acid, a breast cancer enhancer. Moreover, garlic extract reduces the side effects caused by anti-cancer agents. Thus, garlic and garlic-derived compounds are promising candidates for breast cancer control.

  4. AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides.

    PubMed

    Ettayapuram Ramaprasad, Azhagiya Singam; Singh, Sandeep; Gajendra P S, Raghava; Venkatesan, Subramanian

    2015-01-01

    The process of angiogenesis is a vital step towards the formation of malignant tumors. Anti-angiogenic peptides are therefore promising candidates in the treatment of cancer. In this study, we have collected anti-angiogenic peptides from the literature and analyzed the residue preference in these peptides. Residues like Cys, Pro, Ser, Arg, Trp, Thr and Gly are preferred while Ala, Asp, Ile, Leu, Val and Phe are not preferred in these peptides. There is a positional preference of Ser, Pro, Trp and Cys in the N terminal region and Cys, Gly and Arg in the C terminal region of anti-angiogenic peptides. Motif analysis suggests the motifs "CG-G", "TC", "SC", "SP-S", etc., which are highly prominent in anti-angiogenic peptides. Based on the primary analysis, we developed prediction models using different machine learning based methods. The maximum accuracy and MCC for amino acid composition based model is 80.9% and 0.62 respectively. The performance of the models on independent dataset is also reasonable. Based on the above study, we have developed a user-friendly web server named "AntiAngioPred" for the prediction of anti-angiogenic peptides. AntiAngioPred web server is freely accessible at http://clri.res.in/subramanian/tools/antiangiopred/index.html (mirror site: http://crdd.osdd.net/raghava/antiangiopred/).

  5. Periostin: a putative mediator involved in tumour resistance to anti-angiogenic therapy?

    PubMed

    Wang, Wei; Ma, Jin-Liang; Jia, Wei-Dong; Xu, Ge-Liang

    2011-11-01

    Despite advances in the development of anti-angiogenic agents for cancer treatment, the increase in the survival duration of cancer patients is still rather modest. One major obstacle in anti-angiogenic therapy is the emergence of drug resistance. Understanding the molecular mechanisms that enable a tumour to evade anti-angiogenic treatment is valuable to improve therapeutic efficacy. Targeting blood supply usually causes hypoxic responses of tumours that trigger a series of adaptive changes leading to a resistant phenotype. Periostin, a secreted ECM (extracellular matrix) protein, is mainly produced by CAFs (cancer-associated fibroblasts) on hypoxic stress. As CAFs have been casually linked to tumour resistance to angiogenesis blockade and periostin can influence many aspects of tumour biology, we hypothesized that periostin might be a crucial mediator involved anti-angiogenic resistance in cancer treatment. This hypothesis is indirectly supported by the following facts: (a) high levels of periostin promote tumour angiogenesis; (b) periostin improves cancer cell survival under hypoxic conditions; and (c) genetic modulation of periostin induces EMT (epithelial-mesenchymal transition) and enhances cancer cell invasion and metastasis, which represents an escape mechanism from anticancer treatment. Testing and confirmation of this hypothesis will give more insight into the resistance mechanisms and provide the rationale for improvement of therapeutic outcome of anti-angiogenic therapy.

  6. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity

    PubMed Central

    Lu, Xi; Mestres, Gemma; Singh, Vijay Pal; Effati, Pedram; Poon, Jia-Fei; Engman, Lars; Karlsson Ott, Marjam

    2017-01-01

    Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress. PMID:28216602

  7. Beyond Bevacizumab: An Outlook to New Anti-Angiogenics for the Treatment of Ovarian Cancer.

    PubMed

    Mahner, Sven; Woelber, Linn; Mueller, Volkmar; Witzel, Isabell; Prieske, Katharina; Grimm, Donata; Keller-V Amsberg, Gunhild; Trillsch, Fabian

    2015-01-01

    In addition to the monoclonal vascular endothelial growth factor (VEGF) antibody bevacizumab, several alternative anti-angiogenic treatment strategies for ovarian cancer patients have been evaluated in clinical trials. Apart from targeting extracellular receptors by the antibody aflibercept or the peptibody trebananib, the multikinase inhibitors pazopanib, nintedanib, cediranib, sunitinib, and sorafenib were developed to interfere with VEGF receptors and multiple additional intracellular pathways. Nintedanib and pazopanib significantly improved progression-free survival in two positive phase III trials for first-line therapy. A reliable effect on overall survival could, however, not be observed for any anti-angiogenic first-line therapies so far. In terms of recurrent disease, two positive phase III trials revealed that trebananib and cediranib are effective anti-angiogenic agents for this indication. Patient selection and biomarker guided prediction of response seems to be a central aspect for future studies. Combining anti-angiogenics with other targeted therapies to possibly spare chemotherapy in certain constellations represents another very interesting future perspective for clinical trials. This short review gives an overview of current clinical trials for anti-angiogenic treatment strategies beyond bevacizumab. In this context, possible future perspectives combining anti-angiogenics with other targeted therapies and the need for specific biomarkers predicting response are elucidated.

  8. Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression.

    PubMed

    Tanabe, Katsuyuki; Sato, Yasufumi; Wada, Jun

    2018-06-24

    Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A 165 b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.

  9. Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing

    PubMed Central

    Kluckova, Katarina; Zobalova, Renata; Goodwin, Jacob; Tilly, David; Stursa, Jan; Pecinova, Alena; Philimonenko, Anatoly; Hozak, Pavel; Banerjee, Jaideep; Ledvina, Miroslav; Sen, Chandan K.; Houstek, Josef; Coster, Mark J.

    2011-01-01

    Abstract Aims A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. Results MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. Innovation and Conclusion We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing. Antioxid. Redox Signal. 15, 2923–2935. PMID:21902599

  10. Antiangiogenic Therapy for Ischemic Retinopathies

    PubMed Central

    Al-Latayfeh, Motasem; Silva, Paolo S.; Sun, Jennifer K.; Aiello, Lloyd Paul

    2012-01-01

    Neovascularization is a common pathological process in various retinal vascular disorders including diabetic retinopathy (DR), age-related macular degeneration (AMD) and retinal vein occlusion (RVO). The development of neovascular vessels may lead to complications such as vitreous hemorrhage, fibrovascular tissue formation, and traction retinal detachments. Ultimately, irreversible vision loss may result. Various proangiogenic factors are involved in these complex processes. Different antiangiogenic drugs have been formulated in an attempt treat these vascular disorders. One factor that plays a major role in the development of retinal neovascularization is vascular endothelial growth factor (VEGF). Anti-VEGF agents are currently FDA approved for the treatment of AMD and RVO. They are also extensively used as an off-label treatment for diabetic macular edema (DME), proliferative DR, and neovascular glaucoma. However, at this time, the long-term safety of chronic VEGF inhibition has not been extensively evaluated. A large and rapidly expanding body of research on angiogenesis is being conducted at multiple centers across the globe to determine the exact contributions and interactions among a variety of angiogenic factors in an effort to determine the therapeutic potential of antiangiogenic agent in the treatment of a variety of retinal diseases. PMID:22675660

  11. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges

    PubMed Central

    Fukumura, Dai; Kloepper, Jonas; Amoozgar, Zohreh; Duda, Dan G.; Jain, Rakesh K.

    2018-01-01

    Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research. PMID:29508855

  12. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  13. New organoselenium compounds with intramolecular Se⋯O/ Se⋯H interactions: NMR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Fragoso, Erick; Azpiroz, Ramón; Sharma, Pankaj; Espinosa-Pérez, Georgina; Lara-Ochoa, Francisco; Toscano, Alfredo; Gutierrez, Rene; Portillo, Oscar

    2018-03-01

    New 1,3-bis(phenylselanylmethyl)benzene (1, 2 and 4) and butyl phenylselane derivatives (3 and 5) are synthesized and full heteronuclear NMR characterization of these compounds are reported. Interestingly, NMR spectrum of compounds 2-5 show coupling of 1H and 13C signals of groups involved in intramolecular nonbonding interactions with 77Se. The coupling constants JH-Se and JC-Se are in the range 13.6-21.6 Hz and 28-49 Hz, respectively. For compounds 4 and 5, JH-Se coupling constants of formyl proton are smaller than their respective acetal sbnd CH protons for compounds 2 and 3. However, this trend is opposite for JC-Se coupling constants, indicating that in formyl group containing compounds 4 and 5, Se⋯O interactions are present while in compounds 2 and 3 with acetal fragments, Se⋯H interactions also could be present because of steric constraints. To confirm these interactions, quantum chemical analyses were performed for 2, 4 and 5. The minimal energy conformation for these compounds present Se⋯O/Se⋯H interactions and are at lower energy in comparison to different conformers which do not show any interaction. For compounds 4 and 5, minimal energy conformation present Se⋯O interactions and for compound 2, Se⋯H is the favored conformation. These results are in accordance with the NMR data for these compounds. X-ray crystal structure of compound 1,3-bis(phenylselanylmethyl)benzene (1) was also determined during this work. In order to understand the effect of the Se⋯O/Se⋯H interactions and the position of phenylselanylmethyl groups, quantum chemical analyses were also carried out for 1,4-bis(phenylselanylmethyl)benzene derivatives (6 and 7). Interestingly, minimal energy conformers of 1,3-bis(phenylselanylmethyl)benzene derivatives 2 and 4 are more stable than their corresponding conformers of 1,4-bis-(phenylselanylmethyl)benzene derivatives 6 and 7.1,3-bis[{(2-(diethoxymethyl)phenyl)selanyl}methyl]benzene (2) with an

  14. Assessment of anti-angiogenic and anti-tumoral potentials of Origanum onites L. essential oil.

    PubMed

    Bostancıoğlu, Rakibe Beklem; Kürkçüoğlu, Mine; Başer, Kemal Hüsnü Can; Koparal, Ayşe Tansu

    2012-06-01

    Medicinal plants and culinary herbs with anti-angiogenic and little toxicity properties have gained importance. Non-toxic anti-angiogenic phytochemicals are useful in combating cancer by preventing the formation of new blood vessels to support the tumor growth. We have investigated the essential oil of Origanum onites L. (OOEO), for a possible anti-angiogenic activity. OOEO was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The anti-proliferative activities (by MTT assay, 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide), anti-angiogenic activities (by tube formation assay), cell migration inhibiting capability (migration assay) and apoptotic potential (DAPI staining) of OOEO were evaluated on rat adipose tissue endothelial cells (RATECs) and 5RP7 (c-H-ras transformed rat embryonic fibroblasts) cells. Our results revealed that OOEO could markedly inhibit cell viability and induced apoptosis of 5RP7 cells and also could block in vitro tube formation and migration of RATEC. These results imply that OOEO having anti-angiogenic activity might be useful in preventing angiogenesis-related diseases and in combating cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Mechanism of action of rapalogues: the antiangiogenic hypothesis.

    PubMed

    Faivre, Sandrine; Raymond, Eric

    2008-11-01

    mTOR interacts with multiple proteins involved in major signal transduction pathways controlling cell growth, proliferation, and apoptosis. mTOR is acknowledged to play major roles in cellular interplays between cancer and stroma cells, including endothelial cells. Rapalogues demonstrated antitumour activity in several hypervascularized tumours in clinical trials. Whether rapalogues directly affect cancer cells or other stroma cells in tumours remains poorly understood. Knowing whether rapalogues act directly against cancer cells and/or could be considered as antiangiogenic agents has major implications in terms of medical indications and may help to further improve their drug development. Herein, we hypothesize that current rapalogues demonstrating activity in hypervascularized tumours may primarily act through antiangiogenic effects in patients, a hypothesis that certainly requires further translational investigations.

  16. Antiangiogenic Effects and Therapeutic Targets of Azadirachta indica Leaf Extract in Endothelial Cells

    PubMed Central

    Mahapatra, Saswati; Young, Charles Y. F.; Kohli, Manish; Karnes, R. Jeffrey; Klee, Eric W.; Holmes, Michael W.; Tindall, Donald J.; Donkena, Krishna Vanaja

    2012-01-01

    Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2′,3′-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2′,3′-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression. PMID:22461839

  17. Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists.

    PubMed

    Presta, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Belleri, Mirella; Tanghetti, Elena; Leali, Daria; Urbinati, Chiara; Bugatti, Antonella; Ronca, Roberto; Nicoli, Stefania; Moroni, Emanuela; Stabile, Helena; Camozzi, Maura; Hernandez, German Andrés; Mitola, Stefania; Dell'Era, Patrizia; Rusnati, Marco; Ribatti, Domenico

    2005-01-01

    Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.

  18. New insights into antimetastatic and antiangiogenic effects of cannabinoids.

    PubMed

    Ramer, Robert; Hinz, Burkhard

    2015-01-01

    Cannabinoids exert antitumorigenic effects via multiple mechanisms. Of these, antimetastatic and antiangiogenic actions have attracted considerable interest in the past years. Regarding the underlying antimetastatic mechanism, several studies revealed cannabinoids to alter the gene expression of cancer cells toward a less-aggressive phenotype and to modulate their secretomic profile. Cannabinoids likewise modulate the release of factors from tumor cells that subsequently suppress the chemoattraction of vessel cells thereby conferring antiangiogenesis. Among the diverse mediators of cannabinoids' antitumorigenic action, the tissue inhibitor of matrix metalloproteinases-1, which is released from cancer cells upon cannabinoid treatment, has been implicated as a pivotal factor conferring both anti-invasive properties of cancer cells as well as antiangiogenic capacities of endothelial cells. In addition, cannabinoids have been shown to inhibit angiogenic capacities of endothelial cells directly via suppressing their proliferation, tube formation, and migration. This chapter reviews the cell- and substance-specific antitumorigenic mechanisms of cannabinoids with particular consideration of their antimetastatic/anti-invasive and antiangiogenic actions. In addition, beneficial interactions of cannabinoids with currently used chemotherapeutics as well as the influence of cannabinoids on tumor-immune surveillance are addressed. Collectively, the currently available data suggest cannabinoids as a potential tool in modern cancer pharmacotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Probing chemical space of tick-borne encephalitis virus reproduction inhibitors with organoselenium compounds.

    PubMed

    Orlov, Alexey A; Eletskaya, Anastasia A; Frolov, Konstantin A; Golinets, Anastasia D; Palyulin, Vladimir A; Krivokolysko, Sergey G; Kozlovskaya, Liubov I; Dotsenko, Victor V; Osolodkin, Dmitry I

    2018-06-01

    Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is the leading cause of arboviral neuroinfections in Europe. Only a few classes of the nucleoside and non-nucleoside inhibitors were investigated against TBEV reproduction. Paving the way to previously unexplored areas of anti-TBEV chemical space, we assessed the inhibition of TBEV reproduction in the plaque reduction assay by various compounds derived from cyanothioacetamide and cyanoselenoacetamide. Compounds from seven classes, including 4-(alkylthio)-2-aryl-3-azaspiro[5.5]undec-4-ene-1,1,5-tricarbonitriles, 3-arylamino-2-(selenazol-2-yl)acrylonitriles, ethyl 6-(alkylseleno)-5-cyano-2-oxo-1,2-dihydropyridine-3-carboxylates, 6-(alkylseleno)-2-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles, 2-(alkylseleno)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitriles, 8-selenoxo-3,5,7,11-tetraazatricyclo[7.3.1.0 2,7 ]tridec-2-ene-1,9-dicarbonitriles, and selenolo[2,3-b]quinolines, inhibited TBEV reproduction with EC 50 values in the micromolar range while showing moderate cytotoxicity and no inhibition of enterovirus reproduction. Thus, new scaffolds with promising anti-TBEV activity were found. © 2018 Deutsche Pharmazeutische Gesellschaft.

  20. New anti-angiogenic strategies in pediatric solid malignancies: agents and biomarkers of a near future.

    PubMed

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Vassal, Gilles; Farace, Françoise

    2010-07-01

    Antiangiogenic strategies are affording considerable interest and have become a major milestone in therapeutics of various adult cancers. However, progress has been slow to expand such therapies to patients with pediatric solid malignancies. This review discusses the principal pathways for angiogenesis in pediatric solid malignancies and summarizes recent preclinical and clinical data on antiangiogenesis strategies in these tumors. The reader will gain state-of-the-art knowledge in the current advancements of antiangiogenic therapies in pediatric clinical trials in regard to supporting preclinical data, and in the status of potential biomarkers investigated for monitoring angiogenesis inhibitors. Mechanisms of resistance to antiangiogenic therapy will also be discussed. Finally, we describe our experience in the monitoring of circulating endothelial cells and progenitors and their potential role as biomarkers of metastatic disease and resistance to antiangiogenic therapies. Evaluation and development of antiangiogenesis protocols are starting and represent a crucial step in the management of pediatric solid malignancies today. Emphasis should be placed on the development of proper surrogate markers to monitor antiangiogenic activity and on the possible long-term effects of these therapies in a pediatric population.

  1. Odisolane, a Novel Oxolane Derivative, and Antiangiogenic Constituents from the Fruits of Mulberry (Morus alba L.).

    PubMed

    Lee, Seoung Rak; Park, Jun Yeon; Yu, Jae Sik; Lee, Sung Ok; Ryu, Ja-Young; Choi, Sang-Zin; Kang, Ki Sung; Yamabe, Noriko; Kim, Ki Hyun

    2016-05-18

    Mulberry, the fruit of Morus alba L., is known as an edible fruit and commonly used in Chinese medicines as a warming agent and as a sedative, tonic, laxative, odontalgic, expectorant, anthelmintic, and emetic. Systemic investigation of the chemical constituents of M. alba fruits led to the identification of a novel oxolane derivative, (R*)-2-((2S*,3R*)-tetrahydro-2-hydroxy-2-methylfuran-3-yl)propanoic acid (1), namely, odisolane, along with five known heterocyclic compounds (2-6). The structure of the new compound was elucidated on the basis of HR-MS, 1D and 2D NMR ((1)H-(1)H COSY, HSQC, HMBC, and NOESY) data analysis. Compound 1 has a novel skeleton that consists of 8 carbon units with an oxolane ring, which until now has never been identified in natural products. The isolated compounds were subjected to several activity tests to verify their biological function. Among them, compounds 1, 3, and 5 significantly inhibited cord formation in HUVECs. The action mechanism of compound 3, which had the strongest antiangiogenic activity, was mediated by decreasing VEGF, p-Akt, and p-ERK protein expression. These results suggest that compounds isolated from M. alba fruits might be beneficial in antiangiogenesis therapy for cancer treatment.

  2. Potential Proinvasive or Metastatic Effects of Preclinical Antiangiogenic Therapy Are Prevented by Concurrent Chemotherapy.

    PubMed

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S

    2015-12-15

    To resolve a controversy involving the therapeutic impact of antiangiogenic drugs and particularly antibodies targeting the VEGF pathway, namely, a body of preclinical mouse therapy studies showing such drugs can promote invasion and/or distant metastasis when used as monotherapies. In contrast, clinical studies have not shown such promalignancy effects. However, most such clinical studies have involved patients also treated with concurrent chemotherapy highlighting the possibility that chemotherapy may prevent any potential promalignancy effect caused by an antiangiogenic drug treatment. The impact of antiangiogenic therapy using DC101, an antibody targeting mouse VEGFR-2 with or without concurrent chemotherapy was assessed in multiple human breast cancer xenograft models, where impact on orthotopic primary tumors was evaluated. Metastasis was also assessed during adjuvant and neoadjuvant plus adjuvant therapy, after surgical resection of primary tumors, with the same combination therapies. Antiangiogenic therapy, while blunting tumor volume growth, was found to increase local invasion in multiple primary tumor models, including a patient-derived xenograft, but this effect was blocked by concurrent chemotherapy. Similarly, the combination of paclitaxel with DC101 caused a marked reduction of micro- or macrometastatic disease in contrast to DC101 monotherapy, which was associated with small increases in metastatic disease. Conventional wisdom is that targeted biologic antiangiogenic agents such as bevacizumab when used with chemotherapy increase the efficacy of the chemotherapy treatment. Our results suggest the reverse may be true as well-chemotherapy may improve the impact of antiangiogenic drug treatment and, as a result, overall efficacy. Clin Cancer Res; 21(24); 5488-98. ©2015 AACR. ©2015 American Association for Cancer Research.

  3. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia.

    PubMed

    Seki, Hiroyuki

    2014-10-01

    The "two-stage disorder" theory that is assumed for the etiology of preeclampsia hypothesizes that antiangiogenic and angiogenic factors and/or placental debris play an important role in this disorder. The physiological actions of placental debris occur via the balance between antiangiogenic and angiogenic factors. Accordingly, this balance between antiangiogenic and angiogenic factors should be investigated to elucidate the various pathological features of preeclampsia. Their accurate evaluation is needed to investigate not only antiangiogenic factors (such as sFlt-1 and sEng) and angiogenic factors (such as vascular endothelial growth factor, placental growth factor and transforming growth factor-β) but also the expression level of their receptors such as Flt-1 and Eng. However, it is ethically and technically difficult to investigate the above-mentioned factors at antepartum in human patients. The examination of the ratios of sFlt-1/vascular endothelial growth factor receptor ligands and sEng/transforming vascular endothelial growth factor-β and the use of experimental animal models may help in elucidating various unresolved issues in preeclampsia. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Anti-Angiogenics: Current Situation and Future Perspectives.

    PubMed

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  5. Head space solid phase microextraction based on nano-structured lead dioxide: application to the speciation of volatile organoselenium in environmental and biological samples.

    PubMed

    Ghasemi, Ensieh; Farahani, Hadi

    2012-10-05

    A novel and efficient speciation method based on the nano-structured lead dioxide as stationary phase of head space solid phase microextraction combined with gas chromatography mass spectrometry (GC-MS) was developed for the determination of volatile organoselenium compounds (dimethylselenide (DMSe) and dimethyldiselenide (DMDSe)) in different biological and environmental samples. PbO(2) particles with a diameter in the range of 50-70 nm have been grown on platinum wire via elechtrochemical deposition. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were condition of coating preparation, desorption time, stirring rate, desorption temperature, ionic strength, time and temperature of extraction. A Plackett-Burman design was performed for screening in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by a Box-Behnken design (BBD) and the response surface equations were derived. The detection limit and relative standard deviation (RSD) (n=5, c=50 μgL(-1)) for DMSe were 16 ngL(-1) and 4.3%, respectively. They were also obtained for DMDSe as 11ngL(-1) and 4.6%, respectively. The developed technique was found to be applicable to spiked environmental and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil.

    PubMed

    Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J

    2017-06-01

    Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.

  7. Circulating Carbonic Anhydrase IX and Antiangiogenic Therapy in Breast Cancer

    PubMed Central

    Brown-Glaberman, Ursa; Marron, Marilyn; Chalasani, Pavani; Livingston, Robert; Iannone, Maria; Specht, Jennifer; Stopeck, Alison T.

    2016-01-01

    Introduction. Carbonic anhydrase IX (CAIX) is a hypoxia regulated metalloenzyme integral to maintaining cellular pH. Increased CAIX expression is associated with poor prognosis in breast cancer. To explore CAIX as a biomarker for breast cancer therapies, we measured plasma CAIX levels in healthy control subjects and in breast cancer patients. Methods. In control subjects we evaluated plasma CAIX stability via commercially available ELISA. We then similarly quantified plasma CAIX levels in (1) locally advanced breast cancer (LABC) patients treated with neoadjuvant paclitaxel + sunitinib (T + S) followed by doxorubicin and cyclophosphamide (AC); (2) metastatic breast cancer (MBC) patients treated with systemic chemotherapy. Results. Plasma CAIX levels were stable at room temperature for at least 48 hours in control subjects. Mean baseline plasma CAIX levels were lower in controls compared to patients with LABC or MBC. In LABC, CAIX levels rose significantly in response to administration of antiangiogenic therapy (T + S) (p = 0.02) but not AC (p = 0.37). In patients with MBC treated without an antiangiogenic agent CAIX levels did not change with therapy. Conclusions. Our results suggest that CAIX may be an easily obtained, stable measure of tumor associated hypoxia as well as a useful pharmacodynamic biomarker for antiangiogenic therapy. PMID:26941473

  8. [Antiangiogenic agents in ARMD treatment].

    PubMed

    Coroi, Mihaela-Cristiana; Demea, Sorina; Todor, Meda; Apopei, Emmanuela

    2012-01-01

    The aim of antiangiogenic agents in the treatment of age related senile macular degeneration is to destroy coroidian neoformation vessels by minimally affecting the central vision. We present a case of important central vision recovery after 3 intravitreal injections of Avastin. The therapeutic decision and patient monitoring have been made using imaging studies, such as OCT and AFG. A modern therapeutic approach of neovascular forms of age related macular degeneration, backed up by AFG and OCT is a modern treatment method of this disabling illness which brings patients optimal functional and structural improvement.

  9. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    PubMed

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. Copyright © 2014. Published by Elsevier B.V.

  10. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid.

    PubMed

    Domhan, Sophie; Muschal, Stefan; Schwager, Christian; Morath, Christian; Wirkner, Ute; Ansorge, Wilhelm; Maercker, Christian; Zeier, Martin; Huber, Peter E; Abdollahi, Amir

    2008-06-01

    The relative risk for the development of malignancies following solid organ transplantation seems to be decreased in patients treated with the immunosuppressive agent mycophenolic acid (MPA). However, the molecular mechanisms of the antineoplastic effects of MPA are not completely understood. Here, we report that human endothelial cells and fibroblasts are highly sensitive to MPA treatment. We found that U87 glioblastoma cells were resistant to MPA treatment in vitro. However, U87 tumor growth was markedly inhibited in vivo in BALB/c nude mice, suggesting that MPA exerted its antitumor effects via modulation of the tumor microenvironment. Accordingly, microvascular density and pericyte coverage were markedly reduced in MPA-treated tumors in vivo. Using functional in vitro assays, we showed that MPA potently inhibited endothelial cell and fibroblast proliferation, invasion/migration, and endothelial cell tube formation. To identify the genetic participants governing the antiangiogenic and antifibrotic effects of MPA, we performed genome-wide transcriptional analysis in U87, endothelial and fibroblast cells at 6 and 12 h after MPA treatment. Network analysis revealed a critical role for MYC signaling in endothelial cells treated with MPA. Moreover, we found that the antiangiogenic effects of MPA were organized by coordinated communications between MYC and NDRG1, YYI, HIF1A, HDAC2, CDC2, GSK3B, and PRKACB signaling. The regulation of these "hub nodes" was confirmed by real-time quantitative reverse transcription-PCR and protein analysis. The critical involvement of MYC in the antiangiogenic signaling of MPA was further shown by gene knockdown experiments. Together, these data provide a molecular basis for the antiangiogenic and antifibrotic effects of MPA, which warrants further clinical investigations.

  11. Insights from diversified anti-angiogenic models: Role of β-interferon inducer DEAE-Dextran.

    PubMed

    Bakrania, Anita K; Variya, Bhavesh C; Patel, Snehal S

    2018-04-17

    Angiogenesis, the physiological process involving growth of new blood vessels from preexisting vessels, is essential for organ growth and repair. However, the imbalance in angiogenesis contributes to copious pathologies including cancer. Preceding the development of anti-angiogenic or proangiogenic agents, its evaluation is equally imperative; hence, precise and adequate models required. Valid mammalian models are expensive, time-consuming and not easy to set up, instigating legal and ethical aspects making it necessary to establish models with satisfactory activity and limited drawbacks. We investigated the activity of DEAE-Dextran on diversified models viz. in vitro cell migration assay, ex vivo aortic ring assay, in vitro chick yolk sac membrane assay and in vivo matrigel plug xenograft model corroborating its anti-angiogenic potential and establishing the best means of evaluation. Assorted models were reproducible and correlative to one another. DEAE-Dextran exhibited excellent anti-angiogenic effect in cell migration assay over a duration of 24 h compared to the vehicle control fibroblast cell line and aortic ring possessed an alleviated rate of sprouting when treated with DEAE-Dextran with contrast to vehicle control aorta. Similarly, decreased vascular density was observed in DEAE-Dextran treated chick embryos implicating potency of the β-interferon inducer. Augmenting to these results, the matrigel plugs also mitigated vascular net as well as reduced levels of angiogenic marker CD31. Substantially, DEAE-Dextran leads to anti-tumor activity through anti-angiogenic action and a combination of in vitro and in vivo model is vital for the judgement of anti-angiogenic potential since an in vitro model exempts mammalian-culture considerations. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases.

    PubMed

    Frentzas, Sophia; Simoneau, Eve; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Nathan, Mark; Wotherspoon, Andrew; Gao, Zu-Hua; Shi, Yu; Van den Eynden, Gert; Daley, Frances; Peckitt, Clare; Tan, Xianming; Salman, Ayat; Lazaris, Anthoula; Gazinska, Patrycja; Berg, Tracy J; Eltahir, Zak; Ritsma, Laila; Van Rheenen, Jacco; Khashper, Alla; Brown, Gina; Nystrom, Hanna; Sund, Malin; Van Laere, Steven; Loyer, Evelyne; Dirix, Luc; Cunningham, David; Metrakos, Peter; Reynolds, Andrew R

    2016-11-01

    The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy.

  13. Antiangiogenic effects and mechanisms of trans-ethyl p-methoxycinnamate from Kaempferia galanga L.

    PubMed

    He, Zhi-Heng; Yue, Grace Gar-Lee; Lau, Clara Bik-San; Ge, Wei; But, Paul Pui-Hay

    2012-11-14

    Kaempferia galanga L. (Zingiberaceae) is an aromatic herb and a popular spice used as a condiment in Asian cuisine. The ethanol extract of the dried plant and its successive four subfractions were investigated on zebrafish model by quantitative endogenous alkaline phosphatase assay. Both n-hexane and ethyl acetate fractions had antiangiogenic activity, and two major active components (trans-ethyl p-methoxycinnamate and kaempferol) showed potent antiangiogenic effects on wild-type zebrafish. Because of its much stronger effect and no antiangiogenic activity reported, trans-ethyl p-methoxycinnamate was further investigated for its action mechanism. It dose dependently inhibited vessel formation on both wild- and Tg(fli1a:EGFP)y1-type zebrafish embryos. The semiquantitative reverse transcription polymerase chain reaction assay suggested that trans-ethyl p-methoxycinnamate affects multiple molecular targets related to angiogenesis. In vitro, it specifically inhibited the migration and tube formation of human umbilical vein endothelial cells. In vivo, it could block bFGF-induced vessel formation on Matrigel plug assay.

  14. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    PubMed

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer.

    PubMed

    Nitzsche, B; Gloesenkamp, C; Schrader, M; Hoffmann, B; Zengerling, F; Balabanov, S; Honecker, F; Höpfner, M

    2012-11-20

    Resistance to cisplatin-based chemotherapy is associated with poor prognosis in testicular germ cell cancer, emphasising the need for new therapeutic approaches. In this respect, the therapeutic concept of anti-angiogenesis is of particular interest. In a previous study, we presented two novel anti-angiogenic compounds, HP-2 and HP-14, blocking the tyrosine kinase activity of angiogenic growth factor receptors, such as vascular endothelial growth factor receptor-2 (VEGFR-2), and related signalling pathways in testicular cancer. In this study, we investigated the efficacy of these new compounds in platinum-resistant testicular germ cell tumours (TGCTs), in vitro and in vivo. Drug-induced changes in cell proliferation of the cisplatin-sensitive TGCT cell line 2102EP and its cisplatin-resistant counterpart 2102EP-R, both expressing the VEGFR-2, were evaluated by crystal violet staining. Both compounds inhibited the growth of cisplatin-resistant TGCT cells in a dose-dependent manner. In combination experiments with cisplatin, HP-14 revealed additive growth-inhibitory effects in TGCT cells, irrespective of the level of cisplatin resistance. Anti-angiogenic effects of HP compounds were confirmed by tube formation assays with freshly isolated human umbilical vein endothelial cells. Using TGCT cells inoculated onto the chorioallantoic membrane of fertilised chicken eggs (chicken chorioallantoic membrane assay), the anti-angiogenic and anti-proliferative potency of the novel compounds was also demonstrated in vivo. Gene expression profiling revealed changes in the expression pattern of genes related to DNA damage detection and repair, as well as in chaperone function after treatment with both cisplatin and HP-14, alone or in combination. This suggests that HP-14 can revert the lost effectiveness of cisplatin in the resistant cells by altering the expression of critical genes. The novel compound HP-14 effectively inhibits the growth of cisplatin-resistant TGCT cells and

  16. Challenges in the current antiangiogenic treatment paradigm for patients with non-small cell lung cancer.

    PubMed

    Wozniak, Antoinette

    2012-05-01

    Patients with non-small cell lung cancer (NSCLC) often present with advanced disease and cure rates are dismal with currently available treatment. Novel therapies including small molecule tyrosine kinase inhibitors and monoclonal antibodies are being developed to target angiogenesis, an essential step in tumorigenesis and metastasis. The only antiangiogenic agent currently approved for treatment of NSCLC is bevacizumab, although numerous other antiangiogenic inhibitors (e.g., sorafenib, sunitinib, cediranib, motesanib, BIBF 1120) are in clinical trials. Individualized treatment algorithms may improve patient outcomes and new evidence suggests that biomarkers may guide treatment decisions. We present an overview of the molecular pathways involved in angiogenesis, discuss clinical trials of bevacizumab and developmental antiangiogenic agents, and address the challenges of developing individualized treatment paradigms for NSCLC, particularly the use of biomarkers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.).

    PubMed

    Taleb, Hajer; Maddocks, Sarah E; Morris, R Keith; Kanekanian, Ara D

    2016-12-24

    Date fruit, Phoenix dactylifera L. has traditionally been used as a medicine in many cultures for the treatment of a range of ailments such as stomach and intestinal disorders, fever, oedema, bronchitis and wound healing. The present review aims to summarise the traditional use and application of P. dactylifera date fruit in different ethnomedical systems, additionally the botany and phytochemistry are identified. Critical evaluation of in vitro and in vitro studies examining date fruit in relation to anti-inflammatory, anti-angiogenic and antimicrobial activities are outlined. The ethnomedical use of P. dactylifera in the treatment of inflammatory disease has been previously identified and reported. Furthermore, date fruit and date fruit co-products such as date syrup are rich sources of polyphenols, anthocyanins, sterols and carotenoids. In vitro studies have demonstrated that date fruit exhibits antibacterial, anti-inflammatory and anti-angiogenic activity. The recent interest in the identification of the numerous health benefits of dates using in vitro and in vivo studies have confirmed that date fruit and date syrup have beneficial health effects that can be attributed to the presence of natural bioactive compounds. Date fruit and date syrup have therapeutic properties, which have the potential to be beneficial to health. However, more investigations are needed to quantify and validate these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Excretion of anti-angiogenic proteins in patients with chronic allograft dysfunction.

    PubMed

    Moskowitz-Kassai, Eliza; Mackelaite, Lina; Chen, Jun; Patel, Kaushal; Dadhania, Darshana M; Gross, Steven S; Chander, Praveen; Delaney, Vera; Deng, Luqin; Chen, Ligong; Cui, Xiangqin; Suthanthiran, Manikkam; Goligorsky, Michael S

    2012-02-01

    We have recently documented the appearance of an anti-angiogenic peptide, endorepellin, in the urine of patients with chronic allograft dysfunction (CAD). Here, we analyzed using enzyme-linked immunosorbent assay the excretion of anti-angiogenic peptides endostatin, pigment epithelium-derived factor (PEDF) and Kruppel-like factor-2 (KLF-2), in healthy individuals, patients with stable graft function and patients with various degrees of CAD. In healthy subjects and patients with CAD-0, endostatin, PEDF and KLF-2 excretions were at the level of detection. In contrast, there were significant differences between the patients with CAD-3 and CAD-0, CAD-1 and healthy controls for endostatin and CAD-0 versus CAD-3 for PEDF, but no differences in KLF-2 excretion. Receiver operating characteristic (ROC) curve analyses demonstrated a highly discriminative profile for all three biomarkers: the combination of these parameters offered 83% sensitivity and 90% specificity in distinguishing CAD-0 from CAD-1-3. The quality of these potential biomarkers of CAD was, however, highest in discriminating CAD status in biopsy-proven cases and dropped when CAD-0 was diagnosed based on clinical criteria. In conclusion, these findings indicate the diagnostic potential of urinary detection of endostatin, PEDF and to lesser degree KLF-2 and suggest a mechanistic role played by anti-angiogenic substances in the developing vasculopathy and vascular rarefaction in patients with CAD.

  19. Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action

    PubMed Central

    Rusnati, Marco; Urbinati, Chiara; Bonifacio, Silvia; Presta, Marco; Taraboletti, Giulia

    2010-01-01

    Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents. PMID:27713299

  20. Discovery of antitubulin agents with antiangiogenic activity as single entities with multitarget chemotherapy potential.

    PubMed

    Gangjee, Aleem; Pavana, Roheeth Kumar; Ihnat, Michael A; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Bailey-Downs, Lora C; Hamel, Ernest; Bai, Rouli

    2014-05-08

    Antiangiogenic agents (AA) are cytostatic, and their utility in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of vascular endothelial growth factor receptor-2 (VEGFR2) inhibitors with antitubulin agents have been particularly successful. We have discovered a novel, potentially important analogue, that combines potent VEGFR2 inhibitory activity (comparable to that of sunitinib) with potent antitubulin activity (comparable to that of combretastatin A-4 (CA)) in a single molecule, with GI50 values of 10(-7) M across the entire NCI 60 tumor cell panel. It potently inhibited tubulin assembly and circumvented the most clinically relevant tumor resistance mechanisms (P-glycoprotein and β-III tubulin expression) to antimicrotubule agents. The compound is freely water-soluble as its HCl salt and afforded excellent antitumor activity in vivo, superior to docetaxel, sunitinib, or Temozolomide, without any toxicity.

  1. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols.

    PubMed

    Diniz, Carmen; Suliburska, Joanna; Ferreira, Isabel M P L V O

    2017-06-01

    Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antiangiogenic therapy for patients with aggressive or refractory advanced non-small cell lung cancer in the second-line setting.

    PubMed

    Reck, Martin; Garassino, Marina Chiara; Imbimbo, Martina; Shepherd, Frances A; Socinski, Mark A; Shih, Jin-Yuan; Tsao, Anne; Lee, Pablo; Winfree, Katherine B; Sashegyi, Andreas; Cheng, Rebecca; Varea, Rocio; Levy, Benjamin; Garon, Edward

    2018-06-01

    A majority of patients with advanced or metastatic non-small cell lung cancer (NSCLC) will experience disease progression after first-line therapy. Patients who have advanced NSCLC that is especially aggressive, which is defined as disease that rapidly progresses on first-line treatment or disease that is refractory to first-line treatment, have a critical unmet medical need. These patients have a poor prognosis in the second-line setting. Several studies have recently shown that treatment with an antiangiogenic therapy may benefit these patients. This review summarizes the approved antiangiogenic therapies for the treatment of patients with advanced NSCLC in the second-line setting, specifically focusing on the outcomes from subgroups of patients with rapidly progressing or refractory disease. Several antiangiogenic agents, as monotherapy or in combination with other treatments, have been or are currently being studied in patients with advanced NSCLC. Antiangiogenics that are approved for use in patients with advanced NSCLC are limited to bevacizumab in combination with chemotherapy (nonsquamous NSCLC), ramucirumab in combination with docetaxel (all histologies), and nintedanib in combination with docetaxel (adenocarcinoma histology). This review focuses on the efficacy, safety, and quality of life outcomes in the subpopulation of patients with rapidly progressing or refractory NSCLC treated with approved antiangiogenic therapies in the second-line setting. We also discuss the impact of newly approved immunotherapy agents on the outcomes of patients with aggressive or refractory disease. Studies in progress and planned future research will determine if combination treatment with antiangiogenics and immunotherapies will benefit patients with aggressive, advanced NSCLC. Copyright © 2018. Published by Elsevier B.V.

  3. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors.

    PubMed

    Macegoniuk, Katarzyna; Grela, Ewa; Palus, Jerzy; Rudzińska-Szostak, Ewa; Grabowiecka, Agnieszka; Biernat, Monika; Berlicki, Łukasz

    2016-09-08

    Urease inhibitors are considered promising compounds for the treatment of ureolytic bacterial infections, particularly infections resulting from Helicobacter pylori in the gastric tract. Herein, we present the synthesis and the inhibitory activity of novel and highly effective organoselenium compounds as inhibitors of Sporosarcina pasteurii and Helicobacter pylori ureases. These studied compounds represent a class of competitive reversible urease inhibitors. The most active compound, 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), displayed Ki values equal to 2.11 and 226 nM against S. pasteurii and H. pylori enzymes, respectively, indicating ebselen as one of the most potent low-molecular-weight inhibitors of bacterial ureases reported to date. Most of these molecules penetrated through the cell membrane of the Gram-negative bacteria Escherichia coli (pGEM::ureOP) in vitro. Furthermore, whole-cell studies on the H. pylori J99 reference strain confirmed the high efficiency of the examined organoselenium compounds as urease inhibitors against pathogenic bacteria.

  4. In vitro assessment of the growth and plasma membrane H+ -ATPase inhibitory activity of ebselen and structurally related selenium- and sulfur-containing compounds in Candida albicans.

    PubMed

    Orie, Natalie N; Warren, Andrew R; Basaric, Jovana; Lau-Cam, Cesar; Piętka-Ottlik, Magdalena; Młochowski, Jacek; Billack, Blase

    2017-06-01

    Ebselen (EB, compound 1) is an investigational organoselenium compound that reduces fungal growth, in part, through inhibition of the fungal plasma membrane H + -ATPase (Pma1p). In the present study, the growth inhibitory activity of EB and of five structural analogs was assessed in a fluconazole (FLU)-resistant strain of Candida albicans (S2). While none of the compounds were more effective than EB at inhibiting fungal growth (IC 50  ∼ 18 μM), two compounds, compounds 5 and 6, were similar in potency. Medium acidification assays performed with S2 yeast cells revealed that compounds 4 and 6, but not compounds 2, 3, or 5, exerted an inhibitory activity comparable to EB (IC 50  ∼ 14 μM). Using a partially purified Pma1p preparation obtained from S2 yeast cells, EB and all the analogs demonstrated a similar inhibitory activity. Taken together, these results indicate that EB analogs are worth exploring further for use as growth inhibitors of FLU-resistant fungi. © 2017 Wiley Periodicals, Inc.

  5. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents

    PubMed Central

    Zhang, Lin; Shan, Yuanyuan; Ji, Xingyue; Zhu, Mengyuan; Li, Chuansheng; Sun, Ying; Si, Ru; Pan, Xiaoyan; Wang, Jinfeng; Ma, Weina; Dai, Bingling; Wang, Binghe; Zhang, Jie

    2017-01-01

    Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4. PMID:29285210

  6. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy.

    PubMed

    Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki

    2016-01-01

    Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  7. The antiangiogenic activity of Kushecarpin D, a novel flavonoid isolated from Sophora flavescens Ait.

    PubMed

    Pu, Li-Ping; Chen, He-Ping; Cao, Mei-Ai; Zhang, Xiu-Li; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming

    2013-11-13

    Kushecarpin D (KD) is a novel flavonoid isolated from the traditional Chinese herbal medicine Kushen (the dried root of Sophora flavescens Ait). As part of our continuous effort to explore Chinese traditional medicinal herbs and to identify novel natural anticancer products, the antiangiogenic properties of KD were examined in vitro using a human umbilical vein endothelial cell line (ECV304). The SRB and Trypan Blue exclusion assays were used to evaluate the effect of KD on cell proliferation. The antiangiogenic activities of KD were evaluated through studies of cell migration, cell adhesion, and tube formation. DCFH-DA and DHE fluorescent assays were used to detect the reactive oxygen species (ROS) levels. Catalase activity was detected using the colorimetric ammonium molybdate method. Cell cycle and apoptosis were measured using flow cytometry and the Hoechst 33258 staining assay. The results indicated that KD showed antiangiogenic activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. ROS levels were down-regulated and catalase activity was up-regulated after treatment with KD. The cell cycle was arrested at the G2/M phase, while no apoptosis was observed using the Hoechst 33258 staining assay or following the flow cytometric analysis of the sub-G1 proportion. The antiangiogenic properties of KD, in combination with its anti-proliferative effect and ability to induce cell cycle arrest without inducing apoptosis, make it a good candidate for development as antitumor agent. However, further studies are essential to elucidate its mechanism of action. © 2013.

