Science.gov

Sample records for antibiotic antitumour agent

  1. Structural effects of nogalamycin, an antibiotic antitumour agent, on DNA

    SciTech Connect

    Banerjee, T.; Mukhopadhyay, R.

    2008-09-19

    The structural changes of DNA, induced by the antitumour antibiotic nogalamycin, have been studied by atomic force microscopy (AFM). The transformation in the tertiary structure of 4361 bp long plasmid pBR322 DNA, after incubation with nogalamycin at 37 deg. C, has been monitored at the single molecule level. The AFM topographs of free DNA and the DNA-nogalamycin complex, incubated for 6, 12, 24, 36 and 48 h, reveal a gradual change from the circular supercoiled form having strand crossovers to the more compact plectonemic superhelix. With increasing incubation time, the extent of plectonemic coiling increases, indicating increasing level of drug binding via intercalative mode. Supportive evidences are obtained from the CD and UV-vis spectroscopic studies. To our knowledge, this is the first report on an AFM imaging study of the effects of nogalamycin, an anthracyclin intercalator, on DNA.

  2. Spergualin: a new antitumour antibiotic.

    PubMed

    Umezawa, K; Takeuchi, T

    1987-01-01

    Spergualin was isolated from the culture filtrate of Bacillus laterosporus as an antitumour substance. It had a unique structure and was shown to have chemotherapeutic effects on mouse transplantable leukaemias such as L-1210, P-388, P-815, C-1489, EL-4 and RL male 1. It was especially effective to L-1210 leukaemia and the leukaemia-bearing mice were even curable by the optimal dose of this drug. When the spergualin-treated cured mice were inoculated again by L-1210 cells, those leukaemic cells did not grow in the animals suggesting that specific immunity to L-1210 had been induced. In this induction of immunity cytotoxic T lymphocytes were suggested to be involved. Cytostatic effect of spergualin in cell culture was dependent on the content of amine oxidase in serum. In the study of structure-activity relationship, the 15-hydroxy group was found to be not necessary, while the spermidine moiety was essential for antitumour activity. 15-Deoxy derivative of spergualin was found to be more potent in antitumour activity.

  3. Antibiotic Agents

    MedlinePlus

    ... producing ). Examples of this type are the alcohols, chlorine, peroxides, and aldehydes. The second group consists mostly ... viruses have some kind of antibacterial agent. Alcohols, chlorine and peroxides have been used for many decades ...

  4. Nucleotide carriers for anti-tumour actinomycin antibiotics.

    PubMed

    Vekshin, N L; Kovalev, V I

    2016-01-01

    We have investigated a number of complexes of 7-aminoactinomycin D (7AAMD), with its potential carriers: caffeine, folic acid (FA), purine bases-guanine and adenine, pyrimidine base-thymine and with fragmented DNA to determine more stable and suitable complex. The process of binding of the fluorescent antibiotic with clusters of caffeine, guanine, adenine, thymine and with fragmented DNA was accompanied by a considerable long-wavelength shift in excitation spectrum. The energy of interaction between phenoxazine hetero-cycle of 7AAMD and chromophores of the carriers studied has been found. In the case of 7AAMD with guanine, adenine, thymine and caffeine, the energy is about of 7 kcal/mol, which is a little lower than in the case with DNA (7.7 kcal/mol). On the basis of emission spectra, in all examined compounds, with the exception DNA, the 7AAMD molecule emits photons from water phase, not from a cluster, since photo-excitation leads to desorption of the antibiotic from a cluster surface. We observed also the mutual fluorescence quenching of 7AAMD and FA in their complex. It may well be that this complex forms due to interaction of peptide-lactone rings of 7AAMD with system of FA. In the case of DNA, the complex with 7AAMD has very high stability that is determined not only by interaction between phenoxazine of 7AAMD and the DNA bases, but it is largely owing to the interaction between two peptide-lactone rings of 7AAMD and the DNA deoxyribose-phosphate chains.

  5. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    SciTech Connect

    Pantouris, Georgios; Mowat, Christopher G.

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  6. Phase I trials of antitumour agents: fundamental concepts

    PubMed Central

    Toloi, Diego de Araujo; Jardim, Denis Leonardo Fontes; Hoff, Paulo Marcelo Gehm; Riechelmann, Rachel Simões Pimenta

    2015-01-01

    Phase I trials are an important step in the development of new drugs. Because of the advancing knowledge of cancer’s molecular biology, these trials offer an important platform for the development of new agents and also for patient treatment. Therefore, comprehension of their peculiar terminology and methodology are increasingly important. Our objectives were to review the fundamental concepts of phase I designs and to critically contextualise this type of study as a therapeutic option for patients with refractory cancer. PMID:25729414

  7. Organometallic Antitumour Agents with Alternative Modes of Action

    NASA Astrophysics Data System (ADS)

    Casini, Angela; Hartinger, Christian G.; Nazarov, Alexey A.; Dyson, Paul J.

    The therapeutic index of drugs that target DNA, a ubiquitous target present in nearly all cells, is low. Nevertheless, DNA has remained the primary target for medicinal chemists developing metal-based anticancer drugs, although DNA has been essentially abandoned in favour of non-genomic targets by medicinal chemists developing organic drugs. A number of organometallic drugs that target proteins/enzymes have been developed and these compounds, based on ruthenium, osmium and gold, are described in this chapter. Targets include cathepsin B, thioredoxin reductases, multidrug resistance protein (Pgp), glutathione S-transferases and kinases. It is found that compounds that inhibit these various targets are active against metastatic tumours, or tumours that are resistant to classical DNA damaging agents such as cisplatin, and therefore offer considerable potential in clinical applications.

  8. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents.

    PubMed

    Wu, Lin-tao; Jiang, Zhi; Shen, Jia-jia; Yi, Hong; Zhan, Yue-chen; Sha, Ming-quan; Wang, Zhen; Xue, Si-tu; Li, Zhuo-rong

    2016-05-23

    A series of novel benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives were designed and synthesized. The biological activities of these derivatives were then evaluated as potential antitumour agents. These compounds were assayed for growth-inhibitory activity against HCT116, MCF-7 and HepG2 cell lines in vitro. The IC50 values of compounds A1 and A7 against the cancer cells were 0.06-3.64 μM and 0.04-9.80 μM, respectively. Their antiproliferative activities were significantly better than that of 5-Fluorouracil (IC50: 56.96-174.50 μM) and were close to that of Paclitaxel (IC50: 0.026-1.53 μM). The activity of these derivatives was over 100 times more effective than other reported structures of chalcone analogues (licochalcone A). A preliminary mechanistic study suggested that these compounds inhibit p53-MDM2 binding. Compounds A1, A7 and A9 effectively inhibited tumour growth in BALB/c mice with colon carcinoma HCT116 cells. The group administered 200 mg/kg of compound A7 showed a 74.6% tumour growth inhibition with no signs of toxicity at high doses that was similar to the inhibition achieved with the 12.5 mg/kg irinotecan positive control (70.2%). Therefore, this class of benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives represents a promising lead structure for the development of possible p53-MDM2 inhibitors as new antitumour agents.

  9. Cis- and trans-platinum and palladium complexes: a comparative study review as antitumour agents.

    PubMed

    al-Allaf, T A; Rashan, L J

    2001-01-01

    A large body of novel platinum and palladium complexes, in both the cis- and trans-forms, with various donor ligands, e.g. beta-carboline alkaloids, pyrazoles, DMSO, ferrocenylphosphines,...... have been tested for their antitumour activity against number of fluid suspension (P388, L1210, K562, and Raji) and solid tumour (KB, T47D, SW948, HeLa, A549, L929, Hep-2, RD,...) cell lines. Remarkable cytotoxic effects against these cell lines were observed by some of these complexes. The preliminary results indicated that most of the trans-palladium complexes showed a better activity than the cis-platinum isomers and superior activity than that of the cis-palladium isomers. More importantly they showed activities equal to (or superior than) those of cisplatin, carboplatin and oxaliplatin (the anti-cancer drugs) in vitro. Although these results are preliminary, however, encouraging since they are in a disagreement with the previous studies that cis-isomers are more active than trans-ones; the complexes which have not received the required attention from the vast number of researchers in this field.

  10. 2-(4-Aminophenyl)benzothiazoles: novel agents with selective profiles of in vitro anti-tumour activity.

    PubMed Central

    Bradshaw, T. D.; Wrigley, S.; Shi, D. F.; Schultz, R. J.; Paull, K. D.; Stevens, M. F.

    1998-01-01

    2-(4-Aminophenyl)benzothiazole (CJM 126) elicits biphasic growth-inhibitory effects against a panel of oestrogen receptor-positive (ER+) and oestrogen receptor-negative (ER-) human mammary carcinoma cell lines in vitro, yielding IC50 values in the nM range. Substitutions adjacent to the amino group in the 2-phenyl ring with a halogen atom or methyl group enhance potency in sensitive breast lines (pM IC50 values). Transient biphasic dose responses were induced but rapidly eradicated after specific drug exposure periods. Two human prostate carcinoma cell lines were refractory to the growth-inhibitory properties of 2-(4-aminophenyl)benzothiazoles; IC50 values > 30 microM were obtained. Potency and selectivity were confirmed when compounds were examined in the National Cancer Institute's Developmental Therapeutics screen; the spectrum of activity included specific ovarian, renal, colon as well as breast carcinoma cell lines. Moreover, comparing 6-day and 48-h incubations, the exposure time-dependent nature of the biphasic response was corroborated. Differential perturbation of cell cycle distribution followed treatment of MCF-7 and MDA 468 cells with substituted 2-(4-aminophenyl)benzothiazoles. In MDA 468 populations only, accumulation of events in G2/M phase was observed. Two MCF-7 cell lines were established with acquired resistance to CJM 126 (IC50 values > 20 microM), which exhibit cross-resistance to substituted benzothiazoles, but equal sensitivity to tamoxifen and doxorubicin. Compared with standard anti-tumour agents evaluated in the National Cancer Institute in vitro cell panel, benzothiazoles revealed unique profiles of growth inhibition, suggesting a mode(s) of action shared with no known clinically active class of chemotherapeutic agents. PMID:9514053

  11. Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors

    PubMed Central

    Ferlini, C; Distefano, M; Pignatelli, F; Lin, S; Riva, A; Bombardelli, E; Mancuso, S; Ojima, I; Scambia, G

    2000-01-01

    Taxanes antitumour agents such as paclitaxel and docetaxel represent a successful family of chemotherapeutic drugs. Unfortunately, acquired and innate resistance represents a clinical problem for these drugs. We investigated, on a panel of 7 human cancer cell lines, the growth inhibition effect of 3 newly developed taxanes (SB-T-1213, SB-T-1250 and SB-T-101187) with modification at the C10 and C3′ positions of the taxane framework. These positions have been previously characterized as critical to make taxanes highly active against cells overexpressing the efflux pump P-glycoprotein (P-gp). Paclitaxel and docetaxel were used as reference compounds. Results unambiguously indicate the exceptional activity of the novel taxanes toward P-gp positive cells (up to >400 fold higher potency than that of paclitaxel). SB-T-1213 and SB-T-1250 are also substantially more active than the reference compounds against P-gp negative cells. To better understand the mechanisms underlying the enhanced activity of the newly developed taxanes, we performed cell cycle and apoptosis analysis. This study demonstrates that the striking growth inhibition effect exhibited by the novel taxanes is ascribed to their increased ability in inducing apoptosis and G 2/M cell cycle block. SB-T-1213 and SB-T-1250 are also more active than reference compounds in inducing intracellular accumulation of the beta-tubulin subunits. Finally, it is revealed that these novel taxanes have ability to inhibit the function of the P-gp efflux pump on the basis of the Rhodamine 123 assay. These findings strongly suggest that SB-T-1213, SB-T-1250 and SB-T-101187 represent a new tool to overcome innate or acquired P-gp mediated taxane-resistance. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11104578

  12. DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent

    PubMed Central

    Dong, Yuancai; Surana, Uttam; Davey, Curt A.

    2010-01-01

    DNA stretching in the nucleosome core can cause dramatic structural distortions, which may influence compaction and factor recognition in chromatin. We find that the base pair unstacking arising from stretching-induced extreme minor groove kinking near the nucleosome centre creates a hot spot for intercalation and alkylation by a novel anticancer compound. This may have far reaching implications for how chromatin structure can influence binding of intercalator species and indicates potential for the development of site selective DNA-binding agents that target unique conformational features of the nucleosome. PMID:20026584

  13. Antibiotics as immunomodulant agents in COPD.

    PubMed

    Blasi, Francesco; Mantero, Marco; Aliberti, Stefano

    2012-06-01

    It is widely accepted that some antibiotics have activities beyond their direct antibacterial effects. Macrolide is the antibiotic class with more convincing studies and evidence on its immunomodulatory and anti-inflammatory activities. Different clinical studies have shown that macrolide prophylaxis in patients with moderate-severe chronic obstructive pulmonary disease (COPD) can have a significant impact on the exacerbation rate reducing morbidity and, potentially, mortality of the disease. Other antibiotics, such as fluoroquinolones, demonstrate a variety of immunomodulatory effects but only few clinical data are available in COPD. New macrolide derivatives devoid of antibacterial activity have been synthetized. This review analyses the relevance of immunomodulatory and anti-inflammatory effects of antibiotics in the management of COPD.

  14. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  15. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters

    PubMed Central

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.; Halestrap, Andrew P.

    2016-01-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitising tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Here we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and cooperatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill Coefficient values of 36–40 μM and 1.65–1.85. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ~7 μM) than other substrates including glutamate (IC50 ~20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output while increasing intracellular [L-lactate] > five-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate. PMID:26831515

  16. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  17. Overview on the Current Antibiotic Containing Agents Used in Endodontics

    PubMed Central

    Bansal, Ramta; Jain, Aditya

    2014-01-01

    Antibiotics are systemically and locally used extensively in endodontics. However, local antibiotic application mode is considered more effective than systemic administration. The local mode enables the dentist to target bacteria in every nook and corner of root canal system, which is otherwise beyond reach if targeted by instrumentation or conventional root canal treatment protocols. Therefore, they are an important adjunct to conventional treatment of root canal. The present study reviews the various antibiotic containing dental agents used in endodontics. A web-based research on MedLine was performed with terms Review Articles published in the last 10 year's dental journals in English for literature researching, extracting, and synthesizing data. Relevant articles were shortlisted. Important cross-reference articles were also reviewed. PMID:25210667

  18. A multi-agent system approach for monitoring the prescription of restricted use antibiotics.

    PubMed

    Godo, L; Puyol-Gruart, J; Sabater, J; Torra, V; Barrufet, P; Fàbregas, X

    2003-03-01

    Hospitals have a specified set of antibiotics for restricted use (ARU), very expensive, which are only recommended for special pathologies. The pharmacy department daily checks the prescription of this kind of antibiotics since it is often the case that, after a careful analysis, one can get the same therapeutic effects by using normal antibiotics which are much cheaper and usually less aggressive. In this paper, we describe a multi-agent system to help in the revision of medical prescriptions containing antibiotics of restricted use. The proposed approach attaches an agent to each patient which is responsible of checking different medical aspects related to his/her prescribed therapy. A pharmacy agent is responsible for analyzing it and suggesting alternative antibiotic treatments. All these agents are integrated in a hospital distributed scenario composed by many different kinds of software and human agents. This patient-centered multi-agent scenario is specified using the design methodology of Electronic Institutions.

  19. Antibiotics as intermicrobial signaling agents instead of weapons

    PubMed Central

    Linares, J. F.; Gustafsson, I.; Baquero, F.; Martinez, J. L.

    2006-01-01

    It has been widely assumed that the ecological function of antibiotics in nature is fighting against competitors. This made them a good example of the Darwinian struggle-for-life in the microbial world. Based on this idea, it also has been believed that antibiotics, even at subinhibitory concentrations, reduce virulence of bacterial pathogens. Herein, using a combination of genomic and functional assays, we demonstrate that specific antibiotics (namely tobramycin, tetracycline, and norfloxacin) at subinhibitory concentrations trigger expression of determinants influencing the virulence of the major opportunistic bacterial pathogen Pseudomonas aeruginosa. All three antibiotics induce biofilm formation; tobramycin increases bacterial motility, and tetracycline triggers expression of P. aeruginosa type III secretion system and consequently bacterial cytotoxicity. Besides their relevance in the infection process, those determinants are relevant for the ecological behavior of this bacterial species in natural, nonclinical environments, either by favoring colonization of surfaces (biofilm, motility) or for fighting against eukaryotic predators (cytotoxicity). Our results support the notion that antibiotics are not only bacterial weapons for fighting competitors but also signaling molecules that may regulate the homeostasis of microbial communities. At low concentrations, they can even be beneficial for the behavior of susceptible bacteria in natural environments. This is a complete change on our vision on the ecological function of antibiotics with clear implications both for the treatment of infectious diseases and for the understanding of the microbial relationships in the biosphere. PMID:17148599

  20. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory capacity in rheumatoid arthritis patients non-responding to anti-tumour necrosis factor-α agents.

    PubMed

    Picchianti Diamanti, A; Rosado, M M; Scarsella, M; Germano, V; Giorda, E; Cascioli, S; Laganà, B; D'Amelio, R; Carsetti, R

    2014-09-01

    The use of biological agents combined with methotrexate (MTX) in rheumatoid arthritis (RA) patients has strongly improved disease outcome. In this study, the effects of abatacept on the size and function of circulating B and T cells in RA patients not responding to anti-tumour necrosis factor (TNF)-α have been analysed, with the aim of identifying immunological parameters helpful to choosing suitable tailored therapies. We analysed the frequency of peripheral B and T cell subsets, B cell function and T regulatory cell (Treg ) inhibitory function in 20 moderate/severe RA patients, according to the European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) criteria, primary non-responders to one TNF-α blocking agent, who received abatacept + MTX. Patients were studied before and 6 months after therapy. We found that abatacept therapy significantly reduced disease activity score on 44 joints (DAS)/erythrocyte sedimentation rate (ESR) values without causing severe side effects. The size of the circulating B and T cell compartments in RA patients was not significantly different from healthy donors, but B cell proliferation and plasma cell differentiation was impaired before therapy and restored by abatacept. While Treg cell frequency was normal, its inhibitory function was absent before therapy and was partially recovered 6 months after abatacept. B and Treg cell function is impaired in RA patients not responding to the first anti-TNF-α agent. Abatacept therapy was able to rescue immune function and led to an effective and safe clinical outcome, suggesting that RA patients, in whom anti-TNF-α failed, are immunologically prone to benefit from an agent targeting a different pathway.

  1. Antibiotics

    MedlinePlus

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  2. Apoptosis induction via microtubule disassembly by an antitumour compound, pironetin.

    PubMed Central

    Kondoh, M; Usui, T; Nishikiori, T; Mayumi, T; Osada, H

    1999-01-01

    We reported previously that pironetin and its derivatives were potent inhibitors of cell cycle progression at the M-phase and showed antitumour activity against a murine tumour cell line, P388 leukaemia, transplanted in mice. In this paper, we investigated the mechanism of action of pironetins in antitumour activity and cell cycle arrest at the M-phase. As reported previously for murine leukaemia P388 cells, pironetin showed antitumour activity in a dose-dependent manner in the human leukaemia cell line HL-60. Since DNA fragmentation was observed in both P388 and HL-60 cells, the antitumour activity of pironetin is thought to be due to the induction of apoptosis. Pironetin also induced the rapid phosphorylation of Bcl-2 before formation of the DNA ladder in HL-60 cells, as seen with several tubulin binders. These results suggest that the antitumour activity of pironetin is due to apoptosis caused by the phosphorylation of Bcl-2, and that pironetin targets the microtubules. Pironetin and demethylpironetin exhibited reversible disruption of the cellular microtubule network in normal rat fibroblast 3Y1 cells. However, epoxypironetin, which contains epoxide instead of the double bond of pironetin, showed only weak activity. Since the concentrations that inhibit cell cycle progression at the M-phase were the same as those for disruption of the microtubule network, it was suggested that the mitotic arrest induced by pironetin was the result of the loss of the mitotic spindle. These compounds also inhibited the microtubule-associated protein-induced and glutamate-induced tubulin assembly in vitro. Pironetin inhibited the binding of [3H]vinblastine, but not that of [3H]colchicine, to tubulin, and the Kd values revealed that the affinity of pironetin for tubulin is stronger than that of vinblastine. These results suggest that pironetins are novel antitumour agents which inhibit microtubule assembly. PMID:10333483

  3. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds.

    PubMed

    Mayer, Alejandro M S; Gustafson, Kirk R

    2008-11-01

    During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.

  4. Marine Pharmacology in 2005-6: Antitumour and Cytotoxic Compounds

    PubMed Central

    Mayer, Alejandro M.S.; Gustafson, Kirk R.

    2009-01-01

    During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids, and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines was reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom, and the United States. Finally, this 2005-6 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004. PMID:18701274

  5. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents

    PubMed Central

    Colquhoun, Jennifer M.; Wozniak, Rachel A. F.; Dunman, Paul M.

    2015-01-01

    Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional

  6. G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status.

    PubMed

    Agarwal, Pallavi; Jackson, Stephen P

    2016-10-01

    Cancer cells often exhibit altered epigenetic signatures that can misregulate genes involved in processes such as transcription, proliferation, apoptosis and DNA repair. As regulation of chromatin structure is crucial for DNA repair processes, and both DNA repair and epigenetic controls are deregulated in many cancers, we speculated that simultaneously targeting both might provide new opportunities for cancer therapy. Here, we describe a focused screen that profiled small-molecule inhibitors targeting epigenetic regulators in combination with DNA double-strand break (DSB) inducing agents. We identify UNC0638, a catalytic inhibitor of histone lysine N-methyl-transferase G9a, as hypersensitising tumour cells to low doses of DSB-inducing agents without affecting the growth of the non-tumorigenic cells tested. Similar effects are also observed with another, structurally distinct, G9a inhibitor A-366. We also show that small-molecule inhibition of G9a or siRNA-mediated G9a depletion induces tumour cell death under low DNA damage conditions by impairing DSB repair in a p53 independent manner. Furthermore, we establish that G9a promotes DNA non-homologous end-joining in response to DSB-inducing genotoxic stress. This study thus highlights the potential for using G9a inhibitors as anti-cancer therapeutic agents in combination with DSB-inducing chemotherapeutic drugs such as etoposide.

  7. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  8. Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents.

    PubMed

    Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P; Yang, Hanjing; Hoffman, Robert M; Salih, Anya; Miller, Jeffrey H

    2011-03-01

    Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.

  9. Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Rybakova, K. A.; Davies, D. B.

    2007-05-01

    The formation of complexes in solutions of the norfloxacin antimicrobial agent (NOR) with daunomycin (DAU) and nogalamycin (NOG), antitumor anthracycline antibiotics, was studied using 1H NMR spectroscopy. Based on the concentration and temperature dependences of the chemical shifts of the protons of interacting molecules, the equilibrium constants and thermodynamic parameters (enthalpy and entropy) of heteroassociation of the antibiotics were calculated. It was shown that NOR interacts with DAU (NOG) in aqueous solutions forming stacked heterocomplexes with parallel orientation of the molecular chromophores. The conclusion was drawn that such interactions should be taken into account when anthracyclines and quinolones are jointly administered during combined chemotherapy, since they can contribute to the medico-biological synergistic effect of these antibiotics.

  10. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Borrero, Nicholas V; Bai, Fang; Perez, Cristian; Duong, Benjamin Q; Rocca, James R; Jin, Shouguang; Huigens, Robert W

    2014-02-14

    Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.

  11. Effects of nandrolone decanoate on the toxicity and anti-tumour action of CCNU and FU in murine tumours.

    PubMed Central

    Bibby, M. C.; Double, J. A.; Mughal, M. A.

    1981-01-01

    Pre-treatment with the anabolic steroid nandrolone decanoate (ND) increases the LD50 of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and 5-Fluorouracil (FU) in NMRI mice. Administration of ND did not affect the anti-tumour action of CCNU against a transplantable mouse adenocarcinoma of the colon (MAC 13) or the anti-tumour action of FU against MAC 26. In both tumour lines ND had no significant effect on tumour growth. These data suggest that an increase in the anti-tumour selectivity of these agents may be produced by pre-treatment with ND. PMID:7295514

  12. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era*

    PubMed Central

    Wareham, Lauren K.; Poole, Robert K.; Tinajero-Trejo, Mariana

    2015-01-01

    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells. PMID:26055702

  13. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. However, hygromycin being an antibiotic is not ideal in the final product. When tested against different alternate selection agents our studies show that 0.16 µg/ mL glufosinate, 40 mg/L isopropylam...

