Science.gov

Sample records for antibacterial labdenoic acid

  1. Novel cajaninstilbene acid derivatives as antibacterial agents.

    PubMed

    Geng, Zhi-Zhong; Zhang, Jian-Jun; Lin, Jing; Huang, Mei-Yan; An, Lin-Kun; Zhang, Hong-Bin; Sun, Ping-Hua; Ye, Wen-Cai; Chen, Wei-Min

    2015-07-15

    Discovery of novel antibacterial agents with new structural scaffolds that combat drug-resistant pathogens is an urgent task. Cajaninstilbene acid, which is isolated from pigeonpea leaves, has shown antibacterial activity. In this study, a series of cajaninstilbene acid derivatives were designed and synthesized. The antibacterial activities of these compounds against gram-negative and gram-positive bacteria, as well as nine strains of methicillin-resistant staphylococcus aureus (MRSA) bacteria are evaluated,and the related structure-activity relationships are discussed. Assays suggest that some of the synthetic cajaninstilbene acid derivatives exhibit potent antibacterial activity against gram-positive bacterial strains and MRSA. Among these compounds, 5b, 5c, 5j and 5k show better antibacterial activity than the positive control compounds. The results of MTT assays illustrate the low cytotoxicity of the active compounds.

  2. Antibacterial Targets in Fatty Acid Biosynthesis

    PubMed Central

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  3. Antibacterial targets in fatty acid biosynthesis.

    PubMed

    Wright, H Tonie; Reynolds, Kevin A

    2007-10-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for the development of new antibacterial agents. The extended use of the antituberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for antibacterial development. Differences in subcellular organization of the bacterial and eukaryotic multienzyme fatty acid synthase systems offer the prospect of inhibitors with host versus target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalog of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes.

  4. Antibacterial anthranilic acid derivatives from Geijera parviflora.

    PubMed

    Shou, Qingyao; Banbury, Linda K; Maccarone, Alan T; Renshaw, Dane E; Mon, Htwe; Griesser, Stefani; Griesser, Hans J; Blanksby, Stephen J; Smith, Joshua E; Wohlmuth, Hans

    2014-03-01

    Five anthranilic acid derivatives, a mixture I of three new compounds 11'-hexadecenoylanthranilic acid (1), 9'-hexadecenoylanthranilic acid (2), and 7'-hexadecenoylanthranilic acid (3), as well as a new compound 9,12,15-octadecatrienoylanthranilic acid (4) together with a new natural product, hexadecanoylanthranilic acid (5), were isolated from Geijera parviflora Lindl. (Rutaceae). Their structures were elucidated by extensive spectroscopic measurements, and the positions of the double bonds in compounds 1-3 of the mixture I were determined by tandem mass spectrometry employing ozone-induced dissociation. The mixture I and compound 5 showed good antibacterial activity against several Gram-positive strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5% based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications.

  6. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  7. Antibacterial performance of alginic acid coating on polyethylene film.

    PubMed

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-08-21

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.

  8. Evaluation of the antibacterial efficacy of diesters of azelaic acid.

    PubMed

    Charnock, Colin; Brudeli, Bjarne; Klaveness, Jo

    2004-04-01

    A number of diesters of the topical dermatosis treatment azelaic (nonanedioic) acid were prepared and tested for antibacterial effect. Two esters, bis-[(hexanoyloxy)methyl] nonanedioate and especially bis-[(butanoyloxy)methyl] nonanedioate showed promising activity against acne related bacteria in vitro. No activity of azelaic acid was detected in Mueller Hinton II agar at pH 7.3 when using the agar diffusion method, whereas both esters gave zones of growth inhibition. At pH 5.6, activity of azelaic acid was detected. At this pH, the zones of inhibition and MIC values obtained with azelaic acid were smaller than those of bis-[(butanoyloxy)methyl] nonanedioate for all test organisms. A preparation for topical use containing 20% (w/w) bis-[(butanoyloxy)methyl] nonanedioate, and the commercially available Skinoren (20% (w/w) azelaic acid), were compared for antibacterial effect against cutaneous bacteria using contact plate analyses of the skin. Though Skinoren was usually most effective, the differences were not statistically significant. Furthermore, bacteria surviving contact with the topical preparations were invariably more sensitive to the ester than to azelaic acid upon subculturing onto agar (pH 5.6) containing either preparation at 0.2-0.7 mg/ml. This might indicate that other factors, such as the composition of the cream base, mitigate the antibacterial activity of the ester. It is proposed that the pharmacological and microbiological properties of bis-[(butanoyloxy)methyl] nonanedioate are worthy of further study based on an extended screening of acne sufferers.

  9. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides.

    PubMed

    Jackman, Joshua A; Yoon, Bo Kyeong; Li, Danlin; Cho, Nam-Joon

    2016-03-03

    Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.

  10. Antibacterial effectiveness of peracetic acid and conventional endodontic irrigants.

    PubMed

    Guerreiro-Tanomaru, Juliane Maria; Morgental, Renata Dornelles; Faria-Junior, Norberto Batista; Berbert, Fábio Luis Camargo Vilela; Tanomaru-Filho, Mário

    2011-01-01

    This study evaluated the in vitro antibacterial activity of conventional and experimental endodontic irrigants against Enterococcus faecalis. The following substances were evaluated by direct contact test: 2.5% sodium hypochlorite (NaOCl); 2% chlorhexidine (CHX); 1% peracetic acid. After different contact periods (30 s, 1, 3, and 10 min), a neutralizing agent was applied. Serial 10-fold dilutions were prepared and plated onto tryptic soy agar (TSA) and the number of colony-forming units per milliliter (CFU/mL) was determined. Sterile saline was used as a negative control. Both 2.5% NaOCl and 2% CHX eliminated E. faecalis after 30 s of contact. Peracetic acid reduced the bacterial counts by 86% after 3 min and completely eliminated E. faecalis after 10 min. These results allow us to conclude that 1% peracetic acid is effective against E. faecalis, despite its slower action compared with 2.5% NaOCl and 2% CHX.

  11. Solwaric Acids A and B, Antibacterial Aromatic Acids from a Marine Solwaraspora sp.

    PubMed Central

    Ellis, Gregory A.; Wyche, Thomas P.; Fry, Charles G.; Braun, Doug R.; Bugni, Tim S.

    2014-01-01

    Two novel trialkyl-substituted aromatic acids, solwaric acids A and B, were isolated from a marine Solwaraspora sp. cultivated from the ascidian Trididemnum orbiculatum. Solwaric acids A and B were isotopically labeled with U-13C glucose, and analysis of a 13C–13C COSY allowed for unambiguous determination of the location of the phenyl methyl group. The two novel compounds demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). PMID:24534844

  12. Synthesis and antibacterial properties of beta-diketone acrylate bioisosteres of pseudomonic acid A.

    PubMed

    Bennett, I; Broom, N J; Cassels, R; Elder, J S; Masson, N D; O'Hanlon, P J

    1999-07-05

    A series of beta-diketone acrylate bioisosteres 4 of pseudomonic acid A 1 have been synthesized and evaluated for their ability to inhibit bacterial isoleucyl-tRNA synthetase and act as antibacterial agents. A number of analogues have excellent antibacterial activity. Selected examples were shown to afford good blood levels and to be effective in a murine infection model.

  13. Solwaric acids A and B, antibacterial aromatic acids from a marine Solwaraspora sp.

    PubMed

    Ellis, Gregory A; Wyche, Thomas P; Fry, Charles G; Braun, Doug R; Bugni, Tim S

    2014-02-14

    Two novel trialkyl-substituted aromatic acids, solwaric acids A and B, were isolated from a marine Solwaraspora sp. cultivated from the ascidian Trididemnum orbiculatum. Solwaric acids A and B were isotopically labeled with U-¹³C glucose, and analysis of a ¹³C-¹³C COSY allowed for unambiguous determination of the location of the phenyl methyl group. The two novel compounds demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA).

  14. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles.

    PubMed

    Boehm, Ryan D; Miller, Philip R; Singh, Ritika; Shah, Akash; Stafslien, Shane; Daniels, Justin; Narayan, Roger J

    2012-03-01

    Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez(®) AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez(®) AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez(®) AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections.

  15. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  16. Antibacterial activity of 2-alkynoic fatty acids against multidrug resistant bacteria

    PubMed Central

    Sanabria-Ríos, David J.; Rivera-Torres, Yaritza; Maldonado-Domínguez, Gamalier; Domínguez, Idializ; Ríos, Camille; Díaz, Damarith; Rodríguez, José W.; Altieri-Rivera, Joanne S.; Ríos-Olivares, Eddy; Cintrón, Gabriel; Montano, Nashbly; Carballeira, Néstor M.

    2014-01-01

    The first study aimed at determining the structural characteristics needed to prepare antibacterial 2-alkynoic fatty acids (2-AFAs) was accomplished by synthesizing several 2-AFAs and other analogues in 18-76% overall yields. Among all the compounds tested, the 2-hexadecynoic acid (2-HDA) displayed the best overall antibacterial activity against Gram-positive Staphylococcus aureus (MIC = 15.6 μg/mL), Staphylococcus saprophyticus (MIC = 15.5 μg/mL), and Bacillus cereus (MIC = 31.3 μg/mL), as well as against the Gram-negative Klebsiella pneumoniae (7.8 μg/mL) and Pseudomonas aeruginosa (MIC = 125 μg/mL). In addition, 2-HDA displayed significant antibacterial activity against methicillin-resistant S. aureus (MRSA) ATCC 43300 (MIC = 15.6 μg/mL) and clinical isolates of MRSA (MIC = 3.9 μg/mL). No direct relationship was found between the antibacterial activity of 2-AFAs and their critical micelle concentration (CMC) suggesting that the antibacterial properties of these fatty acids are not mediated by micelle formation. It was demonstrated that the presence of a triple bond at C-2 as well as the carboxylic acid moiety in 2-AFAs are important for their antibacterial activity. 2-HDA has the potential to be further evaluated for use in antibacterial formulations. PMID:24365283

  17. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid.

    PubMed

    Oloyede, H O B; Ajiboye, H O; Salawu, M O; Ajiboye, T O

    2017-10-01

    Contribution of reactive oxygen species and oxidative stress in the antibacterial activities of betulin, betulinic acid and ursolic acid against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was investigated. The minimum inhibitory concentrations of betulin, betulinic acid and ursolic acid against E. coli, P. aeruginosa and S. aureus are 1024-, 256- and 1024-μg/mL; 512-, 256- and 256 μg/mL; 256-, 256- and 64 μg/mL respectively. Cell viability of betulin-, betulinic acid- and ursolic acid-treated bacteria decrease in time dependent manner. Treatment of bacteria in the presence of 2,2'-bipyrydyl increased cell viability. Superoxide anion radical production increased significantly (p < 0.05) in bacterial cells-treated with betulin, betulinic acid and ursolic acid. Furthermore, NAD(+)/NADH ratio increased significantly (p < 0.05) in betulin-, betulinic acid- and ursolic acid-treated bacteria. Similarly, level of reduced glutathione in E. coli, P. aeruginosa and S. aureus decreased significantly with corresponding increase in glutathione disulphide, malondialdehyde and fragmented DNA following betulin, betulinic acid and ursolic acid treatments. It is evident from the above findings that betulin, betulinic acid and ursolic acid enhanced electron transport chain activity in E. coli, P. aeruginosa and S. aureus leading to increased ROS generation, Fenton reaction, lipid peroxidation, fragmented DNA and consequentially bacterial death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum.

    PubMed

    Desbois, Andrew P; Lebl, Tomas; Yan, Liming; Smith, Valerie J

    2008-12-01

    One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.

  19. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    NASA Astrophysics Data System (ADS)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz; Hussain, Rafaqat

    2016-11-01

    In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  20. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    PubMed Central

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  1. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium.

    PubMed

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection.

  2. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens.

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Gomes Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  3. Synthesis, evaluation and molecular docking studies of amino acid derived N-glycoconjugates as antibacterial agents.

    PubMed

    Baig, Noorullah; Singh, Rajnish Prakash; Chander, Subhash; Jha, Prabhat Nath; Murugesan, Sankaranarayanan; Sah, Ajay K

    2015-12-01

    Six amino acid derived N-glycoconjugates of d-glucose were synthesized, characterized and tested for antibacterial activity against G(+)ve (Bacillus cereus) as well as G(-)ve (Escherichia coli and Klebsiella pneumoniae) bacterial strains. All the tested compounds exhibited moderate to good antibacterial activity against these bacterial strains. The results were compared with the antibacterial activity of standard drug Chloramphenicol, where results of A5 (Tryptophan derived glycoconjugates) against E. coli and A4 (Isoleucine derived glycoconjugates) against K. pneumoniae bacterial strains are comparable with the standard drug molecule. In silico docking studies were also performed in order to understand the mode of action and binding interactions of these molecules. The docking studies revealed that, occupation of compound A5 at the ATP binding site of subunit GyrB (DNA gyrase, PDB ID: 3TTZ) via hydrophobic and hydrogen bonding interactions may be the reason for its significant in vitro antibacterial activity.

  4. Gene expression and distribution of antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli.

    PubMed

    Kitani, Yoichiro; Mori, Tsukasa; Nagai, Hiroshi; Toyooka, Keiko; Ishizaki, Shoichiro; Shimakura, Kuniyoshi; Shiomi, Kazuo; Nagashima, Yuji

    2007-12-01

    Antibacterial factors in the epidermal mucus of fish have a potential importance in the first line of the host defense response to bacterial pathogens. We previously isolated a novel antibacterial protein termed SSAP (Sebastes schlegeli antibacterial protein) from the skin mucus of the rockfish S. schlegeli and identified it as a new member of the L-amino acid oxidase (LAO) family. In the present study, the localization of SSAP in S. schlegeli was investigated by reverse transcription (RT)-PCR, quantitative real time RT-PCR, Western blotting and measurements of LAO and antibacterial activities. SSAP mRNA was expressed dominantly in skin and gill and weakly in ovary or kidney as shown by RT-PCR and real time RT-PCR. The quantity of SSAP mRNA in skin varied among the individuals, ranging from 1.1 to 13.9 ng microg(-1) total RNA, although no relationship was found between the size of fish and gene expression. SSAP was exclusively detected in skin and gill by Western blotting using a specific anti-SSAP antiserum. In addition, the extracts of both tissues apparently showed LAO activity and antibacterial activity against Photobacterium damselae subsp. piscicida. This study demonstrates that SSAP is predominantly synthesized in skin and gill and probably functions as an antibacterial LAO in both tissues.

  5. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms.

    PubMed

    Ning, Yawei; Yan, Aihong; Yang, Kun; Wang, Zhixin; Li, Xingfeng; Jia, Yingmin

    2017-08-01

    Phenyllactic acid (PLA), a phenolic acid phytochemical, is considered to be a promising candidate for use as a chemical preservative due to its broad antimicrobial activity. The antibacterial target of PLA has rarely been reported, thus investigations were performed to elucidate the antibacterial mechanism of PLA against Listeria monocytogenes and Escherichia coli. Flow cytometry analysis stained with propidium iodide (PI) demonstrated that PLA could damage the membrane integrity of L. monocytogenes, while it could not disrupt that of E. coli. The uptake of 1-N-phenylnaphthylamine (NPN) indicated that PLA interrupted the outer membrane permeability of E. coli. Scanning electron microscopy (SEM) observation visualized the damage caused by PLA as morphological changes in L. monocytogenes and E. coli. Fluorescence assays demonstrated that PLA could interact with bacterial genomic DNA in the manner of intercalation. This finding suggested dual antibacterial targets of PLA, namely membrane and genomic DNA.

  6. Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive

    NASA Astrophysics Data System (ADS)

    Setianto, W. B.; Wibowo, T. Y.; Yohanes, H.; Illaningtyas, F.; Anggoro, D. D.

    2017-05-01

    Synthesis of glycerol mono-laurate (GML) has been performed using esterification reaction of glycerol and lauric acid. The reaction was performed at the condition of temperature of 120-140 °C within 7 hour, variation of molar ratio of glycerol - lauric acid, and was using heterogeneous catalyst of zeolist Y. Without catalyst dealumination the maximum acid conversion was 78%, with GML contained in the sample was 38.6%, and it was obtained at the reaction condition of 140 oC, 15wt% catalyst, and 8:1 molar ratio of glycerol - lauric acid. At the same condition, using dealuminated catalyst, the maximum acid conversion was increased up to 98%, with GML contained in the sample was 50.4%. The GML antibacterial activity was examined. It was observed that the GML has antibacterial activity against gram positive bacterial such as B. cereus and S. aureus.

  7. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  8. Development and characterization of antibacterial braided polyamide suture coated with chitosan-citric acid biopolymer.

    PubMed

    Debbabi, Faten; Gargoubi, Sondes; Hadj Ayed, Mohamed Adnene; Abdessalem, Saber Ben

    2017-09-01

    Braided polyamide sutures are frequently used in dermatologic surgery for wound closure. However, braided sutures promote bacteria proliferation. In order to prevent wound complications due to this effect, antibacterial sutures should be used. The main objective of this study is the development of new non-absorbable antibacterial polyamide braided suture. This paper suggests new coating process that leads to obtain suture uniformly covered by antibacterial film enclosing chitosan, which is known for its antibacterial benefit. Mechanical properties and surface morphology of developed sutures were investigated by using mechanical tests. Sutures surfaces were also examined by scanning electron microscope, to perceive spreading of coating product on suture surface. In order to identify potential reactions between chemical compounds present in coating solution and suture material, sutures were analyzed by ATR-IF spectroscopy. It has been demonstrated that many eventual bonds between compounds present in coating solutions and polyamide macromolecular chain may occur. The existence of these bonds implies the fixation of biopolymer coating on suture surface. It has been demonstrated that uniform surface may be obtained by progressively applying coating solution containing little amount of chitosan on suture surface. We have also found that developed coating process has not affected mechanical properties of suture, which still meet United States Pharmacopeia requirement. Finally, antibacterial effects against four colonies, very widespread in hospitals, were studied. Prominent antibacterial effects of braided polyamide suture against two gram-positive ( S Aureus, S epidermidis) and two gram-negative ( E coli and P aeruginosa) colonies are presented. Optimal result of best properties is obtained by applying three layers of biopolymer coating comprising 1% chitosan and 10% citric acid. The new developed suture coating process appears as a promising method for obtaining

  9. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Rahman, Russly Abdul; Jokar, Maryam; Darroudi, Majid

    2010-01-01

    In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller–Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application. PMID:20856832

  10. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric.

    PubMed

    Kantouch, A; El-Sayed, A Atef; Salama, M; El-Kheir, A Abou; Mowafi, S

    2013-11-01

    Salicylic acid and three of its derivatives were used to provide antibacterial properties to viscose fabrics. The four bactericides used were bonded to the viscose fabrics using epichlorohydrin or polymer binders. Optimization of the salicylic acid and its derivatives as well as the concentration of polymers was reported. The ability of the polymer binders to attract and bind the four bactericides was observed. The overall results show that the antibacterial reactivity of salicylic acid and its derivatives are in the following order 5-bromosalicylic acid>salicylic acid>5-chlorosalicylic acid>4-chlorosalicylic acid. Using epichlorohydrin as a binding agent, unfortunately, inhibits the bactericidal activity of the four bactericides. The FTIR study concludes that the reaction between salicylic acid as well as its derivatives with epichlorohydrin takes place through the phenolic group of the acids. The unexpected deterioration in the bactericidal properties of salicylic acid and its derivatives as a result of the treatment with epichlorohydrin could be due to the nature of interaction between the epichlorohydrin molecule and the acids molecules. PVP and PU show superior ability to sustain the four bactericides used even after 10 washing cycles.

  11. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  12. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  13. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property.

  14. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  15. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria.

    PubMed

    Nguyen, H T; Yu, N H; Jeon, S J; Lee, H W; Bae, C-H; Yeo, J H; Lee, H B; Kim, I-S; Park, H W; Kim, J-C

    2016-06-01

    The emergence of pathogenic bacterial strains resistant to agrochemicals and the increasing demand for organic foods have led to the discovery of new antibacterial metabolites that can be used either directly or as a lead molecule for development of synthetic bactericides. During the screening of antibacterial fungal cultures, we found that one fungal strain, Aspergillus persii EML-HPB1-11, showed strong in vitro antibacterial activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibitory concentration (MIC) of 10% of fermentation broth filtrate. The active compound was identified as penicillic acid (PA: 3-methoxy-5-methyl-4-oxo-2,5-hexadienoic acid) by mass and NMR spectroscopy. The in vitro antibacterial activity of PA was tested against 12 phytopathogenic bacteria. All of the bacterial pathogens tested were highly inhibited by PA with MIC values of 12·3-111·1 μg ml(-1) . It also effectively suppressed the development of bacterial spot disease in detached peach leaves, showing control values of 82·4 and 94·1% at concentrations of 111·1 and 333·3 μg ml(-1) respectively. This is the first report on the production of PA by A. persii. This study suggests that PA can be used as a lead molecule for development of synthetic bactericides for control of various plant diseases. Penicillic acid (PA) produced by the seed-borne fungus Aspergillus persii EML-HPB1-11 showed antibacterial activity against various plant pathogenic bacteria. The compound effectively inhibited the growth of 12 plant pathogenic bacteria and successfully controlled bacterial spot disease on peach leaf. These results suggest that PA can be used as a lead molecule for development of synthetic agrochemicals to control plant bacterial diseases. © 2016 The Society for Applied Microbiology.

  16. Synthesis, Antibacterial Activity, Interaction with Nucleobase and Molecular Docking Studies of 4-Formylbenzoic Acid Based Thiazoles.

    PubMed

    Laczkowski, Krzysztof Z; Biernasiuk, Anna; Baranowska-Laczkowska, Angelika; Misiura, Konrad; Malm, Anna; Plech, Tomasz; Paneth, Agata

    2016-01-01

    Synthesis, characterization and investigation of antibacterial activity of ten novel Schiff base derivatives of 4-formylbenzoic acid is presented. Their structures were determined using 1H and 13CNMR, EI(+)-MS and elemental analyses. Additionally, DFT calculations of interaction energies in complexes of the novel drugs and DNA bases are carried out. Design and synthesis of thiazole derivatives with benzoic acid scaffold to obtain compounds with an improved antibacterial activity. The examined compounds were screened in vitro for antibacterial activity using the broth microdilution method. Geometrical parameters of the investigated complexes were optimized within the Density Functional Theory (DFT) approximation using the B3LYP functional and the 6-311G** basis set. The docking simulations were performed using the FlexX docking module. Among the derivatives, compound 4b showed very strong bacterial activity against staphylococci, MIC 1.95-3.91 µg/ml, micrococci, MIC 0.98 µg/ml, and Bacillus spp., MIC 7.81-15.62 µg/ml. The compounds 4c, 4d, 4e and 4j also showed high bioactivity against staphylococci, MIC 3.91-31.25 µg/ml, and micrococci, MIC 0.98-15.62 µg/ml. Interaction energy values for investigated guanine complexes are about 2 kcal/mol lower than for the corresponding cytosine complexes. Molecular docking studies of all compounds on the active sites of bacterial enzymes indicated gyrase B as possible target. To conclude, an efficient and economic method for the synthesis of thiazoles containing benzoic acid moiety has been developed. The results of antibacterial screenings reveal that some obtained compounds show high to very strong antibacterial activity. The DFT calculations showed that interaction of the obtained drugs with guanine is stronger than with cytosine. Molecular docking studies of all compounds on the active sites of bacterial enzymes indicated gyrase B as possible target.

  17. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents.

    PubMed

    Dong, Alideertu; Sun, Yue; Lan, Shi; Wang, Qin; Cai, Qian; Qi, Xiuzhen; Zhang, Yanling; Gao, Ge; Liu, Fengqi; Harnoode, Chokto

    2013-08-28

    Novel recyclable bactericidal materials, barbituric acid-based magnetic N-halamine nanoparticles (BAMNH NPs), were fabricated by coating of magnetic silica nanoparticles (MS NPs) with barbituric acid-based N-halamine by the aid of the radical polymerization. The sterilizing effect on the bacterial strain is investigated by incubating Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). The as-prepared BAMNH NPs exhibit higher biocidal activity than the bulk powder barbituric acid-based N-halamine due to the high activated surface area. The structural effect of N-halamine on antimicrobial performance was fully clarified through the comparison between BAMNH NPs and hydantoin-based magnetic N-halamine nanoparticles (HMNH NPs). BAMNH NPs exhibited promising stability toward repeated washing and long-term storage. BAMNH NPs with different chlorine content were comparatively chosen to investigate the influence of chlorine content on the antimicrobial activity. An antibacterial recycle experiment revealed that no significant change occurred in the structure and antibacterial efficiency of BAMNH NPs after five recycle experiments. The combination of barbituric acid-based N-halamine with magnetic component results in an obvious synergistic effect and facilitates the repeated antibacterial applications, providing potential and ideal candidates for sterilization or even for the control of disease.

  18. In Vitro Antibacterial Activity of AM-715, a New Nalidixic Acid Analog

    PubMed Central

    Ito, Akira; Hirai, Keiji; Inoue, Matsuhisa; Koga, Hiroshi; Suzue, Seigo; Irikura, Tsutomu; Mitsuhashi, Susumu

    1980-01-01

    AM-715 [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid] is a new nalidixic acid analog. AM-715 has a broad spectrum of antibacterial activity against gram-positive and gram-negative bacteria. The antibacterial activity of AM-715 was greater than those of pipemidic acid and nalidixic acid. AM-715 had higher antibacterial activity against Pseudomonas aeruginosa than did gentamicin. Most nalidixic acid-resistant bacteria were susceptible to AM-715, and cross-resistance was not observed between AM-715 and various antibiotics. The minimal concentration of AM-715 required to inhibit the growth of 75% of the total number of clinical isolates was as follows: Escherichia coli, 0.04 μg/ml; Klebsiella pneumoniae, 0.1 μg/ml; Serratia marcescens, 0.88 μg/ml; Enterobacter spp., 0.076 μg/ml; Staphylococcus aureus, 1.10 μg/ml; P. aeruginosa, 0.38 μg/ml; and nalidixic acid-resistant strains of gram-negative bacteria, 0.62 μg/ml. AM-715 at minimal inhibitory concentrations or at slightly higher concentrations had bactericidal activity against various species of bacteria. The effect of inoculum sizes on minimal inhibitory concentrations and minimal bactericidal concentrations of AM-715 against gram-negative bacteria was smaller than on those of pipemidic acid and nalidixic acid. The dose-response curve of AM-715 indicated a steep gradient, and the 50% inhibited doses of AM-715 were 0.014 μg/ml against E. coli ML4707 and 0.21 μg/ml against P. aeruginosa NC-5. PMID:6446258

  19. A new antibacterial denitroaristolochic acid from the tubers of Stephania succifera.

    PubMed

    Yang, De-Lan; Mei, Wen-Li; Zeng, Yan-Bo; Guo, Zhi-Kai; Wei, Dai-Jing; Liu, Shou-Bai; Wang, Qing-Huang; Dai, Hao-Fu

    2013-01-01

    A new denitroaristolochic acid, demethylaristofolin C (1), together with six known alkaloids, crebanine N-oxide (2), (-)-sukhodianine-β-N-oxide (3), palmatine (4), corydalmine (5), dehydrocorydalmine (6), and corynoxidine (7), was isolated from the tubers of Stephania succifera. The structure of demethylaristofolin C was elucidated by spectroscopic techniques (UV, IR, 1D, and 2D NMR) and HR-ESI-MS analyses. These compounds exhibited antibacterial activities against Staphylococcus aureus and methicillin-resistant S. aureus strains in different degrees.

  20. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid).

    PubMed

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.

  1. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid)

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449

  2. Sodium alginate/carboxymethyl cellulose films containing pyrogallic acid: physical and antibacterial properties.

    PubMed

    Han, Yingying; Wang, Lijuan

    2017-03-01

    Antibacterial films were prepared using sodium alginate (SA) and carboxymethyl cellulose (CMC) as a matrix, glycerin as a plasticizer and CaCl2 as a cross-linking agent, and by incorporating the natural antibacterial agent pyrogallic acid (PA). The present study describes the microstructure and the physical, barrier, mechanical, optical and antibacterial properties of blended films prepared by incorporating different concentrations of PA into the SA/CMC matrix. The microstructure of the films was investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, which revealed that PA interacts with the SA/CMC matrix through hydrogen bonding. Moreover, the incorporation of PA increased the moisture content, water vapor permeability and oxygen permeability of SA/CMC films. Films containing 40 g kg(-1) of PA had the highest elongation at break result (39.60%). Compared with pure SA/CMC films, the incorporation of PA improved the barrier properties against ultraviolet light; however, it decreased the color parameter L* value and increased the a* and b* values of the films. Furthermore, films with PA, especially at higher concentrations, were more effective against Escherichia coli and Staphylococcus aureus. Antibacterial SA/CMC films incorporating PA appear to have good potential to enhance the safety of foods and food products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains.

  4. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    PubMed

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  5. Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest.

    PubMed

    Nirma, Charlotte; Eparvier, Véronique; Stien, Didier

    2015-01-23

    Ilicicolinic acids A, C, and D (1-3) and ilicicolinal (4) were isolated from a fungus isolated from a Nasutitermes corniger nest in French Guiana. The structures of ilicicolinic acids C and D and ilicicolinal were elucidated using 1D and 2D NMR spectroscopic data as well as MS data. Ilicicolinic acids show antibacterial activity in vitro.

  6. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori.

    PubMed

    Sun, Cynthia Q; O'Connor, Charmian J; Roberton, Anthony M

    2003-05-15

    The bactericidal potencies of saturated and unsaturated fatty acids (FAs) and monoglycerides (MGs) against Helicobacter pylori were determined following short incubations with freshly harvested cells over a range of pHs. FAs and their derivatives with an equivalent-carbon number of 12 were the most potent: lauric acid had a minimum bactericidal concentration (MBC) at pH 7.4 of 1 mM, myristoleic and linolenic acid were the most potent unsaturated FAs (MBCs of 0.5 mM, pH 7.4), and monolaurin was the most potent MG (MBC 0.5 mM). Potencies of saturated FAs were increased sharply by lowering pH, and a decrease of only 0.5 pH units can cause a change from non-lethal to lethal conditions. Conversely, the bactericidal action of monolaurin was not pH-dependent. The bactericidal potencies of unsaturated FAs increased with degree of unsaturation. When more than one FA or FA plus MGs were present, their combined action was additive. Urea and endogenous urease did not protect H. pylori from the bactericidal action of FAs. These results suggest that H. pylori present in the stomach contents (but not necessarily within the mucus barrier) should be rapidly killed by the millimolar concentrations of FAs and MGs that are produced by pre-intestinal lipase(s) acting on suitable triglycerides such as milk fat.

  7. New hydroxamic acid derivatives of fluoroquinolones: synthesis and evaluation of antibacterial and anticancer properties.

    PubMed

    Rajulu, Gavara Govinda; Bhojya Naik, Halehatty Seephya; Viswanadhan, Abhilash; Thiruvengadam, Jayaraman; Rajesh, Kondodiyil; Ganesh, Sambasivam; Jagadheshan, Hiriyan; Kesavan, Poonimangadu Koppolu

    2014-01-01

    A series of new hydroxamic acid derivatives (6a-f) at C-3 position of fluoroquinolones were designed and synthesized through multistep synthesis. The design concept involved replacement of the 3-carboxylic acid in fluoquinolones with hydroxamic acid as an acid mimicking group. The synthetic work employed in this work provides a good example for the synthesis of pure hydroxamic acid based fluoroquinolones. The synthesized compounds were characterized by (1)H-NMR, electrospray ionization (ESI)-MS and IR. The new compounds were tested for their in vitro antimicrobial and anti-proliferative activity. Out of the six derivatives, compound 6e exhibited moderate antibacterial activity by inhibiting the growth of Escherichia coli and Klebsiella pneumoniae (MIC: 4.00-8.00 µg/mL). Compounds 6b and 6f displayed good growth inhibition against A549 Lung adenocarcinoma and HCT-116 Colon carcinoma cell lines.

  8. Synthesis of mimics of pramanicin from pyroglutamic acid and their antibacterial activity.

    PubMed

    Tan, Song Wei Benjamin; Chai, Christina L L; Moloney, Mark G; Thompson, Amber L

    2015-03-06

    Epoxypyrrolidinones are available by epoxidation of carboxamide-activated bicyclic lactam substrates derived from pyroglutamate using aqueous hydrogen peroxide and tertiary amine catalysis. In the case of an activating Weinreb carboxamide, further chemoselective elaboration leads to the efficient formation of libraries of epoxyketones. Deprotection may be achieved under acidic conditions to give epoxypyroglutaminols, although the ease of this process can be ameliorated by the presence of internal hydrogen bonding. Bioassay against S. aureus and E. coli indicated that some compounds exhibit antibacterial activity. These libraries may be considered to be structural mimics of the natural products pramanicin and epolactaene. More generally, this outcome suggests that interrogation of bioactive natural products is likely to permit the identification of "privileged" structural scaffolds, providing frameworks suitable for optimization in a short series of chemical steps that may accelerate the discovery of new antibiotic chemotypes. Further optimization of such systems may permit the rapid identification of novel systems suitable for antibacterial drug development.

  9. Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions

    NASA Astrophysics Data System (ADS)

    Rotaru, Ileana; Varvara, Simona; Gaina, Luiza; Muresan, Liana Maria

    2014-12-01

    The present study is aiming to investigate the effect of four antibiotics (amoxicillin, ciprofloxacin, doxycycline and streptomycin,) belonging to different classes of antibacterial drugs on bronze corrosion in a solution simulating an acid rain (pH 4). Due to their ability to form protective films on the metal surface, the tested antibiotics act as corrosion inhibitors for bronze. The antibiotics were tested at various concentrations in order to determine the optimal concentration range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, polarization curves, electrochemical impedance spectroscopy, SEM and XPS measurements were used. Moreover, a correlation between the inhibition efficiency of some antibacterial drugs and certain molecular parameters was determined by quantum chemical computations. Parameters like energies EHOMO and ELUMO and HOMO-LUMO energy gap were used for correlation with the corrosion data.

  10. Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on Staphylococcus aureus

    PubMed Central

    Oyama, Kentaro; Kawada-Matsuo, Miki; Oogai, Yuichi; Hayashi, Tetsuya; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2016-01-01

    Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism. PMID:27820854

  11. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract.

    PubMed

    Mohadjerani, Maryam; Tavakoli, Rahmatollah; Hosseinzadeh, Rahman

    2014-01-01

    The objective of this study was to analyze the fatty acid content, antioxidant, and antibacterial activities of hydro-methanolic extract of Adonis wolgensis L. (A. wolgensis L.) growing wild in north of Iran. Oils of A. wolgensis L. was obtained by means of Soxhlet apparatus from leaves and stems. Methyl esters were derived from the oily mixtures by trans-esterification process and were analyzed by GC/FID and GC/MS systems. Phenolic compounds extraction was done with aqueous methanol (90%). This extract was investigated for antioxidant activity using DPPH radical scavenging and reducing power methods and was also tested against a panel of microorganisms. Linolenic acid (45.83%) and oleic acid (47.54%) were the most abundant fatty acids in leaves and stems, respectively. Hydro-methanolic extract with the high amount of total phenolics (9.20 ±0.011 mg GAE per dry matter) was the potent antioxidant in the assays. RESULTS obtained from measurements of MIC for extract, indicated that E. coli, S. aureus, and S. enteritidis were the most sensitive microorganisms tested, but no activity was observed against Gram-positive microorganism (B. subtilis). The results obtained from the present study indicated that the oil of A. wolgensis leaves and stems contained a high source of poly-unsaturated fatty acids (PUFAs). These results also showed that hydro-methanolic extract of this plant contained significant antioxidant and antibacterial activities.

  12. Synthesis and antibacterial evaluation of 3-Farnesyl-2-hydroxybenzoic acid from Piper multiplinervium.

    PubMed

    Malami, Ibrahim; Gibbons, Simon; Malkinson, John P

    2014-03-01

    3-Farnesyl-2-hydroxybenzoic acid is an antibacterial agent isolated from the leaves of Piper multiplinervium. This compound has activity against both Gram positive and Gram negative bacteria including Escherichia coli, Staphylococcus aureus and Helicobacter pylori. This research aimed to synthesize a natural antibacterial compound and its analogs. The synthesis of 3-Farnesyl-2-hydroxybenzoic acid consists of three steps: straightforward synthesis involving protection of phenolic hydroxyl group, coupling of suitable isoprenyl chain to the protected aromatic ring at ortho position followed by carboxylation with concomitant deprotection to give the derivatives of the salicylic acid. All the three prenylated compounds synthesized were found to exhibit spectrum of activity against S. aureus (ATCC) having MIC: 5.84×10(-3), 41.46×10(-2) and 6.19×10(-1) μmol/ml respectively. The compounds also displayed activity against resistance strain of S. aureus (SA1119B) having MIC: 5.84×10(-3), 7.29×10(-3) and 3.09×10(-1) μmol/ml respectively. This synthesis has been achieved and accomplished with the confirmation of it structure to that of the original natural product, thus producing the first synthesis of the natural product and providing the first synthesis of its analogs with 3-Farnesyl-2-hydroxybenzoic acid having biological activity higher than that of the original natural product. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes.

    PubMed

    Kayaci, Fatma; Umu, Ozgun C O; Tekinay, Turgay; Uyar, Tamer

    2013-04-24

    Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.

  14. Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications.

    PubMed

    Davachi, Seyed Mohammad; Shiroud Heidari, Behzad; Hejazi, Iman; Seyfi, Javad; Oliaei, Erfan; Farzaneh, Arman; Rashedi, Hamid

    2017-01-02

    In this study, an optimized interface-modified ternary blend with antibacterial activity based on polylactic acid/starch/poly ε-caprolactone (PLASCL20), mixed with nano hydroxyapatite (nHA) via melt blending. This method results in a homogeneous nanocomposite blend in which the addition of 3% nHA improves the overall properties such as hydrolytic degradation, hydrophilicity, antibacterial activity and the drug release comparing to PLASCL20. Moreover, the simultaneous use of nHA and encapsulated triclosan (LATC30) compensated the negative effect of triclosan through increasing the possible cell attachment. According to the contact angle results, nHA was thermodynamically driven into the interface of PLA and PCL/Starch phases. The addition of 3% nHA showed a good adjustment between the hydrolytic degradation and the release profile, therefore, their electrospun microfibers demonstrated an improved fibroblast (L929) cell attachment. The aforementioned nanocomposite blend is a suitable antibacterial candidate for many medical applications with minimum side effects due to the controlled release of triclosan.

  15. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials.

    PubMed

    Villegas, Carolina; Torres, Alejandra; Rios, Mauricio; Rojas, Adrián; Romero, Julio; de Dicastillo, Carol López; Valenzuela, Ximena; Galotto, María José; Guarda, Abel

    2017-09-01

    Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin(-1)) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO2), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid.

    PubMed

    Hu, S-G; Jou, C-H; Yang, M C

    2003-07-01

    Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) membrane was treated with ozone and grafted with acrylic acid. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. Afterward hyaluronic acid (HA) was immobilized onto CS- or COS-grafting membranes. The antibacterial activity of CS and COS against Staphylococus aureus, Escherichia coli, and Pseudomonas aeruginosa was preserved after HA immobilization. Among them, CS-grafted PHBV membrane showed higher antibacterial activity than COS-grafted PHBV membrane. In addition, after CS- or COS-grafting, the L929 fibroblasts attachment and protein adsorption were improved, while the cell number was decrease. After immobilizing HA, the cell proliferation was promoted, the protein adsorption was decreased, and the cell attachment was slightly lower than CS- or COS-grafting PHBV.

  17. meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity.

    PubMed

    Reyes-Melo, Karen; García, Abraham; Romo-Mancillas, Antonio; Garza-González, Elvira; Rivas-Galindo, Verónica M; Miranda, Luis D; Vargas-Villarreal, Javier; Favela-Hernández, Juan Manuel J; Camacho-Corona, María Del Rayo

    2017-10-15

    Thirty-three meso-dihydroguaiaretic acid (meso-DGA) derivatives bearing esters, ethers, and amino-ethers were synthesized. All derivatives were tested against twelve drug-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including sensitive (H37Rv) and multidrug-resistant Mycobacterium tuberculosis strains. Among the tested compounds, four esters (7, 11, 13, and 17), one ether (23), and three amino-ethers (30, 31, and 33) exhibited moderate activity against methicillin-resistant Staphylococcus aureus, whereas 30 and 31 showed better results than levofloxacin against vancomycin-resistant Enterococcus faecium. Additionally, nineteen meso-DGA derivatives displayed moderate to potent activity against M. tuberculosis H37Rv with minimum inhibitory concentration (MIC) values ranging from 3.125 to 50µg/mL. Seven meso-DGA derivatives bearing amino-ethers (26-31 and 33) exhibited the lowest MICs against M. tuberculosis H37Rv and G122 strains, with 31 being as potent as ethambutol (MICs of 3.125 and 6.25µg/mL). The presence of positively charged group precursors possessing steric and hydrophobic features (e.g. N-ethylpiperidine moieties in meso-31) resulted essential to significantly increase the antimycobacterial properties of parent meso-DGA as supported by the R-group pharmacophoric and field-based QSAR analyses. To investigate the safety profile of the antimycobacterial compounds, cytotoxicity on Vero cells was determined. The amino-ether 31 exhibited a selectivity index value of 23, which indicate it was more toxic to M. tuberculosis than to mammalian cells. Therefore, 31 can be considered as a promising antitubercular agent for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants.

    PubMed

    Umerska, Anita; Cassisa, Viviane; Matougui, Nada; Joly-Guillou, Marie-Laure; Eveillard, Matthieu; Saulnier, Patrick

    2016-11-01

    Lipid nanocapsules (LNCs) are a new generation of biomimetic nanocarriers obtained via a phase inversion temperature method and have an oily core of medium-chain triglycerides that is surrounded by a shelf containing a lipophilic surfactant (lecithin) and a hydrophilic surfactant macrogol 15-hydroxystearate. The aim of the present study was to produce LNCs with antibacterial activity by replacing lecithin with other lipophilic surface active compounds, namely medium-chain fatty acids and their 1-monoglycerides, which are known to have antimicrobial properties. Fatty acids and monoglycerides were found to affect the properties of LNCs, such as particle size and zeta potential. Incorporation of a co-surfactant decreased significantly particle size (p⩽0.0039). Furthermore, incorporation of either lecithin or fatty acids with at least 10 carbon atoms yielded LNCs with the zeta potential significantly more negative than that of LNCs composed solely of triglycerides and macrogol 15 hydroxystearate (p⩽0.0310). Moreover, they were capable of decreasing the phase inversion temperature. The activity of the LCNs against Gram-positive S. aureus, including a methicillin-resistant strain, increased with increases in the length of the hydrocarbon tail. Monoglyceride-LNCs were found to be more active than the corresponding fatty acids. The opposite behaviour was observed for Gram-negative bacteria, whereby only caproic acid- and caprylic acid-LNCs were found to be active against these organisms. The monoglyceride-LNCs were bactericidal, and they killed in a time-dependent manner. Fatty acid-LNCs killed in a concentration-dependent manner. A haemolysis assay was performed to obtain preliminary information on the safety of the tested LNCs. In the case of fatty acid-LNCs, the concentrations at which bacterial growth was inhibited were similar to the haemolytic concentrations. However, monoglyceride-LNCs showed antibacterial action at concentrations much lower than those at which

  19. Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties.