  8. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuaiyu; Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746; Yoon, Yeo Cho

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. Black-Right-Pointing-Pointer Cafestol inhibits phosphorylation of FAK and Akt. Black-Right-Pointing-Pointer Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects themore » following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.« less

  9. Antiangiogenic therapy with anti-vascular endothelial growth factor modalities for diabetic macular oedema.

    PubMed

    Parravano, Mariacristina; Menchini, Francesca; Virgili, Gianni

    2009-10-07

    refractory to photocoagulation. Bevacizumab or bevacizumab plus triamcinolone were also compared to photocoagulation in 129 patients with untreated CSMO (150 eyes, multiple injections needed in 24 patients). Although comparisons tended to favour antiangiogenic therapy, estimates did not reach statistical significance or, if they did, they were not robust to sensitivity analysis regarding missing data and potential bias related to single trial estimates. No difference could be demonstrated in one study on 26 patients comparing bevacizumab to triamcinolone (both administered with a single injection) and between bevacizumab and bevacizumab plus triamcinolone in two studies on 182 patients. All the studies in this review, except for the study on pegaptanib, were at risk of bias based on the assessment of six methodological quality items.There were no serious adverse effects in these short-term studies, except for one case of severe anterior uveitis in one eye treated with bevacizumab. No included study examined long-term adverse effects of antiangiogenic therapy. There is not sufficient high quality evidence from large RCTs supporting the use of either single or multiple anti-VEGF intravitreal injections to treat DMO. Results from ongoing studies on several compounds should assess not only treatment efficacy but also, if a benefit is found, the number of injections needed for maintenance and long-term safety.

  10. Antiangiogenic 1-Aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas Inhibit MCF-7 and MDA-MB-231 Human Breast Cancer Cell Lines Through PI3K/Akt and MAPK/Erk Pathways.

    PubMed

    Machado, Vera A; Peixoto, Daniela; Queiroz, Maria João; Soares, Raquel

    2016-12-01

    Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer related deaths among women worldwide. The purpose of this study is to evaluate the cytotoxic effects and possible molecular mechanisms of the antiproliferative properties of the antiangiogenic 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 1a-e, prepared earlier by us, on two human breast cancer cell lines of distinct histological types: hormone-dependent MCF-7 (ER positive), and hormone independent MDA-MB-231 (ER/PR/HER2 negative), this latter being the most aggressive and difficult to treat. Our findings clearly demonstrated that compounds 1a-e suppress breast cancer cell survival, proliferation, migration, and colony formation at very low concentrations, not showing cytotoxicity in normal human mammary cells (MCF-10A). TUNEL assay demonstrated that compounds 1a-e induced apoptosis in MDA-MB-231, but not in MCF-7 at the concentrations tested. PI3K/Akt and MAPK/Erk cell signaling pathways were investigated using Western blot analysis, revealing that these compounds decrease their activity in both breast cancer cell lines. Compounds 1b (R 2  = F), 1c (R 2  = Me), and 1e (R 1  = Cl, R 2  = CF 3 ) were the most effective particularly in MDA-MB-231 cells. Overall, 1c and 1e compounds are the most promising antitumor compounds. These findings, together with the antiangiogenic activity previously described by us, render these compounds a relevant breakthrough for cancer therapy. J. Cell. Biochem. 117: 2791-2799, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy

    PubMed Central

    Mondal, Lakshmi K.; Borah, Prasanta K.; Bhattacharya, Chandra K.; Mahanta, Jagadish

    2017-01-01

    Purpose Alteration of pro- and antiangiogenic homeostasis of vascular endothelial growth factor (VEGF) isoforms in patients with hyperglycemia seems crucial but substantially unexplored at least quantitatively for diabetic retinopathy (DR). Therefore, in the present study we aimed to estimate the difference between the pro- (VEGF165a) and antiangiogenic (VEGF165b) VEGF isoforms and its soluble receptors for severity of DR. Methods The study included 123 participants (diabetic retinopathy: 81, diabetic control: 20, non-diabetic control: 22) from the Regional Institute of Ophthalmology, Kolkata. The protein levels of VEGF165a (proangiogenic), VEGF165b (antiangiogenic), VEGF receptor 1 (VEGFR1), VEGFR2, and VEGFR3 in plasma were determined with enzyme-linked immunosorbent assay (ELISA). Results An imbalance in VEGF homeostasis, a statistically significant concomitant increase (p<0.0001) in the level of VEGF165a and a decrease in the level of VEGF165b, was observed with the severity of the disease. Increased differences between VEGF165a and VEGF165b i.e. VEGF165a-b concomitantly increased statistically significantly with the severity of the disease (p<0.0001), patients with diffuse diabetic macular edema (DME) with proliferative DR (PDR) had the highest imbalance. The plasma soluble form of VEGFR2 concentration consistently increased statistically significantly with the severity of the disease (p<0.0001). Conclusions The increased difference or imbalance between the pro- (VEGF165a) and antiangiogenic (VEGF165b) homeostasis of the VEGF isoforms, seems crucial for an adverse prognosis of DR and may be a better explanatory marker compared with either VEGF isoform. PMID:28680264

  12. Improved survival of mice bearing liver metastases of colon cancer cells treated with a combination of radioimmunotherapy and antiangiogenic therapy.

    PubMed

    Kinuya, Seigo; Yokoyama, Kunihiko; Koshida, Kiyoshi; Mori, Hirofumi; Shiba, Kazuhiro; Watanabe, Naoto; Shuke, Noriyuki; Bai, Jingming; Michigishi, Takatoshi; Tonami, Norihisa

    2004-07-01

    We attempted to determine whether the combined regimen of radioimmunotherapy (RIT) and antiangiogenic therapy would favorably affect the survival of animals bearing liver metastases of colon cancer cells. Daily antiangiogenic therapy with 2-methoxyestradiol (2-ME), 75 mg/kg, was initiated at 3 days following intrasplenic cell inoculation of LS180 colon cancer cells. RIT with 7 MBq of (131)I-A7, an IgG1 anti-colorectal monoclonal antibody, or (131)I-HPMS-1, an irrelevant IgG1, was conducted at 7 days. Production of vascular endothelial growth factor (VEGF) by LS180 cells was assessed in vitro. All nontreated mice died by 31 days following cell inoculation ( n=5). Monotherapy comprising 2-ME treatment resulted in slightly better survival of mice ( n=8) ( P<0.05). (131)I-A7 RIT displayed a marked therapeutic effect ( n=8) ( P<0.001); however, all animals eventually died due to metastases by 99 days. The combined regimen of (131)I-A7 RIT and antiangiogenic therapy demonstrated a superior therapeutic effect in comparison to monotherapy consisting of either RIT or antiangiogenic therapy ( n=10) ( P<0.05); three mice survived the entire 160-day observation period. The combination of antiangiogenic therapy and (131)I-HPMS-1 RIT failed to provide an appreciable benefit ( n=5). Treatment with 2-ME decreased VEGF production by LS180 cells in a dose-dependent fashion. In conclusion, a combination regimen comprising RIT and antiangiogenic therapy initiated at the early stage of metastasis would be of great benefit in terms of improvement of the therapeutic efficacy with respect to liver metastases.

  13. Targetable Polymer - Antiangiogenic Drug Conjugates for Systemic Breast Cancer Therapy

    DTIC Science & Technology

    2005-09-01

    6099-103. 6 Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folkman J. Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin...178: 2159 (1977). 6. S. Marui et al., Chem. Pharm. Bull, 40: 96 (1992). The U.S. Army Medical Research and Materiel Command under W81XWH-04-1-0777

  14. Antitumor and anti-angiogenic potentials of isolated crude saponins and various fractions of Rumex hastatus D. Don.

    PubMed

    Ahmad, Sajjad; Ullah, Farhat; Ayaz, Muhammad; Zeb, Anwar; Ullah, Farman; Sadiq, Abdul

    2016-03-12

    Cancer, being the foremost challenge of the modern era and the focus of world-class investigators, gargantuan research is in progress worldwide to explore novel therapeutic for its management. The exploitation of natural sources has been proven to be an excellent approach to treat or minify the excessive angiogenesis and proliferation of cells. Similarly, based the ethnomedicinal uses and literature survey, the current study is designed to explore the anti-tumor and anti-angiogenic potentials of Rumex hastatus. Anti-tumor and anti-angiogenic activities were carried out using potato-disc model and chorioallantoic membrane (CAM) assay respectively. Moreover, R. hastatus was also assessed for antibacterial activity against Agrobacterium tumefaciens (tumor causing bacterial strain). The positive controls used in anti-tumor, anti-angiogenic and antibacterial activities were vincristine sulphate, dexamethasone and cefotaxime respectively. The crude saponins (Rh.Sp), methanolic extract (Rh.Cr) and other solvent extracts like n-hexane (Rh.Hex), chloroform (Rh.Chf), ethylacetate (Rh.EtAc) and aqueous fraction (Rh.Aq) exhibited notable anti-tumor and anti-angiogenic activities. In potato tumor assay, the chloroform and saponin fractions were observed to be the most effective showing 86.7 and 93.3 % tumor inhibition at 1000 µg/ml with IC50 values 31.6 and 18.1 µg/ml respectively. Similarly, these two samples i.e., chloroform and saponins also excelled among the entire test samples in anti-angiogenic evaluation exhibiting 81.6 % (IC50 = 17.9 µg/ml) and 78.9 % (IC50 = 64.9 µg/ml) at 1000 µg/ml respectively. In contrast, the antibacterial investigations revealed a negligible potential against A. tumefaciens. Based on our results we can claim that R. hastatus possesses both anti-tumor and anti-angiogenic potentials. In all of the solvent fractions, Rh.Chf and Rh.Sp were most effective against tumor and angiogenesis while having negligible activity against A

  15. Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGFβ) Production in Regulatory T-Cells

    PubMed Central

    2018-01-01

    We report the design, synthesis, and biological evaluation of some potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated in the immune response to tumors, particularly in Treg cell fragility, required for PD1 checkpoint blockade. The design of these compounds was based on a previously identified compound EG00229. The design of these molecules was informed and supported by X-ray crystal structures. Compound 1 (EG01377) was identified as having properties suitable for further investigation. Compound 1 was then tested in several in vitro assays and was shown to have antiangiogenic, antimigratory, and antitumor effects. Remarkably, 1 was shown to be selective for NRP1 over the closely related protein NRP2. In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block a glioma-conditioned medium-induced increase in TGFβ production. This comprehensive characterization of a small-molecule NRP1 antagonist provides the basis for future in vivo studies. PMID:29648813

  16. Imaging of VEGF Receptor Kinase Inhibitor-Induced Antiangiogenic Effects in Drug-Resistant Human Adenocarcinoma Model1

    PubMed Central

    Reichardt, Wilfried; Hu-Lowe, Dana; Torres, Denise; Weissleder, Ralph; Bogdanov, Alexei

    2005-01-01

    Abstract Small molecule vascular endothelial growth factor (VEGF) receptor tyrosinase kinase inhibitors (VEGFR-TKIs) show great promise in inducing antiangiogenic responses in tumors. We investigated whether antiangiogenic tumor responses induced by an experimental VEGFR-TKI (AG013925; Pfizer Global Research and Development) could be reported by magnetic resonance imaging (MRI) during the initial phase of treatment. We used MRI and superparamagnetic nanoparticles for measuring relative vascular volume fraction (rVVF) in a drug-resistant colon carcinoma model. Athymic mice harboring MV522 xenografts were treated with VEGFR-TKI (25 mg/kg, p.o., with a 12-hour interval in between treatments) and were imaged after three consecutive treatments. Relative tumor blood volume fractions were calculated using ΔR2* maps that were scaled by the known VVF value of an in-plane skeletal muscle (1.9%). There was a pronounced and statistically significant (P < .001) decrease of tumor rVVF in treated animals (0.95 ± 0.24%; mean ± SEM, n = 66 slices, eight mice) compared to mice that received a placebo (2.91 ± 0.24%; mean ± SEM, n = 66 slices, nine mice). Tumor histology confirmed a three-fold decrease of vascular density and a concomitant increase of apoptotic cell index. Hence, we demonstrated that: 1) the VEGFR-TKI resulted in antiangiogenic effects that were manifested by a decrease or rVVF; and 2) iron oxide nanoparticles and steady-state MRI enable an early detection of tumor response to antiangiogenic therapies. PMID:16229807

  17. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    PubMed

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  18. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM)*

    PubMed Central

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P.

    2016-01-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  19. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  20. Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy.

    PubMed

    Ferreira, Natália N; M B Ferreira, Leonardo; Miranda-Gonçalves, Vera; Reis, Rui M; Seraphim, Thiago V; Borges, Júlio César; Baltazar, Fátima; Gremião, Maria Palmira D

    2017-10-01

    Anti-vascular endothelial growth factor (anti-VEGF) therapy applied to solid tumors is a promising strategy, yet, the challenge to deliver these agents at high drug concentrations together with the maintenance of therapeutic doses locally, at the tumor site, minimizes its benefits. To overcome these obstacles, we propose the development of a bevacizumab-loaded alginate hydrogel by electrostatic interactions to design a delivery system for controlled and anti-angiogenic therapy under tumor microenvironmental conditions. The tridimensional hydrogel structure produced provides drug stability and a system able to be introduced as a flowable solution, stablishing a depot after local administration. Biological performance by the chick embryo chorioallantoic membrane (CAM) assay indicated a pH-independent improved anti-angiogenic activity (∼50%) compared to commercial available anti-VEGF drug. Moreover, there was a considerable regression in tumor size when treated with this system. Immunohistochemistry highlighted a reduced number and disorganization of microscopic blood vessels resulting from applied therapy. These results suggest that the developed hydrogel is a promising approach to create an innovative delivery system that offers the possibility to treat different solid tumors by intratumoral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo

    PubMed Central

    Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing

    2010-01-01

    Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antiangiogenic activity of H-RN and H-FT in the chick chorioallantoic membrane model (CAM) and a mice oxygen-induced retinopathy model (OIR) were studied. A recombinant mouse VEGF-neutralizing antibody, bevacizumab, and a scrambled peptide were used as two control groups in separate studies. Results H-RN effectively inhibited VEGF-stimulated RF/6A cell proliferation, migration, and tube formation on Matrigel™, while H-FT did not. H-RN was also able to inhibit angiogenesis when applied to the CAM, and had antineovascularization activity in the retinal neovascularization of a mouse OIR model when administrated as an intravitreous injection. The antiangiogenic activity of H-RN was not as strong as that of VEGF antibodies. The H-FT and scrambled peptide had no such activity. Conclusions H-RN, a new peptide derived from the HGF K1 domain, was shown to have antiangiogenic activity in vitro and in vivo. It may lead to new potential drug discoveries and the development of new treatments for pathological retinal angiogenesis. PMID:21031024

  2. Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo

    PubMed Central

    Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan

    2018-01-01

    Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. Methods In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. Results We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling

  3. Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo.

    PubMed

    Jing, Yue; Wang, Gang; Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan

    2018-01-01

    Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. For the first time

  4. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment.

    PubMed

    Longo, Dario Livio; Dastrù, Walter; Consolino, Lorena; Espak, Miklos; Arigoni, Maddalena; Cavallo, Federica; Aime, Silvio

    2015-07-01

    The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models.

    PubMed

    Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Bilecz, Agnes; Daley, Frances; Kostaras, Eleftherios; Nathan, Mark R; Wan, Elaine; Frentzas, Sophia; Schweiger, Thomas; Hegedus, Balazs; Hoetzenecker, Konrad; Renyi-Vamos, Ferenc; Kuczynski, Elizabeth A; Vasudev, Naveen S; Larkin, James; Gore, Martin; Dvorak, Harold F; Paku, Sandor; Kerbel, Robert S; Dome, Balazs; Reynolds, Andrew R

    2017-02-01

    Anti-angiogenic therapies have shown limited efficacy in the clinical management of metastatic disease, including lung metastases. Moreover, the mechanisms via which tumours resist anti-angiogenic therapies are poorly understood. Importantly, rather than utilizing angiogenesis, some metastases may instead incorporate pre-existing vessels from surrounding tissue (vessel co-option). As anti-angiogenic therapies were designed to target only new blood vessel growth, vessel co-option has been proposed as a mechanism that could drive resistance to anti-angiogenic therapy. However, vessel co-option has not been extensively studied in lung metastases, and its potential to mediate resistance to anti-angiogenic therapy in lung metastases is not established. Here, we examined the mechanism of tumour vascularization in 164 human lung metastasis specimens (composed of breast, colorectal and renal cancer lung metastasis cases). We identified four distinct histopathological growth patterns (HGPs) of lung metastasis (alveolar, interstitial, perivascular cuffing, and pushing), each of which vascularized via a different mechanism. In the alveolar HGP, cancer cells invaded the alveolar air spaces, facilitating the co-option of alveolar capillaries. In the interstitial HGP, cancer cells invaded the alveolar walls to co-opt alveolar capillaries. In the perivascular cuffing HGP, cancer cells grew by co-opting larger vessels of the lung. Only in the pushing HGP did the tumours vascularize by angiogenesis. Importantly, vessel co-option occurred with high frequency, being present in >80% of the cases examined. Moreover, we provide evidence that vessel co-option mediates resistance to the anti-angiogenic drug sunitinib in preclinical lung metastasis models. Assuming that our interpretation of the data is correct, we conclude that vessel co-option in lung metastases occurs through at least three distinct mechanisms, that vessel co-option occurs frequently in lung metastases, and that vessel

  6. Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent.

    PubMed

    Lorusso, Girieca; Vannini, Nicola; Sogno, Ilaria; Generoso, Luca; Garbisa, Spiridione; Noonan, Douglas M; Albini, Adriana

    2009-05-01

    Hyperforin, the major lipophilic compound contained in extracts of Hypericum perforatum, is responsible for the antidepressant activity associated with the extract. Recently, several other biological properties of Hyperforin have been unveiled including inhibition of tumour invasion and angiogenesis. The mechanism of the anti-angiogenic activity of Hyperforin remains to be fully elucidated. We show that treatment with non-cytotoxic concentrations of Hyperforin restrains, in a dose-dependent manner, the capacity of endothelial cells to migrate towards relevant chemotactic stimuli. Hyperforin inhibits the organisation of HUVE endothelial cells in capillary-like structures in vitro, and potently represses angiogenesis in vivo in the Matrigel sponge assay in response to diverse angiogenic agents. Immunofluorescent staining shows that in cytokine-activated endothelial HUVE cells Hyperforin prevents translocation to the nucleus of NF-kappaB, a transcription factor regulating numerous genes involved in cell growth, survival, angiogenesis and invasion. Under Hyperforin treatment in vivo, the growth of Kaposi's sarcoma - a highly angiogenic tumour - is strongly inhibited, with the resultant tumours remarkably reduced in size and in vascularisation as compared with controls. Hyperforin has also been reported to have anti-inflammatory properties. Here we show that Hyperforin inhibits neutrophil and monocyte chemotaxis in vitro and angiogenesis in vivo induced by angiogenic chemokines (CXCL8 or CCL2). These results highlight the potential for Hyperforin as an anti-inflammatory angioprevention agent, acting as a strong inhibitor of inflammation- or tumour-triggered angiogenesis, and provide new therapeutic approaches to halting pathology-associated angiogenesis.

  7. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy

    PubMed Central

    Kwiatkowski, Sam C.; Guerrero, Paola A.; Hirota, Shinya; Chen, Zhihua; Morales, John E.; Aghi, Manish

    2017-01-01

    Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor βs (TGFβs). Nrp1 is expressed in GBM cells where it promotes TGFβ receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFβ signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFβ to regulate GBM growth, progression, and recurrence after anti-vascular therapy. PMID:28938007

  8. Evaluation of the antiproliferative, proapoptotic, and antiangiogenic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of leiomyoma.

    PubMed

    García-Pascual, Carmen Maria; Ferrero, Hortensia; Juarez, Irene; Martínez, Jessica; Villanueva, Ana; Pozuelo-Rubio, Mercedes; Soengas, Marisol; Tormo, Damiá; Simón, Carlos; Gómez, Raúl; Pellicer, Antonio

    2016-02-01

    To assess the antiproliferative, proapoptotic, and antiangiogenic effects of the double-stranded RNA mimic polyinosine-polycytidylic acid (pIC) complexed with polyethylenimine [pIC(PEI)] in xenografted human leiomyomas. Heterologous leiomyoma mouse model. University-affiliated infertility center. Ovariectomized and hormone-replaced nude mice (n = 16) who received human leiomyoma fragment transplantation. Leiomyoma fragments placed in the peritoneum of 5-week-old nude female mice and treated with the vehicle (n = 8) or 0.6 mg/kg [pIC(PEI)] (n = 8) for 4 weeks. The size of the leiomyoma implants, and cellular proliferation (Ki67), vascularization (PECAM), and apoptosis (OH-ends) assessed by quantitative immunohistochemical/immunofluorescent analysis of the recovered implants. No significant differences were observed in the size of the leiomyoma implants between groups. Vascularization and proliferation were significantly decreased, and apoptosis was increased in the [pIC(PEI)]-treated group versus control. We hypothesize that the antiangiogenic and apoptotic effects exerted by [pIC(PEI)] might lead to a decrease in lesion size in this animal model if the compound is administered for longer periods of time. This study provides promising data on [pIC(PEI)] as a potential novel therapeutic agent against human leiomyoma. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice

    PubMed Central

    Pont, Isabel; Calatayud-Pascual, Aracely; López-Castellano, Alicia; Albelda, Elena P.; García-España, Enrique; Martí-Bonmatí, Luis; Frias, Juan C.

    2018-01-01

    Fumagillin-loaded liposomes were injected into ApoE-KO mice. The animals were divided into several groups to test the efficacy of this anti-angiogenic drug for early treatment of atherosclerotic lesions. Statistical analysis of the lesions revealed a decrease in the lesion size after 5 weeks of treatment. PMID:29338009

  10. Evaluation of Antioxidant and Antiangiogenic Properties of Caesalpinia Echinata Extracts

    PubMed Central

    da Silva Gomes, Elisangela Christhianne Barbosa; Jimenez, George Chaves; da Silva, Luis Claudio Nascimento; de Sá, Fabrício Bezerra; de Souza, Karen Pena Cavalcanti; Paiva, Gerson S.; de Souza, Ivone Antônia

    2014-01-01

    Natural products contain important combinations of ingredients, which may to some extent help to modulate the effects produced by oxidation substrates in biological systems. It is known that substances capable of modulating the action of these oxidants on tissue may be important allies in the control of neovascularization in pathological processes. The aim of this study was to evaluate the antioxidant and antiangiogenic properties of an ethanol extract of Caesalpinia echinata. The evaluation of antioxidant properties was tested using two methods (DPPH inhibition and sequestration of nitric oxide). The antiangiogenic properties were evaluated using the inflammatory angiogenesis model in the corneas of rats. The extract of C. echinata demonstrated a high capacity to inhibit free radicals, with IC50 equal to 42.404 µg/mL for the DPPH test and 234.2 µg/mL for nitric oxide. Moreover, it showed itself capable of inhibiting the inflammatory angiogenic response by 77.49%. These data suggest that biochemical components belonging to the extract of C. echinata interfere in mechanisms that control the angiogenic process, mediated by substrates belonging to the arachidonic acid cascade, although the data described above also suggest that the NO buffer may contribute to some extent to the reduction in the angiogenic response. PMID:24563668

  11. Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy.

    PubMed

    Yap, Ronald; Veliceasa, Dorina; Emmenegger, Urban; Kerbel, Robert S; McKay, Laura M; Henkin, Jack; Volpert, Olga V

    2005-09-15

    Blocking angiogenesis is a promising approach in cancer therapy. Natural inhibitors of angiogenesis and derivatives induce receptor-mediated signals, which often result in the endothelial cell death. Low-dose chemotherapy, given at short regular intervals with no prolonged breaks (metronomic chemotherapy), also targets angiogenesis by obliterating proliferating endothelial cells and circulating endothelial cell precursors. ABT-510, a peptide derivative of thrombospondin, kills endothelial cell by increasing CD95L, a ligand for the CD95 death receptor. However, CD95 expression itself is unaffected by ABT-510 and limits its efficacy. We found that multiple chemotherapy agents, cyclophosphamide (cytoxan), cisplatin, and docetaxel, induced endothelial CD95 in vitro and in vivo at low doses that failed to kill endothelial cells (cytoxan > cisplatin > docetaxel). Thus, we concluded that some of these agents might complement each other and together block angiogenesis with maximal efficacy. As a proof of principle, we designed an antiangiogenic cocktail combining ABT-510 with cytoxan or cisplatin. Cyclophosphamide and cisplatin synergistically increased in vivo endothelial cell apoptosis and angiosuppression by ABT-510. This synergy required CD95, as it was reversible with the CD95 decoy receptor. In a mouse model, ABT-510 and cytoxan, applied together at low doses, acted in synergy to delay tumor take, to stabilize the growth of established tumors, and to cause a long-term progression delay of PC-3 prostate carcinoma. These antitumor effects were accompanied by major decreases in microvascular density and concomitant increases of the vascular CD95, CD95L, and apoptosis. Thus, our study shows a "complementation" design of an optimal cancer treatment with the antiangiogenic peptide and a metronomic chemotherapy.

  12. Objective visual assessment of antiangiogenic treatment for wet age-related macular degeneration.

    PubMed

    Baseler, Heidi A; Gouws, André; Crossland, Michael D; Leung, Carmen; Tufail, Adnan; Rubin, Gary S; Morland, Antony B

    2011-10-01

    To assess cortical responses in patients undergoing antiangiogenic treatment for wet age-related macular degeneration (AMD) using functional magnetic resonance imaging (fMRI) as an objective, fixation-independent measure of topographic visual function. A patient with bilateral neovascular AMD was scanned using fMRI before and at regular intervals while undergoing treatment with intravitreal antiangiogenic injections (ranibizumab). Blood oxygenation level-dependent signals were measured in the brain while the patient viewed a stimulus consisting of a full-field flickering (6 Hz) white light alternating with a uniform gray background (18 s on and 18 s off). Topographic distribution and magnitude of activation in visual cortex were compared longitudinally throughout the treatment period (<1 year) and with control patients not currently undergoing treatment. Clinical behavioral tests were also administered, including visual acuity, microperimetry, and reading skills. The area of visual cortex activated increased significantly after the first treatment to include more posterior cortex that normally receives inputs from lesioned parts of the retina. Subsequent treatments yielded no significant further increase in activation area. Behavioral measures all generally showed an improvement with treatment but did not always parallel one another. The untreated control patient showed a consistent lack of significant response in the cortex representing retinal lesions. Retinal treatments may not only improve vision but also result in a concomitant improvement in fixation stability. Current clinical behavioral measures (e.g., acuity and perimetry) are largely dependent on fixation stability and therefore cannot separate improvements of visual function from fixation improvements. fMRI, which provides an objective and sensitive measure of visual function independent of fixation, reveals a significant increase in visual cortical responses in patients with wet AMD after treatment with

  13. Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen.

    PubMed

    Aitken, Jade B; Lay, Peter A; Duong, T T Hong; Aran, Roshanak; Witting, Paul K; Harris, Hugh H; Lai, Barry; Vogt, Stefan; Giles, Gregory I

    2012-04-01

    Synchrotron radiation induced X-ray emission (SRIXE) spectroscopy was used to map the cellular uptake of the organoselenium-based antioxidant drug ebselen using differentiated ND15 cells as a neuronal model. The cellular SRIXE spectra, acquired using a hard X-ray microprobe beam (12.8-keV), showed a large enhancement of fluorescence at the K(α) line for Se (11.2-keV) following treatment with ebselen (10 μM) at time periods from 60 to 240 min. Drug uptake was quantified and ebselen was shown to induce time-dependent changes in cellular elemental content that were characteristic of oxidative stress with the efflux of K, Cl, and Ca species. The SRIXE cellular Se distribution map revealed that ebselen was predominantly localized to a discreet region of the cell which, by comparison with the K and P elemental maps, is postulated to correspond to the endoplasmic reticulum. On the basis of these findings, it is hypothesized that a major outcome of ebselen redox catalysis is the induction of cellular stress. A mechanism of action of ebselen is proposed that involves the cell responding to drug-induced stress by increasing the expression of antioxidant genes. This hypothesis is supported by the observation that ebselen also regulated the homeostasis of the transition metals Mn, Cu, Fe, and Zn, with increases in transition metal uptake paralleling known induction times for the expression of antioxidant metalloenzymes. © SBIC 2012

  14. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review

    PubMed Central

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-01-01

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors. PMID:28052652

  15. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review.

    PubMed

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-10-01

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.

  16. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway.

    PubMed

    Hassoun, Shimaa M; Abdel-Rahman, Noha; Eladl, Entsar I; El-Shishtawy, Mamdouh M

    2017-06-01

    Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.

  17. The antiangiogenic activity of cleaved high molecular weight kininogen is mediated through binding to endothelial cell tropomyosin

    PubMed Central

    Zhang, Jing-Chuan; Doñate, Fernando; Qi, Xiaoping; Ziats, Nicholas P.; Juarez, Jose C.; Mazar, Andrew P.; Pang, Yuan-Ping; McCrae, Keith R.

    2002-01-01

    Conformationally altered proteins and protein fragments derived from the extracellular matrix and hemostatic system may function as naturally occurring angiogenesis inhibitors. One example of such a protein is cleaved high molecular weight kininogen (HKa). HKa inhibits angiogenesis by inducing apoptosis of proliferating endothelial cells, effects mediated largely by HKa domain 5. However, the mechanisms underlying the antiangiogenic activity of HKa have not been characterized, and its binding site on proliferating endothelial cells has not been defined. Here, we report that the induction of endothelial cell apoptosis by HKa, as well as the antiangiogenic activity of HKa in the chick chorioallantoic membrane, was inhibited completely by antitropomyosin monoclonal antibody TM-311. TM-311 also blocked the high-affinity Zn2+-dependent binding of HKa to both purified tropomyosin and proliferating endothelial cells. Confocal microscopic analysis of endothelial cells stained with monoclonal antibody TM-311, as well as biotin labeling of cell surface proteins on intact endothelial cells, revealed that tropomyosin exposure was enhanced on the surface of proliferating cells. These studies demonstrate that the antiangiogenic effects of HKa depend on high-affinity binding to endothelial cell tropomyosin. PMID:12196635

  18. Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy.

    PubMed

    Sabir, Adeel; Schor-Bardach, Rachel; Wilcox, Carol J; Rahmanuddin, Syed; Atkins, Michael B; Kruskal, Jonathan B; Signoretti, Sabina; Raptopoulos, Vassilios D; Goldberg, S Nahum

    2008-07-01

    The objective of our study was to determine whether perfusion CT can be used to detect early changes in therapeutic response to antiangiogenic therapy in an animal tumor model. Twenty-five rats implanted with R3230 mammary adenocarcinoma (diameter, 1.2-2.0 cm) randomly received 7.5 or 30 mg/kg of an antiangiogenic agent, sorafenib, by daily gavage for 4 (n = 4), 9 (n = 9), or 14 (n = 5) days. Seven untreated animals served as a control group. Perfusion MDCT was performed at days 0, 4, 9, and 14 with 0.4 mL of ioversol (350 mg/mL) and included four 5-mm slices covering the entire tumor volume. Changes in tumor growth were determined by volumetric analysis of CT data. Serial changes in tumor volume and blood flow were assessed and correlated with pathology findings. All control tumors grew larger (from 2.0 +/- 0.7 cm(3) at day 0 to 5.9 +/- 1.0 cm(3) at day 14), whereas all treated tumors shrank (from 2.5 +/- 1.1 to 2.1 +/- 1.0 cm(3)), with a statistically significant rate of growth or shrinkage in both groups (p < 0.05). Although perfusion in the control tumors changed little from day 0 to day 14 (day 0, 18.1 +/- 9.2 mL/min/100 g; day 4, 15.8 +/- 5.6; day 9, 21.7 +/- 12.2; day 14, 27.7 +/- 34), in the sorafenib group, the mean blood flow was significantly lower at day 4 (5.2 +/- 3.2 mL/min/100 g, 77% decrease), day 9 (6.4 +/- 4.0 mL/min/100 g, 66% decrease), and day 14 (6.3 +/- 5.2 mL/min/100 g, 83% decrease) compared with day 0 (23.8 +/- 11.6 mL/min/100 g) (p < 0.05). Poor correlation was seen between changes in blood flow and tumor volume for days 0-9 (r(2) = 0.34), 4-9 (r(2) = 0.0004), and 9-14 (r(2) = 0.16). However, when comparing day 4 images with days 9 and 14 images, seven of 14 (50%) sorafenib-treated tumors had focal areas of new perfusion that correlated with areas of histopathologic viability despite the fact that these tumors were shrinking in size from day 4 onward (day 4, 2.18 +/- 0.8 cm(3); day 9, 1.98 +/- 0.8 cm(3)). Perfusion MDCT can detect focal

  19. Effects of 5HPP-33,an antiangiogenic thalidomide analog, in mouse whole embryo culture

    EPA Science Inventory

    Thalidomide is a well-known example of a teratogen which has been shown to have an inhibitory effect on angiogenesis. As a result of its targeted effect on immature blood vessels, anti-angiogenic specific chemical analogs were developed to maximize this mechanism of thalidomide e...

  20. Antiangiogenic treatment in hepatocellular carcinoma: the balance of efficacy and safety

    PubMed Central

    Welker, Martin-Walter; Trojan, Joerg

    2013-01-01

    Hepatocellular carcinoma (HCC) is a severe complication of advanced liver disease with a worldwide incidence of more than 600,000 patients per year. Liver function, clinical performance status, and tumor size are considered in the Barcelona Clinic Liver Cancer (BCLC) system. While curative treatment options are available for early stages, most patients present with intermediate- or advanced-stage HCC, burdened with a poor prognosis, substantially influenced by the degree of liver-function impairment. Hypervascularization is a major characteristic of HCC, and antiangiogenic treatments are the basis of treatment in noncurative stages, including interventional and pharmacological treatments. Currently, the tyrosine-kinase inhibitor sorafenib is still the only approved drug for HCC. Further improvements in survival in patients with intermediate- and advanced-stage HCC may be anticipated by both multimodal approaches, such as combination of interventional and systemic treatments, and new systemic treatment options. Until now, the Phase III development of other tyrosine-kinase inhibitors in patients with advanced HCC has failed due to minor efficacy and/or increased toxicity compared to sorafenib. However, promising Phase II data have been reported with MET inhibitors in this hard-to-treat population. This review gives a critical overview of antiangiogenic drugs and strategies in intermediate- and advanced-stage HCC, with a special focus on safety. PMID:24204170

  1. The PPARδ ligand L-165041 inhibits VEGF-induced angiogenesis, but the antiangiogenic effect is not related to PPARδ.

    PubMed

    Park, Jin-Hee; Lee, Kuy-Sook; Lim, Hyun-Joung; Kim, Hanna; Kwak, Hyun-Jeong; Park, Hyun-Young

    2012-06-01

    Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  2. Cooperative effect between immunotherapy and antiangiogenic therapy leads to effective tumor rejection in tolerant Her-2/neu mice.

    PubMed

    Cuadros, Camilo; Dominguez, Ana Lucia; Frost, Gregory I; Borgstrom, Per; Lustgarten, Joseph

    2003-09-15

    Immunotherapy is an attractive strategy for cancer treatment. However, self-tolerance is one of the major mechanisms that dampen immune responses against self-tumor antigens. We have demonstrated that Her-2/neu transgenic mice (neu mice) are tolerant to neu antigens and contain only a low avidity repertoire for neu. However, this repertoire has antitumor activity. Immunizations of neu mice are capable of activating the low-avidity T cells that, at best, retard the tumor growth. To increase the efficacy of the antitumor responses in neu mice, we hypothesized that immunotherapy in combination with antiangiogenic therapy would be a more efficient strategy for tumor eradication. The rationale for using this combination was that by decreasing the growth rate of the tumor with an antiangiogenic therapy, the low-avidity repertoire of neu mice stimulated by immunotherapeutic intervention would be more effective in destroying the slow growing tumor. To test this hypothesis, we stably expressed a soluble form of the Flt-1 vascular endothelial growth factor receptor (sFlt-1) on N202.1A cells, using a retrovirus vector. Expression of sFlt-1 on N202.1A (N202-Flt) cells significantly inhibited the tumor growth compared with N202.1A parental cells. In contrast to the application of immunotherapy alone or antiangiogenic therapy alone, which delayed the tumor growth, the combination of the two therapies provided complete inhibition of tumor growth in Her-2/neu mice. These results indicate that the use of tumor targeting with immunotherapy in simultaneous combination with antiangiogenic therapy provides a more efficient strategy for the treatment of solid tumors.

  3. The safety of antiangiogenic agents and PARP inhibitors in platinum-sensitive recurrent ovarian cancer.

    PubMed

    Lorusso, Domenica; Fontanella, Caterina; Maltese, Giuseppa; Lepori, Stefano; Tripodi, Elisa; Bogani, Giorgio; Raspagliesi, Francesco

    2017-06-01

    Recurrence is a common event in endothelial ovarian cancer (EOC) patients, and the choice of the most appropriate treatment is driven by the platinum-free interval, molecular characteristics of the disease such as BRCA mutational status, previous treatments and toxicity. Areas covered: This review focuses on the main hematologic and non-hematologic toxicities correlated with the use of licensed antiangiogenic agents and PARP inhibitors in recurrent platinum-sensitive EOC, providing recommendations for their management. Expert opinion: The clinical research over the next years will be focused on a more precise characterization of molecular pathways underlying tumorigenesis of the five ovarian tumors, to improve the decision-making process in these rare diseases. For this purpose, new study designs and international collaborations will become mandatory. Immunotherapy, antiangiogenic agents and PARP inhibitors will be combined to build a treatment strategy algorithm which will allow patients to receive all the available treatment option, in the more appropriate sequence.

  4. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy

    PubMed Central

    LeBlanc, Michelle E.; Wang, Weiwen; Chen, Xiuping; Caberoy, Nora B.; Guo, Feiye; Shen, Chen; Ji, Yanli; Tian, Hong; Wang, Hui; Chen, Rui

    2017-01-01

    Diabetic retinopathy (DR) is a leading cause of vision loss with retinal vascular leakage and/or neovascularization. Current antiangiogenic therapy against vascular endothelial growth factor (VEGF) has limited efficacy. In this study, we applied a new technology of comparative ligandomics to diabetic and control mice for the differential mapping of disease-related endothelial ligands. Secretogranin III (Scg3) was discovered as a novel disease-associated ligand with selective binding and angiogenic activity in diabetic but not healthy vessels. In contrast, VEGF bound to and induced angiogenesis in both diabetic and normal vasculature. Scg3 and VEGF signal through distinct receptor pathways. Importantly, Scg3-neutralizing antibodies alleviated retinal vascular leakage in diabetic mice with high efficacy. Furthermore, anti-Scg3 prevented retinal neovascularization in oxygen-induced retinopathy mice, a surrogate model for retinopathy of prematurity (ROP). ROP is the most common cause of vision impairment in children, with no approved drug therapy. These results suggest that Scg3 is a promising target for novel antiangiogenic therapy of DR and ROP. PMID:28330905

  5. Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent

    PubMed Central

    Ren, Xuan; Dai, Mei; Lin, Li-Ping; Li, Pui-Kai; Ding, Jian

    2009-01-01

    Background and purpose: The critical role of blood supply in the growth of solid tumours makes blood vessels an ideal target for anti-tumour drug discovery. The anti-angiogenic and vascular disrupting activities of C9, a newly synthesized microtubule-depolymerizing agent, were investigated with several in vitro and in vivo models. Possible mechanisms involved in its activity were also assessed. Experimental approach: Microtubule-depolymerizing actions were assessed by surface plasmon resonance binding, competitive inhibition and cytoskeleton immunofluorescence. Anti-angiogenic and vascular disrupting activities were tested on proliferation, migration, tube formation with human umbilical vein endothelial cells, and in rat aortic ring, chick chorioallantoic membrane and Matrigel plug assays. Western blots and Rho activation assays were employed to examine the role of Raf-MEK-ERK (mitogen-activated ERK kinase, extracellular signal-regulated kinase) and Rho/Rho kinase signalling. Key results: C9 inhibited proliferation, migration and tube formation of endothelial cells and inhibited angiogenesis in aortic ring and chick chorioallantoic membrane assays. C9 induced disassembly of microtubules in endothelial cells and down-regulated Raf-MEK-ERK signalling activated by pro-angiogenic factors. In addition, C9 disrupted capillary-like networks and newly formed vessels in vitro and rapidly decreased perfusion of neovasculature in vivo. Endothelial cell contraction and membrane blebbing induced by C9 in neovasculature was dependent on the Rho/Rho kinase pathway. Conclusions and implications: Anti-angiogenic and vascular disruption by C9 was associated with changes in morphology and function of endothelial cells, involving the Raf-MEK-ERK and Rho/Rho kinase signalling pathways. These findings strongly suggest that C9 is a new microtubule-binding agent that could effectively target tumour vasculature. PMID:19302593

  6. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvesselmore » density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.« less

  7. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    PubMed

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. Georg Thieme Verlag KG Stuttgart-New York.