  14. Susceptibility of clinical Moraxella catarrhalis isolates in British Columbia to six empirically prescribed antibiotic agents

    PubMed Central

    Bandet, Tamara; Whitehead, Sue; Blondel-Hill, Edith; Wagner, Ken; Cheeptham, Naowarat

    2014-01-01

    BACKGROUND: Moraxella catarrhalis is a commensal organism of the respiratory tract that has emerged as an important pathogen for a variety of upper and lower respiratory tract infections including otitis media and acute exacerbations of chronic bronchitis. Susceptibility testing of M catarrhalis is not routinely performed in most diagnostic laboratories; rather, a comment predicting susceptibility based on the literature is attached to the report. The most recent Canadian report on M catarrhalis antimicrobial susceptibility was published in 2003; therefore, a new study at this time was of interest and importance. OBJECTIVE: To determine the susceptibility of M catarrhalis isolates from British Columbia to amoxicillin-clavulanate, doxycycline, clarithromycin, cefuroxime, levofloxacin and trimethoprimsulfamethoxazole. METHODS: A total of 117 clinical M catarrhalis isolates were isolated and tested from five Interior hospitals and two private laboratory centres in British Columbia between January and December 2012. Antibiotic susceptibility of M catarrhalis isolates was characterized using the Etest (E-strip; bioMérieux, USA) according to Clinical Laboratory Standards Institute guidelines. RESULTS: All isolates were sensitive to amoxicillin-clavulanate, doxycycline, clarithromycin, levofloxacin and trimethoprimsulfamethoxazole. One isolate was intermediately resistant to cefuroxime, representing a 99.15% sensitivity rate to the cephem agent. Cefuroxime minimum inhibitory concentrations (MICs) inhibiting 50% and 90% of organisms (MIC50 and MIC90) were highest among the antibiotics tested, and the MIC90 (3 μg/mL) of cefuroxime reached the Clinical Laboratory Standards Institute breakpoint of susceptibility. DISCUSSION: The antibiotic susceptibility of M catarrhalis isolates evaluated in the present study largely confirms the findings of previous surveillance studies performed in Canada. Cefuroxime MICs are in the high end of the sensitive range and the MIC50 and MIC90

  15. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  16. Influence of Mycotoxins and a Mycotoxin Adsorbing Agent on the Oral Bioavailability of Commonly Used Antibiotics in Pigs

    PubMed Central

    Goossens, Joline; Vandenbroucke, Virginie; Pasmans, Frank; De Baere, Siegrid; Devreese, Mathias; Osselaere, Ann; Verbrugghe, Elin; Haesebrouck, Freddy; De Saeger, Sarah; Eeckhout, Mia; Audenaert, Kris; Haesaert, Geert; De Backer, Patrick; Croubels, Siska

    2012-01-01

    It is recognized that mycotoxins can cause a variety of adverse health effects in animals, including altered gastrointestinal barrier function. It is the aim of the present study to determine whether mycotoxin-contaminated diets can alter the oral bioavailability of the antibiotics doxycycline and paromomycin in pigs, and whether a mycotoxin adsorbing agent included into diets interacts with those antibiotics. Experiments were conducted with pigs utilizing diets that contained blank feed, mycotoxin-contaminated feed (T-2 toxin or deoxynivalenol), mycotoxin-contaminated feed supplemented with a glucomannan mycotoxin binder, or blank feed supplemented with mycotoxin binder. Diets with T-2 toxin and binder or deoxynivalenol and binder induced increased plasma concentrations of doxycycline administered as single bolus in pigs compared to diets containing blank feed. These results suggest that complex interactions may occur between mycotoxins, mycotoxin binders, and antibiotics which could alter antibiotic bioavailability. This could have consequences for animal toxicity, withdrawal time for oral antibiotics, or public health. PMID:22606377

  17. Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs.

    PubMed

    Goossens, Joline; Vandenbroucke, Virginie; Pasmans, Frank; De Baere, Siegrid; Devreese, Mathias; Osselaere, Ann; Verbrugghe, Elin; Haesebrouck, Freddy; De Saeger, Sarah; Eeckhout, Mia; Audenaert, Kris; Haesaert, Geert; De Backer, Patrick; Croubels, Siska

    2012-04-01

    It is recognized that mycotoxins can cause a variety of adverse health effects in animals, including altered gastrointestinal barrier function. It is the aim of the present study to determine whether mycotoxin-contaminated diets can alter the oral bioavailability of the antibiotics doxycycline and paromomycin in pigs, and whether a mycotoxin adsorbing agent included into diets interacts with those antibiotics. Experiments were conducted with pigs utilizing diets that contained blank feed, mycotoxin-contaminated feed (T-2 toxin or deoxynivalenol), mycotoxin-contaminated feed supplemented with a glucomannan mycotoxin binder, or blank feed supplemented with mycotoxin binder. Diets with T-2 toxin and binder or deoxynivalenol and binder induced increased plasma concentrations of doxycycline administered as single bolus in pigs compared to diets containing blank feed. These results suggest that complex interactions may occur between mycotoxins, mycotoxin binders, and antibiotics which could alter antibiotic bioavailability. This could have consequences for animal toxicity, withdrawal time for oral antibiotics, or public health.

  18. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents.

    PubMed

    Azevedo, Andreia S; Almeida, Carina; Pereira, Bruno; Melo, Luís F; Azevedo, Nuno F

    2016-01-01

    Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.

  19. Aminopyrrolic synthetic receptors for monosaccharides: a class of carbohydrate-binding agents endowed with antibiotic activity versus pathogenic yeasts.

    PubMed

    Nativi, Cristina; Francesconi, Oscar; Gabrielli, Gabriele; De Simone, Irene; Turchetti, Benedetta; Mello, Tommaso; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Buzzini, Pietro; Roelens, Stefano

    2012-04-16

    The biological activity of a set of structurally related aminopyrrolic synthetic receptors for monosaccharides has been tested versus yeast and yeast-like microorganisms and compared to their binding affinity toward mannosides. Antibiotic activity comparable to that of well-known polyene (amphotericin B) or azole (ketoconazole) drugs has been found for some members of the family, along with a general correlation with binding abilities. A systematic structure-activity-affinity investigation shed light on the structural and functional requirements necessary for antibiotic activity and identified the tripodal compound 1 as the most potent compound of the set. Together with toxicity tests and inhibitor localization experiments performed through fluorescence microscopy, these studies led to the characterization of a new class of carbohydrate binding agents possessing antibiotic activity, in which pyrrolic groups precisely structured on a tripodal architecture appear to be responsible for permeability through the cell wall of pathogens, as well as for antibiotic activity inside the cytoplasm.

  20. Antibiotic resistance and hypermutability of Escherichia coli O157 from feedlot cattle treated with growth-promoting agents.

    PubMed

    Lefebvre, Brigitte; Diarra, Moussa S; Giguère, Karine; Roy, Gabriel; Michaud, Sophie; Malouin, François

    2005-11-01

    In a longitudinal study (165 days), we investigated the effect of growth-promoting agents (monensin and trenbolone acetate-estradiol) and an antibiotic (oxytetracycline) on the incidence in feedlot steers of Escherichia coli O157, including antibiotic-resistant and hypermutable isolates. Eighty steers in 16 pens were treated with eight combinations of promoters, and each treatment was duplicated. Fecal samples were collected at nine different sampling times for detection of E. coli O157. Overall, 50 E. coli O157 isolates were detected in treated animals, and none were found in untreated animals. Compared with untreated controls, there was a significant association between the utilization of growth-promoting agents or antibiotics and the shedding of E. coli O157 at day 137 (P = 0.03), when a prevalence peak was observed and 50% of the isolates were detected. Multiplex PCR assays were conducted for some virulence genes. PCR results indicated that all except one isolate possessed at least the Shiga toxin gene stx2. MICs for 12 antibiotics were determined, and eight oxytetracycline-resistant E. coli O157 strains were identified. Antibiotic-resistant strains were considered a distinct subpopulation of E. coli O157 by pulsed-field gel electrophoresis typing. Seven of these antibiotic-resistant strains were isolated early in the study (on or before day 25), and among them two were also hypermutable as determined by rifampin mutation frequencies. The proportion of hypermutable strains among E. coli O157 isolates remained relatively constant throughout the study period. These results indicate that the use of growth-promoting agents and antibiotics in beef production may increase the risk of environmental contamination by E. coli O157.

  1. Immune stimulatory and anti-tumour properties of haemin.

    PubMed Central

    Tsuji, A; Wang, J; Stenzel, K H; Novogrodsky, A

    1993-01-01

    IL-2 induces tumour regression in some patients with metastatic disease, but the dose of IL-2 is limited by severe toxicity. Agents that increase the expression of IL-2 receptors in the effector cells could be used to improve the effectiveness of IL-2 in mediating its anti-tumour effect. We have reported that haemin increased the expression of IL-2 receptors in human peripheral blood mononuclear cells (PBMC) and synergized with IL-2 in the induction of mitogenicity, cytotoxicity and cytokine production. We now report on haemin-induced immune stimulation and tumour regression in mice. Haemin-induced mitogenicity in mouse splenocytes was potentiated up to two-fold by IL-2. The combination of haemin and IL-2 was also effective in inducing cytotoxicity for natural killer (NK)-resistant target cells. Maximal induction of cytotoxicity was attained at an optimal concentration of haemin of 10 microM. Higher concentrations were less effective. Splenocytes isolated from mice that had been treated in vivo with haemin and IL-2 incorporated twice the amount of 3H-thymidine compared with splenocytes from mice treated with either haemin or IL-2 alone. Cytotoxicity of splenocytes for NK-resistant target cells was not increased following in vivo administration of haemin and IL-2 when fresh splenocytes were tested. Cytotoxicity was enhanced, however, up to five-fold following 48 h in vitro incubation with IL-2. Administration of haemin and IL-2 resulted in a significant decrease (40%) of established hepatic metastases in mice. Either IL-2 or haemin alone at the dose used were ineffective. The anti-tumour effect of haemin and IL-2 was enhanced (63% decrease in metastases) by administration of the thiol compound, N-acetylcysteine. Since haemin can safely be administered to patients, it may represent a new class of biologic response modifiers that could enhance IL-2-mediated anti-tumour effects. PMID:8370158

  2. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria.

    PubMed

    Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime

    2016-01-01

    We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.

  3. [Causative agents of intravenous catheter-related infections and their antibiotic susceptibilities].

    PubMed

    Aktaş, Elif; Sarı, Emre Nur; Seremet Keskin, Ayşegül; Pişkin, Nihal; Külah, Canan; Cömert, Füsun

    2011-01-01

    Intravenous catheterization can lead to colonization as well as a broad spectrum of infections ranging from catheter site infections to catheter-related blood stream infections (CRBSIs). The aim of this study was to evaluate the distribution of causative agents and their antibiotic susceptibility patterns in CRBSIs and catheter site infections along with the colonization rates and colonizing microorganisms in Zonguldak Karaelmas University Hospital, Turkey. The results of cultures from catheter tips and/or intracatheter blood cultures and simultaneously taken peripheral blood cultures were sent to medical microbiology laboratory and were retrospectively investigated for 201 patients hospitalized between September 2007 and September 2009. The catheter tips were cultured by semi-quantitative and quantitative culture methods. Blood cultures from the catheters and peripheral veins were performed in BACTEC 9120 (Becton Dickinson, USA) blood culture systems. The antibiotic susceptibility tests were done by Kirby-Bauer disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Out of 201 patients included, 28 (13.9%) had CRBSIs and 13 (6.4%) had catheter site infections while colonization was defined for 55 (27.3%) patients. Of 28 patients with CRBSIs, Acinetobacter spp. were isolated from 11 including five carbapenem-resistant strains, methicillin-resistant coagulase-negative staphylococci (MRCNS) from eight, methicillin-susceptible coagulase-negative staphylococci (MSCNS) from two, Klebsiella pneumoniae from two patients and one of each patient's cultures yielded methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Pseudomonas aeruginosa, Enterococcus spp., Escherichia coli and MRCNS + Enterococcus faecium. Of 13 patients with catheter site infections, five MSCNS, two methicillin-susceptible S.aureus (MSSA), two E.coli, and one of each K.pneumoniae, MRCNS, Enterococcus spp., K.pneumoniae + P

  4. Indications and Types of Antibiotic Agents Used in 6 Acute Care Hospitals, 2009-2010: A Pragmatic Retrospective Observational Study.

    PubMed

    Kelesidis, Theodoros; Braykov, Nikolay; Uslan, Daniel Z; Morgan, Daniel J; Gandra, Sumanth; Johannsson, Birgir; Schweizer, Marin L; Weisenberg, Scott A; Young, Heather; Cantey, Joseph; Perencevich, Eli; Septimus, Edward; Srinivasan, Arjun; Laxminarayan, Ramanan

    2016-01-01

    BACKGROUND To design better antimicrobial stewardship programs, detailed data on the primary drivers and patterns of antibiotic use are needed. OBJECTIVE To characterize the indications for antibiotic therapy, agents used, duration, combinations, and microbiological justification in 6 acute-care US facilities with varied location, size, and type of antimicrobial stewardship programs. DESIGN, PARTICIPANTS, AND SETTING Retrospective medical chart review was performed on a random cross-sectional sample of 1,200 adult inpatients, hospitalized (>24 hrs) in 6 hospitals, and receiving at least 1 antibiotic dose on 4 index dates chosen at equal intervals through a 1-year study period (October 1, 2009-September 30, 2010). METHODS Infectious disease specialists recorded patient demographic characteristics, comorbidities, microbiological and radiological testing, and agents used, dose, duration, and indication for antibiotic prescriptions. RESULTS On the index dates 4,119 (60.5%) of 6,812 inpatients were receiving antibiotics. The random sample of 1,200 case patients was receiving 2,527 antibiotics (average: 2.1 per patient); 540 (21.4%) were prophylactic and 1,987 (78.6%) were therapeutic, of which 372 (18.7%) were pathogen-directed at start. Of the 1,615 empirical starts, 382 (23.7%) were subsequently pathogen-directed and 1,231 (76.2%) remained empirical. Use was primarily for respiratory (27.6% of prescriptions) followed by gastrointestinal (13.1%) infections. Fluoroquinolones, vancomycin, and antipseudomonal penicillins together accounted for 47.1% of therapy-days. CONCLUSIONS Use of broad-spectrum empirical therapy was prevalent in 6 US acute care facilities and in most instances was not subsequently pathogen directed. Fluoroquinolones, vancomycin, and antipseudomonal penicillins were the most frequently used antibiotics, particularly for respiratory indications. Infect. Control Hosp. Epidemiol. 2015;37(1):70-79.

  5. Cutting the limits of aminobisphosphonates: new strategies for the potentiation of their anti-tumour effects.

    PubMed

    Marra, M; Abbruzzese, A; Addeo, R; Del Prete, S; Tassone, P; Tonini, G; Tagliaferri, P; Santini, D; Caraglia, M

    2009-11-01

    Therapy with aminobisphosphonate (N-BPs), and zoledronic acid (ZOL) especially, has become a standard of care for patients with malignant bone disease. In addition, preclinical and preliminary clinical data suggest that N-BPs exert their direct or indirect anti-tumour effects on cancer growth factor release, cancer cell adhesion, invasion and viability, cancer angiogenesis and cancer cell apoptosis. Here, we will discuss the molecular mechanisms of the antitumour effects induced by ZOL. Despite their well-established in vitro anti-tumour effects N-BPs have not clear in vivo anti-tumour activity in humans. The bases of these discrepancies will be discussed in the text with a special focus on the pharmacokinetic limits of N-BPs. Moreover, the following molecular and pharmacological strategies in order to overcome N-BPs limitations will be described: i) development of pharmacological combinations with other biological agents; ii) finding of new molecular targets of N-BPs; iii) development of new pharmacological formulations of N-BPs. Finally, a new scenario of integrated bio-medicine and pharmacology will be depicted in order to drive the optimization of anti-cancer activity of N-BPs.

  6. Cyclic lipopeptides as antibacterial agents - potent antibiotic activity mediated by intriguing mode of actions.

    PubMed

    Schneider, Tanja; Müller, Anna; Miess, Henrike; Gross, Harald

    2014-01-01

    Cyclic lipopeptides (CLPs) are a promising class of natural products with antibiotic properties. CLPs are amphiphilic molecules, composed of a fatty acid tail linked to a short oligopeptide which form a macrocylic ring structure. This review presents an overview of this class of antibiotics, focusing on the current and potential therapeutic applications and placing particular emphasis on the molecular modes of action of these compounds.

  7. Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent

    PubMed Central

    Chopra, Shaileja; Palencia, Andrés; Virus, Cornelia; Schulwitz, Sarah; Temple, Brenda R.; Cusack, Stephen; Reader, John

    2016-01-01

    Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation. PMID:27713402

  8. Antitumour principles from Peganum harmala seeds.

    PubMed

    Lamchouri, F; Settaf, A; Cherrah, Y; Zemzami, M; Lyoussi, B; Zaid, A; Atif, N; Hassar, M

    1999-01-01

    From ancient times, Peganum harmala was claimed to be an important medicinal plant. Its seeds were known to possess hypothermic, and essentially hallucinogenic properties. Various authors have undertaken studies on the antibacterial, antifungal and antiviral effects of Peganum harmala seeds, but studies on the antitumour activity are not to be found in the literature. In Moroccan traditional medicine, seed powder is sometimes used on skin and subcutaneous tumours. This work was designed to investigate some aspects of the antineoplastic properties of the plant Peganum. Varying concentrations (10 to 120 micrograms/ml) of total alkaloid extracts of Peganum harmala seeds (collected in Morocco) were tested in vitro on four tumoural cell-lines: Med-mek and UCP-Med carcinoma, UCP-Med sarcoma and Sp2/O-Ag14. In vivo experiments were performed with the Sp2/O cell-line grafted subcutaneously in syngenic BALB/c mice. In vitro, proliferation of tumoural cell lines was significantly reduced by all tested concentrations of the Peganum alkaloid extracts during the first 24 h of contact. A cell lysis effect occurred after 24 h and progressed to complete cell death within 48 to 72 h depending on the alkaloid concentration. Results obtained indicate that alkaloids of Peganum have a high cell toxicity in vitro. The active principle at a dose of 50 mg/kg given orally to mice for 40 days was found to have significant antitumoural activity. Peganum harmala alkaloids thus possess significant antitumour potential, which could prove useful as a novel anticancer therapy.

  9. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram‐Negative Bacteria

    PubMed Central

    Borselli, Diane; Blanchet, Marine; Bolla, Jean‐Michel; Muth, Aaron; Skruber, Kristen

    2017-01-01

    Abstract Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram‐negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU‐N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer‐membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de‐energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. PMID:28098416

  10. Antibodies as an unlimited source of anti-infective, anti-tumour and immunomodulatory peptides.

    PubMed

    Ciociola, Tecla; Magliani, Walter; Giovati, Laura; Sperindé, Martina; Santinoli, Claudia; Conti, Giorgio; Conti, Stefania; Polonella, Luciano

    2014-01-01

    Antibodies (Abs) are emerging as an important class of therapeutic agents for the treatment of various human diseases, often conjugated to drugs or toxic substances. In recent years, the incidence of cancer and infectious diseases has increased dramatically making it imperative to discover new effective therapeutic molecules. Among these, small peptides are arousing great interest. Synthetic peptides, representative of variable and constant region fragments of Abs, were proved to exert in vitro, ex vivo and/or in vivo anti-microbial, anti-viral, anti-tumour and/or immunomodulatory activities, mediated by different mechanisms of action and regardless of the specificity and isotype of the Ab. Some of these synthetic peptides possess the ability to spontaneously and reversibly self-assemble in an organised network of fibril-like structure. Ab fragments may represent a novel model of targeted anti-infective and anti-tumour auto-delivering drugs.

  11. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics.

    PubMed

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V; Viswanathan, Rajesh; Shoham, Menachem

    2015-03-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents.

  12. New Approaches to Antibiotic Use and Review of Recently Approved Antimicrobial Agents.

    PubMed

    Hahn, Andrew W; Jain, Rupali; Spach, David H

    2016-07-01

    Antimicrobial drug-resistance continues to force adaptation in our clinical practice. We explore new evidence regarding adjunctive antibiotic therapy for skin and soft tissue abscesses as well as duration of therapy for intra-abdominal abscesses. As new evidence refines optimal practice, it is essential to support clinicians in adopting practice patterns concordant with evidence-based guidelines. We review a simple approach that can 'nudge' clinicians towards concordant practices. Finally, the use of novel antimicrobials will play an increasingly important role in contemporary therapy. We review five new antimicrobials recently FDA-approved for use in drug-resistant infections: dalbavancin, oritavancin, ceftaroline, ceftolozane-tazobactam, and ceftazidime-avibactam.

  13. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms.

    PubMed

    Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk

    2017-03-15

    Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin (P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments.IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results

  14. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.

    PubMed

    Lohner, Karl

    2017-01-01

    The increase of pathogens being resistant to antibiotics represents a global health problem and therefore it is a pressing need to develop antibiotics with novel mechanisms of action. Host defense peptides, which have direct antimicrobial activity (also termed antimicrobial peptides) or immune modulating activity, are valuable template structures for the development of such compounds. Antimicrobial peptides exhibit remarkably different structures as well as biological activity profiles with multiple targets. A large fraction of these peptides interfere physically with the cell membrane of bacteria (focus of this review), but can also translocate into the cytosol, where they interact with nucleic acids, ribosomes and proteins. Several potential interaction sites have to be considered on the route of the peptides from the environment to the cytoplasmic membrane. Translocation of peptides through the cell wall may not be impaired by the thick but relatively porous peptidoglycan layer. However, interaction with lipopolysaccharides of the outer membrane of Gram-negative bacteria and (lipo)teichoic acids of Gram-positive bacteria may reduce the effective concentration at the cytoplasmic membrane, where supposedly the killing event takes place. On a molecular level several mechanisms are discussed, which are important for the rational design of improved antimicrobial compounds: toroidal pore formation, carpet model (coverage of membrane surface by peptides), interfacial activity, void formation, clustering of lipids and effects of membrane curvature. In summary, many of these models just represent special cases that can be interrelated to each other and depend on both the nature of lipids and peptides.

  15. Novel anti-tumour barringenol-like triterpenoids from the husks of Xanthoceras sorbifolia Bunge and their three dimensional quantitative structure activity relationships analysis.

    PubMed

    Wang, Da; Su, Dan; Yu, Bin; Chen, Chuming; Cheng, Li; Li, Xianzhe; Xi, Ronggang; Gao, Huiyuan; Wang, Xiaobo

    2017-01-01

    The high edible oil content of Xanthoceras sorbifolia Bunge seeds contributes to its economic value. In this study, we analysed the barrigenol-like triterpenoids derived from X. sorbifolia husks. We also identified anti-tumour agents that could enhance the health benefits and medicinal value of X. sorbifolia. We isolated 10 barrigenol triterpenoids, including six new compounds (1-6) and four known compounds (7-10). New compounds 3 and 5 showed significant inhibitory activity against the proliferation of three human tumour cell lines, namely, HepG2, HCT-116 and U87-MG. We determined the relationship between the structures and inhibitory activity of 25 barrigenol triterpenoids and 15 penta-cyclic triterpenoids through analysis of three-dimensional quantitative structure activity relationships (3D-QSAR). The isolation of novel barrigenol derivatives with anti-tumour activity from X. sorbifolia implied that husks of this plant may be a good source of anti-tumour agents.

  16. Platinum(II)-Acyclovir Complexes: Synthesis, Antiviral and Antitumour Activity

    PubMed Central

    Coluccia, M.; Boccarelli, A.; Cermelli, C.; Portolani, M.; Natile, G.

    1995-01-01

    A platinum(II) complex with the antiviral drug acyclovir was synthesized and its antiviral and anticancer properties were investigated in comparison to those of acyclovir and cisplatin. The platinum-acyclovir complex maintained the antiviral activity of the parent drug acyclovir, though showing a minor efficacy on a molar basis (ID50  =   7.85 and 1.02 μΜ for platinum-acyclovir and cisplatin, respectively). As anticancer agent, the platinum-acyclovir complex was markedly less potent than cisplatin on a mole-equivalent basis, but it was as effective as cisplatin when equitoxic dosages were administered in vivo to P388 leukaemia-bearing mice (%T/C = 209 and 211 for platinum-acyclovir and cisplatin, respectively). The platinum-acyclovir complex was also active against a cisplatin-resistant subline of the P388 leukaemia (%T/C = 140), thus suggesting a different mechanism of action. The DNA interaction properties (sequence specificity and interstrand cross-linking ability) of platinum-acyclovir were also investigated in comparison to those of cisplatin and [Pt(dien)Cl]+, an antitumour-inactive platinum-triamine compound. The results of this study point to a potential new drug endowed, at the same time, with antiviral and anticancer activity and characterized by DNA interaction properties different from those of cisplatin. PMID:18472776

  17. [Studies on the antitumour effect of Alocasia macrorrhiza].

    PubMed

    Ke, Y; Zhou, X; Bai, Q

    1999-05-01

    Models of transplanted tumour in mice and human cancer enograft in nude mice were used to evaluate the antitumour effect of water extract of Alocasia macrorrhiza. Results showed that the inhibitory rate against S180 in mice was 29.38%, and the inhibitory rate against transplantable humman gastroadenitis in nude mice was 51.72%. No antitumour effect was shown against ECA in mice.

  18. Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2012-11-01

    Marine microbes have been a storehouse of bioactive metabolites with tremendous potential as drug candidates. Marine microorganism derived secondary metabolites (chemical compounds/peptides) are considered to be a burning area of research since recent past. Many of such compounds have been proven to be anti-bacterial, anti-fungal, anti-algal, anti-HIV, anti-helminthic, anti-protozoan, anti-tumor and anti-allergic agents. Marine bacteria and fungi have been reported to be the producers of such compounds owing to their defense mechanisms and metabolic by products. Although the number of natural products isolated from these classes of marine microbial flora is large, a limited number of such compounds reach the clinical trial and even less number of them get approved as a drug. Here we discuss the recent studies on the isolation, characterization and the pharmacological significances of anti-bacterial, anti-fungal and anti-infective agents of marine microbial origin. Further, the clinical status of such compounds has also been discussed in comparison with those derived from their terrestrial counterparts.

  19. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents.

    PubMed

    Miller, Marvin J; Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J; Vergne, Anne; Roosenberg, John M; Moraski, Garrett; Minnick, Albert A; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Kurt Dolence, E; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2009-02-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

  20. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes.

    PubMed

    Olano, Carlos; Méndez, Carmen; Salas, José A

    2011-03-01

    Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.

  1. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes

    PubMed Central

    Olano, Carlos; Méndez, Carmen; Salas, José A.

    2011-01-01

    Summary Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side‐effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields. PMID:21342461

  2. Antibiotics and Resistance: Glossary

    MedlinePlus

    ... induced by natural or human activity on the ecology and living organisms. Ecology The study of the relationships and interactions between ... antibiotics The Cost of Resistance Science of Resistance Ecology Antibiotics in Agriculture Antibacterial Agents Glossary References Web ...