    PubMed

    Sinanoglou, Vassilia J; Zoumpoulakis, Panagiotis; Heropoulos, George; Proestos, Charalampos; Ćirić, Ana; Petrovic, Jovana; Glamoclija, Jasmina; Sokovic, Marina

    2015-06-01

    Laetiporus sulphureus is a saprophyte belonging to a specific group of wood-decomposing Basidiomycetes growing on deciduous trees. This fungus has been characterized as a herbal medicine and is also known for its antimicrobial properties. In the present study, high energy extraction techniques using different solvents were compared to obtain maximum yield of the edible fungus Laetiporus sulphureus total lipids. The lipid classes and fatty acid composition of the fruiting bodies' total lipids has been studied using GC-FID and Iatroscan TLC-FID analysis. Among the lipids, the neutral lipids predominated followed by phospholipids and glycolipids. Triglycerides were the most abundant in the neutral lipid fraction, whereas phosphatidylcholine in phospholipids. The existence of relatively high amount of sterols may be correlated to fungus pharmaceutical properties. Total lipids were found to contain high unsaturated degree fatty acids (UFA/SFA>3.4) and dominated of C18:2ω-6, C18:1ω-9 and C16:0 fatty acids. Antibacterial and antifungal properties of mushrooms' lipid extracts from two different solvents were also examined. Results indicated that hexane extracts possessed better antifungal and slightly better antibacterial activity compared to chloroform extracts though both were less active than the commercial antimicrobial agents.

  20. Antibacterial effects of enniatins J(1) and J(3) on pathogenic and lactic acid bacteria.

    PubMed

    Sebastià, Natividad; Meca, Giuseppe; Soriano, José Miguel; Mañes, Jordi

    2011-10-01

    Enniatins (ENs) are N-methylated cyclohexadepsipeptides, secondary metabolites produced by various species of the genus Fusarium. They are known to act as antifungal, antiyeast and antibacterial and to possess antiinsecticidal and phytotoxic properties. In this study we evaluated for the first time the antibiotic effect of pure fractions of EN J(1) and J(3) on several pathogenic strains and lactic acid bacteria. The ENs J(1) and J(3) were purified from the fermentation extract of Fusarium solani growth on solid medium of wheat kamut, using the technique of the low pressure liquid chromatography (LPLC) followed by a semipreparative liquid chromatography (LC). The purity and the structure of the isolated compound were confirmed by electrospray ionization-mass spectrometry study-linear ion trap (ESI-MS-LIT). The use of both chromatographic techniques have permitted to produce and purify 47mg of the En J(1) and 50mg of the EN J(3) with a mean purity of 98% completely characterized with the technique of the ESI-MS-LIT. Microbial bioassay analyses were carried out by incubation in MRSA and TSA for acid lactic and pathogenic bacteria, respectively during 24h at 37°C. None of the tested strains were inhibited by a 1ng dose of EN J(1) and J(3). These compounds were only not effective against Listeria monocytogenes, Pseudomonas aeruginosa and Salmonella enteric. This study highlight ENs J(1) and J(3) could be potentially effective antibacterial agents against several pathogenic and lactic acid bacteria.

  1. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals

    PubMed Central

    Zhitnitsky, Daniel; Rose, Jessica; Lewinson, Oded

    2017-01-01

    For millennia, transition metals have been exploited to inhibit bacterial growth. We report here the potentiation of the anti-bacterial activity of transition metals by organic acids. Strong synergy between low, non-toxic concentrations of transition metals and organic acids was observed with up to ~1000-fold higher inhibitory effect on bacterial growth. We show that organic acids shuttle transition metals through the permeability barrier of the bacterial membrane, leading to increased influx of transition metals into bacterial cells. We demonstrate that this synergy can be effectively used to inhibit the growth of a broad range of plant and human bacterial pathogens, and suggest that a revision of food preservation and crop protection strategies may be in order. These findings bear significant biomedical, agricultural, financial and environmental opportunities. PMID:28294164

  2. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  3. Impact of acidity and metal ion on the antibacterial activity and mechanisms of β- and α-chitosan.

    PubMed

    Bingjun, Qian; Jung, Jooyeoun; Zhao, Yanyun

    2015-03-01

    This study investigated the effects of acidity and metal ion on the antibacterial activity of α- and β-chitosan at different molecular weights (Mw, 22-360 kDa) against Escherichia coli and Listeria innocua through agar well diffusion assay. Spectrophotometric, electrophoretic, and confocal fluorescence microscopy analysis were further employed to evaluate the antibacterial mechanisms probably involved. Increasing pH from 4.0 to 5.0 weakened the antibacterial ability of chitosan as shown by the decreased bacteria growth inhibition zone (BGIZ) from 0.63 to 0.57 cm for β-chitosan (61 kDa) and from 0.62 to 0.57 cm for α-chitosan (30 kDa) against E. coli. All β- and α-chitosan samples showed antibacterial activity against L. innocua, in which 22 kDa β-chitosan and 30 kDa α-chitosan at pH 4.0 had the highest antibacterial activity with BGIZ of 1.22 and 0.98 cm, respectively. Interactive effect between pH and Mw on the antibacterial activity of β-chitosan was observed, but not of α-chitosan. Adding Co(2+) and Ni(2+) significantly improved the antibacterial activity of chitosan, while adding K(+), Na(+), and Li(+) significantly weakened the antibacterial activity of some β- and α-chitosan samples (P < 0.05), and different Mw and forms of chitosan showed different metal ion absorption capacities. Results indicate that chitosan might insert into the groove of bacterial DNA double helix structure to induce DNA degradation and permeate through bacteria cell membranes and combine with genomic DNA to induce its dysfunction, providing evidences for the antibacterial mechanisms of chitosan.

  4. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).

    PubMed

    Szakiel, Anna; Ruszkowski, Dariusz; Grudniak, Anna; Kurek, Anna; Wolska, Krystyna I; Doligalska, Maria; Janiszowska, Wirginia

    2008-11-01

    The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid's influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.

  5. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Wang, Chao-Min; Jhan, Yun-Lian; Tsai, Shang-Jie; Chou, Chang-Hung

    2016-07-07

    (1) BACKGROUND: Several triterpenoids were found to act synergistically with classes of antibiotic, indicating that plant-derived chemicals have potential to be used as therapeutics to enhance the activity of antibiotics against multidrug-resistant pathogens. However, the mode of action of triterpenoids against bacterial pathogens remains unclear. The objective of this study is to evaluate the interaction between ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA); (2) METHODS: The ability of ursolic acid to damage mammalian and bacterial membranes was examined. The proteomic response of methicillin-resistant S. aureus in ursolic acid treatment was investigated using two-dimensional (2D) proteomic analysis; (3) RESULTS: Ursolic acid caused the loss of staphylococcal membrane integrity without hemolytic activity. The comparison of the protein pattern of ursolic acid-treated and normal MRSA cells revealed that ursolic acid affected a variety of proteins involved in the translation process with translational accuracy, ribonuclease and chaperon subunits, glycolysis and oxidative responses; (4) CONCLUSION: The mode of action of ursolic acid appears to be the influence on the integrity of the bacterial membrane initially, followed by inhibition of protein synthesis and the metabolic pathway. These findings reflect that the pleiotropic effects of ursolic acid against MRSA make it a promising antibacterial agent in pharmaceutical research.

  6. Differential antibacterial properties of the MurA inhibitors terreic acid and fosfomycin

    PubMed Central

    Olesen, Sanne H.; Ingles, Donna J.; Yang, Yan; Schönbrunn, Ernst

    2015-01-01

    Terreic acid is a metabolite with antibiotic properties produced by the fungus Aspergillus terreus, but its cellular target remains unknown. We recently reported that terreic acid inactivates the bacterial cell wall biosynthetic enzyme MurA in vitro by covalent reaction with residue Cys115 in a similar manner as the MurA-specific antibiotic fosfomycin. To address if terreic acid also targets MurA in vivo, we conducted antibacterial studies using selected E. coli strains in parallel with fosfomycin. While overexpression of MurA conferred resistance to fosfomycin, it did not protect cells treated with terreic acid. Furthermore, flow cytometry revealed that the antibiotic action of terreic acid appears to be primarily bacteriostatic, as opposed to the bactericidal action observed for fosfomycin. Combined, the data suggest that MurA is not the molecular target of terreic acid and that the antibiotic activity of terreic acid proceeds through a different mechanism of action. The methodology applied here provides a reliable and convenient tool to rapidly assess the potential of newly discovered in vitro inhibitors to target residue Cys115 of MurA in the cell. PMID:23686727

  7. Low expression of the antibacterial factor L-amino acid oxidase in bovine mammary gland.

    PubMed

    Nagaoka, Kentaro; Zhang, Haolin; Arakuni, Masahiro; Taya, Kazuyoshi; Watanabe, Gen

    2014-12-01

    In the mouse, L-amino acid oxidase (LAO) produces hydrogen peroxide by utilizing free amino acids and is a proven antibacterial factor in mammary glands. Mastitis, a bacterial infection of the mammary gland, is the most frequent disease in dairy cattle. Here, we investigate whether LAO is expressed in the mammary gland of dairy cattle and is antibacterial. In dairy cattle, the expression level of LAO mRNA in the mammary gland was considerably lower than that in mice, and LAO activity was not observed in cattle milk that produced hydrogen peroxide. The expression of LAO mRNA was also low in Japanese Black cattle, the same as in Holstein cattle. A higher LAO mRNA expression was observed in the mastitis glands than in the lactating glands. Furthermore, spleen and lymph nodes expressed high levels of LAO mRNA in dairy cattle. We conclude that mammary glands in dairy cattle have lower ability to express the LAO gene compared to that in mice, which may result in a high incidence of mastitis.

  8. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  9. Antibacterial activity of phosphanilic acid, alone and in combination with trimethoprim.

    PubMed Central

    Misiek, M; Buck, R E; Pursiano, T A; Chisholm, D R; Tsai, Y H; Price, K E; Leitner, F

    1985-01-01

    We explored the antibacterial activity of phosphanilic acid (P), an analog of sulfanilic acid, alone and in combination with trimethoprim (T; TP, 1:5) with sulfamethoxazole (S) and co-trimoxazole, the combination of this sulfonamide with trimethoprim (TS, 1:5) as the reference. P resembled S in spectrum but, in addition, had significant activity against Pseudomonas aeruginosa. The overall frequency and degree of synergism with TP were lower than with co-trimoxazole. P, like S, was strongly affected by changes in inoculum size and was not bactericidal. P was well absorbed parenterally but not orally in mice. Despite low (but prolonged) blood levels, P, given orally to mice, was effective in treating infections caused by P. aeruginosa. However, against most experimental infections the therapeutic effectiveness of P, as well as that of TP, administered either intramuscularly or orally was unimpressive. Based on in vivo data, the therapeutic application of P or TP would appear to be limited. PMID:3878689

  10. Antibacterial activity of phosphanilic acid, alone and in combination with trimethoprim.

    PubMed

    Misiek, M; Buck, R E; Pursiano, T A; Chisholm, D R; Tsai, Y H; Price, K E; Leitner, F

    1985-12-01

    We explored the antibacterial activity of phosphanilic acid (P), an analog of sulfanilic acid, alone and in combination with trimethoprim (T; TP, 1:5) with sulfamethoxazole (S) and co-trimoxazole, the combination of this sulfonamide with trimethoprim (TS, 1:5) as the reference. P resembled S in spectrum but, in addition, had significant activity against Pseudomonas aeruginosa. The overall frequency and degree of synergism with TP were lower than with co-trimoxazole. P, like S, was strongly affected by changes in inoculum size and was not bactericidal. P was well absorbed parenterally but not orally in mice. Despite low (but prolonged) blood levels, P, given orally to mice, was effective in treating infections caused by P. aeruginosa. However, against most experimental infections the therapeutic effectiveness of P, as well as that of TP, administered either intramuscularly or orally was unimpressive. Based on in vivo data, the therapeutic application of P or TP would appear to be limited.

  11. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    PubMed

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations.

  12. Antibacterial action of acetic acid soluble material isolated from Mucor rouxii and its application onto textile.

    PubMed

    Moussa, Shaaban; Ibrahim, Atef; Okba, Adel; Hamza, Hanafy; Opwis, Klaus; Schollmeyer, Eckhard

    2011-06-01

    Acetic acid soluble material (AcSM) is a chitosan-rich fraction isolated from the fungal cell wall materials. The final step in the traditional production of fungal chitosan is the separation of chitosan from the cell wall AcSM via raising the pH to 9-10 followed by centrifugation. This step results in further undesirable economic and environmental effects. The goal of this paper is to avoid that by investigating the antimicrobial effect of the whole AcSM from Mucor rouxii DSM-1191 cell wall and its application on cotton fabrics. The treated fabrics were characterized through monitoring the textile physical properties and for the antibacterial activity against Escherichia coli and Micrococcus luteus. Results showed that Mucor rouxii DSM-1191 has excellent potentials to be used for cell wall AcSM production on industrial scale with a maximum content of 40% in dry mycelia. The obtained results indicated that the physical properties of the treated fabrics, as well as the antibacterial activity, were improved after treatment with fungal AcSM. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets.

    PubMed

    Chandraker, Kumudini; Nagwanshi, Rekha; Jadhav, S K; Ghosh, Kallol K; Satnami, Manmohan L

    2017-03-16

    Graphene oxide (GO) sheets decorated with amino acid L-cysteine (L-cys) functionalized silver nanoparticles (GO-L-cys-Ag) was synthesized by AgNO3, trisodium citrate, and NaBH4. GO-L-cys-Ag nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, which demonstrated that a diameter of L-cys-AgNPs compactly deposited on GO. Antibacterial activity tests of GO-L-cys-Ag nanocomposite were carried out using Escherichia coli MTCC 1687 and Staphylococcus aureus MTCC 3160 as model strains of Gram-negative and Gram-positive bacteria, respectively. The effect of bactericide dosage on antibacterial activity of GO-L-cys-Ag nanocomposite was examined by plate count, well diffusion and broth dilution methods. Morphological observation of bacterial cells by scanning electron microscope (SEM) showed that GO-L-cys-Ag nanocomposite was more destructive to cell membrane of Escherichia coli than that of Staphylococcus aureus. The above technique establish that the bactericidal property of GO-L-cys-Ag nanocomposite with wide range of applications in biomedical science.

  14. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Chandraker, Kumudini; Nagwanshi, Rekha; Jadhav, S. K.; Ghosh, Kallol K.; Satnami, Manmohan L.

    2017-06-01

    Graphene oxide (GO) sheets decorated with amino acid L-cysteine (L-cys) functionalized silver nanoparticles (GO-L-cys-Ag) was synthesized by AgNO3, trisodium citrate, and NaBH4. GO-L-cys-Ag nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, which demonstrated that a diameter of L-cys-AgNPs compactly deposited on GO. Antibacterial activity tests of GO-L-cys-Ag nanocomposite were carried out using Escherichia coli MTCC 1687 and Staphylococcus aureus MTCC 3160 as model strains of Gram-negative and Gram-positive bacteria, respectively. The effect of bactericide dosage on antibacterial activity of GO-L-cys-Ag nanocomposite was examined by plate count, well diffusion and broth dilution methods. Morphological observation of bacterial cells by scanning electron microscope (SEM) showed that GO-L-cys-Ag nanocomposite was more destructive to cell membrane of Escherichia coli than that of Staphylococcus aureus. The above technique establish that the bactericidal property of GO-L-cys-Ag nanocomposite with wide range of applications in biomedical science.

  15. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid.

    PubMed

    Singh, Ramendra K; Rai, Diwakar; Yadav, Dipti; Bhargava, A; Balzarini, J; De Clercq, E

    2010-03-01

    Curcumin bioconjugates, viz. di-O-tryptophanylphenylalanine curcumin (2), di-O-decanoyl curcumin (3), di-O-pamitoyl curcumin (4), di-O-bis-(gamma,gamma)folyl curcumin (6), C(4)-ethyl-O-gamma-folyl curcumin (8) and 4-O-ethyl-O-gamma-folyl curcumin (10) have been synthesized and tested for their antibacterial and antiviral activities. The conjugates 2, 3, 4, 6 and 8 have shown very promising antibacterial activity with MIC ranging between 0.09 and 0.67 microM against Gram-positive cocci and Gram-negative bacilli. Further, the conjugates 2, 3, 6, 8 and 10 have been screened for their antiviral activities against HSV, VSV, FIPV, PIV-3, RSV and FHV and the molecules 2 and 3 have shown good results with EC(50) 0.011 microM and 0.029 microM against VSV and FIPV/FHV, respectively. However, the molecules did not show expected results against HIV-1 III(B) and ROD strains in MTT assay. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  16. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  17. Surface Modification of PET Fabric by Graft Copolymerization with Acrylic Acid and Its Antibacterial Properties

    PubMed Central

    Abdolahifard, M.; Bahrami, S. Hajir; Malek, R. M. A.

    2011-01-01

    Graft copolymerization of acrylic acid (AA) onto Poly(ethylene terephthalate) (PET) fabrics with the aid of benzoyl peroxide was carried out. The effect of polymerization parameters on the graft yield was studied. Percent grafting was enhanced significantly by increasing benzoyl peroxide (BP) concentrations up to 3.84 g/lit and then decreased upon further increase in initiator concentration. Preswelling of PET leads to changes in its sorption-diffusion properties and favors an increase in the degree of grafting. The antibiotics treated grafted fabrics showed antibacterial properties towards gram-positive and gram-negative microorganisms. FTIR and SEM were used to characterize AA-grafted polyester fabrics. PMID:24052819

  18. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against plant pathogenic bacteria.

    PubMed

    Sohn, Hye-Ran; Bae, Jae-Han; Hou, Ching T; Kim, Hak-Ryul

    2013-08-15

    7,10-Dihydroxy-8(E)-octadecenoic acid (DOD), one of hydroxy fatty acids, was successfully produced from oleic acid and natural vegetable oils containing oleic acid by a bacterial strain Pseudomonas aeruginosa (PR3). However, biological properties of DOD remained unknown so far. In this study, as a trial to determine the biological properties of DOD molecule, antibacterial activities of DOD against plant pathogenic bacteria were determined qualitatively and quantitatively. DOD presented strong antibacterial activities against all the bacterial strains tested with MIC value being in the range of 125-1000μg/ml and there was no sensitivity preference detected between Gram-positive and Gram-negative strains. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents.

    PubMed

    Wang, Yi; Ma, Shutao

    2013-10-01

    Bacterial infections are a constant and serious threat to human health. With the increase of multidrug resistance of clinically pathogenic bacteria, common antibiotic therapies have been less effective. Fatty acid synthesis type II (FASII) system enzymes are essential for bacterial membrane lipid biosynthesis and represent increasingly promising targets for the discovery of antibacterial agents with new mechanisms of action. This review highlights recent advances in inhibitors of bacterial FASII as potential antibacterial agents, paying special attention to the activities, mechanisms, and structure-activity relationships of those inhibitors that mainly target β-ketoacyl-ACP synthase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydratase, and enoyl-ACP reductase. Although inhibitors with low nanomolar and selective activity against various bacterial FASII have entered clinical trials, further research is needed to expand upon both available and yet unknown scaffolds to identify new FASII inhibitors that may have antibacterial potential, particularly against resistant bacterial strains.

  20. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    PubMed

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacteriumacnes, Staphylococcusepidermidis, Staphylococcusaureus, and Pseudomonasaeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P.aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  1. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria

    PubMed Central

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-01-01

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris. PMID:28594356

  2. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-03-31

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans.

  3. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Takeshima, Satoshi; Ishiura, Yutaka; Ando, Kanako; Onishi, Osamu

    2017-10-01

    A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.

  4. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    PubMed

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier.

  5. Linoleic acid salt with ultrapure soft water as an antibacterial combination against dermato-pathogenic Staphylococcus spp.

    PubMed

    Jang, H; Makita, Y; Jung, K; Ishizaka, S; Karasawa, K; Oida, K; Takai, M; Matsuda, H; Tanaka, A

    2016-02-01

    Skin colonization of Staphylococcus spp. critically affects the severity of dermatitis in humans and animals. We examined different types of fatty acid salts for their antibacterial activity against Staphylococcus spp. when used in ultrapure soft water (UPSW). We also evaluated their therapeutic effect on a spontaneous canine model of dermatitis. UPSW, in which Ca(++) and Mg(++) were replaced with Na(+) , was generated using a water softener with cation-exchange resin. Staphylococcus aureus (Staph. aureus), Staphylococcus intermedius (Staph. intermedius), and Staphylococcus pseudintermedius (Staph. pseudintermedius) were incubated with various fatty acid salts in distilled water (DW) or UPSW and the number of bacteria was counted. Among the fatty acids, oleic acid salt and linoleic acid (LA) salt reduced the number of these bacteria. Also, UPSW enhanced the antibacterial effect of LA on Staph. spp. In spontaneously developed itchy dermatitis in companion dogs, shampoo treatment with liquid soap containing 10% LA in UPSW improved skin conditions. LA salt showed antibacterial activity against Staph. spp. Treatment with soap containing LA with UPSW reduced clinical conditions in dogs with dermatitis. Because colonization of Staph. spp. on the skin exacerbates dermatitis, the use of LA-containing soap in UPSW may reduce unpleasant clinical symptoms of the skin. © 2015 The Society for Applied Microbiology.

  6. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay; Marappan, Nathiya; Gajendran, Sabari Srinivasan; Viswanathan, Vinodhini

    2016-01-01

    Aim/Background: Medicinal plants have ability to resist microorganisms by synthesizing secondary metabolites such as phenols. Rosmarinic acid (RA) is a phenylpropanoid widely distributed in plants and well known as therapeutic and cosmetic agent. Methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to all kinds of β-lactams, threatens even most potent antibiotics. To improve the efficiency of antibiotics against multi-drug resistant bacteria and to reduce the antibiotic dose, the antibacterial activity and the synergistic effect of RA with standard antibiotics against S. aureus and MRSA was investigated. Materials and Methods: Antibacterial activity of RA against S. aureus and a clinical isolate of MRSA was evaluated by agar well diffusion method. Minimum inhibitory concentration (MIC) of RA was determined by broth dilution method. Synergism of RA with various antibiotics against S. aureus and MRSA was studied by broth checkerboard method and time-kill kinetic assay. Effect of RA on microbial surface components recognizing adhesive matrix molecules (MSCRAMM’s) of S. aureus and MRSA was studied using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Results: MIC of RA was found to be 0.8 and 10 mg/ml against S. aureus and MRSA, respectively. RA was synergistic with vancomycin, ofloxacin, and amoxicillin against S. aureus and only with vancomycin against MRSA. The time-kill analysis revealed that synergistic combinations were a more effective than individual antibiotics. MSCRAMM’s protein expression of S. aureus and MRSA was markedly suppressed by RA + vancomycin combination rather than RA alone. Conclusion: The synergistic effects of RA with antibiotics were observed against S. aureus and MRSA. RA showed inhibitory effect on the surface proteins MSCRAMM’s. Even though RA was shown to exhibit a synergistic effect with antibiotics, the MIC was found to be higher. Thus, further studies on increasing the efficacy of RA can develop it

  7. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  8. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties.

    PubMed

    Tarushi, Alketa; Psomas, George; Raptopoulou, Catherine P; Kessissoglou, Dimitris P

    2009-06-01

    The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2'-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2'-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.

  10. Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase

    PubMed Central

    2004-01-01

    Isoprenoid biosynthesis via the methylerythritol phosphate pathway is a target against pathogenic bacteria and the malaria parasite Plasmodium falciparum. 4-(Hydroxyamino)-4-oxobutylphosphonic acid and 4-[hydroxy(methyl)amino]-4-oxobutyl phosphonic acid, two novel inhibitors of DXR (1-deoxy-D-xylulose 5-phosphate reducto-isomerase), the second enzyme of the pathway, have been synthesized and compared with fosmidomycin, the best known inhibitor of this enzyme. The latter phosphonohydroxamic acid showed a high inhibitory activity towards DXR, much like fosmidomycin, as well as significant antibacterial activity against Escherichia coli in tests on Petri dishes. PMID:15473867

  11. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens.

    PubMed

    D'Alvise, Paul W; Phippen, Christopher B W; Nielsen, Kristian F; Gram, Lone

    2015-10-30

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe(3+) coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [Fe(III)(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens

    PubMed Central

    D'Alvise, Paul W.; Phippen, Christopher B. W.; Nielsen, Kristian F.

    2015-01-01

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography–high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe3+ coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [FeIII(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound. PMID:26519388

  13. Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus pentosaceus 4I1 Isolated from Freshwater Fish Zacco koreanus

    PubMed Central

    Bajpai, Vivek K.; Han, Jeong-Ho; Rather, Irfan A.; Park, Chanseo; Lim, Jeongheui; Paek, Woon Kee; Lee, Jong Sung; Yoon, Jung-In; Park, Yong-Ha

    2016-01-01

    This study was undertaken to characterize a lactic acid bacterium 4I1, isolated from the freshwater fish, Zacco koreanus. Morphological, biochemical, and molecular characterization of 4I1 revealed it to be Pediococcus pentosaceus 4I1. The cell free supernatant (CFS) of P. pentosaceus 4I1 exhibited significant (p < 0.05) antibacterial effects (inhibition zone diameters: 16.5–20.4 mm) against tested foodborne pathogenic bacteria with MIC and MBC values of 250–500 and 500–1,000 μg/mL, respectively. Further, antibacterial action of CFS of P. pentosaceus 4I1 against two selected bacteria Staphylococcus aureus KCTC-1621 and Escherichia coli O157:H7 was determined in subsequent assays. The CFS of P. pentosaceus 4I1 revealed its antibacterial action against S. aureus KCTC-1621 and E. coli O157:H7 on membrane integrity as confirmed by a reduction in cell viability, increased potassium ion release (900 and 800 mmol/L), reduced absorption at 260-nm (3.99 and 3.77 OD), and increased relative electrical conductivity (9.9 and 9.7%), respectively. Gas chromatography–mass spectrometry (GC–MS) analysis of the CFS of P. pentosaceus 4I1 resulted in the identification of seven major compounds, which included amino acids, fatty acids and organic acids. Scanning electron microscopic-based morphological analysis further confirmed the antibacterial effect of CFS of P. pentosaceus 4I1 against S. aureus KCTC-1621 and E. coli O157:H7. In addition, the CFS of P. Pentosaceus 4I1 displayed potent inhibitory effects on biofilms formation by S. aureus KCTC-1621 and E. coli O157:H7. The study indicates the CFS of P. pentosaceus 4I1 offers an alternative means of controlling foodborne pathogens. PMID:28066360

  14. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  15. Inhibition of antibacterial activity of himastatin, a new antitumor antibiotic from Streptomyces hygroscopicus, by fatty acid sodium salts.

    PubMed Central

    Mamber, S W; Brookshire, K W; Dean, B J; Firestone, R A; Leet, J E; Matson, J A; Forenza, S

    1994-01-01

    Himastatin, a cyclohexadepsipeptide antibiotic, had in vivo antitumor activity against localized P388 leukemia and B16 melanoma but had no distal site antitumor activity. An in vitro Bacillus subtilis well-agar diffusion assay was employed to test the hypothesis that himastatin was enzymatically inactivated. The activity of himastatin against B. subtilis was inhibited when himastatin was mixed with mouse liver S9 fraction and microsomes. However, subsequent investigations demonstrated that the markedly decreased antibacterial activity was not enzymatic in nature but was related to the presence of certain fatty acid salts. Saturated fatty acid sodium salts with a carbon chain number of 8 or more reduced the antimicrobial activity of himastatin 50 to 100 times. If antibiotics such as ampicillin, bacitracin, chloramphenicol, and tunicamycin were used in place of himastatin, no meaningful reduction in antibacterial activity occurred. However, the antibacterial activity of the membrane-active peptide antibiotic polymyxin B, but not that of polymyxin E (colistin), was reduced in a manner similar to that of himastatin. Importantly, the activity of himastatin against HCT-116 colon adenocarcinoma cells in soft agar was markedly reduced in the presence of sodium palmitate as the reference fatty acid salt. The data indicate that himastatin may be trapped in micelles in vitro. It may be speculated that the lack of distal site antitumor activity resulted from similar complex formation between himastatin and lipids in vivo. The results also suggest that the cancer cytotoxic and antimicrobial effects of himastatin may result from interactions with the cell membrane. PMID:7872760

  16. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  17. The introduction of antibacterial drug pipemidic acid into the POM field: Syntheses, characterization and antitumor activity

    NASA Astrophysics Data System (ADS)

    Sha, Jing-Quan; Li, Xin; Zhou, Ying-Hua; Yan, Peng-Fei; Li, Guang-Ming; Wang, Cheng

    2011-11-01

    Two new compounds based on polyoxometalates (POMs) and the quinolone antibacterial drug pipemidic acid (HPPA), {[Ni(PPA) 2]H 4[SiW 12O 40]}·HPPA·3H 2O ( 1), and {[Zn(PPA) 2] 2H 4[SiW 12O 40]}·3H 2O ( 2), have been synthesized under hydrothermal conditions and structurally characterized by routine technique. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by Keggin clusters grafted by binuclear nickel clusters, isolated HPPA and water molecules, while compound 2 consists of Keggin clusters grafted by binuclear zinc clusters and water molecules. Due to the selection of different transition metal (TM) ions, compounds 1 and 2 exhibit different structures and antitumor activities. Compound 1 possesses 0D structure and shows no antitumor activities. However, compound 2 possesses 1D structure and exhibits higher antitumor activities than its parent compound. The results show that introduction of different TM-PPA moieties onto the polyoxoanion surface can affect not only the final structures but also their antitumor activities.

  18. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections.

    PubMed

    Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja

    2011-02-01

    To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments, on the effectiveness of antimicrobial treatment of cotton textiles. Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional drying and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave than in conventional drying. Antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering. The current protocols and initiatives in infection control could be improved

  19. Antibacterial activities of novel nicotinic acid hydrazides and their conversion into N-acetyl-1,3,4-oxadiazoles.

    PubMed

    Morjan, Rami Y; Mkadmh, Ahmed M; Beadham, Ian; Elmanama, Abdelrauof A; Mattar, Mohammed R; Raftery, James; Pritchard, Robin G; Awadallah, Adel M; Gardiner, John M

    2014-12-15

    Synthesis of a series of novel N-acylhydrazones of nicotinic acid hydrazides 3a-j via condensation of nicotinic acid hydrazide 1 with the corresponding aldehydes and ketones is described. The series 3a-j was evaluated for in vitro antibacterial activity against two gram negative (Pseudomonas aeruginosa and Klebsiella pneumoniae) and two gram positive (Streptococcus pneumoniae and Staphylococcus aureus) bacteria. The zone of inhibition was measured using the disk diffusion method, and in vitro minimum inhibitory concentration indicating that compounds 3a and 3e were effective against P. aeruginosa with MICs of 0.220 and 0.195 μg respectively.

  20. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka

    PubMed Central

    Ratnaweera, Pamoda B.; Williams, David E.; de Silva, E. Dilip; Wijesundera, Ravi L.C.; Dalisay, Doralyn S.; Andersen, Raymond J.

    2014-01-01

    An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 μg mL−1] and methicillin-resistant Staphylococcus aureus (MIC, 4 μg mL−1). PMID:24772371

  1. Novel L-amino acid oxidase with antibacterial activity against methicillin-resistant Staphylococcus aureus isolated from epidermal mucus of the flounder Platichthys stellatus.

    PubMed

    Kasai, Kosuke; Ishikawa, Takashi; Komata, Takafumi; Fukuchi, Kaori; Chiba, Mitsuru; Nozaka, Hiroyuki; Nakamura, Toshiya; Sato, Tatsusuke; Miura, Tomisato

    2010-01-01

    Fish produce mucus substances as a defensive outer barrier against environmental xenobiotics and predators. Recently, we found a bioactive protein in the mucus layer of the flounder Platichthys stellatus, which showed antibacterial activity against Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant S. aureus. In this study, we isolated and identified the antibacterial protein from the mucus components of P. stellatus using a series of column chromatography steps. We then performed gel electrophoresis and cDNA cloning to characterize the protein. The antibacterial protein in the mucus had a molecular mass of approximately 52 kDa with an isoelectric point of 5.3, and cDNA sequencing showed that it corresponded completely with the peptide sequence of antibacterial protein from the gill. A BLAST search suggested that the cDNA encoded an antibacterial protein sharing identity with a number of L-amino acid oxidases (LAAOs) and possessing several conserved motifs found in flavoproteins. RT-PCR using a specific primer, and immunohistochemical analysis with anti-LAAO IgG, demonstrated tissue-specific expression and localization in the gill. Moreover, the anti-LAAO IgG was able to neutralize the antibacterial activity of the protein against methicillin-resistant S. aureus. Thus, we demonstrated that this antibacterial protein, identified from P. stellatus-derived epidermal mucus, is a novel LAAO-like protein with antibacterial activity, similar to snake LAAOs.

  2. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria.

    PubMed

    Zhao, Lei; Zhang, Heyan; Hao, Tianyang; Li, Siran

    2015-11-15

    The objective of this study was to evaluate the antibacterial activities of sugar fatty acid esters, with different fatty acid and saccharide moieties, against five food-related bacteria including Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Sucrose monocaprate showed the strongest antibacterial activity against all tested bacteria, especially Gram-positive bacteria. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 2.5 and 10 mM, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria were 10 mM. Time-kill assay also showed that sucrose monocaprate significantly inhibit the growth of tested bacteria. The permeability of the cell membrane and intracellular proteins were both changed by sucrose monocaprate according to cell constituents' leakage, SDS-PAGE and scanning electron microscope assays. It is suggested that sucrose monocaprate, with both emulsifying and antibacterial activities, have a potential to serve as a safe multifunctional food additive in food industries.

  3. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  4. [Antibacterial activity for clinical isolates from pediatric patients of clavulanic acid/amoxicillin (1: 14) -outcomes of special drug use investigation on antibacterial activity (annual changes)].

    PubMed

    Ishida, Atsuko; Hasegawa, Naomi; Okano, Hideyuki; Hara, Terufumi; Yoshida, Pascal

    2013-06-01

    As a special drug use investigation, we monitored and assessed trends in antibacterial activity of clavulanic acid/amoxicillin (1:14) (hereafter, "CVA/AMPC (1:14)") and other antimicrobial agents for clinical isolates from pediatric patients with otitis media or respiratory, skin, and urinary tract infections. Against Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis isolated and identified from otorrhea, epipharynx and rhinorrhea of pediatric patients with otitis media, the MIC90s of CVA/AMPC (1:14) in five years between 2006-2010 were 1 microg/mL for S. pneumoniae and 8 microg/mL for H. influenzae and 0.25-0.5microg/mL for M catarrhalis. The changes of MIC90s of CVA/AMPC (1:14) for penicillin-resistant S. pneumoniae (PRSP) and beta-lactamase non-producing H. influenzae were two times, and no decrease in drug susceptibility was found in the period of the present investigation. In addition, the MIC changes of other antimicrobial agents for these three organisms were approximately two to four times as well. Against organisms isolated and identified from pus, sputum, pharynx, skin and urine of pediatric patients with respiratory, skin, and urinary tract infections, the MIC90s of CVA/AMPC (1:14) in four years between 2008-2011 were 1 microg/mL for S. pneumoniae, < or =0.06microg/mL for penicillin susceptible S. pneumoniae (PSSP) without any change, 0.5-1 microg/mL for penicillin intermediate resistant S. pneumoniae (PISP) with a twofold change and 1 microg/mL for PRSP with no change. The MIC90s of CVA/AMPC (1:14) were 2-8 microg/mL for S. aureus with a fourfold change, 2 microg/mL for methicillin-sensitive S. aureus without any change, 4-8 microg/mL for H. influenzae with a twofold change. Against beta-lactamase non-producing H. influenzae, MIC90s of CVA/AMPC (1:14) were 1 microg/mL for beta-lactamase negative ampicillin susceptible (BLNAS), 8 microg/mL for beta-lactamase negative ampicillin resistant (BLNAR), showing no change. Neither

  5. Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid.

    PubMed

    Del Hoyo-Gallego, Sara; Pérez-Álvarez, Leyre; Gómez-Galván, Flor; Lizundia, Erlantz; Kuritka, Ivo; Sedlarik, Vladimir; Laza, Jose Manuel; Vila-Vilela, Jose Luis

    2016-06-05

    Polyelectrolytic multilayers (PEMs) with enhanced antibacterial properties were built up onto commercial poly(ethylene terephthalate) (PET) films based on the layer by layer assembling of bacterial contact killing chitosan and bacterial repelling highly hydrated hyaluronic acid. The optimization of the aminolysis modification reaction of PET was carried out by the study of the mechanical properties and the surface characterization of the modified polymers. The layer by layer assembly was successfully monitored by TEM microscopy, surface zeta-potential, contact angle measurements and, after labeling with fluorescein isothiocyanate (FTIC) by absorption spectroscopy and confocal fluorescent microscopy. Beside, the stability of the PEMs was studied at physiological conditions in absence and in the presence of lysozyme and hyaluronidase enzymes. Antibacterial properties of the obtained PEMs against Escherichia coli were compared with original commercial PET. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Elucidation on enhanced application of synthesised kojic acid immobilised magnetic and chitosan tri-polyphosphate nanoparticles as antibacterial agents.

    PubMed

    Chaudhary, Jignesh; Lakhawat, Sudarshan; Pathak, Amrendra Nath

    2015-12-01

    Kojic acid (KA) is a secondary metabolite which is secreted by several aspergillus species. It is a multi-functional skeleton from which many derivatives can be synthesised and applied in various areas of biotechnology. KA grafting on synthesised magnetic nanoparticles (MNPs) and chitosan tri-polyphosphate (chitosan-TPP) nanoparticles was successfully done and characterised by Fourier transformation infrared spectroscopy. It was observed that amino propyl triethoxy silane-coated MNPs and chitosan-TPP nanoparticles enhanced the antibacterial activity of KA against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa). The organic constitution and significant antibacterial activity of KA-chitosan-TPP nanoparticles can be applicable in the field of medical biotechnology.

  7. In Vitro Antibacterial Activity of Nano Silver Ion Substituted Poly Acrylic Acid Films on Titanium by Plasma Polymerization.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kook, Joong-Ki; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    Antibacterial activity of oral pathogens such as Streptococcus mutans, Streptococcus sobrinus when silver ion immobilized on commercially pure (CP) titanium (Ti) surface was investigated in this study. Plasma-polymerized acrylic acid to have carboxyl group was deposited on CP-Ti surface and then ion-exchanged with Ag+ ions in 0.1 N AgNO3. In anti-adherent experiment, antibacterial activity was tested using broth culture methods. The biofilm formation assay was performed using semi-defined biofilm medium with sucrose. The silver coated CP-Ti completely inhibited the growth of S. mutans and S. sobrinus. In addition, the biofilm formation was significantly inhibited in silver-coated CP-Ti group.

  8. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents.

    PubMed

    Huang, Li-Rong; Hao, Xiao-Jiang; Li, Qi-Ji; Wang, Dao-Ping; Zhang, Jian-Xin; Luo, Heng; Yang, Xiao-Sheng

    2016-04-22

    The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay.

  9. Synthesis and antibacterial activity of some new non-proteinogenic amino acids containing thiazole residues.

    PubMed

    Stanchev, M; Pajpanova, T; Golovinsky, E

    2000-01-01

    Some new thioamides and thiazoles have been synthesized using canavanine, S-cysteine, homo-S-cysteinesulfonamides and their N-omega aminoethylated derivatives as adducts in order to investigate the structure-antimicrobial activity relationships. The compounds showed substantial antibacterial activity in vitro against various gram-positive (Staphylococcus aureus, Bacillus cereus etc.) and gram-negative (Escherichia coli, Proteus vulgaris etc.) bacteria. These findings indicate that the presence of the thiazole residue is an essential factor for the antibacterial effect.

  10. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    PubMed

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-01-20

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  11. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains.

  12. Chemical conjugation of 2-hexadecynoic acid to C5-Curcumin enhances its antibacterial activity against multi-drug resistant bacteria

    PubMed Central

    Sanabria-Ríos, David J.; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W.; Carballeira, Néstor M.

    2015-01-01

    The first total synthesis of a C5-Curcumin-2-Hexadecynoic Acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13 % overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-Curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50 = 100.2 ± 13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. PMID:26483137

  13. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss.

    PubMed

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs).

  14. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    PubMed

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery.

  15. Screening of antibacterial activity of lactic acid bacteria against different pathogens found in vacuum-packaged meat products.

    PubMed

    Awaisheh, Saddam S; Ibrahim, Salam A

    2009-11-01

    The objective of this work was to screen the antibacterial activity of lactic acid bacteria (LAB) isolated from different sources against different pathogens found in ready-to-eat vacuum-packaged meat products (RTE-VPMP). LAB were isolated from human, RTE-VPMP, fermented vegetables, and dairy samples. These isolates were assessed for their antibacterial activity against Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using spot on lawn technique. Six LAB isolates-three from a human source, two from a RTE-VPMP source, and one from a fermented vegetable source-were found to be effective against all pathogenic strains. Antibacterial activities of cell-free neutral supernatant broths of these isolates were assessed against the different pathogenic strains to confirm bacteriocin production. All six isolates were effective against all pathogenic strains. LAB isolates from the human source had the highest antibacterial activity and were significantly more effective than other LAB isolates, with the inhibition zone ranging from 14 to 22 mm. Inhibition zones of RTE-VPMP LAB isolates were lower than those of human origin (inhibition zone range, 11-17 mm). The lowest activities were for the fermented vegetable isolate, for which inhibition zones ranged from 11 to 15 mm. The three isolates of human origin were identified as L. acidophilus, L. casei, and L. reuteri; the two isolates from RTE-VPMP source were both L. sake; and the one isolate of fermented vegetable origin was L. plantarum. Our results showed that nonmeat product-sourced LAB were effective against several foodborne pathogens, which suggests that they could be used as natural biopreservatives in many RTE-VPMP produced in Jordan.

  16. Antibacterial Optimization of 4-Aminothiazolyl Analogues of the Natural Product GE2270 A: Identification of the Cycloalkylcarboxylic Acids

    SciTech Connect

    LaMarche, Matthew J.; Leeds, Jennifer A.; Amaral, Kerri; Brewer, Jason T.; Bushell, Simon M.; Dewhurst, Janetta M.; Dzink-Fox, JoAnne; Gangl, Eric; Goldovitz, Julie; Jain, Akash; Mullin, Steve; Neckermann, Georg; Osborne, Colin; Palestrant, Deborah; Patane, Michael A.; Rann, Elin M.; Sachdeva, Meena; Shao, Jian; Tiamfook, Stacey; Whitehead, Lewis; Yu, Donghui

    2012-11-09

    4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for their activity against Gram positive bacterial infections. Optimization efforts focused on improving the physicochemical properties (e.g., aqueous solubility and chemical stability) of the 4-aminothiazolyl natural product template while improving the in vitro and in vivo antibacterial activity. Structure-activity relationships were defined, and the solubility and efficacy profiles were improved over those of previous analogues and 1. These studies identified novel, potent, soluble, and efficacious elongation factor-Tu inhibitors, which bear cycloalkylcarboxylic acid side chains, and culminated in the selection of development candidates amide 48 and urethane 58.