  8. Anti-angiogenic and anti-metastatic activity of JAK inhibitor AZD1480

    PubMed Central

    Xin, Hong; Herrmann, Andreas; Reckamp, Karen; Zhang, Wang; Pal, Sumanta; Hedvat, Michael; Zhang, Chunyan; Liang, Wei; Scuto, Anna; Weng, Shaobu; Morosini, Deborah; Cao, Zhu A.; Zinda, Michael; Figlin, Robert; Huszar, Dennis; Jove, Richard; Yu, Hua

    2011-01-01

    STAT3 has important functions in both tumor cells and the tumor microenvironment to facilitate cancer progression. The STAT regulatory kinase JAK has been strongly implicated in promoting oncogenesis of various solid tumors, including through the use of JAK kinase inhibitors such as AZD1480. However, direct evidence that JAK drives STAT3 function and cancer pathogenesis at the level of the tumor microenvironment has yet to be established clearly. In this study, we show that AZD1480 inhibits STAT3 in tumor-associated myeloid cells, reducing their number and inhibiting tumor metastasis. Myeloid cell-mediated angiogenesis was also diminished by AZD1480, with additional direct inhibition of endothelial cell function in vitro and in vivo. AZD1480 blocked lung infiltration of myeloid cells and formation of pulmonary metastases in both mouse syngeneic experimental and spontaneous metastatic models. Furthermore, AZD1480 reduced angiogenesis and metastasis in a human xenograft tumor model. Although the effects of AZD1480 on the tumor microenvironment were important for the observed anti-angiogenic activity, constitutive activation of STAT3 in tumor cells themselves could block these anti-angiogenic effects demonstrating the complexity of the JAK/STAT signaling network in tumor progression. Together, our results indicated that AZD1480 can effectively inhibit tumor angiogenesis and metastasis mediated by STAT3 in stromal cells as well as tumor cells. PMID:21920898

  9. Antiangiogenic and tumour inhibitory effects of downregulating tumour endothelial FABP4

    PubMed Central

    Harjes, U; Bridges, E; Gharpure, K M; Roxanis, I; Sheldon, H; Miranda, F; Mangala, L S; Pradeep, S; Lopez-Berestein, G; Ahmed, A; Fielding, B; Sood, A K; Harris, A L

    2017-01-01

    Fatty acid binding protein 4 (FABP4) is a fatty acid chaperone, which is induced during adipocyte differentiation. Previously we have shown that FABP4 in endothelial cells is induced by the NOTCH1 signalling pathway, the latter of which is involved in mechanisms of resistance to antiangiogenic tumour therapy. Here, we investigated the role of FABP4 in endothelial fatty acid metabolism and tumour angiogenesis. We analysed the effect of transient FABP4 knockdown in human umbilical vein endothelial cells on fatty acid metabolism, viability and angiogenesis. Through therapeutic delivery of siRNA targeting mouse FABP4, we investigated the effect of endothelial FABP4 knockdown on tumour growth and blood vessel formation. In vitro, siRNA-mediated FABP4 knockdown in endothelial cells led to a marked increase of endothelial fatty acid oxidation, an increase of reactive oxygen species and decreased angiogenesis. In vivo, we found that increased NOTCH1 signalling in tumour xenografts led to increased expression of endothelial FABP4 that decreased when NOTCH1 and VEGFA inhibitors were used in combination. Angiogenesis, growth and metastasis in ovarian tumour xenografts were markedly inhibited by therapeutic siRNA delivery targeting mouse endothelial FABP4. Therapeutic targeting of endothelial FABP4 by siRNA in vivo has antiangiogenic and antitumour effects with minimal toxicity and should be investigated further. PMID:27568980

  10. Antiangiogenic and tumour inhibitory effects of downregulating tumour endothelial FABP4.

    PubMed

    Harjes, U; Bridges, E; Gharpure, K M; Roxanis, I; Sheldon, H; Miranda, F; Mangala, L S; Pradeep, S; Lopez-Berestein, G; Ahmed, A; Fielding, B; Sood, A K; Harris, A L

    2017-02-16

    Fatty acid binding protein 4 (FABP4) is a fatty acid chaperone, which is induced during adipocyte differentiation. Previously we have shown that FABP4 in endothelial cells is induced by the NOTCH1 signalling pathway, the latter of which is involved in mechanisms of resistance to antiangiogenic tumour therapy. Here, we investigated the role of FABP4 in endothelial fatty acid metabolism and tumour angiogenesis. We analysed the effect of transient FABP4 knockdown in human umbilical vein endothelial cells on fatty acid metabolism, viability and angiogenesis. Through therapeutic delivery of siRNA targeting mouse FABP4, we investigated the effect of endothelial FABP4 knockdown on tumour growth and blood vessel formation. In vitro, siRNA-mediated FABP4 knockdown in endothelial cells led to a marked increase of endothelial fatty acid oxidation, an increase of reactive oxygen species and decreased angiogenesis. In vivo, we found that increased NOTCH1 signalling in tumour xenografts led to increased expression of endothelial FABP4 that decreased when NOTCH1 and VEGFA inhibitors were used in combination. Angiogenesis, growth and metastasis in ovarian tumour xenografts were markedly inhibited by therapeutic siRNA delivery targeting mouse endothelial FABP4. Therapeutic targeting of endothelial FABP4 by siRNA in vivo has antiangiogenic and antitumour effects with minimal toxicity and should be investigated further.

  11. Antiangiogenic tyrosine kinase inhibitors in colorectal cancer: is there a path to making them more effective?

    PubMed

    Karasic, Thomas B; Rosen, Mark A; O'Dwyer, Peter J

    2017-10-01

    Antiangiogenic therapy has a proven survival benefit in metastatic colorectal cancer. Inhibition of the VEGF pathway using a variety of extracellular antibody approaches has clear benefit in combination with chemotherapy, while intracellular blockade using tyrosine kinase inhibitors (TKIs) such as sorafenib and regorafenib has had more limited success. Pharmacodynamic modeling using modalities such as DCE-MRI indicates potent antiangiogenic effects of these TKIs, yet numerous combination therapies, primarily with chemotherapy, have failed to demonstrate an additive benefit. The sole comparative study of a single agent TKI against placebo showed a survival benefit of regorafenib in patients with advanced, refractory disease. Preclinical data demonstrate synergy between antiantiogenic TKIs and targeted interventions including autophagy inhibition, and together with a renewed effort to define markers of susceptibility, such combinations may be a way to improve the limited efficacy of this once-promising drug class.

  12. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    PubMed

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  13. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization.

    PubMed

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8+ T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8+ T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  14. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature.

    PubMed

    Shi, Shujing; Chen, Longbang; Huang, Guichun

    2013-12-01

    Abnormal tumor vasculature and subsequent tumor hypoxia contribute to immune tolerance of tumor cells by impeding the homing of cytotoxic T cells into tumor parenchyma and inhibiting their antitumor efficacy. These obstacles might explain why the promising approach of adoptive cell immunotherapy does not exert significant antitumor activity. Hypoxia contributes to immune suppression by activating hypoxia-inducible factor (HIF-1) and the vascular endothelial growth factor pathway, which plays a determining role in promoting tumor cell growth and survival. Tumor hypoxia creates an immunosuppressive microenvironment via the accumulation and subsequent polarization of inflammatory cells toward immune suppression phenotypes, such as myeloid-derived suppressor cells, tumor-associated macrophages, and dendritic cells. Antiangiogenic therapy could normalize tumor vasculature and decrease hypoxic tumor area and thus may be an effective modality to potentiate immunotherapy. Adoptive cell immunotherapy alone is not efficient enough to decrease tumor growth as its antitumor effect is inhibited by the immunosuppressive hypoxic tumor microenvironment. This review describes that combination of antiangiogenic therapy with adoptive cell immunotherapy can exert synergistic antitumor effect, which will contribute to improve strategies for future anticancer therapies.

  15. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  16. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice

    PubMed Central

    Touil, Yasmine S.; Seguin, Johanne; Scherman, Daniel; Chabot, Guy G.

    2011-01-01

    Purpose The natural flavonoid fisetin was recently identified as a lead compound that stabilizes endothelial cell microtubules. In this study we investigated the antiproliferative and antiangiogenic properties of fisetin in vitro and in vivo. Methods Fisetin cytotoxicity was evaluated using Lewis lung carcinoma cells (LLC), endothelial cells and NIH 3T3 cells. Endothelial cell (EC) migration and capillary-like structure formation were evaluated using EAhy 926 cells. In vivo tumour growth inhibition studies were performed using LLC bearing mice treated with fisetin and/or cyclophosphamide (CPA). Results The fisetin IC50 was 59 μM for LLC and 77 μM for EC cells, compared to 210 μM for normal NIH 3T3 cells (24 h). Fisetin inhibited EC migration and capillary-like structure formation at non-cytotoxic concentrations (22–44 μM). In mice, fisetin inhibited angiogenesis assessed using the Matrigel plug assay. In LLC bearing mice, fisetin produced a 67% tumour growth inhibition (223 mg/kg, intraperitoneal), similar to the 66% produced by low dose CPA (30 mg/kg, subcutaneous). When fisetin and CPA were combined, however, a marked improvement in antitumour activity was observed (92% tumour growth inhibition), with low systemic toxicity. Tumour histology showed decreased microvessel density with either fisetin or CPA alone, and a dramatic decrease after the fisetin/CPA combination. Conclusions We have shown that fisetin not only displays in vitro and in vivo antiangiogenic properties, but that it can also markedly improve the in vivo antitumour effect of CPA. We propose that this drug combination associating a non-toxic dietary flavonoid with a cytotoxic agent could advantageously be used in the treatment of solid tumours. PMID:21069336

  17. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma.

    PubMed

    Muscella, A; Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-09-01

    It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. © 2016 The British Pharmacological Society.

  18. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    PubMed Central

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  19. Multimodal biopanning of T7 phage-displayed peptides reveals angiomotin as a potential receptor of the anti-angiogenic macrolide Roxithromycin.

    PubMed

    Takakusagi, Kaori; Takakusagi, Yoichi; Suzuki, Takahiro; Toizaki, Aya; Suzuki, Aiko; Kawakatsu, Yaichi; Watanabe, Madoka; Saito, Yukihiro; Fukuda, Ryushi; Nakazaki, Atsuo; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2015-01-27

    Roxithromycin (RXM) is a semi-synthetic fourteen-membered macrolide antibiotic that shows anti-angiogenic activity in solid tumors. In the present study, we conducted biopanning of T7 phage-displayed peptides either on a 96-well formatted microplate, a flow injection-type quartz-crystal microbalance (QCM) biosensor, or a cuvette-type QCM. RXM-selected peptides of different sequence, length and number were obtained from each mode of screening. Subsequent bioinformatics analysis of the RXM-selected peptides consistently gave positive scores for the extracellular domain (E458-T596) of angiomotin (Amot), indicating that this may comprise a binding region for RXM. Bead pull down assay and QCM analysis confirmed that RXM directly interacts with Amot via the screen-guided region, which also corresponds to the binding site for the endogenous anti-angiogenic inhibitor angiostatin (Anst). Thus, multimodal biopanning of T7PD revealed that RXM binds to the extracellular domain on Amot as a common binding site with Anst, leading to inhibition of angiogenesis-dependent tumor growth and metastasis. These data might explain the molecular basis underlying the mechanism of action for the anti-angiogenic activity of RXM. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp; Hijioka, Kuniaki

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV,more » with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.« less

  1. A novel delivery vector for targeted delivery of the antiangiogenic drug paclitaxel to angiogenic blood vessels: TLTYTWS-conjugated PEG-PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li

    2017-02-01

    Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.

  2. Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model

    PubMed Central

    Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong

    2008-01-01

    Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We

  3. A Decade of Experience in Developing Preclinical Models of Advanced- or Early-Stage Spontaneous Metastasis to Study Antiangiogenic Drugs, Metronomic Chemotherapy, and the Tumor Microenvironment.

    PubMed

    Kerbel, Robert S

    2015-01-01

    The clinical circumstance of treating spontaneous metastatic disease, after resection of primary tumors, whether advanced/overt or microscopic in nature, is seldom modeled in mice and may be a major factor in explaining the frequent discordance between preclinical and clinical therapeutic outcomes where the trend is "overprediction" of positive results in preclinical mouse model studies. To evaluate this hypothesis, a research program was initiated a decade ago to develop multiple models of metastasis in mice, using variants of human tumor cell lines selected in vivo for enhanced spontaneous metastatic aggressiveness after surgical resection of established orthotopic primary tumors. These models have included breast, renal, and colorectal carcinomas; ovarian cancer (but without prior surgery); and malignant melanoma. They have been used primarily for experimental therapeutic investigations involving various antiangiogenic drugs alone or with chemotherapy, especially "metronomic" low-dose chemotherapy. The various translational studies undertaken have revealed a number of clinically relevant findings. These include the following: (i) the potential of metronomic chemotherapy, especially when combined with a vascular endothelial growth factor pathway targeting drug to successfully treat advanced metastatic disease; (ii) the development of relapsed spontaneous brain metastases in mice with melanoma or breast cancer whose systemic metastatic disease is successfully controlled for a period with a given therapy; (iii) foreshadowing the failure of adjuvant antiangiogenic drug-based phase III trials; (iv) recapitulating the failure of oral antiangiogenic tyrosine kinase inhibitors plus standard chemotherapy in contrast to the modest successes of antiangiogenic antibodies plus chemotherapy in metastatic breast cancer; and (v) revealing "vessel co-option" and absence of angiogenesis as a determinant of intrinsic resistance or minimal responsiveness to antiangiogenic therapy

  4. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    PubMed

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the angiogenic switch, because copper normally enhances endothelial cell migration and proliferation, improves binding of growth factors to endothelial cells

  5. Antitumour and antiangiogenic activities of [Pt(O,O′‐acac)(γ‐acac)(DMS)] in a xenograft model of human renal cell carcinoma

    PubMed Central

    Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-01-01

    Background and Purpose It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O′‐acac)(γ‐acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non‐genomic targets, on human renal carcinoma and compared them with those of the well‐established anticancer drug, cisplatin. Experimental Approach Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki‐1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Key Results Treatment of the Caki‐1 cells with cisplatin or [Pt(DMS)] resulted in a dose‐dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. Conclusions and Implications The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. PMID:27351124

  6. Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus.

    PubMed

    Del Bufalo, Donatella; Ciuffreda, Ludovica; Trisciuoglio, Daniela; Desideri, Marianna; Cognetti, Francesco; Zupi, Gabriella; Milella, Michele

    2006-06-01

    Mammalian target of rapamycin (mTOR) is increasingly recognized as a master regulator of fundamental cellular functions, whose deregulation may underlie neoplastic transformation and progression. Hence, mTOR has recently emerged as a promising target for therapeutic anticancer interventions in several human tumors, including breast cancer. Here, we investigated the antiangiogenic potential of temsirolimus (also known as CCI-779), a novel mTOR inhibitor currently in clinical development for the treatment of breast cancer and other solid tumors. Consistent with previous reports, sensitivity to temsirolimus-mediated growth inhibition varied widely among different breast cancer cell lines and was primarily due to inhibition of proliferation with little, if any, effect on apoptosis induction. In the HER-2 gene-amplified breast cancer cell line BT474, temsirolimus inhibited vascular endothelial growth factor (VEGF) production in vitro under both normoxic and hypoxic conditions through inhibition of hypoxia-stimulated hypoxia-inducible factor (HIF)-1alpha expression and transcriptional activation. Interestingly, these effects were also observed in the MDA-MB-231 cell line, independent of its inherent sensitivity to the growth-inhibitory effects of temsirolimus. A central role for mTOR (and the critical regulator of cap-dependent protein translation, eIF4E) in the regulation of VEGF production by BT474 cells was further confirmed using a small interfering RNA approach to silence mTOR and eIF4E protein expression. In addition to its effect on HIF-1alpha-mediated VEGF production, temsirolimus also directly inhibited serum- and/or VEGF-driven endothelial cell proliferation and morphogenesis in vitro and vessel formation in a Matrigel assay in vivo. Overall, these results suggest that antiangiogenic effects may substantially contribute to the antitumor activity observed with temsirolimus in breast cancer.

  7. Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from Daphne genkwa based on hierarchical cluster and principal component analysis.

    PubMed

    Wang, Ling; Lan, Xin-Yi; Ji, Jun; Zhang, Chun-Feng; Li, Fei; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory and angiogenic diseases. The aim of this study was to evaluate the anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenoids isolated from Daphne genkwa. LC-MS was used to identify diterpenes isolated from D. genkwa. The anti-inflammatory and anti-angiogenic activities of eight diterpenoids were evaluated on LPS-induced macrophage RAW264.7 cells and TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The eight diterpenes isolated from D. genkwa were identified as yuanhuaphnin, isoyuanhuacine, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuagine, isoyuanhuadine, yuanhuadine, yuanhuaoate C and yuanhuacine. All the eight diterpenes significantly down-regulated the excessive secretion of TNF-α, IL-6, IL-1β and NO in LPS-induced RAW264.7 macrophages. However, only 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl markedly reduced production of VEGF, MMP-3, ICAM and VCAM in TNF-α-stimulated HUVECs. HCA obtained 4 clusters, containing 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, isoyuanhuacine, isoyuanhuadine and five other compounds. PCA showed that the ranking of diterpenes sorted by efficacy from highest to lowest was 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuaphnin, isoyuanhuacine, yuanhuacine, yuanhuaoate C, yuanhuagine, isoyuanhuadine, yuanhuadine. In conclusion, eight diterpenes isolated from D. genkwa showed different levels of activity in LPS-induced RAW264.7 cells and TNF-α-stimulated HUVECs. The comprehensive evaluation of activity by HCA and PCA indicated that of the eight diterpenes, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl was the best, and can be developed as a new drug for RA therapy.

  8. Discovery of mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic properties: synthesis, pharmacological evaluation and molecular docking study of 2-thioxo-pyrazolo[1,5-a][1,3,5]triazin-4-ones. Part II.

    PubMed

    Bera, Hriday; Ojha, Probir kumar; Tan, Bee Jen; Sun, Lingyi; Dolzhenko, Anton V; Chui, Wai-Keung; Chiu, Gigi Ngar Chee

    2014-05-06

    In our drug discovery program, a series of 2-thioxo-pyrazolo[1,5-a][1,3,5]triazin-4-ones were designed, synthesized and evaluated for their TP inhibitory potential. All the synthesized analogues conferred a varying degree of TP inhibitory activity, comparable or better than positive control, 7-deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). A systematic approach to the lead optimization identified compounds 3c and 4a as the most promising TP inhibitors, exhibiting mixed mode of enzyme inhibition. Moreover, selected compounds demonstrated the ability to attenuate the expression of the angiogenic markers (viz. MMP-9 and VEGF) in MDA-MB-231 cells at sublethal concentrations. In addition, molecular docking studies revealed the plausible binding orientation of these inhibitors towards TP, which was in accordance with the experimental results. Taken as a whole, these compounds would constitute a new direction for the design of novel TP inhibitors with promising antiangiogenic properties. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    PubMed

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  10. Antiangiogenic drugs synergize with a membrane macrophage colony-stimulating factor-based tumor vaccine to therapeutically treat rats with an established malignant intracranial glioma.

    PubMed

    Jeffes, Edward W B; Zhang, Jian Gang; Hoa, Neil; Petkar, Animesh; Delgado, Christina; Chong, Samuel; Obenaus, Andre; Sanchez, Ramon; Khalaghizadeh, Sakineh; Khomenko, Tetyana; Knight, Brandon A; Alipanah, Reza; Nguyen, Tuong-Vi; Shah, Chirag; Vohra, Seema; Zhuang, Jing-Li; Liu, Jessie; Wepsic, H Terry; Jadus, Martin R

    2005-03-01

    Combining a T9/9L glioma vaccine, expressing the membrane form of M-CSF, with a systemic antiangiogenic drug-based therapy theoretically targeted toward growth factor receptors within the tumor's vasculature successfully treated >90% of the rats bearing 7-day-old intracranial T9/9L gliomas. The antiangiogenic drugs included (Z)-3-[4-(dimethylamino)benzylidenyl]indolin-2-one (a platelet-derived growth factor receptor beta and a fibroblast growth factor receptor 1 kinase inhibitor) and oxindole (a vascular endothelial growth factor receptor 2 kinase inhibitor). A total of 20-40% of the animals treated with the antiangiogenic drugs alone survived, while all nontreated controls and tumor vaccine-treated rats died within 40 days. In vitro, these drugs inhibited endothelial cells from proliferating in response to the angiogenic factors produced by T9/9L glioma cells and prevented endothelial cell tubulogenesis. FITC-labeled tomato lectin staining demonstrated fewer and constricted blood vessels within the intracranial tumor after drug therapy. Magnetic resonance imaging demonstrated that the intracranial T9 glioma grew much slower in the presence of these antiangiogenic drugs. These drugs did not affect in vitro glioma cell growth nor T cell mitogenesis. Histological analysis revealed that the tumor destruction occurred at the margins of the tumor, where there was a heavy lymphocytic infiltrate. Real-time PCR showed more IL-2-specific mRNA was present within the gliomas in the vaccinated rats treated with the drugs. Animals that rejected the established T9/9L glioma by the combination therapy proved immune against an intracranial rechallenge by T9/9L glioma, but showed no resistance to an unrelated MADB106 breast cancer.

  11. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    PubMed

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  12. Conversion of alkanes to organoseleniums and organotelluriums

    DOEpatents

    Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.

    2016-11-29

    The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.

  13. Tetrahydrohyperforin and Octahydrohyperforin Are Two New Potent Inhibitors of Angiogenesis

    PubMed Central

    Martínez-Poveda, Beatriz; Verotta, Luisella; Bombardelli, Ezio; Quesada, Ana R.; Medina, Miguel Ángel

    2010-01-01

    Background We have previously shown that hyperforin, a phloroglucinol derivative found in St. John's wort, behaves as a potent anti-angiogenic compound. To identify the reactive group(s) mainly involved in this anti-angiogenic effect, we have investigated the anti-angiogenic properties of a series of stable derivatives obtained by oxidative modification of the natural product. In addition, in the present work we have studied the role of the four carbonyl groups present in hyperforin by investigating the potential of some other chemically stable derivatives. Methodology/Principal Findings The experimental procedures included the analysis of the effects of treatment of endothelial cells with these compounds in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Our study with hyperforin and eight derivatives shows that the enolized β-dicarbonyl system contained in the structure of hyperforin has a dominant role in its antiangiogenic activity. On the other hand, two of the tested hyperforin derivatives, namely, tetrahydrohyperforin and octahydrohyperforin, behave as potent inhibitors of angiogenesis. Additional characterization of these compounds included a cell specificity study of their effects on cell growth, as well as the in vivo Matrigel plug assay. Conclusions/Significance These observations could be useful for the rational design and chemical synthesis of more effective hyperforin derivatives as anti-angiogenic drugs. Altogether, the results indicate that octahydrohyperforin is a more specific and slightly more potent antiangiogenic compound than hyperforin. PMID:20224821

  14. Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer.

    PubMed

    Rajitha, Balney; Nagaraju, Ganji Purnachandra; Shaib, Walid L; Alese, Olatunji B; Snyder, James P; Shoji, Mamoru; Pattnaik, Subasini; Alam, Afroz; El-Rayes, Bassel F

    2017-01-01

    The transcription factor NF-κB plays a central role in angiogenesis in colorectal cancer (CRC). Curcumin is a natural dietary product that inhibits NF-κB. The objective of this study is to evaluate the antiangiogenic effects of curcumin and two potent synthetic analogues (EF31 and UBS109) in CRC. IC 50 values for curcumin, EF31, and UBS109 were determined in the HCT116 and HT-29 cell lines. HUVEC tube formation, egg CAM assay, and matrigel plug assays revealed decreased angiogenesis in cell lines treated with curcumin, EF31, or UBS109. Curcumin and its analogues significantly inhibited VEGF-A synthesis and secretion in both cell lines in association with loss of HIF-1α, COX-2, and p-STAT-3 expression. Nuclear NF-κB expression was inhibited by curcumin, EF31, and UBS109. Transfection of p65-NF-κB in HCT116 and HT-29 cells resulted in increased expression of HIF-1α, COX-2, STAT-3, and VEGF-A. Treatment with curcumin, EF31, or UBS109 inhibited these effects in transfected cell lines. In mice carrying HCT116 and HT-29 cell xenografts, EF31 and UBS109 inhibited subcutaneous tumor growth and potentiated the effects of oxaliplatin and 5-FU. Tumors from treated animals revealed inhibition of HIF-1α, COX-2, p-STAT-3, and VEGF expression. Our findings suggest that inhibition of NF-κB leading to decreased transcription and expression of HIF-1α, COX-2, STAT-3, and VEGF is a rational approach for antiangiogenic therapy in CRC. The distinctive properties of EF31 and UBS109 make them promising therapeutic agents for development in CRC as single agents or as part of combination chemotherapy regimens. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina

    PubMed Central

    Magnussen, Anette L.; Rennel, Emma S.; Hua, Jing; Bevan, Heather S.; Long, Nicholas Beazley; Lehrling, Christina; Gammons, Melissa; Floege, Juergen; Harper, Steven J.; Agostini, Hansjürgen T.; Bates, David O.; Churchill, Amanda J.

    2010-01-01

    Purpose. A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival. Methods. VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b. Results. VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b. Conclusions. The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. PMID:20237249

  16. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its antiproliferative and antiangiogenic activity in vitro.

    PubMed

    Dasgupta, P; Mukherjee, R

    2000-01-01

    The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. British Journal of Pharmacology (2000) 109, 101 - 109

  17. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its antiproliferative and antiangiogenic activity in vitro

    PubMed Central

    Dasgupta, P; Mukherjee, R

    2000-01-01

    The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. PMID:10694208

  18. Lipid based nanoemulsifying resveratrol for improved physicochemical characteristics, in vitro cytotoxicity and in vivo antiangiogenic efficacy.

    PubMed

    Pund, Swati; Thakur, Rohit; More, Umesh; Joshi, Amita

    2014-08-01

    Resveratrol, a dietary non-flavonoid polyphenolic phytoalexin, has gained attention in cancer chemoprevention. However, poor aqueous solubility and cellular bioavailability has limited its therapeutic application. We formulated a lipid based delivery system of resveratrol with self nanoemulsifying ability. Several edible and safe lipids, surfactants and cosolvents were screened for solubilization of resevratrol. Developed formulation comprised of Acrysol K 150 as a lipid and mixture of Labrasol and Transcutol HP as the surfactant system, as these components showed higher solubility. Pseudoternary phase diagram was constructed to identify the region of nanoemulsification. The formulations showed rapid emulsification with an average globule diameter; 85nm to 120nm and slight negative zeta potential. The nanocompositions exhibited cloud point above 55°C and were stable toward the gastrointestinal pH and thermodynamic stress testing. As compared to pristine resveratrol, the developed delivery system showed significant increase in vitro cytotoxicity in MCF-7 breast cancer cells. In vivo chick chorioallantoic membrane assay revealed enhanced antiangiogenic activity of composition with high lipid level. Briefly, lipid based nanoemulsifying resveratrol dramatically enhanced the anticancer and antiangiogenic activities, thus increasing its potential application in cancer chemotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer.

    PubMed

    Jain, K; Jain, N K

    2014-07-01

    The present research work describes the formulation of arginine conjugated 3.0G Poly(propylene) imine (PPI) dendrimers, mimicking the surface structure of an endogenous angiogenesis-inhibitor endostatin; for tumor specific delivery of a model anticancer drug, doxorubicin hydrochloride (Dox). Synthesis of PPI dendrimers and conjugation of arginine to surface groups was confirmed by FTIR, NMR, TEM and mass spectrometry. Drug was loaded by equilibrium dialysis method and developed formulation was evaluated for entrapment efficiency, hemolytic toxicity, in vitro drug release, stability, anti-angiogenic activity via in vivo chick embryo chorioallantoic membrane (CAM) assay, and anticancer activity and cell uptake using MCF-7 cancer cell lines. The system exhibited the initial rapid release followed by sustained release of Dox with significant antiangiogenic activity in the CAM assay. Further, the arginine conjugated dendrimers was found to inhibit growth of cancer cells in ex vivo studies with MCF-7 cell lines. Cell uptake studies suggested that in comparison to free drug the formulation was preferably taken up by the tumor cells. Thus the two pronged attack on cancerous tissue i.e., inhibition of angiogenesis and killing of cancer cells by anticancer drug, might prove to be a promising approach in the treatment of fatal disease, cancer.

  20. Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity.

    PubMed

    Palmer, Kirsten R; Kaitu'u-Lino, Tu'uhevaha J; Hastie, Roxanne; Hannan, Natalie J; Ye, Louie; Binder, Natalie; Cannon, Ping; Tuohey, Laura; Johns, Terrance G; Shub, Alexis; Tong, Stephen

    2015-12-01

    In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a-specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a. © 2015 American Heart Association, Inc.

  1. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway

    PubMed Central

    Luo, Mao; Tan, Xiaoyong; Mu, Lin; Luo, Yulin; Li, Rong; Deng, Xin; Chen, Ni; Ren, Meiping; Li, Yongjie; Wang, Liqun; Wu, Jianbo; Wan, Qin

    2017-01-01

    Metformin, an anti-diabetic drug commonly used for type 2 diabetes therapy, is associated with anti-angiogenic effects in conditions beyond diabetes. miR-21 has been reported to be involved in the process of angiogenesis. However, the precise regulatory mechanisms by which the metformin-induced endothelial suppression and its effects on miR-21-dependent pathways are still unclear. Bioinformatic analysis and identification of miR-21 and its targets and their effects on metformin-induced antiangiogenic activity were assessed using luciferase assays, quantitative real-time PCR, western blots, scratch assays, CCK-8 assays and tubule formation assays. In this study, miR-21 was strikingly downregulated by metformin in a time- and dose-dependent manner. miR-21 directly targeted the 3′-UTR of PTEN and SMAD7, and negatively regulated their expression. Overexpression of miR-21 abrogated the metformin-mediated inhibition of endothelial cells proliferation, migration, tubule formation and the TGF-β-induced AKT, SMAD- and ERK-dependent phosphorylations, and conversely, down-regulation of miR-21 aggravated metformin’s action and revealed significant promotion effects. Our study broadens our understanding of the regulatory mechanism of miR-21 mediating metformin-induced anti-angiogenic effects, providing important implications regarding the design of novel miRNA-based therapeutic strategies against angiogenesis. PMID:28230206

  2. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer.

    PubMed

    Tian, Fengchun; Dahmani, Fatima Zohra; Qiao, Jianan; Ni, Jiang; Xiong, Hui; Liu, Tengfei; Zhou, Jianping; Yao, Jing

    2018-06-03

    Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an

  3. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets.

    PubMed

    Albini, Adriana; Dell'Eva, Raffaella; Vené, Roberta; Ferrari, Nicoletta; Buhler, Donald R; Noonan, Douglas M; Fassina, Gianfranco

    2006-03-01

    Xanthohumol (XN), the principal flavonoid of the hop plant (Humulus lupulus L.) and a constituent of beer, has been suggested to have potential cancer chemopreventive activities. We have observed that most cancer chemopreventive agents show antiangiogenic properties in vitro and in vivo, a concept we termed "angioprevention." Here we show for the first time that XN can inhibit growth of a vascular tumor in vivo. Histopathology and in vivo angiogenesis assays indicated that tumor angiogenesis inhibition was involved. Further, we show the mechanisms for its inhibition of angiogenesis in vivo and related endothelial cell activities in vitro. XN repressed both the NF-kappaB and Akt pathways in endothelial cells, indicating that components of these pathways are major targets in the molecular mechanism of XN. Moreover, using in vitro analyses, we show that XN interferes with several points in the angiogenic process, including inhibition of endothelial cell invasion and migration, growth, and formation of a network of tubular-like structures. Our results suggest that XN can be added to the expanding list of antiangiogenic chemopreventive drugs whose potential in cancer prevention and therapy should be evaluated.

  4. Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from red pepper leaf.

    PubMed

    Jung, Hye Jin; Kim, Yonghyo; Lee, Hyang Burm; Kwon, Ho Jeong

    2015-03-01

    The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible factor-1α and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.

  5. Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects

    PubMed Central

    Batchelor, Tracy T.; Reardon, David A.; de Groot, John F.; Wick, Wolfgang; Weller, Michael

    2014-01-01

    Glioblastoma is characterized by high expression levels of pro-angiogenic cytokines and microvascular proliferation, highlighting the potential value of treatments targeting angiogenesis. Antiangiogenic treatment likely achieves a beneficial impact through multiple mechanisms of action. Ultimately, however, alternative pro-angiogenic signal transduction pathways are activated leading to the development of resistance, even in tumors that initially respond. The identification of biomarkers or imaging parameters to predict response and to herald resistance is of high priority. Despite promising phase 2 clinical trial results and patient benefit in terms of clinical improvement and longer progression-free survival, an overall survival benefit has not been demonstrated in 4 randomized phase 3 trials of bevacizumab or cilengitide in newly diagnosed glioblastoma or cediranib or enzastaurin recurrent glioblastoma. However, future studies are warranted: predictive markers may allow appropriate patient enrichment, combination with chemotherapy may ultimately prove successful in improving overall survival, and novel agents targeting multiple pro-angiogenic pathways may prove effective. PMID:25398844

  6. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action ofmore » toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.« less

  7. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine.

    PubMed

    Zhang, Cheng; Wang, Ning; Tan, Hor-Yue; Guo, Wei; Li, Sha; Feng, Yibin

    2018-05-01

    Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)-derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

  8. Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-angiogenic Agent

    PubMed Central

    Jia, Dan; Koonce, Nathan A.; Halakatti, Roopa; Li, Xin; Yaccoby, Shmuel; Swain, Frances L.; Suva, Larry J.; Hennings, Leah; Berridge, Marc S.; Apana, Scott M.; Mayo, Kevin; Corry, Peter M.; Griffin, Robert J.

    2011-01-01

    The effects of ionizing radiation, with or without the antiangiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma. PMID:20518660

  9. Anti-angiogenic VEGFAxxxb transcripts are not expressed in the medio-basal hypothalamus of the seasonal sheep

    PubMed Central

    Lomet, Didier; Piégu, Benoît; Wood, Shona H.

    2018-01-01

    This study investigated Vegfa expression in the pars tuberalis (PT) of the pituitary and medio-basal hypothalamus (MBH) of sheep, across seasons and reproductive states. It has recently been proposed that season impacts alternative splicing of Vegfa mRNA in the PT, which shifts the balance between angiogenic VEGFAxxx and anti-angiogenic VEGFAxxxb isoforms (with xxx the number of amino acids of the mature VEGFA proteins) to modulate seasonal breeding. Here, we used various RT-PCR methodologies and analysis of RNAseq datasets to investigate seasonal variation in expression and splicing of the ovine Vegfa gene. Collectively, we identify 5 different transcripts for Vegfa within the ewe PT/MBH, which correspond to splicing events previously described in mouse and human. All identified transcripts encode angiogenic VEGFAxxx isoforms, with no evidence for alternative splicing within exon 8. These findings led us to investigate in detail how “Vegfaxxxb-like” PCR products could be generated by RT-PCR and misidentified as endogenous transcripts, in sheep and human HEK293 cells. In conclusion, our findings do not support the existence of anti-angiogenic VEGFAxxxb isoforms in the ovine PT/MBH and shed new light on the interpretation of prior studies, which claimed to identify Vegfaxxxb isoforms by RT-PCR. PMID:29746548

  10. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study.

    PubMed

    Cicchelero, Laetitia; Denies, Sofie; Vanderperren, Katrien; Stock, Emmelie; Van Brantegem, Leen; de Rooster, Hilde; Sanders, Niek N

    2017-08-01

    The immunological, anti-angiogenic and clinical effects of metronomic cyclophosphamide and 3 consecutive intratumoral interleukin (IL)-12 gene therapy (electrogene therapy (EGT)) treatments were evaluated in 6 dogs with spontaneous cancer. In all dogs, a decrease in peripheral leukocytes 2 days after IL-12 EGT coincided with erythema and swelling of the tumor. In the tumor, a transient increase in IL-12 levels was measured, whereas a continuous increase in interferon γ (IFNγ) and thrombospondin 1 (TSP-1) were determined in contrast to a continuous decrease in vascular endothelial growth factor (VEGF). In the serum, a transient increase in IL-12 and IL-10 levels were noted in contrast to a transient decrease in VEGF and TSP-1. The treatment resulted in a significant anti-angiogenic effect. Although all primary tumors continued to progress in time, this progression was slower than before treatment according to the contrast-enhanced ultrasound data. Besides the encouraging immunostimulatory and anti-angiogenic effects observed in all dogs we also noticed in 4 out of 6 dogs clinically relevant improvements in quality of life and weight. These results hold great promise for combinatorial strategies of IL-12 EGT and metronomic chemotherapy with conventional antitumor (immuno)therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Chemoprevention of Prostate Cancer by Naturally Occurring and Synthetic Organoselenium Compounds

    DTIC Science & Technology

    2010-12-01

    the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC...rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 2009;9:8-22 36. Wan X, Harkavy B, Shen N, Grohar P

  12. Separation of selenium species released from Se-exposed algae

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Clark, Randal C.

    1994-01-01

    We have assessed a fractionation scheme for selenium species that separates Se-containing amino acids and other organoselenium compounds in aqueous samples. We investigated the retention of standard solutions of selenate (Se+6), selenite (Se+4), and selenomethionine (Se−2) by fractionation media (Sephadex A-25 ion-exchange resin, copper-treated Chelex-100 ligand-exchange resin, and activated charcoal) and by several types of membrane filters. The fractionation method successfully isolated Se from the standard solutions into appropriate fractions for radiometric quantitation of 75Se. However, some filter media retained unacceptably large amounts of selenate and selenite. Mass balance microcosms were inoculated with green algae (Chlamydomonas">Chlamydomonasreinhardtii">reinhardtii) previously exposed to inorganic 75Se, and the fractionation scheme was used to examine the release of 75Se species into water and air. The results of the microcosm exposure indicate that seasonal blooms and crashes of phytoplankton populations may produce increased concentrations of organoselenium species.

  13. Placental expression of anti-angiogenic proteins in mirror syndrome: a case report.

    PubMed

    Graham, N; Garrod, A; Bullen, P; Heazell, A E P

    2012-06-01

    Mirror syndrome is a rare disorder in which fetal hydrops is associated with maternal oedema, proteinuria and hypertension. The aetiology of the maternal condition is unknown, but it is thought to be related to preeclampsia. Few descriptions exist of placental morphology in mirror syndrome, but placentomegaly is consistently observed. In this case placental morphology showed villous oedema and syncytial nuclear aggregates where villi were in direct contact. Immunoperoxidase staining for VEGFR1 and Endoglin was more intense in mirror syndrome compared to gestational-age matched controls,and at a similar level to a case of preeclampsia. Placentally-derived anti-angiogenic factors may be involved in the pathogenesis of mirror syndrome. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Reactive stroma in the prostate during late life: The role of microvasculature and antiangiogenic therapy influences.

    PubMed

    Montico, Fabio; Kido, Larissa Akemi; San Martin, Rebeca; Rowley, David R; Cagnon, Valéria H A

    2015-10-01

    Prostate cancer is associated to a reactive stroma microenvironment characterized by angiogenic processes that are favorable for tumor progression. Senescence has been identified as a predisposing factor for prostate malignancies. In turn, the relationships between aging, reactive stroma, and the mechanisms that induce this phenotype are largely unknown. Thus, we investigated the occurrence of reactive stroma in the mouse prostate during advanced age as well as the effects of antiangiogenic and androgen ablation therapies on reactive stroma recruitment. Male mice (52-week-old FVB) were treated with two classes of angiogenesis inhibitors: direct (TNP-470; 15 mg/kg; s.c.) and/or indirect (SU5416; 6 mg/kg; i.p.). Androgen ablation was carried out by finasteride administration (20 mg/kg; s.c.), alone or in association to both inhibitors. The Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model was used as a paradigm of cancer-associated reactive stroma. The dorsolateral prostate was collected for α-actin (αSMA), vimentin (VIM), and transforming growth factor-beta (TGF-β) immunohistochemical and Western blotting analyses as well as for CD34/αSMA and CD34/VIM colocalization. Senescence was associated with increased αSMA, VIM, and TGF-β expression as well as with the recruitment of CD34/αSMA and CD34/VIM dual-positive fibroblasts. These observations were similar to those verified in TRAMP mice. Antiangiogenic treatment promoted the recovery of senescence-associated stromal changes. Hormonal ablation, despite having led to impaired CD34/αSMA and CD34/VIM dual-positive cell recruitment, did not result in decreased stimulus to reactive stroma development, due to enhanced TGF-β expression in relation to the aged controls. Reactive stroma develops in the prostate of non-transgenic mice as a result of aging. The periacinar microvasculature is a candidate source for the recruitment of reactive stroma-associated cells, which may be derived either from

  15. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belakavadi, Madesh; Prabhakar, B.T.; Salimath, Bharathi P.

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptoticmore » effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.« less

  16. Anti-angiogenic property of edible berries.

    PubMed

    Roy, Sashwati; Khanna, Savita; Alessio, Helaine M; Vider, Jelena; Bagchi, Debasis; Bagchi, Manashi; Sen, Chandan K

    2002-09-01

    Recent studies show that edible berries may have potent chemopreventive properties. Anti-angiogenic approaches to prevent and treat cancer represent a priority area in investigative tumor biology. Vascular endothelial growth factor (VEGF) plays a crucial role for the vascularization of tumors. The vasculature in adult skin remains normally quiescent. However, skin retains the capacity for brisk initiation of angiogenesis during inflammatory skin diseases such as psoriasis and skin cancers. We sought to test the effects of multiple berry extracts on inducible VEGF expression by human HaCaT keratinocytes. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seed, and strawberry) and a grape seed proanthocyanidin extract (GSPE) were studied. The extracts and uptake of their constituents by HaCaT were studied using a multi-channel HPLC-CoulArray approach. Antioxidant activity of the extracts was determined by ORAC. Cranberry, elderberry and raspberry seed samples were observed to possess comparable ORAC values. The antioxidant capacity of these samples was significantly lower than that of the other samples studied. The ORAC values of strawberry powder and GSPE were higher than cranberry, elderberry or raspberry seed but significantly lower than the other samples studied. Wild bilberry and blueberry extracts possessed the highest ORAC values. Each of the berry samples studied significantly inhibited both H2O2 as well as TNF alpha induced VEGF expression by the human keratinocytes. This effect was not shared by other antioxidants such as alpha-tocopherol or GSPE but was commonly shared by pure flavonoids. Matrigel assay using human dermal microvascular endothelial cells showed that edible berries impair angiogenesis.

  17. Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study.

    PubMed

    Lassau, Nathalie; Bonastre, Julia; Kind, Michèle; Vilgrain, Valérie; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe-Devilliers, Catherine; Gallix, Benoit; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis-Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Feutray, Sylvaine; Uzan-Augui, Joëlle; Coiffier, Benedicte; Benastou, Baya; Koscielny, Serge

    2014-12-01

    Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180&OV0556;, which corresponds to $250 using the current exchange rate. Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large multicenter cohort. Because of its low cost, it

  18. Embolization biomaterial reinforced with nanotechnology for an in-situ release of anti-angiogenic agent in the treatment of hyper-vascularized tumors and arteriovenous malformations.

    PubMed

    Jubeli, E; Yagoubi, N; Pascale, F; Bédouet, L; Slimani, K; Labarre, D; Saint-Maurice, J P; Laurent, A; Moine, L

    2015-10-01

    A polymer based material was developed to act as an embolic agent and drug reservoir for the treatment of arteriovenous malformations (AVM) and hyper vascularized solid tumors. The aim was to combine the blocking of blood supply to the target region and the inhibition of the embolization-stimulated angiogenesis. The material is composed of an ethanolic solution of a linear acrylate based copolymer and acrylate calibrated microparticles containing nanospheres loaded with sunitinib, an anti-angiogenic agent. The precipitation of the linear copolymer in aqueous environment after injection through microcatheter results in the formation of an in-situ embolization gel whereas the microparticles serve to increase the cohesive properties of the embolization agent and to form a reservoir from which the sunitinib-loaded nanospheres are released post-embolization. The swollen state of the microparticles in contact with aqueous medium results in the release of the nanospheres out of microparticles macromolecular structure. After the synthesis, the formulation and the characterization of the different components of the material, anti-angiogenic activity was evaluated in vitro using endothelial cells and in vivo using corneal neovascularization model in rabbit. The efficiency of the arterial embolization was tested in vivo in a sheep model. Results proved the feasibility of this new system for vascular embolization in association with an in situ delivery of anti-angiogenic drug. This combination is a promising strategy for the management of arteriovenous malformations and solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Pneumothorax as a complication of combination antiangiogenic therapy in children and young adults with refractory/recurrent solid tumors.

    PubMed

    Interiano, Rodrigo B; McCarville, M Beth; Wu, Jianrong; Davidoff, Andrew M; Sandoval, John; Navid, Fariba

    2015-09-01

    Antiangiogenic agents show significant antitumor activity against various tumor types. In a study evaluating the combination of sorafenib, bevacizumab, and low-dose cyclophosphamide in children with solid tumors, an unexpectedly high incidence of pneumothorax was observed. We evaluated patient characteristics and risk factors for the development of pneumothorax in patients receiving this therapy. Demographics, clinical course, and radiographic data of 44 patients treated with sorafenib, bevacizumab and cyclophosphamide were reviewed. Risk factors associated with the development of pneumothorax were analyzed. Pneumothorax likely related to study therapy developed in 11 of 44 (25%) patients of whom 33 had pulmonary abnormalities. Median age of patients was 14.7 years (range, 1.08-24.5). Histologies associated with pneumothorax included rhabdoid tumor, synovial sarcoma, osteosarcoma, Ewing sarcoma, Wilms tumor, and renal cell carcinoma. Cavitation of pulmonary nodules in response to therapy was associated with pneumothorax development (P<0.001). Median time from start of therapy to development of pneumothorax was 5.7 weeks (range, 2.4-31). The development of cavitary pulmonary nodules in response to therapy is a risk factor for pneumothorax. As pneumothorax is a potentially life-threatening complication of antiangiogenic therapy in children with solid tumors, its risk needs to be evaluated when considering this therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor p

  1. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors.