  3. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models

    PubMed Central

    Martínez-Pérez, Carlos; Ward, Carol; Turnbull, Arran K; Mullen, Peter; Cook, Graeme; Meehan, James; Jarman, Edward J; Thomson, Patrick IT; Campbell, Colin J; McPhail, Donald; Harrison, David J; Langdon, Simon P

    2016-01-01

    Background: The natural polyphenol myricetin induces cell cycle arrest and apoptosis in preclinical cancer models. We hypothesised that myricetin-derived flavonoids with enhanced redox properties, improved cell uptake and mitochondrial targeting might have increased potential as antitumour agents. Methods: We studied the effect of a second-generation flavonoid analogue Oncamex in a panel of seven breast cancer cell lines, applying western blotting, gene expression analysis, fluorescence microscopy and immunohistochemistry of xenograft tissue to investigate its mechanism of action. Results: Proliferation assays showed that Oncamex treatment for 8 h reduced cell viability and induced cytotoxicity and apoptosis, concomitant with increased caspase activation. Microarray analysis showed that Oncamex was associated with changes in the expression of genes controlling cell cycle and apoptosis. Fluorescence microscopy showed the compound's mitochondrial targeting and reactive oxygen species-modulating properties, inducing superoxide production at concentrations associated with antiproliferative effects. A preliminary in vivo study in mice implanted with the MDA-MB-231 breast cancer xenograft showed that Oncamex inhibited tumour growth, reducing tissue viability and Ki-67 proliferation, with no signs of untoward effects on the animals. Conclusions: Oncamex is a novel flavonoid capable of specific mitochondrial delivery and redox modulation. It has shown antitumour activity in preclinical models of breast cancer, supporting the potential of this prototypic candidate for its continued development as an anticancer agent. PMID:27031849

  4. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    PubMed

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-β-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance.

  5. [Antibiotic stewardship].

    PubMed

    Kerwat, Klaus; Wulf, Hinnerk

    2014-09-01

    Resistance against antibiotics is continuously increasing throughout the world and has become a very serious problem. For just this reason "Antibiotic Stewardship Programs" have been developed. These programs are intended to lead to a sustained improvement in the situation and to assure a rational practice for the prescription of anti-infective agents in medical facilities. The aim is to prescribe the correct antibiotic therapy to the right patient at the most appropriate point in time. An AWMF S3 guideline on this topic published by the German Society for Infectiology (S3-Leitlinie StrategienzurSicherungrationalerAntibiotika-AnwendungimKrankenhaus.AWMF-Registernummer 092/001 - S3 Guideline on Strategies for the Rational Use of Antibiotics in Hospitals. AWMF - Registry Number 092/001) has been available since the end of 2013. An essential aspect therein is the expert interdisciplinary cooperation of a team comprising a clinically experienced infectiologist, a hospital pharmacist and a consultant for microbiology.

  6. Antibiotic resistant in microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial agents are necessary for use in veterinary medicine including the production of food producing animals. Antibiotic use is indicated for the treatment of bacterial target organisms and/or disease for which the antibiotic was developed. However, an unintended consequence of antibiotic ...

  7. Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics.

    PubMed

    Fernandez-Gutierrez, Mar; Olivares, Enrique; Pascual, Gemma; Bellon, Juan M; San Román, Julio

    2013-04-01

    The application of bioactive meshes in abdominal surgery for the repair of hernias is an increasing clinical activity in a wide sector of the population. The main secondary effect is the appearance of infections from bacteria, specifically Staphylococcus aureus and S. epidermidis. This paper describes the development and application of low-density polypropylene meshes coated with a biocompatible and resorbable polymer as a controlled release system of the antibiotic vancomycin. The polymeric coating (a non-cross-linked copolymer of 2-hydroxyethyl methacrylate and 2-acrylamido-2-methylpropanesulfonic acid) has a thickness of 14-15μm and contains 0.32mgcm(-2) of the antibiotic vancomycin. The in vitro experiments demonstrate the excellent inhibitory character of the coated meshes loaded with the antibiotic, following the standard protocol of inhibition of halo in agar diffusion test. This inhibitory effect is maintained for a relatively long period (at least 14days) with a low concentration of antibiotic. The acrylic polymer system regulates the release of the antibiotic with a rate of 24μgh(-1), due to its slow dissolution in the medium. Experiments in vivo, based on the implantation of coated meshes, demonstrate that the system controls the infection in the animal (rabbits) for at least 30days. The concentration of antibiotic in the blood stream of the rabbits was below the detection limit of the analytical technique (<1-2μgml(-1)), which demonstrates that the antibiotic is released in the local area of the implant and remains concentrated at the implantation site, without diffusion to the blood stream. The systems can be applied to other medical devices and implants for the application of new-generation antibiotics in a controlled release and targeted applications.

  8. Antitumour activity of Bauhinia variegata on Dalton's ascitic lymphoma.

    PubMed

    Rajkapoor, B; Jayakar, B; Murugesh, N

    2003-11-01

    The antitumour activity of the ethanol extract of Bauhinia variegata (EBV) has been evaluated against Dalton's ascitic lymphoma (DAL) in Swiss albino mice. A significant enhancement of mean survival time of EBV-treated tumour bearing mice was found with respect to control group. EBV treatment was found to enhance peritoneal cell counts. After 14 days of inoculation, EBV is able to reverse the changes in the haemotological parameters, protein and PCV consequent to tumour inoculation.

  9. Molecular investigation of the direct anti-tumour effects of nonsteroidal anti-inflammatory drugs in a panel of canine cancer cell lines.

    PubMed

    Yoshitake, R; Saeki, K; Watanabe, M; Nakaoka, N; Ong, S M; Hanafusa, M; Choisunirachon, N; Fujita, N; Nishimura, R; Nakagawa, T

    2017-03-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested as effective adjunctive anti-tumour agents in human and veterinary medicine. However, the molecular mechanisms associated with their anti-tumour effects and correlations with the expression of cyclooxygenase (COX) and related molecules in tumours remain controversial. The objective of this study was to compare the expression profiles of COX and related molecules with NSAID sensitivity and to explore the molecular mechanisms of anti-tumour effects. The expression profiles of COXs, prostaglandins (PGs), PGD2 synthases, and PGE2 synthases were obtained, and their correlations with in vitro sensitivity to the NSAIDs piroxicam, carprofen, and robenacoxib were examined, using 26 canine cancer cell lines. Subsequently, microarray analysis was performed using one melanoma cell line to gain insight into mechanisms by which NSAIDs could exert cytotoxic effects. No strong correlation was observed between the cellular expression of COX and related molecules and sensitivity to NSAID treatment. Additionally, NSAIDs inhibited cell growth only at considerably higher concentrations than those required for functional COX inhibition. Microarray data demonstrated that five genes (SLC16A6, PER2, SLC9A8, HTR2B, and BRAF) were significantly upregulated and that four genes (LOC488305, H2AFJ, LOC476445, and ANKRD43) were significantly downregulated by NSAID exposure to the melanoma cell line. These results suggest that the direct in vitro anti-tumour effects of NSAIDs might be mediated by COX/PG-independent pathways. Novel candidate genes that could potentially be involved in the anti-tumour effects of NSAIDs were identified. Further validation and elucidation of their associated mechanisms will contribute to patient selection in clinical settings and the development of effective combination therapies.

  10. The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents.

    PubMed

    Mazurek, Justyna; Pusz, Paweł; Bok, Ewa; Stosik, Michał; Baldy-Chudzik, Katarzyna

    2013-01-01

    The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes.

  11. The membrane protein PrsS mimics σS in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents.

    PubMed

    Krute, Christina N; Bell-Temin, Harris; Miller, Halie K; Rivera, Frances E; Weiss, Andy; Stevens, Stanley M; Shaw, Lindsey N

    2015-05-01

    Staphylococcus aureus possesses a lone extracytoplasmic function (ECF) sigma factor, σ(S). In Bacillus subtilis, the ECF sigma factor, σ(W), is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in S. aureus (termed PrsS) and explored its role in σ(S) regulation. Herein, we demonstrate that although a cognate σ(S) anti-sigma factor currently remains elusive, prsS phenocopies sigS in a wealth of regards. Specifically, prsS expression mimics the upregulation observed for sigS in response to DNA-damaging agents, cell wall-targeting antibiotics and during ex vivo growth in human serum and murine macrophages. prsS mutants also display the same sensitivities of sigS mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to H2O2 and MMS. Finally, a role for PrsS in S. aureus virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σ(S) function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway.

  12. In vitro susceptibility of e.faecalis and c.albicans isolates from apical periodontitis to common antimicrobial agents, antibiotics and antifungal medicaments

    PubMed Central

    Yoldas, Oguz; Yilmaz, Sehnaz; Akcimen, Beril; Seydaoglu, Gulsah; Kipalev, Arzu; Koksal, Fatih

    2012-01-01

    The aim of this study was to evaluate in vitro antimicrobial activity of 4 antibiotic agents (for E.faecalis) and 4 antifungal agents (for C.albicans) by agar dilution method. Additionally, modified strip diffusion method was used for detection of in vitro antimicrobial activities of 5% NaOCl, 2.5% NaOCl, 17% EDTA and 2% CHX and agar diffusion method for detection of in vitro susceptibilities of three intracanal medicaments for 18 E.faecalis and 18 C.albicans isolates from primary and secondary root canal infection. Isolates were recovered from 231 endodontic samples of patients, with the need of root canal treatment and retreatment. All tested E.faecalis isolates showed resistance to antibiotics. For irrigation solutions, 2% CHX was more effective in eliminating E.faecalis but 5% NaOCl showed larger inhibition zone than 2.5% NaOCl, 17% EDTA and 2% CHX. For intracanal medication, Ca(OH)2-CHX worked efficiently in killing E.faecalis isolates compared to Ca(OH)2-Steril saline solution, Ca(OH)2-Glycerin. For C.albicans, 18 isolates were susceptible to amphotericin B, nistatin, fluconazole but showed resistance to ketoconazole. 5% NaOCl was more effective in eliminating and produced larger inhibition zone compared to 2.5% NaOCl, 17% EDTA and 2% CHX. Ca(OH)2-Glycerin intracanal medication was better in eliminating C.albicans isolates and produced larger inhibition zone compared to other Ca(OH)2 medicaments. Key words:E.faecalis, C.albicans, antimicrobial, antibiotic, antifungal. PMID:24558517

  13. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    PubMed

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  14. Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents

    PubMed Central

    Wirth, Marius; Niro, Giuliana; Leyerer, Kristin

    2016-01-01

    Summary Muraymycins are a promising class of antimicrobial natural products. These uridine-derived nucleoside-peptide antibiotics inhibit the bacterial membrane protein translocase I (MraY), a key enzyme in the intracellular part of peptidoglycan biosynthesis. This review describes the structures of naturally occurring muraymycins, their mode of action, synthetic access to muraymycins and their analogues, some structure–activity relationship (SAR) studies and first insights into muraymycin biosynthesis. It therefore provides an overview on the current state of research, as well as an outlook on possible future developments in this field. PMID:27340469

  15. Antibiotics Quiz

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  16. Potential of a novel antibiotic, 2-methylheptyl isonicotinate, as a biocontrol agent against fusarial wilt of crucifers.

    PubMed

    Bordoloi, Gojen N; Kumari, Babita; Guha, Arijit; Thakur, Debajit; Bordoloi, Manabjyoti; Roy, Monoj K; Bora, Tarun C

    2002-03-01

    Screening for newer bioactive compounds from microbial metabolites resulted in the isolation of a novel antibiotic from the culture filtrate, Streptomyces sp 201, of a soil. The bioactive compound, with antifungal and antibacterial activity, was identified as 2-methylheptyl isonicotinate. The antifungal activity of live culture, culture broth and the isolated bioactive compound showed marked inhibition against dominant soil-borne phytopathogens such as Fusarium oxysporum Schlect, F moniliforme Sheldon, F semitectum Berkeley & Ravenel, F solani (Martius) Sacc and Rhizoctonia solani Kuehn. The compound had no effect on seed germination and seedling development as displayed by root and stem growth of the test plant species. In pot experiments with seedlings of cruciferous plants such as Raphanus sativus L (radish), Brassica campestris L (yellow mustard), Brassica oleracea var botrytis L (cauliflower), the antibiotic compound showed promising protective activity of 92% when seeds of the test plants were treated at a dose of 50 micrograms ml-1 prior to sowing. Seed treatment with a spore suspension (3 x 10(8) spores ml-1) of the Streptomyces sp 201 displayed protective activity in the range of 56-60%. Seeds coated with 2.5% methyl cellulose-amended spores of the antagonist showed protective activity in the range of 64-72%. Further, seed treatment with the culture filtrate of the antagonist also showed promising protective activity in the range of 64-84%.

  17. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin

    PubMed Central

    Martins-Marques, Tania; Pinho, Maria Joao; Zuzarte, Monica; Oliveira, Carla; Pereira, Paulo; Sluijter, Joost P. G.; Gomes, Celia; Girao, Henrique

    2016-01-01

    Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects. PMID:27702427

  18. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  19. In vitro study of the post-antibiotic effect and the bactericidal activity of Cefditoren and ten other oral antimicrobial agents against upper and lower respiratory tract pathogens.

    PubMed

    Dubois, J; St-Pierre, C

    2000-07-01

    The in vitro post-antibiotic effect (PAE) and batericidal activity of cefditoren was compared to that of cefixime, cefuroxime, loracarbef, cefaclor, amoxicillin, amoxicillin/clavulanate, clarithromycin, azithromycin, erythromycin, and ciprofloxacin against ATCC culture strains and clinical respiratory isolates. A PAE > 1 h was observed for cefditoren and generally for the macrolides against Streptococcus pneumoniae, beta-lactamase-negative Moraxella catarrhalis, and Streptococcus pyogenes, whereas the other beta-lactams showed mixed results. Cefditoren was the only beta-lactam showing significant bactericidal activity (>3 log reduction of viable cells) within 4 h against penicillin-resistant S. pneumoniae. Only cefditoren and ciprofloxacin showed significant bactericidal activity against beta-lactamase-negative (after 24 h) and beta-lactamase-positive strains of H. influenzae (after 12 h). Against beta-lactamase-positive strains of M. catarrhalis, cefditoren was the only agent to show significant bactericidal activity at 6 h (versus cefuroxime and ciprofloxacin at 12 h).

  20. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  1. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer.

    PubMed

    Li, Zhenfei; Bishop, Andrew C; Alyamani, Mohammad; Garcia, Jorge A; Dreicer, Robert; Bunch, Dustin; Liu, Jiayan; Upadhyay, Sunil K; Auchus, Richard J; Sharifi, Nima

    2015-07-16

    Prostate cancer resistance to castration occurs because tumours acquire the metabolic capability of converting precursor steroids to 5α-dihydrotestosterone (DHT), promoting signalling by the androgen receptor and the development of castration-resistant prostate cancer. Essential for resistance, DHT synthesis from adrenal precursor steroids or possibly from de novo synthesis from cholesterol commonly requires enzymatic reactions by 3β-hydroxysteroid dehydrogenase (3βHSD), steroid-5α-reductase (SRD5A) and 17β-hydroxysteroid dehydrogenase (17βHSD) isoenzymes. Abiraterone, a steroidal 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitor, blocks this synthetic process and prolongs survival. We hypothesized that abiraterone is converted by an enzyme to the more active Δ(4)-abiraterone (D4A), which blocks multiple steroidogenic enzymes and antagonizes the androgen receptor, providing an additional explanation for abiraterone's clinical activity. Here we show that abiraterone is converted to D4A in mice and patients with prostate cancer. D4A inhibits CYP17A1, 3βHSD and SRD5A, which are required for DHT synthesis. Furthermore, competitive androgen receptor antagonism by D4A is comparable to the potent antagonist enzalutamide. D4A also has more potent anti-tumour activity against xenograft tumours than abiraterone. Our findings suggest an additional explanation-conversion to a more active agent-for abiraterone's survival extension. We propose that direct treatment with D4A would be more clinically effective than abiraterone treatment.

  2. What is left when anti-tumour necrosis factor therapy in inflammatory bowel diseases fails?

    PubMed Central

    Lawrance, Ian C

    2014-01-01

    The inflammatory bowel diseases (IBDs) are chronic incurable conditions that primarily present in young patients. Being incurable, the IBDs may be part of the patient’s life for many years and these conditions require therapies that will be effective over the long-term. Surgery in Crohn’s disease does not cure the disease with endoscopic recurrent in up to 70% of patients 1 year post resection. This means that, the patient will require many years of medications and the goal of the treating physician is to induce and maintain long-term remission without side effects. The development of the anti-tumour necrosis factor alpha (TNFα) agents has been a magnificent clinical advance in IBD, but they are not always effective, with loss of response overtime and, at times, discontinuation is required secondary to side effects. So what options are available if of the anti-TNFα agents can no longer be used? This review aims to provide other options for the physician, to remind them of the older established medications like azathioprine/6-mercaptopurine and methotrexate, the less established medications like mycophenolate mofetil and tacrolimus as well as newer therapeutic options like the anti-integins, which block the trafficking of leukocytes into the intestinal mucosa. The location of the intestinal inflammation must also be considered, as topical therapeutic agents may also be worthwhile to consider in the long-term management of the more challenging IBD patient. The more options that are available the more likely the patient will be able to have tailored therapy to treat their disease and a better long-term outcome. PMID:24574799

  3. What is left when anti-tumour necrosis factor therapy in inflammatory bowel diseases fails?

    PubMed

    Lawrance, Ian C

    2014-02-07

    The inflammatory bowel diseases (IBDs) are chronic incurable conditions that primarily present in young patients. Being incurable, the IBDs may be part of the patient's life for many years and these conditions require therapies that will be effective over the long-term. Surgery in Crohn's disease does not cure the disease with endoscopic recurrent in up to 70% of patients 1 year post resection. This means that, the patient will require many years of medications and the goal of the treating physician is to induce and maintain long-term remission without side effects. The development of the anti-tumour necrosis factor alpha (TNFα) agents has been a magnificent clinical advance in IBD, but they are not always effective, with loss of response overtime and, at times, discontinuation is required secondary to side effects. So what options are available if of the anti-TNFα agents can no longer be used? This review aims to provide other options for the physician, to remind them of the older established medications like azathioprine/6-mercaptopurine and methotrexate, the less established medications like mycophenolate mofetil and tacrolimus as well as newer therapeutic options like the anti-integins, which block the trafficking of leukocytes into the intestinal mucosa. The location of the intestinal inflammation must also be considered, as topical therapeutic agents may also be worthwhile to consider in the long-term management of the more challenging IBD patient. The more options that are available the more likely the patient will be able to have tailored therapy to treat their disease and a better long-term outcome.

  4. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets ...

  5. Bismuth(III) β-thioxoketonates as antibiotics against Helicobacter pylori and as anti-leishmanial agents.

    PubMed

    Andrews, Philip C; Blair, Victoria L; Ferrero, Richard L; Junk, Peter C; Kedzierski, Lukasz; Peiris, Roshani M

    2014-01-21

    Nine different β-thioxoketones of general formula R(1)C(=O)CH2C(=S)R(2) (R(1) = C6H5, R(2) = C6H5L1; R(1) = C6H5, R(2) = p-CF3C6H4L2; R(1) = p-MeOC6H4, R(2) = C6H5L3; R(1) = p-MeOC6H4, R(2) = p-CF3C6H4L4; R(1) = C5H4N, R(2) = C6H5L5; R(1) = p-IC6H4, R(2) = C6H5L6; R(1) = C6H5, R(2) = p-IC6H4L7; R(1) = C6H5, R(2) = C10H7L8 and R(1) = CH3, R(2) = C6H5L9) and their tris-substituted bismuth(III) complexes having the general formula [Bi{R(1)C(=O)CHC(=S)R(2)}3] were synthesised and fully characterised. The solid state structure of [Bi{C5H4NC(=O)CHC(=S)C6H5}3] B5 was determined by crystallography and revealed that the three β-thioxoketonato ligands are bound to bismuth(III) centre in a bidentate fashion through O and S atoms. The bismuth(III) complexes and the corresponding thioxoketones were assessed for their activity against H. pylori. All of the bismuth(III) complexes were highly active against H. pylori having a MIC of greater than or equal to 3.125 μg mL(-1), while the free acids were essentially not toxic to the bacteria. The anti-leishmanial activity of all the bismuth(III) β-thioxoketonates and the corresponding free acids were assessed against L. major promastigotes. The toxicity towards human fibroblast cells was also assessed. All of the free β-thioxoketones were selectively toxic to the L. major promastigotes displaying some potential as anti-leishmanial agents. Among these [C6H5C(=O)CH2C(=S)C6H5] L1 and [C5H4NC(=O)CH2C(=S)C6H5] L5 showed comparable activity to that of Amphotericin B, killing about 80% of the L. major promastigotes at a concentration of 25 μM (6.0 μg mL(-1)). The bismuth(III) β-thioxoketonate complexes were toxic to both the L. major promastigotes and fibroblast cells at high concentrations, but gave no improvement in anti-leishmanial activity over the free β-thioxoketones.

  6. Antibiotic Resistance in Staphylococcus aureus Strains Isolated from Cows with Mastitis in Eastern Poland and Analysis of Susceptibility of Resistant Strains to Alternative Nonantibiotic Agents: Lysostaphin, Nisin and Polymyxin B

    PubMed Central

    SZWEDA, Piotr; SCHIELMANN, Marta; FRANKOWSKA, Aneta; KOT, Barbara; ZALEWSKA, Magdalena

    2013-01-01

    ABSTRACT The aim of this study was to analyze the resistance of Staphylococcus aureus isolates from bovine mastitis in the eastern part of Poland to a set of 20 antibiotics and three alternative agents: lysostaphin, nisin and polymyxin B. Eighty-six out of 123 examined isolates were susceptible to all 20 tested antibiotics (70%). The highest percentage of resistance was observed in the case of β-lactam antibiotics: amoxicillin (n=22, 17.9%), ampicillin (n=28, 22.8%), penicillin (n=29, 23.6%) and streptomycin (n=13; 10.6%). Twenty-five of the penicillin-resistant strains were found to carry the blaZ gene coding for β-lactamases. Two strains were found to be mecA positive and a few strains were classified as multidrug resistant (MDR), one of them was simultaneously resistant to six antibiotics. All strains, resistant to at least one antibiotic (n=37) and two control strains, were susceptible to lysostaphin with MIC values of 0.008–0.5 µg/ml (susceptibility breakpoint 32 µg/ml). Twenty-one (54%) isolates were susceptible to nisin. The MIC value of this agent for 17 (44%) strains was 51.2 µg/ml and was not much higher than the susceptibility breakpoint value (32 µg/ml). Polymyxin B was able to inhibit the growth of the strains only at a high concentration (32–128 µg/ml). The presented results confirmed the observed worldwide problem of spreading antibiotic resistance among staphylococci isolated from bovine mastitis; on the other hand, we have indicated a high level of bactericidal activity of nisin and especially lysostaphin. PMID:24212507

  7. Possible role of macrophage-like suppressor cells in the anti-tumour activity of BCG.

    PubMed Central

    Castés, M.; Lynch, N. R.; Lespinats, G.; Orbach-Arbouys, S.

    1981-01-01

    The i.v. injection of high doses (3 mg) of BCG into C3H mice bearing a transplantable 3-methylcholanthrene-induced fibrosarcoma caused the regression of a significant proportion. This effect was most evident when the BCG was injected on the day of the graft, or 7 days later. The injection of this agent either 14 days before the graft, or in low doses (0.1 or 0.5 mg), or directly into the tumour (i.t.) only prolonged the survival of the animals. Spleen cells from systemic high-dose BCG-treated mice were found to exert a strong nonspecific cytostatic effect in vitro that was not an artefact of the test conditions, and was not expressed by cells from low-dose animals. The cytostatic effect was shown to be caused by cells with the characteristics of macrophages, i.e. they were strongly adherent, unaffected by treatment with anti-Thy 1.2 + C', radioresistant but heat-sensitive, and were detected in BCG-treated "B" mice. The spleens of high-dose BCG-treated mice also contained suppressor cells that were capable of inhibiting the in vitro reactivity of normal T cells to PHA. Like the cytostatic effect, this suppressor activity was not detected in low-dose mice, and the cells responsible had the properties of macrophages; the effect was lost after the removal of adherent cells by sequential exposure to plastic and colloidal iron, but was conserved after treatment with anti-Thy 1.2 + C'. T-cell-deprived animals, such as "B" or nude mice, also developed suppressor-cell activity when treated with systemic high-dose BCG. Close parallels became evident between the in vivo anti-tumour activity of BCG, the in vitro cytostatic effect, and the suppressor-cell activity. We here discuss the possible role of suppressor cells in the mechanism of action of this agent. PMID:6459797

  8. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.

    PubMed

    Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P

    2016-03-01

    Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%).

  9. What Can Be Done about Antibiotic Resistance?

    MedlinePlus

    ... Us General Background: What can be done about Antibiotic Resistance? What can I do? Are antibacterial agents, such as antibacterial soaps, a solution? Are antibiotics regulated? Is there any international action on the ...

  10. The multifaceted roles of antibiotics and antibiotic resistance in nature

    PubMed Central

    Sengupta, Saswati; Chattopadhyay, Madhab K.; Grossart, Hans-Peter

    2013-01-01

    Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host–parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics

  11. New classes of antibiotics.

    PubMed

    Moir, Donald T; Opperman, Timothy J; Butler, Michelle M; Bowlin, Terry L

    2012-10-01

    Several novel chemical classes of antibiotics are currently in human clinical studies. While most are narrow spectrum agents that inhibit unexploited targets, the susceptible pathogens are clinically important, including staphylococci, pseudomonads, and mycobacteria. Given the paucity of antibacterial agents consisting of novel chemical scaffolds that act on established targets, these new antibacterial scaffolds, which are active against new targets, represent an important advance in the battle against antibiotic resistance. Indeed, most of these compounds are unlikely to be subject to existing compound-based or target-based resistance mechanisms.

  12. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity

    PubMed Central

    Leal, JFM; Martínez-Díez, M; García-Hernández, V; Moneo, V; Domingo, A; Bueren-Calabuig, JA; Negri, A; Gago, F; Guillén-Navarro, MJ; Avilés, P; Cuevas, C; García-Fernández, LF; Galmarini, CM

    2010-01-01

    BACKGROUND AND PURPOSE PM01183 is a new synthetic tetrahydroisoquinoline alkaloid that is currently in phase I clinical development for the treatment of solid tumours. In this study we have characterized the interactions of PM01183 with selected DNA molecules of defined sequence and its in vitro and in vivo cytotoxicity. EXPERIMENTAL APPROACH DNA binding characteristics of PM01183 were studied using electrophoretic mobility shift assays, fluorescence-based melting kinetic experiments and computational modelling methods. Its mechanism of action was investigated using flow cytometry, Western blot analysis and fluorescent microscopy. In vitro anti-tumour activity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the in vivo activity utilized several human cancer models. KEY RESULTS Electrophoretic mobility shift assays demonstrated that PM01183 bound to DNA. Fluorescence-based thermal denaturation experiments showed that the most favourable DNA triplets providing a central guanine for covalent adduct formation are AGC, CGG, AGG and TGG. These binding preferences could be rationalized using molecular modelling. PM01183–DNA adducts in living cells give rise to double-strand breaks, triggering S-phase accumulation and apoptosis. The potent cytotoxic activity of PM01183 was ascertained in a 23-cell line panel with a mean GI50 value of 2.7 nM. In four murine xenograft models of human cancer, PM01183 inhibited tumour growth significantly with no weight loss of treated animals. CONCLUSIONS AND IMPLICATIONS PM01183 is shown to bind to selected DNA sequences and promoted apoptosis by inducing double-strand breaks at nanomolar concentrations. The potent anti-tumour activity of PM01183 in several murine models of human cancer supports its development as a novel anti-neoplastic agent. PMID:20977459

  13. Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis.