  17. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships.

    PubMed

    Batovska, Daniela I; Todorova, Iva T; Tsvetkova, Iva V; Najdenski, Hristo M

    2009-01-01

    The antibacterial activity of the medium chain fatty acids and their 1-monoglycerides was evaluated towards several Gram-positive strains belonging to the genera Staphylococcus, Corynebacterium, Bacillus, Listeria and Streptococcus. The 1-monoglycerides were more active than the fatty acids with monolaurin being the most active compound. Interesting effects were observed when the streptococcal strain Streptococcus pyogenes was used as a test microorganism. First, blocking of the hydroxyl groups of the glycerol moiety of monolaurin led to a compound with remarkable antibacterial activity (MIC, 3.9 microg/ml). Secondly, synergistic relationships were observed between monolaurin and monocaprin as well as between monolaurin and the poorly active lauric acid when their two component mixtures were examined. The mixtures in which one of the components was 2-fold more predominant than the other one were much more active than the pure components taken individually. Moreover, the presence of the components in ratio 1:1 was disadvantageous. Synergistic relationships were also found between monolaurin and monomyristin towards Staphylococcus aureus 209 when monomyristin was in the same quantity as monolaurin or in shortage.

  18. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  19. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods.

    PubMed

    Balakrishnan, Bijinu; Prasad, Binod; Rai, Amit Kumar; Velappan, Suresh Puthanveetil; Subbanna, Mahendrakar Namadev; Narayan, Bhaskar

    2011-04-01

    Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant activities with respect to scavenging different free radicals and antibacterial properties against nine different pathogens. Fermentation and acid hydrolysates scavenged 83 and 75.3% of 2,2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals, respectively, at a protein concentration of 0.25 mg. Further, fermentation hydrolysate showed higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of 59% as compared to 56% scavenging by acid hydrolysate at a protein concentration of 5 mg. Acid hydrolysate exhibited lesser (82.3%) peroxy radical scavenging compared to hydrolysate from fermentation (88.2%) at a protein concentration of 10 mg. However, acid hydrolysate exhibited higher (89.2%) superoxide anion scavenging while its fermentation counterpart showed lower activity (85.4%) at 2.5 mg hydrolysate protein. Well as superoxide anion scavenging properties. All the in vitro antioxidant properties exhibited dose dependency. Fermentation hydrolysate exhibited maximum antagonistic activity against Salmonella typhi FB231, from among host of pathogens evaluated. Both the hydrolysates have potential to be ingredients in animal feeds and can help reduce oxidative stress in the animals.

  20. [Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus].

    PubMed

    Herrera, Mónica Tatiana; Artunduaga, Jhon Jhamilton; Ortiz, Claudia Cristina; Torres, Rodrigo Gonzalo

    2017-01-24

    Polymeric nanoparticles are promising nanotechnology tools to fight pathogenic bacteria resistant to conventional antibiotics. To synthesize polylactic acid nanoparticles loaded with ofloxacin and vancomycin, and to determine their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). We synthesized ofloxacin or vancomycin loaded polylactic acid nanoparticles by the emulsification-solvent evaporation method, and characterized them by dynamic light scattering, laser Doppler electrophoresis and scanning electron microscopy. We evaluated in vitro antibacterial activity of ofloxacin- and vancomycin-loaded polylactic acid nanoparticles against E. coli O157:H7 and MRSA using the broth microdilution method. Ofloxacin- and vancomycin-loaded polylactic acid nanoparticles registered a positive surface charge density of 21 mV and an average size lower than 379 nm. In vitro minimum inhibitory concentration (MIC50) of ofloxacin-polylactic acid nanoparticles was 0,001 μg/ml against E. coli O157:H7, i.e., 40 times lower than the free ofloxacin (MIC50: 0.04 μg/ml), indicating enhanced antibacterial activity while the in vitro MIC50 of vancomycin-polylactic acid nanoparticles was 0,005 μg/ml against MRSA, i.e., 100 times lower than that of free vancomycin (MIC50: 0.5 μg/ml). Polylactic acid nanoparticles loaded with ofloxacin and vancomycin showed a higher antibacterial activity. Polymeric nanoparticles are a possible alternative for drug design against pathogenic bacterial strains of public health interest.

  1. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections

    PubMed Central

    Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja

    2011-01-01

    Aim To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments on the effectiveness of antimicrobial treatment of cotton textiles. Method Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to the ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Results Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave drying/curing than in those subjected to conventional drying/curing. As expected, antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. Conclusion CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering

  2. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  3. Synergistic antitumor efficacy of antibacterial helvolic acid from Cordyceps taii and cyclophosphamide in a tumor mouse model.

    PubMed

    Xiao, Jian-Hui; Zhang, Yao; Liang, Gui-You; Liu, Ru-Ming; Li, Xiao-Gang; Zhang, Ling-Tao; Chen, Dai-Xiong; Zhong, Jian-Jiang

    2017-01-01

    The antibacterial agent helvolic acid, which was isolated from the active antitumor fraction of Cordyceps taii, showed potent cytotoxicity against different human cancer cells. In the present study, the in vivo antitumor effect of helvolic acid was investigated in murine sarcoma S180 tumor-bearing mice. Doses of 10 and 20 mg/kg/day helvolic acid did not exert significant antitumor activity. Interestingly, co-administration of 10 mg/kg/day helvolic acid and 20 mg/kg/day cyclophosphamide (CTX) - a well-known chemotherapy drug - showed promising antitumor activity with a growth inhibitory rate of 70.90%, which was much higher than that of CTX alone (19.5%). Furthermore, the combination markedly prolonged the survival of tumor-bearing mice. In addition, helvolic acid enhanced the immune organ index. The protein expression levels of β-catenin, cyclin D1, and proliferating cell nuclear antigen were significantly suppressed in mice treated with 20 mg/kg/day helvolic acid and in those receiving combination therapy. Taken together, these results indicated that helvolic acid in combination with CTX showed potent in vivo synergistic antitumor efficacy, and its mechanism of action may involve the Wnt/ β-catenin signaling pathway.

  4. Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds.

    PubMed

    Heinisch, Lothar; Wittmann, Steffen; Stoiber, Thomas; Berg, Albrecht; Ankel-Fuchs, Dorothe; Möllmann, Ute

    2002-07-04

    New acylated bis-catecholates and 1,3-benzoxazine-2,4-dione derivatives based on secondary diamino acids (N-(aminoalkyl)glycines, N-aminopropyl-alanine, and N-aminopropyl-4-aminovaleric acid), on N-(aminoalkyl)aminomethyl benzoic acids, on N-(aminoalkyl)aminomethyl phenoxyacetic acids, or on 3,5-diaminobenzoic acid were synthesized as artificial siderophores. The corresponding diamino acids were obtained from the diamines and oxocarboxylic acids by catalytic hydrogenation. The acylated bis-catecholates and 1,3-benzoxazine-2,4-diones were coupled with ampicillin or amoxicillin to new siderophore aminoacylpenicillin conjugates. These conjugates exhibited very strong antibacterial activity in vitro against Gram-negative bacterial pathogens including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Escherichia coli, Klebsiella pneumoniae, and Serratia marcescens. The ampicillin derivative 7b (HKI 9924154) and the corresponding amoxicillin derivative 8 (HKI 9924155) represent the most active compounds. The conjugates can use bacterial iron siderophore uptake routes to penetrate the Gram-negative outer membrane permeability barrier. This was demonstrated by assays with mutants deficient in components of the iron transport systems. New siderophore penicillin V conjugates with the siderophore component attached to the phenyl ring of penicillin V are inactive against these Gram-negative bacteria.

  5. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss

    PubMed Central

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    Objective: The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Materials and Methods: Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. Results: GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Conclusion: Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs). PMID:27462560

  7. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  8. Antibacterial effects of Brazilian and Bulgarian propolis and synergistic effects with antibiotics acting on the bacterial DNA and folic acid.

    PubMed

    Orsi, R O; Fernandes, A; Bankova, V; Sforcin, J M

    2012-01-01

    Propolis is a honeybee product that has been used since ancient times because of its therapeutic effects. It can be used in the development of alternative therapies for the treatment of many diseases, and because propolis shows antibacterial action, this work was carried out in order to investigate a possible synergism between propolis and antibiotics acting on DNA (ciprofloxacin and norfloxacin) and on the metabolism (cotrimoxazole) against Salmonella typhi. Propolis samples collected in Brazil and Bulgaria were compared in these assays, and the synergism was investigated by using ½ and ¼ of the minimal inhibitory concentration for propolis and antibiotics, evaluating the number of viable cells according to the incubation time. Brazilian and Bulgarian propolis showed antibacterial activity, but no synergistic effects with the three tested antibiotics were seen. Previous works by our laboratory have revealed that propolis has synergistic effects with antibiotics, acting on the bacterial wall and ribosome, but it does not seem to interact with antibiotics acting on DNA or folic acid, and only a bacteriostatic action was seen in these assay conditions.

  9. The antibacterial activity of chloroxylenol in combination with ethylenediaminetetra-acetic acid.

    PubMed Central

    Dankert, J.; Schut, I. K.

    1976-01-01

    The bactericidal activity of RBA 777 has been found to vary with both the cultural and environmental test conditions against Pseudomonas aeruginosa and to a lesser extent against Staphylococcus aureus. These variations may explain certain anomalies in earlier work regarding the activity of chloroxylenol-based products. The addition of EDTA to RBA 777 has brought about an improvement in the performance against P. aeruginosa and this activity is confirmed in vivo. Previous reports have already illustrated this potential and the evaluations of the new antibacterial agent DA 136 confirms and extends these results to its performance under adverse conditions, often associated with the hospital environment. PMID:812899

  10. The antibacterial activity of chloroxylenol in combination with ethylenediaminetetra-acetic acid.

    PubMed

    Dankert, J; Schut, I K

    1976-02-01

    The bactericidal activity of RBA 777 has been found to vary with both the cultural and environmental test conditions against Pseudomonas aeruginosa and to a lesser extent against Staphylococcus aureus. These variations may explain certain anomalies in earlier work regarding the activity of chloroxylenol-based products. The addition of EDTA to RBA 777 has brought about an improvement in the performance against P. aeruginosa and this activity is confirmed in vivo. Previous reports have already illustrated this potential and the evaluations of the new antibacterial agent DA 136 confirms and extends these results to its performance under adverse conditions, often associated with the hospital environment.

  11. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR ((1)H, (13)C, and (29)Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands.

  12. Antibacterial evaluation of structurally amphipathic, membrane active small cationic peptidomimetics: synthesized by incorporating 3-amino benzoic acid as peptidomimetic element.

    PubMed

    Lohan, Sandeep; Cameotra, Swaranjit Singh; Bisht, Gopal Singh

    2014-08-18

    A new series of small cationic peptidomimetics were synthesized by incorporating 3-amino benzoic acid (3-ABA) in a small structural framework with the objective to mimic essential properties of natural antimicrobial peptides (AMPs). The new design approach resulted into improvement of activity and selectivity in comparison to linear peptides and allowed us to better understand the influence of structural amphipathicity on biological activity. Lead peptidomimetics displayed antibacterial activities against resistant pathogens (MRSA & MRSE). A calcein dye leakage experiment revealed a membranolytic effect of 4g and 4l which was further confirmed by fluorescence microscopy. In addition, proteolytic stability and no sign of resistance development against Staphylococcus aureus and MRSA demonstrate their potential for further development as novel antimicrobial therapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A.

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H, 13C, and 29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands. PMID:23983671

  14. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  15. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    NASA Astrophysics Data System (ADS)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  16. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  17. Nucleic acid interaction and antibacterial behaviours of a ternary palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.

    2012-02-01

    The bidentate ligands and Pd(II) complexes have been synthesized and characterized using elemental analysis (C, H, N), 1H NMR, 13C NMR, electronic spectra, FT-IR and FAB mass spectroscopy. The binding of palladium complexes with calf thymus DNA (CT DNA) has been explored using absorption titration, DNA melting temperature and viscosity measurements. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results suggest that complexes can bind to DNA by intercalative modes and exhibit nuclease activities in which supercoil form is converted to open circular form. The antibacterial activity of ligands and complexes has been performed against three Gram(-ve) and two Gram(+ve) microorganisms and the study indicates that all the complexes show better microbial inhibition activity than ligands and palladium salt.

  18. Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas aeruginosa Quorum Sensing Signals

    PubMed Central

    Lowery, Colin A.; Park, Junguk; Gloeckner, Christian; Meijler, Michael M.; Mueller, Ryan S.; Boshoff, Helena I.; Ulrich, Ricky L.; Barry, Clifton E.; Bartlett, Douglas H.; Kravchenko, Vladimir V.; Kaufmann, Gunnar F.; Janda, Kim D.

    2009-01-01

    In Nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the Gram-negative bacterium Pseudomonas aeruginosa, an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C12-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C12-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in Nature as well as significant human pathogens. The mechanism of action of C12-TA was also elucidated and C12-TA was found to dissipate both the membrane potential and pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C12-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species, and also to defend against both host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C12-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics. PMID:19807189

  19. Defining the mode of action of tetramic acid antibacterials derived from Pseudomonas aeruginosa quorum sensing signals.

    PubMed

    Lowery, Colin A; Park, Junguk; Gloeckner, Christian; Meijler, Michael M; Mueller, Ryan S; Boshoff, Helena I; Ulrich, Ricky L; Barry, Clifton E; Bartlett, Douglas H; Kravchenko, Vladimir V; Kaufmann, Gunnar F; Janda, Kim D

    2009-10-14

    In nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the gram-negative bacterium Pseudomonas aeruginosa , an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C(12)-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C(12)-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in nature as well as significant human pathogens. The mechanism of action of C(12)-TA was also elucidated, and C(12)-TA was found to dissipate both the membrane potential and the pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C(12)-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C(12)-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species and also to defend against host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C(12)-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics.

  20. Tannic acid NPs - synthesis and immobilization onto a solid surface in a one-step process and their antibacterial and anti-inflammatory properties.

    PubMed

    Perelshtein, Ilana; Ruderman, Elena; Francesko, Antonio; Fernandes, Margarida M; Tzanov, Tzanko; Gedanken, Aharon

    2014-11-01

    Tannic acid nanoparticles were synthesized from an aqueous solution without the use of stabilizers via a sonochemical process. In order to avoid the dissolution of the formed nanoparticles, the sonochemical reaction was performed in the presence of a cotton fabric: following their formation, the tannic acid nanoparticles were embedded into the cotton substrate in a one-step process. The bioactive properties of the tannic acid coated surface were examined towards the inhibition of myeloperoxidase and collagenase, two major enzymes related with inflammatory processes. In addition, the antibacterial activity of the tannic acid nanoparticles coated textiles was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa.

  1. Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model

    PubMed Central

    Noh, Hye-Ji; Koh, Hong Bum; Kim, Hee-Kyoung; Cho, Hyang Hyun

    2017-01-01

    BACKGROUND/OBJECTIVES Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-1β and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention. PMID:28194260

  2. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    PubMed

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fermentation of sarshir (kaymak) by lactic acid bacteria: antibacterial activity, antioxidant properties, lipid and protein oxidation and fatty acid profile.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Kontominas, Michael G; Eş, Ismail; Sant'Ana, Anderson S; Martinez, Rafael R; Drider, Djamel

    2017-10-01

    The antioxidant and antibacterial activities of fermented sarshir (traditional dairy food), with three probiotic Lactobacillus plantarum strains (LP3, AF1, and LU5), were investigated. The oxidative stability and the lipid profile of non-fermented and fermented sarshir were compared, in addition to radical scavenging activity, as well as peroxide, anisidine and carbonyl values (PV, AnV and CV, respectively). The strong antibacterial activity of fermented sarshir against common pathogenic bacteria, including Gram-negative Escherichia coli O157: H7 ATCC 35150 and Pseudomonas aeruginosa ATCC 27853, as well as Gram-positive Bacillus cereus ATCC 10876 and Staphylococcus aureus ATCC 25923, was established. Among the strains examined, L. plantarum LP3 exhibited the highest radical scavenging activity (53.1 ± 1.8%) and lowest PV (3.0 meq kg(-1) ), AnV (1.31 ± 0.06) and CV (1.4 ± 0.08). The pH of sarshir decreased from 6.2 ± 0 to 3.5 ± 0.1 during 14 h of fermentation. Incorporated bacterial cells exhibited notable viability during 10 days of cold storage (4 °C). The fermentation of sarshir by L. plantarum strains, especially LP3, resulted in beneficial changes in radical scavenging activity, as well as PV, AnV and carbonyl values, in addition to a broad spectrum of inhibitory activity against strains of P. aeruginosa, E. coli O157:H7, B. cereus and S. aureus. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid.

    PubMed

    Rasmussen, Bastian Barker; Grotkjær, Torben; D'Alvise, Paul W; Yin, Guangliang; Zhang, Faxing; Bunk, Boyke; Spröer, Cathrin; Bentzon-Tilia, Mikkel; Gram, Lone

    2016-08-01

    Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we

  5. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid

    PubMed Central

    Grotkjær, Torben; D'Alvise, Paul W.; Yin, Guangliang; Zhang, Faxing; Bunk, Boyke; Spröer, Cathrin

    2016-01-01

    ABSTRACT Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. IMPORTANCE It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic

  6. Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids.

    PubMed

    Yang, Lin; Kuang, Huijuan; Liu, Yingxia; Xu, Hengyi; Aguilar, Zoraida P; Xiong, Yonghua; Wei, Hua

    2016-11-01

    Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn(2+) which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn(2+) played a major role in the microbial toxicity of ultra-fine-ZnO.

  7. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  8. Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications.

    PubMed

    Karahaliloğlu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; Denkbaş, Emir B; Webster, Thomas J

    2014-12-01

    Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to ∼40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications.

  9. Is Bacterial Fatty Acid Synthesis a Valid Target for Antibacterial Drug Discovery?

    PubMed Central

    Parsons, Joshua B.; Rock, Charles O.

    2011-01-01

    The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there isn’t a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements. PMID:21862391

  10. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?

    PubMed

    Parsons, Joshua B; Rock, Charles O

    2011-10-01

    The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.

  11. Solanioic Acid, an Antibacterial Degraded Steroid Produced in Culture by the Fungus Rhizoctonia solani Isolated from Tubers of the Medicinal Plant Cyperus rotundus.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; Patrick, Brian O; de Silva, E Dilip; Andersen, Raymond J

    2015-05-01

    Solanioic acid (1), a degraded and rearranged steroid that exhibits in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), has been isolated from laboratory cultures of the fungus Rhizoctonia solani obtained from tubers of the plant Cyperus rotundus collected in Sri Lanka. The structure of solanioic acid (1) was elucidated by detailed analysis of NMR data, a single crystal X-ray diffraction analysis of a reduction product 2, and Mosher ester analysis on a derivative of the natural product. Solanioic acid (1) has an unprecedented carbon skeleton.

  12. Re-engineering nalidixic acid's chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens.

    PubMed

    Peraman, Ramalingam; Varma, Raghu Veer; Reddy, Y Padmanabha

    2015-10-01

    Occurrence of antibacterial and antimycobacterial resistance stimulated a thrust to discover new drugs for infectious diseases. Herein we report the work on re-engineering nalidixic acid's chemical scaffold for newer leads. Stepwise clubbing of quinoxaline, 1,2,4-triazole/1,3,4-oxadiazole with nalidixic acid yielded better compounds. Compounds were screened against ciprofloxacin resistant bacteria and Mycobacterium tuberculosis H37Rv species. Results were obtained as minimum inhibitory concentration, it was evident that molecule with quinoxaline linked azide as side chain served as antitubercular lead (<6.25 μg/ml) whilst molecule with oxadiazole or triazole linked quinoxaline side chain served as anti-bacterial lead. Few compounds were significantly active against Escherichia coli and Proteus vulgaris with MIC less than 0.06 μg/ml and relatively potent than ciprofloxacin. No true compound was potentially active against Salmonella species as compared to amoxicillin.

  13. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  14. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction.

    PubMed

    Echeverría, Javier; Urzúa, Alejandro; Sanhueza, Loreto; Wilkens, Marcela

    2017-06-23

    In the present study, the antibacterial activity of several ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus. For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logPow) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent-labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent-labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.

  15. Quaternized chitosan/κ-carrageenan/caffeic acid-coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity.

    PubMed

    Ignatova, Milena; Manolova, Nevena; Rashkov, Iliya; Markova, Nadya

    2016-11-20

    Novel fibrous materials with antioxidant and antibacterial properties from poly(3-hydroxybutyrate) (PHB), quaternized chitosan (QCh), κ-carrageenan (Car) and caffeic acid (CA) were obtained. These materials were prepared by applying electrospinning or electrospinning in conjunction with dip-coating and polyelectrolyte complex (PEC) formation. It was found that the CA release depended on the fiber composition. X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) revealed that CA incorporated in the fibers was in the amorphous state, whereas CA included in the coating was in the crystalline state. In contrast to the neat PHB mats, the CA-containing mats and the PEC QCh/Car-coated mats were found to kill the Gram-positive bacteria S. aureus and the Gram-negative bacteria E. coli and were effective in suppressing the adhesion of pathogenic bacteria S. aureus. Enhancement of the antioxidant activity of the fibrous materials containing both CA and QCh/Car coating was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395.

    PubMed

    Prol García, M J; D'Alvise, P W; Rygaard, A M; Gram, L

    2014-12-01

    The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multicellular aggregates or biofilms at the air-liquid interface and is induced on single cell level upon attachment. A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white) mutants with increased biofilm formation or adhesion were selected. None of the selected biofilm-overproducing white mutants showed any antibiotic activity, while all brown mutants with reduced or disabled biofilm formation produced the antibacterial compound. Sequencing analysis indicated that genes that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. This study contributes to the understanding of TDA production in P. inhibens, which has great potential as a probiotic in marine larviculture. © 2014 The Society for Applied Microbiology.

  17. Synthesis, Characterization, and Antibacterial Studies of Mixed Ligand Dioxouranium Complexes with 8-Hydroxyquinoline and Some Amino Acids

    PubMed Central

    Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.

    2011-01-01

    Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843

  18. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity.

    PubMed

    El Khoury, Elsy; Abiad, Mohamad; Kassaify, Zeina G; Patra, Digambara

    2015-03-01

    Silver nanoparticles (Ag NPs) are often synthesized by chemical and physical methods. Natural and non-toxic molecules are recently being replaced for nanoparticles preparation. In this paper we have used curcumin, which interacts with Ag+ and subsequently synthesizes silver nanoparticles. Further continuation of the reaction often makes aggregation and forms dark brown/black silver oxide. Presence of glycerol in the reaction mixture gives mono-disperse curcumin conjugated Ag NPs, which can be made stable by capping with polyvinylpyrolidone (PVP). XRD data confirm that curcumin conjugated Ag NPs are crystalline in nature with a mean crystalline size of 13.27 nm. The Ag NPs are spherical and in the range of 10-50 nm though their hydrodynamic radius is found to be higher, ∼294 nm, due to polyvinylpyrolidone capping and aggregation of nanoparticles in solution. The production of curcumin conjugated Ag NPs follows first order kinetics and the effect of curcumin concentration during formation of Ag NPs indicates a linear enhancement in the production of Ag NPs with an increase in concentration of curcumin. These curcumin conjugated silver nanoparticles show anti-bacterial activity and can successfully determine nucleic acid (DNA and RNA) in the concentration range 100-1000 ng/mL with a linear regression coefficient >0.997 using Resonance Rayleigh Scattering spectra.

  19. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom.

    PubMed

    Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi

    2011-03-01

    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella

    PubMed Central

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-01

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06–37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from −8.1 to −24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment. PMID:28112240

  1. Anti-bacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing.

    PubMed

    Ninan, Neethu; Forget, Aurélien; Shastri, V Prasad; Voelcker, Nicolas H; Blencowe, Anton

    2016-10-05

    pH-sensitive hydrogels play an important role in controlled drug release applications and have the potential to impact the management of wounds. In this study, we report the fabrication of novel carboxylated agarose/tannic acid hydrogel scaffolds cross-linked with zinc ions for the pH-controlled release of tannic acid. The resulting hydrogels exhibited negligible release of tannic acid at neutral and alkaline pH and sustained release at acidic pH, where they also displayed maximum swelling. The hydrogels also displayed favourable anti-bacterial and anti-inflammatory properties, and a lack of cytotoxicity towards 3T3 fibroblast cell lines. In simulated wound assays, significantly greater cell migration and proliferation was observed for cells exposed to tannic acid hydrogel extracts. In addition, the tannic acid hydrogels were able to suppress NO production in stimulated human macrophages in a concentration-dependent manner, indicating effective anti-inflammatory activity. Taken together, the cytocompatibility, anti-bacterial and anti-inflammatory characteristics of these novel pH-sensitive hydrogels make them promising candidates for wound dressings.

  2. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    PubMed Central

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-01-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. PMID:16473946

  3. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.

    PubMed

    Yoon, Bo Kyeong; Jackman, Joshua A; Kim, Min Chul; Cho, Nam-Joon

    2015-09-22

    Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses.

  4. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    PubMed

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-09-10

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  5. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon.

    PubMed

    Rima, Mohamad; Accary, Claudine; Haddad, Katia; Sadek, Riyad; Hraoui-Bloquet, Souad; Desfontis, Jean C; Fajloun, Ziad

    2013-10-01

    The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized. However, the molecular weight of the Mb-LAAO determined by ESI-MS and SDS-PAGE was 59 960.4 Da. Once the enzymatic activity test confirming the enzyme's identity (transformation of L-leucine) was done, the Mb-LAAO was evaluated for its antibacterial activity against Gram-negative bacteria. It showed a remarkable effect against M. morganii and K. pneumoniae. Moreover, no cytotoxic activity was observed for Mb-LAAO against human erythrocytes arguing for an exploration of its pharmaceutical interest.

  6. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    PubMed

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2017-08-03

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography (GC) of fatty acid methyl esters (FAMEs) revealed that common carp roe oil contained high level of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry (HPLC-MS) indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. This article is protected by copyright. All rights reserved.

  7. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.

    PubMed

    Borges, Anabela; Ferreira, Carla; Saavedra, Maria J; Simões, Manuel

    2013-08-01

    The increased resistance of pathogenic microorganisms is frequently attributed to the extreme and inadequate use of antibiotics and transmission of resistance within and between individuals. To counter the emergence of resistant microorganisms, considerable resources have been invested in the search for new antimicrobials. Plants synthesize a diverse array of secondary metabolites (phytochemicals) known to be involved in defense mechanisms, and in the last few years it is recognized that some of these molecules have health beneficial effects, including antimicrobial properties. In this study, the mechanism of action of gallic (GA) and ferulic (FA) acids, a hydroxybenzoic acid and a hydroxycinnamic acid, was assessed on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes. The targets of antimicrobial action were studied using different bacterial physiological indices: minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), membrane permeabilization, intracellular potassium release, physicochemical surface properties, and surface charge. It was found that FA and GA had antimicrobial activity against the bacteria tested with MIC of 500 μg/mL for P. aeruginosa, 1500 μg/mL for E. coli, 1750 μg/mL for S. aureus, and 2000 μg/mL for L. monocytogenes with GA; 100 μg/mL for E. coli and P. aeruginosa, 1100 μg/mL and 1250 μg/mL for S. aureus and L. monocytogenes, respectively, with FA. The MBC for E. coli was 2500 μg/mL (FA) and 5000 (GA), for S. aureus was 5000 μg/mL (FA) and 5250 μg/mL (GA), for L. monocytogenes was 5300 μg/mL (FA) and 5500 μg/mL (GA), and 500 μg/mL for P. aeruginosa, with both phytochemicals. GA and FA led to irreversible changes in membrane properties (charge, intra and extracellular permeability, and physicochemical properties) through hydrophobicity changes, decrease of negative surface charge, and occurrence of local rupture or pore formation in the cell membranes with

  8. Hydrazide-hydrazones of 3-methoxybenzoic acid and 4-tert-butylbenzoic acid with promising antibacterial activity against Bacillus spp.

    PubMed

    Popiołek, Łukasz; Biernasiuk, Anna

    2016-01-01

    A series of 28 hydrazide-hydrazones of 3-methoxybenzoic and 4-tert-butylbenzoic acid were synthesized and screened in vitro against the panel of reference strains of bacteria and fungi with the use of the broth microdilution method according to EUCAST and CLSI guidelines. Five of the synthesized compounds were found to exhibit high bacteriostatic or bactericidal activity against Gram-positive bacteria. The antimicrobial activity of compounds 13, 14, and 16 against Bacillus spp. was higher than that of commonly used antibiotics, like cefuroxime or ampicillin.

  9. Comparison of anti-bacterial activity of three types of di-O-caffeoylquinic acids in Lonicera japonica flowers based on microcalorimetry.

    PubMed

    Han, Jin; Lv, Qing-Yuan; Jin, Shi-Ying; Zhang, Tian-Tian; Jin, Shi-Xiao; Li, Xian-Yi; Yuan, Hai-Long

    2014-02-01

    The anti-bacterial activities of three types of di-O-caffeoylquinic acids (diCQAs) in Lonicera japonica flowers, a traditional Chinese medicine (TCM), on Bacillus shigae growth were investigated and compared by microcalorimetry. The three types of diCQAs were 3, 4-di-O-caffeoylquinic acid (3, 4-diCQA), 3, 5-di-O-caffeoylquinic acid (3, 5-diCQA), and 4, 5-di-O-caffeoylquinic acid (4, 5-diCQA). Some qualitative and quantitative information of the effects of the three diCQAs on metabolic power-time curves, growth rate constant k, maximum heat-output power Pm, and the generation time tG, total heat output Qt, and growth inhibitory ratio I of B. shigae were calculated. In accordance with a thermo-kinetic model, the corresponding quantitative relationships of k, Pm, Qt, I and c were established. Also, the half-inhibitory concentrations of the drugs (IC50) were obtained by quantitative analysis. Based on the quantity-activity relationships and the IC50 values, the sequence of inhibitory activity was 3, 5-diCQA > 4, 5-diCQA > 3, 4-diCQA. The results illustrate the possibility that the caffeoyl ester group at C-5 is the principal group that has a higher affinity for the bacterial cell, and that the intramolecular distance of the two caffeoyl ester groups also has an important influence on the anti-bacterial activities of the diCQAs.

  10. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  11. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    PubMed

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone-implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  12. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants

    PubMed Central

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs’ mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone–implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage. PMID:27099494

  13. Porous rod-like MgO complex membrane with good anti-bacterial activity directed by conjugated linolenic acid polymer

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Jie; Chen, Meng; Mi, Li-Wei; Shi, Li-Hua; Cao, Ying

    2016-02-01

    The problem of infection in the tissue engineering substitutes is driving us to seek new coating materials. We previously found that conjugated linolenic acid (CLnA) has well biocompatibility and excellent membrane-forming property. The objective of this study is to endow the anti-bacterial activity to CLnA membra ne by linking with MgO. The results showed that the CLnA polymer membrane can be loaded with porous rod-like MgO and such complex membrane showed anti-bacterial sensitivity against gram-positive bacteria ( Staphylococcus aureus) even at the low concentration (0.15 μg/mm2). In the present study, the best zone of inhibition got to 18.2 ± 0.8 mm when the amount of MgO reach 2.42 ± 0.58 μg/mm2. It was deduced that the porous rod-like structure of MgO was directed by CLnA in its polymerization process. Such CLnA/MgO complex membrane can be helpful in the tissue engineering, medicine, food engineering, food preservation, etc. on the basis of its good anti-bacterial activity.

  14. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    PubMed

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants.

  15. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    PubMed

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry.

  16. In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold

    PubMed Central

    Cao, Zhidong; Jiang, Dianming; Yan, Ling; Wu, Jun

    2017-01-01

    Antibiotic-loaded carriers were developed to fill cavities and locally deliver antibiotics following implantation. However, the most commonly used antibiotic carrier, polymethyl methacrylate (PMMA), has many disadvantages including that it does not promote bone regeneration or conduction. Vancomycin-loaded bone-like hydroxyapatite/poly amino acid (V-BHA/PAA) was successfully fabricated by a homogeneous method, certified as biosafe and known to promote osteogenesis. To evaluate its drug-release features, the quantity of the vancomycin in the elution was obtained every 2 days after in vitro simulated body fluid immersion. The drug concentration in the elution was determined to obtain the drug-release curve. The in vitro drug release was a three-phase process with two release peaks. Its antibacterial activity was evaluated in vitro using an antibacterial zone assay, antibacterial inhibition, and scanning electron microscopy (SEM) observation. Scaffolds of V-BHA/PAA were implanted into a rabbit model of chronic osteomyelitis. The antibacterial activity of the material was evaluated in vivo by gross observations, X-ray, and histological and ultrastructural observations. During the first 48 h, the vancomycin release was more rapid, followed by a period of sustained slow release. Use of V-BHA/PAA could achieve relatively long-term vancomycin delivery of 38 days in vitro and 42 days in vivo. V-BHA/PAA showed a significant and consistent bactericidal effect toward both Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in vitro and in vivo. Moreover, the bactericidal effect was stronger than that of vancomycin-loaded polymethyl meth acrylate (V-PMMA). The duration of the antibacterial effect of V-BHA/PAA toward both S. aureus and MRSA exceeded 28 days in vitro, while that of V-PMMA lasted only 14 days. The curative rate for V-BHA/PAA in the chronic osteomyelitis model was 75% for regular S. aureus and 66.67% for MRSA infection, which significantly exceeded

  17. In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold.

    PubMed

    Cao, Zhidong; Jiang, Dianming; Yan, Ling; Wu, Jun

    2017-01-01

    Antibiotic-loaded carriers were developed to fill cavities and locally deliver antibiotics following implantation. However, the most commonly used antibiotic carrier, polymethyl methacrylate (PMMA), has many disadvantages including that it does not promote bone regeneration or conduction. Vancomycin-loaded bone-like hydroxyapatite/poly amino acid (V-BHA/PAA) was successfully fabricated by a homogeneous method, certified as biosafe and known to promote osteogenesis. To evaluate its drug-release features, the quantity of the vancomycin in the elution was obtained every 2 days after in vitro simulated body fluid immersion. The drug concentration in the elution was determined to obtain the drug-release curve. The in vitro drug release was a three-phase process with two release peaks. Its antibacterial activity was evaluated in vitro using an antibacterial zone assay, antibacterial inhibition, and scanning electron microscopy (SEM) observation. Scaffolds of V-BHA/PAA were implanted into a rabbit model of chronic osteomyelitis. The antibacterial activity of the material was evaluated in vivo by gross observations, X-ray, and histological and ultrastructural observations. During the first 48 h, the vancomycin release was more rapid, followed by a period of sustained slow release. Use of V-BHA/PAA could achieve relatively long-term vancomycin delivery of 38 days in vitro and 42 days in vivo. V-BHA/PAA showed a significant and consistent bactericidal effect toward both Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in vitro and in vivo. Moreover, the bactericidal effect was stronger than that of vancomycin-loaded polymethyl meth acrylate (V-PMMA). The duration of the antibacterial effect of V-BHA/PAA toward both S. aureus and MRSA exceeded 28 days in vitro, while that of V-PMMA lasted only 14 days. The curative rate for V-BHA/PAA in the chronic osteomyelitis model was 75% for regular S. aureus and 66.67% for MRSA infection, which significantly exceeded

  18. Novel triphenylantimony(V) and triphenylbismuth(V) complexes with benzoic acid derivatives: structural characterization, in vitro antileishmanial and antibacterial activities and cytotoxicity against macrophages.

    PubMed

    Islam, Arshad; Da Silva, Jeferson Gomes; Berbet, Filipe Moan; da Silva, Sydnei Magno; Rodrigues, Bernardo Lages; Beraldo, Heloisa; Melo, Maria Norma; Frézard, Frédéric; Demicheli, Cynthia

    2014-05-12

    Two novel organoantimony(V) and two organobismuth(V) complexes of the type ML2 were synthesized, with L = acetylsalicylic acid (HL1) or 3-acetoxybenzoic acid (HL2) and M = triphenylantimony(V) (M1) or triphenylbismuth(V) (M2). Complexes, [M1(L1)2] (1), [M1(L2)2]∙CHCl3 (2), [M2(L1)2], (3) and [M2(L2)2] (4), were characterized by elemental analysis, IR and NMR. Crystal structures of triphenylantimony(V) dicarboxylate complexes 1 and 2 were determined by single crystal X-ray diffraction. Structural analyses revealed that 1 and 2 adopt five-coordinated extremely distorted trigonal bipyramidal geometries, binding with three phenyl groups in the equatorial position and two deprotonated organic ligands (L) in the axial sites. The metal complexes, their metal salts and ligands were evaluated in vitro for their activities against Leishmania infantum and amazonensis promastigotes and Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Both the metal complexes showed antileishmanial and antibacterial activities but the bismuth complexes were the most active. Intriguingly, complexation of organobismuth(V) salt reduced its activity against Leishmania, but increased it against bacteria. In vitro cytotoxic test of these complexes against murine macrophages showed that antimony(V) complexes were the least toxic. Considering the selectivity indexes, organoantimony(V) complexes emerge as the most promising antileishmanial agents and organobismuth(V) complex 3 as the best antibacterial agent.

  19. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity

    PubMed Central

    Nurhasni, Hasan; Cao, Jiafu; Choi, Moonjeong; Kim, Il; Lee, Bok Luel; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections. PMID:25960648

  20. Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections.

    PubMed

    Wang, Yan; Yang, Yong-Jian; Chen, Ya-Na; Zhao, Hong-Yu; Zhang, Shuai

    2016-10-01

    Antibacterial peptides (ABPs) are essential components of host defense against microbial infections present in all domains of life. The AMPs incorporating unnatural amino acids (uABPs) exhibit several advantages over naturally occurring AMPs based on factors such as bioavailability, metabolic stability and overall toxicity. Computer-aided modeling and in vitro susceptibility test were combined to rationally design short uABPs with potent antimicrobial activity. In the procedure, peptide characterization and machine learning modeling were used to develop statistical regression predictors, which were then employed to guide the molecular design and structural optimization of uABPs, to which a number of commercially available unnatural amino acids were introduced. An improved uABP population was obtained, from which several promising candidates were successfully prepared and their antibacterial potencies against three bacterial strains Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli were measured using broth microdilution assay. Consequently, four uABPs with hybrid structure property were determined to have high potency against the tested strains with minimum inhibitory concentration (MIC) of <50 µg/ml. Molecular dynamics (MD) simulations revealed that the designed uABPs are amphipathic helix in solution but they would largely unfold when spontaneously embedding into an artificial lipid bilayer that mimics microbial membrane. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Antibacterial activity of synthetic curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA).

    PubMed

    Vilekar, Prachi; King, Catherine; Lagisetty, Pallavi; Awasthi, Vibhudutta; Awasthi, Shanjana

    2014-04-01

    Curcumin is well known for its antimicrobial and anti-inflammatory properties. However, since systemic absorption and bioavailability of curcumin from gastrointestinal tract is considerably poor, synthetic curcuminoids are being developed as better alternatives. Two curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA), were included in this study. We investigated the antibacterial activity of EF24 and EF2DTPA against Gram-negative (Escherichia coli) and Gram-positive (Enterococcus faecalis, Staphylococcus aureus) bacteria. We also studied the effects of EF24 and EF2DTPA on uptake and localization of pHrodo-labeled E. coli in the acidic compartments (phagolysosomes) of dendritic cells (DCs) under in vitro conditions. Our results demonstrate that treatment with EF24 and EF2DTPA directly suppresses the bacterial growth. However, these compounds do not affect the bacterial uptake or localization in the DCs.

  2. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    PubMed

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  3. [Studies on quinolone antibacterials. I. Synthesis and antibacterial activity of 7-(2-aminoethoxy)-, 7-(2-aminoethylthio)-, and 7-(2-aminoethylamino)-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo qui noline -3-carboxylic acids and their derivatives].

    PubMed

    Yoshida, T; Yamamoto, Y; Yagi, N; Yasuda, S; Katoh, H; Itoh, Y

    1990-04-01

    7-(2-Aminoethoxy)-, 7-(2-aminoethylthio)-, and 7-(2-aminoethylamino)-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoq uin oline-3- carboxylic acids and their derivatives (11a--f, h, j, k, 12a--f, and 13a--f) were synthesized and their antibacterial activities were tested. Among them, compounds (13a, d) having a primary amino group at the terminal position of alkoxy and alkylthio groups were found to have excellent in vitro and in vivo antibacterial activity comparable to those of ciprofloxacin (5). Structure-activity relationship of these compounds was also stated.

  4. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    PubMed

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  5. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences.

  6. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  7. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Inbaraj, B. Stephen; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B. H.

    2011-02-01

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly(γ-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both γ-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  8. Antibacterial Silver

    PubMed Central

    Clement, Julia L.; Jarrett, Penelope S.

    1994-01-01

    The antibacterial activity of silver has long been known and has found a variety of applications because its toxicity to human cells is considerably lower than to bacteria. The most widely documented uses are prophylactic treatment of burns and water disinfection. However, the mechanisms by which silver kills cells are not known. Information on resistance mechanisms is apparently contradictory and even the chemistry of Ag+ in such systems is poorly understood. Silver binds to many cellular components, with membrane components probably being more important than nucleic acids. It is difficult to know whether strong binding reflects toxicity or detoxification: some sensitive bacterial strains have been reported as accumulating more silver than the corresponding resistant strain, in others the reverse apparently occurs. In several cases resistance has been shown to be plasmid mediated. The plasmids are reported as difficult to transfer, and can also be difficult to maintain, as we too have found. Attempts to find biochemical differences between resistant and sensitive strains have met with limited success: differences are subtle, such as increased cell surface hydrophobicity in a resistant Escherichia coli. Some of the problems are due to defining conditions in which resistance can be observed. Silver(I) has been shown to bind to components of cell culture media, and the presence of chloride is necessary to demonstrate resistance. The form of silver used must also be considered. This is usually water soluble AgNO3, which readily precipitates as AgCl. The clinically preferred compound is the highly insoluble silver sulfadiazine, which does not cause hypochloraemia in burns. It has been suggested that resistant bacteria are those unable to bind Ag+ more tightly than does chloride. It may be that certain forms of insoluble silver are taken up by cells, as has been found for nickel. Under our experimental conditions, silver complexed by certain ligands is more cytotoxic

  9. Antibacterial silver.

    PubMed

    Clement, J L; Jarrett, P S

    1994-01-01

    The antibacterial activity of silver has long been known and has found a variety of applications because its toxicity to human cells is considerably lower than to bacteria. The most widely documented uses are prophylactic treatment of burns and water disinfection. However, the mechanisms by which silver kills cells are not known. Information on resistance mechanisms is apparently contradictory and even the chemistry of Ag(+) in such systems is poorly understood.Silver binds to many cellular components, with membrane components probably being more important than nucleic acids. It is difficult to know whether strong binding reflects toxicity or detoxification: some sensitive bacterial strains have been reported as accumulating more silver than the corresponding resistant strain, in others the reverse apparently occurs. In several cases resistance has been shown to be plasmid mediated. The plasmids are reported as difficult to transfer, and can also be difficult to maintain, as we too have found. Attempts to find biochemical differences between resistant and sensitive strains have met with limited success: differences are subtle, such as increased cell surface hydrophobicity in a resistant Escherichia coli.Some of the problems are due to defining conditions in which resistance can be observed. Silver(I) has been shown to bind to components of cell culture media, and the presence of chloride is necessary to demonstrate resistance. The form of silver used must also be considered. This is usually water soluble AgNO(3), which readily precipitates as AgCl. The clinically preferred compound is the highly insoluble silver sulfadiazine, which does not cause hypochloraemia in burns. It has been suggested that resistant bacteria are those unable to bind Ag(+) more tightly than does chloride. It may be that certain forms of insoluble silver are taken up by cells, as has been found for nickel. Under our experimental conditions, silver complexed by certain ligands is more

  10. Preparation of silver nanoparticles by using the hydrolyzates of poly(lactic acid) and their application for the antibacterial functionalization of poly(lactic acid) non-woven fabric

    NASA Astrophysics Data System (ADS)

    Ma, Zhen-Zhen; Tang, Ren-Cheng

    2017-03-01

    Poly(lactic acid) (PLA) fiber, owning to its biodegradability and biocompatibility, has extensive applications in many fields including textiles, and an enhanced antibacterial function can increase its application value. This work presents an innovative approach to prepare silver nanoparticles (AgNPs) using the hydrolytic degradation products of PLA fiber in the scouring process that contain reducing hydrolyzates (lactic acid and oligomers of lactic acid), and to functionalize PLA non-woven fabric using the resulting AgNPs. The preparation and application conditions of AgNPs were discussed. AgNPs with an average size of 80 nm were obtained at pH 9 and 90 °C with no use of an additional reducing agent in the presence of the use of polyvinyl pyrrolidone as a stabilizer, and exhibited good storage stability. PLA non-woven fabric was successfully treated with AgNPs using an impregnation technique at pH 4 and 70 °C, and the treated fabric exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, even in the case of a low amount of Ag loading.