    PubMed

    Scott, A J; Messersmith, W A; Jimeno, A

    2015-04-01

    Aberrant proangiogenic pathways have long been implicated in tumorigenesis and metastasis. Antiangiogenic therapies have shown efficacy in the treatment of a variety of solid tumors including lung, breast, colon, glioblastomas, and other solid tumor types. Apatinib, a small-molecule inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2), is an orally bioavailable agent currently being studied in multiple tumor types. Apatinib has shown a survival benefit in gastric cancer in a phase III trial and non-small cell lung cancer in a phase II trial. With a favorable side effect profile and improved outcomes, apatinib has demonstrated a substantial potential to augment therapeutic options in a variety of tumor types. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  2. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    PubMed

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  3. Influences of Histidine-1 and Azaphenylalanine-4 on the Affinity, Anti-inflammatory, and Antiangiogenic Activities of Azapeptide Cluster of Differentiation 36 Receptor Modulators.

    PubMed

    Chignen Possi, Kelvine; Mulumba, Mukandila; Omri, Samy; Garcia-Ramos, Yesica; Tahiri, Houda; Chemtob, Sylvain; Ong, Huy; Lubell, William D

    2017-11-22

    Azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) exhibit promising affinity, selectivity, and modulator activity on the cluster of differentiation 36 receptor (CD36). For example, [A 1 , azaF 4 ]- and [azaY 4 ]-GHRP-6 (1a and 2b) were previously shown to bind selectively to CD36 and exhibited respectively significant antiangiogenic and slight angiogenic activities in a microvascular sprouting assay using choroid explants. The influences of the 1- and 4-position residues on the affinity, anti-inflammatory, and antiangiogenic activity of these azapeptides have now been studied in detail by the synthesis and analysis of a set of 25 analogues featuring Ala 1 or His 1 and a variety of aromatic side chains at the aza-amino acid residue in the 4-position. Although their binding affinities differed only by a factor of 17, the analogues exhibited significant differences in ability to modulate production of nitric oxide (NO) in macrophages and choroidal neovascularization.

  4. Antiangiogenic Tyrosine Kinase Inhibitors: Occurrence and Risk Factors of Hemoptysis in Refractory Thyroid Cancer.

    PubMed

    Lamartina, Livia; Ippolito, S; Danis, M; Bidault, F; Borget, I; Berdelou, A; Al Ghuzlan, A; Hartl, D; Blanchard, P; Terroir, M; Deandreis, D; Schlumberger, M; Baudin, E; Leboulleux, S

    2016-07-01

    Antiangiogenic tyrosine kinase inhibitors (TKIs) are the mainstay of advanced thyroid cancer (TC) treatment. Concern is rising about TKI-related toxicity. To determine the incidence and to investigate the risk factors of hemoptysis in TC patients during TKI treatment. We analyzed consecutive TC patients treated with TKI in our center between 2005 and 2013 and performed an independent review of computed tomography scan images for airway invasion assessment. Occurrence of grade 1-2 or grade 3-5 hemoptysis according to Common Terminology Criteria for Adverse Events version 4.03 and risk factors for hemoptysis were investigated. A total of 140 patients (89 males; median age, 52 y) with medullary (56%), differentiated (33%), and poorly differentiated (11%) TC were enrolled. Thyroidectomy±neck dissection was performed in 123 patients and neck/mediastinum external-beam radiotherapy in 41 (32% with therapeutic purpose and 68% with adjuvant purpose). Patients received from 1 to 4 lines of TKI (median 1). Median follow-up was 24 months. Airway invasion was found in 65 (46%) cases. Hemoptysis occurred in 9 patients: grade 1-2 in 7 cases (5%) and grade 3-5 in 2 (1.4%) cases (fatal in 1). Hemoptysis was associated with presence of airway invasion (P = .04), poorly differentiated pathology (P = .03), history of therapeutic external-beam radiotherapy (P = .003), and thyroidectomy without neck dissection (P = .02). Airway invasion, poorly differentiated pathology, therapeutic external-beam radiotherapy, and thyroidectomy without neck dissection are associated with and increased risk of hemoptysis in TC patients during antiangiogenic TKI treatment. Further research is needed to confirm this data and to sort out interactions between these risk factors. A careful assessment of airway invasion is mandatory before TKI introduction.

  5. Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system.

    PubMed

    Posser, Thaís; Kaster, Manuella P; Baraúna, Sara Cristiane; Rocha, João B T; Rodrigues, Ana Lúcia S; Leal, Rodrigo B

    2009-01-05

    Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] is a seleno-organic compound which possesses a potent antioxidant activity and has been shown to exert neuroprotective effects in vitro and in vivo in a variety of pro-oxidative insults. The present study investigates a possible antidepressant activity of ebselen using two predictive tests for antidepressant activity in rodents: the forced swimming test and tail suspension test. Additionally, the mechanisms involved in the antidepressant-like effect of ebselen in mice were also assessed. Ebselen (10 mg/kg, s.c.) decreased the immobility time in the forced swimming test without accompanying changes in ambulation in the open-field test. In contrast, the administration of ebselen (10-30 mg/kg) did not produce any effect in the tail suspension test. The anti-immobility effect of ebselen (10 mg/kg, s.c.) was not prevented by pre-treatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a serotonin 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a serotonin 5-HT(2A/2C) receptor antagonist). On the other hand, the pre-treatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) completely blocked the antidepressant-like effect of ebselen (10 mg/kg, s.c.) in the forced swimming test. It may be concluded that ebselen produces an antidepressant-like effect in the forced swimming test that seems to be dependent on its interaction with the noradrenergic and dopaminergic systems, but not with the serotonergic system.

  6. Association of the anti-angiogenic factor secreted protein and rich in cysteine (SPARC) with vascular complications among Chinese type 2 diabetic patients in Singapore.

    PubMed

    Moh, Mei Chung; Sum, Chee Fang; Tavintharan, Subramaniam; Pek, Sharon Li Ting; Yeoh, Lee Ying; Ng, Xiaowei; Lee, Simon Biing Ming; Tang, Wern Ee; Lim, Su Chi

    2017-07-01

    This study evaluated the association of the anti-angiogenic SPARC with known angiogenesis-associated factors and diabetes-related micro- and macro-vascular complications in a Singapore Chinese cohort with type 2 diabetes (T2DM). Plasma SPARC was measured by immunoassay in 438 T2DM adults (mean age:58±11years). Higher SPARC levels in subjects stratified by SPARC tertiles displayed decreased pro-angiogenic adiponectin, osteopontin, vascular cell adhesion molecule (VCAM)-1 and matrix metalloproteinase (MMP)-2 concentrations (all p<0.05). The anti-angiogenic pigment epithelium-derived factor (PEDF) level was not statistically different among the SPARC tertiles. Age-adjusted partial correlation revealed significant associations of SPARC with adiponectin, osteopontin, VCAM-1, MMP-2, and PEDF (all p<0.05). Lower SPARC was accompanied by less favorable estimated glomerular filtration rate (eGFR) and carotid-femoral pulse wave velocity (PWV) readings (all p<0.05). Conversely, ankle-brachial index (ABI) reduced with increasing SPARC (p=0.048). The eGFR (B=0.834, p=0.019), PWV (B=-7.925, p=0.009), and ABI (B=-142.160, p=0.010) remained as determinants of SPARC after confounder adjustment. Moreover, individuals in the lowest SPARC tertile had increased odds of aortic stiffness (OR=1.900, 95% CI=1.103-3.274) but reduced odds of peripheral arterial disease (OR=0.400, 95% CI=0.175-0.919). However, SPARC was not independently associated with chronic kidney disease. The anti-angiogenic SPARC may be associated with the pathophysiology of diabetes-related macrovascular complications. Copyright © 2016. Published by Elsevier Inc.

  7. Total alkaloids of Rubus alceifolius Poir shows anti-angiogenic activity in vivo and in vitro.

    PubMed

    Zhao, Jinyan; Lin, Wei; Zhuang, Qunchuan; Zhong, Xiaoyong; Cao, Zhiyun; Hong, Zhenfeng; Peng, Jun

    2014-11-01

    Total alkaloids is an active ingredient of the natural plant Rubus alceifolius Poir, commonly used for the treatment of various cancers. Antitumor effects may be mediated through anti-angiogenic mechanisms. As such, the goal of the present study was to investigate and evaluate the effect of total alkaloids in Rubus alceifolius Poir (TARAP) on tumor angiogenesis and investigate the underlying molecular mechanisms of TARAP action in vivo and in vitro. A chick embryo chorioallantoic membrane (CAM) assay was used to assess angiogenesis in vivo. An MTT assay was performed to determine the viability of human umbilical vein endothelial cells (HUVECs) with and without treatment. Cell cycle progression of HUVECs was examined by FACS analysis with propidium iodide staining. HUVEC migration was determined using a scratch wound method. Tube formation of HUVECs was assessed with an ECMatrix gel system, and mRNA and protein expression of VEGF-A in both HUVECs and HepG2 human hepatocellular carcinoma cells were examined by RT-PCR and ELISA, respectively. Our results showed that TARAP inhibited angiogenesis in the CAM model in vivo and inhibited HUVEC proliferation via blocking cell cycle G1 to S progression in a dose- and time-dependent manners in vitro. Moreover, TARAP inhibited HUVEC migration and tube formation and downregulated mRNA and protein expression of VEGF-A in both HepG2 cells and HUVECs. Our findings suggest that the anti-angiogenic activity of TARAP may partly contribute to its antitumor properties and may be valuable for the treatment of diseases involving pathologic angiogenesis such as cancer. © The Author(s) 2014.

  8. Pneumothorax as a Complication of Combination Antiangiogenic Therapy in Children and Young Adults with Refractory/Recurrent Solid Tumors

    PubMed Central

    Interiano, Rodrigo B.; McCarville, M. Beth; Wu, Jianrong; Davidoff, Andrew M.; Sandoval, John; Navid, Fariba

    2016-01-01

    Purpose Antiangiogenic agents show significant antitumor activity against various tumor types. In a study evaluating the combination of sorafenib, bevacizumab, and low-dose cyclophosphamide in children with solid tumors, an unexpectedly high incidence of pneumothorax was observed. We evaluated patient characteristics and risk factors for the development of pneumothorax in patients receiving this therapy. Patients and Methods Demographics, clinical course, and radiographic data of 44 patients treated with sorafenib, bevacizumab and cyclophosphamide were reviewed. Risk factors associated with the development of pneumothorax were analyzed. Results Pneumothorax likely related to study therapy developed in 11 of 44 (25%) patients of whom 33 had pulmonary abnormalities. Median age of patients was 14.7 years (range, 1.08–24.5). Histologies associated with pneumothorax included rhabdoid tumor, synovial sarcoma, osteosarcoma, Ewing sarcoma, Wilms tumor, and renal cell carcinoma. Cavitation of pulmonary nodules in response to therapy was associated with pneumothorax development (P<0.001). Median time from start of therapy to development of pneumothorax was 5.7 weeks (range, 2.4–31). Conclusion The development of cavitary pulmonary nodules in response to therapy is a risk factor for pneumothorax. As pneumothorax is a potentially life-threatening complication of antiangiogenic therapy in children with solid tumors, its risk needs to be evaluated when considering this therapy. PMID:25783402

  9. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  10. Role of Angiogenesis in Endodontics: Contributions of Stem Cells and Proangiogenic and Antiangiogenic Factors to Dental Pulp Regeneration

    PubMed Central

    Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M.; Sheibani, Nader

    2016-01-01

    Introduction Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. Methods A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Results Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Conclusions Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. PMID:25649306

  11. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    PubMed

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  12. Evaluation of hypertension and proteinuria as markers of efficacy in antiangiogenic therapy for metastatic colorectal cancer.

    PubMed

    Khoja, Leila; Kumaran, Gireesh; Zee, Ying Kiat; Murukesh, Nishanth; Swindell, Ric; Saunders, Mark P; Clamp, Andrew R; Valle, Juan W; Wilson, Greg; Jayson, Gordon C; Hasan, Jurjees

    2014-01-01

    The vascular endothelial growth factor pathway is strongly implicated in cancer-related angiogenesis. Antiangiogenic agents such as bevacizumab commonly cause hypertension (HTN) and proteinuria (PTN), which may be biomarkers of response and clinical outcome. We conducted a retrospective analysis of patients with histologically proven metastatic colorectal cancer (mCRC) treated with either bevacizumab or a tyrosine kinase inhibitor in combination with chemotherapy at The Christie Hospital from January 2006 to September 2009. Of 90 patients evaluated, 50 were eligible. Seventeen (34%), 4 (8%), and 3 (6%) patients developed Common Toxicity Criteria (v 3.0) grades 1, 2, and 3 HTN, respectively. Response rates were 42% for patients with grades 0 to 1 HTN compared with 86% for patients with ≥grade 2 HTN (P=0.043). Median overall survival was 21.6 months for patients with grades 0 to 1 HTN and 25.2 months for patients with ≥grade 2 HTN (P=0.270). Twelve patients (24%) developed grade 1 PTN and 4 patients (8%) developed ≥grade 2 PTN. Median overall survival was 23.9 months for patients with grades 0 to 1 PTN and 4.2 months for those with ≥grade 2 PTN (P=0.028). To our knowledge, this is the first study to demonstrate the utility of PTN as a surrogate marker of outcome in antiangiogenic therapy for metastatic colorectal cancer. Although HTN is predictive of a significantly higher response rate, the development of PTN during treatment with bevacizumab or tyrosine kinase inhibitor portends poorer survival and should be evaluated prospectively.

  13. Methyl tert butyl ether is anti-angiogenic in both in vitro and in vivo mammalian model systems.

    PubMed

    Kozlosky, John; Bonventre, Josephine; Cooper, Keith

    2013-08-01

    Methyl-tertiary butyl ether (MTBE), a well known gasoline oxygenate, and US Food and Drug Administration approved gallstone treatment, has been previously shown to specifically target teleost embryonic angiogenesis. The studies reported here were to determine whether similar vascular disrupting effects occur in higher vertebrate models. Rat brain endothelial cells were isolated and allowed to form microcapillary-like tubes on Matrigel. MTBE (0.34-34.0 mm) exposure resulted in a dose-dependent reduction of tube formation, with the LOAEL at 0.34 mm, while MTBE's primary metabolite, tertiary butyl alcohol had no effect on tube formation. HUVECs, a primary cell line representing macrovascular cells, were able to form tubes on Matrigel in the presence of MTBE (1.25-80 mm), but the tubes were narrower than those formed in the absence of MTBE. In a mouse Matrigel plug implantation assay, 34.0 mm MTBE completely inhibited vessel invasion into plugs containing endothelial cell growth supplement (ECGS) compared with control plugs with ECGS alone. When timed-pregnant Fisher 344 rats were gavaged with MTBE (500-1500 mg kg(-1) ) from day 6 of organogenesis through 10 days post-parturition, no organ toxicity or histological changes in pup vasculature were observed. Results of the in vitro cell culture studies show that MTBE is anti-angiogenic at mm concentrations and has potential use as an anti-angiogenic treatment for solid tumors with minimal toxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Effect of Sulfate on Selenium Uptake And Chemical Speciation in Convolvulus Arvensis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Jimenez, G.; Peralta-Video, J.R.; Rosa, G.de la

    2007-08-08

    Hydroponic experiments were performed to study several aspects of Se uptake by C. arvensis plants. Ten day old seedlings were exposed for eight days to different combinations of selenate (SeO{sub 4}{sup 2-}), sulfate (SO{sub 4}{sup 2-}), and selenite (SeO{sub 3}{sup 2-}). The results showed that in C. arvensis, SO{sub 4}{sup 2-} had a negative effect (P < 0.05) on SeO{sub 4}{sup 2-} uptake. However, a positive interaction produced a significant increase in SO{sub 4}{sup 2-} uptake when SeO{sub 4}{sup 2-} was at high concentration in the media. X-ray absorption spectroscopy studies showed that C. arvensis plants converted more than 70%more » of the supplied SeO{sub 3}{sup 2-} into organoselenium compounds. However, only approximately 50% of the supplied SeO{sub 4}{sup 2-} was converted into organoselenium species while the residual 50% remained in the inorganic form. Analysis using LC-XANES fittings confirmed that the S metabolic pathway was affected by the presence of Se. The main Se compounds that resembled those Se species identified in C. arvensis were Se-cystine, Se-cysteine, SeO{sub 3}{sup 2-}, and SeO{sub 4}{sup 2-}, whereas for S the main compounds were cysteine, cystine, oxidized glutathione, reduced glutathione, and SO{sub 4}{sup 2-}. The results of these studies indicated that C. arvensis could be considered as a possible option for the restoration of soil moderately contaminated with selenium even in the presence of sulfate.« less

  15. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.

  16. Antiangiogenic effect of betaine on pathologic retinal neovascularization via suppression of reactive oxygen species mediated vascular endothelial growth factor signaling.

    PubMed

    Park, Sung Wook; Jun, Hyoung Oh; Kwon, Euna; Yun, Jun-Won; Kim, Jin Hyoung; Park, Young-Jun; Kang, Byeong-Cheol; Kim, Jeong Hun

    2017-03-01

    Reactive oxygen species (ROS) as well as vascular endothelial growth factor (VEGF) play important roles in pathologic retinal neovascularization. We investigated whether betaine inhibits pathologic retinal neovascularization in a mouse model of oxygen induced retinopathy (OIR). Betaine was intravitreally injected in OIR mice at postnatal day (P) 14. At P17, the neovascular tufts area in OIR retina was analyzed. Intravitreal injection of betaine (200μM) effectively reduced the neovascular tufts area in OIR retina (68.0±6.7% of the control eyes, P<0.05). Even in a high concentration (2mM), betaine never induced any retinal toxicity or cytotoxicity. Betaine significantly inhibited VEGF-induced proliferation, migration, and tube formation in human retinal microvascular endothelial cells (HRMECs). Betaine suppressed VEGF-induced VEGFR-2, Akt and ERK phosphorylation in HRMECs. In human brain astrocytes, betaine reduced tBH-induced ROS production, and subsequently attenuated tBH-induced VEGFA mRNA transcription via suppression of ROS. Our data suggest that betaine has an anti-angiogenic effect on pathologic retinal neovascularization via suppression of ROS mediated VEGF signaling. Betaine could be a potent anti-angiogenic agent to treat pathologic retinal neovascularization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224)

    PubMed Central

    Doñate, F; Juarez, J C; Burnett, M E; Manuia, M M; Guan, X; Shaw, D E; Smith, E L P; Timucin, C; Braunstein, M J; Batuman, O A; Mazar, A P

    2008-01-01

    Tetrathiomolybdate (choline salt; ATN-224), a specific, high-affinity copper binder, is currently being evaluated in several phase II cancer trials. ATN-224 inhibits CuZn superoxide dismutase 1 (SOD1) leading to antiangiogenic and antitumour effects. The pharmacodynamics of tetrathiomolybdate has been followed by tracking ceruloplasmin (Cp), a biomarker for systemic copper. However, at least in mice, the inhibition of angiogenesis occurs before a measurable decrease in systemic copper is observed. Thus, the identification and characterisation of other biomarkers to follow the activity of ATN-224 in the clinic is of great interest. Here, we present the preclinical evaluation of two potential biomarkers for the activity of ATN-224: (i) SOD activity measurements in blood cells in mice and (ii) levels of endothelial progenitor cells (EPCs) in bonnet macaques treated with ATN-224. The superoxide dismutase activity in blood cells in mice is rapidly inhibited by ATN-224 treatment at doses at which angiogenesis is maximally inhibited. Furthermore, ATN-224 dosing in bonnet macaques causes a profound and reversible decrease in EPCs without significant toxicity. Thus, both SOD activity measurements and levels of EPCs may be useful biomarkers of the antiangiogenic activity of ATN-224 to be used in its clinical development. PMID:18253124

  18. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  19. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells.

    PubMed

    Wu, Wen-Bin; Hung, Dian-Kun; Chang, Fung-Wei; Ong, Eng-Thaim; Chen, Bing-Huei

    2012-10-01

    Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum fruits, a traditional Chinese medicine, on human umbilical vein endothelial cells (HUVECs) were investigated. Initially, flavonoids were extracted with 80% ethanol and separated using a Cosmosil 140 C18-OPN column, with the acidic fraction eluted with deionized water being composed of chlorogenic acid, caffeoyl quinic acid, caffeic acid and p-coumaric acid and the neutral fraction eluted with methanol composed of quercetin-diglycoside, rutin and kaempferol-O-rutinoside. Flavonoid extract was effective in inhibiting expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) induced by TNF-α in HUVECs. The RT-PCR analysis indicated that ICAM-1 mRNA induced by TNF-α was inhibited by flavonoid extract. The flavonoid extract attenuated TNF-α-induced IκB phosphorylation as well as NF-κB, p65 and p50 translocation from cytosol to nucleus, through inhibition on TNF-α- and H(2)O(2)-induced intracellular reactive oxygen species (ROS) production. For the anti-angiogenic study, the flavonoid extract inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation and migration in HUVECs, as well as angiogenesis. However, the flavonoid extract did not inhibit VEGF signaling. Surprisingly, HUVECs adhesion to the extracellular matrix was compromised and adhesion-induced signaling was retarded by the flavonoid extract.

  20. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    PubMed

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  1. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai.

    PubMed

    Pantziarka, Pan; Hutchinson, Lisa; André, Nicolas; Benzekry, Sébastien; Bertolini, Francesco; Bhattacharjee, Atanu; Chiplunkar, Shubhada; Duda, Dan G; Gota, Vikram; Gupta, Sudeep; Joshi, Amit; Kannan, Sadhana; Kerbel, Robert; Kieran, Mark; Palazzo, Antonella; Parikh, Aparna; Pasquier, Eddy; Patil, Vijay; Prabhash, Kumar; Shaked, Yuval; Sholler, Giselle Saulnier; Sterba, Jaroslav; Waxman, David J; Banavali, Shripad

    2016-01-01

    The 5 th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6 th - 8 th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.

  2. Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5-b]indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Raghavan, Sudhir; Ihnat, Michael; Shenoy, Satyendra; Kisliuk, Roy L.

    2010-01-01

    Combinations of antiangiogenic agents (AAs) with cytotoxic agents have shown significant promise and several such clinical trials are currently underway. We have designed, synthesized and evaluated two compounds that each inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet derived growth factor receptor-beta (PDGFR-β) for antiangiogenic effects and also inhibit human thymidylate synthase (hTS) for cytotoxic effects in single agents. The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate benzenethiols. The inhibitory potency of both these single agents against VEGFR-2, PDGFR-β and hTS is better than or close to standards. In a COLO-205 xenograft mouse model one of the analogs significantly decreased tumor growth (TGI = 76% at 35 mg/kg), liver metastases and tumor blood vessels compared to a standard drug and to control and thus demonstrated potent tumor growth inhibition, inhibition of metastasis and antiangiogenic effects in vivo. These compounds afford combination chemotherapeutic potential in single agents. PMID:20092323

  3. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations.

    PubMed

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-08-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC(50) in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G(1)-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27(KIP1)) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma.

  4. Defibrotide: an endothelium protecting and stabilizing drug, has an anti-angiogenic potential in vitro and in vivo.

    PubMed

    Koehl, Gudrun E; Geissler, Edward K; Iacobelli, Massimo; Frei, Caroline; Burger, Verena; Haffner, Silvia; Holler, Ernst; Andreesen, Reinhard; Schlitt, Hans J; Eissner, Günther

    2007-05-01

    Defibrotide (DF) is a polydisperse mixture of 90% single-stranded oligonucleotides with anti-thrombotic and anti-apoptotic functions. DF is used in the treatment of endothelial complications in the course of allogeneic stem cell transplantation. Recent preclinical evidence suggests that DF might also have anti-neoplastic properties. In the present study we hypothesized that DF might inhibit tumors via an anti-angiogenic effect. The anti-angiogenic potential of DF was tested in vitro using human microvascular endothelial cells forming vessel structures across a layer of dermal fibroblasts. Our results show that pharmacologic DF concentrations (100 mug/ml) significantly reduced vessel formation in this assay. Similarly, DF blocked sprouting from cultured rat aortic rings. In vivo, angiogenesis in a human gastric tumor (TMK1) implanted in dorsal skin-fold chambers (in nude mice) was inhibited by i.v. application of 450 mg/kg DF. Notably, due to its short half-life, DF was most effective when given on a daily basis. Although the precise mechanism of DF remains to be elucidated, initial Western blots show that DF reduces phosphorylation-activation of p70S6 kinase, which is a key target in the PI3K/Akt/mTOR signaling pathway linked to endothelial cell and pericyte proliferation and activation. However, in vitro data suggest that DF acts independently of vascular endothelial growth factor. Taken together, our data suggest that while DF is known for its endothelium-protecting function in SCT, it also inhibits formation of new blood vessels, and thus should be considered for further testing as an adjuvant anti-cancer agent, either alone, or in combination with other drugs.

  5. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks.

    PubMed

    Bayse, Craig A; Antony, Sonia

    2009-05-14

    The oxidation of dimethylselenide, dimethyldiselenide, S-methylselenenyl-methylmercaptan, and truncated and full models of ebselen (N-phenyl-1,2-benzisoselenazol-3(2H)-one) by methyl hydrogen peroxide has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a method of microsolvation that employs explicit solvent networks to facilitate proton transfer reactions. The calculated activation barriers for these systems were substantially lower in energy (DeltaG(double dagger) + DeltaG(solv) = 13 to 26 kcal/mol) than models that neglect the participation of solvent in proton exchange. The comparison of two- and three-water SAPE networks showed a reduction in the strain in the model system but without a substantial reduction in the activation barriers. Truncating the ebselen model to N-methylisoselenazol-3(2H)-one gave a larger activation barrier than ebselen or N-methyl-1,2-benzisoselenazol-3(2H)-one but provided an efficient means of determining an initial guess for larger transition-state models. The similar barriers obtained for ebselen and Me(2)Se(2) (DeltaG(double dagger) + DeltaG(solv) = 20.65 and 20.40 kcal/mol, respectively) were consistent with experimentally determined rate constants. The activation barrier for MeSeSMe (DeltaG(double dagger) + DeltaG(solv) = 21.25 kcal/mol) was similar to that of ebselen and Me(2)Se(2) despite its significantly lower experimental rate for oxidation of an ebselen selenenyl sulfide by hydrogen peroxide relative to ebselen and ebselen diselenide. The disparity is attributed to intramolecular Se-O interactions, which decrease the nucleophilicity of the selenium center of the selenenyl sulfide.

  6. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model.

    PubMed

    Umbaugh, Charles Samuel; Diaz-Quiñones, Adriana; Neto, Manoel Figueiredo; Shearer, Joseph J; Figueiredo, Marxa L

    2018-01-19

    Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.

  7. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model.

    PubMed

    Yadav, Vivek R; Suresh, Sarasija; Devi, Kshama; Yadav, Seema

    2009-01-01

    The purpose of the study was to prepare and evaluate the anti-inflammatory activity of cyclodextrin (CD) complex of curcumin for the treatment of inflammatory bowel disease (IBD) in colitis-induced rat model. Inclusion complexes of curcumin were prepared by common solvent and kneading methods. These complexes were further evaluated for increase in solubility of poorly soluble curcumin. The inclusion complexes were characterized for enhancement in solubility, in vitro dissolution, surface morphology, infrared, differential scanning calorimetry, and X-ray studies. Solubility, phase solubility, and in vitro dissolution studies showed that curcumin has higher affinity for hydroxypropyl-beta-CD (HPbetaCD) than other CDs. HPbetaCD complex of curcumin was further investigated for its antiangiogenic and anti-inflammatory activity using chick embryo and rat colitis model. HPbetaCD complex of curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in chorioallantoic membrane assay. Curcumin- and HPbetaCD-treated rats showed a faster weight gain compared to dextran sulfate solution (DSS) controls. Whole colon length appeared to be significantly longer in HPbetaCD-treated rats than pure curcumin and DSS controls. An additional finding in the DSS-treated rats was the predominance of eosinophils in the chronic cell infiltrate. Decreased mast cell numbers in the mucosa of the colon of CD of curcumin- and pure-curcumin-treated rats was observed. This study concluded that the degree of colitis caused by administration of DSS was significantly attenuated by CD of curcumin. Being a nontoxic natural dietary product, curcumin could be useful in the therapeutic strategy for IBD patients.

  8. Anti-angiogenic effects and mechanisms of zerumin A from Alpinia caerulea.

    PubMed

    He, Zhi-Heng; Gilli, Christian; Yue, Grace Gar-Lee; Lau, Clara Bik-San; Greger, Harald; Brecker, Lothar; Ge, Wei; But, Paul Pui-Hay

    2012-05-01

    Alpinia caerulea (R.Br.) Bentham, a perennial herb growing in tropical and subtropical Australia, is used as a flavouring spice and a ginger substitute. Its fruit has been used as indigenous food among the aboriginal Australians; 95% ethanol extracts of the dried fruits, leaves, rhizomes and roots of this plant were investigated in a zebrafish model by quantitative endogenous alkaline phosphatase assay. Only the fruit extract showed potential anti-angiogenic effect, inhibiting vessel formation by 25% at 20μg/ml. Two diterpenoids were isolated and identified as zerumin A and (E)-8(17),12-labdadiene-15,16-dial. Zerumin A, which had mainly accumulated in the fruits and bearing a carboxylic group, could dose-dependently inhibit vessel formation, in both wild-type and Tg(fli1a:EGFP)y1 zebrafish embryos. The semi-quantitative reverse transcription polymerase chain reaction assay on wild type zebrafish embryos suggested that zerumin A affected multiple molecular targets related to angiogenesis. Further investigation, by human umbilical vein endothelial cell assays, revealed that zerumin A specifically inhibited the proliferation and migration steps, to prevent angiogenesis progress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. [Comparison of anti-angiogenic effect in vitro between ranibizumab and bevacizumab].

    PubMed

    Souto, Alexandre Cupello; Maricato, Juliana Terzi; Denapoli, Priscila Martins Andrade; Sallum, Juliana Maria Ferraz; Han, Sang Won

    2011-01-01

    To evaluate the comparative in-vitro antiangiogenic effect of Bevacizumab and Ranibizumab. Endothelial venous umbilical cells culture (ECV304) cultivated in F12 media with addition of 10% Fetal Bovine Serum, were plaqued and treated with clinically relevant concentrations of Bevacizumab and Ranibizumab just after the scratch done in the middle of the culture (scratch methodology). Measurements of the linear size of the area free of cell proliferation were done 24, 48 and 72 hours after the scratch day point. All the experiments were done in triplicate and statistical analysis were done with T-student test. Inhibitory effect was observed just at the concentrations of 0.5 and 0.7 mg/ml in both drugs. At 0.7 mg/ml, Ranibizumab demonstrated a more potent proliferative inhibitory effect than Bevacizumab. At the same concentration, Ranibizumab was three times more potent than Ranibizumab. Inhibitory effect was observed just in the first 24 hours for both drugs. Ranibizumab demonstrates an increased effect when compared to Bevacizumab and this is related more to the different molar rate of each drug than related to a real better proliferative inhibitory effect.

  10. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations12

    PubMed Central

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-01-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma. PMID:19649202

  11. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    PubMed

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  12. Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity.

    PubMed

    Nam, Nguyen-Hai; Kim, Yong; You, Young-Jae; Hong, Dong-Ho; Kim, Hwan-Mook; Ahn, Byung-Zun

    2003-02-01

    A series of 2',5'-dihydroxychalcones were synthesized and evaluated for cytotoxicity against tumor cell lines and human umbilical venous endothelial cells (HUVEC). It was found that chalcones with electron-withdrawing substituents on the B ring exhibited potent cytotoxicity against a variety of tumor cell lines while compounds with electron-releasing groups were less potent in general. Those compounds with B ring replaced by extended or heteroaromatic rings exhibited significant bioactivity. Several compounds were shown to have marked cytotoxic selectivity towards HUVECs. Especially, among the synthesized compounds, 2-chloro-2',5'-dihydroxychalcone (2-3) showed the highest selectivity index up to 66 in comparison to HCT116 cells. This compound also exhibited strong inhibitory effects on the HUVEC tube formation in an in vitro model. When administered into BDF1 mice bearing Lewis lung carcinoma cells at 50 mg kg(-1) day(-1), 2-3 was found to inhibit the growth of tumor mass by 60.5%.

  13. Anti-Metastatic and Anti-Angiogenic Activities of Core-Shell SiO2@LDH Loaded with Etoposide in Non-Small Cell Lung Cancer.

    PubMed

    Zhu, Yanjing; Zhu, Rongrong; Wang, Mei; Wu, Bin; He, Xiaolie; Qian, Yechang; Wang, Shilong

    2016-11-01

    Currently, nanoparticles have gained a great attention in the anti-tumor research area. However, to date, studies on the anti-metastasis action of core-shell SiO 2 @LDH (LDH: layered double hydroxide) nanoparticles remain untouched. Two emerging aspects considered are establishing research on the controlling delivery effect of SiO 2 @LDH combined with anti-cancer medicine from a new perspective. The fine properties synthetic SiO 2 @LDH-VP16 (VP16: etoposide) are practiced to exhibit the nanoparticle's suppression on migration and invasion of non-small cell lung cancer (NSCLC). Both in vitro and in vivo inspection shows that SiO 2 @LDH can help VP16 better function as an anti-metastasis agent. On the other hand, anti-angiogenic efficiency, co-localization, as well as western blot are investigated to explain the possible mechanism. A clear mergence of SiO 2 @LDH-VP16 and cytomembrane/microtubule may be observed from co-location images. Results offer evidence that SiO 2 @LDH-VP16 plays positions on cytomembrane and microtubules. It efficiently inhibits metastasis on NSCLC by reducing vascularization, and eliciting depression of the PI3K-AKT and FAK-Paxillin signaling pathways. SiO 2 @LDH-VP16, the overall particle morphology, and function on anti-metastasis and anti-angiogenic may be tuned to give new opportunities for novel strategies for cancer therapy.

  14. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential ofmore » these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  15. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage.

    PubMed

    Raghuraman, M; Verma, Prachi; Kunwar, Amit; Phadnis, Prasad P; Jain, V K; Priyadarsini, K Indira

    2017-06-01

    Diselenonicotinamide (DSNA), a synthetic organoselenium compound, was evaluated for its radioprotective effect in cellular models. A clonogenic assay in Chinese Hamster Ovary (CHO) cells and an apoptosis assay in murine splenic lymphocytes indicated that pre-treatment with DSNA at a concentration of 25 μM significantly protected them from radiation-induced cell death. Upon irradiation (1-12 Gy), dose-response studies were carried out under similar treatment conditions, and its dose modification factor (DMF) was estimated to be 1.26. Furthermore, DSNA showed its radioprotective effect, even when administered after exposure to radiation. Mechanistic investigation revealed that DSNA increased the intracellular levels of GPx and GSH in irradiated cells. In line with this observation, the addition of a pharmacological inhibitor of GPx cycle, abrogated the activity of DSNA. The radioprotective effect of DSNA was also complemented by its ability to prevent radiation-induced DNA damage as monitored by micronucleus and γ-H2AX assays. Furthermore, treatment with DSNA did not show much change in the expressions of Nrf2 dependent genes (γ-GCL and HO-1), but the presence of a pharmacological inhibitor of Nrf2 abrogated the radioprotective activity of DSNA against cell death and DNA damage. Additionally, ATRA treatment also inhibited the DSNA-mediated up-regulation of a repair gene RAD51, suggesting possible involvement of basal Nrf2 in the anti-genotoxic effect of DSNA. In conclusion, the present study demonstrates radioprotection by a synthetic organoselenium compound containing nutritionally important moieties like selenium and nicotinamide.

  16. May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment?

    PubMed

    Moccia, Francesco; Poletto, Valentina

    2015-09-01

    Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy

    PubMed Central

    Drappatz, Jan; de Groot, John; Prados, Michael D; Reardon, David A; Schiff, David; Chamberlain, Marc; Mikkelsen, Tom; Desjardins, Annick; Holland, Jaymes; Ping, Jerry; Weitzman, Ron; Cloughesy, Timothy F

    2018-01-01

    Abstract Background Cabozantinib is a tyrosine kinase inhibitor with activity against vascular endothelial growth factor receptor 2 (VEGFR2) and MET that has demonstrated clinical activity in advanced solid tumors. This open-label, phase II trial evaluated cabozantinib in patients with recurrent or refractory glioblastoma (GBM). Methods Patients were initially enrolled at a starting dose of 140 mg/day, but the starting dose was amended to 100 mg/day because of toxicity. Treatment continued until disease progression or unacceptable toxicity. The primary endpoint was objective response rate assessed by an independent radiology facility using modified Response Assessment in Neuro-Oncology criteria. Additional endpoints included duration of response, 6-month and median progression-free survival, overall survival, and safety. Results Among 152 patients naive to prior antiangiogenic therapy, the objective response rate was 17.6% and 14.5% in the 140 mg/day and 100 mg/day groups, respectively, which did not meet the predefined statistical target for success. The proportions of patients alive and progression free at 6 months were 22.3% and 27.8%, respectively. Median progression-free survival was 3.7 months in both groups, and median overall survival was 7.7 months and 10.4 months, respectively. The incidence of grade 3/4 adverse events (AEs) was 79.4% and 84.7% in the 140 mg/day and 100 mg/day groups, respectively, and dose reductions due to AEs were experienced by 61.8% and 72.0%, respectively. Common grade 3/4 AEs included fatigue, diarrhea, and palmar-plantar erythrodysesthesia syndrome. Conclusions Cabozantinib showed evidence of clinical activity in patients with recurrent GBM naive to antiangiogenic therapy, although the predefined statistical target for success was not met. At the starting doses assessed, AEs were frequently managed with dose reductions. Clinical Trials Registration Number NCT00704288 (https://www.clinicaltrials.gov/ct2/show/NCT00704288) PMID

  18. Apatinib for metastatic breast cancer in non-clinical trial setting: Satisfying efficacy regardless of previous anti-angiogenic treatment.

    PubMed

    Lin, Ying; Wu, Zheng; Zhang, Jian; Hu, Xichun; Wang, Zhonghua; Wang, Biyun; Cao, Jun; Wang, Leiping

    2017-06-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 2. This study aimed to evaluate the efficacy and safety of apatinib in metastatic breast cancer (MBC) under non-clinical trial setting, and to study the impact of previous antiangiogenic treatment to the efficacy of apatinib. 52 MBC patients treated with apatinib under non-clinical trial setting in Fudan University Shanghai Cancer Center between January 1st 2015 and October 1st 2016 were included. All patients were included in time-to-treatment failure (TTF) analysis, while 45 patients were enrolled for progression-free survival (PFS) and overall survival (OS) analysis because 7 of the patients with treatment discontinuation due to intolerable toxicities had too short time for efficacy assessment. Impact of previous exposure to antiangiogenic treatment and other factors to patients' survival were analyzed by Log-rank analysis and Cox multivariate analysis. The median PFS, median OS, and median TTF were 4.90 (95% confidence interval [CI] 3.44 - 6.36), 10.3 (unable to calculate 95% CI), and 3.93 (95% CI 1.96 - 5.90) months, respectively. Previous treatment of bevacizumab did not affect the efficacy of apatinib. Previous exposure to anthracycline, age of 60 years or older and palmar-plantar erythrodysesthesia syndrome were independent predictors for prolonged PFS. Discontinuation of treatment was more common in age group of 60 years or older than that in younger group, although the difference was not significant. Although toxicities were generally managable, a previously unrecorded grade 3~4 adverse event of dyspnea has been observed. This study confirmed the encouraging efficacy and manageable safety of apatinib on pretreated MBC patients in non-clinical trial setting. For the first time to our knowledge, this study found that previous treatment of bevacizumab did not affect the efficacy of apatinib, and reported an undocumented severe adverse effect of dyspnea.

  19. Anti-Cancer Properties of a Novel Class of Tetrafluorinated Thalidomide Analogs

    PubMed Central

    Beedie, Shaunna L.; Peer, Cody J.; Pisle, Steven; Gardner, Erin R.; Mahony, Chris; Barnett, Shelby; Ambrozak, Agnieszka; Gütschow, Michael; Chau, Cindy H.; Vargesson, Neil; Figg, William D.

    2015-01-01

    Thalidomide has demonstrated clinical activity in various malignancies affecting immunomodulatory and angiogenesis pathways. The development of novel thalidomide analogs with improved efficacy and decreased toxicity is an ongoing research effort. We recently designed and synthesized a new class of compounds, consisting of both tetrafluorinated thalidomide analogs (Gu973 and Gu998) and tetrafluorobenzamides (Gu1029 and Gu992). In this study, we demonstrate the anti-angiogenic properties of these newly synthesized compounds. We examined the specific anti-angiogenic characteristics in vitro using rat aortic rings with carboxyamidotriazole as a positive control. Additionally, further in vitro efficacy was evaluated using HUVECs and PC3 cells treated with 5μM and 10μM doses of each compound. All compounds were seen to reduce microvessel outgrowth in rat aortic rings as well as inhibit HUVECs to a greater extent, at lower concentrations than previously tested thalidomide analogs. The anti-angiogenic properties of the compounds was also examined in vivo in fli1:EGFP zebrafish embryos, where all compounds were seen to inhibit the extent of outgrowth of newly developing blood vessels. In addition, Gu1029 and Gu973 reduced the anti-inflammatory response in mpo:GFP zebrafish embryos, while Gu998 and Gu992 showed no difference. The compounds anti-tumor effects were also explored in vivo using the human prostate cancer PC3 xenograft model. All four compounds were also screened in vivo in chicken embryos to investigate their teratogenic potential. This study establishes these novel thalidomide analogs as a promising immunomodulatory class with anti-cancer effects that warrant further development to characterize their mechanisms of action. PMID:26269604

  20. Polyprenylated polycyclic acylphloroglucinol: Angiogenesis inhibitor from Garcinia multiflora.

    PubMed

    Cheng, Lin-Yang; Chen, Chun-Lin; Kuo, Yueh-Hsiung; Chang, Tsung-Hsien; Lin, I-Wei; Wang, Shih-Wei; Chung, Mei-Ing; Chen, Jih-Jung

    2018-06-01

    A new polyprenylated polycyclic acylphloroglucinol, garcimultiflorone K (1), has been isolated from the stems of Garcinia multiflora, together with two known compounds, garcimultiflorone A (2) and garcimultiflorone B (3). The structure of new compound 1 was determined through spectroscopic methods including 1D and 2D NMR and MS analyses. The anti-angiogenic and anti-cancer effects of compounds 1-3 were evaluated in human endothelial progenitor cells (EPCs) and cancer cells. Of these, garcimultiflorone K (1) displayed the most potent anti-angiogenic property by suppressing cell growth and tube formation of EPCs. Compound 1 also exhibited growth-inhibitory activities against human hepatocellular carcinoma cell line SK-Hep-1 and hormone refractory prostate cancer cell line PC-3 with GI 50 values of 4.3 ± 1.6 and 6.6 ± 0.4 μM, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The antiangiogenic role of the pro-inflammatory cytokine interleukin-31

    PubMed Central

    Kan, Tal; Raviv, Ziv; Timaner, Michael; Karin, Nathan; Hershkovitz, Dov

    2017-01-01

    Pro-inflammatory cytokines in the tumor microenvironment are known for their ability to either inhibit or promote cancer progression. Here we evaluated the role of Interleukin-31 (IL31), a protein belonging to the pro-inflammatory IL-6 cytokine family which has been characterized in autoimmune disease, in tumorigenesis. We show that IL31 and its receptor, IL31RA, are highly expressed in various human and mouse cancer cell lines, as well as in tumor specimens from cancer patients. MC38 murine colon carcinoma cells depleted of IL31 exhibit an increase in invasive and migratory properties in vitro, effects that are reversed by supplementing the cells with exogenous IL31. In vivo, IL31-depleted MC38 tumor cells implanted to mice grow faster than control tumors. In contrast, MC38 tumor-bearing mice infused with recombinant IL31, exhibit a significant reduction in tumor growth than control mice. Furthermore, IL31 infusion reduces the number of metastatic lesions in the lungs of mice bearing 4T1 murine metastatic breast carcinoma. Lastly, injecting tumor-bearing, chemotherapy-treated mice with a long-lived IL31-IgG fusion protein reduces tumor growth, angiogenesis and pulmonary metastasis to a greater extent than when chemotherapy is used alone. The IL31 anti-tumor activity is explained, in part, by the anti-angiogenic effects demonstrated both in vitro and in vivo highlighting the potential use of IL31 as an anti-cancer drug. PMID:28147314

  2. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Coll, Jean-Luc; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo

    2012-12-01

    64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUV(mean); r = 0.776, P = 0.024 for SUV(max)) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.