    PubMed

    Zheng, Yu; Zhou, Hong; Brennan, Karen; Blair, Julie M; Modzelewski, James R K; Seibel, Markus J; Dunstan, Colin R

    2007-02-01

    than either agent alone; and that (ii) inhibition of bone resorption, rather than direct anti-tumour action, mediates the effects of these agents on tumour growth in this in vivo model.

  14. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    PubMed Central

    Tarrado-Castellarnau, Míriam; Cortés, Roldán; Zanuy, Miriam; Tarragó-Celada, Josep; Polat, Ibrahim H.; Hill, Richard; Fan, Teresa W.; Link, Wolfgang; Cascante, Marta

    2016-01-01

    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimise its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and Reactive Oxygen Species production were analysed in A549 cells. FOXO3a subcellular localisation was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24 h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. PMID:26375988

  15. Antibiotic Safety

    MedlinePlus

    ... resistance develops, the antibiotic is not able to kill the germs causing the infection. Your infection may ... to vaginal yeast infections. This happens because antibiotics kill the normal bacteria in the vagina and this ...

  16. Antibiotic Prophylaxis in Orbital Fractures

    PubMed Central

    Reiss, Benjamin; Rajjoub, Lamise; Mansour, Tamer; Chen, Tony; Mumtaz, Aisha

    2017-01-01

    Purpose: To determine whether prophylactic antibiotic use in patients with orbital fracture prevent orbital infection. Design: Retrospective cohort study. Participants: All patients diagnosed with orbital fracture between January 1, 2008 and March 1, 2014 at The George Washington University Hospital and Clinics. Main Outcome Measures: Development of orbital infection. Results: One hundred seventy-two patients with orbital fracture met our inclusion and exclusion criteria. No orbital infections were documented. Twenty subjects (12%) received no prophylactic antibiotic, and two (1%) received only one dose of antibiotics pre-operatively for surgery. For primary antibiotic, 136 subjects (79%) received oral antibiotics, and 14 (8%) received intravenous (IV) antibiotics (excluding cefazolin). Cephalexin and amoxicillin-clavulanate were the most prescribed oral antibiotics that are equally effective. Five-to-seven day courses of antibiotics had no increased infections compared to ten-to-fourteen day courses. Calculated boundaries for effectiveness of prophylactic antibiotics ranged from a Number Needed to Treat (NNT) of 75 to a Number Needed to Harm (NNH) of 198. Conclusion: Antibiotics for prevention of orbital infection in patients with orbital fractures have become widely used. Coordination between trauma teams and specialists is needed to prevent patient overmedication and antibiotic resistance. Should antibiotics be used, shorter courses and avoidance of broad spectrum agents are recommended. Additional studies are needed.

  17. History of Antibiotics Research.

    PubMed

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  18. Enhanced inhibition of tumour growth and metastasis, and induction of antitumour immunity by IL-2-IgG2b fusion protein.

    PubMed

    Budagian, V; Nanni, P; Lollini, P L; Musiani, P; Di Carlo, E; Bulanova, E; Paus, R; Bulfone-Paus, S

    2002-05-01

    Cytokine-immunoglobulin (Ig)-fusion proteins have attracted increasing interest as antitumour agents. Here, we have investigated the antimetastatic and antitumour responses elicited in vivo by mammary adenocarcinoma cells (TS/A) engineered to secrete interleukin (IL)-2-IgG fusion proteins. TS/A cells were transfected with DNA coding for IL-2-IgG2b, IgG2b or IL-2, and injected subcutaneously into syngeneic mice. Animals injected with TS/A-IL-2 or TS/A-IL-2-IgG2b both efficiently rejected tumours, whereas treatment with parental cells or TS/A-IgG2b was lethal. Interestingly, only mice vaccinated with IL-2-IgG2b fusion protein-secreting cells showed a long-lasting protective immunity against a later challenge with parental tumour cells. Moreover, the metastatic potential of TS/A-IL-2-IgG2b-transfected cells was dramatically decreased compared with TS/A-IL-2-cells, with a virtual absence of lung metastases after intravenous injection. Adenocarcinomas secreting IL-2-IgG2b exhibited a more prominent, early and persistent infiltration of CD4+, CD8+ and natural killer (NK) cells than TS/A-IL-2 cells. Therefore, upon transfection into adenocarcinoma cells, the IgG2b part of IL-2 fusion protein exerts intriguing added antitumour properties over IL-2 alone, thus contributing to a long-lasting tumour immunity, probably by the recruitment of specific immune effector cells. These findings suggest a promising new oncotherapeutic strategy for poorly immunogenic tumours: vaccination with tumour cells engineered to secrete IL-2-IgG2b fusion protein.

  19. Effect of thalidomide on tumour necrosis factor production and anti-tumour activity induced by 5,6-dimethylxanthenone-4-acetic acid.

    PubMed Central

    Ching, L. M.; Xu, Z. F.; Gummer, B. H.; Palmer, B. D.; Joseph, W. R.; Baguley, B. C.

    1995-01-01

    The investigational anti-tumour agent, 5,6-dimethylxanthenone-4-acetic acid (5,6-MeXAA), an analogue of flavone acetic acid (FAA), has been scheduled for clinical evaluation. Like FAA, 5,6-MeXAA exhibits excellent experimental anti-tumour activity and is an efficient inducer of cytokines in mice. We have examined the effect of pharmacological suppression of tumour necrosis factor (TNF) production on the anti-tumour activity of 5,6-MeXAA, taking advantage of previous observations that TNF production in response to endotoxin in vitro is inhibited by thalidomide. Thalidomide at doses of between 8 and 250 mg kg-1 efficiently suppressed serum TNF activity in response to 5,6-MeXAA at its optimal TNF inducing dose of 55 mg kg-1. Suppression was achieved when thalidomide was administered at the same time as, or up to 4 h before, 5,6-MeXAA. Under conditions in which TNF activity was suppressed, the degree of tumour haemorrhagic necrosis and the proportion of cures in the subcutaneous Colon 38 tumour were increased. In mice administered thalidomide (100 mg kg-1) together with 5,6-MeXAA (30 mg kg-1), complete tumour regression was obtained in 100% of mice, as compared with 67% in mice receiving 5,6-MeXAA alone. The results suggest a possible new application for thalidomide and pose new questions about the action of 5,6-MeXAA and related compounds. PMID:7640215

  20. [Antibiotic Stewardship].

    PubMed

    Lanckohr, Christian; Ellger, Björn

    2016-02-01

    The adequate management of infections is an important task in critical care medicine which has an effect on patient outcome. As a result, the prevalence of antiinfective therapy is high in intensive care units. In the face of an unsettling development of worldwide microbial resistance, an optimization and reduction of antiinfective therapy is necessary. Antibiotic stewardship tries to improve antiinfective therapy with an interdisciplinary approach. One overall objective of antibiotic stewardship is the reduction of resistance induction in order to preserve the therapeutic efficiency of antibiotics. Intensive care units are important fields of action for antibiotic stewardship interventions. This article reviews available evidence and some practical aspects for antibiotic stewardship.

  1. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    PubMed Central

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment. PMID:24860564

  2. [Antibiotics in primary care].

    PubMed

    Steciwko, Andrzej; Lubieniecka, Małgorzata; Muszyńska, Agnieszka

    2011-05-01

    Discovered in the forties of the twentieth century antimicrobial agents have changed the world. Currently, due to their overuse, we are threatened by the increasing resistance of bacteria to antibiotics, and soon we may face a threat of inability to fight these pathogens. For that reason, the world, European and national organizations introduce antibiotics protection programs. In Poland since 2004, the National Program of Protection of Antibiotics is being held. The concept of rational antibiotic therapy is associated not only with the appropriate choice of therapy or antimicrobial dosage but also with a reduction in costs associated with a refund of medicines. Antibiotics are prescribed mostly by primary care physicians (GP), and about one fifth of visits to family doctor's office ends with prescribing antimicrobial drug. These trends are probably related to both the difficulty in applying the differential diagnosis of viral and bacterial infection in a primary care doctor's office, as well as patient's conviction about the effectiveness of antibiotic therapy in viral infections. However, although patients often want to influence the therapeutic decisions and ask their doctor for prescribing antimicrobial drug, the right conversation with a doctor alone is the critical component in satisfaction with medical care. Many countries have established standards to clarify the indications for use of antibiotics and thereby reduce their consumption. The next step is to monitor the prescribing and use of these drugs and to assess the rise of drug resistance in the area. In Poland, the recommendations regarding outpatient respiratory tract infections treatment were published and usage of antimicrobial agents monitoring has begun. However, lack of publications covering a broad analysis of antibiotic therapy and drug resistance on Polish territory is still a problem. Modem medicine has yet another tool in the fight against bacteria--they are bacteriophages. Phage therapy is

  3. Potent anti-tumour activity of a novel conditionally replicating adenovirus for melanoma via inhibition of migration and invasion

    PubMed Central

    Jiang, G; Yang, C-S; Xu, D; Sun, C; Zheng, J-N; Lei, T-C; Liu, Y-Q

    2014-01-01

    Background: Conditionally replicating adenoviruses (CRAds) represent a novel class of oncological therapeutic agents. One strategy to ensure tumour targeting is to place the essential viral genes under the control of tumour-specific promoters. Ki67 has been selected as a cancer gene therapy target, as it is expressed in most malignant cells but is barely detectable in most normal cells. This study aimed to investigate the effects of a Ki67 promoter-controlled CRAd (Ki67-ZD55-IL-24) on the proliferation and apoptosis of melanoma cells. Methods: Melanoma cells were independently treated with Ki67-ZD55-IL-24, ZD55-IL-24, Ki67-ZD55, and ZD55-EGFP. The cytotoxic potential of each treatment was assessed using cell viability measurements. Cell migration and invasion were assayed using cell migration and invasion assays. Apoptosis was assayed using the annexin V-FITC assay, western blotting, reverse transcriptase PCR (RT–PCR), haematoxylin and eosin (H&E) staining, and the TUNEL assay. Results: Our results showed that Ki67-ZD55-IL-24 had significantly enhanced anti-tumour activity as it more effectively induced apoptosis in melanoma cells than the other agents. Ki67-ZD55-IL-24 also caused the most significant inhibition of cell migration and invasion of melanoma cells. Furthermore, apoptosis was induced more effectively in melanoma xenografts in nude mice. Conclusions: This strategy holds promising potential for the further development of an effective approach to treat malignant melanoma. PMID:24714752

  4. New antitumour natural products from marine red algae: covering the period from 2003 to 2012.

    PubMed

    Pejin, Boris; Jovanovic, Katarina K; Savic, Aleksandar G

    2015-01-01

    This review covers the 2003-2012 literature data published for natural products originating from marine red algae. The focus is on new antitumour substances, together with details related to the organism sourced. It emphasises 14 promising compounds (isolated from 13 species) whose chemical structures are briefly discussed.

  5. Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents.

    PubMed

    Ushio, Soichiro; Egashira, Nobuaki; Sada, Hikaru; Kawashiri, Takehiro; Shirahama, Masafumi; Masuguchi, Ken; Oishi, Ryozo

    2012-06-01

    Oxaliplatin is a key drug in the treatment of colorectal cancer, but it causes acute and chronic neuropathies in patients. Goshajinkigan (GJG) is a Kampo medicine that is used for the treatments of several neurological symptoms including pain and numbness. More recently, GJG has been reported to prevent the oxaliplatin-induced peripheral neuropathy in clinical studies. No experimental study, however, has been conducted to date to determine the effect of GJG on pain behaviour in a rat model of oxaliplatin-induced neuropathy. Moreover, the impact on the anti-tumour effect of oxaliplatin remains unknown. In the present study, we examined the effects of GJG on the peripheral neuropathy and anti-tumour activity of oxaliplatin in rodents. Repeated administration of oxaliplatin caused cold hyperalgesia from days 3 to 37 and mechanical allodynia from days 21 to 28. Repeated administration of GJG prevented the oxaliplatin-induced cold hyperalgesia but not mechanical allodynia and axonal degeneration in rat sciatic nerve. Single administration of GJG reduced both cold hyperalgesia and mechanical allodynia after the development of neuropathy. In addition, GJG did not affect the anti-tumour effect of oxaliplatin in the tumour cells or tumour cells-implanted mice. These results suggest that GJG relieves the oxaliplatin-induced cold hyperalgesia and mechanical allodynia without affecting anti-tumour activity of oxaliplatin, and, therefore, may be useful for the oxaliplatin-induced neuropathy in clinical practice.

  6. Adaptation of mycoplasmas to antimicrobial agents: Acholeplasma laidlawii extracellular vesicles mediate the export of ciprofloxacin and a mutant gene related to the antibiotic target.

    PubMed

    Medvedeva, Elena S; Baranova, Natalia B; Mouzykantov, Alexey A; Grigorieva, Tatiana Yu; Davydova, Marina N; Trushin, Maxim V; Chernova, Olga A; Chernov, Vladislav M

    2014-01-01

    This study demonstrated that extracellular membrane vesicles are involved with the development of resistance to fluoroquinolones by mycoplasmas (class Mollicutes). This study assessed the differences in susceptibility to ciprofloxacin among strains of Acholeplasma laidlawii PG8. The mechanisms of mycoplasma resistance to antibiotics may be associated with a mutation in a gene related to the target of quinolones, which could modulate the vesiculation level. A. laidlawii extracellular vesicles mediated the export of the nucleotide sequences of the antibiotic target gene as well as the traffic of ciprofloxacin. These results may facilitate the development of effective approaches to control mycoplasma infections, as well as the contamination of cell cultures and vaccine preparations.

  7. Smac is another pathway in the anti-tumour activity of Trichosanthin and reverses Trichosanthin resistance in CaSki cervical cancer cells.

    PubMed

    Cui, Lei; Song, Jian; Wu, Liting; Huang, Liming; Wang, Yanlin; Huang, Yingdi; Yu, Han; Huang, Yiling; You, C C; Ye, Jiayou

    2015-02-01

    Trichosanthin (TCS), or Tin Hua Fen, is a renowned traditional Chinese medicine and is still used in Chinese clinics for midterm abortion and the treatment of choriocarcinoma. Many studies have demonstrated that TCS has anti-tumour action as a type I ribosome-inactivating protein. We hypothesized that there is another pathway of the anti-tumour activity of TCS. cDNA array analysis was applied to profile changes in gene expression of human CaSki in response to TCS stimulation. Smac, a mitochondrial protein, was identified as the highly upregulated protein in response to TCS treatment. The mRNA and protein levels of Smac were determined by real-time RT-PCR and Western blotting respectively. We analysed the methylation status of Smac using methylation-specific PCR (MSP) and indicates that TCS promotes Smac demethylation and increases its expression in cervical CaSki cells. Tumour cells develop resistance to TCS during prolonged treatment, as with other classic chemotherapeutic agents. Smac expression was downregulated and Twist was upregulated in TCS-resistant cells. These results indicate that TCS has demethylating activity and that Smac is involved in both TCS response and TCS resistance.

  8. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway

    PubMed Central

    Ma, Ting; Fan, Bo-Yi; Zhang, Chao; Zhao, Hui-Jun; Han, Chao; Gao, Cai-Yun; Luo, Jian-Guang; Kong, Ling-Yi

    2016-01-01

    Metabolomics can be used to identify potential markers and discover new targets for future therapeutic interventions. Here, we developed a novel application of the metabonomics method based on gas chromatography-mass spectrometry (GC/MS) analysis and principal component analysis (PCA) for rapidly exploring the anticancer mechanism of physapubenolide (PB), a cytotoxic withanolide isolated from Physalis species. PB inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo, accompanied by apoptosis-related biochemical events, including the cleavage of caspase-3/7/9 and PARP. Metabolic profiling analysis revealed that PB disturbed the metabolic pattern and significantly decreased lactate production. This suggests that the suppression of glycolysis plays an important role in the anti-tumour effects induced by PB, which is further supported by the decreased expression of glycolysis-related genes and proteins. Furthermore, the increased level of p53 and decreased expression of p-Akt were observed, and the attenuated glycolysis and enhanced apoptosis were reversed in the presence of Akt cDNA or p53 siRNA. These results confirm that PB exhibits anti-cancer activities through the Akt-p53 pathway. Our study not only reports for the first time the anti-tumour mechanism of PB, but also suggests that PB is a promising therapeutic agent for use in cancer treatments and that metabolomic approaches provide a new strategy to effectively explore the molecular mechanisms of promising anticancer compounds. PMID:27416811

  9. Predicting antibiotic resistance.

    PubMed

    Martínez, José L; Baquero, Fernando; Andersson, Dan I

    2007-12-01

    The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.

  10. Chiral copper(II) complex based on natural product rosin derivative as promising antitumour agent.

    PubMed

    Fei, Bao-Li; Huang, Zhi-Xiang; Xu, Wu-Shuang; Li, Dong-Dong; Lu, Yang; Gao, Wei-Lin; Zhao, Yue; Zhang, Yu; Liu, Qing-Bo

    2016-07-01

    To evaluate the biological preference of chiral drug candidates for molecular target DNA, the synthesis and characterization of a chiral copper(II) complex (2) of a chiral ligand N,N'-(pyridin-2-ylmethylene) dehydroabietylamine (1) was carried out. The interactions of 1 and 2 with salmon sperm DNA were investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. Absorption spectral, emission spectral and viscosity analysis reveal that 1 and 2 interacted with DNA through intercalation and 2 exhibited a higher DNA binding ability. In the absence/presence of ascorbic acid, 1 and 2 cleaved supercoiled pBR322 DNA by single-strand and 2 displayed stronger DNA cleavage ability. In addition, in vitro cytotoxicity of 1 and 2 against HeLa, SiHa, HepG-2 and A431 cancer cell lines study show that they exhibited effective cytotoxicity against the tested cell lines, notably, 2 showed a superior cytotoxicity than the widely used drug cisplatin under identical conditions, indicating it has the potential to act as effective anticancer drug. Flow cytometry analysis indicates 2 produced death of HeLa cancer cells through an apoptotic pathway. Cell cycle analysis demonstrates that 2 mainly arrested HeLa cells at the S phase. The study represents the first step towards understanding the mode of the promising chiral rosin-derivative based copper complexes as chemotherapeutics.

  11. Raloxifene Inhibits NF-kB Pathway and Potentiates Anti-Tumour Activity of Cisplatin with Simultaneous Reduction in its Nephrotoxictiy.

    PubMed

    Jamdade, Vinayak Sudhir; Mundhe, Nitin A; Kumar, Parveen; Tadla, Venkatesh; Lahkar, Mangala

    2016-01-01

    Cisplatin induced nephrotoxicity is the chief obstacle in the use of cisplatin as chemotherapeutic agent. However, it remains as most widely employed anticancer agent to treat various solid tumours like head-neck, testicular, ovarian and mammary gland cancer. Raloxifene is claimed to be potent anti-inflammatory as well as anti-cancer agent. The present study was carried out to explore the effect of pre-treatment of raloxifene on cisplatin induced nephrotoxicity and its anti-tumour activity in 7, 12 dimethyl benz [a] anthracene induced mammary tumour in animal model. Renal damage was accessed by measuring serum level of creatinine, blood urea nitrogen and albumin whereas systemic inflammation was accessed by measuring level of pro-inflammatory cytokines like tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 10 (IL-10) and nuclear factor kappa B (NFκB). Moreover, assessment of tumour reduction was done by measuring tumour volume and percentage tumour reduction. A single dose of cisplatin (7.5 mg/kg) resulted in significant increase in serum creatinine, blood urea nitrogen, NF-kB, TNF-α and IL-6 levels along with decrease in albumin and IL-10 levels. However, there were no significant changes in raloxifene (8 mg/kg) treated group. Pre-treatment of raloxifene (8 mg/kg) caused marked decrease in serum creatinine, blood urea nitrogen, TNF-α and IL-6 levels whereas increase in albumin and IL-10 levels. However, pre-treatment of raloxifene showed maximum tumour reduction as compared to cisplatin and raloxifene treated groups. The present study demonstrates that raloxifene potentiates anti-tumour activity of cisplatin with simultaneous reduction in its nephrotoxicity, and this effect is attributed to its direct anti-inflammatory activity.

  12. Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase

    PubMed Central

    Fichera, Giuseppe A.; Milone, Giuseppe

    2016-01-01

    In a previous study, we reported the cytotoxic activity against various tumour cells of the peptidoglycan of Lactobacillus casei. To isolate the most active components, we performed column-chromatography separation of the peptidoglycan complex and tested the related fractions for their cytotoxic activity. The most active fractions were then lyophilized and the residue was analysed by gas chromatography for its amino acid content and composition. On the basis of the known chemical formula of the basic peptidic component of the peptidoglycan complex of L. casei, a peptide was then synthesized [Europ. (CH-DE-FR-GB) Patent number 1217005; IT number 01320177] and its cytotoxicity was tested against tumoural and normal cells. The synthetic peptide was found to impair the entire metabolism of cultured tumour cells and to restore the apoptotic process. By contrast, normal cells appeared to be stimulated rather than inhibited by the peptide, whereas primary mouse embryo fibroblasts behaved similarly to tumour cells. On the basis of these results, L. casei peptidoglycan fragments and their constituent basic peptide might be applicable as potent antitumour agents. PMID:27101258

  13. Reviving old antibiotics.

    PubMed

    Theuretzbacher, Ursula; Van Bambeke, Françoise; Cantón, Rafael; Giske, Christian G; Mouton, Johan W; Nation, Roger L; Paul, Mical; Turnidge, John D; Kahlmeter, Gunnar

    2015-08-01

    In the face of increasing antimicrobial resistance and the paucity of new antimicrobial agents it has become clear that new antimicrobial strategies are urgently needed. One of these is to revisit old antibiotics to ensure that they are used correctly and to their full potential, as well as to determine whether one or several of them can help alleviate the pressure on more recent agents. Strategies are urgently needed to 're-develop' these drugs using modern standards, integrating new knowledge into regulatory frameworks and communicating the knowledge from the research bench to the bedside. Without a systematic approach to re-developing these old drugs and rigorously testing them according to today's standards, there is a significant risk of doing harm to patients and further increasing multidrug resistance. This paper describes factors to be considered and outlines steps and actions needed to re-develop old antibiotics so that they can be used effectively for the treatment of infections.

  14. Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers.

    PubMed

    Glaffig, M; Palitzsch, B; Stergiou, N; Schüll, C; Strassburger, D; Schmitt, E; Frey, H; Kunz, H

    2015-10-28

    Enhancing the immunogenicity of an antitumour vaccine still poses a major challenge. It depends upon the selected antigen and the mode of its presentation. We here describe a fully synthetic antitumour vaccine, which addresses both aspects. For the antigen, a tumour-associated MUC1 glycopeptide as B-cell epitope was synthesised and linked to the immunostimulating T-cell epitope P2 derived from tetanus toxoid. The MUC1-P2 conjugate is presented multivalently on a hyperbranched polyglycerol to the immune system. In comparison to a related vaccine of lower multivalency, this vaccine exposing more antigen structures on the hyperbranched polymer induced significantly stronger immune responses in mice and elicited IgG antibodies of distinctly higher affinity to epithelial tumour cells.

  15. Purification and antitumour activity of a lipopeptide biosurfactant produced by Bacillus natto TK-1.

    PubMed

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Cai, Ping; Yang, Wen-Yan; Lu, Mei-Fang; Huang, Guo-Wei

    2009-02-01

    An antitumour lipopeptide biosurfactant purified from Bacillus natto TK-1 was able to inhibit the proliferation of MCF-7 human breast-cancer cells in a dose- and time-dependent manner. The activity of lactate dehydrogenase release showed no significant difference between MCF-7 cells treated with lipopeptide and untreated controls. The antitumour activity of the lipopeptide in MCF-7 cells was associated with cell apoptosis determined by typical morphological changes and sub-G(1) peak in cell growth-phase distribution. The cell cycle was arrested at G(2)/M phase. In addition, the caspase activity assay revealed that lipopeptide-induced apoptosis in MCF-7 cells was associated with caspase 3.

  16. Synthesis, Structure and Antitumour Properties of a New 1,2-Propylenediaminetetraacetate-Ruthenium(III) Compound

    PubMed Central

    Vilaplana, R.; Romero, M. A.; Quirós, M.; Salas, J. M.