  11. [Altered gut bacterial flora and organic acids in feces of patients undergoing autologous stem cell transplantation with quinolone-based antibacterial prophylaxis].

    PubMed

    Hagiwara, Shotaro; Hagiwara, Shotaro; Asahara, Takashi; Nomoto, Koji; Morotomi, Masami; Ishizuka, Naoki; Miwa, Akiyoshi; O Yoshida, Takato

    2010-06-01

    Gastrointestinal toxicity and various infections are serious problems associated with high-dose chemotherapy. Antibacterial chemoprophylaxis reduces the incidence of gram-negative bacterial infection; however, it may affect the normal intestinal flora and induce drug resistance in organisms. We evaluated the chronological changes in fecal bacteria and organic acids in 6 patients undergoing autologous stem cell transplantation with quinolone-based chemoprophylaxis. All patients developed grade 2-3 diarrhea. Four patients developed grade 3 febrile neutropenia. The total count of obligatory anaerobic bacteria was significantly decreased on Day 7, but total facultative anaerobic bacterial count did not change throughout transplantation. However, Enterobacteriaceae and Lactobacillus were decreased on Day 7 and Staphylococcus was increased after transplantation. Total organic acid concentration and short-chain fatty acids were decreased on Day 7. The bacterial flora and organic acids in the gut were significantly altered in patients who underwent autologous stem cell transplantation with quinolonebased chemoprophylaxis. These changes may contribute to gastrointestinal toxicity and infections.

  12. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes

    PubMed Central

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L1–4)] and [TiCl3(bzac)(HL5)]; bzac = benzoylacetonate; L1–5 = benzohydroximate (L1), salicylhydroximate (L2), acetohydroximate (L3), hydroxyurea (L4), and N-benzoyl-N-phenyl hydroxylamine (L5), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1–5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (Kb) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  13. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Complexes of uranyl(II), vanadyl(II) and zirconyl(II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2007-10-01

    A convenient method for the preparation of complexes of the uranyl [UO 2] 2+, vanadyl [VO] 2+ and [ZrO] 2+ ions with vitamin B13 (Orotic acid; H 3OA) is reported and this has enabled three complexes of orotate anion (1-) to be formulated: [M(C 5H 3N 2O 4) 2(H 2O) 2]·(H 2O) n [where M = [UO 2] 2+, [VO] 2+, [ZrO] 2+; n = 1, 6, 3, respectively]. The new bisorotate (H 2OA) 1- complexes were synthesis and characterized by elemental analysis, molar conductivity, spectral methods (UV-vis, mass, 1H NMR and mid infrared spectra), and simultaneous thermal analysis (TG and DTG) techniques. Physical measurements indicate that the neutral orotic acid ligand in its mono/anion form, is bonded to oxometal ions through the carboxylic groups (two monodentate orotate anions and complete the coordination sphere by coordinated water molecules). The molar conductance data confirm that the orotate complexes are non-electrolytes. The X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM) shows that the studied complexes have amorphous structures. The kinetic thermodynamic parameters, such as, E∗, Δ H∗, Δ S∗ and Δ G∗ are calculated from the DTG curves. The antibacterial activity of the orotic acid and their complexes was evaluated against gram positive/negative bacteria.

  15. Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions.

    PubMed

    Ghate, Vinayak; Leong, Ai Ling; Kumar, Amit; Bang, Woo Suk; Zhou, Weibiao; Yuk, Hyun-Gyun

    2015-06-01

    Light emitting diodes (LEDs) with their antibacterial effect present a novel method for food preservation. This effect may be influenced by environmental conditions such as the pH of the food contaminated by the pathogen. Thus, it is necessary to investigate the influence of pH on the antibacterial effect of LEDs before their application to real food matrices. Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in trypticase soy broth were illuminated using 10-W 461 (22.1 mW/cm(2)) and 521 nm (16 mW/cm(2)) LEDs at pH values of 4.5, 6.0, 7.3, 8.0 and 9.5 for 7.5 h at 15 °C. Using the 461 nm LEDs, the populations of E. coli O157:H7 decreased by 2.1 ± 0.02, 1.2 ± 0.08 and 4.1 ± 0.42 log CFU/ml at pH 4.5, 7.3 and 9.5 respectively, after a dosage of 596.7 J/cm(2). For L. monocytogenes, approximately a 5.8 ± 0.03 log reduction was observed after 238.7 J/cm(2) at pH 4.5 using the 461 nm LEDs, while the bacterial concentration was reduced by 1.8 ± 0.01 log at pH 9.5 after 596.7 J/cm(2). Bacterial inactivation using the 521 nm LEDs showed similar trends to the 461 nm LEDs at both acidic and alkaline pH conditions but with lower (1-2 log CFU/ml) reductions after 432 J/cm(2). Lower D-values were observed for L. monocytogenes when exposed to LEDs at acidic pH values, while the sensitivity of E. coli O157:H7 and S. Typhimurium to LED was markedly increased at an alkaline pH. Regardless of the pH at which the cultures were illuminated, the percentage of sublethal injury increased with the treatment time. These results highlight the enhanced antibacterial effect of the 461 nm LED under acidic and alkaline pH conditions, proving its potential to preserve foods as well as to have synergistic effect with acidic and alkaline antimicrobials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity.

    PubMed

    Pal, Nidhi; Dubey, Poornima; Gopinath, P; Pal, Kaushik

    2017-02-01

    In the present study, cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) were successfully synthesized via acid hydrolysis and modified Hummer's method, respectively. Further, the synthesized CNCs and rGO were incorporated into poly-lactic acid (PLA) matrix using solution casting method utilizing different weight (wt.) % of CNCs (nanofiller) and rGO. The successful synthesis of various nanoformulations were confirmed by several characterization techniques including Transmission Electron Microscopy (TEM), Field-Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Hydrophilicity measurement of the film was done by wettability analysis. The mechanical property evaluation of scaffold showed considerable increased tensile strength of PLA/CNC/rGO nanocomposite upto 23%, with increase in elongation at break (εb) indicating the ductile behavior of nanocomposite as compare to pristine PLA. The distinct anti-bacterial efficacy of PLA/CNC/rGO nanocomposite film was found against both Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli. (E. coli) bacterial strains respectively. Furthermore the in-vitro cell based cytotoxicity assay showed negligible cytotoxicity of fibroblast cell line (NIH-3T3) upon treatment with nanocomposite film. Therefore, the as fabricated nanocomposite film possesses considerable potential in biomedical as well as in food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives.

    PubMed

    Mert, Samet; Kasımoğulları, Rahmi; İça, Tuba; Çolak, Ferdağ; Altun, Ahmet; Ok, Salim

    2014-05-06

    A series of pyrazole-3-carboxylic acid and pyrazole-3,4-dicarboxylic acid derivatives were synthesized, the structures were confirmed by their NMR ((1)H and (13)C) and FT-IR spectra, and elemental analyses. The antibacterial and antifungal activities of the compounds against five bacterial and five fungal pathogens were screened using modified agar well diffusion assay. Most of the molecules have inhibitory effects on both standard and clinical Candida albicans strains. However, only the molecules 8, 10, 21, and 22 demonstrate some inhibitory effects on Candida parapsilosis, Candida tropicalis, and Candida glabrata strains. The structure-antifungal activity relationships of the compounds on the C. albicans strains were investigated by electron-conformational method. The pharmacophores and antipharmacophores responsible for the inhibition and non-inhibition of the C. albicans strains were obtained by electronic and geometrical characteristics of the reactive fragments of the molecules. These fragments along with the associated parameters can be used in designing the future more potent antifungal agents. It has been shown that both the positions of electronegative atoms like F and O in the pyrazole substituents and the amount of the associated charges on such atoms are crucial in regulating the strength of antifungal activity for the C. albicans strain.

  18. Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcumin-glycine-piperic acid and their antibacterial and antifungal properties.

    PubMed

    Mishra, Satyendra; Narain, Upma; Mishra, Roli; Misra, Krishna

    2005-03-01

    In the present communication different curcumin bioconjugates viz. 4,4'-di-O-glycinoyl-curcumin, 4,4'-di-O-d-alaninoyl-curcumin, 4,4'-di-O-(glycinoyl-di-N-piperoyl)-curcumin, 4,4'-di-O-piperoyl curcumin, curcumin-4,4'-di-O-beta-d-glucopyranoside, 4,4'-di-O-acetyl-curcumin along with piperoyl glycine, have been synthesised and characterised by spectra UV, (1)H NMR and elemental analysis. All the covalent bonds used are biodegradable. This makes these derivatives as potent prodrugs, which can get hydrolysed at the target sites. These bioconjugates were tested in vitro against different bacteria and fungi. The 4,4'-di-O-(glycinoyl-di-N-piperoyl)-curcumin and 4,4'-di-O-acetyl-curcumin are more effective than Cefepime, an antibacterial drug available in market, at the same concentration. The 4,4'-di-O-(glycinoyl-di-N-piperoyl)-curcumin and 4,4'-di-O-piperoyl curcumin had antifungal activity in vitro almost comparable with fluconazole, the most popular antifungal drug. The enhanced activity of these bioconjugates vis-a-vis the parent molecule that is curcumin may be due to improved cellular uptake or reduced metabolism of these bioconjugates resulting in building up of enough concentration inside the infected cells. It opens a new era for exploring suitably designed curcumin bioconjugates as potential antibacterial/antifungal drugs.

  19. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against food-bourne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Microbial conversion of the natural unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octad...

  20. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  1. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes.

    PubMed

    Abdel-Rahman, Laila H; El-Khatib, Rafat M; Nassr, Lobna A E; Abu-Dief, Ahmed M; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  2. Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum.

    PubMed

    Oku, Naoya; Yonejima, Kohsuke; Sugawa, Takao; Igarashi, Yasuhiro

    2014-01-01

    The cyanobacterium Nostoc verrucosum occurs in cool, clear streams and its gelatinous colonies, called "ashitsuki," have been eaten in ancient Japan. Its ethanolic extract was found to inhibit the growth of Gram-positive bacteria and activity-guided fractionation yielded an unusual n-1 fatty acid, (9Z,12Z)-9,12,15-hexadecatrienoic acid (1), as one of the active principles. It inhibited the growth of Staphylococcus aureus at MIC 64 μg/mL.

  3. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: Structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA2-)·2(IM+)·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O-⋯Hsbnd N+ hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device.

  4. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    PubMed Central

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  5. Antibacterial and anti-atrophic effects of a highly soluble, acid stable UDCA formula in Helicobacter pylori-induced gastritis.

    PubMed

    Thao, Tran Dang Hien; Ryu, Ho-Cheol; Yoo, Seo-Hong; Rhee, Dong-Kwon

    2008-06-01

    Helicobacter pylori is one of the main causes of atrophic gastritis and gastric carcinogenesis. Gastritis can also occur in the absence of H. pylori as a result of bile reflux suggesting the eradication of H. pylori by bile acids. However, the bile salts are unable to eradicate H. pylori due to their low solubility and instability at acidic pH. This study examined the effect of a highly soluble and acid stable ursodeoxycholic acid (UDCA) formula on H. pylori-induced atrophic gastritis. The H. pylori infection decreased the body weight, mitochondrial membrane potential and ATP level in vivo. Surprisingly, H. pylori-induced expression of malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, at both the protein and mRNA levels. However, the UDCA formula repressed MDH expression and increased the membrane potential thereby increasing the ATP level and body weight in vivo. Moreover, UDCA scavenged the reactive oxygen species (ROS), increased the membrane potential, and inhibited apoptosis in AGS cells exposed to H(2)O(2) in vitro through the mitochondria-mediated pathway. Taken together, UDCA decreases the MDH and ROS levels, which can prevent apoptosis in H. pylori-induced gastritis.

  6. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  7. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  8. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  9. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    PubMed

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, (1)H NMR,(13)C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection.

  10. Ent-trachyloban-19-oic acid isolated from Iostephane heterophylla as a promising antibacterial agent against Streptococcus mutans biofilms.

    PubMed

    Hernández, Dulce M; Díaz-Ruiz, Gloria; Rivero-Cruz, Blanca E; Bye, Robert A; Aguilar, María Isabel; Rivero-Cruz, J Fausto

    2012-04-01

    From the roots of Iostephane heterophylla, six known compounds, namely, ent-trachyloban-19-oic acid (1), the mixture of ent-kaur-16-en-19-oic acid (2) and ent-beyer-15-en-19-oic acid (3), xanthorrhizol (4), 16α-hydroxy-ent-kaurane (5) and 16α-hydroxy-ent-kaur-11-en-19-oic acid (6) were isolated using a bioassay-guided fractionation method. The known compounds (1-6) were identified by comparison of their spectroscopic data with reported values in the literature. In an attempt to increase the resultant antimicrobial activity of 1 and 4, a series of reactions was performed on ent-trachyloban-19-oic acid (1) and xanthorrhizol (4), to obtain derivatives 1a, 1b, and 4a-4d. All the isolated compounds (1-6) and the derivatives 1a, 1b, and 4a-4d were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Porphyromonas gingivalis associated with caries and periodontal disease, respectively. Compounds 1, 1b, 2+3, 4 and 4d inhibited the growth of S. mutans with concentrations ranging from 4.1 μg/mL to 70.5 μg/mL. No significant activity was found on P. gingivalis except for 4 with an MIC of 6.8 μg/mL. The ability of 1, 1b, 2+3, 4 and 4d to inhibit biofilm formation by S. mutans was evaluated. It was found that 1, 1b, 4 and 4d interfered with the establishment of S. mutans biofilms, inhibiting their development at 32.5, 125.0, 14.1 and 24.4 μg/mL, respectively.

  11. Antibacterial characteristics of anthocyanins extracted from wild blueberries against foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Wild blueberries have rich bioactive compounds, such as polyphenols, phenolics and organic acids. Previous studies demonstrated the antibacterial activity of blueberries against the growth of pathogenic bacteria. The objective of this study was to evaluate the antibacterial characteristics and mech...

  12. Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.

    PubMed

    Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-04-01

    The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.

  13. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation.

    PubMed

    Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young

    2017-09-29

    Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  15. Antibacterial constituents from Melodinus suaveolens.

    PubMed

    Li, Jiang-Ling; Lunga, Paul-Keilah; Zhao, Yun-Li; Qin, Xu-Jie; Yang, Xing-Wei; Liu, Ya-Ping; Luo, Xiao-Dong

    2015-04-01

    To investigate the non-alkaloidal chemical constituents of the stems and leaves of Melodinus suaveolens and their antibacterial activities. Compounds were isolated and purified by repeated silica gel, Sephadex LH-20, RP18, and preparative HPLC. Their structures were elucidated by comparison with published spectroscopic data, as well as on the basis of extensive spectroscopic analysis. The antibacterial screening assays were performed by the dilution method. Fourteen compounds were isolated, and identified as lycopersene (1), betulinic aldehyde (2), 3β-acetoxy-22,23,24,25,26,27-hexanordammaran-20-one (3), 3a-acetyl-2, 3, 5-trimethyl-7a-hydroxy-5-(4,8,12-trimethyl-tridecanyl)-1,3a,5,6,7,7a-hexahydro-4-oxainden-1-one (4), 3β-hydroxy-28-norlup-20(29)-ene-17β-hydroperoxide (5), 3β-hydroxy-28-norlup-20(29)-ene-17α-hydroperoxide (6), β-sitosterol (7), 28-nor-urs-12-ene-3β, 17β-diol (8), α-amyrin (9), ergosta-4,6,8(14),22-tetraen-3-one (10), 3β-hydroxy-urs-11-en-28,13β-olide (11), betulin (12), obtusalin (13), and ursolic acid (14). Among the isolates, compounds 1, 2, 6, 8, 10, and 14 showed potent antibacterial activities against the four bacteria. This is the first report of the antibacterial activity of the constituents of Melodinus suaveolens.

  16. Antibacterial activity of norfloxacin.

    PubMed Central

    Norrby, S R; Jonsson, M

    1983-01-01

    Norfloxacin, a new quinoline derivative, was studied in vitro, and determinations of agar dilution minimal inhibitory concentrations (MICs) and broth dilution MICs and MBCs were made. Nalidixic acid and cinoxacin were used as comparative agents. Norfloxacin was found to be extremely active against all strains tested of Escherichia coli, Klebsiella spp., Proteus mirabilis, indole-positive Proteus spp. Serratia spp., Citrobacter spp., and Enterobacter spp., with MICs normally below 1 microgram/ml. It also was found to be highly active against Pseudomonas aeruginosa, Staphylococcus saprophyticus, and enterococci, which are all resistant to nalidixic acid and cinoxacin. The MICs for norfloxacin obtained by broth dilution were slightly higher than those obtained by agar dilution, whereas the reverse was true for nalidixic acid and cinoxacin. The MBCs of norfloxacin were only slightly higher than the MICs, even at high inocula. The in vitro activity of norfloxacin was not dependent on the inoculum size, whereas both the MICs and the MBCs of nalidixic acid increased markedly for many of the strains tested when the inoculum was increased in broth dilution from 10(3) to 10(6) colony-forming units per ml. Norfloxacin seems to be a promising antibacterial agent for the treatment of urinary tract infections, especially those caused by Pseudomonas spp. and other species today requiring the use of injectable antibiotics. PMID:6219617

  17. Rosmarinic Acid from Eelgrass Shows Nematicidal and Antibacterial Activities against Pine Wood Nematode and Its Carrying Bacteria

    PubMed Central

    Wang, Jingyu; Pan, Xueru; Han, Yi; Guo, Daosen; Guo, Qunqun; Li, Ronggui

    2012-01-01

    Pine wilt disease (PWD), a destructive disease for pine trees, is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA). RosA showed effective nematicidal activity, of which the LC50 (50% lethal concentration) to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L9 (34) orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v). The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight). The crude extracts of Zostera marina (10 mg/mL) and RosA (1 mg/mL) also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina. PMID:23201594

  18. Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation

    PubMed Central

    Parwe, Sharad P; Chaudhari, Priti N; Mohite, Kavita K; Selukar, Balaji S; Nande, Smita S; Garnaik, Baijayantimala

    2014-01-01

    Ciprofloxacin was conjugated with polylactide (PLA) via the secondary amine group of the piperazine ring using PLA and 7-(4-(2-Chloroacetyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid. Zinc prolinate, a biocompatible catalyst was synthesized, characterized, and used in ring opening polymerization of L-lactide. Five different kinds of OH-terminated poly(L-lactide) (two-, three-, four-, six-arm, star-shaped) homopolymers were synthesized by ring opening polymerization of L-lactide in the presence of dodecanol, glycerol, pentaerythritol, dipentaerythritol as initiator and zinc prolinate as a catalyst. The structures of the polymers and conjugates were thoroughly characterized by means of gel permeation chromatography, matrix-assisted laser desorption/ionization – time of flight mass spectrometry, and nuclear magnetic resonance spectroscopy. PLA (molecular weight =100,000) and ciprofloxacin conjugated PLA were used for fabrication of nonwoven nanofiber mat (diameter ranges; 150–400 nm) having pore size (62–102 nm) using electrospinning. The microbiological assessment shows that the release of ciprofloxacin possesses antimicrobial activity. The drug-release behavior of the mat was studied to reveal potential application as a drug delivery system. The result shows that the ciprofloxacin release rates of the PLA conjugate nonwoven nanofiber mat could be controlled by the drug loading content and the release medium. The development of a biodegradable ciprofloxacin system, based on nonwoven nanofiber mat, should be of great interest in drug delivery systems. PMID:24741303

  19. Characterization of an Antibacterial Compound, 2-Hydroxyl Indole-3-Propanamide, Produced by Lactic Acid Bacteria Isolated from Fermented Batter.

    PubMed

    Jeevaratnam, Kadirvelu; Vidhyasagar, Venkatasubramanian; Agaliya, Perumal Jayaprabha; Saraniya, Appukuttan; Umaiyaparvathy, Muthukandan

    2015-09-01

    Lactic acid bacteria are known to produce numerous antimicrobial compounds that are active against various pathogens. Here, we have purified and characterized a novel low-molecular-weight (LMW) antimicrobial compound produced by Lactobacillus and Pediococcus isolated from fermented idly and uttapam batter. The LMW compound was extracted from cell-free supernatant using ice-cold acetone, purified by gel permeation and hydrophobic interaction chromatography. It exhibited antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria sparing the probiotic strains like Lactobacillus rhamnosus. The molecular weight of the LMW compound was identified as 204 Da using LC-MS-ESI. In addition, the structure of the compound was predicted using spectroscopic methods like FTIR and NMR and identified as 2-hydroxyl indole-3-propanamide. The LMW compound was differentiated from its related compound, tryptophan, by Salkowski reaction and thin-layer chromatography. This novel LMW compound, 2-hydroxyl indole-3-propanamide, may have an effective application as an antibiotic which can spare prevailing probiotic organisms but target only the pathogenic strains.

  20. Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation.

    PubMed

    Parwe, Sharad P; Chaudhari, Priti N; Mohite, Kavita K; Selukar, Balaji S; Nande, Smita S; Garnaik, Baijayantimala

    2014-01-01

    Ciprofloxacin was conjugated with polylactide (PLA) via the secondary amine group of the piperazine ring using PLA and 7-(4-(2-Chloroacetyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid. Zinc prolinate, a biocompatible catalyst was synthesized, characterized, and used in ring opening polymerization of L-lactide. Five different kinds of OH-terminated poly(L-lactide) (two-, three-, four-, six-arm, star-shaped) homopolymers were synthesized by ring opening polymerization of L-lactide in the presence of dodecanol, glycerol, pentaerythritol, dipentaerythritol as initiator and zinc prolinate as a catalyst. The structures of the polymers and conjugates were thoroughly characterized by means of gel permeation chromatography, matrix-assisted laser desorption/ionization - time of flight mass spectrometry, and nuclear magnetic resonance spectroscopy. PLA (molecular weight =100,000) and ciprofloxacin conjugated PLA were used for fabrication of nonwoven nanofiber mat (diameter ranges; 150-400 nm) having pore size (62-102 nm) using electrospinning. The microbiological assessment shows that the release of ciprofloxacin possesses antimicrobial activity. The drug-release behavior of the mat was studied to reveal potential application as a drug delivery system. The result shows that the ciprofloxacin release rates of the PLA conjugate nonwoven nanofiber mat could be controlled by the drug loading content and the release medium. The development of a biodegradable ciprofloxacin system, based on nonwoven nanofiber mat, should be of great interest in drug delivery systems.

  1. Synthesis of amino acid conjugates of tetrahydrocurcumin and evaluation of their antibacterial and anti-mutagenic properties.

    PubMed

    Manjunatha, J R; Bettadaiah, B K; Negi, P S; Srinivas, P

    2013-08-15

    Tetrahydrocurcumin (THC), the hydrogenated and stable form of curcumin, exhibits physiological and pharmacological activities similar to curcumin. A protocol has been developed for the synthesis of novel conjugates of THC with alanine (2a), isoleucine (2b), proline (2c), valine (2d), phenylalanine (2e), glycine (2f) and leucine (2g) in high yields (43-82%). All the derivatives of THC exhibited more potent anti-microbial activity than THC against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Yersinia enterocolitica. The MIC values of the derivatives were 24-37% of those for THC in case of both gram-positive and gram-negative bacteria. Derivatives 2g and 2d exhibited maximum anti-mutagenicity against Salmonella typhimurium TA 98 and TA 1538, respectively at a low concentration of 313 μg/plate, with comparable activity for THC evident only at 3750 μg/plate. These results clearly demonstrated that the conjugation of THC at the phenolic position with amino acids led to significant improvement of its in vitro biological attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing.

    PubMed

    Montazer, Majid; Alimohammadi, Farbod; Shamei, Ali; Rahimi, Mohammad Karim

    2012-01-01

    Colloidal nano silver was applied on the surface of cotton fabric and stabilized using 1,2,3,4-butanetetracarboxylic acid (BTCA). The two properties of antimicrobial activity and resistance against creasing were imparted to the samples of fabric as a result of the treatment with silver nano colloid and BTCA. The antimicrobial property of samples was evaluated using two pathogenic bacteria including Escherichia coli and Staphylococcus aureus as outstanding barometers in this field. The durability of applied nanoparticles, color variation, wettability and wrinkle recovery angle of the treated samples were investigated employing related credible standards. The presence of nano silver particles on the surface of treated cotton fabric was proved using EDS spectrum as well as the SEM images. Furthermore, the creation of cross-links was confirmed by the means of both ATR-FTIR and Raman spectra. In conclusion, it was observed that BTCA plays a prominent role in stabilizing silver nanoparticle. Besides, Wettability and winkle recovery angle of finished samples decreased and increased, respectively. In addition, it is noteworthy that no obvious color variation was observed.

  3. Factors affecting antibacterial activity of hop compounds and their derivatives.

    PubMed

    Simpson, W J; Smith, A R

    1992-04-01

    The antibacterial effect of weak acids derived from the hop plant (Humulus lupulus L.) increased with decreasing pH. Analysis of the minimum inhibitory concentration of such compounds against Lactobacillus brevis IFO 3960 over pH 4-7 suggests that undissociated molecules were mainly responsible for inhibition of bacterial growth. The antibacterial activity of trans-isohumulone was ca 20 times greater than that of humulone, 11 times greater than that of colupulone and nine times greater than that of trans-humulinic acid when the degree of ionization was taken into account. Monovalent cations (K+, Na+, NH4+, Rb+, Li+) stimulated antibacterial activity of trans-isohumulone but the effect was smaller than that observed with H+. The response to divalent cations varied: Ca2+ had little effect on antibacterial activity, whereas Mg2+ reduced activity. Lipid materials and beta-cyclodextrin also antagonized the antibacterial action of trans-isohumulone.

  4. [Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage].

    PubMed

    Dogasaki, Chikaku; Shindo, Tetsuya; Furuhata, Katsunori; Fukuyama, Masafumi

    2002-07-01

    We previously reported that certain constituents in brewed coffee exhibited antibacterial activities against a strain of Legionella pneumophila. The constituents showing antibacterial activities were included only in extracts cold with water or hot water. To determine the antibacterial substances in coffee extract, the extract was fractionated by HPLC using a UV/photodiode array detector. The optimum HPLC conditions for analysis were UV wavelength of 250 nm and eluents of methanol/acetic acid (10/90), pH 3.0. When several fractions separated by HPLC were investigated for antibacterial activities against L. pneumophila, it was found that three peak fractions exhibited strong antibacterial activities. Each product from these fractions was analyzed by NMR and LC-mass spectrometry, and the chemical structure of each was determined. It was shown that the antibacterial substances was were protocatechuic acid (3,4-dihydroxy benzoic acid), chlorogenic acid, and caffeic acid.

  5. Antibacterial components of honey.

    PubMed

    Kwakman, Paulus H S; Zaat, Sebastian A J

    2012-01-01

    The antibacterial activity of honey has been known since the 19th century. Recently, the potent activity of honey against antibiotic-resistant bacteria has further increased the interest for application of honey, but incomplete knowledge of the antibacterial activity is a major obstacle for clinical applicability. The high sugar concentration, hydrogen peroxide, and the low pH are well-known antibacterial factors in honey and more recently, methylglyoxal and the antimicrobial peptide bee defensin-1 were identified as important antibacterial compounds in honey. The antibacterial activity of honey is highly complex due to the involvement of multiple compounds and due to the large variation in the concentrations of these compounds among honeys. The current review will elaborate on the antibacterial compounds in honey. We discuss the activity of the individual compounds, their contribution to the complex antibacterial activity of honey, a novel approach to identify additional honey antibacterial compounds, and the implications of the novel developments for standardization of honey for medical applications.

  6. Synergistic antibacterial effect of co-administering adipose-derived mesenchymal stromal cells and Ophiophagus hannah L-amino acid oxidase in a mouse model of methicillin-resistant Staphylococcus aureus-infected wounds.

    PubMed

    Mot, Yee Yik; Othman, Iekhsan; Sharifah, Syed Hassan

    2017-01-23

    Mesenchymal stromal cells (MSCs) and Ophiophagus hannah L-amino acid oxidase (Oh-LAAO) have been reported to exhibit antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Published data have indicated that synergistic antibacterial effects could be achieved by co-administration of two or more antimicrobial agents. However, this hypothesis has not been proven in a cell- and protein-based combination. In this study, we investigate if co-administration of adipose-derived MSCs and Oh-LAAO into a mouse model of MRSA-infected wounds would be able to result in a synergistic antibacterial effect. MSCs and Oh-LAAO were isolated and characterized by standard methodologies. The effects of the experimental therapies were evaluated in C57/BL6 mice. The animal study groups consisted of full-thickness uninfected and MRSA-infected wound models which received Oh-LAAO, MSCs, or both. Oh-LAAO was administered directly on the wound while MSCs were delivered via intradermal injections. The animals were housed individually with wound measurements taken on days 0, 3, and 7. Histological analyses and bacterial enumeration were performed on wound biopsies to determine the efficacy of each treatment. Immunophenotyping and differentiation assays conducted on isolated MSCs indicated expression of standard cell surface markers and plasticity which corresponds to published data. Characterization of Oh-LAAO by proteomics, enzymatic, and antibacterial assays confirmed the identity, purity, and functionality of the enzyme prior to use in our subsequent studies. Individual treatments with MSCs and Oh-LAAO in the infected model resulted in reduction of MRSA load by one order of magnitude to the approximate range of 6 log10 colony-forming units (CFU) compared to untreated controls (7.3 log10 CFU). Similar wound healing and improvements in histological parameters were observed between the two groups. Co-administration of MSCs and Oh-LAAO reduced bacterial burden by

  7. Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2-hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus.

    PubMed

    Wu, Yanping; Bai, Jinrong; Zhong, Kai; Huang, Yina; Qi, Huayi; Jiang, Yan; Gao, Hong

    2016-08-18

    Recently, we reported that a novel phenolic compound isolated from Cedrus deodara, 3-p-trans-coumaroyl-2-hydroxyquinic acid (CHQA), exhibits a potent antioxidant activity. The present study aimed to evaluate the antibacterial activity of CHQA against eleven food-borne pathogens and to elucidate its mechanism of action against Staphylococcus aureus. The results from minimum inhibitory concentration (MIC) determinations showed that CHQA exhibited moderate inhibitory effects on all of the tested pathogens with MIC values ranging from 2.5-10 mg/mL. Membrane potential measurements and flow cytometric analysis demonstrated that CHQA damaged the cytoplasmic membrane of S. aureus, causing a significant membrane hyperpolarization with a loss of membrane integrity. Moreover, CHQA induced an increase in membrane fluidity and conformational changes in membrane protein of S. aureus, suggesting that CHQA probably acts on the cell membrane by interactions with membrane lipid and protein. Transmission electron microscopic observations further confirmed that CHQA disrupted the cell membrane of S. aureus and caused severe morphological changes, which even led to leakage of intracellular constituents. These findings indicated that CHQA could have the potential to serve as a natural antibacterial agent to control and prevent the growth of pathogens in food and in food-processing environments.

  8. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity.

    PubMed

    Baig, Mirza Salman; Ahad, Abdul; Aslam, Mohammed; Imam, Syed Sarim; Aqil, Mohd; Ali, Asgar

    2016-04-01

    The aim of the present study was to develop and optimize levofloxacin loaded solid lipid nanoparticles for the treatment of conjunctivitis. Box-Behnken experimental design was applied for optimization of solid lipid nanoparticles. The independent variables were stearic acid as lipid (X1), Tween 80 as surfactant (X2) and sodium deoxycholate as co-surfactant (X3) while particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Further in vitro release and antibacterial activity in vitro were also performed. The optimized formulation of levofloxacin provides particle size of 237.82 nm and showed 78.71% entrapment efficiency and achieved flux 0.2,493 μg/cm(2)/h across excised goat cornea. In vitro release study showed prolonged drug release from the optimized formulation following Korsmeyer-Peppas model. Antimicrobial study revealed that the developed formulation possesses antibacterial activity against Staphylococcus aureus, and Escherichia coli equivalent to marketed eye drops. HET-CAM test demonstrated that optimized formulation was found to be non-irritant and safe for topical ophthalmic use. Our results concluded that solid lipid nanoparticles are an efficient carrier for ocular delivery of levofloxacin and other drugs.

  9. Pyridonecarboxylic acids as antibacterial agents. IX. Synthesis and structure-activity relationship of 3-substituted 10-(1-aminocyclopropyl)-9-fluoro-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]- 1,4-benzoxazine-6-carboxylic acids and their 1-thio and 1-aza analogues.

    PubMed

    Todo, Y; Takagi, H; Iino, F; Fukuoka, Y; Takahata, M; Okamoto, S; Saikawa, I; Narita, H

    1994-12-01

    A series of the title compounds listed in Chart 1 have been synthesized to study the effects of 3-alkyl substituents on the antibacterial potency and in vivo efficacy of 10-(1-aminocyclopropyl)-9-fluoro-7-oxo-2,3-dihydro-7H-pyrido[1,2,3 -de]-1,4-benzoxazine-6-carboxylic acid and its 1-thio and 1-aza variants. Compound (S)-1, which proved most active in vitro against five representative gram-positive and gram-negative organisms, was assayed in vivo using Staphylococcus aureus and Pseudomonas aeruginosa mouse infection models. It exhibited an excellent in vivo efficacy, being superior to ofloxacin and ciprofloxacin, and was then assayed for convulsion-inducing activity, mammalian cell cytotoxicity, and topoisomerase II inhibition. The biological results showed that (S)-1 displayed antibacterial and toxicological advantages over ofloxacin and ciprofloxacin. Compound (S)-1 and its methanesulfonate showed high serum concentrations after oral and intravenous administrations to mice.

  10. Antibacterial properties of nanoparticles.

    PubMed

    Hajipour, Mohammad J; Fromm, Katharina M; Ashkarran, Ali Akbar; Jimenez de Aberasturi, Dorleta; de Larramendi, Idoia Ruiz; Rojo, Teofilo; Serpooshan, Vahid; Parak, Wolfgang J; Mahmoudi, Morteza

    2012-10-01

    Antibacterial agents are very important in the textile industry, water disinfection, medicine, and food packaging. Organic compounds used for disinfection have some disadvantages, including toxicity to the human body, therefore, the interest in inorganic disinfectants such as metal oxide nanoparticles (NPs) is increasing. This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity. Such improved antibacterial agents locally destroy bacteria, without being toxic to the surrounding tissue. We also provide an overview of opportunities and risks of using NPs as antibacterial agents. In particular, we discuss the role of different NP materials.

  11. Antibacterial principles from Myristica fragrans seeds.

    PubMed

    Narasimhan, Balasubramanian; Dhake, Avinash S

    2006-01-01

    Nutmeg (Myristica fragrans) is used in food preparations for its aromatic flavor. The present investigation was undertaken to evaluate the antibacterial activity of constituents of M. fragrans seeds. Seeds of M. fragrans were powdered and extracted with chloroform to obtain trimyristin, which on saponification yielded myristic acid. The mother liquor remaining after separation of trimyristin was concentrated and column-chromatographed with petroleum ether to separate myristicin. Antibacterial activity of these isolated constituents was evaluated by determination of minimum inhibitory concentration against selected Gram-positive and Gram-negative organisms. All the constituents isolated from nutmeg exhibited good antibacterial activity. This study shows the potential of natural compounds in replacement of synthetic preservatives.

  12. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds

    PubMed Central

    Chohan, Zahid H.; Arif, M.; Akhtar, Muhammad A.; Supuran, Claudiu T.

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H2O)4]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)2(H2O)2] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed

  13. Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves.

    PubMed

    Zhang, Wei-Min; Wang, Wei; Zhang, Jing-Jing; Wang, Zhi-Rong; Wang, Yu; Hao, Wang-Jun; Huang, Wu-Yang

    2016-05-01

    Noni (Morinda citrifolia L.) is an edible and medicinal plant distributed in Hainan, China. The antibacterial activities of the extracts of water (WE), petroleum ether (PEE), ethyl acetate (EAE), chloroform (CE), and n-butanol (BE) were assayed by the disk diffusion method. The results showed that the extracts from Noni leaves possessed antibacterial effects against Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Staphylococcus aureus. Among 5 different extracts, the BE produced the best antibacterial activity. The samples were first extracted by ethanol, and the primary compounds in the BE fraction of ethanol extract was further isolated and identified. Six phenolic compounds, including 5, 15-dimethylmorindol, ferulic acid, p-hydroxycinamic acid, methyl 4-hydroxybenzoate, methyl ferulate, and methyl 4-hydroxycinnamate, were identifiedby NMR. The results indicated that the phenolic compounds might significantly contribute to antibacterial activities of Noni leaves.

  14. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly

    PubMed Central

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    Objectives The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. Methods In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. Results The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. Conclusions The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing

  15. Antibacterial multifilament nylon sutures.

    PubMed

    Singhal, J P; Singh, J; Ray, A R; Singh, H

    1991-01-01

    Multifilament nylon fibers were made antibacterial by dopping with iodine. Nylon fibers were immersed in acetone solution of iodine for 48 hours at room temperature for dopping of iodine. It was observed that iodine uptake by the nylon fibers increased with the increase in concentration of iodine in the solution. Antibacterial activity of these iodine dopped samples was evaluated by measuring the zone of inhibition. The bacterial species used for this study were Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Iodine dopped fibers exhibited good antibacterial activity against these bacterial species. Release of iodine in distilled water is sustained for about 30 days. Antibacterial activity of the fibers decreases with the release of iodine in water. Ultra-violet and visible spectroscopic studies showed that tri-iodide ions were released from the dopped samples in the aqueous medium. These I3- ions might be responsible for the observed antibacterial activity. Fiber shrinks on iodine dopping leading to increase in the denier of the fiber. However effect of iodine dopping on the breaking load of fibers is not significant.

  16. Antibacterial effects of glass ionomers.

    PubMed

    DeSchepper, E J; White, R R; von der Lehr, W

    1989-04-01

    Glass ionomer cements have been shown to possess antimicrobial activity. Proposed mechanisms of action include acidity and fluoride. It was the purpose of this study to determine the antimicrobial effect of 11 glass ionomer cements, their individual powder and liquid components and one resin-bonded liner containing high fluoride ionomer glass against Streptococcus mutans #6715. The role of fluoride and pH in the antibacterial activity was also studied. Using agar diffusion assay methodology, the following results were obtained. All of the glass ionomer cements were inhibitory against S. mutans. The antibacterial cements and slurries that were tested for fluoride, released the ion in excess of reported minimum inhibitory values. The antimicrobial activity of the liquid components, that were tested for the effects of pH changes, was totally lost when the pH was adjusted to 5. The resin bonded liner was inactive against S. mutans and did not release inhibitory concentrations of fluoride. These results indicate that freshly-mixed glass ionomer cements are antimicrobial against S. mutans and that the mechanism of action is probably a function of both fluoride and pH although additional factors may be involved.

  17. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers.

    PubMed

    Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier

    2017-03-01

    Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.

  18. [Antibacterial treatment: perspectives].

    PubMed

    Mihalache, Doina

    2004-01-01

    The aim of this paper is to search new antibacterial molecules for an efficient therapy. Thus the researches look for new categories of antibacterial molecules that will solve the current and future therapy problems, some of them being already used, others are still evaluated. Among these there are the new antibiotics (streptogramine, oxazolidinone, fluorochinolone and lipopeptides), enzymatic inhibitors (PDF), tubular peptides--nanotubes, cytokines pro- and anti-inflammatory drugs and preparations obtained through genetic engineering (anti-stress molecules, medicines that inhibit the lipid metabolism of the macro-organisms persisting in macrophages or gene mutation pca A, that enables the immunologic recognition of'the tubercle bacillus).

  19. Antibacterial clerodane diterpenes from Goldenrod (Solidago virgaurea).

    PubMed

    Starks, Courtney M; Williams, Russell B; Goering, Matt G; O'Neil-Johnson, Mark; Norman, Vanessa L; Hu, Jin-Feng; Garo, Eliane; Hough, Grayson W; Rice, Stephanie M; Eldridge, Gary R

    2010-01-01

    Nine clerodane diterpenes, solidagoic acids C-I (1-7), cleroda-3,13(14)-dien-16,15:18,19-diolide (8) and cleroda-3,13(14)-dien-15,16:18,19-diolide (9) were isolated and characterised from the ethanol-ethyl acetate (1:1) extract of Solidago virgaurea. The structures were determined by NMR spectroscopic analysis. Several displayed moderate antibacterial activity against Staphylococcus aureus. 2009 Elsevier Ltd. All rights reserved.

  20. Antibacterials from the sea.

    PubMed

    Hughes, Chambers C; Fenical, William

    2010-11-08

    The ocean contains a host of macroscopic life in a great microbial soup. Unlike the terrestrial environment, an aqueous environment provides perpetual propinquity and blurs spatial distinctions. Marine organisms are under a persistent threat of infection by resident pathogenic microbes including bacteria, and in response they have engineered complex organic compounds with antibacterial activity from a diverse set of biological precursors. The diluting effect of the ocean drives the construction of potent molecules that are stable to harsh salty conditions. Members of each class of metabolite-ribosomal and non-ribosomal peptides, alkaloids, polyketides, and terpenes-have been shown to exhibit antibacterial activity. The sophistication and diversity of these metabolites points to the ingenuity and flexibility of biosynthetic processes in Nature. Compared with their terrestrial counterparts, antibacterial marine natural products have received much less attention. Thus, a concerted effort to discover new antibacterials from marine sources has the potential to contribute significantly to the treatment of the ever increasing drug-resistant infectious diseases.