  3. Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice.

    PubMed

    Casaril, Angela M; Domingues, Micaela; Fronza, Mariana; Vieira, Beatriz; Begnini, Karine; Lenardão, Eder J; Seixas, Fabiana K; Collares, Tiago; Nogueira, Cristina W; Savegnago, Lucielli

    2017-09-01

    Organoselenium compounds and indoles have gained attention due to their wide range of pharmacological properties. Depression is a recurrent and disabling psychiatric illness and current evidences support that oxidative stress and neuroinflammation are mechanisms underlying the pathophysiology of this psychiatric condition. Here, we evaluated the effect of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) in lipopolysaccharide (LPS)-induced depressive-like behaviour, neuroinflammation and oxidative stress in male mice. CMI pre-treatment (20 and 50 mg/kg, intragastrically) significantly attenuated LPS (0.83 mg/kg, intraperitoneally)-induced depressive-like behaviour in mice by reducing the immobility time in the tail suspension test (TST) and forced swimming test (FST). CMI pre-treatment ameliorated LPS-induced neuroinflammation by reducing the levels of interleukin (IL)-1β, IL-4 and IL-6 in the hippocampus and prefrontal cortex, as well as markers of oxidative damage. Additionally, we investigated the toxicological effects of CMI (200 mg/kg, i.g.) in the liver, kidney and brain through determination of the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), δ-aminolevulinate dehydratase (δ-ALA-D) and creatinine levels. These biomarkers were not modified, indicating the possible absence of neuro-, hepato- and nephrotoxic effects. Our results suggest that CMI could be a therapeutic approach for the treatment of depression and other neuropsychiatric disorders associated with inflammation and oxidative stress.

  4. Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation

    PubMed Central

    Ranieri, Girolamo; Marech, Ilaria; Niccoli Asabella, Artor; Di Palo, Alessandra; Porcelli, Mariangela; Lavelli, Valentina; Rubini, Giuseppe; Ferrari, Cristina; Gadaleta, Cosmo Damiano

    2017-01-01

    Renal cell carcinoma (RCC) is the most frequent renal tumor and the majority of patients are diagnosed with advanced disease. Tumor angiogenesis plays a crucial role in the development and progression of RCC together with hypoxia and glucose metabolism. These three pathways are strictly connected to the cell growth and proliferation, like a loop that is self-feeding. Over the last few years, the ever-deeper knowledge of its contribution in metastatic RCC led to the discovery of numerous tyrosine kinase inhibitors (TKIs) targeting pro-angiogenic receptors at different levels such as sunitinib, sorafenib, pazopanib, axitinib, tivozanib, and dovitinib. As anti-angiogenic agents, TKIs interfere the loop, being able to inhibit tumor proliferation. TKIs are now available treatments for advanced RCC, which demonstrated to improve overall survival and/or progression free survival. Their effects can be detectable early on Positron Emission Tomography/Computed Tomography (PET/CT) by change in 18F-fluoro-2-deoxy-2-d-glucose (18F-FDG) uptake, the main radiotracer used to date, as a strong indicator of biological response. 18F-FDG PET/CT demonstrated an ability to predict and monitor disease progression, allowing an early and reliable identification of responders, and could be used for image-guided optimization and “personalization” of anti-angiogenic regimens. New radiotracers for biometabolic imaging are currently under investigation, which exploit the other pathways involved in the cancer process, including cellular proliferation, aerobic metabolism, cell membrane synthesis, hypoxia and amino acid transport, as well as the angiogenic process, but they require further studies. PMID:28891933

  5. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    PubMed

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy

    PubMed Central

    Yιlmaz, Defne; Phipps, Colin; Kohandel, Mohammad

    2017-01-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor. PMID:28922358

  7. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    PubMed

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  8. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs

    PubMed Central

    Meng, Gang; Xu, Chun; Song, Yong; Wei, Jiwu

    2015-01-01

    Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5′-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects: i) inhibition of tumor angiogenesis by silencing VEGF, ii) induction of innate immune responses by activating RIG-I signaling pathway, and thus activate antitumor immunity, iii) induction of apoptosis. In a subcutaneous model of murine lung cancer, ppp-VEGF displayed a potent antitumor effect. Our results provide a multifunctional antitumor molecule that may overcome the shortages of traditional antiangiogenic agents. PMID:26336994

  9. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG

    PubMed Central

    Liang, Sheng; Zhang, Caiyuan; Cheng, Weiwei; Hai, Wangxi; Yin, Bing; Wang, Dengbin

    2016-01-01

    Purpose Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Experimental design and results Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). Conclusions 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27029065

  10. Phytochemical screening of Artemisia arborescens L. by means of advanced chromatographic techniques for identification of health-promoting compounds.

    PubMed

    Costa, Rosaria; Ragusa, Salvatore; Russo, Marina; Certo, Giovanna; Franchina, Flavio A; Zanotto, Antonio; Grasso, Elisa; Mondello, Luigi; Germanò, Maria Paola

    2016-01-05

    Artemisia arborescens, also known as tree wormwood, is a typical species of the Mediterranean flora. It has been used in folk medicine for its antispasmodic, anti-pyretic, anti-inflammatory, and abortifacient properties. In the current study, the application of multidimensional comprehensive gas chromatography (GC×GC), allowed to obtain a detailed fingerprint of the essential oil from A. arborescens aerial parts, highlighting an abundant presence of chamazulene followed by camphor, β-thujone, myrcene, and α-pinene. Moreover, flavonoids in the dichloromethane extract were analyzed by means of liquid chromatography with photodiode array and atmospheric pressure chemical ionization-mass spectrometry detections (HPLC-PDA and HPLC-APCI-MS). Six polymethoxyflavones were identified and three of them, including chrysosplenetin, eupatin, and cirsilineol, were described in this species for the first time. The anti-angiogenic activity was investigated in the dichloromethane extract by two in vivo models, chick chorioallantoic membrane (CAM) and zebrafish embryos. Results showed that this extract produced a strong reduction on vessel formation, both on zebrafish (57% of inhibition, 0.1 mg/mL) and chick chorioallantoic membrane (58% of inhibition, 0.8 mg/mL). The high separation power and sensitivity of the analytical methodology applied confirmed the safety of A. arborescens essential oil for human consumption, due to the very low level of the psychotrope α-thujone determined. Moreover, the knowledge of the flavonoidic profile holds a great significance for the use of A. arborescens as a valuable source of anti-angiogenic compounds that might contribute to the valorization of the phytotherapeutic potential of this plant. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks.

    PubMed

    Di Ieva, Antonio; Matula, Christian; Grizzi, Fabio; Grabner, Günther; Trattnig, Siegfried; Tschabitscher, Manfred

    2012-01-01

    The need for new and objective indexes for the neuroradiologic follow-up of brain tumors and for monitoring the effects of antiangiogenic strategies in vivo led us to perform a technical study on four patients who received computerized analysis of tumor-associated vasculature with ultra-high-field (7 T) magnetic resonance imaging (MRI). The image analysis involved the application of susceptibility weighted imaging (SWI) to evaluate vascular structures. Four patients affected by recurrent malignant brain tumors were enrolled in the present study. After the first 7-T SWI MRI procedure, the patients underwent antiangiogenic treatment with bevacizumab. The imaging was repeated every 2 weeks for a period of 4 weeks. The SWI patterns visualized in the three MRI temporal sequences were analyzed by means of a computer-aided fractal-based method to objectively quantify their geometric complexity. In two clinically deteriorating patients we found an increase of the geometric complexity of the space-filling properties of the SWI patterns over time despite the antiangiogenic treatment. In one patient, who showed improvement with the therapy, the fractal dimension of the intratumoral structure decreased, whereas in the fourth patient, no differences were found. The qualitative changes of the intratumoral SWI patterns during a period of 4 weeks were quantified with the fractal dimension. Because SWI patterns are also related to the presence of vascular structures, the quantification of their space-filling properties with fractal dimension seemed to be a valid tool for the in vivo neuroradiologic follow-up of brain tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

    PubMed

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis

  13. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    PubMed Central

    Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate

  14. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.

    PubMed

    Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun

    2012-12-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.

  15. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  16. A novel flavonoid isolated from Sophora flavescens exhibited anti-angiogenesis activity, decreased VEGF expression and caused G0/G1 cell cycle arrest in vitro.

    PubMed

    Zhang, Xiu-Li; Cao, Mei-Ai; Pu, Li-Ping; Huang, Shuang-Sheng; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming

    2013-05-01

    Kushen, the dried root of Sophora flavescens Ait, is a traditional Chinese herbal medicine. Kushen alkaloids have been developed in China as anticancer drugs, and more potent antitumor activities have been identified in kushen flavonoids than in kushen alkaloids. In this study, the anti-angiogenic properties of (2S)-7,2',4'-triihydroxy-5-methoxy-8-dimethylallyl flavanone (Compound 1, a novel flavonoid isolated from Kushen), were examined using the human umbilical vein endothelial cell line (ECV304) in vitro. The results indicated that compound 1 shows anti-angiogenesis activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. Further studies indicated that compound 1 blocks cell cycles in the G0/G1 phase without inducing apoptosis, and down regulates vascular endothelial growth factor (VEGF) expression. The free radical scavenging activity of compound 1 was found through 2',7'-dichlorofluorescin diacetate (DCFH-DA) incubation assay in cells. The anti-angiogenic properties of compound 1 and its antiproliferative effect on endothelial cells without causing apoptosis make it a good candidate for development as a agent against development of tumors.

  17. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    PubMed Central

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  18. Synthesis, characterization, and assessment of cytotoxic, antiproliferative, and antiangiogenic effects of a novel procainamide hydrochloride-poly(maleic anhydride-co-styrene) conjugate.

    PubMed

    Karakus, Gulderen; Akin Polat, Zubeyde; Sahin Yaglıoglu, Ayse; Karahan, Mesut; Yenidunya, Ali Fazil

    2013-01-01

    Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 μg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 μg/ml, while free PH exerted the same activity at 100 μg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 μg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.

  19. Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

    PubMed

    Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus

    2014-07-15

    A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. MO-AB-BRA-06: Dynamic FLT PET for Investigating Potential Synergistic Therapeutic Targets During Anti-Angiogenic Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpelli, M; Perlman, S; Liu, G

    2016-06-15

    Purpose: Novel treatment strategies for metastatic cancer patients involve synergistically combining treatments with the hope of improving outcomes. This study investigated changes in tumor proliferative and vascular characteristics derived from dynamic [F-18]FLT PET during antiangiogenic treatment with the goal of identifying synergistic treatment opportunities. Methods: Patients with various solid cancers underwent continuous three-week cycles of anti-angiogenic treatment with intermittent dosing (two-weeks-on/one-week-off). Patients received up to six dynamic FLT PET/CT scans (days 0, 14, and 21 of cycle 1 (C1) and cycle 3 (C3)). Tumor proliferative (Kflt, net uptake rate) and vascular parameters (K1 blood-to-tissue transfer; Vb, vascular fraction) were calculatedmore » using a two-tissue compartment four-rate parameter kinetic model. Relative changes in these parameters, from day 0 to 14 (TxResp) and day 14 to 21 (offTxResp), were calculated. Significant differences were tested using Wilcoxon signed-rank test and significant correlations were tested using Spearman correlation. Results: Thirty patients were evaluable for C1 offTxResp with median values for Kflt, K1, and Vb of +30%, +35% and +30%, respectively. The fractions of patients with positive C1 offTxResp were: 21/30 for Ki, 24/30 for K1, 21/30 for Vb, and 12/30 had positive offTxResp for all three kinetic parameters. The offTxResp in C3 was not significantly different from C1 for any of the kinetic parameters. Significant correlations were found between TxResp and offTxResp in C1 for Kflt (ρ=-0.52, p=0.014), K1 (ρ=−0.61, p=0.003) and Vb (ρ=−0.80, p<0.001). Similar correlations were found for Kflt (ρ=-1, p=0.017) and K1 (ρ=−1, p=0.017) for the five patients evaluable in C3. Conclusion: Dynamic FLT PET showed evidence of distinct vascular and proliferative increases during off treatment weeks that could potentially be targeted with synergistic therapy. Early changes in kinetic parameters were

  1. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.

    PubMed

    Cirone, Pasquale; Bourgeois, Jacqueline M; Shen, Feng; Chang, Patricia L

    2004-10-01

    An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated.

  2. New Scaffold for Angiogenesis Inhibitors Discovered by Targeted Chemical Transformations of Wondonin Natural Products.

    PubMed

    Yu, Shuai; Oh, Jedo; Li, Feng; Kwon, Yongseok; Cho, Hyunkyung; Shin, Jongheon; Lee, Sang Kook; Kim, Sanghee

    2017-10-12

    The structure of wondonin marine natural products was renovated to attain new drug-like scaffolds. Wondonins have novel antiangiogenic properties without overt cytotoxicity. However, the chemical instability and synthetic complexity of wondonins have hindered their development as a new type of antiangiogenesis agent. Using a structure-based bioisosterism, the benzodioxole moiety was changed to benzothiazole, and the imidazole moiety was replaced by 1,2,3-triazole. Our efforts resulted in a new scaffold with enhanced antiangiogenic activity and minimized cytotoxicity. One compound with this scaffold effectively inhibited hyaloid vessel formation in diabetic retinopathy mimic zebrafish model. The biological findings together suggested the potential of the scaffold as a lead structure for development of antiangiogenic drugs with novel functions and as a probe to elucidate new biological mechanisms associated with angiogenesis.

  3. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    PubMed Central

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  4. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life.

    PubMed

    Lewandowski, Adam J; Davis, Esther F; Yu, Grace; Digby, Janet E; Boardman, Henry; Whitworth, Polly; Singhal, Atul; Lucas, Alan; McCormick, Kenny; Shore, Angela C; Leeson, Paul

    2015-03-01

    Preterm-born individuals have elevated blood pressure. We tested the hypothesis that this associates with an enhanced antiangiogenic circulating profile and that this association is mediated by variations in capillary density. We studied 204 adults aged 25 years (range, 20-30 years), of which 102 had been followed up prospectively since very preterm birth (mean gestational age, 30.3±2.5 weeks) and 102 were born term to uncomplicated pregnancies. A panel of circulating biomarkers, including soluble endoglin and soluble fms-like tyrosine kinase-1, were compared between groups and related to perinatal history and adult cardiovascular risk. Associations with cardiovascular phenotype were studied in 90 individuals who had undergone detailed assessment of microvascular, macrovascular, and cardiac structure and function. Preterm-born individuals had elevations in soluble endoglin (5.64±1.03 versus 4.06±0.85 ng/mL; P<0.001) and soluble fms-like tyrosine kinase-1 (88.1±19.0 versus 73.0±15.3 pg/mL; P<0.001) compared with term-born individuals, proportional to elevations in resting and ambulatory blood pressure, as well as degree of prematurity (P<0.05). Maternal hypertensive pregnancy disorder was associated with additional increases in soluble fms-like tyrosine kinase-1 (P=0.002). Other circulating biomarkers, including those of inflammation and endothelial activation, were not related to blood pressure. There was a specific graded association between soluble endoglin and degree of functional and structural capillary rarefaction (P=0.002 and P<0.001), and in multivariable analysis, there were capillary density-mediated associations between soluble endoglin and blood pressure. Preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the

  5. FKBPL Is a Critical Antiangiogenic Regulator of Developmental and Pathological Angiogenesis

    PubMed Central

    Yakkundi, Anita; Bennett, Rachel; Hernández-Negrete, Ivette; Delalande, Jean-Marie; Hanna, Mary; Lyubomska, Oksana; Arthur, Kenneth; Short, Amy; McKeen, Hayley; Nelson, Laura; McCrudden, Cian M.; McNally, Ross; McClements, Lana; McCarthy, Helen O.; Burns, Alan J.; Bicknell, Roy; Kissenpfennig, Adrien

    2015-01-01

    Objective— The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. Approach and Results— FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL’s critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl+/− mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. Conclusions— FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes. PMID:25767277

  6. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    PubMed Central

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  7. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    PubMed

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Roles of pro-angiogenic and anti-angiogenic factors as well as matrix metalloproteinases in healing of NSAID-induced small intestinal ulcers in rats.

    PubMed

    Gyenge, Melinda; Amagase, Kikuko; Kunimi, Shino; Matsuoka, Rie; Takeuchi, Koji

    2013-10-06

    We examined changes in the expression of a pro-angiogenic factor, vascular endothelial growth factor (VEGF), and an anti-angiogenic factor, endostatin, as well as matrix metalloproteinase (MMP)-2 and MMP-9 in the rat small intestine after administration of indomethacin and investigated the roles of these factors in the healing of indomethacin-induced small intestinal ulcers. Male SD rats were given indomethacin (10mg/kg) p.o. and euthanized at various time points (3-24h and 2-7days) after the administration. To impair the healing of these lesions, low-dose of indomethacin (2mg/kg) was given p.o. once daily for 6days starting 1day after ulceration. Levels of VEGF, endostatin, MMP-2 and MMP-9 were determined by Western blotting. The expression of both VEGF and endostatin was upregulated after the ulceration. Repeated administration of low-dose indomethacin impaired the ulcer healing with a decrease of VEGF expression and a further increase of endostatin expression, resulting in a marked decrease in the ratio of VEGF/endostatin expression. The levels of MMP-2 and MMP-9 were both significantly increased after the ulceration, but these responses were suppressed by the repeated indomethacin treatment. The healing of these ulcers was significantly delayed by the repeated administration of MMP inhibitors such as ARP-101 and SB-3CT. The results confirm the importance of the balance between pro-angiogenic and anti-angiogenic activities in the healing of indomethacin-induced small intestinal damage and further suggest that the increased expression of MMP-2 and MMP-9 is another important factor for ulcer healing in the small intestine. © 2013.

  9. A phase 1 trial of 2 dose schedules of ABT-510, an antiangiogenic, thrombospondin-1-mimetic peptide, in patients with advanced cancer.

    PubMed

    Gordon, Michael S; Mendelson, David; Carr, Robert; Knight, Raymond A; Humerickhouse, Rod A; Iannone, Maria; Stopeck, Alison T

    2008-12-15

    ABT-510 is a substituted nonapeptide that mimics the antiangiogenic activity of the endogenous protein thrombospondin-1 (TSP-1). The current study was designed to establish the safety of ABT-510 in the treatment of patients with advanced malignancies on a once-daily (QD) and twice-daily dosing schedule. Patients were randomly assigned to 1 of 6 dosing regimens: 20 mg, 50 mg, or 100 mg QD or 10 mg, 25 mg, or 50 mg twice daily. ABT-510 was administered by subcutaneous bolus injection in cycles of 28 days. Tumor response and disease progression were monitored at 8-week intervals by computed tomography scan or magnetic resonance imaging. Thirty-six patients were randomly assigned in equal numbers to the 6 study regimens, with an additional 13 patients randomized to the 10-mg-twice-daily and 50-mg-twice-daily ABT-510 regimens. The expected pharmacokinetic target was achieved at all dose levels tested. The majority of adverse events were grade 1 or 2 (according to National Cancer Institute Common Toxicity Criteria [version 2]) and were not found to be dose related. The most frequently reported adverse events that were possibly related to ABT-510 included injection site reactions, asthenia, headache, and nausea. Grade 3 events considered to possibly be related included nausea, dyspnea, bone pain, constipation, vomiting, asthenia, and chills and tremors. One partial response was observed in a patient with carcinosarcoma who received 20 mg QD. The 6-month progression-free survival rate was 6%. Approximately 42% of patients (21 of 50 patients) had stable disease for > or =3 months. ABT-510 can be administered at doses of 20 mg/day to 100 mg/day without significant toxicity. In the current study, minimal antitumor activity was observed, which was similar to observations in other single-agent antiangiogenic trials.

  10. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?

    PubMed

    Donnem, Tom; Hu, Jiangting; Ferguson, Mary; Adighibe, Omanma; Snell, Cameron; Harris, Adrian L; Gatter, Kevin C; Pezzella, Francesco

    2013-08-01

    Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10-30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.

  11. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK

    PubMed Central

    Jiang, Yida; Lin, Xianchai; Tang, Zhongshu; Lee, Chunsik; Tian, Geng; Du, Yuxiang; Yin, Xiangke; Ren, Xiangrong; Huang, Lijuan; Ye, Zhimin; Chen, Wei; Zhang, Fan; Mi, Jia; Gao, Zhiqin; Wang, Shasha; Chen, Qishan; Xing, Liying; Wang, Bin; Cao, Yihai; Sessa, William C.; Ju, Rong; Liu, Yizhi; Li, Xuri

    2017-01-01

    Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti–VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases. PMID:28923916

  12. Fibrinogen catabolism within the procoagulant VX-2 tumor of rabbit lung in vivo: Effluxing fibrin(ogen) fragments contain antiangiogenic activity.

    PubMed

    Hatton, Mark W C; Southward, Suzanne M R; Legault, Kimberly J; Ross, Bonnie L; Clarke, Bryan J; Bajzar, Laszlo; Blajchman, Morris A; Singh, Gurmit; Richardson, Mary

    2004-04-01

    Many types of solid tumors are known to be procoagulant environments. This is partly because a hyperpermeable vascular system within the tumor allows plasma hemostatic factors to accumulate in relatively high concentrations in the stroma, and many solid-tumor cells express tissue factor or a procoagulant factor. These circumstances appear to exist in the VX-2 lung tumor of the New Zealand White (NZW) rabbit, and they sustain a measurable turnover of stromal deposits of fibrin(ogen). We have measured the turnover of fibrinogen within tumors of the VX-2 tumor-burdened rabbit and analysed the catabolic products of fibrin(ogen) and the status of fibrinolysis in tumor-derived interpleural effusate. Using intravenously injected (125)I-labeled rabbit fibrinogen as a marker, we found that fibrinogen (approximate blood concentration 1740 microg/mL) passed from blood to VX-2 tumor stroma, saturating the tumor at a concentration of approximately 348 microg fibrinogen/g in approximately 12 hours. We measured fibrin(ogen) fragments, at a concentration of approximately 292 microg/mL, in interpleural effusates that we recovered from 13% of the VX-2-burdened rabbits. Unreduced fibrin(ogen) fragments consisted of 4 major components with a relative molecular mass of approximately 250,000 (assumed to be fragment X; approximately 9% of total fragments from densitometry of immunoblots), 200,000 (d-dimer; 41%), 110,000 (fragment D; 49%), and 50,000 to 55,000 (fragment E; 1%-2%) kD. Total fibrin(ogen) fragments immunopurified from effusates exhibited an antiangiogenic effect when subjected to a chick embryo chorioallantoic membrane procedure. Interpleural effusates were devoid of plasmin activity or active plasminogen activator inhibitor-1 but contained plasmin complexes and active urokinase-like plasminogen activator (uPA), alpha(2)-antiplasmin, and thrombin-activatable fibrinolysis inhibitor. We speculate that VX-2 cells release uPA to activate fibrinolysis within the tumor stroma

  13. Antiangiogenic and Antineuroinflammatory Effects of Kallistatin Through Interactions With the Canonical Wnt Pathway

    PubMed Central

    Liu, Xiaochen; Zhang, Bin; McBride, Jeffrey D.; Zhou, Kevin; Lee, Kyungwon; Zhou, Yueping; Liu, Zuguo; Ma, Jian-xing

    2013-01-01

    Kallistatin is a member of the serine proteinase inhibitor superfamily. Kallistatin levels have been shown to be decreased in the vitreous while increased in the circulation of patients with diabetic retinopathy (DR). Overactivation of the Wnt pathway is known to play pathogenic roles in DR. To investigate the role of kallistatin in DR and in Wnt pathway activation, we generated kallistatin transgenic (kallistatin-TG) mice overexpressing kallistatin in multiple tissues including the retina. In the oxygen-induced retinopathy (OIR) model, kallistatin overexpression attenuated ischemia-induced retinal neovascularization. In diabetic kallistatin-TG mice, kallistatin overexpression ameliorated retinal vascular leakage, leukostasis, and overexpression of vascular endothelial growth factor and intracellular adhesion molecule. Furthermore, kallistatin overexpression also suppressed Wnt pathway activation in the retinas of the OIR and diabetic models. In diabetic Wnt reporter (BAT-gal) mice, kallistatin overexpression suppressed retinal Wnt reporter activity. In cultured retinal cells, kallistatin blocked Wnt pathway activation induced by high glucose and by Wnt ligand. Coprecipitation and ligand-binding assays both showed that kallistatin binds to a Wnt coreceptor LRP6 with high affinity (Kd = 4.5 nmol/L). These observations suggest that kallistatin is an endogenous antagonist of LRP6 and inhibitor of Wnt signaling. The blockade of Wnt signaling may represent a mechanism for its antiangiogenic and antineuroinflammatory effects. PMID:23884893

  14. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells.

    PubMed

    Yahya, Shaymaa M M; Abdelhamid, Abdou O; Abd-Elhalim, Mervat M; Elsayed, Ghada H; Eskander, Emad F

    2017-10-01

    Due to its high potency and selectivity, anticancer agents consisting of combined molecules have gained great interests. The current study introduces newly synthesized progesterone derivatives of promising anticancer effect. Moreover, the pro-apoptotic and anti-angiogenic effects of these compounds were studied extensively. Several thiazole, pyridine, pyrazole, thiazolopyridine and pyrazolopyridine progesterone derivatives were synthesized. The structure of the novel progesterone derivatives was elucidated and confirmed using the analytical and spectral data. This novel derivatives were tested for their cytotoxic effect against human breast cancer cells (MCF-7) using neutral red uptake assay. Tested compounds showed anticancer activity against MCF-7 cancer cell line in the descending order of 7>2>3>8>6>9>4. The expression levels of Bcl-2, survivin, CCND1, CDC2, P53 and P21, VEGF, Hif-1α, MMP-2, MMP-9, Ang-1, Ang-2, and FGF-1 genes were investigated using QRT-PCR (Quantitative real time-polymerase chain reaction). The study clarified that compounds 2, 3, 4, 6, 7, 8 and 9 showed significant pro-apoptotic effect through the down regulation of Bcl-2., besides, survivin and CCND1 expression levels were down regulated by compounds 3, 4, 6, 7, 8, 9. However, Compound 4 may exert this pro-apoptotic effect through the up-regulation of P53 gene expression. On the other hand, the anti-angiogenic effect of these newly synthesized derivatives was due to their down regulation of VEGF, Ang-2, MMP-9 and FGF-1; and the up-regulation of HIF-1α and ang-1. This study recommended promising pro-apoptotic and anti-angiogenic anticancer agents acting through the regulation of key regulators of apoptosis, cell cycle genes, and pro-angiogenic genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Integrin αvβ3-targeted dynamic contrast-enhanced magnetic resonance imaging using a gadolinium-loaded polyethylene gycol-dendrimer-cyclic RGD conjugate to evaluate tumor angiogenesis and to assess early antiangiogenic treatment response in a mouse xenograft tumor model.

    PubMed

    Chen, Wei-Tsung; Shih, Tiffany Ting Fang; Chen, Ran-Chou; Tu, Shin-Yang; Hsieh, Wen-Yuen; Yang, Pang-Chyr

    2012-01-01

    The purpose of this study was to validate an integrin αvβ3-targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Integrin αvβ3-positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 or PEG-G3-(Gd-DTPA)6-(cRAD-DTPA)2. DCE MRI was also performed 2 hours after anti-integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  16. Aponecrotic, antiangiogenic and antiproliferative effects of a novel dextran derivative on breast cancer growth in vitro and in vivo.

    PubMed

    Di Benedetto, Mélanie; Starzec, Anna; Colombo, Bruno M; Briane, Dominique; Perret, Gérard Y; Kraemer, Michel; Crépin, Michel

    2002-04-01

    1. Since the sodium phenylacetate (NaPa) was reported to enhance the inhibitory effect of carboxymethyl benzylamide dextran (CMDB) on the breast cancer growth, we performed the esterification of CMDB with NaPa to obtain a new drug carrying the characteristics of these two components. A new molecule, phenylacetate carboxymethyl benzylamide dextran, was named NaPaC. 2. We investigated in vitro and in vivo the effects of NaPaC on MCF-7ras cell growth as well as its apoptotic and antiangiogenic effects in comparison to NaPa and CMDB. In addition, we assessed in vitro the antiproliferative effects of these drugs on other breast cancer cells, including MDA-MB-231, MDA-MB-435 and MCF-7. 3. In vitro, NaPaC inhibited MCF-7ras cell proliferation by 40% at concentration lower than that of CMDB and NaPa (12 microM vs 73 microM and 10 mM). IC(50)s were 6 and 28 microM for NaPaC and CMDB, respectively. The similar results were obtained for three other breast cancer cell lines. NaPaC reduced the DNA replication and induced cell recruitment in G(0)/G(1) phase more efficiently than its components. Moreover, it induced a cell death at concentration 1000-fold lower than NaPa. 4. In vivo, CMDB (150 mg kg(-1)) and NaPa (40 mg kg(-1)) inhibited the MCF-7ras tumour growth by 37 and 57%, respectively, whereas NaPaC (15 mg kg(-1)) decreased tumour growth by 66% without toxicity. 5. NaPa or CMDB reduced the microvessel number in tumour by 50% after 7 weeks of treatment. NaPaC had the same effect after only 2 weeks. After 7 weeks, it generated a large necrosis area without detectable microvessels. In vitro, NaPaC inhibited human endothelial cell proliferation more efficiently than CMDB or NaPa. NaPaC interacts with vascular endothelial growth factor as observed by affinity electrophoresis. 6. NaPaC acts like NaPa and CMDB but in more potent manner than components used separately. Its antiproliferative, aponecrotic and anti-angiogenic actions make it a good candidate for a new anti

  17. Effect of Molecular Interactions on Electron-Transfer and Antioxidant Activity of Bis(alkanol)selenides: A Radiation Chemical Study.

    PubMed

    Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira

    2016-08-16

    Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fluoro and pentafluorothio analogs of the antitumoral curcuminoid EF24 with superior antiangiogenic and vascular-disruptive effects.

    PubMed

    Schmitt, Florian; Gold, Madeleine; Begemann, Gerrit; Andronache, Ion; Biersack, Bernhard; Schobert, Rainer

    2017-09-01

    A series of 14 analogs of the curcuminoid EF24, (3E,5E)-3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone, bearing fluorine or pentafluorothio substituents, were prepared and tested for antiproliferative, vascular-disruptive, and antiangiogenic activity, as well as for their influence on other cancer-relevant targets. They proved antiproliferative against eight cancer cell lines with IC 50 values in the low single-digit micromolar to triple-digit nanomolar range. Like EF24, the hexafluoro 3c and 3d and bis(pentafluorothio) 4f derivatives arrested HT-29 colon carcinoma cells in G2/M phase of the cell cycle, yet inhibited angiogenesis, e.g. in zebrafish larvae, to a much greater extent. The antimigratory effects in 518A2 melanoma cells of 3c, its regioisomer 3d, and of 4f, originate from an inhibition of NF-κB translocation. Moreover, 3c and 3d showed potential as vascular-disruptive agents in chorioallantoic/vitelline membrane (CA/VM) assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. New compounds able to control hepatic cholesterol metabolism: Is it possible to avoid statin treatment in aged people?

    PubMed Central

    Trapani, Laura; Segatto, Marco; Pallottini, Valentina

    2013-01-01

    Aging is characterized by the loss of homeostasis that leads to changes in the biochemical composition of tissues, reduced ability to respond adaptively to environmental stimuli, and increased susceptibility and vulnerability to diseases including coronary artery diseases, carotid artery disease and brain vessel disease. Hypercholesterolemia is one of the primary risk factors for these pathologies, whose incidence is highly related to aging. Almost 25% of men and 42% of women older than 65 years have a serum total cholesterol level greater than 240 mg/dL. The mechanisms behind this age-related increase in plasma cholesterol are still incompletely understood, thus, the control of plasma cholesterol content in aged people is more challenging than in adults. In this review the different pharmacological approaches to reduce plasma cholesterol levels, particularly in aged people, will be discussed. In brief, current therapies are mostly based on the prescription of statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) that are pretty effective but that exert several side effects. More attention should be given to potential drug interactions, potential age-related changes in drug pharmacokinetics, adverse effects such as myopathy and competing risks when statins are prescribed to old patients. In combination or in alternative to statin therapy, other agents might be required to reduce low density lipoprotein (LDL) cholesterol levels. Among the available drugs, the most commonly prescribed are those addressed to reduce cholesterol absorption, to modulate lipoprotein lipase activity and bile acid sequestrants: even these pharmacological interventions are not exempt from side effects. The use of antioxidants or organoselenium compounds and the discovery of new proteins able to modulate exclusively LDL receptor recycling such as Proprotein convertase subtilisin kexin 9 and SEC24 offer new pharmacological approaches to selectively reduce the main causes of

  20. Multiple Pharmacological Properties of a Novel Parthenin Analog P16 as Evident by its Cytostatic and Antiangiogenic Potential Against Pancreatic Adenocarcinoma PANC -1 Cells.

    PubMed

    Goswami, Akshra; Shah, Bhahwal Ali; Batra, Navneet; Kumar, Ajay; Guru, Santosh Kumar; Bhushan, Shashi; Malik, Fayaz Ahmad; Joshi, Amit; Singh, Jagtar

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) remains one of the deadliest types of cancers. Median survival rate is very poor with the currently available chemotherapeutical regimens. Therefore, discovery of new antineoplastic agents against PDA is one of the focused areas of contemporary research. The present study was undertaken to explore the antitumour activity of a potent parthenin analog P16. Among PANC-1, Mia PaCa-2 and AsPC-1 pancreatic cancer cells, PANC-1 showed highest sensitivity to P16 with an IC50 value of 3.4 μM. Time dependent cell cycle studies revealed that P16 suppressed the growth of PANC-1 cells by arresting the progression through the cell cycle in G2/M phase via downregulation of cyclin B1 and cyclin A. However, P16 did not alter the expressions of CDK-1 and CDC25C in PANC-1 cells. The P16 induced cell cycle arrest, which consequently, led to induction of apoptosis, which was accompanied by activation of caspase-9 and -3. Interestingly, PANC-1 cells displayed increasing loss of mitochondrial potential, which seemed to be correlated to the activation of caspase-3. Additionally, P16 was also able to down-regulate the cell migration in PANC-1 cells. Furthermore, P16 treatment of hypoxic PANC-1 cells strongly suppressed the expression of proangiogenic factors VEGFR-2, HIF1α and HIF1β. Antiangiogenic ability of P16 was also reflected in the human umbilical vascular endothelial cells (HUVECs), where it effectively suppressed the migration and inhibited the formation of the tube in a matrigel based assay. Therefore, cytostatic and antiangiogenic properties of P16 against pancreatic adenocarcinoma cells make it a suitable candidate for further investigation.

  1. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  2. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki.

    PubMed

    Lecht, Shimon; Chiaverelli, Rachel A; Gerstenhaber, Jonathan; Calvete, Juan J; Lazarovici, Philip; Casewell, Nicholas R; Harrison, Robert; Lelkes, Peter I; Marcinkiewicz, Cezary

    2015-06-01

    Cysteine-rich secretory protein (CRISP) is present in majority of vertebrate including human. The physiological role of this protein is not characterized. We report that a CRISP isolated from Echis carinatus sochureki venom (ES-CRISP) inhibits angiogenesis. The anti-angiogenic activity of purified ES-CRISP from snake venom was investigated in vitro using endothelial cells assays such as proliferation, migration and tube formation in Matrigel, as well as in vivo in quail embryonic CAM system. The modulatory effect of ES-CRISP on the expression of major angiogenesis factors and activation of angiogenesis pathways was tested by qRT-PCR and Western blot. The amino acid sequence of ES-CRISP was found highly similar to other members of this snake venom protein family, and shares over 50% identity with human CRISP-3. ES-CRISP supported adhesion to endothelial cells, although it was also internalized into the cytoplasm in a granule-like manner. It blocked EC proliferation, migration and tube formation in Matrigel. In the embryonic quail CAM system, ES-CRISP abolished neovascularization process induced by exogenous growth factors (bFGF, vpVEGF) and by developing gliomas. CRISP modulates the expression of several factors at the mRNA level, which were characterized as regulators of angiogenesis and blocked activation of MAPK Erk1/2 induced by VEGF. ES-CRISP was characterized as a negative regulator of the angiogenesis, by direct interaction with endothelial cells. The presented work may lead to the development of novel angiostatic therapy, as well as contribute to the identification of the physiological relevance of this functionally uncharacterized protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Change in Pattern of Relapse After Antiangiogenic Therapy in High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayana, Ashwatha, E-mail: ashwatha.narayana@nyumc.org; Department of Neurosurgery, New York University Langone Medical Center, New York, NY; Kunnakkat, Saroj D.

    2012-01-01

    Purpose: Local recurrence is the dominant pattern of relapse in high-grade glioma (HGG) after conventional therapy. The recent use of antiangiogenic therapy has shown impressive radiologic and clinical responses in adult HGG. The preclinical data suggesting increased invasiveness after angiogenic blockade have necessitated a detailed analysis of the pattern of recurrence after therapy. Methods and Materials: A total of 162 consecutive patients with HGG, either newly diagnosed (n = 58) or with recurrent disease (n = 104) underwent therapy with bevacizumab at 10 mg/kg every 2 weeks and conventional chemotherapy with or without involved field radiotherapy until disease progression. Themore » pattern of recurrence and interval to progression were the primary aims of the present study. Diffuse invasive recurrence (DIR) was defined as the involvement of multiple lobes with or without crossing the midline. Results: At a median follow-up of 7 months (range, 1-37), 105 patients had recurrence, and 79 patients ultimately developed DIR. The interval to progression was similar in the DIR and local recurrence groups (6.5 and 6.3 months, p = .296). The hazard risk of DIR increased exponentially with time and was similar in those with newly diagnosed and recurrent HGG (R{sup 2} = 0.957). The duration of bevacizumab therapy increased the interval to recurrence (p < .0001) and improved overall survival (p < .0001). However, the pattern of relapse did not affect overall survival (p = .253). Conclusion: Along with an increase in median progression-free survival, bevacizumab therapy increased the risk of DIR in HGG patients. The risk of increased invasion with prolonged angiogenic blockade should be addressed in future clinical trials.« less

  4. Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models.

    PubMed

    Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L

    2017-03-01

    To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Anti-tumor and Anti-angiogenic Effects of Aspirin-PC in Ovarian Cancer

    PubMed Central

    Huang, Yan; Lichtenberger, Lenard M.; Taylor, Morgan; Bottsford-Miller, Justin N.; Haemmerle, Monika; Wagner, Michael J.; Lyons, Yasmin; Pradeep, Sunila; Hu, Wei; Previs, Rebecca A.; Hansen, Jean M.; Fang, Dexing; Dorniak, Piotr L.; Filant, Justyna; Dial, Elizabeth J.; Shen, Fangrong; Hatakeyama, Hiroto; Sood, Anil K.

    2016-01-01

    To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose-response studies were performed to compare the growth-inhibitory effect of aspirin-PC vs. aspirin on 3 human (A2780, SKOV3ip1, HeyA8), and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following anti-angiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50–90% (depending on the ovarian cell line/density). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust anti-neoplastic action in the presence of VEGF blocking drugs. PMID:27638860

  6. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation.

    PubMed

    Gallo, Cristina; Dallaglio, Katiuscia; Bassani, Barbara; Rossi, Teresa; Rossello, Armando; Noonan, Douglas M; D'Uva, Gabriele; Bruno, Antonino; Albini, Adriana

    2016-09-13

    Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.

  7. Evaluating the potential bioactivity of a novel compound ER1626.

    PubMed

    Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua

    2014-01-01

    ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  8. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  9. β-Escin Effectively Modulates HUVECS Proliferation and Tube Formation.

    PubMed

    Varinská, Lenka; Fáber, Lenka; Kello, Martin; Petrovová, Eva; Balážová, Ľudmila; Solár, Peter; Čoma, Matúš; Urdzík, Peter; Mojžiš, Ján; Švajdlenka, Emil; Mučaji, Pavel; Gál, Peter

    2018-01-17

    In the present study we evaluated the anti-angiogenic activities of β-escin (the major active compound of Aesculus hippocastanum L. seeds). Human umbilical-vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying the anti-angiogenic effect of β-escin. We investigated the in vitro effects on proliferation, migration, and tube formation of HUVECs and in vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) angiogenesis assay. Moreover, the effect on gene expressions was determined by the RT2 ProfilerTM human angiogenesis PCR Array. It was found that β-escin exerts inhibitory effect on the basic fibroblast growth factor (bFGF)-induced proliferation, migration and tube formation, as well as CAM angiogenesis in vivo. The inhibition of critical steps of angiogenic process observed with β-escin could be partially explained by suppression of Akt activation in response to bFGF. Moreover, the anti-angiogenic effects of β-escin could also be mediated via inhibition of EFNB2 and FGF-1 gene expressions in endothelial cells. In conclusion, β-escin affects endothelial cells as a negative mediator of angiogenesis in vitro and in vivo and may therefore be considered as a promising candidate for further research elucidating its underlying mechanism of action.

  10. Broad targeting of angiogenesis for cancer prevention and therapy

    PubMed Central

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M.; Arreola, Alexandra; Rathmell, W. Kimryn; Generali, Daniele; Nagaraju, Ganji P.; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S. Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I.; Azmi, Asfar S.; Bilsland, Alan; Keith, W. Nicol; Jensen, Lasse D.

    2015-01-01

    Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor

  11. Ligand-free method to produce the anti-angiogenic recombinant Galectin-3 carbohydrate recognition domain.

    PubMed

    Wiecikowski, Adalgisa; Cabral, Katia Maria Dos Santos; Almeida, Marcius da Silva; Carvalho, Renato Sampaio

    2018-04-01

    Galectin-3 (Gal3) is involved in many physiological processes related to tumor growth, such as promoting angiogenesis, cell migration/invasion, resistance to apoptosis and immune response modulation. Usually the overexpression of Gal3 is a poor prognostic marker for cancer patients. Recombinant Gal3 carbohydrate domain (Gal3C) has been proposed as a useful tool to inhibit angiogenesis. So far, all production protocols reported for Gal3C production have used proteolytic cleavage of full length Gal3 and/or affinity-based purification. This involves dialysis, a time consuming step used to eliminate the elution ligand, usually lactose. In this report, we describe an alternative method to produce human recombinant Gal3C in E. coli, purified with cationic exchange and size exclusion chromatography. The recombinant protein was characterized using circular dichroism and nuclear magnetic resonance, showing a beta sheet enriched well-folded globular structure. The average yield obtained was 26 mg/L of broth and the purity was above 99%. The anti-angiogenic activity was assessed in vitro and showed a reduction of 70% and 77% in endothelial cells tubule formation upon treatment with 10 and 20 μg/mL, respectively and also had no impact on cell viability. The method described here is more suitable for both laboratory and industrial production of the potential anti-tumor Gal3C. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R

    NASA Astrophysics Data System (ADS)

    Niescioruk, Anna; Nieciecka, Dorota; Puszko, Anna K.; Królikowska, Agata; Kosson, Piotr; Perret, Gerard Y.; Krysinski, Pawel; Misicka, Aleksandra

    2017-05-01

    Superparamagnetic iron oxide-based nanoparticles (SPIONs) are promising carriers as targeted drug delivery vehicles, because they can be guided to their target with the help of an external magnetic field. Functionalization of nanoparticles' surface with molecules, which bind with high affinity to receptors on target tissue significantly facilitates delivery of coated nanoparticles to their targeted site. Here, we demonstrate conjugation of an antiangiogenic and antitumor peptide ATWLPPR (A7R) to SPIONs modified with sebacic acid (SPIONs-SA). Successful conjugation was confirmed by various analytical techniques (FTIR, SERS, SEM-EDS, TEM, TGA). Cell cytotoxicity studies, against two cell lines (HUVEC and MDA-MB-231) indicated that SPIONs modified with A7R reduced HUVEC cell viability at concentrations higher than 0.01 mg Fe/mL, in comparison to cells that were exposed to either the nanoparticles modified with sebacic acid or A7R peptide solely, what might be partially caused by a process of internalization.