    1995-01-01

    A novel complex formed by ruthenium (III) and the sequestering ligand 1,2-propylenediaminetetraacetic acid (PDTA) has been synthetized and characterized. The structure of the monomeric compound, studied by X-ray diffraction , shows an almost symmetric octahedral geometry around the metal ion, with two chlorine atoms in a cis conformation. The antitumour activity against a variety of murine and human cancers is reported. PMID:18472768

  17. Enhanced anti-tumour effects of Vinca alkaloids given separately from cytostatic therapies

    PubMed Central

    Ehrhardt, H; Pannert, L; Pfeiffer, S; Wachter, F; Amtmann, E; Jeremias, I

    2013-01-01

    Background and Purpose In polychemotherapy protocols, that is for treatment of neuroblastoma and Ewing sarcoma, Vinca alkaloids and cell cycle-arresting drugs are usually administered on the same day. Here we studied whether this combination enables the optimal antitumour effects of Vinca alkaloids to be manifested. Experimental Approach Vinca alkaloids were tested in a preclinical mouse model in vivo and in vitro in combination with cell cycle-arresting drugs. Signalling pathways were characterized using RNA interference. Key Results In vitro, knockdown of cyclins significantly inhibited vincristine-induced cell death indicating, in accordance with previous findings, Vinca alkaloids require active cell cycling and M-phase transition for induction of cell death. In contrast, anthracyclines, irradiation and dexamethasone arrested the cell cycle and acted like cytostatic drugs. The combination of Vinca alkaloids with cytostatic therapeutics resulted in diminished cell death in 31 of 36 (86%) tumour cell lines. In a preclinical tumour model, anthracyclines significantly inhibited the antitumour effect of Vinca alkaloids in vivo. Antitumour effects of Vinca alkaloids in the presence of cytostatic drugs were restored by caffeine, which maintained active cell cycling, or by knockdown of p53, which prevented drug-induced cell cycle arrest. Therapeutically most important, optimal antitumour effects were obtained in vivo upon separating the application of Vinca alkaloids from cytostatic therapeutics. Conclusion and Implications Clinical trials are required to prove whether Vinca alkaloids act more efficiently in cancer patients if they are applied uncoupled from cytostatic therapies. On a conceptual level, our data suggest the implementation of polychemotherapy protocols based on molecular mechanisms of drug–drug interactions. Linked Article This article is commented on by Solary, pp 1555–1557 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph

  18. Systemic interleukin 12 displays anti-tumour activity in the mouse central nervous system.

    PubMed Central

    Kishima, H.; Shimizu, K.; Miyao, Y.; Mabuchi, E.; Tamura, K.; Tamura, M.; Sasaki, M.; Hakakawa, T.

    1998-01-01

    In various systemic cancers, interleukin 12 (IL-12) induces anti-tumour immunity mediated by T lymphocytes and natural killer cells. To determine whether IL-12 has anti-tumour activity against malignant gliomas in the central nervous system (CNS), which is considered to be an immunologically privileged site, we treated mice with meningeal gliomatosis by intraperitoneal (i.p.) or intrathecal (i.t.) administration of recombinant murine IL-12. Although untreated mice revealed symptoms, such as body weight loss or paraplegia as a result of the meningeal gliomatosis within 8 days after tumour inoculation, 80% of the mice treated with IL-12 at 0.5 microg i.p. were cured. Many lymphocytes, mostly CD4+ and CD8+ cells, infiltrated to the tumours of IL-12-treated mice. The numbers of these cells increased in the cervical lymph nodes, into which the cerebrospinal fluid drains, and there they secreted a considerable amount of interferon-gamma. Mice cured by IL-12 rejected subcutaneous or i.t. rechallenge with their original glioma cells, but the same mice were not able to reject other syngeneic tumour cells. These results indicate that the immune system recognizes malignant glioma cells in the subarachnoid space of the CNS and that systemic IL-12 may produce effective anti-tumour activity and long-lasting tumour-specific immunity. Images Figure 1 Figure 4 PMID:9716025

  19. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism

    PubMed Central

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C. Y.; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-01-01

    CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  20. Antibiotics that target protein synthesis.

    PubMed

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine.

  1. Antibiotic control in a municipal hospital.

    PubMed

    Recco, R A; Gladstone, J L; Friedman, S A; Gerken, E H

    1979-05-25

    The choice of an antibiotic for a patient is often a difficult decision. The clinician must contend with a bewildering variety of bacteria and use a number of expensive and toxic antimicrobial agents judiciously. To deal with the problems of excessive and inappropriate use, the medical staff of Coney Island Hospital established compulsory, prospective antibiotic control. Two years after initiation of this program, we analyzed changes in sensitivity patterns of hospital flora, physicians' prescribing habits and antibiotic use. A trend toward increasing resistance on the part of some Gram-negative isolates to certain beta-lactam antibiotics was noted. Antibiotic costs decreased an average of 38%, while prescribing skills improved.

  2. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates.

    PubMed

    Diarra, Moussa S; Silversides, Fred G; Diarrassouba, Fatoumata; Pritchard, Jane; Masson, Luke; Brousseau, Roland; Bonnet, Claudie; Delaquis, Pascal; Bach, Susan; Skura, Brent J; Topp, Edward

    2007-10-01

    The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla(TEM), sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla(CMY-2). The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in

  3. Pneumococcal resistance to antibiotics.

    PubMed Central

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumococcus of serogroup 6, 19, or 23 or serotype 14, and exposure to antibiotics to which the strain is resistant. At present, the most useful drugs for the management of resistant pneumococcal infections are cefotaxime, ceftriaxone, vancomycin, and rifampin. If the strains are susceptible, chloramphenicol may be useful as an alternative, less expensive agent. Appropriate interventions for the control of resistant pneumococcal outbreaks include investigation of the prevalence of resistant strains, isolation of patients, possible treatment of carriers, and reduction of usage of antibiotics to which the strain is resistant. The molecular mechanisms of penicillin resistance are related to the structure and function of penicillin-binding proteins, and the mechanisms of resistance to other agents involved in multiple resistance are being elucidated. Recognition is increasing of the standard screening procedure for penicillin resistance, using a 1-microgram oxacillin disk. PMID:2187594

  4. Antibiotic / Antimicrobial Resistance Glossary

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  5. Facts about Antibiotic Resistance

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  6. Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response

    PubMed Central

    Habets, Thomas H. P. M.; Oth, Tammy; Houben, Ans W.; Huijskens, Mirelle J. A. J.; Senden-Gijsbers, Birgit L. M. G.; Schnijderberg, Melanie C. A.; Brans, Boudewijn; Dubois, Ludwig J.; Lambin, Philippe; De Saint-Hubert, Marijke; Germeraad, Wilfred T. V.; Tilanus, Marcel G. J.; Mottaghy, Felix M.

    2016-01-01

    Accumulating evidence indicates that fractionated radiotherapy (RT) can result in distant non-irradiated (abscopal) tumour regression. Although preclinical studies indicate the importance of T cells in this infrequent phenomenon, these studies do not preclude that other immune mechanisms exhibit an addition role in the abscopal effect. We therefore addressed the question whether in addition to T cell mediated responses also humoral anti-tumour responses are modulated after fractionated RT and whether systemic dendritic cell (DC) stimulation can enhance tumour-specific antibody production. We selected the 67NR mammary carcinoma model since this tumour showed spontaneous antibody production in all tumour-bearing mice. Fractionated RT to the primary tumour was associated with a survival benefit and a delayed growth of a non-irradiated (contralateral) secondary tumour. Notably, fractionated RT did not affect anti-tumour antibody titers and the composition of the immunoglobulin (Ig) isotypes. Likewise, we demonstrated that treatment of tumour-bearing Balb/C mice with DC stimulating growth factor Flt3-L did neither modulate the magnitude nor the composition of the humoral immune response. Finally, we evaluated the immune infiltrate and Ig isotype content of the tumour tissue using flow cytometry and found no differences between treatment groups that were indicative for local antibody production. In conclusion, we demonstrate that the 67NR mammary carcinoma in Balb/C mice is associated with a pre-existing antibody response. And, we show that in tumour-bearing Balb/C mice with abscopal tumour regression such pre-existing antibody responses are not altered upon fractionated RT and/or DC stimulation with Flt3-L. Our research indicates that evaluating the humoral immune response in the setting of abscopal tumour regression is not invariably associated with therapeutic effects. PMID:27427766

  7. In vitro and in vivo pharmacological characterisation of the antitumour properties of pyrido[1',2':1,2]imidazo[4,5-h]quinazoline.

    PubMed

    Dupuy, Marianne; Blache, Yves; Bailly, Christian; Poujol, Sylvain; Chapat, Jean-Pierre; Pinguet, Frédéric

    2002-01-01

    The anti-tumour activity of pyrido[1',2':1,2]imidazo[4,5-h]quinazoline (PIQ) was investigated in vitro and in vivo with a human tumour model. In vitro PIQ cytotoxicity was evaluated on two different human parental-sensitive cancer cell lines (HL60S and A2780S) and their multidrug-resistant variant sublines (HL60R and A2780R). Proliferation was assessed using the MTT assay and PIQ showed activity, particularly with resistant cell lines. Drug activity was not affected by MDR resistance. After LD50 determination using Swiss mice, in vivo activity with A2780 ovarian carcinoma was carried out using xenografted Swiss nude mice. We performed either a weekly intra-peritoneal injection of 64 mg.kg-1 PIQ or an intra-venous injection of 10 mg.kg-1 PIQ during 2 months. After 60 days of treatment, no toxicologically meaningful differences were observed in macroscopic and microscopic parameters compared to controls. Both regimens demonstrated efficacy against xenografted tumours. However, the decrease in tumoural volume of the xenografted mice was significant only in the PIC i.v. injection group. Pharmacokinetics and the accumulation of PIQ in normal and tumour tissues were also assessed using a chromatographic method. The lack of activity using the i.p. route was explained by the four-fold reduction of its AUC in comparison to the i.v. route. After an i.v. injection, the highest concentrations of PIQ were accumulated in the tumour and spleen. Drug analysis has shown that PIQ intercalates into DNA. PIQ derivatives are effective new antitumour agents in cancer chemotherapy.

  8. Antibiotic-Associated Diarrhea

    MedlinePlus

    Antibiotic-associated diarrhea Overview By Mayo Clinic Staff Antibiotic-associated diarrhea refers to passing loose, watery stools ... after taking medications used to treat bacterial infections (antibiotics). Most often, antibiotic-associated diarrhea is mild and ...

  9. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules.

    PubMed

    Catalani, Elisabetta; Proietti Serafini, Francesca; Zecchini, Silvia; Picchietti, Simona; Fausto, Anna Maria; Marcantoni, Enrico; Buonanno, Federico; Ortenzi, Claudio; Perrotta, Cristiana; Cervia, Davide

    2016-11-01

    Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis

  10. Inhibitory effects of marine-derived DNA-binding anti-tumour tetrahydroisoquinolines on the Fanconi anaemia pathway

    PubMed Central

    Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A

    2013-01-01

    BACKGROUND AND PURPOSE We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. EXPERIMENTAL APPROACH Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. KEY RESULTS While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. CONCLUSIONS AND IMPLICATIONS Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of ‘fanconizing’ cancer cells in order to make them more sensitive to other anti-tumour drugs. PMID:23937566

  11. Antitumour activity of Prosopis cineraria (L.) Druce against Ehrlich ascites carcinoma-induced mice.

    PubMed

    Robertson, Stellaa; Narayanan, N; Raj Kapoor, B

    2011-04-01

    The antitumour activity of the hydroalcoholic extract of the leaf (PCL) and stem bark (PCB) of Prosopis cineraria (L.) in Swiss albino mice was evaluated against an Ehrlich ascites carcinoma (EAC) tumour model. The activity was assessed using survival time, peritoneal cells, haematological studies, lipid peroxidation, antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, solid tumour mass and in vitro cytotoxicity. PCL and PCB were found to be potent and possessed significant cytotoxicity towards EAC tumour cells.

  12. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria.

    PubMed

    Szczuka, Ewa; Jabłońska, Lucyna; Kaznowski, Adam

    2016-12-01

    Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.

  13. [Certain results of the investigations into the anti-tumour action of the magnetic field under experimental conditions].

    PubMed

    Ulashchik, V S

    2015-01-01

    This paper summarizes the results of the application of thr magnetic fields for the treatment of experimental tumours, such as sarcoma M-1, alveolar liver cancer PC-1, and Erlich's carcinoma. The evidence of the anti-tumour action of both strong (1200 mTI) and weak (5 to 100 mTI) magnetic fields has been obtained. The author describes the modulating effect of the magnetic fields on the anti-tumour potency of photodynamic therapy and chemotherapy. The data concerning the impact of ferromagnetic hyperthermal therapy on the tumour growth and the survival rate among the tumour-bearing animals are presented.

  14. Enzastaurin has anti-tumour effects in lung cancers with overexpressed JAK pathway molecules

    PubMed Central

    Shimokawa, T; Seike, M; Soeno, C; Uesaka, H; Miyanaga, A; Mizutani, H; Kitamura, K; Minegishi, Y; Noro, R; Okano, T; Yoshimura, A; Gemma, A

    2012-01-01

    Background: Enzastaurin, an oral serine–threonine kinase inhibitor, was initially developed as an ATP-competitive selective inhibitor against protein kinase Cβ. However, the mechanism by which enzastaurin contributes to tumourigenesis remains unclear. Methods: We analysed the anti-tumour effects of enzastaurin in 22 lung cancer cell lines to ascertain the potential for enzastaurin-based treatment of lung cancer. To identify molecules or signalling pathways associated with this sensitivity, we conducted a gene, receptor tyrosine kinases phosphorylation and microRNA expression profiling study on the same set of cell lines. Results: We identified eight genes by pathway analysis of molecules having gene-drug sensitivity correlation, and used them to build a support vector machine algorithm model by which sensitive cell lines were distinguished from resistant cell lines. Pathway analysis revealed that the JAK/STAT signalling pathway was one of the main ones involved in sensitivity to enzastaurin. Overexpression of JAK1 was observed in the sensitive cells by western blotting. Simultaneous administration of enzastaurin and JAK inhibitor inhibited enzastaurin-induced cell growth-inhibitory effect. Furthermore, lentiviral-mediated JAK1-overexpressing cells were more sensitive to enzastaurin than control cells. Conclusion: Our results suggested that the JAK1 pathway may be used as a single predictive biomarker for enzastaurin treatment. The anti-tumour effect of enzastaurin should be evaluated in lung cancer with overexpressed JAK pathway molecules. PMID:22333600

  15. Immunomodulatory and antitumour effects of abnormal Savda Munziq on S180 tumour-bearing mice

    PubMed Central

    2012-01-01

    Background Abnormal Savda Munziq (ASMq), a traditional uyghur medicine, has shown anti-tumour properties in vitro. This study attempts to confirm these effects in vivo and measure effects on the immune system. Methods Kunming mice transplanted with Sarcoma 180 cells were treated with ASMq (2–8 g/kg/day) by intra-gastric administration compared to model and cyclophosphamide (20 mg/kg/day). After the 14th day post tumour implant, thymus, liver, spleen and tumours were removed, weighed, and processed for histopathological analysis. Blood samples were also taken for haematological and biochemical analyses including TNF-α , IL-1 β and IL-2. Splenic lymphocyte function was measured with MTT; lymphocyte subpopulations were measured by flow cytometry. Results ASMq treated animals had reduced tumour volume compared to model and increased concentrations of TNF-α, IL-1β and IL-2 compared to untreated and to cyclophosphamide-treated animals. No histopathological alterations were observed. The absence of viable S180 cells and the presence of necrotic cells and granulation tissue were observed in tumour tissue of treated animals. The effect on T lymphocytes was unclear. Conclusions ASMq confirmed in vivo anti-tumour effects observed in vitro, which may be at least in part mediated by increased immune activity. PMID:22978453

  16. Cytotoxicity and antitumour activity of 5-fluorouracil-loaded polyhydroxybutyrate and cellulose acetate phthalate blend microspheres.

    PubMed

    Chaturvedi, Kiran; Tripathi, Santosh Kumar; Kulkarni, Anandrao R; Aminabhavi, Tejraj M

    2013-01-01

    Pharmacokinetics, biodistribution and antitumour activity of 5-fluorouracil (5-FU)-loaded polyhydroxybutyrate (PHB) and cellulose acetate phthalate (CAP) blend microspheres were investigated in chemically induced colorectal cancer in albino male Wistar rats and compared with pristine 5-FU given as a suspension. The microspheres were characterised for particle size, encapsulation efficiency, in vitro release and in vitro cytotoxicity on human HT-29 colon cancer cell line. Spherical particles with a mean size of 44 ± 11 µm were obtained that showed sustained release of 5-FU. A high concentration of 5-FU was achieved in colonic tissues and significant reduction in tumour volume and multiplicity were observed in animals treated with 5-FU-loaded microspheres. The decreased levels of plasma albumin, creatinine, leucocytopenia and thrombocytopenia were observed in animals for 5-FU microspheres compared to the standard 5-FU formulation. The results suggest the extended release of 5-FU from the PHB-CAP blend microspheres in colonic region to enhance the antitumour efficacy.

  17. [Selection and spreading of antibiotic resistance in bacteria].

    PubMed

    Frimodt-Møller, Niels; Kolmos, Hans Jørn

    2011-11-07

    Use of an antibiotic may not only select for resistance against the agent itself, but may at the same time co-select for resistance against other antibiotics if resistance genes are linked on e.g. a plasmid. Resistance plasmids may also carry genes mediating resistance against metals and disinfectants. Therefore, abundant use of metals, e.g. copper and zinc for growth promotion in animals used for food, may also co-select for antibiotic resistance. The same applies to disinfectants, e.g. silver and chlorhexidine. Prudent use of antibiotics and these other agents is essential to control antibiotic resistance.

  18. Is Preterm Premature Rupture of Membranes Latency Influenced by Single Versus Multiple Agent Antibiotic Prophylaxis in Group B Streptococcus Positive Women Delivering Preterm?

    PubMed

    Smith, Anita; Allen, Victoria M; Walsh, Jennifer; Jangaard, Krista; O'Connell, Colleen M

    2015-09-01

    Objectif : Évaluer l’influence d’un schéma antibiotique sur la durée de la latence (période séparant la rupture prématurée des membranes préterme [RPMP] et l’accouchement) et la présence d’une morbidité infectieuse néonatale considérable, entre la rupture des membranes et l’accouchement à < 37 semaines d’âge gestationnel, chez des femmes ayant obtenu des résultats positifs au dépistage des streptocoques du groupe B (SGB). Méthodes : Nous avons tiré des données de la Nova Scotia Atlee Perinatal Database. Dans le cadre d’une étude populationnelle de cohorte rétrospective, nous avons inclus les grossesses compliquées par la RPMP, mais nous avons exclu les grossesses de ce groupe qui nécessitaient un accouchement immédiat. La cohorte a été catégorisée en fonction du schéma antibiotique (un seul agent vs de multiples agents) et nous avons comparé la latence et les issues néonatales indésirables en fonction du schéma antibiotique utilisé. Les caractéristiques sommaires ont été comparées au moyen d’une analyse du chi carré (signification < 0,05). Une régression logistique a été utilisée pour estimer les rapports de cotes corrigés, les intervalles de confiance à 95 % et les différences moyennes pour toutes les issues et pour tenir compte des variables parasites. Résultats : Entre 1988 et 2011, la population d’étude potentielle s’élevait à 119 158 grossesses. Au total, 3 435 accouchements ont été identifiés comme présentant une RPMP (3 %). La présence de SGB avait été déterminée par uroculture ou par mise en culture d’écouvillonnages chez 303 paires mère-enfant (9 %) de ce groupe. Les comparaisons corrigées de la latence et de la septicémie néonatale n’ont indiqué aucune différence en fonction du schéma antibiotique (P > 0,05). Conclusion : La directive de 2013 de la SOGC sur la prophylaxie anti-SGB recommande la mise en œuvre d’une antibiothérapie chez les femmes

  19. Impact of thiopurines and anti-tumour necrosis factor therapy on hospitalisation and long-term surgical outcomes in ulcerative colitis

    PubMed Central

    Alexakis, Christopher; Pollok, Richard CG

    2015-01-01

    Ulcerative colitis (UC) is a chronic inflammatory condition affecting the large bowel and is associated with a significant risk of both requirement for surgery and the need for hospitalisation. Thiopurines, and more recently, anti-tumour necrosis factor (aTNF) therapy have been used successfully to induce clinical remission. However, there is less data available on whether these agents prevent long-term colectomy rates or the need for hospitalisation. The focus of this article is to review the recent and pertinent literature on the long-term impact of thiopurines and aTNF on long-term surgical and hospitalisation rates in UC. Data from population based longitudinal research indicates that thiopurine therapy probably has a protective role against colectomy, if used in appropriate patients for a sufficient duration. aTNF agents appear to have a short term protective effect against colectomy, but data is limited for longer periods. Whereas there is insufficient evidence that thiopurines affect hospitalisation, evidence favours that aTNF therapy probably reduces the risk of hospitalisation within the first year of use, but it is less clear on whether this effect continues beyond this period. More structured research needs to be conducted to answer these clinically important questions. PMID:26730281

  20. Control of Biofilm Formation: Antibiotics and Beyond.

    PubMed

    Algburi, Ammar; Comito, Nicole; Kashtanov, Dimitri; Dicks, Leon M T; Chikindas, Michael L

    2017-02-01

    Biofilm-associated bacteria are less sensitive to antibiotics than free-living (planktonic) cells. Furthermore, with variations in the concentration of antibiotics throughout a biofilm, microbial cells are often exposed to levels below inhibitory concentrations and may develop resistance. This, as well as the irresponsible use of antibiotics, leads to the selection of pathogens that are difficult to eradicate. The Centers for Disease Control and Prevention use the terms "antibiotic" and "antimicrobial agent" interchangeably. However, a clear distinction between these two terms is required for the purpose of this assessment. Therefore, we define "antibiotics" as pharmaceutically formulated and medically administered substances and "antimicrobials" as a broad category of substances which are not regulated as drugs. This comprehensive minireview evaluates the effect of natural antimicrobials on pathogens in biofilms when used instead of, or in combination with, commonly prescribed antibiotics.

  1. New antibiotic therapies for acne and rosacea.

    PubMed

    Mays, Rana Majd; Gordon, Rachel A; Wilson, Janice M; Silapunt, Sirunya

    2012-01-01

    Acne and rosacea compromise a substantial portion of the dermatology clinical practice. Over the past century, many treatment modalities have been introduced with antibiotics playing a major role. Today, both oral and topical antibiotics are used in the management of acne and rosacea, with several novel formulations and/or combination regimens recently introduced. The latest studies suggest anti-inflammatory actions to be the most likely mechanism of antibiotics in acne and rosacea, shifting the focus to subantimicrobial-dose oral antibiotics and/or topical antibiotic regimens as the preferred first-line agents. Here we will discuss the most recent oral and topical antibiotic therapies available for treatment of acne and rosacea, with special focus on efficacy data, indication, dosing, and mechanism of action.

  2. In-vitro and in-vivo antitumour activity of physalins B and D from Physalis angulata.

    PubMed

    Magalhães, Hemerson Iury Ferreira; Veras, Maria Leopoldina; Torres, Márcia Rocha; Alves, Ana Paula Negreiros Nunes; Pessoa, Otília Deusdênia Loiola; Silveira, Edilberto Rocha; Costa-Lotufo, Letícia Veras; de Moraes, Manoel Odorico; Pessoa, Cláudia

    2006-02-01

    We have evaluated the in-vitro and in-vivo antitumour activity of physalin B and physalin D isolated from the aerial parts of Physalis angulata. In-vitro, both compounds displayed considerable cytotoxicity against several cancer cell lines, showing IC50 values in the range of 0.58 to 15.18 microg mL(-1) for physalin B, and 0.28 to 2.43 microg mL(-1) for physalin D. The antitumour activity of both compounds was confirmed in-vivo using mice bearing sarcoma 180 tumour cells. The in-vivo antitumour activity was related to the inhibition of tumour proliferation, as observed by the reduction of Ki67 staining in tumours of treated animals. Histopathological examination of the kidney and liver showed that both organs were affected by physalin treatment, but in a reversible manner. These compounds were probably responsible for the previously described antitumour activity of ethanol extracts of P. angulata, and their identification and characterization presented here could explain the ethnopharmacological use of this species in the treatment of cancer.

  3. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40.

    PubMed

    Oflazoglu, E; Stone, I J; Brown, L; Gordon, K A; van Rooijen, N; Jonas, M; Law, C-L; Grewal, I S; Gerber, H-P

    2009-01-13

    SGN-40 is a therapeutic antibody targeting CD40, which induces potent anti-lymphoma activities via direct apoptotic signalling cells and by cell-mediated cytotoxicity. Here we show antibody-dependent cellular phagocytosis (ADCP) by macrophages to contribute significantly to the therapeutic activities and that the antitumour effects of SGN-40 depend on Fc interactions.

  4. Evolutionary Rationale for Phages as Complements of Antibiotics.

    PubMed

    Torres-Barceló, Clara; Hochberg, Michael E

    2016-04-01

    Antibiotic-resistant bacterial infections are a major concern to public health. Phage therapy has been proposed as a promising alternative to antibiotics, but an increasing number of studies suggest that both of these antimicrobial agents in combination are more effective in controlling pathogenic bacteria than either alone. We advocate the use of phages in combination with antibiotics and present the evolutionary basis for our claim. In addition, we identify compelling challenges for the realistic application of phage-antibiotic combined therapy.

  5. Synthesis of platinum(II) and palladium(II) complexes with 9,9-dihexyl-4,5-diazafluorene and their in vivo antitumour activity against Hep3B xenografted mice.

    PubMed

    Wang, Q-W; Lam, P-L; Wong, R S-M; Cheng, G Y-M; Lam, K-H; Bian, Z-X; Ho, C-L; Feng, Y-H; Gambari, R; Lo, Y-H; Wong, W-Y; Chui, C-H

    2016-11-29

    Two complexes dichloro(9,9-dihexyl-4,5-diazafluorene)platinum(II) (Pt-DHF) and dichloro(9,9-dihexyl-4,5-diazafluorene)palladium(II) (Pd-DHF) were synthesized and their in vivo antitumour activity was investigated using an athymic nude mice model xenografted with human Hep3B carcinoma cells. Pt-DHF- and Pd-DHF-treated groups showed significant tumour growth inhibition (with about 9-fold and 3-fold tumour growth retardation) when compared with the vehicle control group. The liver toxicology effects on the animals of the two compounds were investigated. Pt-DHF and Pd-DHF-treated groups had a lower alanine transaminase and aspartate transaminase values than those of the vehicle treated group as the animals from the vehicle control group had very heavy hepatoma burden. We assume that both complexes could be further investigated as effective antitumour agents and it is worthwhile to study their underlying working mechanism.

  6. The Steroidal Glycoalkaloids from Solanaceae: Toxic Effect, Antitumour Activity and Mechanism of Action.

    PubMed

    Sucha, Lenka; Tomsik, Pavel

    2016-03-01

    Steroidal glycoalkaloids present in Solanaceae are toxic compounds biosynthesised for the protection of the plants. However, many health benefits of these compounds have been reported so far. One of their promising targets might be cancer, as demonstrated in a large number of studies. However, the main mechanism of action seems to be unclear. It could include the induction of apoptosis or trigger a necrosis with a subsequent inflammatory response. The relatively high systemic toxicity of steroidal compounds is another effect that must be taken into account in anticancer research. The main aim of this work was to summarise the recent progress in the investigation of the mechanisms of their antitumour action and to discuss their potential.