  1. Antibacterials from the Sea

    PubMed Central

    Hughes, Chambers C.; Fenical, William

    2011-01-01

    The ocean contains a host of macroscopic life in a great microbial soup. Unlike the terrestrial environment, an aqueous environment provides perpetual propinquity and blurs spatial distinctions. Marine organisms are under a persistent threat of infection by resident pathogenic microbes including bacteria, and in response they have engineered complex organic compounds with antibacterial activity from a diverse set of biological precursors. The diluting effect of the ocean drives the construction of potent molecules that are stable to harsh salty conditions. Members of each class of metabolite—ribosomal and non-ribosomal peptides, alkaloids, polyketides, and terpenes—have been shown to exhibit antibacterial activity. The sophistication and diversity of these metabolites points to the ingenuity and flexibility of biosynthetic processes in Nature. Compared with their terrestrial counterparts, antibacterial marine natural products have received much less attention. Thus, a concerted effort to discover new antibacterials from marine sources has the potential to contribute significantly to the treatment of the ever increasing drug-resistant infectious diseases. PMID:20845412

  2. Should antibacterials be deregulated?

    PubMed

    Rovira, J; Figueras, M; Segú, J L

    1998-05-01

    Deregulation of antibacterials is a recurrent topic in the debate on pharmaceutical policy. This article focuses on one aspect of pharmaceutical regulation, namely the requirement of a medical prescription for purchasing antibacterials. However, a strategy of deregulation should not only concern the switch from prescription-only status to nonprescription status for a given drug, but should consider some complementary measures to minimise potentially harmful effects on health and costs. Risk-benefit and economic evaluations, which are possible approaches to assess the convenience of antibacterial deregulation, force the empirical evidence, the assumptions, as well as the value judgements on which the options are evaluated, to be made explicit. We outline the basic traits of an economic-evaluation approach to assess the issues related to the public interest and the feasibility of a deregulation policy. However, the answer cannot be a generic one, but should address the question for each particular country, and for each antibacterial and indication. Given the limitations of existing evidence on that issue, a tentative research agenda is also proposed.

  3. Antibacterial activity of antibacterial cutting boards in household kitchens.

    PubMed

    Kounosu, Masayuki; Kaneko, Seiichi

    2007-12-01

    We examined antibacterial cutting boards with antibacterial activity values of either "2" or "4" in compliance with the JIS Z 2801 standard, and compared their findings with those of cutting boards with no antibacterial activity. These cutting boards were used in ten different households, and we measured changes in the viable cell counts of several types of bacteria with the drop plate method. We also identified the detected bacterial flora and measured the minimum antimicrobial concentrations of several commonly used antibacterial agents against the kinds of bacteria identified to determine the expected antibacterial activity of the respective agents. Cutting boards with activity values of both "2" and "4" proved to be antibacterial in actual use, although no correlation between the viable cell counts and the antibacterial activity values was observed. In the kitchen environment, large quantities of Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were detected, and it was confirmed that common antibacterial agents used in many antibacterial products are effective against these bacterial species. In addition, we measured the minimum antimicrobial concentrations of the agents against lactobacillus, a typical good bacterium, and discovered that this bacterium is less sensitive to these antibacterial agents compared to more common bacteria.

  4. Preparation, spectroscopic and antibacterial studies on charge-transfer complexes of 2-hydroxypyridine with picric acid and 7,7‧,8,8‧-tetracyano-p-quinodimethane

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Amin, Alaa S.

    2015-06-01

    The reactions of electron acceptors such as picric acid (HPA) and 7,7‧,8,8‧-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains.

  5. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  6. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against Gram-negative bacteria.

    PubMed

    Tan, Juanjuan; Huang, Jinfeng; Huang, Yibing; Chen, Yuxin

    2014-07-24

    An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu) were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities.

  7. Fast Screening of Antibacterial Compounds from Fusaria

    PubMed Central

    Sondergaard, Teis Esben; Fredborg, Marlene; Oppenhagen Christensen, Ann-Maria; Damsgaard, Sofie K.; Kramer, Nikoline F.; Giese, Henriette; Sørensen, Jens Laurids

    2016-01-01

    Bio-guided screening is an important method to identify bioactive compounds from fungi. In this study we applied a fast digital time-lapse microscopic method for assessment of the antibacterial properties of secondary metabolites from the fungal genus Fusarium. Here antibacterial effects could be detected for antibiotic Y, aurofusarin, beauvericin, enniatins and fusaric acid after six hours of cultivation. The system was then used in a bio-guided screen of extracts from 14 different Fusarium species, which had been fractionated by HPLC. In this screen, fractions containing the red pigments aurofusarin and bikaverin showed effects against strains of Lactobacillus and Bifidobacterium. The IC50 for aurofusarin against Lactobacillus acidophilus was 8 µM, and against Bifidobacterium breve it was 64 µM. Aurofusarin only showed an effect on probiotic bacteria, leading to the speculation that only health-promoting bacteria with a positive effect in the gut system are affected. PMID:27916854

  8. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark.

    PubMed

    Li, Wen-Hsin; Chang, Shang-Tzen; Chang, Shan-Chwen; Chang, Hui-Ting

    2008-01-01

    The aims of the present study were to determine the antibacterial activity of bark extract of Cryptomeria japonica D. Don and to isolate potential antibacterial constituents. The results showed that the ethanolic extract of C. japonica bark possessed a good antibacterial activity. Nine compounds including seven diterpenoids (ferruginol (I), isopimaric acid (II), iguestol (III), isopimarol (IV), phyllocladan-16alpha-ol (V), sandaracopimarinol (VI) and sugiol (VII)) and two steroids (beta-sitosterol (VIII) and beta-sitostenone (IX)) were isolated from active subfractions; beta-sitostenone was isolated for the first time from this plant. Among these compounds, ferruginol possessed the strongest antibacterial activity and had MIC values ranging from 6.3 to 12.5 microg mL(-1) against all bacteria tested. Isopimaric acid was also an antibacterial natural product. Cryptomeria japonica bark extract and its diterpenoids, ferruginol and isopimaric acid, have the ability to inhibit the bacterial growth and can be used as the source for natural bactericides.

  9. Challenges of Antibacterial Discovery

    PubMed Central

    Silver, Lynn L.

    2011-01-01

    Summary: The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort. PMID:21233508

  10. Antibacterial Applications of Nanodiamonds.

    PubMed

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-04-12

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities.

  11. Antibacterial Applications of Nanodiamonds

    PubMed Central

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-01-01

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities. PMID:27077871

  12. Existing antibacterial vaccines.

    PubMed

    Mendoza, Natalia; Ravanfar, Parisa; Satyaprakash, Anita; Satyaprakah, Anita; Pillai, Sivaprabha; Creed, Rosella

    2009-01-01

    There are countless bacterial pathogens that cause disease in humans. Many of these bacterial infections not only cause significant morbidity and mortality in the human population but also cause a significant economic impact on society. Vaccines allow for reduction and potential eradication of such diseases. This article will review the currently approved antibacterial vaccines, which are vaccines for pertussis, tetanus, diphtheria, meningococcus, pneumococcus, Haemophilus influenza, cholera, typhoid, and anthrax.

  13. X-ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophore antibiotic Lasalocid acid and amines

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Rutkowski, Jacek; Wietrzyk, Joanna; Stefańska, Joanna; Maj, Ewa; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil; Bartl, Franz

    2013-01-01

    Two new complexes of the ionophore antibiotic Lasalocid acid (LAS) with phenylamine (PhA) and butylamine (BuA) were synthesized and their molecular structures were studied using single crystal X-ray diffraction and spectroscopic methods. In the solid state both amines are protonated and all NH3+ protons are hydrogen bonded to etheric, hydroxyl and carboxylic oxygen atoms of the LAS anion. In chloroform solutions the structure observed in the crystal of LAS-BuA complex is preserved and an equilibrium between the LAS-PhA complex and dissociated Lasalocid acid and phenylamine is observed. In vitro antimicrobial tests of the complexes showed a significant activity towards some strains of Gram-positive bacteria. For the first time Lasalocid acid and its complexes with amines were tested in vitro for cytotoxic activity against human cancer cell lines: A-549 (lung), MCF-7 (breast), HT-29 (colon) and mouse cancer cell line P-388 (leukemia). We found that LAS and its complexes are strong cytotoxic agents towards all tested cell lines. The cytostatic activity of the compounds studied is greater than that of cisplatin, indicating that Lasalocid and its complexes are promising candidates for new anticancer drugs.

  14. Pharmacoeconomics of antibacterial treatment.

    PubMed

    Davey, P G; Malek, M M; Parker, S E

    1992-06-01

    Antibacterial drugs account for between 3 and 25% of all prescriptions, between 6 and 21% of the total market value of drugs in a single country, and up to 50% of the drug budget in hospitals. Bacterial infection is widely perceived as disease caused by harmful outside agents which can be isolated and tested to select the best drug for treatment. In fact, the need for any treatment and the pros and cons of different drugs are just as debatable as in any other therapeutic area. Moreover, the bacteria which make up the normal flora of the body fulfil important roles, so that the ecological implications of treatment for the individual and for society should be considered in assessing the costs and consequences of antibacterial treatment. In this review we outline the most important issues relating to the treatment of bacterial infection in the community and in the hospital, contrasting information from developed and developing countries where appropriate. We review the existing literature on economic evaluation, but in general most of the literature deals with containing the costs of antibacterial drugs in hospitals, and there are many gaps in the literature on cost-effectiveness of treatment. Consequently there are still extreme variations in medical practice which present a challenge for future evaluation. As the outcomes of antibacterial treatment are apparent in a few weeks or months, this is an ideal field for testing pharmacoeconomic methodology. The desire to overcome medical practice variation through consensus statements should be avoided. Instead we recommend wider application of decision analysis to acknowledge that choices exist for the diagnosis and treatment of bacterial infection and to gather information about the implications of these choices. Much of the existing literature would be improved by a more explicit definition of costs. Direct costs to the health services should be distinguished from non medical costs. Moreover, the analysis should

  15. Antibacterial action of new antibacterial peptides, Nod1 and Nod2, isolated from Nordotis discus discus.

    PubMed

    Park, Seong-Cheol; Kim, Jin-Young; Lee, Jong-Kook; Hahm, Kyung-Soo; Park, Yoonkyung

    2012-07-11

    Abalone is a valuable seafood in the aquaculture industry worldwide as it is rich in protein. However, to date, research on the functional proteins of abalone is lacking. Herein, we report two peptides with antibacterial activity from Nordotis discus discus . The purification of peptides was performed by solvent extraction, ultrafiltration, and reverse-phase high performance liquid chromatography. The N-terminal amino acid sequences of the isolated antibacterial peptides, named as Nod1 and Nod2, were identified by Edman degradation and did not show any similarity to other proteins and peptides in databases based on results of BLAST homology analysis. Molecular masses of Nod1 and Nod2 were 6145.06 and 6360.07 Da, respectively, as determined by mass spectrometric analysis. The two peptides displayed pH-dependent antibacterial activity against various bacteria that was more potent at pH 5.4 than pH 7.4, but they did not inhibit fungal growth at either pH levels. Their antibacterial activity was due to membranolytic action, which was assayed by SYTOX-green uptake. In addition, both peptides were virtually noncytolytic for human erythrocytes and mammalian cells.

  16. Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system.

    PubMed

    Gadang, V P; Hettiarachchy, N S; Johnson, M G; Owens, C

    2008-10-01

    The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 10(6) CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 degrees C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 degrees C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 degrees C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready-to-eat poultry products.

  17. Substrate independent silver nanoparticle based antibacterial coatings.

    PubMed

    Taheri, Shima; Cavallaro, Alex; Christo, Susan N; Smith, Louise E; Majewski, Peter; Barton, Mary; Hayball, John D; Vasilev, Krasimir

    2014-05-01

    Infections arising from bacterial adhesion and colonization on medical device surfaces are a significant healthcare problem. Silver based antibacterial coatings have attracted a great deal of attention as a potential solution. This paper reports on the development of a silver nanoparticles based antibacterial surface that can be applied to any type of material surface. The silver nanoparticles were surface engineered with a monolayer of 2-mercaptosuccinic acid, which facilitates the immobilization of the nanoparticles to the solid surface, and also reduces the rate of oxidation of the nanoparticles, extending the lifetime of the coatings. The coatings had excellent antibacterial efficacy against three clinically significant pathogenic bacteria i.e. Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa. Studies with primary human fibroblast cells showed that the coatings had no cytotoxicity in vitro. Innate immune studies in cultures of primary macrophages demonstrated that the coatings do not significantly alter the level of expression of pro-inflammatory cytokines or the adhesion and viability of these cells. Collectively, these coatings have an optimal combination of properties that make them attractive for deposition on medical device surfaces such as wound dressings, catheters and implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Antibacterial activities of antineoplastic agents.

    PubMed Central

    Bodet, C A; Jorgensen, J H; Drutz, D J

    1985-01-01

    Fourteen antineoplastic agents were examined for in vitro antibacterial activity against 101 aerobic and anaerobic bacterial isolates representing indigenous human microflora and selected opportunistic pathogens. Only 5-fluorouracil, mitomycin, and etoposide demonstrated inhibitory effects at achievable plasma concentrations, while the remaining drugs lacked appreciable antibacterial activities. PMID:2416271

  19. Antibacterial ent-kaurene from Brazilian propolis of native stingless bees.

    PubMed

    Velikova, M; Bankova, V; Tsvetkova, I; Kujumgiev, A; Marcucci, M C

    2000-12-01

    Three ent-kaurene diterpenoids, not previously described as constituents of propolis, were isolated from a sample collected by Brazilian native bees Melipona quadrifasciata anthidioides. One of them, kaurenoic acid, as well as the total extract, displayed moderate antibacterial activity.

  20. Purification, Biochemical Characterization, and Amino Acid Sequence of a Novel Type of Lectin from Aplysia dactylomela Eggs with Antibacterial/Antibiofilm Potential.

    PubMed

    Carneiro, Rômulo Farias; Torres, Renato Cézar Farias; Chaves, Renata Pinheiro; de Vasconcelos, Mayron Alves; de Sousa, Bruno Lopes; Goveia, André Castelo Rodrigues; Arruda, Francisco Vassiliepe; Matos, Maria Nágila Carneiro; Matthews-Cascon, Helena; Freire, Valder Nogueira; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda

    2017-02-01

    A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 10(6) M(-1)). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.

  1. X-ray, spectroscopic and antibacterial activity studies of the 1:1 complex of lasalocid acid with 1,1,3,3-tetramethylguanidine

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Stefańska, Joanna; Rutkowski, Jacek; Brzezinski, Bogumil

    2010-08-01

    The crystal structure of the 1:1 complex between lasalocid acid (LAS) and 1,1,3,3-tetramethylguanidine (TMG) with one inclusion acetone molecule is studied by X-ray diffraction, FT-IR spectroscopy, 1H and 13C NMR. The complex is stabilized by three intra- and two inter-molecular hydrogen bonds formed between LAS anion and protonated TMG molecule. The NH2+ protons of the protonated TMG molecule are hydrogen bonded with the etheric oxygen atom O(6) and the hydroxyl oxygen atom O(8) of the LAS anion. The intermolecular NH⋯O hydrogen bonds are relatively long (2.933(4) Å and 2.903(4) Å). One oxygen atom of the carboxylate group is involved in a relatively strong intramolecular quasi-aromatic O(1)-H⋯O(3) hydrogen bond of 2.428(4) Å length, and the second oxygen atom in the bifurcated intramolecular relatively weak O(4)-H⋯O(2) of 2.803(4) Å and O(8)-H⋯O(2) of 2.805(4) Å hydrogen bonds. The O(4)-H⋯O(2) and O(8)-H⋯O(2) hydrogen bonds bind the ends of the LAS anion forming a pseudo-cyclic structure. The FT-IR spectra of the complex in the solid state and in the solution are comparable, thus the structures observed in the both states are also comparable. The in vitro biological tests of LAS-TMG show its good activity towards some strains of Gram-positive bacteria but this activity is lower than that of lasalocid acid.

  2. Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Lee, Dae-Sung; Eom, Sung-Hwan; Kim, Young-Mog; Kim, Hye Seon; Yim, Mi-Jin; Lee, Sang-Hoon; Kim, Do-Hyung; Je, Jae-Young

    2014-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is spreading worldwide, emphasizing the need to search for new antibiotics. The anti-MRSA activities of gallic acid-grafted-chitosans (GA-g-chitosans) were investigated against 2 MRSA standards and 10 MRSA clinical isolates by determining the minimum inhibitory concentrations (MICs). GA-g-chitosan (I), which has the highest gallic acid content, exhibited the strongest anti-MRSA activities, with MICs of 32-64 μg/mL. A time-kill investigation revealed that GA-g-chitosan (I) exhibited a bactericidal effect at twice the MIC, also demonstrating good thermal and pH stability. Investigation of cell envelope integrity showed the release of intracellular components with an increasing absorbance value at 260 nm, indicating cell envelope damage caused by the GA-g-chitosan (I), which was further confirmed by transmission electron microscopy. When GA-g-chitosans were combined with β-lactams, including ampicillin and penicillin, synergistic effects were observed on the 2 standard MRSA strains and on the 10 clinical isolates, with fractional inhibitory indices ranging from 0.125 to 0.625. In the time-kill dynamic confirmation test, synergistic bactericidal effects were observed for the combinations of GA-g-chitosans with β-lactams, and over 4.0 log CFU/mL reductions were observed after 24 h when combination treatment was used. These results may prove GA-g-chitosans to be a potent agent when combined with ampicillin and penicillin for the elimination of MRSA.

  3. Carbon Nanomaterials as Antibacterial Colloids

    PubMed Central

    Maas, Michael

    2016-01-01

    Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials. PMID:28773737

  4. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  5. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids

    PubMed Central

    van Beilen, Johan W. A.; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5′ end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0–7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations. PMID:23785365

  6. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids.

    PubMed

    van Beilen, Johan W A; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.

  7. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Dani, R. K.; Kushawaha, S. K.; Prakash, Om; Singh, Ranjan K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.

    2015-06-01

    Two new compounds N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal.

  8. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester.

    PubMed

    Bharty, M K; Dani, R K; Kushawaha, S K; Prakash, Om; Singh, Ranjan K; Sharma, V K; Kharwar, R N; Singh, N K

    2015-06-15

    Two new compounds N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper(II) complexes of the antibacterial drug nalidixic acid.

    PubMed

    Loganathan, Rangasamy; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Muruganantham, Amsaveni; Ghosh, Swapan K; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2017-09-01

    The water soluble mixed ligand complexes [Cu(nal)(diimine)(H2O)](ClO4) 1-4, where H(nal) is nalidixic acid and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. The coordination geometry around Cu(II) in 1 and that in the Density Functional Theory optimized structures of 1-4 has been assessed as square pyramidal. The trend in DNA binding constants (Kb) determined using absorption spectral titration (Kb: 1, 0.79±0.1<2, 1.06±0.1<3, 1.79±0.2<4, 1.84±0.2×10(5)M(-1)) is in line with that (Kapp) determined by competitive ethidium bromide binding studies. The large red-shift (10nm) observed for 2 suggests that the phen co-ligand is stacked with a frayed DNA base pair. In contrast, 3 and 4 are involved in intimate hydrophobic interaction with DNA through the methyl substituents on phen ring, which is supported by viscosity and protein binding studies. DNA docking studies imply that 4 is involved preferentially in DNA major groove binding while 1-3 in minor groove binding and that all the complexes, upon removing the axially coordinated water molecule, bind in the major groove. Interestingly, 3 and 4 display prominent double-strand DNA cleavage while 1 and 2 effect only single-strand DNA cleavage in the absence of an activator. The complexes 3 and 4 show cytotoxicity higher than 1 and 2 against human breast cancer cell lines (MCF-7). The complex 4 induces apoptotic mode of cell death in cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Antibacterial activity of various leaf extracts of Merremia emarginata

    PubMed Central

    Elumalai, EK; Ramachandran, M; Thirumalai, T; Vinothkumar, P

    2011-01-01

    Objective To investigate the antibacterial activity and phytochemical screening of the aqueous, methanol and petroleum ether leaf extracts of Merremia emarginata (M. emarginata). Methods The antibacterial activity of leaf extracts of M. emarginata were evaluated by agar well diffusion method against four selected bacterial species. Results The presence of tannins, flavonoids, amino acids, starch, glycosides and carbohydrates in the different leaf extracts was established. The methanol extract was more effective against Bacillus cereus and Escherichia coli, whereas aqueous extract was more effective against Staphylococcus aureus and Pseudomonas aeruginosa. Conclusions : The results in the present study suggest that M. emarginata leaf can be used in treating diseases caused by the tested organisms. PMID:23569802

  11. Antibacterial properties of compounds isolated from Carpobrotus edulis.

    PubMed

    Martins, A; Vasas, A; Viveiros, M; Molnár, J; Hohmann, J; Amaral, L

    2011-05-01

    Several compounds isolated from the plant Carpobrotus edulis were evaluated for their activity against multidrug-resistant (MDR) bacteria and their efflux pump systems. Amongst the compounds isolated, six compounds were tested, namely uvaol, β-amyrin, oleanolic acid, catechin, epicatechin and monogalactosyldiacylglycerol. Oleanolic acid presented high antibacterial activity against a large number of bacterial strains. The triterpene uvaol was the most active compound for modulation of efflux activity by MDR Gram-positive strains.

  12. Characterization and antibacterial properties of porous fibers containing silver ions

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  13. Characterization of a possible uptake mechanism of selective antibacterial peptides.

    PubMed

    Polanco, Carlos; Samaniego, José Lino; Castañón-González, Jorge Alberto; Buhse, Thomas; Sordo, Marili Leopold

    2013-01-01

    Selective antibacterial peptides containing less than 30 amino acid residues, cationic, with amphipathic properties, have been the subject of several studies due to their active participation and beneficial effects in strengthening the immune system of all living organisms. This manuscript reports the results of a comparison between the group of selective antibacterial peptides and another group called "cell penetrating peptides". An important number of the selective antibacterial peptides are cell penetrating peptides, suggesting that their toxicity is related to their uptake mechanism. The verification of this observation also includes the adaptation of a method previously published, called Polarity index, which reproduces and confirms the action of this new set of peptides. The efficiency of this method was verified based on four different databases, yielding a high score. The verification was based exclusively on the peptides already reported in the databases which have been experimentally verified.

  14. Antibacterial polyelectrolyte-coated Mg alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Seraz, Md. S.; Asmatulu, R.; Chen, Z.; Ceylan, M.; Mahapatro, A.; Yang, S. Y.

    2014-04-01

    This study deals with two biomedical subjects: corrosion rates of polyelectrolyte-coated magnesium (Mg) alloys, mainly used for biomedical purposes, and antibacterial properties of these alloys. Thin sheets of Mg alloys were coated with cationic polyelectrolyte chitosan (CHI) and anionic polyelectrolyte carboxymethyl cellulose (CMC) using a layer-by-layer coating method and then embedded with antibacterial agents under vacuum. Electrochemical impedance spectroscopy was employed to analyze these samples in order to detect their corrosion properties at different conditions. In the electrochemical analysis section, a corrosion rate of 72 mille inches per year was found in a salt solution for the sample coated with a 12 phosphonic acid self-assembled monolayer and 9 CHI/CMC multilayers. In the antibacterial tests, gentamicin was used to investigate the effects of the drug embedded with the coated surfaces against the Escherichia coli (E. coli) bacteria. Antibacterial studies were tested using the disk diffusion method. Based on the standard diameter of the zone of inhibition chart, the antibacterial diffusion from the surface strongly inhibited bacterial growth in the regions. The largest recorded diameter of the zone of inhibition was 50 mm for the pre-UV treated and gentamicin-loaded sample, which is more than three times the standard diameter.

  15. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area

    PubMed Central

    Sotiriou, Georgios A.; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E.

    2013-01-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  16. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  17. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara.

    PubMed

    Zeng, Wei-Cai; He, Qiang; Sun, Qun; Zhong, Kai; Gao, Hong

    2012-02-01

    The antibacterial activity of water-soluble extract from pine needles of Cedrus deodara (WEC) was evaluated on five food-borne bacteria, and its related mechanism was investigated by transmission electron microscope. In vitro antibacterial assay showed that WEC possesses a remarkable antibacterial activity against tested food-borne bacteria including Escherichia coli, Proteus vulgaris, Staphylococcus aureus, Bacillus subtilis and Bacillus cereus, with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values in the ranges of 0.78-12.5 mg/ml and 1.56-25mg/ml, respectively. In a food system of fresh-squeezed tomato juice, WEC was observed to possess an effective capacity to control the total counts of viable bacteria. Shikimic acid was isolated from WEC and identified as the main antibacterial compound. All results of our study suggested that WEC might be a new potential source of natural antibacterial agents applicable to food.

  18. Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models.

    PubMed

    Polanco, Carlos; Samaniego, Jose L

    2009-01-01

    Antibacterial peptides are researched mainly for the potential benefit they have in a variety of socially relevant diseases, used by the host to protect itself from different types of pathogenic bacteria. We used the mathematical-computational method known as Hidden Markov models (HMMs) in targeting a subset of antibacterial peptides named Selective Cationic Amphipatic Antibacterial Peptides (SCAAPs). The main difference in the implementation of HMMs was focused on the detection of SCAAP using principally five physical-chemical properties for each candidate SCAAPs, instead of using the statistical information about the amino acids which form a peptide. By this method a cluster of antibacterial peptides was detected and as a result the following were found: 9 SCAAPs, 6 synthetic antibacterial peptides that belong to a subregion of Cecropin A and Magainin 2, and 19 peptides from the Cecropin A family. A scoring function was developed using HMMs as its core, uniquely employing information accessible from the databases.

  19. Antibacterial Metallic Touch Surfaces

    PubMed Central

    Villapún, Victor M.; Dover, Lynn G.; Cross, Andrew; González, Sergio

    2016-01-01

    Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field. PMID:28773856

  20. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents.

    PubMed

    Matos, Maria J; Vazquez-Rodriguez, Saleta; Santana, Lourdes; Uriarte, Eugenio; Fuentes-Edfuf, Cristina; Santos, Ysabel; Muñoz-Crego, Angeles

    2013-01-24

    A new series of amino/nitro-substituted 3-arylcoumarins were synthesized and their antibacterial activity against clinical isolates of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) was evaluated. Some of these molecules exhibited antibacterial activity against S. aureus comparable to the standards used (oxolinic acid and ampicillin). The preliminary structure-activity relationship (SAR) study showed that the antibacterial activity against S. aureus depends on the position of the 3-arylcoumarin substitution pattern. With the aim of finding the structural features for the antibacterial activity and selectivity, in the present manuscript different positions of nitro, methyl, methoxy, amino and bromo substituents on the 3-arylcoumarin scaffold were reported.

  1. Antibacterial resistance: an emerging 'zoonosis'?

    PubMed

    Labro, Marie-Thérèse; Bryskier, Jean-Marie

    2014-12-01

    Antibacterial resistance is a worldwide threat, and concerns have arisen about the involvement of animal commensal and pathogenic bacteria in the maintenance and spread of resistance genes. However, beyond the facts related to the occurrence of resistant microorganisms in food, food-producing animals and companion animals and their transmission to humans, it is important to consider the vast environmental 'resistome', the selective pathways underlying the emergence of antibacterial resistance and how we can prepare answers for tomorrow.

  2. Antibacterial products of marine organisms.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Bekhit, Adnan A; Bekhit, Alaa El-Din

    2015-05-01

    Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.

  3. Antibacterial activities of tellurium nanomaterials.

    PubMed

    Lin, Zong-Hong; Lee, Chia-Hsin; Chang, Hsin-Yun; Chang, Huan-Tsung

    2012-05-01

    We prepared four differently shaped Te nanomaterials (NMs) as antibacterial reagents against Escherichia coli. By controlling the concentrations of hydrazine (N(2)H(4)) as reducing agent, NaCl, and temperature, we prepared Te nanowires, nanopencils, nanorices, and nanocubes. These four Te NMs resulted in a live/dead ratio of E. coli cells of less than 0.1, which is smaller than that of Ag nanoparticles. The order of antibacterial activity against E. coli is nanocubes ≈ nanorices > nanopencils ≈ nanowires. This is in good agreement with the concentration order of tellurite (TeO(3)(2-)) ions released from Te NMs in E. coli cells, revealing that TeO(3)(2-) ions account for the antibacterial activity of the four Te NMs. We found that spherical Te nanoparticles (32 nm in diameter) with TeO(3)(2-) ions were formed in the E. coli cells. Compared to Ag nanoparticles that are commonly used as antibacterial reagents, Te NMs have higher antibacterial activity and lower toxicity. Thus, Te NMs hold great practical potential as a new and efficient antibacterial agent.

  4. Biomolecule-based antibacterial coating on a stainless steel surface: multilayer film build-up optimization and stability study.

    PubMed

    Vreuls, C; Zocchi, G; Vandegaart, H; Faure, E; Detrembleur, C; Duwez, Anne-Sophie; Martial, J; Van De Weerdt, C

    2012-01-01

    The goal of this paper was to establish the durability profile of antibacterial multilayer thin films under storage and usage conditions. Thin films were built on stainless steel (SS) by means of a layer-by-layer process alternating a negatively charged polyelectrolyte, polyacrylic acid, with a cationic antibacterial peptide, nisin. SS coupons coated with the antibacterial film were challenged under environmental and usage conditions likely to be encountered in real-world applications. The change in antibacterial activity elicited by the challenge was used as an indicator of multilayer film resistance. Antibacterial SS samples could be stored for several weeks at 4°C in ambient air and antibacterial films were resistant to dipping and mild wiping in water and neutral detergent. The multilayer coating showed some weaknesses, however, that need to be addressed.

  5. Design, Synthesis, Molecular Docking, and Antibacterial Evaluation of Some Novel Flouroquinolone Derivatives as Potent Antibacterial Agent

    PubMed Central

    Patel, Mehul M.; Patel, Laxman J.

    2014-01-01

    Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl)-2-(substituted)-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT) by Schrodinger's Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections. PMID:25574496

  6. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  7. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  8. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  9. Antibacterial activity of amphiphilic tobramycin.

    PubMed

    Dhondikubeer, Ramesh; Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2012-10-01

    Amphiphilic aminoglycoside antimicrobials are an emerging class of new antibacterial agents with novel modes of action. Previous studies have shown that amphiphilic neomycin-B and kanamycin-A analogs restore potent antibacterial activity against Gram-positive neomycin-B- and kanamycin-A-resistant organisms. In this paper, we investigated the antibacterial properties of a series of amphiphilic tobramycin analogs. We prepared tobramycin-lipid conjugates, as well as tobramycin-peptide triazole conjugates, and studied their antibacterial activities against a panel of Gram-positive and Gram-negative bacterial strains, including isolates obtained from Canadian hospitals. Our results demonstrate that the antibacterial activity of amphiphilic tobramycin is greatly affected by the length and nature of the hydrophobic lipid tail, whereas the nature of the polycationic headgroup or the number of cationic charges appear to be less important. Replacement of the hydrophobic tail by a fluorinated lipid confers good activity against two Pseudomonas strains and reduces hemolytic activity. However, susceptibility studies in the presence of bovine serum albumin indicate that all amphiphilic tobramycin analogs are strongly protein-bound, leading to a typical four- to eight-fold increase in MIC.

  10. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  11. Antibacterial surface design - Contact kill

    NASA Astrophysics Data System (ADS)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  12. Substituted hydroxyapatites with antibacterial properties.

    PubMed

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.

  13. [Antibacterial spectrum of lisosubtilin G10X].

    PubMed

    Biziuliavichius, G A; Shablinskas, A I; Zhukaĭte, V P; Kislukhina, O V

    1989-08-01

    Data on the antibacterial spectrum of lysosubtilin G10X, a preparation of lytic enzymes from Bacillus subtilis SK-52 are presented. Lysosubtilin was active against grampositive and gramnegative pathogenic bacteria. When it was used as a substrate of live lyophilized microbial cells the highest lysis levels were observed in B. brevis, B. cereus, B. pumilis, B. subtilis and S. faecalis. Preincubation of the substrate in acid media mainly increased the levels of the lysis by enzyme preparation. Sometimes the increase was very high (B. sphaericus, B. subtilis 720, E. coli K12 and MRE-600). Such a preincubation provided cell lysis in some strains not liable to the effect of lysosubtilin (B. cereus 1312, C. renale, M. luteus, S. aureus KP, 800, 805 and 126001, S. pyogenes 291). An increase in the lysosubtilin concentration in the reaction mixture in the majority of the cases did not provide favourable results. However, some strains resistant to the preparation at a concentration of 1000 units/ml were lysed with its 10 times higher doses. An increase in the lysis level was also achieved with increasing the time of the incubation with the enzyme preparation. Proceeding from the preparation antibacterial spectrum it is possible to recommend it for treatment of diseases in agricultural animals. Its use in veterinary was a success.

  14. Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae).

    PubMed

    Hess, S C; Brum, R L; Honda, N K; Cruz, A B; Moretto, E; Cruz, R B; Messana, I; Ferrari, F; Cechinel Filho, V; Yunes, R A

    1995-07-07

    Vochysia divergens Pohl (Vochysiaceae) is a tree commonly found in wet soils of 'Pantanal' of Mato Grosso, Brazil, and used in folk medicine against infections and asthma. We have studied different extracts and some isolated compounds from this plant for antibacterial activity. From the extracts of the stem bark beta-sitosterol, betulinic acid and sericic acid were isolated. The minimal inhibitory concentration (MIC) for Staphylococcus aureus were: ethanolic extract (MIC = 1.5 mg/ml); ethyl acetate extract (MIC = 2.0 mg/ml); and sericic acid (MIC = 1.0 mg/ml). Escherichia coli was resistant until 5 mg/ml.

  15. Mur Ligase Inhibitors as Anti-bacterials: A Comprehensive Review.

    PubMed

    Sangshetti, Jaiprakash N; Joshi, Suyog S; Patil, Rajendra H; Shinde, Devanand B

    2017-02-14

    Exploring a new target for antibacterial drug discovery has gained much attention because of the emergence of Multidrug Resistance (MDR) strains of bacteria. To overcome this problem the development of novel antibacterial was considered as highest priority task and was one of the biggest challenges since multiple factors were involved. The bacterial peptidoglycan biosynthetic pathway has been well documented in the last few years and has been found to be an imperative source for the development of novel antibacterial agents with high target specificity as they are essential for bacterial survival and have no homologs in humans. We have therefore reviewed the process of peptidoglycan biosynthesis which involves various steps like formation of UDP-N-acetylglucosamine (GlcNAc), UDP-N-acetylmuramic acid (MurNAc) and lipid intermediates (Lipid I and Lipid II) which are controlled by various enzymes like GlmS, GlmM, GlmU enzyme, followed by Mur Ligases (MurA-MurF) and finally by MraY and MurG respectively. These four amide ligases MurC-MurF can be used as the source for the development of novel multi-target antibacterial agents as they shared and conserved amino acid regions, catalytic mechanisms and structural features. This review begins with the need for novel antibacterial agents and challenges in their development even after the development of bacterial genomic studies. An overview of the peptidoglycan monomer formation, as a source of disparity in this process is presented, followed by detailed discussion of structural and functional aspects of all Mur enzymes and different chemical classes of their inhibitors along with their SAR studies and inhibitory potential. This review finally emphasizes on different patents and novel Mur inhibitors in the development phase. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Prophylactic antibacterial therapy for preventing urinary tract infections in spinal cord injury patients.

    PubMed

    Kuhlemeier, K V; Stover, S L; Lloyd, L K

    1985-09-01

    We conducted 202 trials in 161 male hospital patients to determine if prophylactic administration of ascorbic acid or antibacterials (trimethoprim-sulfamethoxazole, nalidixic acid, methenamine hippurate or nitrofurantoin macrocrystals) would prevent bacteriuria infections in spinal cord injury patients who had had at least 1 bout of bacteriuria. None of the drugs tested appeared to be statistically effective in the doses used in preventing bacteriuria in these patients. Moreover, sensitivities were lost to several drugs other than those used prophylactically. We conclude that use of prophylactic doses of ascorbic acid or antibacterials has not proved to be beneficial in spinal cord injury patients free of indwelling catheters.

  17. A systematic study of antibacterial silver nanoparticles: efficiency, enhanced permeability, and cytotoxic effects

    NASA Astrophysics Data System (ADS)

    Azócar, Manuel I.; Tamayo, Laura; Vejar, Nelson; Gómez, Grace; Zhou, Xiangrong; Thompsom, George; Cerda, Enrique; Kogan, Marcelo J.; Salas, Edison; Paez, Maritza A.

    2014-09-01

    We report here a systematic study of the antibacterial behavior of silver nanoparticles coated with fatty acids (oleic: AgNP-O, linoleic: AgNP-L, and palmitic acids: AgNP-P) in water. We have found remarkable differences in their capability to penetrate bacteria cell over a broader range of particle size of 4-96 nm compared to previously reported work, and a variable toxicity depending on the particles size. Our results indicate that silver nanoparticles stabilized with oleic acid showed clear advantages in antibacterial activity, penetration inside the bacteria cells, cytotoxicity, time effectiveness, efficiency, and stability against light.

  18. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles.

    PubMed

    Chen, Cuixia; Chen, Yucan; Yang, Cheng; Zeng, Ping; Xu, Hai; Pan, Fang; Lu, Jian Ren

    2015-08-12

    Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.

  19. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-02-01

    A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface compared with a control surface. The antibacterial coating retained its antibacterial activity after thermal treatment up to 450 °C and after soaking in common cleaning products for stainless steel surfaces used for e.g. food applications. The antibacterial capacity of the coating remained at high levels for 1-5 days, and showed a good capacity to reduce the adhesion of bacteria up to 30 days. Only a few

  20. ABSORPTION OF THE ANTIBACTERIAL SERUM FACTOR BY STAPHYLOCOCCI

    PubMed Central

    Yotis, William W.

    1963-01-01

    Yotis, William W. (Loyola University, Chicago, Ill.). Absorption of the antibacterial serum factor by staphylococci. J. Bacteriol. 85:911–917. 1963.—The absorption of antibacterial serum factor by eight bacterial species and one yeast showed good correlation with the sensitivity of the organisms to the serum factor. The serum factor was removed from aqueous solution by coagulase-positive and coagulase-negative strains of staphylococci and Bacillus subtilis, and the oxygen consumption of the bacteria was inhibited by prior exposure to the serum factor. Escherichia coli, Neisseria catarrhalis, Proteus vulgaris, Bacillus megaterium, Mycobacterium phlei, and Saccharomyces cerevisiae failed to absorb the serum factor, and their respiration was not inhibited by prior exposure to 40 mg or more of the serum factor per ml. Staphylococci treated with 0.25 mg per ml of coagulase were almost completely refractory to the antibacterial action of 2 mg of serum factor per ml, and the serum factor was not absorbed. When the staphylococci were first treated with the serum factor, subsequent treatment with coagulase had no effect. Exposure of staphylocci to heat (70 C for 1 hr), 3.6% formaldehyde, 1 n sodium hydroxide, and 1 n hydrochloric acid did not prevent absorption of the serum factor. However, pretreatment with 88% liquefied phenol partially prevented serum factor absorption. The absorption and antibacterial activity of the serum factor were dependent on the concentration, the time and temperature of exposure, and the nature and concentration of salts present. PMID:14044962

  1. Antibacterial activity of Nymphaea nouchali (Burm. f) flower

    PubMed Central

    2013-01-01

    Background The present work aimed to find out the antibacterial activity of Nymphaea nouchali flower on human and plant pathogenic bacteria. Methods Antibacterial potency of methanol, acetone, ethyl acetate and petroleum spirit extracts of Nymphaea nouchali flower has been tested against four human pathogenic bacteria Bacillus subtilis (FO 3026) Escherichia coli (IFO 3007), Klebsiella pneumonia (ATTC 10031) and Sarcina lutea (IFO 3232) and one plant pathogenic bacterium Xanthomonas campestris (IAM 1671) by disc diffusion assay. Zone of inhibition produced by different extracts against the test bacteria was measured and compared with standard antibiotic disc. Results Methanol extract possessed better antibacterial activity against two pathogenic bacteria, B. subtilis (FO 3026) and S. lutea (IFO 3232) than commercial antibiotic nalidixic acid. Acetone extract showed moderate sensitivity whereas B. subtilis (FO 3026), S. lutea (IFO 3232) and X. campestris (IAM 1671) showed resistance to ethyl acetate and petroleum spirit extracts. The minimum inhibitory concentrations of various extracts were ranged between 128–2048 μgml-1. Conclusions Nymphaea nouchali flower could be a potential candidate for future development of novel broad spectrum antibacterial herbal formulation. PMID:24099586

  2. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials.

    PubMed

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Mo, Yangmiao; Luo, Junxuan; Tang, Jiaoning; Ge, Zaochuan

    2011-07-01

    Antibacterial agents receive a great deal of attention around the world due to the interesting academic problems of how to combat bacteria and of the beneficial health, social and economic effects of successful agents. Scientists are actively developing new antibacterial agents for biomaterial applications. This paper reports the novel antibacterial agent siloxane sulfopropylbetaine (SSPB), which contains reactive alkoxysilane groups. The structure and properties of SSPB were systematically investigated, with the results showing that SSPB contains both quaternary ammonium compounds and reactive siloxane groups. SSPB has good antibacterial activity against both Escherichia coli (E. coli, 8099) and Staphylococcus aureus (S. aureus, ATCC 6538). The minimal inhibition concentration is 70 μmol/ml SSPB against both E. coli and S. aureus. In addition, the SSPB antibacterial agent can be used in both weak acid and weak alkaline environments, functioning within the wide pH range of 4.0-9.0. The SSPB-modified glass surface killed 99.96% of both S. aureus and E. coli organisms within 24 h. No significant decrease was observed in this antibacterial activity after 20 washes. Moreover, SSPB does not induce a skin reaction and is nontoxic to animals. Thus, SSPB is an ideal candidate for future applications as a safe, environmentally friendly antibacterial agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    PubMed

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  4. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  5. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  6. Antibacterial activity of Pterocarpus indicus.

    PubMed

    Khan, M R; Omoloso, A D

    2003-09-01

    The leaves, root and stem barks of Pterocarpus indicus were successively partitioned with petrol, dichloromethane, ethyl acetate, butanol and methanol. All the fractions exhibited a wide spectrum of antibacterial activity. The activity was more pronounced in the butanol and methanol fractions. None were active against the moulds.

  7. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  8. Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films.