  13. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma

    PubMed Central

    Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; de Almodóvar, Carmen Ruiz; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-01-01

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer’ of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods. PMID:25682871

  14. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect.

    PubMed

    Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun

    2016-01-01

    Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.

  15. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies.

    PubMed

    Angara, Kartik; Rashid, Mohammad H; Shankar, Adarsh; Ara, Roxan; Iskander, Asm; Borin, Thaiz F; Jain, Meenu; Achyut, Bhagelu R; Arbab, Ali S

    2017-09-01

    Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.

  16. Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity.

    PubMed

    Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita

    2018-04-16

    A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.

  17. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate

    PubMed Central

    da Silva, Gisela Bevilacqua Rolfsen Ferreira; Scarpa, Maria Virginia; Carlos, Iracilda Zepone; Quilles, Marcela Bassi; Lia, Raphael Carlos Comeli; do Egito, Eryvaldo Socrates Tabosa; de Oliveira, Anselmo Gomes

    2015-01-01

    Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ. PMID:25609963

  18. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate.

    PubMed

    da Silva, Gisela Bevilacqua Rolfsen Ferreira; Scarpa, Maria Virginia; Carlos, Iracilda Zepone; Quilles, Marcela Bassi; Lia, Raphael Carlos Comeli; do Egito, Eryvaldo Socrates Tabosa; de Oliveira, Anselmo Gomes

    2015-01-01

    Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.

  19. Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease.

    PubMed

    Batson, Jennifer; Toop, Hamish D; Redondo, Clara; Babaei-Jadidi, Roya; Chaikuad, Apirat; Wearmouth, Stephen F; Gibbons, Brian; Allen, Claire; Tallant, Cynthia; Zhang, Jingxue; Du, Chunyun; Hancox, Jules C; Hawtrey, Tom; Da Rocha, Joana; Griffith, Renate; Knapp, Stefan; Bates, David O; Morris, Jonathan C

    2017-03-17

    Serine/arginine-protein kinase 1 (SRPK1) regulates alternative splicing of VEGF-A to pro-angiogenic isoforms and SRPK1 inhibition can restore the balance of pro/antiangiogenic isoforms to normal physiological levels. The lack of potency and selectivity of available compounds has limited development of SRPK1 inhibitors, with the control of alternative splicing by splicing factor-specific kinases yet to be translated. We present here compounds that occupy a binding pocket created by the unique helical insert of SRPK1, and trigger a backbone flip in the hinge region, that results in potent (<10 nM) and selective inhibition of SRPK1 kinase activity. Treatment with these inhibitors inhibited SRPK1 activity and phosphorylation of serine/arginine splicing factor 1 (SRSF1), resulting in alternative splicing of VEGF-A from pro-angiogenic to antiangiogenic isoforms. This property resulted in potent inhibition of blood vessel growth in models of choroidal angiogenesis in vivo. This work identifies tool compounds for splice isoform selective targeting of pro-angiogenic VEGF, which may lead to new therapeutic strategies for a diversity of diseases where dysfunctional splicing drives disease development.

  20. Molecular mechanism behind the synergistic activity of diphenylmethyl selenocyanate and Cisplatin against murine tumor model.

    PubMed

    Chakraborty, Pramita; Roy, Somnath Singha; Bhattacharya, Sudin

    2015-01-01

    Various preclinical, clinical and epidemiological studies have already well established the cancer chemopreventive and chemoprotective potential of selenium compounds. In addition to its protective efficacy, recent studies have also proved the abilities of selenium compounds to induce cell death specifically in malignant cells. Therefore, our intention is to improve the therapeutic efficacy of an alkylating agent, cisplatin, by the adjuvant use of an organoselenium compound, diphenylmethyl selenocyanate (DMSE). It was observed that combined treatment decreased the tumor burden significantly through reactive oxygen species generation and modulation of antioxidant and detoxifying enzyme system in tumor cells. These activities ultimately led to significant DNA damage and apoptosis in tumor cells. Study of the molecular pathway disclosed that the adjuvant treatment caused induction of p53, Bax and suppressed Bcl-2 followed by the activation of caspase cascade. Furthermore, a concomitant decrease in cisplatin-induced nephrotoxicity and hematopoietic toxicity by DMSE might also have enhanced the efficacy of cisplatin and provided survival advantage to the host. Results suggested that the combination treatment with DMSE and cisplatin may offer potential therapeutic benefit, and utilization of cisplatin in cancer chemotherapy exempt of its limitations.

  1. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment.

    PubMed

    Oosting, Sjoukje F; Brouwers, Adrienne H; van Es, Suzanne C; Nagengast, Wouter B; Oude Munnink, Thijs H; Lub-de Hooge, Marjolijn N; Hollema, Harry; de Jong, Johan R; de Jong, Igle J; de Haas, Sanne; Scherer, Stefan J; Sluiter, Wim J; Dierckx, Rudi A; Bongaerts, Alfons H H; Gietema, Jourik A; de Vries, Elisabeth G E

    2015-01-01

    No validated predictive biomarkers for antiangiogenic treatment of metastatic renal cell carcinoma (mRCC) exist. Tumor vascular endothelial growth factor A (VEGF-A) level may be useful. We determined tumor uptake of (89)Zr-bevacizumab, a VEGF-A-binding PET tracer, in mRCC patients before and during antiangiogenic treatment in a pilot study. Patients underwent (89)Zr-bevacizumab PET scans at baseline and 2 and 6 wk after initiating either bevacizumab (10 mg/kg every 2 wk) with interferon-α (3-9 million IU 3 times/wk) (n = 11) or sunitinib (50 mg daily, 4 of every 6 wk) (n = 11). Standardized uptake values were compared with plasma VEGF-A and time to disease progression. (89)Zr-bevacizumab PET scans visualized 125 evaluable tumor lesions in 22 patients, with a median SUV(max) (maximum standardized uptake value) of 6.9 (range, 2.3-46.9). Bevacizumab/interferon-α induced a mean change in tumor SUV(max) of -47.0% (range, -84.7 to +20.0%; P < 0.0001) at 2 wk and an additional -9.7% (range, -44.8 to +38.9%; P = 0.015) at 6 wk. In the sunitinib group, the mean change in tumor SUV(max) was -14.3% at 2 wk (range, -80.4 to +269.9; P = 0.006), but at 6 wk the mean change in tumor SUV(max) was +72.6% (range, -46.4 to +236%; P < 0.0001) above baseline. SUV(max) was not related to plasma VEGF-A at all scan moments. A baseline mean tumor SUV(max) greater than 10.0 in the 3 most intense lesions corresponded with longer time to disease progression (89.7 vs. 23.0 wk; hazard ratio, 0.22; 95% confidence interval, 0.05-1.00). Tumor uptake of (89)Zr-bevacizumab is high in mRCC, with remarkable interpatient and intrapatient heterogeneity. Bevacizumab/interferon-α strongly decreases tumor uptake whereas sunitinib results in a modest reduction with an overshoot after 2 drug-free weeks. High baseline tumor SUV(max) was associated with longer time to progression. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor.

    PubMed

    Menhofer, Magdalena H; Bartel, Dominik; Liebl, Johanna; Kubisch, Rebekka; Busse, Johanna; Wagner, Ernst; Müller, Rolf; Vollmar, Angelika M; Zahler, Stefan

    2014-11-01

    Inhibiting angiogenesis is a major approach in tumour therapy. To combat angiogenesis, the tubulin cytoskeleton has emerged as an interesting target in many pre- and clinical studies. Contrarily, the actin cytoskeleton has been largely neglected as a potential drug target in angiogenesis. However, due to the development of drug resistances, new therapeutic strategies are always needed in tumour treatment. Therefore, the therapeutic potential of actin-binding small molecules is of particular interest. We investigate the impact of chondramide (Ch), an actin polymerizing myxobacterial compound, on angiogenesis and underlying signalling. Chondramide treatment not only reduces the migration of endothelial cells but also the maturation of endothelial tube networks on matrigel. These observations can partly be explained by a disintegration of stress fibres due to aggregation and subsequent accumulation of actin in cellular structures known as 'aggresomes'. Chondramide treatment impairs the maturation of focal adhesions and reduces the amount of active β1 integrin at the cell surface. Accordingly, signalling events downstream of focal adhesions are reduced. Thus, we observed that the activity of Src and downstream factors Rho-GTPases Rac1 and Rho is reduced upon Ch treatment. In vivo, Ch was well tolerated in mice and vascularization of a tumour xenograft as well as of the developing retina was significantly reduced. Chondramide diminishes angiogenesis via two ways: (i) the disintegration of stress fibres and (ii) the reduction of promigratory signals. Our findings highlight Ch as a novel class of therapeutic lead compound with anti-angiogenic potential. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  3. A Phase 1 trial of the PARP inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer

    PubMed Central

    Liu, Joyce F.; Tolaney, Sara M.; Birrer, Michael; Fleming, Gini F.; Buss, Mary K.; Dahlberg, Suzanne E.; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A.

    2014-01-01

    Background PARP-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of VEGFR-1/2/3, and olaparib, a PARP-inhibitor (NCT01116648). Methods Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by RECIST 1.1 or met GCIG CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. Results 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 DLTs (1 grade 4 neutropenia ≥4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30mg daily; olaparib 400mg BID). The RP2D was cediranib 30mg daily and olaparib 200mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus SD >24 weeks) of 61%. None of the 7 evaluable breast cancer patients achieved clinical response; 2 patients had stable disease for >24 weeks. Interpretation The combination of cediranib and olaparib has hematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. PMID:23810467

  4. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells.

    PubMed

    Chang, Hsin-Ning; Huang, Sheng-Teng; Yeh, Yuan-Chieh; Wang, Hsin-Shih; Wang, Tzu-Hao; Wu, Yi-Hong; Pang, Jong-Hwei S

    2015-11-04

    Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting

  5. The natural compound codonolactone impairs tumor induced angiogenesis by downregulating BMP signaling in endothelial cells.

    PubMed

    Wang, Shan; Cai, Rui; Ma, Junchao; Liu, Ting; Ke, Xiaoqin; Lu, Hong; Fu, Jianjiang

    2015-10-15

    Angiogenesis, the recruitment of new blood vessels, was demonstrated that is an essential component of the growth of a tumor beyond a certain size and the metastatic pathway. The potential use of angiogenesis-based agents, such as those involving natural and synthetic inhibitors as anticancer drugs is currently under intense investigation. In this study, the anti-angiogenic properties of codonolactone (CLT), a sesquiterpene lactone from Atractylodes lancea, were examined in endothelial cells. Our published study reported that CLT shows significant anti-metastatic properties in vitro and in vivo. In order to determine whether angiogenic-involved mechanisms contribute to the anti-metastatic effects of CLT, we checked the anti-angiogenic properties of CLT and its potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and EA.hy 926 cells were involved in this study. Immunofluorescence assay for cells and immunohistochemistry assay for tissues were used to check the expression of angiogenic markers. In vitro migration and invasion of endothelial cells treated with and without CLT were analyzed. Protein expressions were measured by Western blot analysis. For MMPs activity assay, fluorescence resonance energy transfer-based MMPs activity assay and gelatin zymography assay were involved in this study. Here we demonstrated that CLT exhibited inhibition on cancer cell induced angiogenesis in vivo, and direct inhibited migration and invasion of endothelial cells in vitro. Moreover, we observed that the down-regulation of MMPs and VEGF-VEGFR2 was involved in the anti-angiogenic effects of CLT. Data from Western blotting showed that, in endothelial cells, CLT reduced Runx2 activation and BMP signaling. Our findings demonstrated that CLT impaired the development of angiogenesis both in vitro and in vivo by direct inhibition on endothelial cells. These inhibitory effects were depended on its ability to interference with BMP signaling in endothelial cells, which may

  6. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Rosenfeld, Philip J.

    2016-01-01

    Purpose To explain the pivotal role optical coherence tomography (OCT) imaging had in the development of antiangiogenic therapies for the treatment of neovascular age-related macular degeneration (nvAMD). Methods A historical literature review was combined with personal perspectives from the introduction of OCT imaging and the early clinical use of vascular endothelial growth factor (VEGF) inhibitors. Results At the time that OCT emerged, the gold standard for imaging of nvAMD was fluorescein angiography (FA), a time-consuming, dye-based, invasive technique that provided en face images of the retina and was used to characterize leakage, perfusion status, and the types of macular neovascularization (MNV). In comparison, OCT imaging was a fast, safe, noninvasive technique that complemented FA imaging by providing cross-sectional images of the macula. OCT was able to visualize and quantify the macular fluid that was associated with the presence of excess VEGF, which was identified by intraretinal fluid, subretinal fluid, and fluid under the retinal pigment epithelium (RPE). Clinicians quickly appreciated the benefits of OCT imaging for following macular fluid after anti-VEGF therapy. By observing the qualitative and quantitative changes in macular fluid depicted by OCT imaging, clinicians were empowered to compare anti-VEGF drugs and move from fixed-dosing regimens to patient-specific dosing strategies requiring fewer injections. Conclusions Optical coherence tomography imaging was adopted as a VEGF-meter, a method to detect excess VEGF, and evolved to become the gold standard imaging strategy for diagnosing nvAMD, assessing treatment responses to anti-VEGF drugs, deciding when to re-treat, and evaluating disease progression. PMID:27409464

  7. Potential use of quadrivalent selenium as a systemic deer-browsing repellent: A cautionary note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jobidon, R.; Prevost, M.

    1994-06-01

    This study evaluates the potential usefulness and toxicity of applying quadrivalent selenium (selenite ion) to the soil to discourage white-tailed deer from browsing conifer seedlings. After adsorption by the root system and internal transport, organoselenium compounds are volatilized by the foliage, and the characteristic garlic odor is hypothesized to protect coniferous tree seedlings from browsing damage. Results indicate that either 5, 17, or 24 months after treatment, selenized white spruce seedlings did not show significantly different deer-browsing damage from control seedlings when deer numbers were high. Five and seventeen months after treatment, selenium had not leached but had accumulated inmore » the top soil. Large-scale application of selenium may represent a potential environmental risk, hence the authors do not recommend use of selenite ion to prevent damage from deer-browsing of white spruce seedlings.« less

  8. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer.

    PubMed

    Shrimali, Rajeev K; Yu, Zhiya; Theoret, Marc R; Chinnasamy, Dhanalakshmi; Restifo, Nicholas P; Rosenberg, Steven A

    2010-08-01

    Adoptive cell transfer (ACT)-based immunotherapies can mediate objective cancer regression in animal models and in up to 70% of patients with metastatic melanoma; however, it remains unclear whether the tumor vasculature impedes the egress of tumor-specific T cells, thus hindering this immunotherapy. Disruption of the proangiogenic interaction of vascular endothelial growth factor (VEGF) with its receptor (VEGFR-2) has been reported to "normalize" tumor vasculature, enhancing the efficacy of chemotherapeutic agents by increasing their delivery to the tumor intersitium. We thus sought to determine whether disrupting VEGF/VEGFR-2 signaling could enhance the effectiveness of ACT in a murine cancer model. The administration of an antibody against mouse VEGF synergized with ACT to enhance inhibition of established, vascularized, B16 melanoma (P = 0.009) and improve survival (P = 0.003). Additive effects of an antibody against VEGFR-2 in conjunction with ACT were seen in this model (P = 0.013). Anti-VEGF, but not anti-VEGFR-2, antibody significantly increased infiltration of transferred cells into the tumor. Thus, normalization of tumor vasculature through disruption of the VEGF/VEGFR-2 axis can increase extravasation of adoptively transferred T cells into the tumor and improve ACT-based immunotherapy. These studies provide a rationale for the exploration of combining antiangiogenic agents with ACT for the treatment of patients with cancer.

  9. Bone Marrow Derived Myeloid Cells Orchestrate Antiangiogenic Resistance in Glioblastoma through Coordinated Molecular Networks

    PubMed Central

    Achyut, B.R.; Shankar, Adarsh; Iskander, ASM; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A.; Scicli, Alfonso G; Arbab, Ali S.

    2015-01-01

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5×106 GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  10. Anti-angiogenic activity and antitumor efficacy of amphiphilic twin drug from ursolic acid and low molecular weight heparin

    NASA Astrophysics Data System (ADS)

    Cheng, Wenming; Zohra Dahmani, Fatima; Zhang, Juan; Xiong, Hui; Wu, Yuanyuan; Yin, Lifang; Zhou, Jianping; Yao, Jing

    2017-02-01

    Heparin, a potential blood anti-coagulant, is also known for its binding ability to several angiogenic factors through electrostatic interactions due to its polyanionic character. However, the clinical application of heparin for cancer treatment is limited by several drawbacks, such as unsatisfactory therapeutic effects and severe anticoagulant activity that could induce hemorrhaging. Herein, low molecular weight heparin (LMWH) was conjugated to ursolic acid (UA), which is also an angiogenesis inhibitor, by binding the amine group of aminoethyl-UA (UA-NH2) with the carboxylic groups of LMWH. The resulting LMWH-UA conjugate as an amphiphilic twin drug showed reduced anticoagulant activity and could also self-assemble into nanomicelles with a mean particle size ranging from 200-250 nm. An in vitro endothelial tubular formation assay and an in vivo Matrigel plug assay were performed to verify the anti-angiogenic potential of LMWH-UA. Meanwhile, the in vivo antitumor effect of LMWH-UA was also evaluated using a B16F10 mouse melanoma model. LMWH-UA nanomicelles were shown to inhibit angiogenesis both in vitro and in vivo. In addition, the i.v. administration of LMWH-UA to the B16F10 tumor-bearing mice resulted in a significant inhibition of tumor growth as compared to the free drug solutions. These findings demonstrate the therapeutic potential of LMWH-UA as a new therapeutic remedy for cancer therapy.

  11. Standardization of dynamic contrast-enhanced ultrasound for the evaluation of antiangiogenic therapies: the French multicenter Support for Innovative and Expensive Techniques Study.

    PubMed

    Lassau, Nathalie; Chapotot, Louis; Benatsou, Baya; Vilgrain, Valérie; Kind, Michèle; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe, Catherine; Gallix, Benoît; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Uzan-Augui, Joëlle; Koscielny, Serge

    2012-12-01

    The objectives of this study are to describe the standardization and dissemination of dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of antiangiogenic treatments in solid tumors across 19 oncology centers in France and to define a quality score to account for the variability of the evaluation criteria used to collect DCE-US data. This prospective Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) DCE-US study included patients with metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors, renal cell carcinoma and patients with primary hepatocellular carcinoma tumors treated with antiangiogenic therapy. The DCE-US method was made available across 19 oncology centers in France. Overall, 2339 DCE-US examinations were performed by 65 radiologists in 539 patients.One target site per patient was studied. Standardized DCE-US examinations were performed before treatment (day 0) and at days 7, 15, 30, and 60. Dynamic contrast-enhanced ultrasound data were transferred from the different sites to the main study center at the Institut Gustave-Roussy for analysis. Quantitative analyses were performed with a mathematical model to determine 7 DCE-US functional parameters using raw linear data. Radiologists had to evaluate 6 criteria that were potentially linked to the precision of the evaluation of these parameters: lesion size, target motion, loss of target, clear borders, total acquisition of wash-in, and vascular recognition imaging window adapted to the lesion size.Eighteen DCE-US examinations were randomly selected from the Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) database. Each examination was quantified twice by 8 engineers/radiologists trained to evaluate the perfusion parameters. The intraobserver variability was estimated on the basis of differences between examinations performed by the same radiologist. The mean coefficient of

  12. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2

    PubMed Central

    Meinerz, Daiane Francine; Allebrandt, Josiane; Mariano, Douglas O.C.; Waczuk, Emily P.; Soares, Felix Antunes

    2014-01-01

    Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled. PMID:24711962

  13. The early research and development of ebselen.

    PubMed

    Parnham, Michael J; Sies, Helmut

    2013-11-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one; PZ-51, DR-3305), is an organoselenium compound with glutathione peroxidase (GPx)-like, thiol-dependent, hydroperoxide reducing activity. As an enzyme mimic for activity of the selenoenzyme GPx, this compound has proved to be highly useful in research on mechanisms in redox biology. Furthermore, the reactivity of ebselen with protein thiols has helped to identify novel, selective targets for inhibitory actions on several enzymes of importance in pharmacology and toxicology. Importantly, the selenium in ebselen is not released and thus is not bioavailable, ebselen metabolites being excreted in bile and urine. As a consequence, initial concerns about selenium toxicity, fortunately, were unfounded. Potential applications in medical settings have been explored, notably in brain ischemia and stroke. More recently, there has been a surge in interest as new medical applications have been taken into consideration. The first publication on the biochemical effects of ebselen appeared 30 years ago (Müller et al.), which prompted the authors to retrace the early development from their perspective. It is a fascinating example of fruitful interaction between research-oriented industry and academia. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer.

    PubMed

    Liu, Joyce F; Tolaney, Sara M; Birrer, Michael; Fleming, Gini F; Buss, Mary K; Dahlberg, Suzanne E; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A

    2013-09-01

    Poly(ADP-ribose) polymerase (PARP)-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of vascular endothelial growth factor receptor (VEGFR)-1/2/3 and olaparib, a PARP-inhibitor (NCT01116648). Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 or met Gynecologic Cancer InterGroup (GCIG) CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 dose limiting toxicities (DLTs) (1 grade 4 neutropenia ≥ 4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30 mg daily; olaparib 400 mg twice daily [BID]). The RP2D was cediranib 30 mg daily and olaparib 200 mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus stable disease (SD) > 24 weeks) of 61%. None of the seven evaluable breast cancer patients achieved clinical response; two patients had stable disease for > 24 weeks. The combination of cediranib and olaparib has haematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less

  16. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  17. Anti-angiogenic therapy with contrast-enhanced ultrasound in colorectal cancer patients with liver metastasis.

    PubMed

    Wu, Zhiyong; Yang, Xiaowei; Chen, Li; Wang, Zhikuan; Shi, Yan; Mao, Hui; Dai, Guanghai; Yu, Xiaoling

    2017-05-01

    The aim of the study was to evaluate the efficacy of anti-angiogenic therapy with dynamic contrast-enhanced ultrasound (DCE-US) in colorectal cancer (CRC) patients with liver metastasis.A total of 50 CRC patients with liver metastasis who received bevacizumab (BEV)-based chemotherapy (BEV + FOLFOX6 protocol) were recruited into the present study. Before the study (d0), and 3, 7, 14, and 42 days (d3, d7, d14, and d42) after chemotherapy, DCE-US was performed, and tumor perfusion was evaluated quantitatively by retention time (RT), peak enhancement (PE), and wash-in area under the curve (WiAUC) on the basis of a contrast-uptake curve determined with original linear data.Routine ultrasonography was used to evaluate metastatic foci in the liver at baseline. A metastatic focus was selected for dynamic monitoring with ultrasound. The metastatic foci were 1.5 to 8 cm (median: 2.5 cm). The results of hemodynamics monitored at different time points, including RT, PE, and WiAUC, showed that RT at baseline was significantly different between groups (P < .001; Responder group: 10.54 seconds; nonresponder group: 15.33 seconds). The2 groups had opposite changes in RT (continuous increase in the responder group and transient reduction in the nonresponder). The RT of metastatic foci was normalized to that of adjacent normal liver as standard RT-quotient, a similar trend was observed, and no marked difference was noted in the standard RT-quotient between the 2 groups. The median progression-free survival was significantly higher in the increased-RT group (10.8 months) than the decreased-RT group (2.5 months) (P = .002). There were no significant differences in peak intensity and WiAUC between the 2 groups.DCE-US can be used to quantitatively evaluate the hemodynamics of liver metastasis in CRC patients who received bevacizumab-based chemotherapy.

  18. Imaging Biomarker Dynamics in an Intracranial Murine Glioma Study of Radiation and Antiangiogenic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Caroline, E-mail: caroline.chung@rmp.uhn.on.ca; Jalali, Shahrzad; Foltz, Warren

    2013-03-01

    Purpose: There is a growing need for noninvasive biomarkers to guide individualized spatiotemporal delivery of radiation therapy (RT) and antiangiogenic (AA) therapy for brain tumors. This study explored early biomarkers of response to RT and the AA agent sunitinib (SU), in a murine intracranial glioma model, using serial magnetic resonance imaging (MRI). Methods and Materials: Mice with MRI-visible tumors were stratified by tumor size into 4 therapy arms: control, RT, SU, and SU plus RT (SURT). Single-fraction conformal RT was delivered using MRI and on-line cone beam computed tomography (CT) guidance. Serial MR images (T2-weighted, diffusion, dynamic contrast-enhanced and gadolinium-enhancedmore » T1-weighted scans) were acquired biweekly to evaluate tumor volume, apparent diffusion coefficient (ADC), and tumor perfusion and permeability responses (K{sub trans}, K{sub ep}). Results: Mice in all treatment arms survived longer than those in control, with a median survival of 35 days for SURT (P<.0001) and 30 days for RT (P=.009) and SU (P=.01) mice vs 26 days for control mice. At Day 3, ADC rise was greater with RT than without (P=.002). Sunitinib treatment reduced tumor perfusion/permeability values with mean K{sub trans} reduction of 27.6% for SU (P=.04) and 26.3% for SURT (P=.04) mice and mean K{sub ep} reduction of 38.1% for SU (P=.01) and 27.3% for SURT (P=.02) mice. The magnitude of individual mouse ADC responses at Days 3 and 7 correlated with subsequent tumor growth rate R values of −0.878 (P=.002) and −0.80 (P=.01), respectively. Conclusions: Early quantitative changes in diffusion and perfusion MRI measures reflect treatment responses soon after starting therapy and thereby raise the potential for these imaging biomarkers to guide adaptive and potentially individualized therapy approaches in the future.« less

  19. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  20. Discovery of novel taspine derivatives as antiangiogenic agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Zhang, Sanqi; Wang, Sicen; He, Langchong

    2010-01-15

    VEGFR-2 plays a critical role in vasculogenesis and inhibitors of VEGFR-2 could be used in the treatment of cancer. Taspine was one of the active ingredients screened by using an endothelial cell membrane chromatography and showed inhibition against VEGFR-2. In our research, we explored how the lactone ring and biphenyl scaffold in taspine influence its potent in vitro anticancer and antiangiogenesis activities. Accordingly, we report the design, synthesis, and preliminary evaluation of four novel taspine derivatives as VEGFR-2 inhibitors. The preliminary biological test showed that one of the compounds showed much better inhibitory activities against CACO-2 (IC(50)=52.5nM) and ECV304 (IC(50)=2.67nM) than taspine. This result enlarges the interest in ring-opened taspine derivative skeleton in the search of new antiangiogenesis agents. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Antioxidant and antidepressant-like activities of semi-synthetic α-phenylseleno citronellal.

    PubMed

    Victoria, Francine Novack; Anversa, Roberta; Penteado, Filipe; Castro, Micheli; Lenardão, Eder João; Savegnago, Lucielli

    2014-11-05

    In this study, the antioxidant and antidepressant-like activities of the semi-synthetic compound α-phenylseleno citronellal (PhSeCIT) and the natural terpenoid R-citronellal (CIT) were evaluated. The biological potential of PhSeCIT and CIT was evaluated by antioxidant in vitro assays, such as 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), ferric ion reducing antioxidant power (FRAP) and linoleic acid oxidation. The compounds were also assessed by ex vivo tests to determine the acute toxicity, levels of thiobarbituric acid reactive species (TBARS), δ-aminolevulinate dehydratase (δ-Ala-D) and Na(+)/K(+) ATPase activities. The antidepressant-like activity of compounds in the tail suspension test (TST) and forced swimming test (FST) was also investigated. The results demonstrated that the addition of an organoselenium group to (R)-citronellal increased its antioxidant properties, since PhSeCIT showed better activity than CIT. The treatment of mice with both compounds did not cause death of any animals. The levels of TBARS were significantly reduced by PhSeCIT in liver and cortex of animals, whereas CIT did not alter these parameters. In the TST and FST, PhSeCIT showed promising antidepressant-like activity, while CIT was not active in this test. Taken together, these data demonstrate the role of selenium in the antioxidant and antidepressant-like activities of (R)-citronellal. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effect of baicalin in a mouse model of retinopathy of prematurity

    PubMed Central

    Jo, Hyoung; Jung, Sang Hoon; Yim, Hye Bin; Lee, Sung Jin; Kang, Kui Dong

    2015-01-01

    Baicalin is a flavonoid derived from the dried root of Scutellaria baicalensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of baicalin in mice. Pups were exposed to a hyperbaric oxygen environment to induce retinal angiogenesis and were subjected to intraperitoneal injection of baicalin. Avascular area, neovascular tufts, and neovascular lumens were quantified from digital images. Compared to the vehicle, baicalin clearly reduced the central avascular zone and the number of neovascular tufts and lumens. High-dose baicalin (10 mg/kg) significantly reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, angiotensin II, and vascular endothelial growth factor (VEGF). These results show that baicalin is a powerful antiangiogenic compound that attenuates new vessel formation in the retina after systemic administration, and is a candidate substance for therapeutic inhibition of retinal angiogenesis. [BMB Reports 2015; 48(5): 271-276] PMID:25154719

  3. m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model.

    PubMed

    Brüning, César Augusto; Martini, Franciele; Soares, Suelen Mendonça; Sampaio, Tuane Bazanella; Gai, Bibiana Mozzaquatro; Duarte, Marta M M F; Nogueira, Cristina Wayne

    2015-12-03

    Chronic pain and depression are two complex states that often coexist in the clinical setting and traditional antidepressants and analgesics have shown limited clinical efficacy. There is an intricate communication between the immune system and the central nervous system and inflammation has been considered a common mediator of pain-depression comorbidity. This study evaluated the effect of m-trifluoromethyl diphenyl diselenide [(m-CF3-PhSe)2], an organoselenium compound that has been reported to have both antinociceptive and antidepressant-like actions, in the comorbidity of chronic pain and depression induced by partial sciatic nerve ligation (PSNL) in an inflammatory approach. Mice were submitted to PSNL during 4weeks and treated with (m-CF3-PhSe)2 acutely (0.1-10mg/kg, i.g.) or subchronically (0.1mg/kg, i.g., once a day during the 3rd and 4th weeks). Both treatments prevented PSNL-increased pain sensitivity and depressive-like behavior observed in Von-Frey hair (VFH) and forced swimming (FST) tests, respectively. These effects could be mainly associated with an anti-inflammatory action of (m-CF3-PhSe)2 which reduced the levels of pro-inflammatory cytokines, NF-κB and COX-2, and p38 MAPK activation that were increased by PSNL. (m-CF3-PhSe)2 also increased the BDNF levels and reduced glutamate release and 5-HT uptake altered by PSNL. Although acute and subchronic treatments with (m-CF3-PhSe)2 prevented these alterations induced by PSNL, the best results were found when (m-CF3-PhSe)2 was subchronically administered to mice. Considering the potential common mechanisms involved in the comorbidity of inflammation-induced depression and chronic pain, the results found in this study indicate that (m-CF3-PhSe)2 could become an interesting molecule to treat long-lasting pathological pain associated with depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. αvß3-Integrin-Targeted Magnetic Resonance Imaging for the Assessment of Early Antiangiogenic Therapy Effects in Orthotopic Breast Cancer Xenografts.

    PubMed

    Kazmierczak, Philipp Maximilian; Schneider, Moritz; Habereder, Thomas; Hirner-Eppeneder, Heidrun; Eschbach, Ralf S; Moser, Matthias; Reiser, Maximilian F; Lauber, Kirsten; Nikolaou, Konstantin; Cyran, Clemens C

    2016-11-01

    The aim of this study was to investigate magnetic resonance imaging (MRI) with αvß3-integrin-targeted ultrasmall superparamagnetic iron oxide nanoparticles (RGD-USPIO) for the in vivo monitoring of early antiangiogenic therapy effects in experimental breast cancer. Orthotopic human breast cancer (MDA-MB-231) xenograft-bearing severe combined immunodeficiency mice were imaged before and after a 1-week therapy with the vascular endothelial growth factor receptor-antibody bevacizumab or placebo (n = 10 per group, daily intraperitoneal injections of bevacizumab or a volume-equivalent placebo solution, respectively) on a clinical 3 T scanner (Magnetom Skyra; Siemens Healthcare, Erlangen, Germany) before and 60 minutes after the intravenous injection of RGD-USPIO (P04000; Guerbet, Villepinte, France). R2 relaxometry employing a T2-weighted spin-echo sequence with 4 echo times (echo time, 20/40/60/80 milliseconds; repetition time, 3800 milliseconds; matrix, 128 × 128; field of view, 50 × 50; slice thickness, 1.2 mm; time to acquisition, 25 minutes) was used as semiquantitative measure to determine RGD-USPIO endothelial binding. In addition, the T2-weighted images were used to perform volumetric tumor response assessments. Imaging results were validated by ex vivo multiparametric immunohistochemistry with regard to αvß3-integrin expression, microvascular density (CD31), proliferation (Ki-67), and apoptosis (TUNEL). RGD-USPIO endothelial binding was significantly reduced after vascular endothelial growth factor inhibition, compared with the control group in which an increased endothelial binding was detected ([INCREMENT]R2Therapy = -0.80 ± 0.78 s; [INCREMENT]R2Control = +0.27 ± 0.59 s; P = 0.002). Correspondingly, immunohistochemistry revealed a significantly lower αvß3-integrin expression (91 ± 30 vs 357 ± 72; P < 0.001), microvascular density (CD31, 109 ± 46 vs 440 ± 208; P < 0.001), tumor cell proliferation (Ki-67, 4040 ± 1373 vs 6530 ± 1217; P < 0

  5. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen.

    PubMed

    Petronilho, Fabricia; Michels, Monique; Danielski, Lucinéia G; Goldim, Mariana Pereira; Florentino, Drielly; Vieira, Andriele; Mendonça, Mariana G; Tournier, Moema; Piacentini, Bárbara; Giustina, Amanda Della; Leffa, Daniela D; Pereira, Gregório W; Pereira, Volnei D; Rocha, João Batista Teixeira Da

    2016-09-01

    The aim of this study was to evaluate the effects of diphenyl diselenide (PhSe)2 and ebselen (EB) in ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in rats. The effects of (PhSe)2 and EB in rats submitted to DSS-induced colitis were determined by measurement of oxidative stress parameters, inflammatory response and bowel histopathological alterations. Animals developed moderate to severe neutrophil infiltration in histopathology assay in DSS rats and (PhSe)2 improved this response. Moreover, the treatment with (PhSe)2 decreased the oxidative damage in lipids and proteins, as well as reversed the superoxide dismutase (SOD) and catalase (CAT) levels in rats treated with DSS. EB was able only to reverse damage in lipids and the low levels of SOD in this animal model. The organoselenium compounds tested demonstrated an anti-inflammatory and antioxidant activity reducing the colon damage, being (PhSe)2 more effective than EB. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1.

    PubMed

    Saeed, Mohamed E M; Kadioglu, Onat; Seo, Ean-Jeong; Greten, Henry Johannes; Brenk, Ruth; Efferth, Thomas

    2015-04-01

    The antimalarial drug artemisinin has been shown to exert anticancer activity through anti-angiogenic effects. For further drug development, it may be useful to have derivatives with improved anti-angiogenic properties. We performed molecular docking of 52 artemisinin derivatives to vascular endothelial growth factor receptors (VEGFR1, VEGFR2), and VEGFA ligand using Autodock4 and AutodockTools-1.5.7.rc1 using the Lamarckian genetic algorithm. Quantitative structure-activity relationship (QSAR) analyses of the compounds prepared by Corina Molecular Networks were performed using the Molecular Operating Environment MOE 2012.10. A statistically significant inverse relationship was obtained between in silico binding energies to VEGFR1 and anti-angiogenic activity in vivo of a test-set of artemisinin derivatives (R=-0.843; p=0.035). This served as a control experiment to validate molecular docking predicting anti-angiogenc effects. Furthermore, 52 artemisinin derivatives were docked to VEGFR1 and in selected examples also to VEGFR2 and VEGFA. Higher binding affinities were calculated for receptors than for the ligand. The best binding affinities to VEGFR1 were found for an artemisinin dimer, 10-dihydroartemisinyl-2-propylpentanoate, and dihydroartemisinin α-hemisuccinate sodium salt. QSAR analyses revealed significant relationships between VEGFR1 binding energies and defined molecular descriptors of 35 artemisinins assigned to the training set (R=0.0848, p<0.0001) and 17 derivatives assigned to the test set (R=0.761, p<0.001). Molecular docking and QSAR calculations can be used to identify novel artemisinin derivatives with anti-angiogenic effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Antiangiogenic activity of aganirsen in nonhuman primate and rodent models of retinal neovascular disease after topical administration.

    PubMed

    Cloutier, Frank; Lawrence, Matthew; Goody, Robin; Lamoureux, Stéphanie; Al-Mahmood, Salman; Colin, Sylvie; Ferry, Antoine; Conduzorgues, Jean-Pascal; Hadri, Amel; Cursiefen, Claus; Udaondo, Patricia; Viaud, Eric; Thorin, Eric; Chemtob, Sylvain

    2012-03-09

    Aganirsen, an antisense oligonucleotide inhibiting insulin receptor substrate (IRS)-1 expression, has been shown to promote the regression of pathologic corneal neovascularization in patients. In this study, the authors aimed to demonstrate the antiangiogenic activity of aganirsen in animal models of retinal neovascularization. Eyedrops of aganirsen were applied daily in nonhuman primates after laser-induced choroidal neovascularization (CNV; model of wet age-related macular degeneration [AMD]) and in newborn rats after oxygen-induced retinopathy (OIR; model of ischemic retinopathy). Retinal aganirsen concentrations were assessed in rabbits and monkeys after topical delivery (21.5, 43, or 86 μg). Clinical significance was further evaluated by determination of IRS-1 expression in monkey and human retinal biopsy specimens. Topical corneal application of aganirsen attenuated neovascular lesion development dose dependently in African green monkeys. The incidence of high-grade CNV lesions (grade IV) decreased from 20.5% in vehicle-treated animals to 1.7% (P < 0.05) at the 86-μg dose. Topical aganirsen inhibited retinal neovascularization after OIR in rats (P < 0.05); furthermore, a single intravitreal injection of aganirsen reduced OIR as effectively as ranibizumab, and their effects were additive. Significantly, topical applications of aganirsen did not interfere with physiological retinal vessel development in newborn rats. Retinal delivery after topical administration was confirmed, and retinal expression of IRS-1 was demonstrated to be elevated in patients with subretinal neovascularization and AMD. Topical application of aganirsen offers a safe and effective therapy for both choroidal and retinal neovascularization without preventing its normal vascularization. Together, these findings support the clinical testing of aganirsen for human retinal neovascular diseases.

  8. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Synthesis of 5-(ethylsulfonyl)-2-methoxyaniline: An important pharmacological fragment of VEGFR2 and other inhibitors

    PubMed Central

    Murár, Miroslav; Addová, Gabriela

    2013-01-01

    Summary Background: 5-(Ethylsulfonyl)-2-methoxyaniline (5) is part of the structure in 131 compounds possessing different biological activities. In most cases, they have antitumor properties (112 compounds). Other compounds are described as cardiovascular agents, ion-channel blockers, nervous-system blockers, anti-inflammatory agents, or antidiabetic, antiosteoporotic and hypolipemic species. Compound 5 is a precursor of different protein-kinase inhibitors or enzyme modulators (EGFR, PDGFR, ckit, CDK 2 and 4, MMPs 2, 3, 9 and 13, etc.). The structure of 5 represents a fragment for several powerful inhibitors of VEGFR2, a key angiogenic receptor. Antiangiogenic inhibitors slow down or stop new blood-vessel formation from pre-existing vasculature. Some antiangiogenic drugs inhibiting the VEGFR2 receptor are successfully used in clinics for the treatment of several types of tumours in synergy with chemotherapy (e.g., Nexavar® from Bayer, Sutent® from Pfizer and Votrient® from GlaxoSmithKline, approved by the FDA in 2005, 2006 and 2009, respectively). The structure of 5 is an important pharmacophoric fragment of potent VEGFR2 inhibitors (e.g., AAZ from PDB complex 1Y6A, enzymatic IC50 = 22 nM). Up to now, 25 VEGFR2 inhibitors possessing a fragment of 5 can be found in the literature. Despite the high significance of 5-(ethylsulfonyl)-2-methoxyaniline (5) its preparation has not yet been described. Results: Here we have developed a convenient synthesis of important polyheterosubstituted aniline 5 starting from commercially available 4-methoxybenzene-1-sulfonyl chloride (1) in four steps and 59% overall yield. The target 5-(ethylsulfonyl)-2-methoxyaniline (5) and its synthetic intermediates 2–4 together with a new compound 5-(ethylsulfonyl)-2-methoxy-1,3-dinitrobenzene (4a) have been precisely physicochemically characterised. PMID:23399884

  10. Preparation and antibacterial activity of compound chitosan-compound Yizhihao-nanoparticles.

    PubMed

    Ou, Sheng; Zhang, Yang-de

    2008-05-01

    To prepare chitosan (CS)-compound Yizhihao-nanoparticles (NP) and to investigate its antibacterial activity. CS NPs were formed by the incorporation of CS and Na3 PO4. CS-compound Yizhihao NPs were prepared by ion-cross-linking. The particle sizes and surface charges of CS NPs were determined by Malvern Zetasizer 1000-HAS and atomic force microscope (AFM), respectively. The antibacterial activity of CS-compound Yizhihao-NPs was studied in vitro and compared with that of compound Yizhihao powder. Malvern Zetasizer 1000-HAS and AFM demonstrated that the diameter of CS-compound Yizhihao NPs was (137.00+/-14.28)nm and CS NPs had (16.90+/-1.32)mV positive surface charges. The minimal inhibitory concentrations (MIC) of CS-compound Yizhihao NPs on Staphylococcus aureus,Pneumococcus,beta-hemolytic streptococcus, and Escherichia coli were 1:32,1:32,1:16,and 1:2, respectively. The minimal bactericidal concentrations (MBC) of CS-compound Yizhihao-NPs on Staphylococcus aureus, Pneumococcus, beta-hemolytic streptococcus, and Escherichia coli were 1:16,1:16,1:8, and 1:2, respectively. The antibacterial efficacy of CS-compound Yizhihao-NPs to Staphylococcus aureus, Pneumococcus, and beta-hemolytic streptococcus had been improved significantly (P< 0.05). CS-compound Yizhihao-nanoparticles have obvious antibacterial activity to the Staphylococcus aureus,Pneumococcus,and beta-hemolytic streptococcus,which lays the experimental foundation for new preparation of traditional Chinese medicine in future research.

  11. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  12. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.).

    PubMed

    Smeriglio, A; Denaro, M; Barreca, D; D'Angelo, V; Germanò, M P; Trombetta, D

    2018-01-01

    Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Compounding in Ukraine.

    PubMed

    Zdoryk, Oleksandr A; Georgiyants, Victoriya A; Gryzodub, Oleksandr I; Schnatz, Rick

    2013-01-01

    Pharmaceutical compounding in modern Ukraine has a rich history and goes back to ancient times. Today in the Ukraine, there is a revival of compounding practice, the opening of private compounding pharmacies, updating of legislative framework and requirements of the State Pharmacopeia of Ukraine for compounding preparations, and the introduction of Good Pharmaceutical Practice.