  7. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma

    PubMed Central

    Viziteu, Elena; Grandmougin, Camille; Goldschmidt, Hartmut; Seckinger, Anja; Hose, Dirk; Klein, Bernard; Moreaux, Jerome

    2016-01-01

    Background: Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. The constitutive expression of HIF-1α in MM suggests that inhibition of HIF-1α-mediated transcription represents an interesting target in MM. Methods: As p300 is a crucial co-activator of hypoxia-inducible transcription, disrupting the complex HIF-1α/p300 to target HIF activity appears to be an attractive strategy. Results: We reported that chetomin, an inhibitor of HIF-1α/p300 interaction, exhibits antitumour activity in human myeloma cell lines and primary MM cells from patients. Conclusions: Our data suggest that chetomin may be of clinical value in MM and especially for patients characterised by a high EP300/HIF-1α expression and a poor prognosis. PMID:26867162

  8. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death?

    PubMed

    Liu, Z; Luo, Y; Zhou, T-T; Zhang, W-Z

    2013-10-01

    Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP-3, ROS-p38-p53, Ras-Raf and PI3KCI-Akt pathways, as well as Beclin-1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti-tumour drugs, with respect to autophagic cell death in future cancer therapeutics.

  9. Effect of solcoseryl on antitumour action and acute toxicity of some antineoplastic drugs.

    PubMed

    Danysz, A; Sołtysiak-Pawluczuk, D; Czyzewska-Szafran, H; Jedrych, A; Jastrzebski, Z

    1991-01-01

    The in vivo effect of Solcoseryl on the antitumour activity and acute toxicity of some antineoplastic drugs was examined. It was found that Solcoseryl does not inhibit the antineoplastic effectiveness of the drugs against transplantable P 388 leukaemia in mice. Studies of the effect of Solcoseryl on acute toxicity of selected antineoplastic drugs in mice revealed that the biostimulator could exert a modifying influence. The prior administration of Solcoseryl significantly decreases the acute toxicity of methotrexate but has no effect on acute toxicity of 5-fluorouracil, increases the acute toxicity of bleomycin and vinblastine and has no effect on acute toxicity of methotrexate and mitoxantron. On the other hand, Solcoseryl administered simultaneously with the antineoplastic drugs increases acute toxicity of 5-fluorouracil, bleomycin and mitoxantron. The protective effect of the biostimulator noted exclusively against acute toxicity of 5-fluorouracil was also observed after multiple administration of this anticancer drug.

  10. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    PubMed Central

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  11. Antitumour and anti-inflammatory effects of palladium(II) complexes on Ehrlich tumour.

    PubMed

    Quilles, Marcela B; Carli, Camila B A; Ananias, Sandra R; Ferreira, Lucas S; Ribeiro, Livia C A; Maia, Danielle C G; Resende, Flávia A; Moro, Antônio C; Varanda, Eliana A; Placeres, Marisa Campos Polesi; Mauro, Antonio E; Carlos, Iracilda Z

    2013-01-01

    Palladium(II) complexes are an important class of cyclopalladated compounds that play a pivotal role in various pharmaceutical applications. Here, we investigated the antitumour, anti-inflammatory, and mutagenic effects of two complexes: [Pd(dmba)(Cl)tu] (1) and [Pd(dmba)(N3)tu] (2) (dmba = N,N-dimethylbenzylamine and tu = thiourea), on Ehrlich ascites tumour (EAT) cells and peritoneal exudate cells (PECs) from mice bearing solid Ehrlich tumour. The cytotoxic effects of the complexes on EAT cells and PECs were assessed using the 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The effects of the complexes on the immune system were assessed based on the production of nitric oxide (NO) (Griess assay) and tumour necrosis factor-alpha (TNF-alpha), interleukin-12 (IL-12), and interleukin-10 (IL-10) (ELISA). Finally the mutagenic activity was assessed by the Ames test using the Salmonella typhimurium strain TA 98. Cisplatin was used as a standard. The IC50 ranges for the growth inhibition of EAT cells and PECs were found to be (72.8 +/- 3.23) microM and (137.65 +/- 0.22) microM for 1 and (39.7 +/- 0.30) microM and (146.51 +/- 2.67) microM for 2, respectively. The production of NO, IL-12, and TNF-alpha, but not IL-10, was induced by both complexes and cisplatin. The complexes showed no mutagenicity in vitro, unlike cisplatin, which was mutagenic in the strain. These results indicate that the complexes are not mutagenic and have potential immunological and antitumour activities. These properties make them promising alternatives to cisplatin.

  12. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery.

    PubMed

    Chaudhary, Arpana Sagwal

    2016-11-01

    Data from across the world have shown an overall decline in the antibiotic pipeline and continually rising resistance to all first-line and last-resort antibiotics. The gaps in our knowledge of existing prevalence and mechanisms of antibiotic resistance (ABR) are all too well known. Several decades of antibiotic abuse in humans, animals, and agricultural practices have created health emergency situations and huge socio-economic impact. This paper discusses key findings of the studies conducted by several national and international collaborative organizations on the current state of affairs in ABR. Alongside, a brief overview of the antibacterial agents׳ discovery in recent years approved by the US FDA is discussed.

  13. Antibiotic research and development: business as usual?

    PubMed

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents.

  14. The novel atypical retinoid ST5589 down-regulates Aurora Kinase A and has anti-tumour activity in lymphoma pre-clinical models.

    PubMed

    Bernasconi, Elena; Gaudio, Eugenio; Kwee, Ivo; Rinaldi, Andrea; Cascione, Luciano; Tarantelli, Chiara; Mensah, Afua Adjeiwaa; Stathis, Anastasios; Zucca, Emanuele; Vesci, Loredana; Giannini, Giuseppe; Bertoni, Francesco

    2015-11-01

    Despite the marked improvements in the treatment of lymphomas, there is still a need for new therapeutic agents. Synthetic retinoids represent a class of compounds with anti-cancer activity. Here, we report the preclinical activity of a new member of this class, the ST1926-derivative ST5589, in lymphomas. ST5589 presented a dose-dependent anti-proliferative activity in almost all of the 25 lymphoma cell lines analysed, with a median 50% inhibitory concentration of 433 nM. Apoptosis was observed in 8/11 cell lines. ST5589 induced changes in the gene expression profiles of the cell lines, including the down-regulation of Aurora Kinase A (AURKA). Specific gene expression signatures were associated with a higher sensitivity to the compound and combination of ST5589 with carfilzomib revealed the importance of proteasome activity in mediating the anti-tumour activity of ST5589. In conclusion, we have identified a new mechanism of action of atypical retinoids as anti-cancer compounds, and the encouraging results obtained with the new ST1926-derivative ST5589 provide the basis for further developments of the compound.

  15. Antibiotic Resistance in Pediatric Urinary Tract Infections.

    PubMed

    Stultz, Jeremy S; Doern, Christopher D; Godbout, Emily

    2016-12-01

    Urinary tract infections (UTIs) are a common problem in pediatric patients. Resistance to common antibiotic agents appears to be increasing over time, although resistance rates may vary based on geographic region or country. Prior antibiotic exposure is a pertinent risk factor for acquiring resistant organisms during a first UTI and recurrent UTI. Judicious prescribing of antibiotics for common pediatric conditions is needed to prevent additional resistance from occurring. Complex pediatric patients with histories of hospitalizations, prior antibiotic exposure, and recurrent UTIs are also at high risk for acquiring UTIs due to extended spectrum beta-lactamase-producing organisms. Data regarding the impact of in vitro antibiotic susceptibility testing interpretation on UTI treatment outcomes is lacking.

  16. Antibiotic resistance: from Darwin to Lederberg to Keynes.

    PubMed

    Amábile-Cuevas, Carlos F

    2013-04-01

    The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.

  17. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer

    PubMed Central

    Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D

    2014-01-01

    Background and Purpose The psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. Experimental Approach To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. Key Results CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. Conclusions and Implications O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. PMID:24910342

  18. Molecular design of hybrid tumour necrosis factor alpha with polyethylene glycol increases its anti-tumour potency.

    PubMed Central

    Tsutsumi, Y.; Kihira, T.; Tsunoda, S.; Kanamori, T.; Nakagawa, S.; Mayumi, T.

    1995-01-01

    This study was conducted to increase the anti-tumour potency and reduce the toxic side-effects of tumour necrosis factor alpha (TNF-alpha). Natural human TNF-alpha was chemically conjugated with monomethoxy polyethylene glycol (PEG) using succinimidyl coupling of lysine amino groups of TNF-alpha. The number-average molecular weight of PEG-modified TNF-alpha (PEG-TNF-alpha) increased with an increase in the reaction time and the initial molar ratio of PEG relative to TNF-alpha. The resulting modified TNF-alpha was separated into fractions of various molecular weights. The specific activity of separated PEG-TNF-alpha s relative to that of native TNF-alpha gradually decreased with an increase in the degree of PEG modification, but the plasma half-life was drastically increased with the increase in molecular weight of modified TNF-alpha. PEG-TNF-alpha s, in which 29% and 56% of lysine residues were coupled to PEG, had anti-tumour activity approximately 4 and 100 times greater than unmodified TNF-alpha in the murine Meth-A fibrosarcoma model. Extensive PEG modification did not increase its in vivo activity. A high dose of unmodified TNF-alpha induced toxic side-effects, but these were not observed with the modified TNF-alpha s. Optimal PEG modification of TNF-alpha markedly increased its bioavailability and may facilitate its potential anti-tumour therapeutic use. PMID:7734321

  19. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    PubMed

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.

  20. Antibiotic use in neonatal sepsis.

    PubMed

    Yurdakök, M

    1998-01-01

    Neonatal sepsis is a life-threatening emergency and any delay in treatment may cause death. Initial signs of neonatal sepsis are slight and nonspecific. Therefore, in suspected sepsis, two or three days empirical antibiotic therapy should begin immediately after cultures have been obtained without awaiting the results. Antibiotics should be reevaluated when the results of the cultures and susceptibility tests are available. If the cultures are negative and the clinical findings are well, antibiotics should be stopped. Because of the nonspecific nature of neonatal sepsis, especially in small preterm infants, physicians continue antibiotics once started. If a baby has pneumonia or what appears to be sepsis, antibiotics should not be stopped, although cultures are negative. The duration of therapy depends on the initial response to the appropriate antibiotics but should be 10 to 14 days in most infants with sepsis and minimal or absent focal infection. In infants who developed sepsis during the first week of life, empirical therapy must cover group B streptococci, Enterobacteriaceae (especially E. coli) and Listeria monocytogenes. Penicillin or ampicillin plus an aminoglycoside is usually effective against all these organisms. Initial empirical antibiotic therapy for infants who developed sepsis beyond the first days of life must cover the organisms associated with early-onset sepsis as well as hospital-acquired pathogens such as staphylococci, enterococci and Pseudomonas aeruginosa. Penicillin or ampicillin and an aminoglycoside combination may also be used in the initial therapy of late-onset sepsis as in cases with early-onset sepsis. In nosocomial infections, netilmicin or amikacin should be preferred. In cases showing increased risk of staphylococcal infection (e.g. presence of vascular catheter) or Pseudomonas infection (e.g. presence of typical skin lesions), antistaphylococcal or anti-Pseudomonas agents may be preferred in the initial empirical therapy. In

  1. Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean marine sponge Discodermia dissoluta.

    PubMed

    Ruiz, Cesar; Valderrama, Katherine; Zea, Sven; Castellanos, Leonardo

    2013-10-01

    Biotechnological research on marine organisms, such as ex situ or in situ aquaculture and in vitro cell culture, is being conducted to produce bioactive metabolites for biomedical and industrial uses. The Caribbean marine sponge Discodermia dissoluta is the source of (+)-discodermolide, a potent antitumoural polyketide that has reached clinical trials. This sponge usually lives at depths greater than 30 m, but at Santa Marta (Colombia) there is a shallower population, which has made it logistically possible to investigate for the first time, on ways to supply discodermolide. We thus performed in situ, 6-month fragment culture trials to assess the performance of this sponge in terms of growth and additional discodermolide production and studied possible factors that influence the variability of discodermolide concentrations in the wild. Sponge fragments cultured in soft mesh bags suspended from horizontal lines showed high survivorship (93 %), moderate growth (28 % increase in volume) and an overall rise (33 %) in the discodermolide concentration, equivalent to average additional production of 8 μg of compound per millilitre of sponge. The concentration of discodermolide in wild sponges ranged from 8 to 40 μg mL(-1). Locality was the only factor related to discodermolide variation in the wild, and there were greater concentrations in peripheral vs. basal portions of the sponge, and in clean vs. fouled individuals. As natural growth and regeneration rates can be higher than culture growth rates, there is room for improving techniques to sustainably produce discodermolide.

  2. Evidence for anti-tumour effect of allogeneic haematopoietic SCT in cases without sustained donor engraftment.

    PubMed

    Daguindau, E; Lioure, B; Buzyn, A; Robin, M; Faucher, C; Kuentz, M; Tiberghien, P; Deconinck, E

    2010-01-01

    Remissions of haematological malignancies have been reported after allo-SCT, despite donor cell rejection, suggesting that sustained allogeneic engraftment is not mandatory to obtain a lasting anti-tumour effect. To evaluate the potential benefit from transient post-allo-SCT alloreactivity, we took advantage of the Société Française de Greffe de Moëlle et Thérapie Cellulaire (SFGM-TC) registry to colligate 14 patients with an efficient and long-lasting allogeneic (GVL) effect after allo-SCT for haematological malignancies, despite transient or absent engraftment. None received a second allogeneic graft after autologous recovery. The median duration of remission after autologous reconstitution was 118 (12-252) months. Although we cannot exclude the possibility that some patients were cured before allo-SCT, this retrospective analysis does strongly suggest that an efficient GVL effect can be observed without sustained donor engraftment, and that the transient presence of donor T cells might be sufficient to induce a powerful GVL effect.

  3. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-01

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  4. Binding and hydrolysis studies of antitumoural titanocene dichloride and Titanocene Y with phosphate diesters.

    PubMed

    Erxleben, Andrea; Claffey, James; Tacke, Matthias

    2010-04-01

    The interaction of the antitumoural metallocene dihalides, titanocene dichloride (Cp(2)TiCl(2)) and Titanocene Y (bis-[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) chloride), with bis(4-nitrophenyl) phosphate (BNPP), which is a widely used model for the phosphate diester linkages in DNA, has been studied. Cp(2)TiCl(2) has been shown to promote the cleavage of the phosphate diester in weakly acidic solution. At pH 4, 37 degrees C, a 10(6)-fold rate acceleration over the uncatalysed reaction was observed under pseudo-first-order conditions, when freshly prepared solutions of Cp(2)TiCl(2) were applied. The activity of aged solutions dropped significantly due to the formation of insoluble precipitates of hydrolysed Ti species. The precipitates isolated from aged solutions were shown to act as moderately active, heterogeneous catalysts for BNPP cleavage. By contrast, no hydrolysis of the phosphate diester could be observed in the presence of Titanocene Y. Implications for the mode of action of the apoptosis-inducing metallocene dihalides are discussed.

  5. Antibiotic Resistance Questions and Answers

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  6. A new boron compound (guanidine biboric acid adduct) as an antitumour agent against Ehrlich ascites carcinoma in mice.

    PubMed

    Ghosh, P; Sur, B; Bag, S P; Sur, P

    1999-01-01

    The inhibitory effects of a new boron compound of guanidine biboric acid adduct (GB) and guanidium chloride (L1) on the growth of ascites tumour in female Swiss mice were studied by monitoring the survival, tumour weight, tumour cell count, transplantability of Ehrlich ascites cells, precursor incorporation and the haematological parameters of the treated mice. 5-Fluorouracil, a known anticancer drug, was used as a positive control. The most important parameter was the survival time, which increased significantly when tumour-bearing mice were treated with the boron compound. Haematological parameters of the treated animals showed minimum toxic effects when boron was coupled with guanidine.

  7. [Probiotics for the prevention of antibiotic-induced diarrhea].

    PubMed

    Eser, A; Thalhammer, F; Burghuber, F; Högenauer, C; Stockenhuber, F; Wenisch, C; Widhalm, K; Reinisch, W

    2012-10-01

    Between 5 and 49% of patients treated with antibiotics suffer from diarrhoea. Principally all microbial agents can cause diarrhoea, especially oral agents like cephalosporines, clindamycin, broad-spectrum penicillins, and quinolones of the 3  rd and 4th generation. Manifestations of antibiotic-associated diarrhoea range from mild self-limiting forms to severe life-threatening courses. The potentially most severe form of antibiotic-associated diarrhoea is caused by Clostridium diffcile accounting for approx. 25  % of antibiotic-associated diarrhoea. In the past two decades a broad spectrum of different probiotic strains has been evaluated for the primary prevention of antibiotic-associated diarrhoea in children and adults. Based on their efficacy and clinical data, different levels of evidence and recommendations are emerging on the preventive use of probiotics in antibiotic-associated diarrhoea.

  8. Optimizing antibiotic therapy in the intensive care unit setting

    PubMed Central

    Kollef, Marin H

    2001-01-01

    Antibiotics are one of the most common therapies administered in the intensive care unit setting. In addition to treating infections, antibiotic use contributes to the emergence of resistance among pathogenic microorganisms. Therefore, avoiding unnecessary antibiotic use and optimizing the administration of antimicrobial agents will help to improve patient outcomes while minimizing further pressures for resistance. This review will present several strategies aimed at achieving optimal use of antimicrobial agents. It is important to note that each intensive care unit should have a program in place which monitors antibiotic utilization and its effectiveness. Only in this way can the impact of interventions aimed at improving antibiotic use (e.g. antibiotic rotation, de-escalation therapy) be evaluated at the local level. PMID:11511331

  9. Sweet antibiotics - the role of glycosidic residues in antibiotic and antitumor activity and their randomization.

    PubMed

    Kren, Vladimír; Rezanka, Tomás

    2008-08-01

    A large number of antibiotics are glycosides. In numerous cases the glycosidic residues are crucial to their activity; sometimes, glycosylation only improves their pharmacokinetic parameters. Recent developments in molecular glycobiology have improved our understanding of aglycone vs. glycoside activities and made it possible to develop new, more active or more effective glycodrugs based on these findings - a very illustrative recent example is vancomycin. The majority of attention has been devoted to glycosidic antibiotics including their past, present, and probably future position in antimicrobial therapy. The role of the glycosidic residue in the biological activity of glycosidic antibiotics, and the attendant targeting and antibiotic selectivity mediated by glycone and aglycone in antibiotics some antitumor agents is discussed here in detail. Chemical and enzymatic modifications of aglycones in antibiotics, including their synthesis, are demonstrated on various examples, with particular emphasis on the role of specific and mutant glycosyltransferases and glycorandomization in the preparation of these compounds. The last section of this review describes and explains the interactions of the glycone moiety of the antibiotics with DNA and especially the design and structure-activity relationship of glycosidic antibiotics, including their classification based on their aglycone and glycosidic moiety. The new enzymatic methodology 'glycorandomization' enabled the preparation of glycoside libraries and opened up new ways to prepare optimized or entirely novel glycoside antibiotics.

  10. Generic antibiotic drugs: is effectiveness guaranteed?

    PubMed

    Gauzit, R; Lakdhari, M

    2012-04-01

    There are recently published arguments suggesting all generic antibiotic drugs do not present the full reliability needed to claim therapeutic equivalence with branded drugs. The problem is especially crucial for generic intravenous drugs, which do not need any bioequivalence study before they can be marketed. The evaluation of generic antibiotic drug effectiveness yields an important dispersion of results according to antibiotic agents and for the same antibiotic agent all generic drugs are not equivalent. There are differences at all levels: drug components, levels of impurity, pharmacokinetics, pharmacokinetic/pharmacodynamic relationship, in vitro effectiveness, therapeutic effectiveness in experimental models, etc. So that finally, the specifications approved in the initial submission file of a brand name drugs are not always respected by a generic drug. There is also a specific problem of taste and treatment acceptability for pediatric oral antibiotic drugs. Available data on clinical effectiveness is excessively rare. The marketing of a great number of generic drugs of the same specialty is followed by a sometimes very important increase of their use, even in countries where consumption is low. The corollary of this increase in consumption is an increase of resistance, and this is especially true for oral fluoroquinolones. Even if most of this information needs to be verified, it seems necessary to review regulations for marketing authorization of generic antibiotic drugs.

  11. Antibiotics, Bacteria, and Antibiotic Resistance Genes: Aerial Transport from Cattle Feed Yards via Particulate Matter

    PubMed Central

    McEachran, Andrew D.; Blackwell, Brett R.; Hanson, J. Delton; Wooten, Kimberly J.; Mayer, Gregory D.; Cox, Stephen B.

    2015-01-01

    Background: Emergence and spread of antibiotic resistance has become a global health threat and is often linked with overuse and misuse of clinical and veterinary chemotherapeutic agents. Modern industrial-scale animal feeding operations rely extensively on veterinary pharmaceuticals, including antibiotics, to augment animal growth. Following excretion, antibiotics are transported through the environment via runoff, leaching, and land application of manure; however, airborne transport from feed yards has not been characterized. Objectives: The goal of this study was to determine the extent to which antibiotics, antibiotic resistance genes (ARG), and ruminant-associated microbes are aerially dispersed via particulate matter (PM) derived from large-scale beef cattle feed yards. Methods: PM was collected downwind and upwind of 10 beef cattle feed yards. After extraction from PM, five veterinary antibiotics were quantified via high-performance liquid chromatography with tandem mass spectrometry, ARG were quantified via targeted quantitative polymerase chain reaction, and microbial community diversity was analyzed via 16S rRNA amplification and sequencing. Results: Airborne PM derived from feed yards facilitated dispersal of several veterinary antibiotics, as well as microbial communities containing ARG. Concentrations of several antibiotics in airborne PM immediately downwind of feed yards ranged from 0.5 to 4.6 μg/g of PM. Microbial communities of PM collected downwind of feed yards were enriched with ruminant-associated taxa and were distinct when compared to upwind PM assemblages. Furthermore, genes encoding resistance to tetracycline antibiotics were significantly more abundant in PM collected downwind of feed yards as compared to upwind. Conclusions: Wind-dispersed PM from feed yards harbors antibiotics, bacteria, and ARGs. Citation: McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN. 2015. Antibiotics, bacteria, and antibiotic

  12. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    PubMed Central

    Meek, Richard William; Vyas, Hrushi; Piddock, Laura Jane Violet

    2015-01-01

    The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted. PMID:26444324

  13. Finding alternatives to antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of antibiotic-resistant pathogens requires new treatments. The availability of new antibiotics has severely declined, and so alternatives to antibiotics need to be considered in both animal agriculture and human medicine. Products for disease prevention are different than products for d...

  14. Mechanisms of antibiotic resistance in enterococci

    PubMed Central

    Miller, William R; Munita, Jose M; Arias, Cesar A

    2015-01-01

    Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches. PMID:25199988

  15. Empiric Antibiotic Therapy of Nosocomial Bacterial Infections.

    PubMed

    Reddy, Pramod

    2016-01-01

    Broad-spectrum antibiotics are commonly used by physicians to treat various infections. The source of infection and causative organisms are not always apparent during the initial evaluation of the patient, and antibiotics are often given empirically to patients with suspected sepsis. Fear of attempting cephalosporins and carbapenems in penicillin-allergic septic patients may result in significant decrease in the spectrum of antimicrobial coverage. Empiric antibiotic therapy should sufficiently cover all the suspected pathogens, guided by the bacteriologic susceptibilities of the medical center. It is important to understand the major pharmacokinetic properties of antibacterial agents for proper use and to minimize the development of resistance. In several septic patients, negative cultures do not exclude active infection and positive cultures may not represent the actual infection. This article will review the important differences in the spectrum of commonly used antibiotics for nosocomial bacterial infections with a particular emphasis on culture-negative sepsis and colonization.

  16. [Glucuronidation of antitumour therapeutics--detoxification, mechanism of resistance or prodrug formation?].

    PubMed

    Mróz, Anna; Mazerska, Zofia

    2015-12-31

    The physiological role of phase I and II of xenobiotic biotransformations is their detoxification and better excretion outside the organism. UDP-glucuronosyltransferases (UGTs) being the enzymes of phase II metabolism catalyse the conjugation of glucuronic acid to the lipophilic substrate by its specific nucleophilic group. UGT isoenzymes of various substrate specificities and different expression profiles in selected tissues belong to the large UGT superfamily. Usually, glucuronidation is the detoxification process, but sometimes (morphine, tamoxifen) glucuronides express biological activity higher than or comparable to the native compound. The level of UGT gene expression is individual for patients, because of their genetic status as well as epigenetic conditions. Also, xenobiotics are able to modulate UGT level and gene expression by the interaction with nuclear receptors. Moreover, one can find a lower level of UGT in the tumour compared to normal tissue, which results in the protection against deactivation of the drug and in the promotion of its selective activity in tumor tissue. On the other hand, UGT activity is considered as the possible cause of resistance to chemotherapy. Metabolism by hepatic and intestinal UGT isoenzymes is responsible for the "first-pass effect", whereas acquired resistance consists in the induction of UGT gene expression by the chemotherapeutic or its metabolite. Moreover, UGT induction can be associated with the induction of membrane transporters, particularly proteins of the ABC family, responsible for drug excretion outside the cell. The above resistance effects can be fortified by the overexpression of selected UGT isoenzymes sometimes observed in specific types of tumours. It is also considered that many advanced tumours are characterized by a higher level of β-glucuronidase. This enzyme has a chance to be the molecular target of directed antitumour therapy, as it catalyses β-glucuronide hydrolysis, leading to active aglycones.

  17. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    PubMed Central

    Van heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-01-01

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action. British Journal of Cancer (2002) 86, 605–611. DOI: 10.1038/sj/bjc/6600056 www.bjcancer.com © 2002 Cancer Research UK PMID:11870544

  18. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity.

    PubMed

    Van Heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-02-12

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC(50)-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg(-1). In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.