    PubMed

    Widsten, P; Mesic, B B; Cruz, C D; Fletcher, G C; Chycka, M A

    2017-07-01

    Films containing antibacterial compounds could be used for packaging perishable foods such as fresh fish and meat for sea freighting over long distances. However, existing commercialised options (films with nanosilver zeolites or wasabi extract) are only permitted for food contact in certain regions and films containing alternative antibacterial ingredients are required e.g. for exports to Europe. Certain non-volatile phenolic plant extracts have shown promising antibacterial activity against a wide range of foodborne bacteria in in vitro assays and when integrated in coatings for perishable foods such as fish and meat. Extracts rich in gallotannins tend to show stronger antibacterial effects than other phenols such as flavonoids. Such extracts could be coated onto commercial barrier films by means of flexographic printing-a more industrially feasible option than rod coating or solvent casting typically used in antibacterial coating research. The goal of the present work was to investigate the antibacterial effect of printed latex coatings containing extracts rich in gallotannins and other types of phenolic compounds against 16 common spoilage and pathogenic bacteria of fish and meat. The largest zones of inhibition in disk diffusion assays were obtained with plastic films with coatings containing tannic acid alone, followed by tannic acid with phenolic-rich extracts of feijoa skin or mango seed. Significant inhibition was seen for all bacteria. This study shows that coatings with gallotannins as the main active ingredient can be printed onto commercial barrier films to control the bacteria that limit the shelf-life of fresh fish and meat.

  9. Antibacterial activity of epidural infusions.

    PubMed

    Coghlan, M W; Davies, M J; Hoyt, C; Joyce, L; Kilner, R; Waters, M J

    2009-01-01

    The incidence of epidural abscess following epidural catheterisation appears to be increasing, being recently reported as one in 1000 among surgical patients. This study was designed to investigate the antibacterial activity of various local anaesthetics and additives, used in epidural infusions, against a range of micro-organisms associated with epidural abscess. The aim was to determine which, if any, epidural infusion solution has the greatest antibacterial activity. Bupivacaine, ropivacaine and levobupivacaine crystals were dissolved and added to Mueller-Hinton Agar in concentrations of 0.06%, 0.125%, 0.2%, 0.25%, 0.5% and 1%. Fentanyl, adrenaline and clonidine were also mixed with agar in isolation and in combination with the local anaesthetics. Using a reference agar dilution method, the minimum inhibitory concentrations were determined for a range of bacteria. Bupivacaine showed antibacterial activity against Staphylococcus aureus, Enterococcus faecalis and Escherichia coli with minimum inhibitory concentrations between 0.125% and 0.25%. It did not inhibit the growth of Pseudomonas aeruginosa at any of the concentrations tested. Levobupivacaine and ropivacaine showed no activity against Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa, even at the highest concentrations tested, and minimal activity against Escherichia coli (minimum inhibitory concentrations 0.5% and 1% respectively). The presence of fentanyl, adrenaline and clonidine had no additional effect on the antibacterial activity of any of the local anaesthetic agents. The low concentrations of local anaesthetic usually used in epidural infusions have minimal antibacterial activity. While the clinical implications of this in vitro study are not known, consideration should be given to increasing the concentration of bupivacaine in an epidural infusion or to administering a daily bolus of 0.25% bupivacaine to reduce the risk of epidural bacterial growth.

  10. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract.

    PubMed

    Al-Abd, Nazeh M; Mohamed Nor, Zurainee; Mansor, Marzida; Azhar, Fadzly; Hasan, M S; Kassim, Mustafa

    2015-10-24

    The threat posed by drug-resistant pathogens has resulted in the increasing momentum in research and development for effective alternative medications. The antioxidant and antibacterial properties of phytochemical extracts makes them attractive alternative complementary medicines. Therefore, this study evaluated the phytochemical constituents of Melaleuca cajuputi flower and leaf (GF and GL, respectively) extracts and their antioxidant and antibacterial activities. Radical scavenging capacity of the extracts was estimated using 2,2-diphenyl-2-picrylhydrazyl and Fe(2+)-chelating activity. Total antioxidant activity was determined using ferric reducing antioxidant power assay. Well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration assays were used to determine antibacterial activity against eight pathogens, namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, Staphylococcus epidermidis, Salmonella typhimurium, Klebsiella pneumonia, Streptococcus pneumoniae, and Pasteurella multocida. We identified and quantified the phytochemical constituents in methanol extracts using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography (GC)/MS. This study reports the antioxidant and radical scavenging activity of M. cajuputi methanolic extracts. The GF extract showed better efficacy than that of the GL extract. The total phenolic contents were higher in the flower extract than they were in the leaf extract (0.55 ± 0.05 and 0.37 ± 0.05 gallic acid equivalent per mg extract dry weight, respectively). As expected, the percentage radical inhibition by GF was higher than that by the GL extract (81 and 75 %, respectively). A similar trend was observed in Fe(2+)-chelating activity and β-carotene bleaching tests. The antibacterial assay of the extracts revealed no inhibition zones with the Gram-negative bacteria tested. However, the extracts demonstrated activity against B. cereus, S. aureus, and S. epidermidis. In

  11. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of

  12. Antibacterial profiling of abietane-type diterpenoids.

    PubMed

    Helfenstein, Andreas; Vahermo, Mikko; Nawrot, Dorota A; Demirci, Fatih; İşcan, Gökalp; Krogerus, Sara; Yli-Kauhaluoma, Jari; Moreira, Vânia M; Tammela, Päivi

    2017-01-01

    Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11,13-trien-18-yl)-d-serinate], with an MIC90 of 60μg/mL against Staphylococcus aureus ATCC 25923, and 8μg/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model.

    PubMed

    Li, Fang; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K

    2014-02-01

    Antibacterial primer and adhesive are promising to inhibit biofilms and caries. Since restorations in vivo are exposed to saliva, one concern is the attenuation of antibacterial activity due to salivary pellicles. The objective of this study was to investigate the effects of salivary pellicles on bonding agents containing a new monomer dimethylaminododecyl methacrylate (DMADDM) or nanoparticles of silver (NAg) against biofilms for the first time. DMADDM and NAg were synthesized and incorporated into Scotchbond Multi-Purpose adhesive and primer. Specimens were either coated or not coated with salivary pellicles. A microcosm biofilm model was used with mixed saliva from ten donors. Two types of culture medium were used: an artificial saliva medium (McBain), and Brain Heart Infusion (BHI) medium without salivary proteins. Metabolic activity, colony-forming units (CFU), and lactic acid production of plaque microcosm biofilms were measured (n=6). Bonding agents containing DMADDM and NAg greatly inhibited biofilm activities, even with salivary pellicles. When using BHI, the pre-coating of salivary pellicles on resin surfaces significantly decreased the antibacterial effect (p<0.05). When using artificial saliva medium, pre-coating of salivary pellicles on resin did not decrease the antibacterial effect. These results suggest that artificial saliva yielded medium-derived pellicles on resin surfaces, which provided attenuating effects on biofilms similar to salivary pellicles. Compared with the commercial control, the DMADDM-containing bonding agent reduced biofilm CFU by about two orders of magnitude. Novel DMADDM- and NAg-containing bonding agents substantially reduced biofilm growth even with salivary pellicle coating on surfaces, indicating a promising usage in saliva-rich environment. DMADDM and NAg may be useful in a wide range of primers, adhesives and other restoratives to achieve antibacterial and anti-caries capabilities. Published by Elsevier Ltd.

  14. Antibacterial activity of nitric oxide releasing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Seabra, Amedea B.; Manosalva, Nixson; de Araujo Lima, Bruna; Pelegrino, Milena T.; Brocchi, Marcelo; Rubilar, Olga; Duran, Nelson

    2017-06-01

    Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, the combination of NO and nanomaterials has been applied in several biomedical applications. The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions (Ag+) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by different techniques. The results showed the formation of AgNPs with average hydrodynamic size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in the case of

  15. Cytotoxicity and antibacterial activity of extractives from Wedelia calendulacea.

    PubMed

    Mottakin, A K M; Chowdhury, R; Haider, M S; Rahman, K M; Hasan, C M; Rashid, M A

    2004-06-01

    The cytotoxicity and antibacterial activity of petroleum ether, chloroform and methanol extracts of Wedelia calendulacea were assayed by brine shrimp lethality bioassay and standardized disk diffusion method against 19 bacterial strains. Three diterpenes isolated from the plant were also evaluated for in vitro antibacterial activities. The LC50 for the crude extracts against the brine shrimp nauplii were found to be 4.59 microg/ml, 7.99 microg/ml and 14.88 microg/ml, respectively, whereas the positive control, vincristine sulfate showed an LC50 of 0.58 microg/ml. Among the crude extracts and pure compounds tested, (-)-kaur-16-en-19-oic acid isolated from the chloroform extract showed the highest inhibitory activity against most of the bacterial strains with mean zone of inhibition of 10-21 mm at 200 microg/disc.

  16. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure.

  17. [Antioxidant and antibacterial activities of dimeric phenol compounds].

    PubMed

    Ogata, Masahiro

    2008-08-01

    We studied the antioxidant and antibacterial activities of monomeric and dimeric phenol compounds. Dimeric compounds had higher antioxidant activities than monomeric compounds. Electron spin resonance spin-trapping experiments showed that phenol compounds with an allyl substituent on their aromatic rings directly scavenged superoxide, and that only eugenol trapped hydroxyl radicals. We developed a generation system of the hydroxyl radical without using any metals by adding L-DOPA and DMPO to PBS or MiliQ water in vitro. We found that eugenol trapped hydroxyl radicals directly and is metabolized to a dimer. On the other hand, dipropofol, a dimer of propofol, has strong antibacterial activity against Gram-positive bacteria. However, it lacks solubility in water and this property is assumed to limit its efficacy. We tried to improve the solubility and found a new solubilization method of dipropofol in water with the addition of a monosaccharide or ascorbic acid.

  18. Synthesis and antibacterial activity of silver nanoparticles with different sizes

    NASA Astrophysics Data System (ADS)

    Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, Facundo

    2008-12-01

    Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.

  19. Antibacterial and Synergistic Activity of Pentacyclic Triterpenoids Isolated from Alstonia scholaris.

    PubMed

    Wang, Chao-Min; Chen, Hsiao-Ting; Wu, Zong-Yen; Jhan, Yun-Lian; Shyu, Ching-Lin; Chou, Chang-Hung

    2016-01-25

    (1) BACKGROUND: Alstonia scholaris (Apocynaceae) is an important medicinal plant that has been historically used in "Dai" ethnopharmacy to treat infectious diseases in China. Although various pharmacological activities have been reported, the antimicrobial constitutes of A. scholaris have not yet been identified. The objective of this study is to evaluate the antibacterial constitutes from the leaf extract of A. scholaris and to assess the synergistic effects of isolated compounds with antibiotics against bacterial pathogens.; (2) METHODS: The chemical constitutes isolated from the leaf extract of A. scholaris were structurally identified by NMR. The antibacterial and synergistic effect of compounds was assessed by calculating the minimal inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay.; (3) RESULTS: Six pentacyclic triterpenoids were structurally identified as (1) lupeol, (2) betulin, (3) 3-hydroxy-11-ursen-28,13-olide, (4) betulinic acid, (5) oleanolic acid and (6) ursolic acid. Both oleanolic and ursolic acid showed antibacterial activity but were limited to Gram-positive bacteria. Ursolic acid showed a synergistic effect with ampicillin and tetracycline against both Bacillus cereus and S. aureus.; (4) CONCLUSION: These findings reflect that pentacyclic triterpenoids are the antibacterial chemicals in A. scholaris. The ability of ursolic acid to enhance the activity of antibiotics can constitute a valuable group of therapeutic agents in the future.

  20. Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite

    PubMed Central

    Zhou, Chenchen; Weir, Michael D.; Zhang, Ke; Deng, Dongmei; Cheng, Lei; Xu, Hockin H. K.

    2013-01-01

    Objectives Composites are the principal material for tooth cavity restorations due to their esthetics and direct-filling capabilities. However, composites accumulate biofilms in vivo, and secondary caries due to biofilm acids is the main cause of restoration failure. The objectives of this study were to: (1) synthesize new antibacterial monomers; and (2) develop nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and antibacterial monomer. Methods Two new antibacterial monomers were synthesized: dimethylaminohexane methacrylate (DMAHM) with a carbon chain length of 6, and dimethylaminododecyl methacrylate (DMADDM) with a chain length of 12. A spray-drying technique was used to make NACP. DMADDM was incorporated into NACP nanocomposite at mass fractions of 0%, 0.75%, 1.5%, 2.25% and 3%. A flexural test was used to measure composite strength and elastic modulus. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure viability, metabolic activity, and lactic acid production of biofilms on composites. Results The new DMAHM was more potent than a previous quaternary ammonium dimethacrylate (QADM). DMADDM was much more strongly antibacterial than DMAHM. The new DMADDM-NACP nanocomposite had strength similar to that of composite control (p > 0.1). At 3% DMADDM in the composite, the metabolic activity of adherent biofilms was reduced to 5% of that on composite control. Lactic acid production by biofilms on composite containing 3% DMADDM was reduced to only 1% of that on composite control. Biofilm colony-forming unit (CFU) counts on composite with 3% DMADDM were reduced by 2-3 orders of magnitude. Significance New antibacterial monomers were synthesized, and the carbon chain length had a strong effect on antibacterial efficacy. The new DMADDM-NACP nanocomposite possessed potent anti-biofilm activity without compromising load-bearing properties, and is promising for antibacterial and remineralizing dental

  1. Antibacterial activities and antioxidant capacity of Aloe vera

    PubMed Central

    2013-01-01

    Background The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Results Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Conclusion Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes. PMID:23870710

  2. Antibacterial activities and antioxidant capacity of Aloe vera.

    PubMed

    Nejatzadeh-Barandozi, Fatemeh

    2013-07-19

    The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes.

  3. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli.

    PubMed

    Long, Yan-Min; Hu, Li-Gang; Yan, Xue-Ting; Zhao, Xing-Chen; Zhou, Qun-Fang; Cai, Yong; Jiang, Gui-Bin

    2017-01-01

    Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs) with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli, when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD(+)/NADH ratio increase, and intracellular reactive oxygen species (ROS) generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli. Altogether, this study demonstrated that AgNPs exerted antibacterial activity through the release of silver ions and the subsequent induction of intracellular ROS generation by interacting with the cell membrane. The findings are helpful in guiding the controllable synthesis through the regulation of surface coating for medical care purpose.

  4. Graphene-based antibacterial paper.

    PubMed

    Hu, Wenbing; Peng, Cheng; Luo, Weijie; Lv, Min; Li, Xiaoming; Li, Di; Huang, Qing; Fan, Chunhai

    2010-07-27

    Graphene is a monolayer of tightly packed carbon atoms that possesses many interesting properties and has numerous exciting applications. In this work, we report the antibacterial activity of two water-dispersible graphene derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Such graphene-based nanomaterials can effectively inhibit the growth of E. coli bacteria while showing minimal cytotoxicity. We have also demonstrated that macroscopic freestanding GO and rGO paper can be conveniently fabricated from their suspension via simple vacuum filtration. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced and easily processed to make freestanding and flexible paper with low cost, we expect this new carbon nanomaterial may find important environmental and clinical applications.

  5. Antibacterial activity of graphene layers

    NASA Astrophysics Data System (ADS)

    Dybowska-Sarapuk, Ł.; Kotela, A.; Krzemiński, J.; Janczak, D.; Wróblewska, M.; Marchel, H.; Łegorz, P.; Jakubowska, M.

    2016-09-01

    The bacterial biofilm is a direct cause of complications in management of various medical conditions. There is an ongoing search for a feasible method to prevent its growth, as an alternative to antibiotics, which are ineffective. The aim of the study was to prepare and evaluate a detailed algorithm for production of graphene coatings, using economically efficient methods of printed electronics (such as ink-jet printing or spray coating), and assess their antibacterial properties. Based on the preliminary results of our work we suggest that graphene coating may inhibit the formation of microbial biofilms. Further research is needed to verify antibacterial properties of graphene coatings and its future applications in prevention of biofilm-related infections, e.g. by coating surgical instruments, catheters or tracheostomy tubes. In addition, we propose a series of hypotheses to be evaluated in further work.

  6. Hybrid microgels with antibacterial properties.

    PubMed

    Häntzschel, Nadine; Hund, Rolf-Dieter; Hund, Heike; Schrinner, Marc; Lück, Christian; Pich, Andrij

    2009-05-13

    In the present work, we have used aqueous microgels as containers for the deposition of silver nanoparticles (AgNPs). It has been shown that AgNPs can be effectively incorporated in the microgel interior during the in situ reduction of silver ions. Obtained hybrid microgels with variable AgNPs loading (from 1 to 12 wt.-%) have been used as antibacterial agents for two bacteria types. The experimental results indicate that porous microgel structure allows the release of the silver ions from the AgNPs surface into an aqueous phase. This ensures effective reduction in the number of bacterial colonies in test plates and complete bacteria killing. The antibacterial efficiency of the microgel particles increases with AgNPs loading.

  7. Graphene oxide-based antibacterial cotton fabrics.

    PubMed

    Zhao, Jinming; Deng, Bo; Lv, Min; Li, Jingye; Zhang, Yujie; Jiang, Haiqing; Peng, Cheng; Li, Jiang; Shi, Jiye; Huang, Qing; Fan, Chunhai

    2013-09-01

    Graphene oxide (GO) is an excellent bacteria-killing nanomaterial. In this work, macroscopic applications of this promising nanomaterial by fixing GO sheets onto cotton fabrics, which possess strong antibacterial property and great laundering durability, are reported. The GO-based antibacterial cotton fabrics are prepared in three ways: direct adsorption, radiation-induced crosslinking, and chemical crosslinking. Antibacterial tests show that all these GO-containing fabrics possess strong antibacterial property and could inactivate 98% of bacteria. Most significantly, these fabrics can still kill >90% bacteria even after being washed for 100 times. Also importantly, animal tests show that GO-modified cotton fabrics cause no irritation to rabbit skin. Hence, it is believed that these flexible, foldable, and re-usable GO-based antibacterial cotton fabrics have high promise as a type of new nano-engineered antibacterial materials for a wide range of applications.

  8. Washable and antibacterial superhydrophbic fabric

    NASA Astrophysics Data System (ADS)

    Ou, Junfei; Wang, Zhile; Wang, Fajun; Xue, Mingshan; Li, Wen; Amirfazli, Alidad

    2016-02-01

    Inspired by the high adherence of mussel and the excellent water repellency of lotus leaf, superhydrophobic fabric is fabricated via the sequential deposition of polydopamine, Ag2O, and 1H,1H,2H,2H-perfluorodecanethiol, which shows excellent washability and high anti-bacterial activity due to the strong interfacial interaction and the surface silver species as well as the non-wettability, respectively.

  9. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  10. Antibacterial and antifungal compounds from marine fungi.

    PubMed

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-06-02

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  11. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud.

    PubMed

    Kang, K H; Jang, S K; Kim, B K; Park, M K

    1994-12-01

    The butanol extract of Paulownia tomentosa stem showed antibacterial activity against Staphylococcus aureus (SG511, 285 and 503), Streptococcus pyogenes (A308 and A77) and Streptococcus faecium MD8b etc. The most active compound of the extract was identified to be campneoside I, which had a minimal inhibitory concentration (MIC) of 150 micrograms/ml against Streptococcus and Staphylococcus species. From such antibacterial activity, the methoxy group of campneoside I was postulated to be the essential element for the antibacterial activity.

  12. Antibacterial activity on Citrullus colocynthis Leaf extract

    PubMed Central

    gowri, S. Shyamala; Priyavardhini, S.; Vasantha, K.; Umadevi, M.

    2009-01-01

    Studies on the antibacterial activities of the leaf extract of Citrullus colocynthis (Cucurbitaceae), a medicinal plant used for the treatment of various ailments was carried out using agar disc diffusion technique. The results revealed that the crude acetone extract exhibited antibacterial activities against Pseudomonas aeruginosa with zones of inhibition measuring 14.0mm. The chloroform leaf extract exhibited no antibacterial activity against Staphylococcus aureus. The minimum inhibitory concentration for the chloroform extract was 4.0mm for Escherichia coli. PMID:22557336

  13. Antibacterial activities of chemical constituents from the aerial parts of Hedyotis pilulifera.

    PubMed

    Nguyen, Hoai Thi; Ho, Duc Viet; Vo, Hung Quoc; Le, Anh Tuan; Nguyen, Hien Minh; Kodama, Takeshi; Ito, Takuya; Morita, Hiroyuki; Raal, Ain

    2017-12-01

    Hedyotis pilulifera (Pit.) T.N. Ninh (Rubiaceae) has been used in Vietnamese ethnomedicine; the methanol extract exhibited antibacterial activity in our preliminary screening. In this study, compounds from H. pilulifera were isolated and their antibacterial activity in vitro was evaluated. The aerial parts of H. pilulifera (1.4 kg) were extracted with MeOH, suspended in water and ethyl acetate extract was chromatographed on a silica gel column. The structures of isolated compounds were elucidated by the combination analyses of spectroscopy including 1D-, 2D-NMR, HRMS and in comparison with the reported NMR data in the literature. All isolated compounds were evaluated for inhibitory effect using the microdilution method toward Staphylococcus aureus, Bacillus subtilis and Mycobacterium smegmatis, and MIC values were determined. Twenty compounds were isolated, including five triterpenoids, two steroids, two aromatic compounds, three fatty acids, one quinone derivative, one lignan glycoside, one ceramide and five glycolipids. Among these, oleanolic acid showed significant antibacterial activity against M. smegmatis with the MIC value of 2.5 μg/mL. Remarkably, rotungenic acid showed strong activity against S. aureus, B. subtilis, M. smegmatis with MIC values of 2.5, 2.5 and 1.25 μg/mL, respectively. Rotundic acid exhibited significant antibacterial activity against B. subtilis with the MIC value of 5 μg/mL. To the best of our knowledge, the antibacterial activity of rotungenic acid, stigmast-4-ene-3,6-dione and (2S,3S,4R,2'R)-2-(2'-hydroxytetracosanoylamino) octadecane-1,3,4-triol was reported for the first time. Oleanolic acid, rotungenic acid, and rotundic acid were considered to be useful for developing new antimicrobial therapeutic agents for human.

  14. Synthesis and Antibacterial Evaluation of Novel 3-Substituted Ocotillol-Type Derivatives as Leads.

    PubMed

    Bi, Yi; Liu, Xian-Xuan; Zhang, Heng-Yuan; Yang, Xiao; Liu, Ze-Yun; Lu, Jing; Lewis, Peter John; Wang, Chong-Zhi; Xu, Jin-Yi; Meng, Qing-Guo; Ma, Cong; Yuan, Chun-Su

    2017-04-07

    Due to the rapidly growing bacterial antibiotic-resistance and the scarcity of novel agents in development, bacterial infection is still a global problem. Therefore, new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, are urgently needed. In this paper, a series of antibacterial ocotillol-type C-24 epimers modified from natural 20(S)-protopanaxadiol were synthesized and evaluated for their antibacterial activity. According to the screening results of Gram-positive bacteria (B. subtilis 168 and MRSA USA300) and Gram-negative bacteria (P. aer PAO1 and A. baum ATCC19606) in vitro, the derivatives exhibited good antibacterial activity, particularly against Gram-positive bacteria with an minimum inhibitory concentrations (MIC) value of 2-16 µg/mL. The subsequent synergistic antibacterial assay showed that derivatives 5c and 6c enhanced the susceptibility of B. subtilis 168 and MRSA USA300 to chloramphenicol (CHL) and kanamycin (KAN) (FICI < 0.5). Our data showed that ocotillol-type derivatives with long-chain amino acid substituents at C-3 were good leads against antibiotic-resistant pathogens MRSA USA300, which could improve the ability of KAN and CHL to exhibit antibacterial activity at much lower concentrations with reduced toxicity.

  15. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    PubMed

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  16. Antibacterial mechanism of fraxetin against Staphylococcus aureus.

    PubMed

    Wang, Haiting; Zou, Dan; Xie, Kunpeing; Xie, Mingjie

    2014-11-01

    Fraxetin is one of the main constituents of the traditional medicinal plant Fraxinus rhynchophylla. The inhibitory effect of fraxetin on various bacterial strains has been extensively reported, however, its mechanism of action on bacterial cells remains to be elucidated. In the present study, the antibacterial mechanism of fraxetin on Staphylococcus aureus was systematically investigated by examining its effect on cell membranes, protein synthesis, nucleic acid content and topoisomerase activity. The results indicated that fraxetin increased the permeability of the cell membrane but did not render it permeable to macromolecules, such as DNA and RNA. Additionally, the quantity of protein, DNA and RNA decreased to 55.74, 33.86 and 48.96%, respectively following treatment with fraxetin for 16 h. The activity of topoisomerase I and topoisomerase II were also markedly inhibited as fraxetin concentration increased. The result of the ultraviolet‑visible spectrophotometry demonstrated that the DNA characteristics exhibited a blue shift and hypochromic effect following treatment with fraxetin. These results indicated that fraxetin had a marked inhibitory effect on S.aureus proliferation. Further mechanistic studies showed that fraxetin could disrupt nucleic acid and protein synthesis by preventing topoisomerase from binding to DNA.

  17. Antibacterial xanthones from Kielmeyera variabilis mart. (Clusiaceae).

    PubMed

    Pinheiro, Lucimar; Nakamura, Celso Vataru; Dias Filho, Benedito Prado; Ferreira, Antonio Gilberto; Young, Maria Claudia Marx; Cortez, Diógenes Aparicio Garcia

    2003-06-01

    The bioassay-guided fractionation of stems from Kielmeyera variabilis, traditionally used in Brazilian folk medicine, yielded assiguxanthone-B (1), kielcorin (4), 2,5-dihydroxybenzoic acid (3), and a mixture of xanthones containing assiguxanthone-B (1) and 1,3,5,6-tetrahydroxy-2-prenylxanthone (2) (1:1 w/w). The xanthone mixture inhibited Staphylococcus aureus and Bacillus subtilis at a concentration of 6.25 g/ml. When tested alone, the minimal inhibitory concentration of assiguxanthone-B was 25 g/ml against B. subtilis. Kielcorin and 2,5-dihydroxybenzoic acid were inactive against both strains. None of the fractions was active against Escherichia coli or Pseudomonas aeruginosa. Viable cells of S. aureus were reduced by a 1-3 log CFU/ml within 12 h after exposure of one to eight times the MIC of the xanthone mixture. It is not known whether the tetrahydroxy-2-prenylxanthone or other components of the xanthone mixture are responsible for the main antibacterial activity or whether additive or synergistic action is involved

  18. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties.

    PubMed

    El-Shafei, A; ElShemy, M; Abou-Okeil, A

    2015-03-15

    This research work deals with flame retardant and antibacterial finishing agent for cellulosic fabrics using TiO2 nanoparticles and chitosan phosphate. TiO2 nanoparticles were prepared by sol-gel method using titanium tetraisopropoxide. The size of TiO2 nanoparticles was characterized using transmission electron microscope (TEM). The application of nano TiO2 onto cellulosic fabrics (cotton 100%) was achieved in presence of polycarboxylic acid [1,2,3,4-butane tetracarboxylic acid (BTCA)] with sodium hypophosphite (SHP) as catalyst and chitosan phosphate through conventional pad-dry-cure method. The effect of the finishing on the physical properties, flammability and antibacterial properties of cross-linked fabrics are investigated. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behaviour of the treated samples. Limited oxygen indexes (LOI) of the treated cotton fabrics were investigated. The treated cotton fabric also reveals excellent antibacterial properties.

  19. Meat-model system development for antibacterial activity determination.

    PubMed

    Vignolo, Graciela; Castellano, Patricia

    2004-01-01

    Bacteriocins are antibacterial substances produced by many different bacterial species. Although the bacteriocins form a heterogenous group with respect to production of bacteria, antibacterial spectrum, mode of action, and chemical properties, they are by definition proteinaceous compounds that are bactericidal toward organisms taxonomically close to the producer. The ability of lactic acid bacteria (LAB) to compete and finally dominate in mixed fermentations has been attributed to the production of several antimicrobial metabolites such as organic acids, carbon dioxide, hydrogen peroxide, diacetyl, and bacteriocins. The antimicrobial activities of the LAB have long been known, but their bacteriocins have received limited attention until recently. Numerous strains of lactic acid bacteria associated with food systems are capable of producing bacteriocins, or antibacterial proteins with activity against foodborne pathogens and contaminants. Recently, considerable enphasis has been placed on the physicochemical, biochemical, and genetic characterization of these proteins. Many methods for the detection of bacteriocin production as well as the determination of the potency of bacteriocin preparations have been described. All the usual techniques are based on the fact that bacteriocins can diffuse in solid or semisolid culture media, which are subsequently inoculated with a suitable indicator strain. This method has long been shown to have a good perfomance in the characterization of new bacteriocins. Although results obtained from broth systems show that bacteriocins inhibit target organisms, applied studies must be performed to confirm their effectiveness in food. As many lactic acid bacteria associated with meat products were described to be important natural bacteriocin producers, it has been necessary to assay their inhibitory efficacy in meat or meat products. Because of the complexity of these kinds of foods a simplified meat-model system was developed to

  20. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    PubMed

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  1. Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Berndt, Christopher C.; Wang, James

    2012-10-01

    Zinc-substituted cobalt ferrite nanopowders were prepared via a sol-gel route using citric acid as a chelating agent. The influence of zinc concentration on the microstructure, crystal structure, surface wettability, surface roughness, and antibacterial property of zinc-substituted cobalt ferrite nanopowders was investigated systematically. The substitution of zinc influences slightly the microstructure, surface wettability, surface roughness, and crystal structure but strongly affects the antibacterial property of the cobalt ferrite nanopowders.

  2. Antibacterial and resistance modifying activity of Rosmarinus officinalis.

    PubMed

    Oluwatuyi, Moyosoluwa; Kaatz, Glenn W; Gibbons, Simon

    2004-12-01

    As part of a project to characterise plant-derived natural products that modulate bacterial multidrug resistance (MDR), bioassay-guided fractionation of a chloroform extract of the aerial parts of Rosmarinus officinalis led to the characterisation of the known abietane diterpenes carnosic acid (1), carnosol (2) and 12-methoxy-trans-carnosic acid. Additionally, a new diterpene, the cis A/B ring junction isomer of 12-methoxy-trans-carnosic acid, 12-methoxy-cis-carnosic acid (5), was isolated. The major components were assessed for their antibacterial activities against strains of Staphylococcus aureus possessing efflux mechanisms of resistance. Minimum inhibitory concentrations ranged from 16 to 64 microg/ml. Incorporation of 1 and 2 into the growth medium at 10 microg/ml caused a 32- and 16-fold potentiation of the activity of erythromycin against an erythromycin effluxing strain, respectively. Compound 1 was evaluated against a strain of S. aureus possessing the NorA multidrug efflux pump and was shown to inhibit ethidium bromide efflux with an IC50 of 50 microM, but this activity is likely to be related to the inhibition of a pump(s) other than NorA. The antibacterial and efflux inhibitory activities of these natural products make them interesting potential targets for synthesis.

  3. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-05-20

    Honey nanofibers represent an attractive formulation with unique medicinal and wound healing advantages. Nanofibers with honey concentrations of <10% were prepared, however, there is a need to prepare nanofibers with higher honey concentrations to increase the antibacterial and wound healing effects. In this work, chitosan and honey (H) were cospun with polyvinyl alcohol (P) allowing the fabrication of nanofibers with high honey concentrations up to 40% and high chitosan concentrations up to 5.5% of the total weight of the fibers using biocompatible solvents (1% acetic acid). The fabricated nanofibers were further chemically crosslinked, by exposure to glutaraldehyde vapor, and physically crosslinked by heating and freezing/thawing. The new HP-chitosan nanofibers showed pronounced antibacterial activity against Staphylococcus aureus but weak antibacterial activity against Escherichia coli. The developed HP-chitosan nanofibers revealed no cytotoxicity effects on cultured fibroblasts. In conclusion, biocompatible, antimicrobial crosslinked honey/polyvinyl alcohol/chitosan nanofibers were developed which hold potential as effective wound dressing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Osteogenic activity and antibacterial effect of zinc ion implanted titanium.

    PubMed

    Jin, Guodong; Cao, Huiliang; Qiao, Yuqin; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Titanium (Ti) and its alloys are widely used as orthopedic and dental implants. In this work, zinc (Zn) was implanted into oxalic acid etched titanium using plasma immersion ion implantation technology. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition of Zn-implanted titanium. The results indicate that the depth profile of zinc in Zn-implanted titanium resembles a Gaussian distribution, and zinc exists in the form of ZnO at the surface whereas in the form of metallic Zn in the interior. The Zn-implanted titanium can significantly stimulate proliferation of osteoblastic MC3T3-E1 cells as well as initial adhesion, spreading activity, ALP activity, collagen secretion and extracellular matrix mineralization of the rat mesenchymal stem cells. The Zn-implanted titanium presents partly antibacterial effect on both Escherichia coli and Staphylococcus aureus. The ability of the Zn-implanted titanium to stimulate cell adhesion, proliferation and differentiation as well as the antibacterial effect on E. coli can be improved by increasing implantation time even to 2 h in this work, indicating that the content of zinc implanted in titanium can easily be controlled within the safe concentration using plasma immersion ion implantation technology. The Zn-implanted titanium with excellent osteogenic activity and partly antibacterial effect can serve as useful candidates for orthopedic and dental implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gastric antibacterial efficiency is different for pepsin A and C.

    PubMed

    Schreiber, Sören; Bücker, Roland; Groll, Claudia; Azevedo-Vethacke, Marina; Scheid, Peter; Gatermann, Sören; Josenhans, Christine; Suerbaum, Sebastian

    2006-01-01

    The gastric lumen represents a bactericidal barrier, whose major components are an acidic pH and a family of isoenzymes of the gastric aspartate protease, pepsin. To evaluate whether specific pepsins are specialized in antibacterial protection, we tested their effects on the gastric pathogen Helicobacter pylori. In a recent study we found pepsin to affect the motility of the bacteria, one of its most important virulence factors. We were able to show that the antibacterial effect of pepsin occurs in two phases: rapid loss of motility and subsequent destruction. In the present study we used the rapid pepsin-induced bacterial immobilization as a marker of antibacterial efficiency. The proteolytic activity of different pepsins was normalized to values between 2 and 200 U/ml in the hemoglobin degradation test of Anson, performed at pH 2 and 5. We found that pepsin C completely inactivates H. pylori at proteolytic activities of 2 (pH 5) and 20 (pH 2) U/ml. In contrast, the activities of pepsin A and chymosin required to affect Helicobacter motility were ten times higher.

  6. Mussel-Inspired Silver-Releasing Antibacterial Hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; Rivera, José G.; Gong, Yong-kuan; Lau, K. H. Aaron; He, Lihong; Varshney, Rahul; Messersmith, Phillip B.

    2012-01-01

    A silver-releasing antibacterial hydrogel was developed that simultaneously allowed for silver nanoparticle formation and gel curing. Water-soluble polyethylene glycol (PEG) polymers were synthesized that contain reactive catechol moieties, inspired by mussel adhesive proteins, where the catechol containing amino acid 3,4-dihydroxyphenylalanine (DOPA) plays an important role in the ability of the mussel to adhere to almost any surface in an aqueous environment. We utilized silver nitrate to oxidize polymer catechols, leading to covalent cross-linking and hydrogel formation with simultaneous reduction of Ag(I). Silver release was sustained for periods of at least two weeks in PBS solution. Hydrogels were found to inhibit bacterial growth, consistent with the well-known antibacterial properties of silver, while not significantly affecting mammalian cell viability. In addition, thin hydrogel films were found to resist bacterial and mammalian cell attachment, consistent with the antifouling properties of PEG. We believe these materials have a strong potential for antibacterial biomaterial coatings and tissue adhesives, due to the material-independent adhesive properties of catechols. PMID:22374454

  7. Antibacterial Activity of Aluminum in Clay from the Colombian Amazon.

    PubMed

    Londono, S Carolina; Hartnett, Hilairy E; Williams, Lynda B

    2017-02-21

    The problems of antibiotic overuse compel us to seek alternative antibacterial agents. Some clays have been shown to kill antibiotic-resistant human pathogens and may provide an alternative to known antibiotics. Here we show that Al toxicity plays a central role in the antibacterial action of a kaolin-rich clay from the Colombian Amazon (AMZ). Antibacterial susceptibility testing shows minimum inhibitory concentrations of 80 mg/mL against a model Escherichia coli (ATCC 25922). The clay buffered the media pH to ∼4.6 and Eh values to +360 mV. Chemical analysis of AMZ and bacteria showed that Al, P, and transition metals (Fe, Cu, Mn, and Zn) were exchanged during incubation at 37 °C. Only Al derived from the clay exceeded the minimum inhibitory concentrations for E. coli under acidic conditions. Ion imaging showed elevated Al levels in the bacterial membrane, and high intracellular Fe levels, relative to those of untreated controls. Phosphorus depletion in E. coli after reaction with AMZ, together with evidence of membrane permeabilization, suggests that Al reacts with membrane phospholipids, enhancing intracellular transport of metals. These results highlight the importance of dissolved Al for amplifying the toxicity of transition metals to human pathogens.

  8. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities

    PubMed Central

    Jain, A. P.; Bhandarkar, S.; Rai, G.; Yadav, A. K.; Lodhi, S.

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  9. Mussel-inspired silver-releasing antibacterial hydrogels.

    PubMed

    Fullenkamp, Dominic E; Rivera, José G; Gong, Yong-Kuan; Lau, K H Aaron; He, Lihong; Varshney, Rahul; Messersmith, Phillip B

    2012-05-01

    A silver-releasing antibacterial hydrogel was developed that simultaneously allowed for silver nanoparticle formation and gel curing. Water-soluble polyethylene glycol (PEG) polymers were synthesized that contain reactive catechol moieties, inspired by mussel adhesive proteins, where the catechol containing amino acid 3,4-dihydroxyphenylalanine (DOPA) plays an important role in the ability of the mussel to adhere to almost any surface in an aqueous environment. We utilized silver nitrate to oxidize polymer catechols, leading to covalent cross-linking and hydrogel formation with simultaneous reduction of Ag(I). Silver release was sustained for periods of at least two weeks in PBS solution. Hydrogels were found to inhibit bacterial growth, consistent with the well-known antibacterial properties of silver, while not significantly affecting mammalian cell viability. In addition, thin hydrogel films were found to resist bacterial and mammalian cell attachment, consistent with the antifouling properties of PEG. We believe these materials have a strong potential for antibacterial biomaterial coatings and tissue adhesives, due to the material-independent adhesive properties of catechols. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products.

  11. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  12. Synthesis of Silver Abietate as an Antibacterial Agent for Textile Applications

    PubMed Central

    Yıldız, A.; Değirmencioğlu, M.

    2015-01-01

    This study explored the potential use of new silver abietate obtained from abietic acid as an antibacterial agent for textile applications. Synthesis, structure, and antibacterial studies of silver abietate compound are reported. Silver complex was obtained reacting abietic acid with silver. The new compounds were characterized by 1H NMR, 13C NMR, DEPT, IR, UV, and ESI-MS techniques which support the proposed structures. The new Ag abietate complex has no environmental hazard, its antibacterial activities were evaluated after being applied to cotton fabric by padding process according to the JIS L 1902-2008 agar diffusion test method and against three Gram-negative and three Gram-positive bacteria, respectively. Stability of antibacterial effect after repeated washings (3, 5, 10, and 20) was also tested which indicated that the synthesized silver abietate compound could be used as a new antibacterial agent in textile industry. In this way, the compound has been synthesized the first time in the literature and the applications have been investigated. PMID:25810694

  13. Assessment of the effectiveness of silver-coated dressing, chlorhexidine acetate (0.5%), citric acid (3%), and silver sulfadiazine (1%) for topical antibacterial effects against the multi-drug resistant Pseudomonas aeruginosa infecting full-skin thickness burn wounds on rats.

    PubMed

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 10(8) CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp.

  14. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  15. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications.

    PubMed

    Vega-Jiménez, A L; Almaguer-Flores, A; Flores-Castañeda, M; Camps, E; Uribe-Ramírez, M; Aztatzi-Aguilar, O G; De Vizcaya-Ruiz, A

    2017-08-24

    In recent years, nanomaterials have been used in the medical-dental field as new alternative antimicrobial agents. Bismuth subsalicylate (BSS) has been used as an antimicrobial agent, but the effect of BSS in the form of nanoparticles (BSS-nano) as a potential antimicrobial agent has not been tested, in specific against bacteria responsible for periodontal disease. The aim of this study was to evaluate the antibacterial effect of BSS-nano against oral anaerobic bacteria and to assess the safety of BSS-nano by evaluating their cytotoxicity in human gingival fibroblast (HGF-1) cells. BSS-nano were synthesized by laser ablation and were previously physico-chemically characterized using in vitro assays. The antibacterial activity was measured using the tetrazolium-based XTT assay, and cytotoxicity was determined using lactate dehydrogenase (LDH) and MTS assays in HGF-1 cells. Transmission electron microscopy of HGF-1 exposed to BSS-nano was also performed. BSS-nano was shown to have a primary size of 4-22 nm and a polygonal shape. Among the tested bacterial strains, those with a greater sensitivity to BSS-nano (highest concentration of 21.7 μg ml(-1)) were A. actinomycetemcomitans, C. gingivalis, and P. gingivalis. BSS-nano at a concentration of 60 μg ml(-1) showed low cytotoxicity (6%) in HFG-1 cells and was mainly localized intracellularly in acidic vesicles. Our results indicate that the concentration of BSS-nano used as an effective antibacterial agent does not induce cytotoxicity in mammalian cells; thus, BSS-nano can be applied as an antibacterial agent in dental materials or antiseptic solutions.

  16. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications

    NASA Astrophysics Data System (ADS)

    Vega-Jiménez, A. L.; Almaguer-Flores, A.; Flores-Castañeda, M.; Camps, E.; Uribe-Ramírez, M.; Aztatzi-Aguilar, O. G.; De Vizcaya-Ruiz, A.

    2017-10-01

    In recent years, nanomaterials have been used in the medical-dental field as new alternative antimicrobial agents. Bismuth subsalicylate (BSS) has been used as an antimicrobial agent, but the effect of BSS in the form of nanoparticles (BSS-nano) as a potential antimicrobial agent has not been tested, in specific against bacteria responsible for periodontal disease. The aim of this study was to evaluate the antibacterial effect of BSS-nano against oral anaerobic bacteria and to assess the safety of BSS-nano by evaluating their cytotoxicity in human gingival fibroblast (HGF-1) cells. BSS-nano were synthesized by laser ablation and were previously physico-chemically characterized using in vitro assays. The antibacterial activity was measured using the tetrazolium-based XTT assay, and cytotoxicity was determined using lactate dehydrogenase (LDH) and MTS assays in HGF-1 cells. Transmission electron microscopy of HGF-1 exposed to BSS-nano was also performed. BSS-nano was shown to have a primary size of 4–22 nm and a polygonal shape. Among the tested bacterial strains, those with a greater sensitivity to BSS-nano (highest concentration of 21.7 μg ml‑1) were A. actinomycetemcomitans, C. gingivalis, and P. gingivalis. BSS-nano at a concentration of 60 μg ml‑1 showed low cytotoxicity (6%) in HFG-1 cells and was mainly localized intracellularly in acidic vesicles. Our results indicate that the concentration of BSS-nano used as an effective antibacterial agent does not induce cytotoxicity in mammalian cells; thus, BSS-nano can be applied as an antibacterial agent in dental materials or antiseptic solutions.

  17. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties.