  14. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model.

    PubMed

    Baharara, Javad; Namvar, Farideh; Ramezani, Tayebe; Hosseini, Nasrin; Mohamad, Rosfarizan

    2014-04-15

    Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs) were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12±2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL) lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.

  15. In vivo screening and discovery of novel candidate thalidomide analogs in the zebrafish embryo and chicken embryo model systems

    PubMed Central

    Beedie, Shaunna L.; Rore, Holly M.; Barnett, Shelby; Chau, Cindy H.; Luo, Weiming; Greig, Nigel H.; Figg, William D.; Vargesson, Neil

    2016-01-01

    Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and describe a cohort of compounds with anti-angiogenic properties, anti-inflammatory properties and some compounds which exhibited both. The combination of the in vivo zebrafish and chicken embryo model systems allows for the accelerated discovery of new, potential therapies for cancerous and inflammatory conditions. PMID:27120781

  16. Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications.

    PubMed

    Perugini, Valeria; Guildford, Anna L; Silva-Correia, Joana; Oliveira, Joaquim M; Meikle, Steven T; Reis, Rui L; Santin, Matteo

    2018-02-01

    Damage of non-vascularised tissues such as cartilage and cornea can result in healing processes accompanied by a non-physiological angiogenesis. Peptidic aptamers have recently been reported to block the vascular endothelial growth factor (VEGF). However, the therapeutic applications of these aptamers are limited due to their short half-life in vivo. In this work, an enhanced stability and bioavailability of a known VEGF blocker aptamer sequence (WHLPFKC) was pursued through its tethering of molecular scaffolds based on hyperbranched peptides, the poly(ɛ-lysine) dendrons, bearing three branching generations. The proposed design allowed simultaneous and orderly-spaced exposure of 16 aptamers per dendrimer to the surrounding biological microenvironent, as well as a relatively hydrophobic core based on di-phenylalanine aiming to promote an hydrophobic interaction with the hydrophobic moieties of ionically crosslinked methacrylated gellan gum (iGG-MA) hydrogels. The VEGF blocker dendrons were entrapped in iGG-MA hydrogels, and their capacity to prevent endothelial cell sprouting was assessed qualitatively and quantitatively using 3D in vitro models and the in vivo chick chorioallantoic membrane assay. The data demonstrate that at nanoscale concentrations, the dendronised structures were able to enhance control of the biological actvity of WHLPFKC at the material/tissue interface and hence the anti-angiogenic capacity of iGG-MA hydrogels not only preventing blood vessel invasion, but also inducing their regression at the tissue/iGG-MA interface. The in ovo study confirmed that iGG-MA functionalised with the dendron VEGF blockers do inhibit angiogenesis by controlling both size and ramifications of blood vessels in the proximity of the implanted gel surface. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  18. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack L. Arbiser; Baskaran Govindarajan; Traci E. Battle

    2006-06-15

    Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelialmore » cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.« less

  19. Multiparametric Monitoring of Early Response to Antiangiogenic Therapy: A Sequential Perfusion CT and PET/CT Study in a Rabbit VX2 Tumor Model

    PubMed Central

    Lee, Hyun-Ju; Lee, Kyung Won; Lee, Hak Jong; Lee, Won Woo

    2014-01-01

    Objectives. To perform dual analysis of tumor perfusion and glucose metabolism using perfusion CT and FDG-PET/CT for the purpose of monitoring the early response to bevacizumab therapy in rabbit VX2 tumor models and to assess added value of FDG-PET to perfusion CT. Methods. Twenty-four VX2 carcinoma tumors implanted in bilateral back muscles of 12 rabbits were evaluated. Serial concurrent perfusion CT and FDG-PET/CT were performed before and 3, 7, and 14 days after bevacizumab therapy (treatment group) or saline infusion (control group). Perfusion CT was analyzed to calculate blood flow (BF), blood volume (BV), and permeability surface area product (PS); FDG-PET was analyzed to calculate SUVmax, SUVmean, total lesion glycolysis (TLG), entropy, and homogeneity. The flow-metabolic ratio (FMR) was also calculated and immunohistochemical analysis of microvessel density (MVD) was performed. Results. On day 14, BF and BV in the treatment group were significantly lower than in the control group. There were no significant differences in all FDG-PET-derived parameters between both groups. In the treatment group, FMR prominently decreased after therapy and was positively correlated with MVD. Conclusions. In VX2 tumors, FMR could provide further insight into the early antiangiogenic effect reflecting a mismatch in intratumor blood flow and metabolism. PMID:25383376

  20. Efficacy of Addition of Antiangiogenic Agents to Taxanes-Containing Chemotherapy in Advanced Nonsmall-Cell Lung Cancer

    PubMed Central

    Sheng, Jin; Yang, Yun-Peng; Yang, Bi-Jun; Zhao, Yuan-Yuan; Ma, Yu-Xiang; Hong, Shao-Dong; Zhang, Ya-Xiong; Zhao, Hong-Yun; Huang, Yan; Zhang, Li

    2015-01-01

    Abstract Preclinical researches indicated a potential synergistic effect of taxanes-containing chemotherapy (TCC) and antiangiogenic agents (AAs) on the treatment of advanced nonsmall-cell lung cancer (NSCLC). The advantage of adding AA to TCC in the real world remains confusing. We summarized the current evidences from relevant phase II/III randomized controlled trials (RCTs) by performing this meta-analyses. Electronic databases were searched for eligible literatures. The primary endpoint was overall survival (OS). Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for outcomes were calculated using RevMan 5.2. A total of 14 phase II/III RCTs involving 9703 participants were included. Compared to standard TCC, the addition of AA was associated with the significant better OS (HR 0.92, 95% CI 0.87–0.97, P = 0.002), prolonged progression-free survival (HR 0.79, 95% CI 0.71–0.87, P < 0.00001), superior response rate (risk ratio [RR] 1.69, 95% CI 1.47–1.95, P < 0.0001), and disease control rate (RR 1.19, 95% CI 1.08–1.32, P < 0.00001). Subgroup analyses indicated that patient treated with monoclonal antibodies (HR 0.89, 95% CI 0.82–0.96, P = 0.02) as well as application in second-line (HR 0.91, 95% CI 0.85–0.96, P = 0.02) acquired significant OS improvement. Other clinical factors directing significant OS improvement by the combination strategy included nonsquamous cancer (P = 0.002), nonsmokers (P = 0.0005), and female (P = 0.02). Toxicities were greater but generally mild or moderate in the combination group, and were mostly manageable. In summary, the addition of AAs to TCC could improve prognosis of advanced NSCLC. Furthermore, proper selection of patient population and AAs is crucial for clinical trials design and clinical practice in the future. PMID:26252298

  1. The B-Raf status of tumor cells may be a significant determinant of both antitumor and anti-angiogenic effects of pazopanib in xenograft tumor models.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J; Steinberg, Seth M; Steeg, Patricia S

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis.

  2. The B-Raf Status of Tumor Cells May Be a Significant Determinant of Both Antitumor and Anti-Angiogenic Effects of Pazopanib in Xenograft Tumor Models

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J.; Steinberg, Seth M.; Steeg, Patricia S.

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis. PMID:21998674

  3. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio

    2018-01-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.

  4. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Jones, Michael G [Chubbuck, ID; Wertsching, Alan K [Idaho Falls, ID; Luther, Thomas A [Idaho Falls, ID; Trowbridge, Tammy L [Idaho Falls, ID

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  5. Schedule-Dependent Antiangiogenic and Cytotoxic Effects of Chemotherapy on Vascular Endothelial and Retinoblastoma Cells.

    PubMed

    Winter, Ursula; Mena, Hebe A; Negrotto, Soledad; Arana, Eloisa; Pascual-Pasto, Guillem; Laurent, Viviana; Suñol, Mariona; Chantada, Guillermo L; Carcaboso, Angel M; Schaiquevich, Paula

    2016-01-01

    Current treatment of retinoblastoma involves using the maximum dose of chemotherapy that induces tumor control and is tolerated by patients. The impact of dose and schedule on the cytotoxicity of chemotherapy has not been studied. Our aim was to gain insight into the cytotoxic and antiangiogenic effect of the treatment scheme of chemotherapy used in retinoblastoma by means of different in vitro models and to evaluate potential effects on multi-drug resistance proteins. Two commercial and two patient-derived retinoblastoma cell types and two human vascular endothelial cell types were exposed to increasing concentrations of melphalan or topotecan in a conventional (single exposure) or metronomic (7-day continuous exposure) treatment scheme. The concentration of chemotherapy causing a 50% decrease in cell proliferation (IC50) was determined by MTT and induction of apoptosis was evaluated by flow cytometry. Expression of ABCB1, ABCG2 and ABCC1 after conventional or metronomic treatments was assessed by RT-qPCR. We also evaluated the in vivo response to conventional (0.6 mg/kg once a week for 2 weeks) and metronomic (5 days a week for 2 weeks) topotecan in a retinoblastoma xenograft model. Melphalan and topotecan were cytotoxic to both retinoblastoma and endothelial cells after conventional and metronomic treatments. A significant decrease in the IC50 (median, 13-fold; range: 3-23) was observed following metronomic chemotherapy treatment in retinoblastoma and endothelial cell types compared to conventional treatment (p<0.05). Metronomic topotecan or melphalan significantly inhibited in vitro tube formation in HUVEC and EPC compared to vehicle-treated cells (p<0.05). Both treatment schemes induced apoptosis and/or necrosis in all cell models. No significant difference was observed in the expression of ABCB1, ABCC1 or ABCG2 when comparing cells treated with melphalan or topotecan between treatment schedules at the IC50 or with control cells (p>0.05). In mice, continuous

  6. PERFLUORINATED AROMATIC COMPOUND

    DTIC Science & Technology

    octafluorobiphenyl, and perfluoroaliphatic aldehydes. Synthetic routes to perfluoro cyclohexyls via reactions of phenyl and pentafluorphenyl lithium with...other perfluorinated aromatic compounds were employed in the synthesis of perfluorinated aromatic model compounds and polymers. The hydrogenic analogues...hydrazides, and imides. Synthetic routes to perfluoro aralkyl compounds are being investigated. Starting materials are tetrafluorobenzene

  7. Protective effect of unsymmetrical dichalcogenide, a novel antioxidant agent, in vitro and an in vivo model of brain oxidative damage.

    PubMed

    Prigol, Marina; Wilhelm, Ethel A; Schneider, Caroline C; Nogueira, Cristina W

    2008-11-25

    Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3compounds 1-3 (IC50 values were 3<2Compounds 1-3 were screened against oxidatively modified protein in rat brain homogenates. Compound 3 presented the lowest value of IC50 23.5 microM (IC50 values were 3<2Compounds 1-3 at 40 microM displayed thiol peroxidase-like activity in rat brain homogenates. Since compound 3 was the most efficient antioxidant against lipid and protein oxidation in rat brain homogenates in vitro, 3 was investigated in the oxidative damage induced by SNP in mouse brain. Swiss albino mice were pre-treated with compound 3 (50 mg/kg, oral route, p.o). After 30 min, mice received SNP (0.35 microM/site i.c.v.). The levels of lipid peroxidation and the activity of catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) were carried out in brain homogenates of SNP-injected mice. Compound 3 protected against the increase in lipid peroxidation levels and the reduction of GST and GR activities in brain homogenate of mice exposed to SNP, suggesting the potential beneficial activity of dichalcogenides against deleterious oxidations in an in vivo model.

  8. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  9. [In vitro anti-angiogenic action of lambda-carrageenan oligosaccharides].

    PubMed

    Chen, Hai-Min; Yan, Xiao-Jun; Wang, Feng; Lin, Jing; Xu, Wei-Feng

    2007-06-01

    This study was designed to evaluate the inhibition effect of lambda-carrageenan oligosaccharides on neovascularization in vitro by chick chorioallantoic membrane (CAM) model and human umbilical vein endothelial cell ( HUVEC). lambda-Carrageenan oligosaccharides caused a dose-dependent decrease of the vascular density of CAM, and adversely affected capillary plexus formation. At a high concentration of 1 mg x mL(-1), this compound inhibited the endothelial cell proliferation, while low concentration of lambda-carrageenan oligosaccharides (< 250 microg x mL(-1)) affected the cell survival slightly (> 95%). Different cytotoxic sensitivity of lambda-carrageenan oligosaccharides in three kinds of cells was observed, of which HUVEC is the most sensitive to this oligosaccharides. The inhibitory action of lambda-carrageenan oligosaccharides on the endothelial cell invasion and migration was also observed at relatively low concentration (150 - 300 microg x mL(-1)) through down-regulation of intracellular matrix metalloproteinases-2 (MMP-2) expression on endothelial cells. Current observations demonstrated that lambda-carrageenan oligosaccharides are potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration and proliferation.

  10. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  11. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    PubMed

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  12. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    PubMed

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Lignans from the stems and leaves of Brandisia hancei and their effects on VEGF-induced vascular permeability and migration of HRECs and DLAV formation in zebrafish.

    PubMed

    Lee, Ik-Soo; Kim, Young Sook; Jung, Seung-Hyun; Yu, Song Yi; Kim, Joo-Hwan; Sun, Hang; Kim, Jin Sook

    2015-01-01

    In our continuing search for novel antiangiogenic agents, a new lignan glycoside, (7R,8R)-1-(4-O-β-d-glucopyranosyl-3-methoxyphenyl)-2-{2-methoxy-4-[1-(E)-propene-3-ol]-phenoxyl}-propane-1,3-diol (1), along with three known lignans (2-4), were isolated from the 80% EtOH extract of Brandisia hancei stems and leaves. These isolates (1-4) were subjected to an in vitro bioassay to evaluate their effects on vascular endothelial growth factor (VEGF)-induced vascular permeability and migration of human retinal endothelial cells (HRECs). Of the compounds tested, compound 1 resulted in the greatest reduction in VEGF-induced vascular permeability by about 31.5% at 10 μM compared to the VEGF-treated control. In the migration assay, compounds 1 and 2 significantly decreased VEGF-induced HREC migration. Furthermore, zebrafish embryos treated with compounds 1 and 2 showed mild reductions of dorsal longitudinal anastomotic vessel (DLAV) formation.

  14. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  15. PERFLUORINATED AROMATIC COMPOUNDS

    DTIC Science & Technology

    decafluorodiphenylamine, 3,3’,4,4’-tetra substituted- hexafluorobiphenyls, tetrafluororesorcinol, perfluoroaromatic thioethers, and dithiols. These...and other perfluorinated aromatic compounds are the intermediates employed in the synthesis of perfluorinated model compounds and polymers.

  16. Nitrodifluoraminoterphenyl compounds and processes

    DOEpatents

    Lerom, M.W.; Peters, H.M.

    1975-07-08

    This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)

  17. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  18. Bilingual reading of compound words.

    PubMed

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-02-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English compound words was more accurate when the translated compounds (the combination of the translation equivalents of the constituents) in Korean (the nontarget language) were real words than when they were nonwords. In Experiment 2, when the frequency of the second constituents of compound words in English (the target language) was manipulated, the effect of lexical status of the translated compounds was greater on the compounds with high-frequency second constituents than on those with low-frequency second constituents in the target language. Together, these results provided evidence for morphological decomposition and cross-language activation in bilingual reading of compound words.

  19. Combining antiangiogenic therapy with neoadjuvant chemotherapy increases treatment efficacy in stage IIIA (N2) non-small cell lung cancer without increasing adverse effects.

    PubMed

    Zhao, Xiaoliang; Su, Yanjun; You, Jian; Gong, Liqun; Zhang, Zhenfa; Wang, Meng; Zhao, Zhenqing; Zhang, Zhen; Li, Xiaolin; Wang, Changli

    2016-09-20

    To evaluate the safety and efficacy of combining Endostar antiangiogenic therapy with neoadjuvant chemotherapy for the treatment of stage IIIA (N2) NSCLC, we conducted a randomized, controlled, open-label clinical study of 30 NSCLC patients. Patients were randomly assigned to the test or control groups, which received either two cycles of an NP neoadjuvant chemotherapy regimen combined with Endostar or the NP regimen alone, respectively, at a 2:1 ratio. Efficacy was assessed after 3 weeks, and surgical resection occurred within 4 weeks, in the 26 patients who successfully completed treatment. While total response rates (RR) and clinical benefit rates (CBR) did not differ between the experimental groups, total tumor regression rates (TRR) were higher in the test group than in the control group. Median DFS and OS also did not differ between the test and control groups. Clinical perioperative indicators, including intraoperative blood loss, number of dissected lymph node groups, duration of postoperative indwelling catheter use, and time to postoperative discharge, were comparable in the test and control groups. Finally, hematological and non-hematological toxicities and postoperative pathological indicators, including down-staging ratio, complete resection ratio, and metastatic lymph node ratio, also did not differ between the groups. Overall, combining Endostar with NP neoadjuvant chemotherapy increased therapeutic efficacy without increasing adverse effects in stage IIIA-N2 NSCLC patients. This study is registered with ClinicalTrials.gov (number NCT02497118).

  20. Biodegradation of Organofluorine Compounds

    DTIC Science & Technology

    2016-02-01

    BIODEGRADATION OF ORGANOFLUORINE COMPOUNDS ECBC-TR-1347 Melissa M. Dixon Steve P. Harvey RESEARCH AND...2011 4. TITLE AND SUBTITLE Biodegradation of Organofluorine Compounds 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...compounds as sole carbon sources. This work will be continued in future studies. 15. SUBJECT TERMS Organofluorine Biodegradation Defluorination

  1. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells.

    PubMed

    Sesarman, Alina; Tefas, Lucia; Sylvester, Bianca; Licarete, Emilia; Rauca, Valentin; Luput, Lavinia; Patras, Laura; Banciu, Manuela; Porfire, Alina

    2018-04-01

    Emerging treatment options for colon cancer are needed to overcome the limitations regarding the side effects of current chemotherapeutics and drug resistance. The goal of this study was to assess the antitumor actions of PEGylated long-circulating liposomes (LCL) co-delivering curcumin (CURC) and doxorubicin (DOX) on murine colon carcinoma cells (C26). The cytotoxicity of CURC and DOX, administered alone or in combination, either in free or LCL form, was evaluated with regard to antiproliferative effects on C26 cells and to protumor processes that might be affected. Our results indicated that PEGylated LCL-CURC-DOX exerted strong antiproliferative effects on C26 cells, slightly exceeding those induced by free CURC-DOX, but higher than either agent administered alone in their free form. These effects of LCL-CURC-DOX were due to the inhibition of the production of angiogenic/inflammatory proteins in a NF-κB-dependent manner, but were independent of ROS production or AP-1 c-Jun activation. Notable, the anti-angiogenic actions of LCL-CURC-DOX appeared to be much stronger than those induced by the co-administration of CURC and DOX in their free form, on C26 colon cancer cells. LCL-CURC-DOX demonstrated enhanced cytotoxicity on C26 murine colon cancer cells by inhibiting the production of the majority of factors involved in tumor-associated angiogenesis and inflammation and is now being evaluated in vivo regarding its efficacy towards tumor growth in colon cancer. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie

    2017-03-01

    Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis.

  3. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

    PubMed Central

    Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie

    2017-01-01

    Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis. PMID:28332573

  4. A dual-targeting PDGFRbeta/VEGF-A molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo.

    PubMed

    Mabry, Robert; Gilbertson, Debra G; Frank, Amanda; Vu, Tuyen; Ardourel, Dan; Ostrander, Craig; Stevens, Brenda; Julien, Susan; Franke, Secil; Meengs, Brent; Brody, Jennifer; Presnell, Scott; Hamacher, Nels B; Lantry, Megan; Wolf, Anitra; Bukowski, Tom; Rosler, Robert; Yen, Cindy; Anderson-Haley, Monica; Brasel, Kenneth; Pan, Qi; Franklin, Hank; Thompson, Penny; Dodds, Mike; Underwood, Sara; Peterson, Scott; Sivakumar, Pallavur V; Snavely, Mark

    2010-01-01

    Targeting angiogenesis is a promising approach to the treatment of solid tumors and age-related macular degeneration (AMD). Inhibition of vascularization has been validated by the successful marketing of monoclonal antibodies (mAbs) that target specific growth factors or their receptors, but there is considerable room for improvement in existing therapies. Combination of mAbs targeting both the VEGF and PDGF pathways has the potential to increase the efficacy of anti-angiogenic therapy without the accompanying toxicities of tyrosine kinase inhibitors and the inability to combine efficiently with traditional chemotherapeutics. However, development costs and regulatory issues have limited the use of combinatorial approaches for the generation of more efficacious treatments. The concept of mediating disease pathology by targeting two antigens with one therapeutic was proposed over two decades ago. While mAbs are particularly suitable candidates for a dual-targeting approach, engineering bispecificity into one molecule can be difficult due to issues with expression and stability, which play a significant role in manufacturability. Here, we address these issues upstream in the process of developing a bispecific antibody (bsAb). Single-chain antibody fragments (scFvs) targeting PDGFRbeta and VEGF-A were selected for superior stability. The scFvs were fused to both termini of human Fc to generate a bispecific, tetravalent molecule. The resulting molecule displays potent activity, binds both targets simultaneously, and is stable in serum. The assembly of a bsAb using stable monomeric units allowed development of an anti-PDGFRB/VEGF-A antibody capable of attenuating angiogenesis through two distinct pathways and represents an efficient method for rapid engineering of dual-targeting molecules.

  5. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    PubMed

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P < 0.01). After treated by Dex, the gluconeogenesis could be restored significantly (P < 0.01) in H22 cells. The supernatant of H22 treated by Dex inhibited the migration, tube formation and endothelial permeability in HUVECs (P < 0.05). In mouse tissue, PEPCK and G6Pase were highly expressed in Dex group than control groups (P < 0.01). 11β-HSDs abnormally expressed in tumor also could be restored by Dex. Meanwhile, the density and total length of microvessels in Dex-treated group were less than those in HCC groups (P < 0.05). This study explored the therapeutic efficacy of Dex in murine HCC. Dex might inhibit tumor growth and angiogenesis by augmenting the gluconeogenesis pathway.

  6. Membrane rejection of nitrogen compounds

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  7. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  8. [Detection of organic compounds on Mars].

    PubMed

    Kobayashi, K

    1997-03-01

    McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.

  9. Depth-estimation-enabled compound eyes

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Lee, Heung-No

    2018-04-01

    Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.

  10. Veterinary Compounding: Regulation, Challenges, and Resources

    PubMed Central

    Davidson, Gigi

    2017-01-01

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality. PMID:28075379

  11. SULFUR COMPOUNDS IN MORPHOGENESIS.

    DTIC Science & Technology

    CHICKENS, GROWTH(PHYSIOLOGY), MITOSIS, BACTERIA, ALGAE, LIPOIC ACID , THIOLS, BELGIUM...ORGANIC SULFUR COMPOUNDS, METABOLISM), (*MORPHOLOGY(BIOLOGY), ORGANIC SULFUR COMPOUNDS), (*NUCLEIC ACIDS , BIOSYNTHESIS), EGGS, EMBRYOS, AMPHIBIANS

  12. Effects of salinity on the toxicity and biotransformation of L-selenomethionine in Japanese medaka (Oryzias latipes) embryos: mechanisms of oxidative stress.

    PubMed

    Lavado, Ramon; Shi, Dalin; Schlenk, Daniel

    2012-02-01

    Previous studies in mammals have shown that organoselenium depletes the cellular antioxidant, glutathione (GSH) due to activation of organoselenides to organoselenoxides by flavin-containing monooxygenases (FMO). Since FMO tends to be induced in euryhaline fish exposed to hypersaline conditions, the developmental toxicity of salinity and organoselenium was examined in the euryhaline fish Japanese medaka (Oryzias latipes). FMO activity, GSH, and selenium concentrations in Japanese medaka embryos were measured following a 24-h exposure to 0.05 mM L-selenomethionine (SeMet) under different saline conditions: freshwater (<0.5 dS/m), 4.2, 6.7, and 16.8 dS/m. Concentrations of GSH and the hatch-out ratio of the SeMet-treated embryos decreased in a salinity dependent manner. While SeMet treatment led to accumulation within embryos, selenium concentrations were unaltered by salinity treatment. Compared to freshwater-exposed embryos, microsomes from embryos at 6.7 and 16.8 dS/m had enhanced oxidation of SeMet to the selenoxide (10- and 14.3-fold, respectively), which correlated with GSH depletion. The results show that increased SeMet oxidation by hypersaline conditions with subsequent GSH depletion may play an important role in the developmental toxicity of selenomethionine. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Pressor mechanism evaluation for phytochemical compounds using in silico compound-protein interaction prediction.

    PubMed

    He, Min; Cao, Dong-Sheng; Liang, Yi-Zeng; Li, Ya-Ping; Liu, Ping-Le; Xu, Qing-Song; Huang, Ren-Bin

    2013-10-01

    In this study, a method was applied to evaluate pressor mechanisms through compound-protein interactions. Our method assumed that the compounds with different pressor mechanisms should bind to different target proteins, and thereby these mechanisms could be differentiated using compound-protein interactions. Twenty-six phytochemical components and 46 tested target proteins related to blood pressure (BP) elevation were collected. Then, in silico compound-protein interactions prediction probabilities were calculated using a random forest model, which have been implemented in a web server, and the credibility was judged using related literature and other methods. Further, a heat map was constructed, it clearly showed different prediction probabilities accompanied with hierarchical clustering analysis results. Followed by a compound-protein interaction network was depicted according to the results, we can see the connectivity layout of phytochemical components with different target proteins within the BP elevation network, which guided the hypothesis generation of poly-pharmacology. Lastly, principal components analysis (PCA) was carried out upon the prediction probabilities, and pressor targets could be divided into three large classes: neurotransmitter receptors, hormones receptors and monoamine oxidases. In addition, steroid glycosides seem to be close to the region of hormone receptors, and a weak difference existed between them. This work explored the possibility for pharmacological or toxicological mechanism classification using compound-protein interactions. Such approaches could also be used to deduce pharmacological or toxicological mechanisms for uncharacterized compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  15. Component Selection for Sterile Compounding.

    PubMed

    Dilzer, Richard H

    2017-01-01

    This article describes the factors to consider, as well as the process of proper component selection, for use in preparing compounded sterile preparations. Special emphasis is placed on individual chemical factors that may impact a preparation's accuracy and potency. Values reported in a typical certificate of analysis are discussed, including methods of identifying any required adjustments to a master formulation or compounding record during the compounding of sterile preparations. Proper screening of the certificate of analysis, the Safety Data Sheet, procedural documentation, and the filing of all certificates of conformance are crucial to the operation of a sterile compounding facility. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  16. Compounding Opportunities in Urology.

    PubMed

    Biundo, Bruce

    2017-01-01

    There are a lot of options that pharmacists, including compounding pharmacists, can offer urologists to assist their patients. Compounding pharmacists are in a great position to offer unique, effective preparations for many of the conditions urologists treat on a daily basis. It would be well worth the time to learn a little about the conditions these specialists treat and become familiar with what you can offer. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  17. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  18. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases.

    PubMed

    Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo

    2018-06-01

    Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.

  19. Bilayer Effects of Antimalarial Compounds

    PubMed Central

    Ramsey, Nicole B.; Andersen, Olaf S.

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  20. Bilayer Effects of Antimalarial Compounds.

    PubMed

    Ramsey, Nicole B; Andersen, Olaf S

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  1. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Koo, Sung I. (Inventor); Noh, Sang K. (Inventor); Hua, Duy H. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  2. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470).

    PubMed Central

    Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J.

    1994-01-01

    Recently, we reported the anti-angiogenic action along with anti-tumour activity of TNP-470 (AGM-1470). In this study, the effect of TNP-470 on the growth of human umbilical vein endothelial (HUVE) cells was examined. TNP-470 inhibited the growth of HUVE cells in a biphasic manner. The inhibition was cytostatic in the first phase (complete inhibition at 300 pg ml-1 to 3 micrograms ml-1 with an IC50 of 15 pg ml-1) and cytotoxic in the second phase (> or = 30 micrograms ml-1). The cytostatic inhibition of HUVE cell growth by TNP-470 was durable after washing out TNP-470 in culture. Incorporation of thymidine but not uridine and leucine by HUVE cells was inhibited in the first phase, while that of all three compounds was inhibited in the second phase. Human and rat endothelial cells among various types of cells were the most sensitive to the cytostatic inhibition, while differences in the cytotoxic inhibition were minimal. These results suggest that TNP-470 exerts its specific anti-angiogenic action by inhibiting cytostatically growth of endothelial cells in a relatively specific manner. PMID:8297716

  3. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling.

    PubMed

    Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D; Laschke, Matthias W

    2015-01-01

    Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.

  4. Effect of antiangiogenic therapy on luciferase activity in a cytomegalovirus- or HSP70-promoter-transfected M21 tumor model

    NASA Astrophysics Data System (ADS)

    Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira

    2012-06-01

    We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.

  5. Pharmacists' Perceptions of the Economic Value of Compounded Pharmaceuticals: A Comparison of Compounded and Commercial Pharmaceuticals in Select Disease States.

    PubMed

    Lobb, William B; Wilkin, Noel E; Holmes, Erin R

    2015-01-01

    Studies have been conducted to assess patient satisfaction with compounded pharmaceuticals and to directly compare compounded pharmaceuticals with their comparable commercial pharmaceuticals. Yet, the economic value of or potential for economic value derived from compounded pharmaceuticals relative to commercial pharmaceuticals is still not known. Therefore, the purpose of this study was to assess and compare compounding and non-compounding pharmacists' perceptions of the economic value of compounded preparations relative to commercial products. In-depth interviews with 10 compounding pharmacists and physicians who prescribe compounded prescription pharmaceutical preparations were conducted to help develop a self-administered questionnaire distributed to 50 compounding and 50 non-compounding pharmacists. Compounding and non-compounding pharmacists' perceptions differed most often in the context of compounded pharmaceuticals for pediatric patients. However, both groups responded with moderate agreement that compounded prescription treatments are more profitable for the pharmacy than commercial prescription treatments in most therapeutic areas. This research sought to understand the perception of pharmacists of areas for potential direct and indirect economic cost savings as a result of compounding. For all items whereby compounding and non-compounding pharmacists' ratings were significantly different, compounding pharmacists more strongly believed that compounding pharmaceuticals offered benefit and vice versa. The differences in ratings that were most common were those that directly compared the economic value of compounding and commercial pharmaceuticals, with compounding pharmacists more strongly agreeing with the potential cost savings associated with compounded pharmaceuticals. Based on these findings, prescription compounds are believed to have a benefit to the health system by those who provide them. Future research should proactively explore the economic

  6. Devices for collecting chemical compounds

    DOEpatents

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  7. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    PubMed

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT-PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19-20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization.

  8. Differential expression of anti-angiogenic factors and guidance genes in the developing macula

    PubMed Central

    Kozulin, Peter; Natoli, Riccardo; O’Brien, Keely M. Bumsted; Madigan, Michele C.

    2009-01-01

    . Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IVα2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT–PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. Conclusions Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19–20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization. PMID:19145251

  9. Basics of Compounding: Compounding Irrigation Solutions for Sterile and Nonsterile Preparations.

    PubMed

    Allen, Loyd V

    2017-01-01

    Compounding pharmacists are sometimes called upon to prepare irrigation solutions, especially in the hospital or clinical setting. Irrigations are indicated for washing or bathing surgical incisions, wounds, and body tissues, including body cavities. Some irrigation solutions coming in contact with exposed tissue, must meet stringent requirements of sterility and bacterial endotoxins. Compounded irrigation solutions may involve wound(s), the bladder, and also may be for ophthalmic, otic, and nasal application. Some vaginal douches/instillations and rectal solutions may also be used as irrigations. As with any medication administered to the body or used on body tissues, there are requirements, and these may vary depending on the type of irrigation solution involved. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. Use of the mouse ear vesicant model to evaluate the effectiveness of ebselen as a countermeasure to the nitrogen mustard mechlorethamine.

    PubMed

    Lulla, Anju; Reznik, Sandra; Trombetta, Louis; Billack, Blase

    2014-12-01

    Previous studies in this and other laboratories have demonstrated that ebselen (EB-1), an organoselenium compound, spares cells from mechlorethamine (HN2) toxicity in vitro. In the present study, the hypothesis that EB-1 will reduce dermal toxicity of HN2 in vivo is put forward and found to have merit. Using the mouse ear vesicant model (MEVM), HN2, applied topically, showed a dose-dependent effect upon ear swelling and thickness 24 h after treatment; whereas tissue injury consistent with vesication was observed at the higher test doses of HN2 (≥ 0.250 µmol per ear). To examine HN2 countermeasure activity using the MEVM, either hydrocortisone (HC), as a positive control, or EB-1, the test countermeasure, was administered as three topical treatments 15 min, 4 and 8 h after HN2 exposure. Using this approach, both HC and EB-1 were found to reduce tissue swelling associated with HN2 toxicity 24 h after exposure to the vesicant. Taken together, these data demonstrate for the first time the effectiveness of EB-1 as a vesicant countermeasure in a relevant in vivo model. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases.

    PubMed

    Noguchi, Noriko

    2016-04-01

    Ebselen is an organoselenium compound with glutathione peroxidase (GPx)-like hydroperoxide reducing activity. Moreover, ebselen has its own unique reactivity, with functions that GPx does not have, since it reacts with many kinds of thiols other than glutathione. Ebselen may affect the thioredoxin systems, through which it may contribute to regulation of cell function. With high reactivity toward thiols, hydroperoxides, and peroxynitrite, ebselen has been used as a useful tool in research on cellular redox mechanisms. Unlike α-tocopherol, ebselen does not scavenge lipid peroxyl radicals, which is another advantage of ebselen for use as a research tool in comparison with radical scavenging antioxidants. Selenium is not released from the ebselen molecule, which explains the low toxicity of ebselen. To further understand the mechanism of cellular redox biology, it should be interesting to compare the effects of ebselen with that of selenoprotein P, which supplies selenium to GPx. New medical applications of ebselen as a drug candidate for human diseases such as cancer and diabetes mellitus as well as brain stroke and ischemia will be expected. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  13. Mannich bases of 1,2,4-triazole-3-thione containing adamantane moiety: Synthesis, preliminary anticancer evaluation, and molecular modeling studies.

    PubMed

    Milošev, Milorad Z; Jakovljević, Katarina; Joksović, Milan D; Stanojković, Tatjana; Matić, Ivana Z; Perović, Milka; Tešić, Vesna; Kanazir, Selma; Mladenović, Milan; Rodić, Marko V; Leovac, Vukadin M; Trifunović, Snežana; Marković, Violeta

    2017-06-01

    A series of 18 novel N-Mannich bases derived from 5-adamantyl-1,2,4-triazole-3-thione was synthesized and characterized using NMR spectroscopy and X-ray diffraction technique. All derivatives were evaluated for their anticancer potential against four human cancer cell lines. Several tested compounds exerted good cytotoxic activities on K562 and HL-60 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal fibroblasts MRC-5 compared to cancer cells. The effects of compounds 5b, 5e, and 5j on the cell cycle were investigated by flow cytometric analysis. It was found that these compounds cause the accumulation of cells in the subG1 and G1 phases of the cell cycle and induce caspase-dependent apoptosis, while the anti-angiogenic effects of 5b, 5e, and 5j have been confirmed in EA.hy926 cells using a tube formation assay. Further, the interaction of Bax protein with compound 5b was investigated by means of molecular modeling, applying the combined molecular docking/molecular dynamics approach. © 2016 John Wiley & Sons A/S.

  14. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer.

    PubMed

    Campbell, Nicole E; Greenaway, James; Henkin, Jack; Moorehead, Roger A; Petrik, Jim

    2010-03-01

    Epithelial ovarian cancer (EOC) comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1). TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel) on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day) alone or in combination with cisplatin (2 mg/kg per 3 days) or paclitaxel (10 mg/kg per 2 days) at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer.

  15. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  16. Drugs and Drug-Like Compounds: Discriminating Approved Pharmaceuticals from Screening-Library Compounds

    NASA Astrophysics Data System (ADS)

    Schierz, Amanda C.; King, Ross D.

    Compounds in drug screening-libraries should resemble pharmaceuticals. To operationally test this, we analysed the compounds in terms of known drug-like filters and developed a novel machine learning method to discriminate approved pharmaceuticals from “drug-like” compounds. This method uses both structural features and molecular properties for discrimination. The method has an estimated accuracy of 91% in discriminating between the Maybridge HitFinder library and approved pharmaceuticals, and 99% between the NATDiverse collection (from Analyticon Discovery) and approved pharmaceuticals. These results show that Lipinski’s Rule of 5 for oral absorption is not sufficient to describe “drug-likeness” and be the main basis of screening-library design.

  17. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  20. Deuterium permeation through EPDM rubber compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapp, P.E.

    1988-01-01

    The permeation of deuterium through a specially formulated compound of ethylene propylene diene rubber was measured in the temperature range of 26/degree/C to 120/degree/C. The results were similar to permeation through two commercial compounds of this elastomer. Permeation was reduced after gamma irradiation (in the presence of hydrogen gas to simulate a tritium exposure). However the reduction was smaller than that experienced by the two commercial compounds. Radiation damage is apparently less severe in the special compound. It is possible that mechanical properties such as compression set may be influenced less by ionizing radiation in this compound as compared withmore » the commercial compounds. 4 figs., 1 tab.« less

  1. Amelioration of carcinogenesis and tumor growth in the rat liver by combination of vitamin K2 and angiotensin-converting enzyme inhibitor via anti-angiogenic activities.

    PubMed

    Yoshiji, Hitoshi; Kuriyama, Shigeki; Noguchi, Ryuichi; Yoshii, Junichi; Ikenaka, Yasuhide; Yanase, Koji; Namisaki, Tadashi; Kitade, Mitsuteru; Yamazaki, Masaharu; Akahane, Takemi; Asada, Kiyoshi; Tsujimoto, Tatsuhito; Uemura, Masahito; Fukui, Hiroshi

    2006-01-01

    Recent studies have revealed that angiogenesis plays a pivotal role in carcinogenesis and tumor growth. We previously reported that the clinically used vitamin K(2) (VK) and angiotensin-converting enzyme inhibitor (ACE-I) exerted potent anti-angiogenic activities. The aim of our current study was to examine the combination effect of VK and ACE-I on hepatocarcinogenesis induced by diethyl-nitrosamine, and orthotopic hepatocellular carcinoma (HCC) growth in rats. When used individually, both VK and ACE-I at clinically comparable low doses exerted significant inhibitory effects on tumor development in the liver. A combination treatment of VK and ACE-I showed a more potent suppressive effect against hepatocarcinogenesis. Neovascularization increased during hepatocarcinogenesis, and VK and ACE-I significantly attenuated angiogenesis in the tumor. In orthotopic HCC transplantation, VK and ACE-I also showed marked suppressive effects against HCC development similar to those against hepatocarcinogenesis. In both experiments, the suppressive effects of VK and ACE-I against angiogenesis were similar in magnitude to their inhibitory effects against hepatocarcinogenesis and orthotopic HCC development. In the orthotopic model, VK and ACE-I treatment resulted in a marked increase of apoptosis in the tumor, whereas tumor cell proliferation itself was not altered. Since both VK and ACE-I are widely used in clinical practice without serious side effects, this combination therapy may be an effective new therapeutic strategy against hepatocarcinogenesis and HCC growth in the future.

  2. The Onium Compounds

    NASA Astrophysics Data System (ADS)

    Tsarevsky, Nicolay V.; Slaveykova, Vera; Manev, Stefan; Lazarov, Dobri

    1997-06-01

    The onium salts are of a big interest for theoretical and structural chemistry, and for organic synthesis. Some representatives of the group (e.g. ammonium salts) were known from the oldest times. Many onium salts are met the nature: ammonium salts (either as inorganic salts, and organic derivatives, e.g. aminoacids, salts of biogenic amines and alkaloids, etc.); oxonium salts (plant pigments as anthocyans are organic oxonium compounds), etc. In 1894 C. Hartmann and V. Meyer prepared the first iodonium salts - 4-iododiphenyliodonium hydrogensulfate and diphenyliodonium salts, and suggested the ending -onium for all compounds with properties similar to those of ammonium salts. Nowadays onium compounds of almost all nonmetals are synthesised and studied. A great variety of physical methods: diffraction (e.g. XRD) and spectral methods (IR-, NMR-, and UV-spectra), as well as the chemical properties and methods of preparation of onium salts have been used in determination of the structure of these compounds. The application of different onium salts is immense. Ammonium, phosphonium and sulfonium salts are used as phase-transfer catalysts; diazonium salts - for the preparation of dyes, metalochromic and pH-indicators. All the onium salts and especially diazonium and iodonium salts are very useful reagents in organic synthesis.

  3. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    PubMed Central

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  4. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  5. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn; Zhou, Ling; Zhang, Yan-ling

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endomore » via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.« less

  6. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1).

    PubMed

    Jiang, Xinyin; Bar, Haim Y; Yan, Jian; Jones, Sara; Brannon, Patsy M; West, Allyson A; Perry, Cydne A; Ganti, Anita; Pressman, Eva; Devapatla, Srisatish; Vermeylen, Francoise; Wells, Martin T; Caudill, Marie A

    2013-03-01

    This study investigated the influence of maternal choline intake on the human placental transcriptome, with a special interest in its role in modulating placental vascular function. Healthy pregnant women (n=26, wk 26-29 gestation) were randomized to 480 mg choline/d, an intake level approximating the adequate intake of 450 mg/d, or 930 mg/d for 12 wk. Maternal blood and placental samples were retrieved at delivery. Whole genome expression microarrays were used to identify placental genes and biological processes impacted by maternal choline intake. Maternal choline intake influenced a wide array of genes (n=166) and biological processes (n=197), including those related to vascular function. Of special interest was the 30% down-regulation (P=0.05) of the antiangiogenic factor and preeclampsia risk marker fms-like tyrosine kinase-1 (sFLT1) in the placenta tissues obtained from the 930 vs. 480 mg/d choline intake group. Similar decreases (P=0.04) were detected in maternal blood sFLT1 protein concentrations. The down-regulation of sFLT1 by choline treatment was confirmed in a human trophoblast cell culture model and may be related to enhanced acetylcholine signaling. These findings indicate that supplementing the maternal diet with extra choline may improve placental angiogenesis and mitigate some of the pathological antecedents of preeclampsia.

  7. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  8. Transition Metal Compounds Towards Holography

    PubMed Central

    Dieckmann, Volker; Eicke, Sebastian; Springfeld, Kristin; Imlau, Mirco

    2012-01-01

    We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal–ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications. PMID:28817028

  9. Method of preparing metallocene compounds

    DOEpatents

    Rosenblum, Myron; Matchett, Stephen A.

    1992-01-01

    This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.

  10. STATISTICAL DATA ON CHEMICAL COMPOUNDS.

    DTIC Science & Technology

    DATA STORAGE SYSTEMS, FEASIBILITY STUDIES, COMPUTERS, STATISTICAL DATA , DOCUMENTS, ARMY...CHEMICAL COMPOUNDS, INFORMATION RETRIEVAL), (*INFORMATION RETRIEVAL, CHEMICAL COMPOUNDS), MOLECULAR STRUCTURE, BIBLIOGRAPHIES, DATA PROCESSING

  11. Host compounds for red phosphorescent OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  12. The nature of compounds: a psychocentric perspective.

    PubMed

    Libben, Gary

    2014-01-01

    Although compound words often seem to be words that themselves contain words, this paper argues that this is not the case for the vast majority of lexicalized compounds. Rather, it is claimed that as a result of acts of lexical processing, the constituents of compound words develop into new lexical representations. These representations are bound to specific morphological roles and positions (e.g., head, modifier) within a compound word. The development of these positionally bound compound constituents creates a rich network of lexical knowledge that facilitates compound processing and also creates some of the well-documented patterns in the psycholinguistic and neurolinguistic study of compounding.