  19. Antibiotics: a new hope.

    PubMed

    Wright, Gerard D

    2012-01-27

    Antibiotic resistance is one of the most significant challenges to the health care sector in the 21st century. A myriad of resistance mechanisms have emerged over the past decades and are widely disseminated worldwide through bacterial populations. At the same time there have been ever fewer new antibiotics brought to market, and the pharmaceutical industry increasingly sees antibiotics as a poor investment. Paradoxically, we are in a Golden Age of understanding how antibiotics work and where resistance comes from. This knowledge is fueling a renaissance of interest and innovation in antibiotic discovery, synthesis, and mechanism that is poised to inform drug discovery to address pressing clinical needs.

  20. Systemic antibiotics in periodontics.

    PubMed

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  1. Appropriate Antibiotic Therapy.

    PubMed

    Allison, Michael G; Heil, Emily L; Hayes, Bryan D

    2017-02-01

    Prescribing antibiotics is an essential component of initial therapy in sepsis. Early antibiotics are an important component of therapy, but speed of administration should not overshadow the patient-specific characteristics that determine the optimal breadth of antimicrobial therapy. Cultures should be drawn before antibiotic therapy if it does not significantly delay administration. Combination antibiotic therapy against gram-negative infections is not routinely required, and combination therapy involving vancomycin and piperacillin/tazobactam is associated with an increase in acute kidney injury. Emergency practitioners should be aware of special considerations in the administration and dosing of antibiotics in order to deliver optimal care to septic patients.

  2. Antibiotic resistance in Chlamydiae.

    PubMed

    Sandoz, Kelsi M; Rockey, Daniel D

    2010-09-01

    There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.

  3. Gold(I) chloride adducts of 1,3-bis(di-2-pyridylphosphino)propane: synthesis, structural studies and antitumour activity

    SciTech Connect

    Humphreys, Anthony S.; Filipovska, Aleksandra; Berners-Price, Susan J.; Koutsantonis, George A.; Skelton, Brian W.; White, Allan H.

    2008-06-30

    The novel water soluble bidentate phosphine ligand 1,3-bis(di-2-pyridylphosphino)propane (d2pypp) has been synthesized by a convenient route involving treatment of 2-pyridyllithium with Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} and isolation in crystalline form as the hydrochloride salt. The synthesis of the precursor Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} has been optimized by the use of triphosgene as the chlorinating agent. The 2:1 and 1:2 AuCl:d2pypp adducts have been synthesized and characterized by NMR spectroscopy and single crystal X-ray studies, and shown to be of the form (AuCl){sub 2}({mu}-d2pypp-P,P{prime}) and Au(d2pypp-P,P{prime}){sub 2}Cl(-3.75H{sub 2}O), respectively. The latter is more lipophilic than analogous 1:2 adducts of gold(I) chloride with the diphosphine ligands 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n = 2, 3 and 4, based on measurement of the n-octanol-water partition coefficient (log P = -0.46). A single crystal structure determination of the 1:2 Au(I) complex of the 3-pyridyl ethane ligand shows it to be of the form [Au(d3pype-P,P{prime}){sub 2}]Cl {center_dot} 5H{sub 2}O. The in vitro cytotoxic activity of [Au(d2pypp){sub 2}]Cl was assessed in human normal and cancer breast cells and selective toxicity to the cancer cells found. The significance of these results to the antitumour properties of chelated 1:2 Au(I) diphosphine complexes is discussed.

  4. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity.

    PubMed

    Zheng, Chuping; Liu, Yanan; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Liu, Jie

    2016-03-01

    G-quadruplex DNA, especially the cellular-myelocytomatosis viral oncogene (c-MYC) is closely associated with cell-cycle regulation, proliferation of tumour cells. In this work, the interaction between the c-MYC and two dinuclear Ru(II) complexes [(bpy)2Ru(bpibp)Ru(bpy)2](ClO4)4 (compound 1) and [(phen)2Ru(bpibp)Ru(phen)2](ClO4)4 (compound 2) have been studied. The data from UV-Visible, PCR-stop and Fluorescence resonance energy transfer (FRET) showed that two complexes can stabilize the structure of G-quadruplex in the c-MYC promoter and targeting the G-quadruplex loop isomers. Interestingly, the complex 2 has a greater effect on the 1:2:1 and 2:1:1 loop isomers while the 1 prefers to the 1:2:1 isomers. The mechanism studies revealed that complexes can induce apoptosis in HepG2 cells by generating ROS metabolites, triggering mitochondrial membrane potential loss and down-regulation of P-Akt (Akt also known as protein kinase B), P-p44/42 MAP kinase protein (P-p44/42), and c-MYC. Taken together, these results suggested that the two dinuclear complexes may both be candidates as anti-tumour agents as they may reduce the c-MYC gene expression. {bpibp: 4, 4'-bis (1, 10-phenanthroline-[5, 6-d] imidazole-2-yl)-biphenyl, bpy: 2,2-bipyridine, phen: 1,10-phenanthroline}.

  5. Carcinogenicity of antineoplastic agents in man.

    PubMed

    Rieche, K

    1984-03-01

    Review of the literature shows that: Anticancer drugs are in all probability mostly also carcinogenic. Alkylating agents such as melphalan, chlorambucil and cyclophosphamide seem to lead to the highest rate of second malignancies. Second malignancies after antitumour drugs are mostly acute leukaemias. Conditions which could influence the carcinogenicity of an antitumour drug are (a) its carcinogenic potency; (b) long-term administration; (c) the total dose used and (d) long-term survival of the patient. Irradiation and chemotherapy seem to have the greatest carcinogenic potential, e.g. in malignant lymphomas. The role of immunosuppression as a co-carcinogenic factor is difficult to estimate. Although transplant patients on anticancer drugs for immunosuppression have a higher risk of reticulosarcomas, but not of solid tumours, there is no evidence to suppose that in general immunosuppression and carcinogenicity are directly related. There is no reason to abandon intensive chemotherapy regimes if they lead to significant therapeutic results on the grounds of possible carcinogenicity of these drugs.

  6. Selectively guanidinylated aminoglycosides as antibiotics.

    PubMed

    Fair, Richard J; Hensler, Mary E; Thienphrapa, Wdee; Dam, Quang N; Nizet, Victor; Tor, Yitzhak

    2012-07-01

    The emergence of virulent, drug-resistant bacterial strains coupled with a minimal output of new pharmaceutical agents to combat them makes this a critical time for antibacterial research. Aminoglycosides are a well-studied, highly potent class of naturally occurring antibiotics with scaffolds amenable to modification, and therefore, they provide an excellent starting point for the development of semisynthetic, next-generation compounds. To explore the potential of this approach, we synthesized a small library of aminoglycoside derivatives selectively and minimally modified at one or two positions with a guanidine group replacing the corresponding amine or hydroxy functionality. Most guanidino-aminoglycosides showed increased affinity for the ribosomal decoding rRNA site, the cognate biological target of the natural products, when compared with their parent antibiotics, as measured by an in vitro fluorescence resonance energy transfer (FRET) A-site binding assay. Additionally, certain analogues showed improved minimum inhibitory concentration (MIC) values against resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). An amikacin derivative holds particular promise with activity greater than or equal to the parent antibiotic in the majority of bacterial strains tested.

  7. Antibiotics and Breastfeeding.

    PubMed

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant.

  8. Biotic acts of antibiotics

    PubMed Central

    Aminov, Rustam I.

    2013-01-01

    Biological functions of antibiotics are not limited to killing. The most likely function of antibiotics in natural microbial ecosystems is signaling. Does this signaling function of antibiotics also extend to the eukaryotic – in particular mammalian – cells? In this review, the host modulating properties of three classes of antibiotics (macrolides, tetracyclines, and β-lactams) will be briefly discussed. Antibiotics can be effective in treatment of a broad spectrum of diseases and pathological conditions other than those of infectious etiology and, in this capacity, may find widespread applications beyond the intended antimicrobial use. This use, however, should not compromise the primary function antibiotics are used for. The biological background for this inter-kingdom signaling is also discussed. PMID:23966991

  9. Platforms for antibiotic discovery.

    PubMed

    Lewis, Kim

    2013-05-01

    The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

  10. Design, characterization and anti-tumour cytotoxicity of a panel of recombinant, mammalian ribonuclease-based immunotoxins.

    PubMed Central

    Deonarain, M. P.; Epenetos, A. A.

    1998-01-01

    Bovine seminal ribonuclease (BSRNase) is an unusual member of the ribonuclease superfamily, because of its remarkable anti-tumour and immunosuppressive properties. We describe here the construction, expression, purification and characterization of a panel of six immunotoxins based upon this enzyme and show that we can increase its anti-tumour activity by over 2 x 10(4)-fold. This is achieved by improving tumour cell targeting using a single-chain Fv (scFv) directed against the oncofetal antigen placental alkaline phosphatase. As well as the simple scFv-BSRNase fusion protein, we have constructed five other derivatives with additional peptides designed to improve folding and intracellular trafficking and delivery. We find that the molecule most cytotoxic to antigen (PLAP)-positive cells in vitro is one that contains a C-terminal 'KDEL' endoplasmic reticulum retention signal and a peptide sequence derived from diphtheria toxin. All these molecules are produced in Escherichia coli (E. coli) as insoluble inclusion bodies and require extensive in vitro processing to recover antigen binding and ribonuclease activity. Despite incomplete ribonuclease activity and quaternary assembly, these molecules are promising reagents for specific chemotherapy of cancer and are potentially less harmful and immunogenic than current immunotoxins. Images Figure 2 PMID:9484808

  11. Anti-tumour activity of tivozanib, a pan-inhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells

    PubMed Central

    Momeny, Majid; Sabourinejad, Zahra; Zarrinrad, Ghazaleh; Moghaddaskho, Farima; Eyvani, Haniyeh; Yousefi, Hassan; Mirshahvaladi, Shahab; Poursani, Ensieh M.; Barghi, Farinaz; Poursheikhani, Arash; Dardaei, Leila; Bashash, Davood; Ghazi-Khansari, Mahmoud; Tavangar, Seyyed M.; Dehpour, Ahmad R.; Yaghmaie, Marjan; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H.

    2017-01-01

    Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy. Despite initial therapeutic response, the majority of advanced-stage patients relapse and succumb to chemoresistant disease. Overcoming drug resistance is the key to successful treatment of EOC. Members of vascular endothelial growth factor (VEGF) family are overexpressed in EOC and play key roles in its malignant progression though their contribution in development of the chemoresistant disease remains elusive. Here we show that expression of the VEGF family is higher in therapy-resistant EOC cells compared to sensitive ones. Overexpression of VEGFR2 correlated with resistance to cisplatin and combination with VEGFR2-inhibitor apatinib synergistically increased cisplatin sensitivity. Tivozanib, a pan-inhibitor of VEGF receptors, reduced proliferation of the chemoresistant EOC cells through induction of G2/M cell cycle arrest and apoptotic cell death. Tivozanib decreased invasive potential of these cells, concomitant with reduction of intercellular adhesion molecule-1 (ICAM-1) and diminishing the enzymatic activity of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2). Moreover, tivozanib synergistically enhanced anti-tumour effects of EGFR-directed therapies including erlotinib. These findings suggest that the VEGF pathway has potential as a therapeutic target in therapy-resistant EOC and VEGFR blockade by tivozanib may yield stronger anti-tumour efficacy and circumvent resistance to EGFR-directed therapies. PMID:28383032

  12. From antiseptics to antibiotics – and back?

    PubMed Central

    Assadian, Ojan

    2007-01-01

    There is no straight line to trace the trajectory of antiseptics; rather, this has been manifested more as a fluctuating line, a backwards and forwards movement, seen in the wake of major discoveries but of colossal mistakes too. While today no one would allow their prophylactic policies to be guided by miasma or contagia, there continues to be some uncertainly about how to manage anti-infectives effectively even today. When in 1941 the first human being was successfully treated with penicillin, interest in antiseptics gradually waned. From that time onwards, everything was treated with antibiotics, unleashing a race for the discovery of novel antibiotics, as witnessed decades earlier in the case of antiseptics. The significance of antiseptics declined to such an extent that among physicians they were associated merely with cleaning agents or sanitary disinfection. Today, at the beginning of the 21st century we know that the euphoria generated by antibiotics was just another station along the pathway of discoveries. Bacterial infections and new, hitherto unknown infectious diseases continue to play a major role. Several viral infections continue to be refractory to successful treatment and bacterial antibiotic resistance has become a problem worldwide. The most effective countermeasures no longer entail only the development of new antibiotics but above all responsible management of antibiotics and strict observance of infection control measures in the hospital setting. Set against that background, interest in antiseptics has been rekindled. In that spirit we can look eagerly forward over the coming years to further developments in antisepsis. PMID:20200687

  13. Update on antibiotics in ocular infections.

    PubMed

    Leopold, I H

    1985-07-15

    Each year, new antimicrobials are found or synthesized in an effort to improve the chance of overcoming infections. In the early 1950s, the only antibiotic available for ocular use was penicillin. Today, ophthalmologists can make a choice from a large selection of antibiotics for ocular infections. The majority of antibiotics have been literally unearthed, since worldwide soil surveys may have been the means of their discovery. In addition, synthetic derivatives of penicillin, cephalosporins, aminoglycosides, and tetracyclines, as well as drugs against tuberculosis and fungi, have become available, and new names have been added to the already bewildering list of less frequently used sulfonamides. However, it takes several years to appreciate the impact of new agents and the continued contribution of older ones. Constant reevaluation is mandatory. The real benefits as well as the untoward effects of a new antimicrobial agent may not be known until several years after the clinical introduction. In addition to approaching infection from the viewpoint of the offending organism and a specific antibiotic to address this organism, one may also approach this problem from the host's immunity. Until now, we have relied largely on the corticosteroids, but one must also consider various nonsteroidal anti-inflammatory agents and, even more importantly, the development of drugs to enhance the host's natural immunity.

  14. On the specificity of antibiotics targeting the large ribosomal subunit.

    PubMed

    Wilson, Daniel N

    2011-12-01

    The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents.

  15. Antibiotic resistance: a primer and call to action.

    PubMed

    Smith, Rachel A; M'ikanatha, Nkuchia M; Read, Andrew F

    2015-01-01

    During the past century, discoveries of microorganisms as causes of infections and antibiotics as effective therapeutic agents have contributed to significant gains in public health in many parts of the world. Health agencies worldwide are galvanizing attention toward antibiotic resistance, which is a major threat to public health (Centers for Disease Control and Prevention, 2013; World Health Organization, 2014). Some life scientists believe that we are approaching the post-antibiotic age (Davies & Davies, 2010). The growing threat of antimicrobial resistance is fueled by complex factors with biological, behavioral, and societal aspects. This primer provides an overview of antibiotic resistance and its growing burden on public health, the biological and behavioral mechanisms that increase antibiotic resistance, and examples of where health communication scholars can contribute to efforts to make our current antibiotic drugs last as long as possible. In addition, we identify compelling challenges for current communication theories and practices.

  16. [Pharmacokinetics and pharmacodynamics of antibiotic therapy].

    PubMed

    Beck, S; Wicha, S G; Kloft, C; Kees, M G

    2014-10-01

    Antibiotic agents are crucial pillars in intensive care medicine and must be used rationally and sensibly. In the case of critically ill patients optimal dosing with respect to pharmacokinetic and pharmacodynamic principles (PK/PD) can be vital. Preclinical results demonstrated important differences between antibiotic classes and gave rise to differing clinical dosing strategies, e.g. high dose once daily regimens for aminoglycosides or extended/continuous infusion of betalactams. Critically ill patients with altered pharmacokinetic parameters and infections by pathogens with low susceptibility are most likely to benefit from PK/PD-guided therapy.

  17. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-12-28

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.

  18. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action

    PubMed Central

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  19. Replacement for antibiotics: Lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics have been fed at subtherapeutic levels to swine as growth promoters for more than 60 years, and the majority of swine produced in the U.S. receive antibiotics in their feed at some point in their production cycle. These compounds benefit the producers by minimizing production losses by ...

  20. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  1. Setamycin, a new antibiotic.

    PubMed

    Omura, S; Otoguro, K; Nishikiori, T; Oiwa, R; Iwai, Y

    1981-10-01

    A new antibiotic, setamycin, was extracted from the mycelia of a rare actinomycete strain KM-6054. The antibiotic, the molecular formula of which was found to be C42H61NO12 (tentative), is a yellow powder showing activity against some fungi, trichomonads and weakly against Gram-positive bacteria.

  2. [Side effects of antibiotics].

    PubMed

    Hoigné, R

    1975-03-01

    The clinically severe and newer forms of antibiotic side effects are reviewed. The study covers the following antibiotics: penicillins, cephalosporins, aminoglycosides and polymyxins, tetracyclines, chloramphenicol and thiamphenicol, macrolides and lincomycin, rifamycins and sulfonamides. Special reference is made to (1) hematologic side effects, and (2) general evaluation of drug reactions. The relationship between reaction time and clinical symptoms is of particular practical significance.

  3. Synthesis, Characterization and In vitro Antitumour Activity of Novel Organotin Derivatives of 1,2- and 1,7-Dicarba-Closo-dodecaboranes

    PubMed Central

    Kayser, François; Zhidkova, Olga B.; Kampel, Vladimir Ts.; Bregadze, Vladimir l.; de Vos, Dick; Biesemans, Monique; Mahieu, Bernard; Willem, Rudolph

    1995-01-01

    Several organotin derivatives of 1,2- and 1,7-dicarba-closo-dodecaboranes were synthesized and characterized by 119Sn Mössbauer, 1H, 13C and 119Sn NMR spectroscopy. Their antitumour activities in vitro against cancerous cell lines of human origin are reported. PMID:18472744

  4. [Antibiotics and gait disorders].

    PubMed

    Gomez-Porro, P; Vinagre-Aragon, A; Zabala-Goiburu, J A

    2016-12-01

    The neurological toxicity of many antibiotics has been reported in a number of articles and clinical notes. In this review antibiotics are classified according to the physiopathogenic mechanism that can give rise to a gait disorder, taking both clinical and experimental data into account. An exhaustive search was conducted in Google Scholar and PubMed with the aim of finding reviews, articles and clinical cases dealing with gait disorders secondary to different antibiotics. The different antibiotics were separated according to the physiopathogenic mechanism that could cause them to trigger a gait disorder. They were classified into antibiotics capable of producing cerebellar ataxia, vestibular ataxia, sensitive ataxia or an extrapyramidal gait disorder. The main aim was to group all the drugs that can give rise to a gait disorder, in order to facilitate the clinical suspicion and, consequently, the management of patients.

  5. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.

    PubMed

    Golkar, Zhabiz; Bagasra, Omar; Pace, Donald Gene

    2014-02-13

    The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.

  6. Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo.

    PubMed

    Yang, Lei-Qiong; Wang, Bin; Gan, Hui; Fu, Shou-Ting; Zhu, Xiao-Xia; Wu, Zhuo-Na; Zhan, Da-Wei; Gu, Ruo-Lan; Dou, Gui-Fang; Meng, Zhi-Yun

    2012-11-01

    The purpose of this study was to investigate the effect of paclitaxel in combination with 20(s)-ginsenoside Rg3 on its anti-tumour effect in nude mice. In the Caco-2 transport assay, the apparent permeability from the apical side to the basal side (P(app)) (A-B) and P(app) (B-A) of paclitaxel were measured when co-incubated with different concentrations of 20(s)-ginsenoside Rg3. The results indicated that the penetration of paclitaxel through the Caco-2 monolayer from the apical side to the basal side was facilitated by 20(s)-ginsenoside Rg3 in a concentration-dependent manner. Meanwhile, 20(s)-ginsenoside Rg3 inhibited P-glycoprotein (P-gp), and the maximum inhibition was achieved at 80 µM (p < 0.05). The pharmacokinetic parameters of paclitaxel after oral co-administration of paclitaxel (40 mg/kg) with various doses of 20(s)-ginsenoside Rg3 in rats were investigated by an in vivo pharmacokinetic experiment. The results showed that the AUC of paclitaxel co-administered with 20(s)-ginsenoside Rg3 was significantly higher (p < 0.001 at 10 mg/kg) compared with the control. The relative bioavailability (RB) % of paclitaxel with 20(s)-ginsenoside Rg3 was 3.4-fold (10 mg/kg) higher than that of the control. The effect of paclitaxel orally co-administered with 20(s)-ginsenoside Rg3 against human tumour MCF-7 xenografts in nude mice was also evaluated. Paclitaxel (20 mg/kg) co-administered with 20(s)-ginsenoside Rg3 (10 mg/kg) exhibited an effective anti-tumour activity with the relative tumor growth rate (T/C) values of 39.36% (p <0.05). The results showed that 20(s)-ginsenoside Rg3 enhanced the oral bioavailability of paclitaxel in rats and improved the anti-tumour activity in nude mice, indicating that oral co-administration of paclitaxel with 20(s)-ginsenoside Rg3 could provide an effective strategy in addition to the established i.v. route.

  7. Evaluation of new antimicrobials for the hospital formulary. Policies restricting antibiotic use in hospitals.

    PubMed

    Pujol, Miquel; Delgado, Olga; Puigventós, Francesc; Corzo, Juan E; Cercenado, Emilia; Martínez, José Antonio

    2013-09-01

    In Spain, the inclusion of new antibiotics in hospital formularies is performed by the Infection Policy Committee or the Pharmacy and Therapeutic Committee, although now the decision is moving to a regional level. Criteria for the evaluation of new drugs include efficacy, safety and cost. For antimicrobial drugs evaluation it is necessary to consider local sensibility and impact in bacterial resistance to determinate the therapeutic positioning. There is compelling evidence that the use of antibiotics is associated with increasing bacterial resistance, and a great number of antibiotics are used incorrectly. In order to decrease the inappropriate use of antibiotics, several approaches have been proposed. Limiting the use of antimicrobials through formulary restrictions, often aimed at drugs with a specific resistance profile, shows benefits in improving antimicrobial susceptibilities and decreasing colonization by drug-resistant organisms. However, the restriction of one agent may result in the increased utilization of other agents. By using antibiotic cycling, the amount of antibiotics is maintained below the threshold where bacterial resistance develops, thus preserving highly efficient antibiotics. Unfortunately, cumulative evidence to date suggests that antibiotic cycling has limited efficacy in preventing antibiotic resistance. Finally, although there is still little clinical evidence available on antibiotic heterogeneity, the use of most of the existing antimicrobial classes could limit the emergence of resistance. This review summarizes information regarding antibiotic evaluation and available restrictive strategies to limit the use of antibiotics at hospitals with the aim of curtailing increasing antibiotic resistance.

  8. Thalidomide increases both intra-tumoural tumour necrosis factor-α production and anti-tumour activity in response to 5,6-dimethylxanthenone-4-acetic acid

    PubMed Central

    Cao, Z; Joseph, W R; Browne, W L; Mountjoy, K G; Palmer, B D; Baguley, B C; Ching, L-M

    1999-01-01

    5,6-Dimethylxanthenone-4-acetic acid (DMXAA), synthesized in this laboratory and currently in phase I clinical trial, is a low molecular weight inducer of tumour necrosis factor-α (TNF-α). Administration of DMXAA to mice with established transplantable tumours elicits rapid vascular collapse selectively in the tumour, followed by extensive haemorrhagic necrosis mediated primarily through the production of TNF-α. In this report we have investigated the synthesis of TNF-α mRNA in hepatic, splenic and tumour tissue. Co-administration of thalidomide with DMXAA increased anti-tumour activity and increased intra-tumoural TNF-α production approximately tenfold over that obtained with DMXAA alone. Thalidomide increased splenic TNF-α production slightly but significantly decreased serum and hepatic levels of TNF-α induced with DMXAA. Lipopolysaccharide (LPS) induced 300-fold higher serum TNF-α than did DMXAA at the maximum tolerated dose, but induced similar amounts of TNF-α in spleen, liver and tumour. Splenic TNF-α activity induced with LPS was slightly increased with thalidomide, but serum and liver TNF-α levels were suppressed. Thalidomide did not increase intra-tumoural TNF-α production induced with LPS, in sharp contrast to that obtained with DMXAA. While thalidomide improved the anti-tumour response to DMXAA, it had no effect on the anti-tumour action of LPS that did not induce a significant growth delay or cures against the Colon 38 tumour. The increase in the anti-tumour action by thalidomide in combination with DMXAA corresponded to an increase in intra-tumoural TNF-α production. Co-administration of thalidomide may represent a novel approach to improving selective intra-tumoural TNF-α production and anti-tumour efficacy of DMXAA. © 1999 Cancer Research Campaign PMID:10360649

  9. Biosensors, antibiotics and food.

    PubMed

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.

  10. Attempts at the production of more selective antitumourals. Part II. The antineoplastic activity of cyclophosphazenes linked to spermine

    NASA Astrophysics Data System (ADS)

    Sournies, François; Labarre, Jean-François; Spreafico, Federico; Filippeschi, Stefania; Quan Jin, Xing

    1986-09-01

    In an attempt to design antitumour cyclophosphazenes of improved specificity by linking them to some natural tumour finders, we studied the binding of gem-N 3P 3Az 4Cl 2 to spermine. Synthesis, NMR and mass spectra of the vectorized drug (in which two N 3P 3Az 4 active principles are linked to spermine in a DISPIROBINO configuration) are described. Results obtained with this compound in 6 murine tumour systems (L1210 and P388 leukaemias, 3LL carcinoma, M5076 reticulum cell sarcoma, B16 melanoma and line 16 mammary carcinoma), are also described and compared with results previously obtained about the targeting of gem-N 3P 3Az 4Cl 2 through 1,3-diaminopropane and 1,4-diaminobutane (putrescine).

  11. Sampling the antibiotic resistome.

    PubMed

    D'Costa, Vanessa M; McGrann, Katherine M; Hughes, Donald W; Wright, Gerard D

    2006-01-20

    Microbial resistance to antibiotics currently spans all known classes of natural and synthetic compounds. It has not only hindered our treatment of infections but also dramatically reshaped drug discovery, yet its origins have not been systematically studied. Soil-dwelling bacteria produce and encounter a myriad of antibiotics, evolving corresponding sensing and evading strategies. They are a reservoir of resistance determinants that can be mobilized into the microbial community. Study of this reservoir could provide an early warning system for future clinically relevant antibiotic resistance mechanisms.