    PubMed

    Sarasam, Aparna R; Krishnaswamy, Raj K; Madihally, Sundararajan V

    2006-04-01

    Chitosan is a well sought-after polysaccharide in biomedical applications and has been blended with various macromolecules to mitigate undesirable properties. However, the effects of blending on the unique antibacterial activity of chitosan as well as changes in fatigue and degradation properties are not well understood. The aim of this work was to evaluate the anti-bacterial properties and changes in physicochemical properties of chitosan upon blending with synthetic polyester poly(epsilon-caprolactone) (PCL). Chitosan and PCL were homogeneously dissolved in varying mass ratios in a unique 77% acetic acid in water mixture and processed into uniform membranes. When subjected to uniaxial cyclical loading in wet conditions, these membranes sustained 10 cycles of predetermined loads up to 1 MPa without break. Chitosan was anti-adhesive to Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans bacteria. Presence of PCL compromised the antibacterial property of chitosan. Four-week degradation studies in PBS/lysozyme at 37 degrees C showed initial weight loss due to chitosan after which no significant changes were observed. Molecular interactions between chitosan and PCL were investigated using Fourier transform infrared spectroscopy (FTIR) which showed no chemical bond formations in the prepared blends. Investigation by wide-angle X-ray diffraction (WAXD) indicated that the crystal structure of individual polymers was unchanged in the blends. Dynamic mechanical and thermal analysis (DMTA) indicated that the crystallinity of PCL was suppressed and its storage modulus increased with the addition of chitosan. Analysis of surface topography by atomic force microscopy (AFM) showed a significant increase in roughness of all blends relative to chitosan. Observed differences in biological and anti-bacterial properties of blends could be primarily attributed to surface topographical changes.

  18. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  19. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1996-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  20. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1.

    PubMed

    Yu, Min; Wang, Junfeng; Tang, Kaihao; Shi, Xiaochong; Wang, Shushan; Zhu, Wei-Ming; Zhang, Xiao-Hua

    2012-03-01

    Pseudoalteromonas flavipulchra JG1 produces a protein PfaP and a range of small-molecule compounds with inhibitory activities against Vibrio anguillarum. The PfaP protein was purified from the extracellular products of JG1 by electroelution, and antibacterial activity was observed by an in-gel antibacterial assay. The complete amino acid sequence (694 aa) of PfaP was determined by de novo peptide sequencing and subsequent alignment with the proteome sequence of strain JG1. The calculated molecular mass of PfaP was 77.0 kDa. PfaP was 58 % identical to l-lysine oxidase AlpP of Pseudoalteromonas tunicata D2, and 54 % identical to the marinocine antimicrobial protein of Marinomonas mediterranea MMB-1. Five small molecules (compounds 1-5) with antibacterial activity, which were identified as p-hydroxybenzoic acid (1), trans-cinnamic acid (2), 6-bromoindolyl-3-acetic acid (3), N-hydroxybenzoisoxazolone (4) and 2'-deoxyadenosine (5), were purified by sequential column chromatography over silica gel, Sephadex LH-20 and RP-18 from ethyl acetate extract of strain JG1, and their structures were determined by NMR and MS. Brown compound 3, the only brominated compound, showed antibacterial activity against both Gram-positive and Gram-negative bacteria.

  1. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong

    2012-01-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356

  2. Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia.

    PubMed

    Lee, S Y; Moon, H J; Kurata, S; Kurama, T; Natori, S; Lee, B L

    1994-01-01

    Injection of Escherichia coli into larvae of the coleopteran Holotrichia diomphalia results in the appearance of antibacterial activity in the hemolymph. An antibacterial protein, named holotricin 2, was purified from larvae of this insect and characterized. A cDNA clone for holotricin 2 was isolated and its complete sequence was determined. This protein was found to inhibit the growth of Gram-negative bacteria and to consist of 72-amino acid residues with no cysteine residues. Its amino acid sequence is similar to that of coleoptericine, an antibacterial protein isolated from larvae of the coleopteran Zophobas atratus.

  3. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically-strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP). Methods The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. Ng was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tertbutylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2×2×25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls. Results Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05). Significance QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly-antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have

  4. Short Antimicrobial Peptides and Peptide Scaffolds as Promising Antibacterial Agents.

    PubMed

    Domalaon, Ronald; Zhanel, George G; Schweizer, Frank

    2016-01-01

    Antimicrobial peptides have recently garnered significant attention as an emerging source of potential antibiotics, due to the swift emergence of multidrug-resistant bacteria and a dwindling antibiotic pipeline. The vast majority of antimicrobial peptides are long, comprised of more than 10 amino acids, resulting in significant production costs for their synthesis while simultaneously displaying metabolic instability and relatively poor pharmacological profiles. To counter these problems, efforts have been shifted to shorter molecules and the development of new peptidomimetic approaches. In this paper, we review promising short, naturally-isolated or synthetic, antimicrobial peptides, along with their mimics, and discuss their merits as potential antibacterial agents.

  5. Chemical synthesis enables biochemical and antibacterial evaluation of streptolydigin antibiotics.

    PubMed

    Pronin, Sergey V; Martinez, Anthony; Kuznedelov, Konstantin; Severinov, Konstantin; Shuman, Howard A; Kozmin, Sergey A

    2011-08-10

    Inhibition of bacterial transcription represents an effective and clinically validated anti-infective chemotherapeutic strategy. We describe the evolution of our approach to the streptolydigin class of antibiotics that target bacterial RNA polymerases (RNAPs). This effort resulted in the synthesis and biological evaluation of streptolydigin, streptolydiginone, streptolic acid, and a series of new streptolydigin-based agents. Subsequent biochemical evaluation of RNAP inhibition demonstrated that the presence of both streptolic acid and tetramic acid subunits was required for activity of this class of antibiotics. In addition, we identified 10,11-dihydrostreptolydigin as a new RNAP-targeting agent, which was assembled with high synthetic efficiency of 15 steps in the longest linear sequence. Dihydrostreptolydigin inhibited three representative bacterial RNAPs and displayed in vitro antibacterial activity against S. salivarius . The overall increase in synthetic efficiency combined with substantial antibacterial activity of this fully synthetic antibiotic demonstrates the power of organic synthesis in enabling design and comprehensive in vitro pharmacological evaluation of new chemical agents that target bacterial transcription. © 2011 American Chemical Society

  6. Antibacterial and cytotoxic triterpenoids from the roots of Combretum racemosum.

    PubMed

    Gossan, Diane Patricia Apie; Alabdul Magid, Abdulmagid; Yao-Kouassi, Philomène Akoua; Josse, Jérôme; Gangloff, Sophie C; Morjani, Hamid; Voutquenne-Nazabadioko, Laurence

    2016-04-01

    A new pentacyclic triterpenoid glucoside, together with fourteen known compounds, was isolated from the roots of Combretum racemosum. Combretaceae). The structure of the new compound was established as 28-O-β-d-glucopyranosyl-2α,3β,21β,23-tetrahydroxyolean-18-en-28-oate (1) on the basis of detailed spectroscopic data including MS, 1D, and 2D NMR. The inhibitory activity of compounds 1-15 against promyelocytic leukemia HL-60 and human erythromyeloblastoid leukemia K562 cell lines was evaluated. Compounds 11 (3-O-β-acetyl-ursolic acid), 14 (betulinic acid), and 15 (quadranoside II) exhibited significant cytotoxicity, with IC50 values of 13 to 50 μM. Among the isolated triterpenes, compounds 1, 3 (arjungenin), 5 (terminolic acid), and 11 exhibited moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Enterococcus faecalis (MICs within a range of 64 and 256 μg/mL). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death.

  8. Antibacterial structure–activity relationship studies of several tricyclic sulfur-containing flavonoids

    PubMed Central

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C

    2016-01-01

    Summary A structure–activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  9. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties.

    PubMed

    Gao, Minjie; Sun, Lei; Wang, Zhiqiang; Zhao, Yanbao

    2013-01-01

    In this paper, Ag triangle nanoplates and nanospheres were synthesized by liquid chemical reduction method in the presence of seeds, with L-ascorbic acid as the reductant and polyvinyl pyrrolidone (PVP) as the surface modification agent, respectively. Characterizations of the particles were conducted by various techniques such as X-ray powder diffraction, transmission electron microscopy, ultraviolet-visible absorption spectroscopy, Fourier transformation infrared spectrometry, and thermal analysis. The antibacterial properties of Ag nanoparticles against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were investigated by disk diffusion and broth dilution methods. The results indicate that Ag nanospheres exhibit better antibacterial properties than that of triangle nanoplates.

  10. [Study on antibacterial property of silver loaded titanium dioxide antibacterial coated endotracheal intubation tube].

    PubMed

    Jiang, Xuhong; Wang, Yuan; Hua, Junyi; Lyu, Bin

    2014-05-01

    To study the antibacterial property of silver loaded titanium dioxide (TiO2) antibacterial coated endotracheal intubation tube, and to determine the minimum effective antibacterial concentration. Intubation tubes coated with different concentrations of antibacterial agents were prepared with sol gel method. Polyethylene endotracheal intubation tubes were used as substrate, and silver loaded TiO2 was used as the antibacterial agent. According to the different antibacterial concentrations of the antibacterial agent, the tubes were divided into nine groups: 10.0% group, 5.0% group, 2.0% group, 1.5% group, 1.0% group, 0.8% group, 0.6% group, 0.2% group, and control group. They were respectively immersed in three standard bacteria suspensions with 1.0×10(5) cfu/mL: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Together with standard bacteria liquid group, there were 10 experimental groups. They were kept overnight for 24 hours. 10 μL of respective culture medium was smeared on blood agar culture medium. After being cultured overnight in 35 centigrade, the number of bacteria colonies was respectively counted. In 1.0×10(5) cfu/mL of three standard bacteria liquids with antibacterial agent concentration ≥1.0%, three bacterial colonies had un-obviously growth rate. Almost the same strong antibacterial effects to achieve sterilizing rates of more than 98% was shown in each group of the antibacterial coating endotracheal intubation tubes (all P>0.05). As the antibacterial agent concentration decreased, three bacterial colonies were increasing gradually. Intermediate antibacterial effects were shown in tubes of 0.8% group, with significant statistic difference as compared with 1.0% and 0.6% groups [Pseudomonas aeruginosa: 7.300 (4.050, 8.350) vs. 0.200 (0.050, 1.200), 9.700(9.000, 10.000); Staphylococcus aureus: 4.100 (3.300, 4.650) vs. 0.000 (0.000, 0.150), 5.800 (5.350, 7.650); Escherichia coli: 1.400 (0.750, 3.750) vs. 0.050 (0.025, 0.050), 9

  11. Small organometallic compounds as antibacterial agents.

    PubMed

    Patra, Malay; Gasser, Gilles; Metzler-Nolte, Nils

    2012-06-07

    The emergence of bacterial resistance to commercial antibiotics is an issue of global importance. During the last two decades, the number of antibacterial agents that have been discovered and introduced into the market has steadily declined and failed to meet the challenges posed by rapidly increasing resistance of the pathogens against common antibacterial drugs. The development of new classes of compounds to control the virulence of the pathogens is therefore urgently required. This perspective describes the historical development in brief and recent advances on the preparation of small organometallic compounds as new classes of antibacterial agents with potential for clinical development.

  12. Studies on the antibacterial activity of dodecylglycerol

    SciTech Connect

    Brissette, J.L.

    1985-01-01

    The antimicrobial activity of lipids has been known for many years, with dodecanoylglycerol (dodecanoic acid esterified to glycerol) being one of the most potential. However, the antibacterial potency of dodecylglycerol (DDG), the corresponding 1-O-alkyl glycerol ether, is considerably greater. The superior efficacy of DDG can be attributed, at least in part, to the greater chemical and metabolic stability of the ether bond as compared to esters. In an attempt towards elucidating the mode of action of DDG, the effect of DDG on bacterial lipid metabolism was examined using Streptococcus mutans BHT, a tolerant bacterium. The metabolic fate of the ether was also determined with the use of three radioactive tracers, /sup 14/C-glycerol, /sup 32/Pi, and /sup 14/C-DDG. Treatment of exponentially growing cultures of S. mutans BHI with growth inhibitory concentrations of DDG (10 and 20 ..mu..g/ml) inhibited the incorporation of /sup 14/C-glycerol into lipid. In vivo studies using /sup 14/C-DDG showed that the /sup 14/C-ether was readily incorporated almost exclusively into phosphatidic (PA) and lysophosphatidic (LPA) acids. When cells prelabelled with either /sup 14/C-glycerol or /sup 32/Pi were exposed to 10 and 20 /sup +/g/ml DDG for 2 h, the accumulation of PA and diphosphatidylglycerol (diPG) was greatly stimulated. However, diPG accumulated at the expense of its precursor, glycerol, which greatly decreased. These data suggest that the ether-containing PA inhibits the synthesis of CDP-diglyceride. Moreover, these results clearly demonstrate that DDG functions as a metabolic rather than physical effector, disputing the conventional notion that bactericidal lipids act as detergents, physically dissolving the cellular envelope.

  13. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia.

    PubMed

    Darwish, Mohamed S A; Nguyen, Nhung H A; Ševců, Alena; Stibor, Ivan; Smoukov, Stoyan K

    2016-06-01

    Multifunctional nanoparticles for magnetic hyperthermia which simultaneously display antibacterial properties promise to decrease bacterial infections co-localized with cancers. Current methods synthesize such particles by multi-step procedures, and systematic comparisons of antibacterial properties between coatings, as well as measurements of specific absorption rate (SAR) during magnetic hyperthermia are lacking. Here we report the novel simple method for synthesis of magnetic nanoparticles with shells of oleic acid (OA), polyethyleneimine (PEI) and polyethyleneimine-methyl cellulose (PEI-mC). We compare their antibacterial properties against single gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria as well as biofilms. Magnetite nanoparticles (MNPs) with PEI-methyl cellulose were found to be most effective against both S. aureus and E. coli with concentration for 10% growth inhibition (EC10) of <150 mg/l. All the particles have high SAR and are effective for heat-generation in alternating magnetic fields.

  14. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging.

    PubMed

    Longano, D; Ditaranto, N; Cioffi, N; Di Niso, F; Sibillano, T; Ancona, A; Conte, A; Del Nobile, M A; Sabbatini, L; Torsi, L

    2012-05-01

    A new type of nanomaterial has been developed as antibacterial additive for food packaging applications. This nanocomposite is composed of copper nanoparticles embedded in polylactic acid, combining the antibacterial properties of copper nanoparticles with the biodegradability of the polymer matrix. Metal nanoparticles have been synthesised by means of laser ablation, a rising and easy route to prepare nanostructures without any capping agent in a liquid environment. As prepared, nanoparticle suspensions have been easily mixed to a polymer solution. The resulting hybrid solutions have been deposited by drop casting, thus obtaining self-standing antibacterial packages. All samples have been characterized by UV-Vis spectroscopy, X-ray photoelectron spectroscopy and electro-thermal atomic absorption spectroscopy. Ion release data have been matched with bioactivity tests performed by Japanese Industrial Standard (JIS) method (JIS Z 2801:2000) against Pseudomonas spp., a very common Gram-negative microbial group able to proliferate in processed food.

  15. Antibacterial activity of cotton coated with ZnO and ZnO-CNT composites.

    PubMed

    Yazhini, K Bharathi; Prabu, H Gurumallesh

    2015-01-01

    With the growing public health awareness of the pathogenic effects and strain formations caused by microorganisms, there is an increasing need for antibacterial materials in many applications. Zinc oxide (ZnO)-1,2,3,4-butanetetracarboxylic acid (BTCA) and ZnO-BTCA-carbon nanotube (CNT) composites were synthesized by simple stirring method. The synthesized materials were coated on cotton fabric by pad-dry-cure method separately. The coated fabrics were characterized by FT-IR analysis that revealed the cross-linking in the composites. The fabrics were screened for antibacterial activity by agar well diffusion method against gram positive Staphylococcus aureus and gram negative Escherichia coli. The results showed that the ZnO-BTCA-CNT-coated fabric has improved antibacterial activity when compared with the ZnO-BTCA-coated fabric.

  16. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study.

    PubMed

    Liu, Zhiguo; Wang, Yuanlin; Zu, Yuangang; Fu, Yujie; Li, Na; Guo, Na; Liu, Ruisi; Zhang, Yiming

    2014-09-01

    In this study, we report a facile, one-step hydrothermal method to synthesize PEI-functionalized Ag nanoparticles in which no extra reducing agent is needed and PEI serves as a reducing agent and a stabilizing agent. The obtained Ag colloids have been characterized by TEM, UV absorption spectra and laser particle size analyzer. We found that the size of Ag nanoparticles can be tuned through the alteration of the temperature and growth mode. Under an acidic condition, PEI-functionalized Ag nanoparticles are positively charged. More importantly, the Ag colloids exhibited stronger antibacterial activity in the bactericidal test. Its bactericidal efficiency exceeds the commonly used antibacterial agents such as Erythromycin, chloramphenicol and penicillin as well as AgNO3 solution. These results prove that our synthesis method is very efficient to produce a stable PEI-functionalized Ag colloid with excellent antibacterial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Toward bioactive yet antibacterial surfaces.

    PubMed

    Sukhorukova, I V; Sheveyko, A N; Kiryukhantsev-Korneev, Ph V; Zhitnyak, I Y; Gloushankova, N A; Denisenko, E A; Filippovich, S Yu; Ignatov, S G; Shtansky, D V

    2015-11-01

    The fabrication of antibacterial yet biocompatible and bioactive surfaces is a challenge that biological and biomedical community has faced for many years, while no "dream material" has been developed so far. The primary goal of this study was to establish an optimal range of Ag concentration and its state of agglomeration in bioactive nanocomposite TiCaPCON films which would provide a strong bactericidal effect without compromising the material biocompatibility and bioactivity. To obtain samples with different Ag content and redistribution, two different methods were employed: (i) TiCaPCON films deposition by magnetron sputtering of composite TiС0.5-Ca3(РО4)2 target followed by Ag(+) ion implantation and (ii) Ag-doped TiCaPCON films obtained by co-sputtering of composite TiС0.5-Ca3(РО4)2 and Ag targets. In order to reveal the antibacterial role of Ag nanoparticles and Ag(+) ions, both separate and in synergy, part of the samples from the first and second groups was subjected to additional ion etching to remove an Ag rich surface layer heavily populated with Ag nanoparticles. All resultant films were characterized with respect to surface morphology, chemical composition, surface roughness, wettability, and Ag(+) ion release. The antibacterial and antifungal effects of the Ag-doped TiCaPCON films were evaluated against clinically isolated Escherichia coli O78 (E. coli) and Neurospora crassa wt-987 spores. The influence of the surface chemistry on spreading, proliferation, and early stages of MC3T3-E1 osteoblastic cell differentiation was also studied. Our data demonstrated that under optimal conditions in terms of Ag content and agglomeration, the Ag-doped TiCaPCON films are highly efficient against E. coli bacteria and, at the same time, provide good adhesion, spreading, proliferation and differentiation of osteoblastic cells which reflect high level of biocompatibility and bioactivity of the films. The influence of Ag(+) ions and nanoparticles on the MC3T3-E

  18. Compounds from Sedum caeruleum with antioxidant, anticholinesterase, and antibacterial activities.

    PubMed

    Bensouici, Chawki; Kabouche, Ahmed; Karioti, Anastasia; Öztürk, Mehmet; Duru, Mehmet Emin; Bilia, Anna Rita; Kabouche, Zahia

    2016-01-01

    This is the first study on the phytochemistry, antioxidant, anticholinesterase, and antibacterial activities of Sedum caeruleum L. (Crassulaceae). The objective of this study is to isolate the secondary metabolites and determine the antioxidant, anticholinesterase, and antibacterial activities of S. caeruleum. Six compounds (1-6) were isolated from the extracts of S. caeruleum and elucidated using UV, 1D-, 2D-NMR, and MS techniques. Antioxidant activity was investigated using DPPH(•), CUPRAC, and ferrous-ions chelating assays. Anticholinesterase activity was determined against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the Ellman method. Antibacterial activity was performed according to disc diffusion and minimum inhibitory concentration (MIC) methods. Isolated compounds were elucidated as ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6). The butanol extract exhibited highest antioxidant activity in all tests (IC50 value: 28.35 ± 1.22 µg/mL in DPPH assay, IC50 value: 40.83 ± 2.24 µg/L in metal chelating activity, and IC50 value: 23.52 ± 0.44 µg/L in CUPRAC), and the highest BChE inhibitory activity (IC50 value: 36.89 ± 0.15 µg/L). Moreover, the chloroform extract mildly inhibited (MIC value: 80 µg/mL) the growth of all the tested bacterial strains. Ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6) were isolated from Sedum caeruleum for the first time. In addition, a correlation was observed between antioxidant and anticholinesterase activities of bioactive ingredients of this plant.

  19. Antibacterial activity of papain and bromelain on Alicyclobacillus spp.

    PubMed

    dos Anjos, Márcia Maria; da Silva, Angela Aparecida; de Pascoli, Isabela Carolini; Mikcha, Jane Martha Graton; Machinski, Miguel; Peralta, Rosane Marina; de Abreu Filho, Benício Alves

    2016-01-04

    Alicyclobacillus spp. are spore forming bacteria that are often related to the deterioration of acidic products such as beverages and citrus juices. After the process of industrial pasteurization, the spore produced by the bacteria can germinate and the microorganism can grow, causing sensory abnormalities in the product. Alternative biopreservatives, such as the antimicrobial compounds, are of considerable importance to the food industry. Papain and bromelain are proteolytic enzymes derived frompapaya and pineapple, respectively. These enzymes are widely used in medicine and in the pharmaceutical and food industries, but while some studies have described their antibacterial action, no studies of the Alicyclobacillus spp. exist. The aimof this studywas to analyze the antibacterial effect of papain and bromelain on Alicyclobacillus spp. through 1) determining minimum inhibitory and bactericidal concentration (MIC and MBC); 2) determining the death time curve of the micro-organism in the presence and absence of enzymes; and 3) investigating the enzymatic mechanism on the microorganism. The antibacterial activity of enzymes in combination with nisin was also evaluated. The results showed that for the Alicyclobacillus acidoterrestris strain, the MIC of papain was 0.98 μg/mL and the MBC was 3.91 μg/mL, while theMIC of bromelain was 62.5 μg/mL and the MBCwas 250 μg/mL. The concentration of 4 ×MIC for both the enzymes was sufficient to eliminate 4 logs of the micro-organism after 24 h of incubation. Through the use of enzyme inhibitors specific for cysteine proteases, it was found that the antibacterial activity of papain and bromelain is not related to its proteolytic activity, butmay be related to other activities, such as amidse and esterase. The synergistic activity of the enzymes revealed a fractional inhibitory concentration (FIC) level of 0.16. Combination with nisin revealed an FIC of 0.25 for papain and 0.19 for bromelain, indicating synergism between both

  20. Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.

    2017-01-01

    Remarkable improvement in antibacterial activity and durability of different cellulosic substrates namely cotton, linen, viscose and lyocell was achieved by pre-surface modification using N2-plasma to create new active and binding sites, -NH2 groups, onto the modified fabric surfaces followed by subsequent loading of biosynthesized silver nanoparticles (Ag NPs) alone and in combination with certain antibiotics using exhaustion method. The imparted antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) pathogens was governed by type of substrate, extent of modification and subsequent loading of antibacterial agent, synergistic effect, and antibacterial activity as well as type of harmful bacteria. A remarkable antibacterial activity still retained even after 15 washings. In addition, incorporation of Ag NPs into pigment printing paste and into acid dyeing bath for combined coloration and functionalization of O2-plasma and N2-plasma pre-modified substrates respectively were successfully achieved. Moreover, both SEM images and EDS spectra of selected substrates revealed the change in surface morphology as well as the presence of the loaded Ag element onto the post-treated substrates.

  1. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis-Flow Cytometry Study.

    PubMed

    Lukomska-Szymanska, Monika; Konieczka, Magdalena; Zarzycka, Beata; Lapinska, Barbara; Grzegorczyk, Janina; Sokolowski, Jerzy

    2017-04-29

    Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS). Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape), and functional parameters (viability, cell cycle). The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE), four self-etching (SE) and two selective enamel etching (SEE) were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells) followed by Clearfil S3 Bond Plus (88.02%) and Panavia F 2.0 ED Primer II (86.67%) showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control). In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  2. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles.

    PubMed

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria.

  3. Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents.

    PubMed

    Park, Seong-Cheol; Kim, Nam-Hong; Yang, Wonseok; Nah, Jae-Woon; Jang, Mi-Kyeong; Lee, Dongwon

    2016-01-10

    Reactive oxygen species (ROS) produced by host phagocytes exert antibacterial action against a variety of pathogens and ROS-induced oxidative stress is the governing mechanism for the antibacterial activity of major bactericidal antibiotics. In particular, hydroxyl radical is a strong and nonselective oxidant which can damage biomolecules such as DNA, proteins and lipids. Ferrous ion is known to convert mild oxidant hydrogen peroxide (H2O2) into highly reactive and toxic hydroxyl radicals, referred to as Fenton reaction. Herein, we report a new class of antibacterial agents based on Fenton reaction-performing nanostructures, composed of H2O2-generating polymer (PCAE) and iron-containing ferrocene. Amphiphilic PCAE was designed to incorporate H2O2-generating cinnamaldehyde through acid-cleavable linkages and self-assemble to form thermodynamically stable micelles which could encapsulate ferrocene in their hydrophobic core. All the experiments in vitro display that ferrocene-loaded PCAE micelles produce hydroxyl radicals to kill Escherichia coli and Pseudomonas aeruginosa through membrane damages. Intraperitoneally injected ferrocene-loaded PCAE micelles significantly reduced the lung damages and therefore increased the survival rate of mice infected with drug resistant P. aeruginosa. Given their potent antibacterial activity, ferrocene-loaded PCAE micelles hold great potential as a new class of ROS-manipulating antibacterial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Some probiotic and antibacterial properties of Lactobacillus acidophilus cultured from dahi a native milk product.

    PubMed

    Mahmood, Talat; Masud, Tariq; Sohail, Asma

    2014-08-01

    In this study, different strains of Lactobacillus acidophilus from dahi were analyzed for certain probiotic and antibacterial properties. Initially, these strains were confirmed by the amplification of 16S rRNA regions and then screened for antibacterial activities against food borne pathogens. The phenotypic relationship between apparent antibacterial activity and cell wall proteins were established by cluster analysis. It was observed that those strains, which have prominent bands having size 22-25 kDa possess antibacterial activity. On the basis of wide spectrum of killing pattern, a strain LA06FT was further characterized that showed no change in its behavior when subjected to the antibiotic protected environment and grow well in acid-bile conditions. The bacteriocin produced by this strain has specific antibacterial activity of 5369.13 AU mg(-1). It remained stable at 60-90 °C and pH range of 4.5-6.5 while proteolytic enzymes inactivate the bacteriocin that confirm its proteinic nature having molecular weight of ≤8.5 kDa.

  5. Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive

    PubMed Central

    Zhou, Wei; Niu, Li-na; Huang, Li; Fang, Ming; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present in vitro study evaluated the secondary caries resistance potential of acid-etched human coronal dentin bonded using augmented pressure adhesive displacement in conjunction with an experimental antibacterial adhesive. One hundred and twenty class I cavities were restored with a commercial non-antibacterial etch-and-rinse adhesive (N) or an experimental antibacterial adhesive (A) which was displaced by gentle air-blow (G) or augmented pressure air-blow (H). After bonding and restoration with resin composite, the resulted 4 groups (N-G, N-H, A-G and A-H) were exposed to Streptococcus mutans biofilm for 4, 8, 15, 20 or 25 days. The development of secondary caries in the bonding interface was then examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Data acquired from 15, 20 and 25 days of artificial caries induction were analyzed with three-way ANOVA at α = 0.05. The depth of the artificial carious lesions was significantly affected by “adhesive type” (Single Bond 2 vs experimental antibacterial adhesive p = 0.003), “intensity of adhesive displacement” (gentle vs augmented-pressure adhesive displacement; p < 0.001), as well as “artificial caries induction time” (p < 0.001). The combined use of augmented pressure adhesive displacement and experimental antibacterial adhesive reduces the progression of secondary caries. PMID:26928742

  6. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against Mycobacterium tuberculosis (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate. PMID:27231718

  8. Antibacterial spectrum and cytotoxic activities of serrulatane compounds from the Australian medicinal plant Eremophila neglecta.

    PubMed

    Anakok, O F; Ndi, C P; Barton, M D; Griesser, H J; Semple, S J

    2012-01-01

    To determine the antibacterial spectrum and cytotoxic activities of serrulatane compounds from the Australian plant Eremophila neglecta. Antimicrobial activities of serrulatane compounds 8,19-dihydroxyserrulat-14-ene (1) and 8-hydroxyserrulat-14-en-19-oic acid (2) were tested against Gram-negative and Gram-positive bacteria including human and veterinary pathogens and some multidrug-resistant isolates. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the compounds were determined by broth microdilution assay. Both compounds exhibited antibacterial activity against all Gram-positive test strains. They showed antimycobacterial activity against isolates of Mycobacterium fortuitum and Mycobacterium chelonae. Of the five Gram-negative bacteria tested, only Moraxella catarrhalis showed susceptibility to the compounds. Cytotoxic activities were tested in the Vero cell line. Compound 1 showed more activity than 2 in both antibacterial and cytotoxicity assays with cytotoxicity at concentrations similar to the MBC. Serrulatane compounds showed significant activity against medically important bacteria, with 1 exhibiting stronger antibacterial activity. However, they also displayed toxicity to mammalian cells. Serrulatanes are of interest as novel antibacterial compounds for use in biomedical applications; this study reports data obtained with a range of bacterial strains and mammalian cells, essential for assessing the capabilities and limitations of potential applicability of these compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. [DIETARY SUPPLEMENT REKECEN IMPROVES SAFETY AND EFFICACY OF CHRONIC PROSTATITIS ANTIBACTERIAL THERAPY].

    PubMed

    Kuznetsov, V F; Davidov, M I; Sokolov, A P; Kuznetsov, S V

    2015-01-01

    This randomized comparative study was carried out to estimate efficacy and safety of the natural complex of fermented food fibers and short chain fatty acids (dietary supplement rekicen-RD®) in antibacterial therapy of 64 patients with chronic infectious prostatitis. 32 patients of the treatment group received 8 week standard antibacterial therapy for chronic prostatitis in combination with dietary supplement rekicen-RD® and 32 patients of the control group were treated only with antibacterial therapy. Short-term and long-term results were estimated after 8 weeks and 6 months follow-up, respectively. It was found, that addition of dietary supplement rekicen- RD® to antibacterial therapy resulted in statistically significant improvement of the treatment efficacy. Compared to patients of the control group, patients of the treatment group had more pronounced positive changes of all indicators of treatment efficacy (NIH-CPSI total score, quality of life, echo-structure of prostate, the number of leukocytes in prostatic secretions). Long-term (after 6 months) clinical efficacy of the combination of antibacterial therapy with dietary supplement rekicen-RD® was 96,9%, bacteriological efficacy after 8 weeks - 87,5%, after 6 months - 81%. Notably, there was 4,5-fold reduction in the rate of antibiotics adverse side effects in the treatment group patients without a single gastro-intestinal side effect.

  10. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli.

    PubMed

    Moghimi, Roya; Ghaderi, Lida; Rafati, Hasan; Aliahmadi, Atousa; McClements, David Julian

    2016-03-01

    Natural preservatives are being extensively investigated for their potential industrial applications in foods and other products. In this work, an essential oil (Thymus daenensis) was formulated as a water-dispersible nanoemulsion (diameter=143nm) using high-intensity ultrasound. The antibacterial activity of the essential oil in both pure and nanoemulsion forms was measured against an important food-borne pathogen bacterium, Escherichia coli. Antibacterial activity was determined by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibacterial activity of the essential oil against E. coli was enhanced considerably when it was converted into a nanoemulsion, which was attributed to easier access of the essential oils to the bacterial cells. The mechanism of antibacterial activity was investigated by measuring potassium, protein, and nucleic acid leakage from the cells, and electron microscopy. Evaluation of the kinetics of microbial deactivation showed that the nanoemulsion killed all the bacteria in about 5min, whereas only a 1-log reduction was observed for pure essential oil. The nanoemulsion appeared to amplify the antibacterial activity of essential oils against E. coli by increasing their ability to disrupt cell membrane integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  12. Recent Advances in the Rational Design and Optimization of Antibacterial Agents.

    PubMed

    Jones, Jesse A; Virga, Kristopher G; Gumina, Giuseppe; Hevener, Kirk E

    2016-09-01

    This review discusses next-generation antibacterial agents developed using rational, or targeted, drug design strategies. The focus of this review is on small-molecule compounds that have been designed to bypass developing bacterial resistance, improve the antibacterial spectrum of activity, and/or to optimize other properties, including physicochemical and pharmacokinetic properties. Agents are discussed that affect known antibacterial targets, such as the bacterial ribosome, nucleic acid binding proteins, and proteins involved in cell-wall biosynthesis; as well as some affecting novel bacterial targets which do not have currently marketed agents. The discussion of the agents focuses on the rational design strategies employed and the synthetic medicinal chemistry and structure-based design techniques utilized by the scientists involved in the discoveries, including such methods as ligand- and structure-based strategies, structure-activity relationship (SAR) expansion strategies, and novel synthetic organic chemistry methods. As such, the discussion is limited to small-molecule therapeutics that have confirmed macromolecular targets and encompasses only a fraction of all antibacterial agents recently approved or in late-stage clinical trials. The antibacterial agents selected have been recently approved for use on the U.S. or European markets or have shown promising results in phase 2 or phase 3 U.S.

  13. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels.

    PubMed

    He, Guanghua; Chen, Xiang; Yin, Yihua; Cai, Weiquan; Ke, Wanwan; Kong, Yahui; Zheng, Hua

    2016-01-01

    In this study, O-carboxymethyl chitosan (O-CMCS) was synthesized from chitosan and monochloroacetic acid. Then O-CMCS hydrogel was prepared by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in which the lincomycin was packaged. The Fourier transform infrared spectrum and scanning electron microscopy were adopted to characterize the structure and morphology of the product. The influences of dosage of EDC/NHS and concentration of O-CMCS on the swelling properties of the hydrogels were investigated. The hydrogels performed good swelling capacities and obvious pH-sensitive properties. The antibacterial activities of the hydrogels were tested against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Compared with pure O-CMCS hydrogels, the antibacterial activities of O-CMCS/lincomycin hydrogels were significantly improved with the increase in the concentration of lincomycin against E. coli and S. aureus. With the increase in dosage of crosslinking agent or concentration of O-CMCS, the antibacterial activities both decreased gradually against the two bacteria. O-CMCS/lincomycin hydrogel was expected to be used for antibacterial material in view of its significant antibacterial activities.

  14. Identification of a New Antibacterial Sulfur Compound from Raphanus sativus Seeds

    PubMed Central

    Yazbak, Ahmad; Rushrush, Salwa; Rudy, Amira

    2016-01-01

    Raphanus sativus L. (radish), a member of Brassicaceae, is widely used in traditional medicine in various cultures for treatment of several diseases and disorders associated with microbial infections. The antibacterial activity of the different plant parts has been mainly attributed to several isothiocyanate (ITC) compounds. However, the low correlation between the ITC content and antibacterial activity suggests the involvement of other unknown compounds. The objective of this study was to investigate the antibacterial potential of red radish seeds and identify the active compounds. A crude ethanol seed extract was prepared and its antibacterial activity was tested against five medically important bacteria. The ethanol extract significantly inhibited the growth of all tested strains. However, the inhibitory effect was more pronounced against Streptococcus pyogenes and Escherichia coli. Bioassay-guided fractionation of the ethanol extract followed by HPLC, 1H-NMR, 13C-NMR, 15N-NMR, and HMBC analysis revealed that the active fraction consisted of a single new compound identified as [5-methylsulfinyl-1-(4-methylsulfinyl-but-3-enyl)-pent-4-enylidene]-sulfamic acid, which consisted of two identical sulfur side chains similar to those found in ITCs. The minimal inhibitory concentration values of the isolated compound were in the range of 0.5–1 mg/mL. These results further highlight the role of radish as a rich source of antibacterial compounds. PMID:27781070

  15. Identification of a New Antibacterial Sulfur Compound from Raphanus sativus Seeds.

    PubMed

    Jadoun, Jeries; Yazbak, Ahmad; Rushrush, Salwa; Rudy, Amira; Azaizeh, Hassan

    2016-01-01

    Raphanus sativus L. (radish), a member of Brassicaceae, is widely used in traditional medicine in various cultures for treatment of several diseases and disorders associated with microbial infections. The antibacterial activity of the different plant parts has been mainly attributed to several isothiocyanate (ITC) compounds. However, the low correlation between the ITC content and antibacterial activity suggests the involvement of other unknown compounds. The objective of this study was to investigate the antibacterial potential of red radish seeds and identify the active compounds. A crude ethanol seed extract was prepared and its antibacterial activity was tested against five medically important bacteria. The ethanol extract significantly inhibited the growth of all tested strains. However, the inhibitory effect was more pronounced against Streptococcus pyogenes and Escherichia coli. Bioassay-guided fractionation of the ethanol extract followed by HPLC, (1)H-NMR, (13)C-NMR, (15)N-NMR, and HMBC analysis revealed that the active fraction consisted of a single new compound identified as [5-methylsulfinyl-1-(4-methylsulfinyl-but-3-enyl)-pent-4-enylidene]-sulfamic acid, which consisted of two identical sulfur side chains similar to those found in ITCs. The minimal inhibitory concentration values of the isolated compound were in the range of 0.5-1 mg/mL. These results further highlight the role of radish as a rich source of antibacterial compounds.

  16. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  17. [Antibacterial effect of Ankerplast Spray].

    PubMed

    Oehring, H; Karl, P; Döring, K; Herrberger, U

    1979-04-01

    The diffusion test yielded no satisfactory results. In the tube test, both the spray and the solvent (in a dilution of 1:4 and 1:8, respectively) proved to be bacteriostatically active against enterococci, Staphylococcus aureus, Escheria coli, Proteus, and Pseudomonas aeruginosa. These germs were killed within 30 minutes in the test for bactericidal activity, whereas the reference substance (1% phenol) required 1--2 hours, except against the last-named germ. Even the copolymer exerted a bactericidal effect, it is true, but only within 8 or 24 hours. The following results were obtained from the spray test with agar plate cultures: Streptococcus viridans species, streptococci, Diplococcus pneumoniae, Escheria coli, and Proteus were killed, whereas others survived under the plastic film for up to 9 days. Klebsiella and Pseudomonas aeruginosa had grown through the film within 7 days. In vivo experiments demonstrated a very potent antibacterial activity on the skin under the spray film.

  18. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  19. Antibacterial Cleaning Products and Drug Resistance

    PubMed Central

    Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug resistance after 1 year (odds ratio 1.33, 95% confidence interval 0.74–2.41), nor did it have an effect on bacterial susceptibility to triclosan. However, more extensive and longer term use of triclosan might provide a suitable environment for emergence of resistant species. Further research on this issue is needed. PMID:16318697

  20. Newer Antibacterials in Therapy and Clinical Trials

    PubMed Central

    Paknikar, Simi S; Narayana, Sarala

    2012-01-01

    In order to deal with the rising problem of antibiotic resistance, newer antibacterials are being discovered and added to existing pool. Since the year 2000, however, only four new classes of antibacterials have been discovered. These include the oxazolidinones, glycolipopeptides, glycolipodepepsipeptide and pleuromutilins. Newer drugs were added to existing classes of antibiotics, such as streptogramins, quinolones, beta-lactam antibiotics, and macrolide-, tetracycline- and trimethoprim-related drugs. Most of the antibacterials are directed against resistant S. aureus infections, with very few against resistant gram-negative infections. The following article reviews the antibacterials approved by the FDA after the year 2000 as well as some of those in clinical trials. Data was obtained through a literature search via Pubmed and google as well as a detailed search of our library database. PMID:23181224

  1. Antibacterial properties of temporary filling materials.

    PubMed

    Slutzky, Hagay; Slutzky-Goldberg, I; Weiss, E I; Matalon, S

    2006-03-01

    The purpose of this study was to investigate the antibacterial properties of temporary fillings. The direct contact test (DCT) was used to evaluate the antibacterial properties of Revoltek LC, Tempit, Systemp inlay, and IRM. These were tested in contact with Streptococcus mutans and Enterococcus faecalis. The materials were examined immediately after setting, 1, 7, 14, and 30 days after aging in phosphate buffered saline (PBS). Statistical analysis included two-way ANOVA, one-way ANOVA, and Tukey multiple comparison. Systemp inlay, Tempit, and IRM exhibited antibacterial properties when in contact with S. mutans for at least 7 days, Tempit and IRM sustained this ability for at least 14 days. When in contact with E. faecalis Tempit and IRM were antibacterial immediately after setting, IRM sustained this ability for at least 1 day. Our study suggests that the difference in temporary filling materials may influence which microorganism will be able to invade the root canal system.

  2. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  3. Novel Small-Molecule Antibacterial Agents

    DTIC Science & Technology

    2014-07-01

    of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Novel Small-Molecule Antibacterial Agents...Release; Distribution Unlimited Novel Small-Molecule Antibacterial Agents The views, opinions and/or findings contained in this report are those of...half life of ~31 days. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO

  4. Antibacterial activity of selected glass ionomer cements.

    PubMed

    Luczaj-Cepowicz, Elżbieta; Marczuk-Kolada, Grażyna; Zalewska, Anna; Pawińska, Małgorzata; Leszczyńska, Katarzyna

    2014-01-22

    The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC), Fuji IX (GC), Ketac Molar (3M Espe) and Ketac Silver (3M Espe). Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep) were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  5. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  6. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    PubMed

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  7. Antibacterial metabolites secreted under glucose-limited environment of the mimicked proximal colon model by lactobacilli abundant in infant feces.

    PubMed

    Kanjan, Pochanart; Hongpattarakere, Tipparat

    2016-09-01

    The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection.

  8. Curcumin bioconjugates: studies on structure-activity relationship and antibacterial properties against clinically isolated strains.

    PubMed

    Rai, Diwakar; Kumari, Garima; Singh, Anuradha; Singh, Ramendra K

    2013-11-01

    Curcumin bioconjugates, with folic acid, fatty acids and dipeptide, have shown much lower MIC than curcumin against clinically isolated Gram-positive, S.viridians, and Gram-negative bacterial strains, E. coli, P. mirabilis and K. pneumoniae. Polynomial regression analysis was performed to establish a correlation between lipophilicity (logP) and antibacterial activity (pMIC), which showed the efficacy of these molecules against the bacterial strains in the following order: E. coli > S viridans = K. pneumoniae > P. mirabilis. The regression coefficients (R(2) = 0.62 to 0.91) derived for each strain were correlated significantly and led to a conclusion that it was the amphiphilic nature that governed the antibacterial activity. Thus, the bioconjugate 2, having folic acid attached at active methylene site of curcumin with free phenolic hydroxyls, showed the best result.