  13. The effect of anti-angiogenic agents on overall survival in metastatic oesophago-gastric cancer: A systematic review and meta-analysis

    PubMed Central

    Sjoquist, Katrin M.; Goldstein, David; Price, Timothy J.; Martin, Andrew J.; Bang, Yung-Jue; Kang, Yoon-Koo; Pavlakis, Nick

    2017-01-01

    Background Studies of anti-angiogenic agents (AAs), combined with chemotherapy (chemo) or as monotherapy in metastatic oesophago-gastric cancer (mOGC), have reported mixed outcomes. We undertook systematic review and meta-analysis to determine their overall benefits and harms. Methods Randomized controlled trials in mOGC were sought investigating the addition of AAs to standard therapy (best supportive care or chemo). The primary endpoint was overall survival (OS) with secondary endpoints progression-free survival (PFS), overall response rate (ORR) and toxicity. Estimates of treatment effect from individual trials were combined using standard techniques. Subgroup analyses were performed by line of therapy, region, age, performance status, histological type, number of metastatic sites, primary site, mechanism of action and HER2 status. Results Fifteen trials evaluating 3502 patients were included in quantitative analysis. The addition of AAs was associated with improved OS: HR 0·81 (95% CI 0·75–0·88, p<0·00001) and improved PFS: HR 0·68 (95% CI 0·63–0·74, p<0·00001). Subgroup analyses favoured greater benefit for OS in 2nd/3rd line settings (HR 0·74) compared to 1st-line settings (HR 0·91) (X2 = 6·00, p = 0·01). OS benefit was seen across all regions—Asia (HR 0·83) and rest of world (HR 0·75)—without significant subgroup interaction. Results from 8 trials evaluating 2602 patients were pooled for toxicity > = Grade 3: with OR 1·39 (95% CI 1·17–1·65). Conclusions The addition of AAs to standard therapy in mOGC improves OS. Improved efficacy was only observed in 2nd- or 3rd-line setting and not in 1st-line setting. Consistent OS benefit was present across all geographical regions. This benefit is at the expense of increased overall toxicity. PMID:28222158

  14. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  15. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  16. Highly sweet compounds of plant origin.

    PubMed

    Kim, Nam-Cheol; Kinghorn, A Douglas

    2002-12-01

    The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

  17. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds.

    PubMed

    Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam

    2018-05-01

    We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

  19. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Treesearch

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  20. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  1. Design, Synthesis, in Vitro, and in Vivo Anticancer and Antiangiogenic Activity of Novel 3-Arylaminobenzofuran Derivatives Targeting the Colchicine Site on Tubulin

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Prencipe, Filippo; Lopez-Cara, Carlota; Ortega, Santiago Schiaffino; Brancale, Andrea; Hamel, Ernest; Castagliuolo, Ignazio; Mitola, Stefania; Ronca, Roberto; Bortolozzi, Roberta; Porcù, Elena; Basso, Giuseppe; Viola, Giampietro

    2015-01-01

    A new series of compounds characterized by the presence of a 2-methoxy/ethoxycarbonyl group, combined with either no substituent or a methoxy group at each of the four possible positions of the benzene portion of the 3-(3′,4′,5′-trimethoxyanilino)benzo[b]furan skeleton, were evaluated for antiproliferative activity against cancer cells in culture and, for selected, highly active compounds, inhibition of tubulin polymerization, cell cycle effects, and in vivo potency. The greatest antiproliferative activity occurred with a methoxy group introduced at the C-6 position, the least with this substituent at C-4. Thus far, the most promising compound in this series was 2-methoxycarbonyl-3-(3′,4′,5′-trimethoxyanilino)-6-methoxybenzo-[b]furan (3g), which inhibited cancer cell growth at nanomolar concentrations (IC50 values of 0.3–27 nM), bound to the colchicine site of tubulin, induced apoptosis, and showed, both in vitro and in vivo, potent vascular disrupting properties derived from the effect of this compound on vascular endothelial cells. Compound 3g had in vivo antitumor activity in a murine model comparable to the activity obtained with combretastatin A-4 phosphate. PMID:25785605

  2. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a

  3. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate

  4. Response of Bioluminescent Bacteria to Alkyltin Compounds.

    DTIC Science & Technology

    1987-12-01

    found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...the compounds as a decrease in toxicity (5) tributyltin compounds ea -150 tines more and a method to study synergistic andtoxic than trinethyltia

  5. Nitroaromatic Compounds, from Synthesis to Biodegradation

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2010-01-01

    Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249

  6. Extemporaneous compounding of medicated ointments.

    PubMed

    Nagel, Karen; Ali, Fatima; Al-Khudari, Sarah; Khan, Ayesha; Patel, Khushbu; Patel, Nikunj; Desai, Archana

    2010-01-01

    Topical preparations represent a large percentage of compounded prescriptions, particularly in the area of dermatology. Properties of ointment bases vary greatly, and active ingredients are frequently added as aqueous or alcoholic solutions. Currently, there are no quantitative guidelines stating the various water and alcohol absorption capacity of different bases. A short experiment was designed to quantitate the amount of water or alcohol that could be absorbed by a series of ointment bases of varying types. Our findings may be used to assist compounding pharmacists in deciding what base is most suitable to use when considering the amount of water, alcohol, or any similar solvent needed to compound the preparation. A general overview of issues related to topical medication compounding is also provided in this article.

  7. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  8. Phenolic compounds in Ross Sea water

    NASA Astrophysics Data System (ADS)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  9. Release and skin distribution of silicone-related compound(s) from a silicone gel sheet in vitro.

    PubMed

    Shigeki, S; Nobuoka, N; Murakami, T; Ikuta, Y

    1999-01-01

    The efficacy of topical silicone gel sheeting in prevention and/or reduction of keloids and hypertrophic scars is well recognized. In the present study, we reexamined the possible release of silicone-related compound(s) from a commercially available silicone gel sheet (Cica-Care, Smith and Nephew, Hull, England) in aqueous media in vitro. The silicone gel sheet was also applied on the excised skin surface to examine the possible distribution of silicone-related compounds into the skin in vitro. Silicone-related compounds were measured as silicon by an inductively coupled plasma-atomic emission spectrophotometer. When a piece of silicone gel sheet was placed in phosphate buffer solution (pH 3-9) at 37 degrees C for 7 days, the concentration of silicon in the medium increased with time, depending on the pH of the medium. This indicates that the released silicone-related compounds are water-soluble. When Cica-Care was applied on the surface of excised rat skin, human axilla skin and hypertrophic scars under hydrated conditions in vitro, silicon was detected in all skin samples. Greater distribution was observed in rat skin than in human axilla skin and hypertrophic scars. The release of silicone-related compounds from a silicone gel sheet (Cica-Care) and their distribution into the skin were demonstrated in vitro. Silicone-related compounds distributed into the skin may have pharmacological effects on the skin. Further investigation will be necessary to investigate in detail the action of silicone-related compounds on the proliferation of fibroblasts and excessive production of collagen.

  10. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  11. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  12. Practices of pharmacies that compound extemporaneous formulations.

    PubMed

    Treadway, Angela K; Craddock, Deeatra; Leff, Richard

    2007-07-01

    A survey was conducted to characterize the standard of practice for extemporaneous pharmaceutical compounding within community and institutional pharmacies. Extemporaneous compounding practices vary among pharmacies. Because of this, the survey inquired specifically about a single pharmaceutical product (caffeine citrate 20 mg/mL) to minimize variability among respondents. Survey questions were written to identify compounding practice variations with (1) policies and procedures, (2) process validation, (3) personnel education, training, and evaluation, (4) expiration dating, (5) storage and handling of compounded prescriptions within the pharmacy, (6) labeling, (7) facilities and equipment, (8) end-product evaluation, (9) handling of sterile products outside of the pharmacy, (10) aseptic technique and product preparation, and (11) documentation. A total of 522 surveys were mailed; 117 completed surveys were returned and included in the analyses. Over half of the pharmacies surveyed were large institutional pharmacies with daily prescriptions exceeding 300. Almost 71% of pharmacies reported having policies and procedures for compounding and providing compounding training for staff. Almost one third of the pharmacies that responded did not have compounding policies and procedures and did not provide staff training. For those pharmacies that provided training, the methods used were diverse (e.g., lectures and videotapes, external certificate programs). Formulations used to compound caffeine appeared to be diverse as evidenced by the varied addition of inactive ingredients. A survey of compounding pharmacies found variability in overall compounding practices and training and in practices specifically related to compounding preparations of caffeine citrate.

  13. Literature-based compound profiling: application to toxicogenomics.

    PubMed

    Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan

    2007-11-01

    To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects

  14. Prioritizing pesticide compounds for analytical methods development

    USGS Publications Warehouse

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1

  15. The Chemiluminescence of Organometallic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstikov, Genrikh A.; Bulgakov, Ramil G.; Kazakov, Valeri P.

    1985-11-01

    Studies on the liquid-phase and gas-phase reactions of organometallic compounds accompanied by the emission of light are described systematically and discussed. The influence of the magnetic field on the chemiluminescence of Grignard reagents and the study of the electrochemiluminescence of solutions of organometallic compounds are examined. The ways leading to further development of the field of the chemiluminescence of organometallic compounds and certain possible applications of the phenomenon in the monitoring of industrial processes are discussed. The bibliography includes 80 references.

  16. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  17. Antifouling Compounds from Marine Invertebrates.

    PubMed

    Qi, Shu-Hua; Ma, Xuan

    2017-08-28

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals.

  18. Hydrodesulfurization catalysis by Chevrel phase compounds

    DOEpatents

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  19. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  20. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  1. Environmental exposure to preformed nitroso compounds.

    PubMed

    Tricker, A R; Spiegelhalder, B; Preussmann, R

    1989-01-01

    In the human environment, nitrosatable amine precursors to N-nitroso compounds and nitrosating species such as nitrite and oxides of nitrogen are abundant. As a result, the formation of N-nitroso compounds and human exposure to these compounds show a rather complex pattern. The largest known human exposures to exogenous N-nitrosamines occur in the work place. This is particularly evident in the rubber and tyre manufacturing industry and in metal cutting and grinding shops. Nearly all industries which are concerned with the production and/or use of amines have a related nitrosamine problem. Outside the industrial environment, commodities such as cosmetics, pharmaceuticals, rubber and household products, which are either prepared from amines or contain high concentrations of amino compounds, may be subject to contamination by low concentrations of N-nitroso compounds. This contamination may result from the use of contaminated starting materials, in particular amines, or from the formation of N-nitroso compounds during manufacturing processes. A similar problem exists with agricultural chemicals. As our knowledge of the occurrence and formation of N-nitroso compounds in the environment increases, preventive measures can be introduced, particularly in manufacturing industries, to reduce the levels of human exposure to nitrosamines in the work place and to protect the consumer from nitrosamine exposure from household commodities.

  2. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli.

    PubMed

    Soumet, C; Fourreau, E; Legrandois, P; Maris, P

    2012-07-06

    Bacterial adaptation to quaternary ammonium compounds (QACs) is mainly documented for benzalkonium chloride (BC) and few data are available for other QACs. The aim of this study was to assess the effects of repeated exposure to different quaternary ammonium compounds (QACs) on the susceptibility and/or resistance of bacteria to other QACs and antibiotics. Escherichia coli strains (n=10) were adapted by daily exposure to increasingly sub-inhibitory concentrations of a QAC for 7 days. Three QACs were studied. Following adaptation, we found similar levels of reduction in susceptibility to QACs with a mean 3-fold increase in the minimum inhibitory concentration (MIC) compared to initial MIC values, whatever the QAC used during adaptation. No significant differences in antibiotic susceptibility were observed between the tested QACs. Antibiotic susceptibility was reduced from 3.5- to 7.5-fold for phenicol compounds, β lactams, and quinolones. Increased MIC was associated with a shift in phenotype from susceptible to resistant for phenicol compounds (florfenicol and chloramphenicol) in 90% of E. coli strains. Regardless of the QAC used for adaptation, exposure to gradually increasing concentrations of this type of disinfectant results in reduced susceptibility to QACs and antibiotics as well as cross-resistance to phenicol compounds in E. coli strains. Extensive use of QACs at sub-inhibitory concentrations may lead to the emergence of antibiotic-resistant bacteria and may represent a public health risk. Published by Elsevier B.V.

  3. A New Series of Thalidomide Analogs That Have Potent Anti-Angiogenic Properties | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) have synthesized novel thalidomide derivatives that have therapeutic potential for a broad spectrum of cancer related diseases alone, or in combination with existing therapies. The compounds can also be useful for the treatment of autoimmune diseases.

  4. Antifouling Compounds from Marine Invertebrates

    PubMed Central

    Qi, Shu-Hua; Ma, Xuan

    2017-01-01

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals. PMID:28846623

  5. Compound curvature laser window development

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.

  6. Electromigration in Sn-Cu intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wei, C. C.; Chen, C. F.; Liu, P. C.; Chen, Chih

    2009-01-01

    As the shrinking in bump size continues, the effect of intermetallic compounds (IMCs) on electromigration becomes more pronounced. Electromigration in Sn-Cu intermetallic compounds was examined using edge displacement method. It was found that Cu6Sn5 compounds are more susceptible to electromigration than Cu3Sn compounds. The lower solidus temperature and higher resistivity of the Cu6Sn5 IMCs are responsible for its higher electromigration rate. Length-dependent electromigration behavior was found in the stripes of various lengths and the critical length was determined to be between 5 and 10 μm at 225 °C, which corresponded to a critical product between 2.5 and 5 A/cm. Furthermore, the Sn-Cu compounds were proven to have better electromigration resistance than eutectic SnAgCu solder.

  7. Large Constituent Families Help Children Parse Compounds

    ERIC Educational Resources Information Center

    Krott, Andrea; Nicoladis, Elena

    2005-01-01

    The family size of the constituents of compound words, or the number of compounds sharing the constituents, has been shown to affect adults' access to compound words in the mental lexicon. The present study was designed to see if family size would affect children's segmentation of compounds. Twenty-five English-speaking children between 3;7 and…

  8. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke

    PubMed Central

    Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang

    2017-01-01

    Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020

  9. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  10. Cytotoxic Compounds from Brucea mollis

    PubMed Central

    Tung, Mai Hung Thanh; Đuc, Ho Viet; Huong, Tran Thu; Duong, Nguyen Thanh; Phuong, Do Thi; Thao, Do Thi; Tai, Bui Huu; Kim, Young Ho; Bach, Tran The; Cuong, Nguyen Manh

    2013-01-01

    Ten compounds, including soulameanone (1), isobruceine B (2), 9-methoxy-canthin-6-one (3), bruceolline F (4), niloticine (5), octatriacontan-1-ol (6), bombiprenone (7), α-tocopherol (8), inosine (9), and apigenin 7-O-β-D-glucopyranoside (10), were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one-and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (human carcinoma of the mouth), LU-1 (human lung adenocarcinoma), LNCaP (human prostate adeno-carcinoma), and HL-60 (human promyelocytic leukemia) cancer cell lines. Compound 2 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values of 0.39, 0.40, 0.34, and 0.23 μg/mL, respectively. In addition, compounds 3 and 5 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values around 1–4 μg/mL. Compounds 9-methoxycanthin-6-one (3) and niloticine (5) have been discovered for the first time from the Brucea genus. PMID:24106661

  11. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less

  12. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    PubMed

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  13. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway.

    PubMed

    Jung, Myung Hwan; Lee, Sun Hee; Ahn, Eun-Mi; Lee, You Mie

    2009-04-01

    Inhibition of angiogenesis is an attractive approach for the treatment of angiogenic diseases, such as cancer. Vascular endothelial growth factor (VEGF) is one of the most important activators of angiogenesis and interacts with the high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2. The pyranocoumarin compounds decursin and decursinol angelate isolated from the herb, Angelica gigas, are known to possess potent anti-inflammatory activities. However, little is known about their antiangiogenic activity or their underlying mechanisms. Here, we show the antiangiogenic effects of decursin and decursinol angelate using in vitro assays and in vivo animal experiments. Decursin and decursinol angelate inhibited VEGF-induced angiogenic processes in vitro, including proliferation, migration and tube formation of human umbilical vein endothelial cells. Decursin and decursinol angelate significantly suppressed neovessel formation in chick chorioallantoic membrane and tumor growth in a mouse model. The microvessel density in tumors treated with decursin for 14 days was significantly decreased compared with a vehicle control group. Decursin and decursinol angelate inhibited VEGF-induced phosphorylation of VEGFR-2, extracellular signal-regulated kinases and c-Jun N-terminal kinase mitogen-activated protein kinases. Taken together, these results demonstrate that decursin and decursinol angelate are novel candidates for inhibition of VEGF-induced angiogenesis.

  14. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling

    PubMed Central

    Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D.; Laschke, Matthias W.

    2015-01-01

    Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors. PMID:26154255

  15. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  16. The Thrombospondin-1 Mimetic ABT-510 Increases the Uptake and Effectiveness of Cisplatin and Paclitaxel in a Mouse Model of Epithelial Ovarian Cancer

    PubMed Central

    Campbell, Nicole E; Greenaway, James; Henkin, Jack; Moorehead, Roger A; Petrik, Jim

    2010-01-01

    Epithelial ovarian cancer (EOC) comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1). TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel) on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day) alone or in combination with cisplatin (2 mg/kg per 3 days) or paclitaxel (10 mg/kg per 2 days) at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer. PMID:20234821

  17. Compound formation and melting behavior in the AB compound and rare earth oxide systems

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Yan, D. S.; Yen, T. S.; Tien, T. Y.

    1990-03-01

    Compound formation in the systems of the covalent compounds BeO, AlN, and SiC with R2O 3(rare earth oxides) is described. Tentative phase diagrams of the AlN sbnd Nd 2O 3 and AlN sbnd Eu 2O 3 systems are presented.

  18. Water-Exchange-Modified Kinetic Parameters from Dynamic Contrast-Enhanced MRI as Prognostic Biomarkers of Survival in Advanced Hepatocellular Carcinoma Treated with Antiangiogenic Monotherapy

    PubMed Central

    Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki

    2015-01-01

    Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BF A), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (v I), extraction fraction, mean intracellular water molecule lifetime (τ C), and fractional intracellular volume (v C) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and v I (P = 0.010), and WX-ETK-model-derived τ C (P = 0.023) and v C (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BF A (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived v C (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived v C was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997

  19. Monitoring anti-angiogenic therapy in colorectal cancer murine model using dynamic contrast-enhanced MRI: comparing pixel-by-pixel with region of interest analysis.

    PubMed

    Haney, C R; Fan, X; Markiewicz, E; Mustafi, D; Karczmar, G S; Stadler, W M

    2013-02-01

    Sorafenib is a multi-kinase inhibitor that blocks cell proliferation and angiogenesis. It is currently approved for advanced hepatocellular and renal cell carcinomas in humans, where its major mechanism of action is thought to be through inhibition of vascular endothelial growth factor and platelet-derived growth factor receptors. The purpose of this study was to determine whether pixel-by-pixel analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is better able to capture the heterogeneous response of Sorafenib in a murine model of colorectal tumor xenografts (as compared with region of interest analysis). MRI was performed on a 9.4 T pre-clinical scanner on the initial treatment day. Then either vehicle or drug were gavaged daily (3 days) up to the final image. Four days later, the mice were again imaged. The two-compartment model and reference tissue method of DCE-MRI were used to analyze the data. The results demonstrated that the contrast agent distribution rate constant (K(trans)) were significantly reduced (p < 0.005) at day-4 of Sorafenib treatment. In addition, the K(trans) of nearby muscle was also reduced after Sorafenib treatment. The pixel-by-pixel analysis (compared to region of interest analysis) was better able to capture the heterogeneity of the tumor and the decrease in K(trans) four days after treatment. For both methods, the volume of the extravascular extracellular space did not change significantly after treatment. These results confirm that parameters such as K(trans), could provide a non-invasive biomarker to assess the response to anti-angiogenic therapies such as Sorafenib, but that the heterogeneity of response across a tumor requires a more detailed analysis than has typically been undertaken.

  20. Four new compounds from Imperata cylindrica.

    PubMed

    Liu, Xuan; Zhang, Bin-Feng; Yang, Li; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-04-01

    Four new compounds, impecylone (1), deacetylimpecyloside (2), seguinoside K 4-methylether (3) and impecylenolide (4), were isolated from Imperata cylindrica along with two known compounds, impecyloside (5) and seguinoside K (6). Their structures were elucidated mainly by spectroscopic analyses including 1D- and 2D-NMR techniques, and the absolute configuration of 1 was confirmed by X-ray diffraction analysis. In calcium assay, the result indicated that compounds 1, 2, 4 and 5 cannot obviously inhibit the calcium peak value compared with the negative control, and suggested that the four compounds could not have anti-inflammatory activity.

  1. Metalloid compounds as drugs

    PubMed Central

    Sekhon, B. S.

    2013-01-01

    The six elements commonly known as metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloid containing compounds have been used as antiprotozoal drugs. Boron-based drugs, the benzoxaboroles have been exploited as potential treatments for neglected tropical diseases. Arsenic has been used as a medicinal agent and arsphenamine was the main drug used to treat syphilis. Arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Pentavalent antimonials have been the recommended drug for visceral leishmaniasis and cutaneous leishmaniasis. Tellurium (IV) compounds may have important roles in thiol redox biological activity in the human body, and ammonium trichloro (dioxoethylene-O, O’-)tellurate (AS101) may be a promising agent for the treatment of Parkinson’s disease. Organosilicon compounds have been shown to be effective in vitro multidrug-resistance reverting agents. PMID:24019824

  2. Use of Polyphenolic Compounds in Dermatologic Oncology

    PubMed Central

    Costa, Adilson; Bonner, Michael Yi

    2017-01-01

    Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology. PMID:27164914

  3. Enzymatic Decontamination of Environmental Organophosphorus Compounds

    DTIC Science & Technology

    2006-12-04

    ABSTRACT (Maximum 200 words) The abstract is below since many authors do not follow the 200 word limit 14. SUBJECT TERMS organophosphorus compounds ...5404 Enzymatic decontamination of environmental organophosphorus compounds REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE...239-18 298-102 15. NUMBER OF PAGES 20. LIMITATION OF ABSTRACT UL - 4-Dec-2006 Enzymatic decontamination of environmental organophosphorus compounds

  4. Compound cuing in free recall.

    PubMed

    Lohnas, Lynn J; Kahana, Michael J

    2014-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity effect should be greater when the 2 most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cuing in both conditional response probabilities and interresponse times. To help rule out a rehearsal-based account of these compound cuing effects, we conducted an experiment with immediate, delayed, and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cuing was present in all conditions, and was not significantly influenced by the presence of interitem distractors.

  5. Orodispersible Films for Compounding Pharmacies.

    PubMed

    Ferreira, Anderson O; Brandão, Marcos Antônio F; Raposo, Francisco José; Polonini, Hudson C; Raposo, Nádia Rezende Barbosa

    2017-01-01

    Orodispersible film can be defined as a solid pharmaceutical form intended for the delivery and rapid local or systemic release of active ingredients, consisting of a water-soluble polymer film that hydrates rapidly, adhering and dissolving immediately when placed on the tongue or in the oral cavity (oral, palatal, gingival, lingual, or sublingual), without the need for water administration or mastication. Due to its outstanding importance in cases of emergency, practicality of use by patients in transit, and high adherence, orodispersible film has evolved in popularity and success among consumers. It is a promising dosage form for compounding pharmacies, as simpler technologies are being developed to make the compound process easier and faster for the pharmacist. This article aims to explore some of the basics on orodispersible film and the main possible preparations to be developed in compounding pharmacies worldwide. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. Compound cueing in free recall

    PubMed Central

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cueing in free recall. Specifically, the temporal contiguity effect should be greater when the two most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cueing in both conditional response probabilities and inter-response times. To help rule out a rehearsal-based account of these compound cueing effects, we conducted an experiment with immediate, delayed and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cueing was present in all conditions, and was not significantly influenced by the presence of interitem distractors. PMID:23957364

  7. Biologically inspired artificial compound eyes.

    PubMed

    Jeong, Ki-Hun; Kim, Jaeyoun; Lee, Luke P

    2006-04-28

    This work presents the fabrication of biologically inspired artificial compound eyes. The artificial ommatidium, like that of an insect's compound eyes, consists of a refractive polymer microlens, a light-guiding polymer cone, and a self-aligned waveguide to collect light with a small angular acceptance. The ommatidia are omnidirectionally arranged along a hemispherical polymer dome such that they provide a wide field of view similar to that of a natural compound eye. The spherical configuration of the microlenses is accomplished by reconfigurable microtemplating, that is, polymer replication using the deformed elastomer membrane with microlens patterns. The formation of polymer waveguides self-aligned with microlenses is also realized by a self-writing process in a photosensitive polymer resin. The angular acceptance is directly measured by three-dimensional optical sectioning with a confocal microscope, and the detailed optical characteristics are studied in comparison with a natural compound eye.

  8. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  9. Elastomer Compound Developed for High Wear Applications

    NASA Technical Reports Server (NTRS)

    Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.

    1993-01-01

    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.

  10. Carbonyl compounds generated from electronic cigarettes.

    PubMed

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-10-28

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  11. Applying Quality by Design Concepts to Pharmacy Compounding.

    PubMed

    Timko, Robert J

    2015-01-01

    Compounding of medications is an important part of the practice of the pharmacy profession. Because compounded medications do not have U.S. Food and Drug Administration approval, a pharmacist has the responsibility to ensure that compounded medications are of suitable quality, safety, and efficacy. The Federal Government and numerous states have updated their laws and regulations regarding pharmacy compounding as a result of recent quality issues. Compounding pharmacists are expected to follow good preparation prodecures in their compounding practices in much the same way pharmaceutical manufacturers are required to follow Current Good Manufacturing Procedures as detailed in the United States Code of Federal Regulations. Application of Quality by Design concepts to the preparation process for a compounded medication can help in understanding the potential pitfalls and the means to mitigate their impact. The goal is to build quality into the compounding process to ensure that the resultant compounded prescription meets the human or animal patients' requirements.

  12. Angiogenesis: from plants to blood vessels.

    PubMed

    Fan, Tai-Ping; Yeh, Ju-Ching; Leung, Kar Wah; Yue, Patrick Y K; Wong, Ricky N S

    2006-06-01

    Angiogenesis is a major pathological component of diseases such as cancer and coronary heart disease. Although major advances have been made and encouraging clinical results obtained, safer and more effective approaches are required. The identification of new drugs from plants has a long and successful history, and certain proangiogenic and antiangiogenic plant components have been used in traditional Chinese medicine (TCM) for thousands of years. Similar to Western combination therapy, TCM uses mixtures of plant extracts, termed fufang, to maximize efficacy and minimize adverse effects or toxicity. More evidence-based research and chemical optimization of these compounds could further enhance the effectiveness of these plant-based medicines in angiotherapy.

  13. [Gemcitabine and non small-cell lung cancer].

    PubMed

    Vignot, Stéphane; Besse, Benjamin

    2007-01-01

    Questions raised during gemcitabine development reflect non small-cell lung cancer (NSCLC) history during last 10 years. Third generation therapies (gemcitabine, vinorelbine and taxanes) combined with platinium compounds are now to be prescribed in almost all clinical situations, from surgically removed tumors to metastatic diseases. The 30% response rate usually reported in advanced disease (with a median survival of 10 months) has to be improved and a more global approach is nowadays mandatory, including targeted agents. This review sum-up the clinical situations in which gemcitabine can be prescribed (advanced disease), or shall be prescribed (adjuvant setting, combination with anti-angiogenic agent or EGFR inhibitors), and highlight opening questions.

  14. False HDAC Inhibition by Aurone Compound.

    PubMed

    Itoh, Yukihiro; Suzuki, Miki; Matsui, Taiji; Ota, Yosuke; Hui, Zi; Tsubaki, Kazunori; Suzuki, Takayoshi

    2016-01-01

    Fluorescence assays are useful tools for estimating enzymatic activity. Their simplicity and manageability make them suitable for screening enzyme inhibitors in drug discovery studies. However, researchers need to pay attention to compounds that show auto-fluorescence and quench fluorescence, because such compounds lower the accuracy of the fluorescence assay systems by producing false-positive or negative results. In this study, we found that aurone compound 7, which has been reported as a histone deacetylase (HDAC) inhibitor, gave false-positive results. Although compound 7 was identified by an in vitro HDAC fluorescence assay, it did not show HDAC inhibitory activity in a cell-based assay, leading us to suspect its in vitro HDAC inhibitory activity. As a result of verification experiments, we found that compound 7 interferes with the HDAC fluorescence assay by quenching the HDAC fluorescence signal. Our findings underscore the faults of fluorescence assays and call attention to careless interpretation.

  15. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  16. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  17. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. Diazo compounds in the chemistry of fullerenes

    NASA Astrophysics Data System (ADS)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  19. Blue Photoluminescence From Silacyclobutene Compounds

    NASA Astrophysics Data System (ADS)

    Pernisz, Udo

    1999-04-01

    Organosilicon compounds in which the Si atom is bound to an aromatic moiety such as a phenyl group, exhibit strong blue photoluminescence when excited with UV light (for example at a wavelength of 337 nm). This phenomenon was investigated quantitatively at room temperature and at the temperature of liquid nitrogen (78 K) by measuring the emission and excitation spectra of the total luminescence, and of the phosphorescence, for a silacyclobutene compound in which two phenyl groups are joined across the C=C double bond of the ring. The effect of a series of organic substituents on the Si atom was investigated as well as the time dependence of the phosphorescence intensity decay for this class of materials. A tentative model of the energy levels in this compound is proposed. The observation of visible blue emission -- in contrast to photoluminescence in the UV from the aromatic groups -- is explained by the Si-C bond lowering the energy of the molecular orbitals, an effect that is currently under study for a range of Si-containing compounds. Synthesis of the silacyclobutene compounds was performed at the laboratory of Prof. N. Auner, now at J.W. Goethe Universität, Frankfurt, Germany. His contributions, and those of his collaborators, to the work reported here are gratefully acknowledged.

  20. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  1. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  2. X-ray targeted bond or compound destruction

    DOEpatents

    Pravica, Sr., Michael G.

    2016-11-01

    This document provides methods, systems, and devices for inducing a decomposition reaction by directing x-rays towards a location including a particular compound. The x-rays can have an irradiation energy that corresponds to a bond distance of a bond in the particular compound in order to break that bond and induce a decomposition of that particular compound. In some cases, the particular compound is a hazardous substance or part of a hazardous substance. In some cases, the particular compound is delivered to a desired location in an organism and x-rays induce a decomposition reaction that creates a therapeutic substance (e.g., a toxin that kills cancer cells) in the location of the organism. In some cases, the particular compound decomposes to produce a reactant in a reactor apparatus (e.g., fuel cell or semiconductor fabricator).

  3. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  4. Quality Assessment of Compounded 17-hydroxyprogesterone Caproate

    PubMed Central

    Chang, Justine; Zhao, Yang; Zhao, WenChen; Venkataramanan, Raman; Caritis, Steve N.

    2013-01-01

    Objective To evaluate the quality of compounded 17-hydroxyprogesterone caproate (17-OHPC) Study Design Compounded 17-OHPC was obtained from 15 compounding pharmacies throughout the U.S. and analyzed for potency, impurities, sterility, and pyrogen status. Results Eighteen samples were supplied by 15 compounding pharmacies. The concentration of 17-OHPC in all samples was within the specification limits and all tested samples passed sterility and pyrogen testing. Only 1 of 18 samples was out of specification limits for impurities. Conclusion Compounded 17-OHPC obtained from 15 pharmacies throughout the U.S. did not raise safety concerns when assessed for potency, sterility, pyrogen status or impurities. PMID:24200163

  5. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  6. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    PubMed

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bilingual Reading of Compound Words

    ERIC Educational Resources Information Center

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-01-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English…

  8. Cancer Phytotherapy

    PubMed Central

    Bahmani, Mahmood; Shirzad, Hedayatollah; Shahinfard, Najmeh; Sheivandi, Laaleh; Rafieian-Kopaei, Mahmoud

    2016-01-01

    Nowadays, increases in resistance of tumors to the current therapeutic agents have become a problematic issue. Therefore, efforts to discover new anticancer compounds with high sensitivity of cancer cells are extending. Animal and laboratory researches have shown that exogenous antioxidants are able to help prevent the free radical damage associated with the development of cancer. However, researches in human beings have not demonstrated convincingly that taking antioxidants can reduce the risk of developing cancer. Angiogenesis is also a natural condition that controls the formation of new blood vessels from the available vessels. Today, it is believed that most of the cancers have angiogenesis potential and their growth, metastasis, and invasion depend on angiogenesis. Several compounds with plant origin and with anti-angiogenic properties have been identified. The aim of this study is to review recently published articles about anticancer drugs obtained from plants with antioxidant and anti-angiogenesis properties. PMID:26753686

  9. Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies.

    PubMed

    Barbieri, Federica; Albertelli, Manuela; Grillo, Federica; Mohamed, Amira; Saveanu, Alexandru; Barlier, Anne; Ferone, Diego; Florio, Tullio

    2014-04-01

    Neuroendocrine tumors (NETs) are heterogeneous neoplasms with respect to molecular characteristics and clinical outcome. Although slow-growing, NETs are often late diagnosed, already showing invasion of adjacent tissues and metastases. Precise knowledge of NET biological and molecular features has opened the door to the identification of novel pharmacological targets. Therapeutic options include somatostatin analogs, alone or in combination with interferon-α, multi-targeted tyrosine kinase inhibitors (e.g. sunitinib) or mammalian target of rapamycin (mTOR) inhibitors (e.g. everolimus). Antiangiogenic approaches and anti insulin-like growth factor receptor (IGFR) compounds have been also proposed as combination therapies with the aforementioned compounds. This review will focus on recent studies that have improved therapeutic strategies in NETs, discussing management challenges such as drug resistance development as well as focusing on the need for predictive biomarkers to design distinct drug combinations and optimize pharmacological control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  11. Peanut flavor compounds from amino acid precursors

    USDA-ARS?s Scientific Manuscript database

    Investigations to determine the chemical compounds responsible for peanut flavor have traditionally depended on the analysis of volatile compounds. The more recent field of the study of metabolomics provides new tools and approaches for the determination of chemical compounds that are lost, created...

  12. Consultation for Human, Veterinary, and Compounded Medications.

    PubMed

    Moghadam, Gabriella; Forsythe, Lauren Eichstadt

    2017-01-01

    Providing consultation on medications is a daily responsibility for pharmacists. However, counseling components for veterinary or compounded medications can differ from those for manufactured medications for humans. This article lists the content that should be provided during consultation, describes differences between counseling for human and veterinary patients, and provides references that can be used. Because many veterinary medications are compounded, this article also provides information that should accompany compounded preparations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  13. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  14. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  15. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  16. Pharmaceutical compounding or pharmaceutical manufacturing? A regulatory perspective.

    PubMed

    Timko, Robert J; Crooker, Philip E M

    2014-01-01

    At one time, nearly all prescriptions were compounded preparations. There is an ongoing demand for compounded prescription medications because manufacturers cannot fulfill the needs of all individual patients. Compounding pharmacies are a long standing yet less frequently discussed element in the complex matrix of prescription drug manufacturing, distribution, and patient use. The drug shortage situation for many necessary and life-saving drug products is a complicating factor that has led to the numerous quality issues that currently plague large-scale compounding pharmacies. The states are the primary regulator of pharmacies, including community drug stores, large chains, and specialty pharmacies. Pharmacies making and distributing drugs in a way that is outside the bounds of traditional pharmacy compounding are of great concern to the U.S. Food and Drug Administration. The U.S. Congress has recently passed the Drug Quality and Security Act. This legislation establishes a clear boundary between traditional compounders and compounding manufacturers. It clarifies a national, uniform set of rules for compounding manufacturers while preserving the states' primary role in traditional pharmacy regulation. It clarifies the U.S. Food and Drug Administration's authority over the compounding of human drugs while requiring the Agency to engage and coordinate with states to ensure the safety of compounded drugs.

  17. Compound management beyond efficiency.

    PubMed

    Burr, Ian; Winchester, Toby; Keighley, Wilma; Sewing, Andreas

    2009-06-01

    Codeveloping alongside chemistry and in vitro screening, compound management was one of the first areas in research recognizing the need for efficient processes and workflows. Material management groups have centralized, automated, miniaturized and, importantly, found out what not to do with compounds. While driving down cost and improving quality in storage and processing, researchers still face the challenge of interfacing optimally with changing business processes, in screening groups, and with external vendors and focusing on biologicals in many companies. Here we review our strategy to provide a seamless link between compound acquisition and screening operations and the impact of material management on quality of the downstream processes. Although this is driven in part by new technologies and improved quality control within material management, redefining team structures and roles also drives job satisfaction and motivation in our teams with a subsequent positive impact on cycle times and customer feedback.

  18. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  19. Anti-Amyloidogenic Properties of Some Phenolic Compounds

    PubMed Central

    Porzoor, Afsaneh; Alford, Benjamin; Hügel, Helmut M.; Grando, Danilla; Caine, Joanne; Macreadie, Ian

    2015-01-01

    A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties. PMID:25898401

  20. Morphological Dynamics in Compound Processing

    ERIC Educational Resources Information Center

    Kuperman, Victor; Bertram, Raymond; Baayen, R. Harald

    2008-01-01

    This paper explores the time-course of morphological processing of trimorphemic Finnish compounds. We find evidence for the parallel access to full-forms and morphological constituents diagnosed by the early effects of compound frequency, as well as early effects of left constituent frequency and family size. We also observe an interaction between…

  1. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines.

    PubMed

    Tian, Sheng; Li, Youyong; Wang, Junmei; Xu, Xiaojie; Xu, Lei; Wang, Xiaohong; Chen, Lei; Hou, Tingjun

    2013-01-21

    In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design.

  2. Using Deep Learning for Compound Selectivity Prediction.

    PubMed

    Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili

    2016-01-01

    Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.

  3. Child-safety Containers/Devices and Compounding.

    PubMed

    Allen, Loyd V

    2017-01-01

    The U.S. Consumer Product Safety Commission has been around since it was created in 1972 through the Consumer Product Safety Act. Its purpose is to protect "against unreasonable risks of injuries associated with consumer products." Manufactured drugs must meet the standards unless specifically exempted. Dispensing and compounding pharmacists must also meet the standards. Due to a smaller market size, compliant products to meet the U.S. Consumer Product Safety Commission's standards to aid compounding pharmacists have been slow in coming. However, now there are numerous different products, some introduced recently, which make it easier for compounding pharmacists to comply with the standards. The new technologies are innovative and serve a great need. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.

    PubMed

    Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen

    Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.

  5. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

    PubMed

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-06-26

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.

  6. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp.

    PubMed

    Venturini, Tarcieli Pozzebon; Chassot, Francieli; Loreto, Érico Silva; Keller, Jéssica Tairine; Azevedo, Maria Izabel; Zeni, Gilson; Santurio, Janio Morais; Alves, Sydney Hartz

    2016-07-01

    Herein, we describe the in vitro activity of a combination of the organoselenium compounds diphenyl diselenide and ebselen alone and in combination with amphotericin B, caspofungin, itraconazole, and voriconazole against 25 clinical isolates of Fusarium spp. For this analysis, we used the broth microdilution method based on the M38-A2 technique and checkerboard microdilution method. Diphenyl diselenide (MIC range = 4-32 μg/ml) and ebselen (MIC range = 2-8 μg/ml) showed in vitro activity against the isolates tested. The most effective combinations were (synergism rates): ebselen + amphotericin B (88%), ebselen + voriconazole (80%), diphenyl diselenide + amphotericin B (72%), and diphenyl diselenide + voriconazole (64%). Combination with caspofungin resulted in low rates of synergism: ebselen + caspofungin, 36%, and diphenyl diselenide + caspofungin, 28%; combination with itraconazole demonstrated indifferent interactions. Antagonistic effects were not observed for any of the combinations tested. Our findings suggest that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation in in vivo experimental models, especially in combination with amphotericin B and voriconazole. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. 2-[(4-Chloro­phen­yl)selan­yl]-3,4-di­hydro-2H-benzo[h]chromene-5,6-dione: crystal structure and Hirshfeld analysis

    PubMed Central

    Prado, Karinne E.; Name, Luccas L.; Jotani, Mukesh M.

    2017-01-01

    The title organoselenium compound, C19H13ClO3Se {systematic name: 2-[(4-chloro­phen­yl)selan­yl]-2H,3H,4H,5H,6H-naphtho­[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methyl­ene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the mol­ecule is 9.96 (9)° and indicates a step-like conformation. An intra­molecular Se⋯O inter­action of 2.8122 (13) Å is noted. In the crystal, π–π contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chloro­benzene rings [inter-centroid distance = 3.7715 (13) Å], along with C—Cl⋯π(chloro­benzene) contacts, lead to supra­molecular layers parallel to the ab plane, which are connected into a three-dimensional architecture via methyl­ene-C—H⋯O(carbon­yl) inter­actions. The contributions of these and other weak contacts to the Hirshfeld surface is described. PMID:28638659

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  9. Compound Nouns and Category Structure in Young Children.

    ERIC Educational Resources Information Center

    Clark, Eve V.; And Others

    1985-01-01

    In two experiments 96 children and eight adults were tested for comprehension of the modifier-head relation in compounds such as apple-knife or were asked to label objects with compounds. Results show that by age three children reliably interpret novel compounds and made use of novel compounds to subcategorize. (RH)

  10. Thermal Stability Characteristics of Nitroaromatic Compounds.

    DTIC Science & Technology

    1986-09-15

    of a methyl ortho to the nitro group in nitroaromatic compounds introduces a new element into the decomposition behavior of such compounds. Inasmuch...thus without the aid of acid, base or photon catalysis. It is clear that the presence of a methyl ortho to the nitro group in nitroaromatic compounds...particular interest in terms of the substance of this work is the drastic change in reaction product when a methyl group is ortho to the nitro . Furthermore

  11. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  12. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  13. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  14. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  15. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  16. Fumigant toxicity of basil oil compounds and related compounds to Thrips palmi and Orius strigicollis.

    PubMed

    Kim, Kwang-Ho; Yi, Chang-Geun; Ahn, Young-Joon; Kim, Soon Il; Lee, Sang-Guei; Kim, Jun-Ran

    2015-09-01

    This study was aimed at assessing the fumigant toxicity to adult Thrips palmi (a serious insect pest) and Orius strigicollis (a beneficial predator insect) of basil (Ocimum basilicum) essential oil compounds and structurally related compounds using vapour-phase toxicity bioassays. Against adult T. palmi, linalool (LD50 0.0055 mg cm(-3) ) was the most toxic fumigant and was 15.2-fold more effective than dichlorvos (0.0837 mg cm(-3) ). Strong fumigant toxicity was also observed in pulegone (0.0095 mg cm(-3) ), (±)-camphor (0.0097 mg cm(-3) ) and 1,8-cineole (0.0167 mg cm(-3) ). Moderate toxicity was produced by camphene, 3-carene, (-)-menthone, (+)-α-pinene, (+)-β-pinene, α-terpineol and (-)-α-thujone (0.0215-0.0388 mg cm(-3) ). Against adult O. strigicollis, dichlorvos (LD50 9.0 × 10(-10) mg cm(-3) ) was the most toxic fumigant, whereas the LD50 values of these compounds ranged from 0.0127 to >0.23 mg cm(-3) . Based upon the selective toxicity ratio, the compounds described are more selective than dichlorvos. The basil oil compounds described merit further study as potential insecticides for control of T. palmi in greenhouses because of their generally lower toxicity to O. strigicollis and their greater activity as a fumigant than dichlorvos. © 2014 Society of Chemical Industry.

  17. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  18. Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yong S.; Singh, Rahul; Zhang, Jing

    2016-01-01

    Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five ..beta..-O-4 and two ..alpha..-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for ..beta..-O-4 compounds and ..alpha..-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation.more » The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the ..beta..-ether linked and ..alpha..-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both ..beta..-O-4 and ..alpha..-O-4 linkages.« less

  19. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  20. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.