  9. Antibacterial, kinetics and bacteriolytic properties of silver(I) pyridinedicarboxylate compounds.

    PubMed

    Azócar, M Ignacio; Gómez, Grace; Velásquez, Carla; Abarca, Romina; Kogan, Marcelo J; Páez, Maritza

    2014-04-01

    Antibacterial properties of silver(I)-pyridinedicarboxylate compounds (with Pyridine-2,3-dicarboxylic(Lutidinic acid), pyridine-2,4-dicarboxylic (Quinolinic acid) and pyridine-2,5-dicarboxylic (Isocinchomeronic acid)) were studied against Escherichia coli, Listeria monocytogenes (ISP-65-08), Salmonella typhi and Staphylococcus aureus (ATCC 25923) using kinetics of grown inhibition, viability assays, minimum inhibitory concentration and optical microscopy. The 3 silver compounds were tested toward UV-radiation in order to characterize their light insensitivity for potential medical devices: UV-radiation curable polymers. Photophysical measurements show remarkable differences toward UV-radiation, which were explained based on their polymeric structures with multiple nature bonds between pyridinedicarboxylic ligands and Ag(I) centers. We found a bacteriolytic effect and differences in the antibacterial efficiency depending on the structure of the complexes and the nature of AgX (X=oxygen and nitrogen) bonds: AgQuinol>AgLutidin>AgIsocinchom.

  10. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment.

  11. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications

    NASA Astrophysics Data System (ADS)

    Wu, Yiguang; Jia, Weijie; An, Qi; Liu, Yuanfeng; Chen, Jinchun; Li, Guangtao

    2009-06-01

    In this paper, novel multiaction antibacterial nanofibrous membranes containing apatite, Ag, AgBr and TiO2 as four active components were fabricated by an electrospinning technique. In this antibacterial membrane, each component serves a different function: the hydroxyapatite acts as the adsorption material for capturing bacteria, the Ag nanoparticles act as the release-active antibacterial agent, the AgBr nanoparticles act as the visible sensitive and release-active antibacterial agent, and the TiO2 acts as the UV sensitive antibacterial material and substrate for other functional components. Using E. coli as the typical testing organism, such multicomponent membranes exhibit excellent antimicrobial activity under UV light, visible light or in a dark environment. The significant antibacterial properties may be due to the synergetic action of the four major functional components, and the unique porous structure and high surface area of the nanofibrous membrane. It takes only 20 min for the bacteria to be completely (99.9%) destroyed under visible light. Even in a dark environment, about 50 min is enough to kill all of the bacteria. Compared to the four component system in powder form reported previously, the addition of the electrospun membrane could significantly improve the antibacterial inactivation of E. coli under the same evaluation conditions. Besides the superior antimicrobial capability, the permanence of the antibacterial activity of the prepared free-standing membranes was also demonstrated in repeated applications.

  12. Isolation of a new antibacterial peptide actinokineosin from Actinokineospora spheciospongiae based on genome mining.

    PubMed

    Takasaka, N; Kaweewan, I; Ohnishi-Kameyama, M; Kodani, S

    2017-02-01

    Based on genome mining, a new antibacterial peptide named actinokineosin was isolated from a rare actinomycete Actinokineospora spheciospongiae. The amino acid sequence of the C-terminus of actinokineosin was established by TOF-MS/MS experiments. The amino acid sequence in the macrolactam ring was determined by TOF-MS/MS analyses after cleavage with BNPS-skatole and successive trypsin treatment. As a result of an antibacterial assay using a paper disk, actinokineosin showed antibacterial activity against Micrococcus luteus at a dosage of 50 μg per disk. From the genome sequence data of A. spheciospongiae, the biosynthetic gene cluster of actinokineosin was found and was indicated to consist of 10 genes. Among the genes, the gene aknA encoded the precursor of actinokineosin and the genes including aknC, aknB1 and aknB2 were proposed as modification enzymes to give mature actinokineosin. Genome mining is a powerful tool to find new bioactive compounds from the genome database. In this report, we succeeded in isolation and structure determination of a new antibacterial peptide named actinokineosin based on genome mining. © 2016 The Society for Applied Microbiology.

  13. Synthesis and antibacterial activity evaluation of two androgen derivatives.

    PubMed

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Bety, Sarabia-Alcocer

    2015-01-01

    In this study two androgen derivatives were synthesized using several strategies; the first stage an aza-steroid derivative (3) was developed by the reaction of a testosterone derivative (1) with thiourea (2) in presence of hydrogen chloride. The second step, involves the synthesis of an amino-steroid derivative (4) by the reaction of 1 with 2 using boric acid as catalyst. The third stage was achieved by the preparation of an aminoaza-androgen derivative (6) by the reaction of 3 with ethylenediamine using boric acid as catalyst. In addition, the compound 6 was made reacting with dihydrotestosterone to form a new androgen derivative (7) in presence of boric acid. The following step was achieved by the reaction of 7 with chloroacetyl chloride to synthesize an azetidinone-androgen derivative (8) using triethylamine as catalyst. Additionally, a thiourea-androgen derivative (9) was synthetized by the reaction of 4 with dihydrotestosterone using boric acid as catalyst. Finally, the compound 9 was made reacting with chloroacetyl chloride in presence of triethylamine to synthesize a new azetidinone-androgen derivative (10). On the other hand, antibacterial activity of compounds synthesized was evaluated on Gram negative (Escherichia coli and Vibrio cholerae) and Gram positive (Staphylococos aureus) bacteria. The results indicate that only the compound 3 and 8 decrease the growth bacterial of E. coli and V. cholerae. Nevertheless, growth bacterial of S. aureus was not inhibited by these compounds. These data indicate that antibacterial activity exerted by the compounds 3 and 8 depend of their structure chemical in comparison with the controls and other androgen derivatives that are involved in this study.

  14. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  15. Antibacterial Activity of Fructus forsythia Essential Oil and the Application of EO-Loaded Nanoparticles to Food-Borne Pathogens

    PubMed Central

    Guo, Na; Gai, Qing-Yan; Jiao, Jiao; Wang, Wei; Zu, Yuan-Gang; Fu, Yu-Jie

    2016-01-01

    Fructus forsythia essential oil (FEO) with excellent antibacterial activity was rarely reported. The objective of the present study was to investigate the antibacterial activity and the antibacterial mechanism of FEO against two food-borne pathogenic bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro. When treated FEO, the zones of inhibition (ZOI) of E. coli (20.5 ± 0.25 mm) and S. aureus (24.3 ± 0.21 mm) were much larger than control (p < 0.05). The minimum inhibitory concentrations (MICs) of FEO were 3.13 mg/mL and 1.56 mg/mL for E. coli and S. aureus, respectively. The antibacterial mechanism of FEO against E. coil was due to the changes in permeability and integrity of cell membrane leading to the leakage of nucleic acids and proteins. With the superior antibacterial activity of FEO, the nano-encapsulation method has been applied in FEO. When compared to FEO and blank chitosan nanoparticles, FEO-loaded nanoparticles (chitosan to FEO of 1:1) can effectively inhibit the growth of E. coil above 90% at room temperature. It is necessary to consider that FEO and FEO-loaded nanoparticles will become promising antibacterial additives for food preservative, cosmetic, and pharmaceutical applications. PMID:28231167

  16. Investigations to the Antibacterial Mechanism of Action of Kendomycin

    PubMed Central

    A. Elnakady, Yasser; Chatterjee, Indranil; Bischoff, Markus; Rohde, Manfred; Josten, Michaele; Sahl, Hans-Georg; Herrmann, Mathias; Müller, Rolf

    2016-01-01

    Purpose The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified. Methods In this study, we used a multidisciplinary approach to gain insight into the antibacterial mechanism of this compound. Results The antibacterial activity of kendomycin appears to be bacteriostatic rather than bactericidal. Kendomycin inhibited the growth of the MRSA strain COL at a low concentration (MIC of 5 μg/mL). Proteomic analysis and gene transcription profiling of kendomycin-treated cells indicated that this compound affected the regulation of numerous proteins and genes involved in central metabolic pathways, such as the tricarboxylic acid (TCA) cycle (SdhA) and gluconeogenesis (PckA and GapB), cell wall biosynthesis and cell division (FtsA, FtsZ, and MurAA), capsule production (Cap5A and Cap5C), bacterial programmed cell death (LrgA and CidA), the cellular stress response (ClpB, ClpC, ClpP, GroEL, DnaK, and GrpE), and oxidative stress (AhpC and KatA). Electron microscopy revealed that kendomycin strongly affected septum formation during cell division. Most kendomycin-treated cells displayed incomplete septa with abnormal morphology. Conclusions Kendomycin might directly or indirectly affect the cell division machinery, protein stability, and programmed cell death in S. aureus. Additional studies are still needed to obtain deeper insight into the mode of action of kendomycin. PMID:26795276

  17. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  18. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    PubMed Central

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J. V. N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-01-01

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity. PMID:19164768

  19. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore.

    PubMed

    Miller, J Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H James; Huband, Michael D; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y; Mehrens, Shawn; Mueller, W Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J V N Vara; Shelly, John A; Skerlos, Laura; Sulavik, Mark; Thomas, V Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C Kendall

    2009-02-10

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  20. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    SciTech Connect

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  1. L,L-diaminopimelate aminotransferase (DapL): a putative target for the development of narrow-spectrum antibacterial compounds

    PubMed Central

    Triassi, Alexander J.; Wheatley, Matthew S.; Savka, Michael A.; Gan, Han Ming; Dobson, Renwick C. J.; Hudson, André O.

    2014-01-01

    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds. PMID:25309529

  2. L,L-diaminopimelate aminotransferase (DapL): a putative target for the development of narrow-spectrum antibacterial compounds.

    PubMed

    Triassi, Alexander J; Wheatley, Matthew S; Savka, Michael A; Gan, Han Ming; Dobson, Renwick C J; Hudson, André O

    2014-01-01

    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.

  3. Antibacterial activity of the essential oil from Ferula gummosa seed.

    PubMed

    Eftekhar, Fereshteh; Yousefzadi, Morteza; Borhani, K

    2004-12-01

    Antibacterial activity of Ferula gummosa essential oil was studied against bacterial laboratory ATCC standards using the disk diffusion method. The results showed activity against Gram(+) bacteria and Escherichia coli. Little antibacterial activity was found against Pseudomonas aeruginosa.

  4. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition.

    PubMed

    Elansary, Hosam O; Salem, Mohamed Z M; Ashmawy, Nader A; Yessoufou, Kowiyou; El-Settawy, Ahmed A A

    2017-03-16

    The crude methanolic extracts from leaves of Eucalyptus camaldulensis L., E. camaldulensis var obtusa and E. gomphocephala grown in Egypt were investigated to explore their chemical composition as well as their antibacterial, antifungal and antioxidant activities. Major phenolics found were ellagic acid, quercetin 3-O-rhamnoside, quercetin 3-O-b-D-glucuronide, caffeic acid and chlorogenic acid. The antioxidant activities were examined by the 2,2'-diphenypicrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. E. camaldulensis extracts showed the highest phenolic content, antioxidant and antimicrobial activities compared to other cultivars. MIC values reported for antibacterial activity of E. camaldulensis ranged from 0.08 μg/mL (Bacillus cereus) to 0.22 μg/mL (Staphylococcus aureus), while MBC values ranged from 0.16 μg/mL (Dickeya solani and B. cereus) to 0.40 μg/mL (S. aureus). The inhibitory activities against growth of bacteria and fungi used is an indication that E. camaldulensis a might be useful resource for the development and formulation of antibacterial and antifungal drugs.

  5. Antibacterial activity of the pancreatic fluid.

    PubMed

    Rubinstein, E; Mark, Z; Haspel, J; Ben-Ari, G; Dreznik, Z; Mirelman, D; Tadmor, A

    1985-04-01

    The antibacterial activity of canine pancreatic fluid was investigated in an attempt to understand the resistance of this organ, when intact, to ascending bacterial infections. The pancreatic fluid demonstrated bactericidal activity against Escherichia coli, Shigella species, Salmonella species, and Klebsiella pneumoniae; bacteriostatic activity against coagulase-positive and coagulase-negative staphylococci and Pseudomonas aeruginosa; and fungistatic activity against Candida albicans. There was no demonstrable antibacterial activity against Bacteroides fragilis and Streptococcus faecalis. The antibacterial activity was dialyzable and pH dependent, but independent of heat, the activity of several digestive pancreatic enzymes, and the bacterial inoculum. Electron micrographs of Escherichia coli exposed to pancreatic fluid did not demonstrate changes in the bacterial cell wall. Tracer studies of susceptible bacteria demonstrated decreased leucine uptake when briefly exposed to pancreatic fluid. The antibacterial activity was found by column chromatography to be a small molecular peptide. It is likely that pancreatic antibacterial factors protect the pancreas from ascending bacterial infections and operate along with other factors in the homeostasis of the upper small bowel flora.

  6. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  8. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities.

    PubMed

    Hussain, Abdullah Ijaz; Anwar, Farooq; Chatha, Shahzad Ali Shahid; Jabbar, Abdul; Mahboob, Shahid; Nigam, Poonam Singh

    2010-10-01

    The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g(-1). The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%), camphor (17.1%), α-pinene (12.3%), limonene (6.23%), camphene (6.00%) and linalool (5.70%). The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP) and one fibroblast cell line (NIH-3T3) using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ) and minimum inhibitory concentration (MIC) of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities.

  9. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    PubMed Central

    Hussain, Abdullah Ijaz; Anwar, Farooq; Chatha, Shahzad Ali Shahid; Jabbar, Abdul; Mahboob, Shahid; Nigam, Poonam Singh

    2010-01-01

    The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%), camphor (17.1%), α-pinene (12.3%), limonene (6.23%), camphene (6.00%) and linalool (5.70%). The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP) and one fibroblast cell line (NIH-3T3) using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ) and minimum inhibitory concentration (MIC) of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities. PMID:24031588

  10. PAMAM dendrimers for the delivery of the antibacterial Triclosan.

    PubMed

    Gardiner, Jonathan; Freeman, Sally; Leach, Matthew; Green, Alison; Alcock, Jacqui; D'Emanuele, Antony

    2008-10-01

    Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest. Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM-5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes. End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through pi-pi stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.

  11. Antibacterial and antifungal activity of endodontic intracanal medications.

    PubMed

    Tonea, Andrada; Badea, Mandra; Oana, Liviu; Sava, Sorina; Vodnar, Dan

    2017-01-01

    The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans.

  12. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds.

    PubMed

    Li, Ting-Ting; Lou, Ching-Wen; Chen, An-Pang; Lee, Mong-Chuan; Ho, Tsing-Fen; Chen, Yueh-Sheng; Lin, Jia-Horng

    2016-09-21

    To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel(®)/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM) observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT) and activated partial thromboplastin time (APTT) blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

  13. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity.

    PubMed

    Vermet, G; Degoutin, S; Chai, F; Maton, M; Flores, C; Neut, C; Danjou, P E; Martel, B; Blanchemain, N

    2017-02-12

    The use of textile meshes in hernia repair is widespread in visceral surgery. Though, mesh infection is a complication that may prolong the patient recovery period and consequently presents an impact on public health economy. Such concern can be avoided thanks to a local and extended antibiotic release on the operative site. In recent developments, poly-l-lactic acid (PLLA) has been used in complement of polyethyleneterephthalate (Dacron®) (PET) or polypropylene (PP) yarns in the manufacture of semi-resorbable parietal implants. The goal of the present study consisted in assigning drug reservoir properties and prolonged antibacterial effect to a 100% PLLA knit through its functionalization with a cyclodextrin polymer (polyCD) and activation with ciprofloxacin. The study focused i) on the control of degree of polyCD functionalization of the PLLA support and on its physical and biological characterization by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and cell viability, ii) on the understanding of drug/meshes interaction using mathematic model and iii) on the correlation between drug release studies in phosphate buffer saline (PBS) and microbiological evaluation of meshes and release medium against E. coli and S. aureus. All above mentioned tests highlighted the contribution of polyCD on the improved performances of the resulting antibacterial implantable material.

  14. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    PubMed Central

    Li, Ting-Ting; Lou, Ching-Wen; Chen, An-Pang; Lee, Mong-Chuan; Ho, Tsing-Fen; Chen, Yueh-Sheng; Lin, Jia-Horng

    2016-01-01

    To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM) observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT) and activated partial thromboplastin time (APTT) blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds. PMID:28773912

  15. Antibacterial and antifungal activity of endodontic intracanal medications

    PubMed Central

    TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN

    2017-01-01

    Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531

  16. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives.

    PubMed

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-07-31

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents.

  17. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives

    PubMed Central

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-01-01

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents. PMID:26263982

  18. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.

    PubMed

    Zhang, Erlin; Li, Fangbing; Wang, Hongying; Liu, Jie; Wang, Chunmin; Li, Muqin; Yang, Ke

    2013-10-01

    Copper element was added in pure titanium by a powder metallurgy to produce a new antibacterial titanium-copper alloy (Ti-Cu alloy). This paper reported the very early stage results, emphasizing on the preparation, mechanical property and antibacterial activity. The phase constitution was analyzed by XRD and the microstructure was observed under SEM equipped with EDS. The hardness, the compressive strength and the corrosion resistance of Ti-Cu alloy were tested in comparison with cp-Ti. The antibacterial property of the Ti-Cu alloy was assessed by two methods: agar diffusion assay and plate-count method, in which Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used. XRD and SEM results showed that Ti2Cu phase and Cu-rich phase were synthesized in the Ti-Cu sintered alloy, which significantly increases the hardness and the compressive strength compared with cp-Ti and slightly improves the corrosion resistance. No antibacterial activity was detected by the agar diffusion assay on the Ti-Cu alloy, but the plate-count results indicated that the Ti-Cu alloy exhibited strong antibacterial property against both bacteria even after three polishing treatments, which demonstrates strongly that the whole alloy is of antibacterial activity. The antibacterial mechanism was thought to be in associated with the Cu ion released from the Ti-Cu alloy. © 2013.

  19. Consequences of increased antibacterial consumption and change in pattern of antibacterial use in Danish hospitals.

    PubMed

    Jensen, Ulrich S; Skjøt-Rasmussen, Line; Olsen, Stefan S; Frimodt-Møller, Niels; Hammerum, Anette M

    2009-04-01

    Antibacterial consumption is increasing in many countries around the world, and it is increasingly recognized as the main reason for the emergence of resistance. This study was implemented to analyse antibacterial consumption in public hospitals in Denmark during 2001-07 as a follow-up on a prior analysis and furthermore, to investigate the consequences of the occurrence of resistance. National data on the consumption of antibacterials for systemic use in Danish public hospitals were obtained from 2001 through 2007. Consumption data were compared with antimicrobial resistance in all isolates recorded from either blood samples (Escherichia coli and Klebsiella pneumoniae) or urine samples (E. coli) submitted for susceptibility testing to the participating Departments of Clinical Microbiology during 2001-07. The consumption of combinations of penicillins including beta-lactamase inhibitors, cephalosporins, carbapenems and fluoroquinolones continued to increase from 19.2% of the total consumption in hospitals in Denmark in 2001 to 38.2% in 2007. Quinolone resistance in E. coli isolates from blood and urine samples increased significantly from 2001 through 2007. Furthermore, multiresistant K. pneumoniae emerged. The consumption of 'broad-spectrum' antibacterial agents has continued to increase in Danish hospitals. At the same time, an increasing resistance in clinical isolates towards the same antibacterial agents has been observed. However, more detailed information on the specific consumption of the antibacterial agents might help to restrict or reverse the increasing use of 'broad-spectrum' antibacterial agents and perhaps also the increasing antimicrobial resistance.

  20. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control.

    PubMed

    White, Anthony R

    2011-09-01

    The original and successful business model of return on investment being sufficiently attractive to the pharmaceutical industry to encourage development of new antibacterial molecules and related diagnostics has been compromised by increasing development costs and regulatory hurdles, resulting in a decreasing chance of success and financial return. The supply of new effective agents is diminishing along with the number of companies engaged in antibacterial research and development. The BSAC Working Party on The Urgent Need:Regenerating Antibacterial Drug Discovery and Development identified the need to establish, communicate and apply the true health and economic value of antibacterials, along with the adoption of meaningful incentives, as part of the future model for antibacterial development. Robust data are needed on the cost of resistance and ineffective treatment of bacterial infection, along with national and local holistic analyses of the cost-benefit of antibacterials. An understanding of the true health and economic value of antibacterials and the cost of resistance across healthcare systems needs to be generated, communicated and used in order to set a pricing and reimbursement structure that is commensurate with value. The development and economic model of antibacterial use needs to be rebuilt based on this value through dialogue with the various stakeholders, including the pharmaceutical industry, and alternative incentives from 'push' to 'pull' and funding models, such as public/private partnerships, agreed. A research and development model that succeeds in developing and delivering new antibacterial agents that address the health needs of society from start to finish, 'from cradle to grave', must be established.

  1. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  2. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement.

    PubMed

    Ibrahim, Marrwa A; Neo, Jennifer; Esguerra, Roxanna J; Fawzy, Amr S

    2015-10-01

    The aim is to investigate the effect of modifying the liquid phase of a conventional glass ionomer restorative material with different chitosan volume contents on the antibacterial properties and adhesion to dentin. The liquids of commercially available restorative glass ionomer cements (GIC) were modified with chitosan (CH) solutions at different volume contents (5%, 10%, 25%, and 50%). The GIC powders were mixed with the unmodified and the CH-modified liquids at the desired powder/liquid (P/L) ratio. For the characterization of the antibacterial properties, Streptococcus mutans biofilms were formed on GIC discs and characterized by scanning electron microscope (SEM), confocal microscopy, colony forming unit (CFU) count, and cell viability assay (MTS). The unmodified and CH-modified GICs were bonded to dentin surfaces and the micro-tensile bond strength (µTBs) was evaluated and the interface was investigated by SEM. Modification with CH solutions enhanced the antibacterial properties against S. mutans in terms of resistance to biofilm formation, CFU count, and MTS assay. Generally, significant improvement in the antibacterial properties was found with the increase in the CH volume content. Modification with 25% and 50% CH adversely affected the µTBs with predominant cohesive failure in the GIC. However, no difference was found between the control and the 5% and 10% CH-modified specimens. Incorporation of acidic solutions of chitosan in the polyacrylic acid liquid of GIC at v/v ratios of 5-10% improved the antibacterial properties of conventional glass ionomer cement against S. mutans without adversely affecting its bonding to dentin surface. © The Author(s) 2015.

  3. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    PubMed

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.

  4. Cytotoxic and antibacterial effects of orthodontic appliances.

    PubMed

    Grimsdottir, M R; Hensten-Pettersen, A

    1993-08-01

    The cytotoxic and antibacterial effects of orthodontic appliances were assessed. Metallic devices used in orthodontics, such as molar bands, brackets, and archwires were tested by the agar overlay cytotoxicity test with mouse fibroblast cells. The same devices were tested for antibacterial effect with Streptococcus mutans and S. sanguis. The multicomponent devices, which are bonded with silver- and copper-based brazing alloys, were more cytotoxic than the single-component devices, probably because copper is more cytotoxic than nickel. The devices had a definite, but low, antibacterial effect, as compared with the 0.05% chlorhexidine positive control. A cytotoxic effect of the devices per se might contribute to a localized gingivitis. It is uncertain whether orthodontic devices have any significant inhibitory effect on dental plaque viability.

  5. Computational methods to identify new antibacterial targets.

    PubMed

    McPhillie, Martin J; Cain, Ricky M; Narramore, Sarah; Fishwick, Colin W G; Simmons, Katie J

    2015-01-01

    The development of resistance to all current antibiotics in the clinic means there is an urgent unmet need for novel antibacterial agents with new modes of action. One of the best ways of finding these is to identify new essential bacterial enzymes to target. The advent of a number of in silico tools has aided classical methods of discovering new antibacterial targets, and these programs are the subject of this review. Many of these tools apply a cheminformatic approach, utilizing the structural information of either ligand or protein, chemogenomic databases, and docking algorithms to identify putative antibacterial targets. Considering the wealth of potential drug targets identified from genomic research, these approaches are perfectly placed to mine this rich resource and complement drug discovery programs.

  6. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties.

    PubMed

    Kakinuma, H; Ishii, K; Ishihama, H; Honda, M; Toyama, Y; Matsumoto, M; Aizawa, M

    2015-01-01

    We developed a novel antibacterial implant by forming a hydroxyapatite (HAp) film on polyetheretherketone (PEEK) substrate, and then immobilizing silver ions (Ag(+) ) on the HAp film based on the chelate-bonding ability of inositol phosphate (IP6). First, the PEEK surface was modified by immersion into concentrated sulfuric acid for 10 min. HAp film was formed on the acid-treated PEEK via the soft-solution process using simulated body fluid (SBF), urea, and urease. After HAp coating, specimens were immersed into IP6 solution, and followed by immersion into silver nitrite solution at concentrations of 0, 0.5, 1, 5 or 10 mM. Ag(+) ions were immobilized on the resulting HAp film due to the chelate-bonding ability of IP6. On cell-culture tests under indirect conditions by Transwell, MC3T3-E1 cells on the specimens derived from the 0.5 and 1 mM Ag(+) solutions showed high relative growth when compared with controls. Furthermore, on evaluation of antibacterial activity in halo test, elution of Ag(+) ions from Ag(+) -immobilized HAp film inhibited bacterial growth. Therefore, the above-mentioned results demonstrated that specimens had both biocompatibility and strong antibacterial activity. The present coating therefore provides bone bonding ability to the implant surface and prevents the formation of biofilms in the early postoperative period.

  7. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  8. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.

  9. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential.

    PubMed

    Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A

    2013-09-01

    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.

  10. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  11. Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract.

    PubMed

    Salehi, Soheil; Mirzaie, Amir; Sadat Shandiz, Seyed Ataollah; Noorbazargan, Hassan; Rahimi, Arian; Yarmohammadi, Sima; Ashrafi, Fatemeh

    2017-02-01

    The present study was to investigate the gas chromatography/mass spectrometry (GC/MS), in vitro antioxidant, antibacterial and anticancer activity of the ethanolic extract from aerial parts of Artemisia marschalliana Sprengel against human gastric carcinoma (AGS) and L929 cell lines. Phytochemical analysis of A. marschalliana Sprengel extract showed 22 major components and the most dominant compounds were trans-phytol (29.22%), α-Linolenic acid (13.47%) and n-Hexadecanoic acid (9.28%). In addition, the antioxidant and anticancer activity of A. marschalliana Sprengel extract were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. Antibacterial activity against selected pathogenic bacteria was also determined. According to the present obtained results, it seems that this plant has potential uses for pharmaceutical industries and further studies of pharmaceutical importance were suggested to be performed on A. marschalliana Sprengel.

  12. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    PubMed Central

    Ghanbari, Raheleh; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions. PMID:23222684

  13. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin.

    PubMed

    Wald, Maleen; Schwarz, Karin; Rehbein, Hartmut; Bußmann, Bettina; Beermann, Christopher

    2016-08-15

    Trout by-product hydrolysates, generated using trout pepsin, were characterized and studied in terms of their antibacterial effects against food contaminants and fish farming pathogens. After a hydrolysis time of 25 min, the hydrolysates demonstrated inhibitory activity against several gram-positive and gram-negative bacteria. The degree of hydrolysis (DH) was found to exert a considerable influence on antibacterial activity, with a significant increase in the observed inhibitory effect at the beginning of hydrolysis. The highest antibacterial activity was obtained at a DH of 30% (enzyme/protein ratio 0.04 U/mg of protein, enzyme activity 6.5 U/mg protein, hydrolysis conditions 37°C, pH 3.0). The highest antibacterial activity detected was against the fish farming bacteria Flavobacterium psychrophilum and Renibacterium salmoninarum, with minimal inhibition concentrations of 2mg/ml and 5mg/ml, respectively. The amino acid determination of the hydrolysate (DH 30%) revealed that lysine, leucine, alanine, arginine, glycine, aspartic acid and glutamic acid residues represented the major amino acids.

  14. Electrospun antibacterial chitosan-based fibers.

    PubMed

    Ignatova, Milena; Manolova, Nevena; Rashkov, Iliya

    2013-07-01

    Chitosan is non-toxic, biocompatible, and biodegradable polysaccharide from renewable resources, known to have inherent antibacterial activity, which is mainly due to its polycationic nature. The combining of all assets of chitosan and its derivatives with the unique properties of electrospun nanofibrous materials is a powerful strategy to prepare new materials that can find variety of biomedical applications. In this article the most recent studies on different approaches for preparation of antibacterial fibrous materials from chitosan and its derivatives such as electrospinning, coating, and electrospinning-electrospraying, loading of drugs or bioactive nanoparticles are summarized.

  15. Newer Antibacterial Drugs for a New Century

    PubMed Central

    Devasahayam, Gina; Scheld, W. Michael; Hoffman, Paul S.

    2010-01-01

    Antibacterial drug discovery and development has slowed considerably in recent years with novel classes discovered decades ago and regulatory approvals tougher to get. This article describes newer classes of antibacterial drugs introduced or approved after year 2000, their mechanisms of action/ resistance, improved analogs, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action as well as novel unexploited bacterial targets and strategies which may pave the way for combating drug resistance and emerging pathogens in the 21st century. PMID:20053150

  16. Progress in antibacterial and antifungal chemotherapy.

    PubMed

    Fromtling, R A

    2000-08-01

    The European Society of Clinical Microbiology and Infectious Diseases sponsored the 10th European Congress on Clinical Microbiology and Infectious Diseases in Stockholm, Sweden, May 28-31, 2000. At the ECMID, well-attended sessions were held which focused on the pathogenesis and therapy of viral, bacterial and fungal diseases. This report focuses on new information on resistance to antibacterial agents, including data from recent surveillance studies, and the in vitro and investigational clinical activity of new antibacterial (moxifloxacin, telithromycin) and antifungal (fluconazole, itraconazole, voriconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine and the candins) drugs.

  17. Injectable bioadhesive hydrogels with innate antibacterial properties

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-06-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt% oxidized dextran and 6.9 wt% polyethylenimine sets within seconds forming a mechanically rigid (~\

  18. Antibacterial and Solubility Optimization of Thiomuracin A.

    PubMed

    LaMarche, Matthew J; Leeds, Jennifer A; Brewer, Jason; Dean, Karl; Ding, Jian; Dzink-Fox, Joanne; Gamber, Gabe; Jain, Akash; Kerrigan, Ryan; Krastel, Philipp; Lee, Kwangho; Lombardo, Franco; McKenney, David; Neckermann, Georg; Osborne, Colin; Palestrant, Deborah; Patane, Michael A; Rann, Elin M; Robinson, Zachary; Schmitt, Esther; Stams, Travis; Tiamfook, Stacey; Yu, Donghui; Whitehead, Lewis

    2016-07-28

    Synthetic studies of the antimicrobial secondary metabolite thiomuracin A (1) provided access to analogues in the Northern region (C2-C10). Selective hydrolysis of the C10 amide of lead compound 2 and subsequent derivatization led to novel carbon- and nitrogen-linked analogues (e.g., 3) which improved antibacterial potency across a panel of Gram-positive organisms. In addition, congeners with improved physicochemical properties were identified which proved efficacious in murine sepsis and hamster C. difficile models of disease. Optimal efficacy in the hamster model of C. difficile was achieved with compounds that possessed both potent antibacterial activity and high aqueous solubility.

  19. Zulu medicinal plants with antibacterial activity.

    PubMed

    Kelmanson, J E; Jäger, A K; van Staden, J

    2000-03-01

    Aqueous, methanolic and ethyl acetate extracts of 14 plants used in traditional Zulu medicine for treatment of ailments of an infectious nature were screened for antibacterial activity. Most of the activity detected was against gram-positive bacteria. Tuber bark extracts of Dioscorea sylvatica had activity against gram-negative Escherichia coli and extracts of Dioscorea dregeana, Cheilanthes viridis and Vernonia colorata were active against Pseudomonas aeruginosa. The highest antibacterial activity was found in extracts of C. viridis, D. dregeana, D. silvatica, Melianthus comosus and V. colorata. In general, methanolic extracts exhibited higher activity than aqueous and ethyl acetate extracts.

  20. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines.

    PubMed

    Abrão, Fariza; de Araújo Costa, Luciana Delfino; Alves, Jacqueline Morais; Senedese, Juliana Marques; de Castro, Pâmela Tinti; Ambrósio, Sérgio Ricardo; Veneziani, Rodrigo Cássio Sola; Bastos, Jairo Kenupp; Tavares, Denise Crispim; Martins, Carlos Henrique G

    2015-12-21

    Natural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid. MICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay. The diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line. The diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.

  1. Design, Synthesis and Qualitative Structure Activity Relationship Evaluations of Quinoline-Based Bisarylimidazoles as Antibacterial Motifs.

    PubMed

    Al-Qawasmeh, Raed A; Huthail, Basil B; Sinnokrot, Mutasem O; Semreen, Mohammad H; Odeh, Raed A; Abu-Zarga, Musa H; Tarazi, Hamadeh; Yousef, Imad A; Al-Tel, Taleb H

    2016-01-01

    The emergence of drug-resistant bacteria in clinical practice has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We previously described a set of imidazopyridine antibacterial leads that contain a core composed of benzimidazole and a central phthalic acid linker. These compounds showed potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. In this respect, we conducted a systematic exploration of new disubstituted imidazole functionalities on quinoline 4-position as the central linker, to determine the factors that direct the potent antibacterial activity. We found that some of the newly synthesized compounds possessed more potent activity compared to currently available medications. The newly synthesized compounds were screened against several clinical isolates and Staphylococcus aureus, including the methicillinresistant (MRSA) and the methicillin-sensitive (MSAA). The goal of this work is to undertake rigorous testing of new hybrid scaffolds of quinoline flanked by diaryl imidazoles and their structure-activity against a range of bacterial strains. Described herein is the account of the modification of the central linker region, the imidazole functionality, and substituents at the 4-position of the quinoline, and their effect on the antibacterial potency of the resulting derivatives. Our efforts here have been driven by previous reports on the applications of Pfitzinger cyclization protocol. This complexity-generating reaction transforms a relatively simple substrate, into a more complex products with the potential for diversification via functionalization of the resultant acid. We identified compounds that possess potent and broad-spectrum antibacterial activities against clinical isolates and drug resistant strains. Structure-Activity relationships of these compounds were further explored to determine the crucial structural features needed to enhance

  2. Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria.

    PubMed

    Kuo, Yen-Ling; Wang, Sin-Ge; Wu, Ching-Yi; Lee, Kai-Chieh; Jao, Chan-Jung; Chou, Shiu-Huey; Chen, Yu-Chie

    2016-10-01

    Medical treatments for bacterial-infections have become challenging because of the emergence of antibiotic-resistant bacterial strains. Thus, new therapeutics and antibiotics must be developed. Arginine and tryptophan can target negatively-charged bacteria and penetrate bacterial cell membrane, respectively. Synthetic-peptides containing arginine, tryptophan and cysteine termini, in other words, (DVFLG)2REEW4C and (DVFLG)2REEW2C, as starting materials were mixed with aqueous tetrachloroauric acid to generate peptide-immobilized gold nanoparticles (i.e., [DVFLG]2REEW4C-AuNPs and [DVFLG]2REEW2C-AuNPs) through one-pot reactions. The peptide immobilized AuNPs exhibit targeting capacity and antibacterial activity. Furthermore, (DVFLG)2REEW4C-AuNPs immobilized with a higher number of tryptophan molecules possess more effective antibacterial capacity than (DVFLG)2REEW2C-AuNPs. Nevertheless, they are not harmful for animal cells. The feasibility of using the peptide-AuNPs to inhibit the cell growth of bacterium-infected macrophages was demonstrated. These results suggested that the proposed antibacterial AuNPs are effective antibacterial agents for Staphylococci, Enterococci and antibiotic-resistant bacterial strains. [Formula: see text].

  3. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives

    PubMed Central

    Gupta, Deepa; Jain, D. K.

    2015-01-01

    A large number of 1,2,4-triazole-containing ring system have been incorporated into a wide variety of therapeutically interesting drug candidates including anti-inflammatory, central nervous system stimulants, antianxiety, and antimicrobial agents. To overcome the rapid development of drug resistance, new agents should preferably have chemical characteristics that clearly differ from those of existing agents. Thus led to the design and synthesize the new antimicrobial agents. A novel series of Schiff bases based on of 4-(benzylideneamino)-5-phenyl-4H-1,2,4-triazole-3-thiol scaffold was prepared by heating thiocarbohydrazide and substituted benzoic acid and subsequently, treating with substituted benzaldehydes. Seventeen derivatives were synthesized and were biologically screened for antifungal and antibacterial activity. The newly synthesized derivatives of triazole showed antifungal activity against fungal species, Microsporum gypseum; and antibacterial activity against bacterial species, Staphylococcus aureus. It was observed that none of the compounds tested showed positive results for fungi Candida albicans fungi Aspergillus niger, nor against bacterial strain Escherichia coli. Strong antifungal effects were obtained for the synthesized compounds against M. gypseum and were superior or comparable to standard drug ketoconazole. Similarly, all of the synthesized compounds exhibit strong antibacterial activity against S. aureus and were superior or comparable to standard drug streptomycin. It was found that among the triazole derivatives so synthesized, six of them, showed antifungal activity superior to ketoconazole while one of them, showed antibacterial activity superior to streptomycin. Thus, these can be the potential new molecule as an antimicrobial agent. PMID:26317080

  4. Purification and identification of active antibacterial components in Carpobrotus edulis L.

    PubMed

    van der Watt, E; Pretorius, J C

    2001-06-01

    Very little is known about the chemical composition of Carpobrotus edulis, also known as Hotnotsfig or sourfig. However, some claims have been made in the past by traditional healers, regarding its usage as a medicinal plant. In this investigation it was initially illustrated that a crude methanolic extract of the plant exhibits strong anti-bacterial activity. Subsequently, the crude extract was fractionated by means of liquid-liquid chromatography, tannins removed by means of LH20 column chromatography and bioactive fractions with antibacterial properties isolated by means of preparative thin layer chromatography. Five bioactive compounds, individually or collectively responsible for the antibacterial property of C. edulis, were purified from an active ethyl acetate fraction. These compounds were initially identified as flavanoids using standard fingerprinting methods and eventually identified as rutin, neohesperidin, hyperoside, cactichin and ferulic acid using flavanoid standards. A sixth flavanoid with antibacterial activity was also purified but could not be identified in this way. The latter is currently isolated in larger volume for identification through nuclear magnetic resonance spectroscopy.

  5. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    PubMed

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity.

    PubMed

    Huang, Fan; Gao, Yang; Zhang, Yumin; Cheng, Tangjian; Ou, Hanlin; Yang, Lijun; Liu, Jinjian; Shi, Linqi; Liu, Jianfeng

    2017-05-24

    Because of the mounting prevalence of complicated infections induced by multidrug-resistant bacteria, it is imperative to develop innovative and efficient antibacterial agents. In this work, we design a novel polymeric micelle for simultaneous decorating of silver nanoparticles and encapsulating of curcumin as a combination strategy to improve the antibacterial efficiency. In the constructed combination system, silver nanoparticles were decorated in the micellar shell because of the in situ reduction of silver ions, which were absorbed by the poly(aspartic acid) (PAsp) chains in the shell. Meanwhile, natural curcumin was encapsulated into the poly(ε-caprolactone) (PCL) core of the micelle through hydrophobic interaction. This strategy could prevent aggregation of silver nanoparticles and improve the water solubility of curcumin at the same time, which showed enhanced antibacterial activity toward Gram-negative P.aeruginosa and Gram-positive S.aureus compared with sliver-decorated micelle and curcumin-loaded micelle alone, due to the cooperative antibacterial effects of the silver nanoparticles and curcumin. Furthermore, the achieved combinational micelles had good biocompatibility and low hemolytic activity. Thus, our study provides a new pathway in the rational design of combination strategy for efficiently preventing the ubiquitous bacterial infections.

  7. Antibacterial action of natural honey on anaerobic bacteroides.

    PubMed

    Elbagoury, E F; Rasmy, S

    1993-01-01

    Two samples of natural Honey were tested for their antibacterial effect on Bacteroides, mainly the pathogenic black pigmented B. melaninogenicus isolated from ten cases of dental infections (dental abscesses and chronic osteomyelitis). These organisms were subjected to the effect of natural and diluted honey (50%), in broth and solid cultures. The results were compared with those of the same organisms incubated with saturated glucose solution, which showed less inhibition, indicating that the inhibitory effect of honey was not due to its high sugar content nor to its acidic PH, when using Schaedler's broth adjusted to the same PH as control. The local therapeutic value of natural honey was illustrated with an attempt to correlate between the microbial findings and the clinical implications.

  8. Antibacterial and bioactive nanostructured titanium surfaces for bone integration

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S.

    2014-08-01

    An effective and physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant. A titanium surface able to actively promote bone bonding and avoid microbial colonization represents an extremely interesting challenge for these purposes. An innovative and patented surface treatment focused on these issues is described in the present paper. It is based on acid etching and subsequent controlled oxidation in hydrogen peroxide, enriched with silver ions. It has been applied to commercially pure titanium (Ti-cp) and alloy Ti6Al4V. The chemistry and morphology of the surfaces are modified by the treatment on a nanoscale: they show a thin oxide layer with porosity on the nanoscale and silver particles (few nanometers in diameter), embedded in it. These features are effective in order to obtain antibacterial and bioactive titanium surfaces.

  9. A novel antibacterial orthodontic cement containing a quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Melo, Mary A.S.; Wu, Junling; Weir, Michael D.; Xu, Hockin H. K.

    2015-01-01

    Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p < 0.05). Therefore, the novel antibacterial orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets. PMID:25035230

  10. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    PubMed

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer.

  11. Direct and transdentinal (indirect) antibacterial activity of commercially available dental gel formulations against Streptococcus mutans.

    PubMed

    Tüzüner, Tamer; Ulusoy, Ayça Tuba; Baygin, Ozgul; Yahyaoglu, Gorkem; Yalcin, Ilkay; Buruk, Kurtulus; Nicholson, John

    2013-01-01

    To evaluate the direct and transdentinal (indirect) agar diffusion antibacterial activity of different commercially available antibacterial dental gel formulations against Streptococcus mutans. The commercially available dental gel formulations were Corsodyl® (COG, 1% chlorhexidine), Cervitec® (CEG, 0.2% chlorhexidine + 0.2% sodium fluoride), Forever Bright® (FOB, aloe vera), Gengigel® (GEG, 0.2% hyaluronic acid), 35% phosphoric acid gel and distilled water (control). Direct agar diffusion was performed by isolating three wells from brain-heart infusion agar plates using sterile glass pipettes attached to a vacuum pump and adding 0.1 ml of the gels to each well. Transdentinal (indirect) agar diffusion was performed by applying gel to 0.2- and 0.5-mm-thick human dentin discs previously etched with phosphoric acid and rinsed with distilled water. Zones formed around the wells and the dentin discs were measured and analyzed using Kruskal-Wallis and Mann-Whitney U tests with Bonferroni correction (p < 0.01). Direct agar diffusion tests showed significant differences among all gel formulations (p < 0.01) except for COG and CEG (p > 0.01). COG and CEG exhibited higher antibacterial effects compared to FOB and GEG (p < 0.01) in both direct and transdentinal (indirect) testing procedures. GEG did not show any antimicrobial activity in transdentinal (indirect) testing. Commercially available dental gels inhibited S. mutans, which may indicate their potential as cavity disinfectants. Copyright © 2013 S. Karger AG, Basel.

  12. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens

    PubMed Central

    Eckhard, Lea H.; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J.

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  13. Investigation of antibacterial mechanism and identification of bacterial protein