  12. Zoledronic acid has differential anti-tumour activity in the pre-and post-menopausal bone microenvironment in vivo

    PubMed Central

    Ottewell, Penelope D; Wang, Ning; Brown, Hannah K; Reeves, Kimberly J; Fowles, C Anne; Croucher, Peter I; Eaton, Colby L; Holen, Ingunn

    2014-01-01

    Purpose Clinical trials in early breast cancer have suggested that benefits of adjuvant bone targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and post-menopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumour cells. Here we report a differential anti-tumour effect of zoledronic acid (ZOL) in these two settings. Experimental design 12-week old female Balb/c-nude mice with disseminated MDA-MB-231 breast tumour cells in bone underwent sham operation or ovariectomy (OVX), mimicking the pre- and post-menopausal bone microenvironment, respectively. To determine the effects of bone-targeted therapy, sham/OVX animals received saline or 100ug/kg ZOL weekly. Tumour growth was assessed by in vivo imaging and effects on bone by RT-PCR, microCT, histomorphometry and measurements of bone markers. Disseminated tumour cells were detected by two-photon microscopy. Results OVX increased bone resorption and induced growth of disseminated tumour cells in bone. Tumours were detected in 83% of animals following OVX (post-menopausal model) compared to 17% following sham operation (pre-menopausal model). OVX had no effect on tumours outside of bone. OVX-induced tumour growth was completely prevented by ZOL, despite the presence of disseminated tumour cells. ZOL did not affect tumour growth in bone in the sham-operated animals. ZOL increased bone volume in both groups. Conclusions This is the first demonstration that tumour growth is driven by osteoclast-mediated mechanisms in models that mimic post-but not pre-menopausal bone, providing a biological rationale for the differential anti-tumour effects of ZOL reported in these settings. PMID:24687923

  13. [Antibiotic prophylaxis in colorectal surgery].

    PubMed

    Dellamonica, P; Bernard, E

    1994-01-01

    In elective colorectal surgery, the benefit of preoperative antibiotic prophylaxis is well established, with a reduction in wound infection rate to less than 10%. The antimicrobial agent used has to be active against aerobic and anaerobic pathogens such as Escheria coli and Bacteriodes fragilis. The efficacy of three schemes of administration: oral and/or parenteral prophylaxis associated with a mechanical preparation, has been demonstrated. Oral antibiotic administration is current practice in USA; the most widely used oral regimen is the combination of erythromycin and neomycin given the day before surgery. Parenteral prophylaxis with a cephalosporin active against Bacteriodes fragilis such as cefoxitin and cefotetan, is preferred in Europe. The issue of whether a systemic prophylaxis should be added to the oral regimen or not has not yet been resolved. However it seems that the association should be proposed in various situations: patients with a high risk factors score (rectal resection and operations lasting more than three hours), patients with incomplete mechanical preparation, delay of the onset of surgery after the last oral dose.

  14. Targeting Antibiotic Resistance

    PubMed Central

    Chellat, Mathieu F.; Raguž, Luka

    2016-01-01

    Abstract Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human‐pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last‐resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled “Combat drug resistance: no action today means no cure tomorrow” triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  15. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  16. Childhood infections, antibiotics, and resistance: what are parents saying now?

    PubMed Central

    Finkelstein, Jonathan A.; Dutta-Linn, Maya; Meyer, Robert; Goldman, Roberta

    2014-01-01

    Parental misconceptions and even “demand” for unnecessary antibiotics were previously viewed as contributors to overuse of these agents. We conducted focus groups to explore the knowledge and attitudes surrounding common infections and antibiotic use in the current era of more judicious prescribing. Among diverse groups of parents, we found widespread use of home remedies and considerable concern regarding antibiotic resistance. Parents generally expressed the desire to use antibiotics only when necessary. There was appreciation of inherent error in the diagnosis of common infections, with most trust placed in providers with whom parents had longstanding relationships. While some parents had experience with “watchful waiting” for otitis media, there was little enthusiasm for this approach. While there may still be room for further education, it appears that parents have become more informed and sophisticated regarding appropriate uses of antibiotics. This has likely contributed to the declines seen in their use nationally. PMID:24137024

  17. [The history of antibiotics].

    PubMed

    Yazdankhah, Siamak; Lassen, Jørgen; Midtvedt, Tore; Solberg, Claus Ola

    2013-12-10

    The development of chemical compounds for the treatment of infectious diseases may be divided into three phases: a) the discovery in the 1600s in South America of alkaloid extracts from the bark of the cinchona tree and from the dried root of the ipecacuanha bush, which proved effective against, respectively, malaria (quinine) and amoebic dysentery (emetine); b) the development of synthetic drugs, which mostly took place in Germany, starting with Paul Ehrlich's (1854-1915) discovery of salvarsan (1909), and crowned with Gerhard Domagk's (1895-1964) discovery of the sulfonamides (1930s); and c) the discovery of antibiotics. The prime example of the latter is the development of penicillin in the late 1920s following a discovery by a solitary research scientist who never worked in a team and never as part of a research programme. It took another ten years or so before drug-quality penicillin was produced, with research now dependent on being conducted in large collaborative teams, frequently between universities and wealthy industrial companies. The search for new antibiotics began in earnest in the latter half of the 1940s and was mostly based on soil microorganisms. Many new antibiotics were discovered in this period, which may be termed «the golden age of antibiotics». Over the past three decades, the development of new antibiotics has largely stalled, while antibiotic resistance has increased. This situation may require new strategies for the treatment of infectious diseases.

  18. Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates.

    PubMed

    Ghisalberti, Didier; Mahamoud, Abdallah; Chevalier, Jacqueline; Baitiche, Milad; Martino, Michèle; Pagès, Jean-Marie; Barbe, Jacques

    2006-06-01

    Efflux mechanisms protect bacterial cells by pumping out toxic compounds and actively contribute to bacterial multidrug resistance. Agents inhibiting efflux pumps are of interest for the control of multidrug-resistant bacterial infections. Herein we report the effects of new chloroquinoline derivatives that render resistant Enterobacter aerogenes isolates noticeably more susceptible to structurally unrelated antibiotics. In addition, some of these chloroquinolines increase the intracellular concentration of chloramphenicol. Some of the molecules tested in this work are able to inhibit the main efflux pump (AcrAB-TolC), which is involved in E. aerogenes antibiotic resistance.

  19. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  20. Strategies to minimize antibiotic resistance.

    PubMed

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-09-12

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  1. The use of oral antibiotics in treating acne vulgaris: a new approach.

    PubMed

    Farrah, Georgia; Tan, Ernest

    2016-09-01

    Although acne is not an infectious disease, oral antibiotics have remained a mainstay of treatment over the last 40 years. The anti-inflammatory properties of oral antibiotics, particularly the tetracyclines, are efficacious in treating inflammatory acne lesions. Common prescribing practices in Dermatology exert significant selection pressure on bacteria, contributing to the development of antibiotic resistance. Antibiotic use for acne not only promotes resistance in Propionibacterium acnes, but also affects other host bacteria with pathogenic potential. This review will summarize the commonly used treatments for acne vulgaris, and how they should be combined as rational treatment. The indications for using oral antibiotics in acne will be highlighted. Strategies described in the literature to conserve the utility of oral antibiotics will be summarized. These include limiting the duration of antibiotic therapy, concomitant use of a topical non-antibiotic agent, use of subantimicrobial dose doxycycline, and the introduction of topical dapsone.

  2. Natural Product-Based Antibiotics: Synthesis and SAR-Studies.

    PubMed

    Prusov, Evgeny V

    2016-01-01

    Efficient control of the infectious diseases in the era of the emerging bacterial resistance demands consistent development of new antibiotic agents with novel modes of action. With some notable exceptions, the majority of the currently used antibiotics are natural product-derived compounds which were elaborated upon lead structures discovered by screening of various isolates. In this review, we summarized some selected examples of recent advances in the area of natural product based antibiotic development with particular emphasis on the synthetic and SAR-elucidation aspects.

  3. What ever happened to the common cold? Improving antibiotic utilization.

    PubMed

    Huntington, Mark K; VanKeulen, Scott; Hoffman, Wendell W

    2013-04-01

    Unnecessary antibiotic prescribing has tremendous cost to both the individual and to society in terms of drug resistance, adverse drug reactions and economic expense. There is overwhelming evidence in the medical literature that the majority of outpatient cases for which antibiotics are prescribed may be effectively and safely treated without the use of these agents. We present algorithms for upper respiratory tract infections to aid physicians and advanced practice clinicians in distinguishing those patients who may benefit from antibiotics from the greater majority who are more likely to be harmed by them.

  4. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  5. Strategies for appropriate antibiotic use in intensive care unit

    PubMed Central

    da Silva, Camila Delfino Ribeiro; Silva, Moacyr

    2015-01-01

    The comsumption of antibiotics is high, mainly in intensive care units. Unfortunately, most are inappropriately used leading to increased multi-resistant bacteria. It is well known that initial empirical therapy with broad-spectrum antibiotics reduce mortality rates. However the prolonged and irrational use of antimicrobials may also increase the risk of toxicity, drug interactions and diarrhea due to Clostridium difficile. Some strategies to rational use of antimicrobial agents include avoiding colonization treatment, de-escalation, monitoring serum levels of the agents, appropriate duration of therapy and use of biological markers. This review discusses the effectiveness of these strategies, the importance of microbiology knowledge, considering there are agents resistant to Staphylococcus aureus and Klebsiella pneumoniae, and reducing antibiotic use and bacterial resistance, with no impact on mortality. PMID:26132360

  6. N-O chemistry for antibiotics: discovery of N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry.

    PubMed

    Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J

    2011-10-13

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.

  7. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  8. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity

    PubMed Central

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect. PMID:24753740

  9. Antibiotics after rattlesnake envenomation.

    PubMed

    LoVecchio, Frank; Klemens, Jane; Welch, Sharon; Rodriguez, Ron

    2002-11-01

    To record the outcome, with regard to infection rate, of patients with rattlesnake bites (RSBs) who do not receive prophylactic antibiotics, a prospective observational study was performed of patients with RSBs treated at our institution during a consecutive 18-month period. The inclusion criteria were RSBs <24 h old and completion of follow-up (telephone call, mail reply, medical toxicologist, or private physician examination) 7-10 days following envenomation. Fifty-six consecutive patients (Median age: 32.8 years [range 4-67 years]) were enrolled. One patient was excluded because of presentation 38 h after envenomation and two patients failed to complete the required follow-up. One patient received a dose of antibiotics before transfer. Antibiotics were discontinued upon arrival. Of the total 56 RSB patients, 34 (61%) RSBs involved the upper extremity and 22 (39%) involved the lower extremity. Six patients (11%) applied ice and two (4%) used a tourniquet before evaluation. The mean arrival time was 2.7 h (Range <1-24 h). Forty-three patients (81%) received antivenin. Fifty-three patients (100%) had extremity swelling and 38 patients (72%) had tender proximal lymph nodes. Of the 53 patients who completed the study, 3 (6%) received antibiotics from their primary care physicians at 7-10 day follow-up, with no cases (0%) of documented infection. Prophylactic antibiotics are not indicated in patients with rattlesnake bites.

  10. Contribution of H-Bonding to the Preference of Platinum Anti-Tumour Drugs for Particular Bases and Particular Cross-Links

    PubMed Central

    Natile, Giovanni

    1994-01-01

    The stereochemical factors that influence the tendencies for sequence specific binding of platinum antitumour drugs to DNA are examined. The NHs of the platinum-amine moiety can form hydrogen bonds to the O6 of guanine or to a phosphate oxygen of DNA. Modelling the stereochemistry of the NH atoms can lead to compounds with a strong preference for forming one type of adduct with DNA. PMID:18476245

  11. [Update on antibiotic resistance in Gram-positive bacteria].

    PubMed

    Lozano, Carmen; Torres, Carmen

    2017-01-01

    Antimicrobial resistance among Gram-positive bacteria, especially in Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Streptococcus pneumoniae, is a serious threat to public health. These microorganisms have multiple resistance mechanisms to agents currently used in clinical practice. Many of these resistance mechanisms are common to all 4 of these bacterial species, but other mechanisms seem to be more specific. The prevalence and dissemination of these mechanisms varies considerably, depending on the microorganism. This review discusses the resistance mechanisms to the most clinically relevant antibiotics, with particular emphasis on the new mechanisms described for widely used antibiotics and for newer agents such as lipopeptides, lipoglycopeptides, glycylcyclines and oxazolidinones.

  12. Tetracycline Antibiotics and Resistance.

    PubMed

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.

  13. Antibiotic prophylaxis in otolaryngologic surgery

    PubMed Central

    Ottoline, Ana Carolina Xavier; Tomita, Shiro; Marques, Marise da Penha Costa; Felix, Felippe; Ferraiolo, Priscila Novaes; Laurindo, Roberta Silveira Santos

    2013-01-01

    Summary Aim: Antibiotic prophylaxis aims to prevent infection of surgical sites before contamination or infection occurs. Prolonged antibiotic prophylaxis does not enhance the prevention of surgical infection and is associated with higher rates of antibiotic-resistant microorganisms. This review of the literature concerning antibiotic prophylaxis, with an emphasis on otolaryngologic surgery, aims to develop a guide for the use of antibiotic prophylaxis in otolaryngologic surgery in order to reduce the numbers of complications stemming from the indiscriminate use of antibiotics. PMID:25991999

  14. Choice of antibiotic in nonelective cesarean section.

    PubMed Central

    Hager, W D; Rapp, R P; Billeter, M; Bradley, B B

    1991-01-01

    The use of antibiotics for prophylaxis against infection among women undergoing nonelective cesarean section has become the standard of care in the United States. Many different antibiotics have been used successfully. Single-dose regimens administered after the cord is clamped have proven just as effective as multiple-dose regimens. Although the most frequently used class of antibiotics is the cephalosporin family, the single best agent has not been determined. This study was a double-blind, randomized trial in which we compared a narrow-spectrum cephalosporin (cefazolin; n = 63) with an expanded-spectrum cephamycin (cefoxitin; n = 66) and with a broad-spectrum cephalosporin (cefotaxime; n = 60) used as a single-dose prophylaxis in patients undergoing a nonelective cesarean section. Of the 194 patients enrolled in the study, 189 were evaluable. There was no significant difference between the groups in mean age, gravidity, parity, duration of labor, duration of ruptured membranes, number of vaginal examinations, or socioeconomic status (socioeconomic status was defined by third-party coverage). There was no significant difference among the antibiotics in the incidence of immediate or delayed postoperative infections. These data indicate that a less expensive, narrow-spectrum cephalosporin is as effective as more expensive, broader-spectrum cephamycins and cephalosporins as prophylaxis for patients undergoing nonelective cesarean section. PMID:1952848

  15. Antibiotics in Animal Products

    NASA Astrophysics Data System (ADS)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  16. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society

    PubMed Central

    Gallo, Richard L.; Thiboutot, Diane; Webster, Guy F.; Rosen, Ted; Leyden, James J.; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-01-01

    In this second part of a three-part series addressing several issues related to antibiotic use in dermatology, potential effects of antibiotic use on the human microbiota and microbiome are reviewed. Data from available literature on the microbiologic effects of specific therapeutic agents commonly used in dermatology, including oral isotretinoin, tetracycline agents, and sub-antimicrobial (sub-antibiotic) dose doxycycline, are also discussed.

  17. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  18. Resistance-Resistant Antibiotics

    PubMed Central

    Oldfield, Eric; Feng, Xinxin

    2014-01-01

    New antibiotics are needed because as drug resistance is increasing, the introduction of new antibiotics is decreasing. Here, we discuss six possible approaches to develop ‘resistance-resistant’ antibiotics. First, multi-target inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy due to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, re-purposing existing drugs can lead to combinations of multi-target therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and in some cases suggest that sensitivity to existing antibiotics may be restored, in otherwise drug resistant organisms. PMID:25458541

  19. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  20. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells.

    PubMed

    Perucca, Paola; Savio, Monica; Cazzalini, Ornella; Mocchi, Roberto; Maccario, Cristina; Sommatis, Sabrina; Ferraro, Daniela; Pizzala, Roberto; Pretali, Luca; Fasani, Elisa; Albini, Angelo; Stivala, Lucia Anna

    2014-11-01

    The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O₂ partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue.

  1. Targeted α-therapy using 227Th-APOMAB and cross-fire antitumour effects: preliminary in-vivo evaluation.

    PubMed

    Staudacher, Alexander H; Bezak, Eva; Borysenko, Artem; Brown, Michael P

    2014-12-01

    Resistance to conventional cancer treatments is a major problem associated with solid tumours. Tumour hypoxia is associated with a poor prognosis and with poor treatment outcomes; therefore, there is a need for treatments that can kill hypoxic tumour cells. One potential option is targeted α-radioimmunotherapy, as α-particles can directly kill hypoxic tumour cells. The murine monoclonal antibody DAB4 (APOMAB), which binds dead tumour cells after DNA-damaging treatment, was conjugated and radiolabelled with the α-particle-emitting radionuclide thorium-227 (Th). Mice bearing Lewis lung tumours were administered Th-DAB4 alone or after chemotherapy and the tissue biodistribution of the radioimmunoconjugate was examined, as was the effect of these treatments on tumour growth and survival. Th-DAB4 accumulated in the tumour particularly after chemotherapy, whereas the distribution in healthy tissues did not change. Th-DAB4 as a monotherapy increased survival, with more pronounced responses observed when given after chemotherapy. We have shown that targeted α-therapy of necrotic tumour cells with Th-DAB4 had significant and surprising antitumour activity as it would occur only through a cross-fire effect.

  2. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Zhang, Jianqiang; Jiang, Kunming; Li, Ke; Cong, Yangwei; Pu, Shaoping; Jin, Yi; Lin, Jun

    2016-01-01

    Three water-soluble oxaliplatin complexes were prepared by inclusion complexation with β-cyclodextrin (β-CD), γ-CD and HP-β-CD. The structures of oxaliplatin/CDs were confirmed by NMR, FTIR, TGA, XRD as well as SEM analysis. The results show that the water solubility of oxaliplatin was increased in the complex with CDs in 1:1 stoichiometry inclusion modes, and the cyclohexane ring of oxaliplatin molecule was deeply inserted into the cavity of CDs. Moreover, the stoichiometry was established by a Job plot and the water stability constant (Kc) of oxaliplatin/CDs was calculated by phase solubility studies, all results show that the oxaliplatin/β-CD complex is more stable than free oxaliplatin, oxaliplatin/HP-β-CD and oxaliplatin/γ-CD. Meanwhile, the inclusion complexes displayed almost twice as high cytotoxicity compared to free oxaliplatin against HCT116 and MCF-7 cells. This satisfactory water solubility and higher cytotoxic activity of the oxaliplatin/CD complexes will potentially be useful for their application in anti-tumour therapy.

  3. Dendritic cell-based immunotherapy induces transient clinical response in advanced rat fibrosarcoma - comparison with preventive anti-tumour vaccination.

    PubMed

    Kucera, A; Pýcha, K; Pajer, P; Spísek, R; Skába, R

    2009-01-01

    In this study we present the models of preventive and therapeutic vaccination of sarcoma-bearing rats with dendritic cells that present tumour antigens from killed tumour cells. We present the characteristics of dendritic cell-based vaccine and its capacity to induce anti-tumour immune response both in vitro and in vivo. We show that preventive vaccination efficiently prevents tumour growth. On the other hand, vaccination of rats with established tumours did not lead to eradication of the tumours. Despite the induction of a vigorous immune response after administration of dendritic cell-based vaccine and transient decrease in tumour progression, tumours eventually resumed their growth and animals vaccinated with dendritic cells succumbed to cancer. In both settings, preventive and therapeutic, dendritic cell-based vaccination induced a vigorous tumour-specific T-cell response. These results argue for the timing of cancer immunotherapy to the stages of low tumour load. Immunotherapy initiated at the stage of minimal residual disease, after reduction of tumour load by other modalities, will have much better chance to offer a clinical benefit to cancer patients than the immunotherapy at the stage of metastatic disease.

  4. Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma.

    PubMed Central

    Ma, L. W.; Moan, J.; Steen, H. B.; Iani, V.

    1995-01-01

    The interaction of photodynamic therapy (PDT) and a chemotherapeutic drug, mitomycin C (MMC), was investigated using WiDr human colon adenocarcinoma tumours implanted on Balb/c athymic nude mice. The WiDr tumours were treated with PDT alone, MMC alone or with both. It was found that the combined treatment produced a greater retardation in the growth of the WiDr tumour than monotherapy with MMC or PDT. The synergistic effect was especially prominent when PDT was used in combination with a low dose of MMC (1 mg kg-1), since treatment of 1 mg kg-1 MMC alone had no effect on the tumour. The anti-tumour activity of PDT was found to be increased with MMC of 5 mg kg-1. The response of normal skin on mice feet to PDT slightly greater when PDT was combined with 5 mg kg-1 MMC than when PDT was applied alone, while no detectable additional effect on skin photosensitivity was observed when PDT was combined with 1 mg kg-1 MMC. An enhanced uptake of Photofrin in tumours was found 12 h and 24 h after administration of MMC. The effect of MMC on the cell cycle distribution of cell dissociated directly from the tumours was studied. The results suggest that the increased susceptibility to photoinactivation of Photofrin-sensitised tumours may be due to MMC-induced accumulation of the tumour cells in S-phase. PMID:7734319

  5. Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma

    NASA Astrophysics Data System (ADS)

    Dai, Jie; Wu, Shan; Kong, Yan; Chi, Zhihong; Si, Lu; Sheng, Xinan; Cui, Chuanliang; Fang, Jing; Zhang, Jue; Guo, Jun

    2017-01-01

    The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma.

  6. Synthesis, In vitro Antifungal and Antitumour Activity of Some Triorganotin(IV) N,C,N-Chelates

    PubMed Central

    Růžička, Aleš; Jambor, Roman; Buchta, Vladimír; Kubanová, Petra; Holoček, Jaroslav

    2002-01-01

    The in vitro antifungal activity of compounds 1-3 ( { [ ( CH 3 ) 2 NCH 2 ] 2 C 6 H 3 } R 2 SnX ; (where X=Cl, R=n-Bu for 1, X=Br, R=n-Bu for 2 and x= PF 6 , R=n=Bu for 3)) was estimated with the help of a modified microdilution format of the M27-A guidelines and was compared with in vitro activity of their diphenyltin(IV) analogues 4 and 5 (where X=Br, R=Ph for 4 and X= PF 6 , R=Ph for 5), and of drugs currently in clinical use (ketoconazole, fluconazole and amphotericin B). It was found that in coordinating solvents the more soluble derivative 2 is less active than the phenyl one (4), and compounds 1 and 3 are even inactive. In this paper, the in vitro antitumour activity of ionic diphenyltin(IV) complexes 4 and 5 against seven tumoural cell lines of human origin is also reported. The preparation and characterization ( H 1 , C 13 and Sn 119 NMR spectroscopy and electrospray ionization mass spectrometry) of the novel compound 3 is mentioned too. PMID:18475429

  7. Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma

    PubMed Central

    Dai, Jie; Wu, Shan; Kong, Yan; Chi, Zhihong; Si, Lu; Sheng, Xinan; Cui, Chuanliang; Fang, Jing; Zhang, Jue; Guo, Jun

    2017-01-01

    The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma. PMID:28054548

  8. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity

    PubMed Central

    Zamarin, Dmitriy; Holmgaard, Rikke B.; Ricca, Jacob; Plitt, Tamar; Palese, Peter; Sharma, Padmanee; Merghoub, Taha; Wolchok, Jedd D.; Allison, James P.

    2017-01-01

    Emerging data suggest that locoregional cancer therapeutic approaches with oncolytic viruses can lead to systemic anti-tumour immunity, although the appropriate targets for intratumoral immunomodulation using this strategy are not known. Here we find that intratumoral therapy with Newcastle disease virus (NDV), in addition to the activation of innate immunity, upregulates the expression of T-cell co-stimulatory receptors, with the inducible co-stimulator (ICOS) being most notable. To explore ICOS as a direct target in the tumour, we engineered a recombinant NDV-expressing ICOS ligand (NDV-ICOSL). In the bilateral flank tumour models, intratumoral administration of NDV-ICOSL results in enhanced infiltration with activated T cells in both virus-injected and distant tumours, and leads to effective rejection of both tumours when used in combination with systemic CTLA-4 blockade. These findings highlight that intratumoral immunomodulation with an oncolytic virus expressing a rationally selected ligand can be an effective strategy to drive systemic efficacy of immune checkpoint blockade. PMID:28194010

  9. Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells

    PubMed Central

    Momeny, Majid; Moghaddaskho, Farima; Gortany, Narges K.; Yousefi, Hassan; Sabourinejad, Zahra; Zarrinrad, Ghazaleh; Mirshahvaladi, Shahab; Eyvani, Haniyeh; Barghi, Farinaz; Ahmadinia, Leila; Ghazi-Khansari, Mahmoud; Dehpour, Ahmad R.; Amanpour, Saeid; Tavangar, Seyyed M.; Dardaei, Leila; Emami, Amir H.; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H.

    2017-01-01

    Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM. PMID:28287096

  10. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  11. Antibiotic-Resistant Gonorrhea (ARG)

    MedlinePlus

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to ...

  12. Mission Critical: Preventing Antibiotic Resistance

    MedlinePlus

    ... Button Past Emails CDC Features Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare ...

  13. Antibiotics, pediatric dysbiosis, and disease.

    PubMed

    Vangay, Pajau; Ward, Tonya; Gerber, Jeffrey S; Knights, Dan

    2015-05-13

    Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy.

  14. Antibiotics and Pregnancy: What's Safe?

    MedlinePlus

    Healthy Lifestyle Pregnancy week by week Is it safe to take antibiotics during pregnancy? Answers from Roger W. Harms, M. ... 2014 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/expert-answers/antibiotics-and-pregnancy/ ...

  15. The double life of antibiotics.

    PubMed

    Yap, Mee-Ngan F

    2013-01-01

    Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response.

  16. Effects of knowledge, attitudes, and practices of primary care providers on antibiotic selection, United States.

    PubMed

    Sanchez, Guillermo V; Roberts, Rebecca M; Albert, Alison P; Johnson, Darcia D; Hicks, Lauri A

    2014-12-01

    Appropriate selection of antibiotic drugs is critical to optimize treatment of infections and limit the spread of antibiotic resistance. To better inform public health efforts to improve prescribing of antibiotic drugs, we conducted in-depth interviews with 36 primary care providers in the United States (physicians, nurse practitioners, and physician assistants) to explore knowledge, attitudes, and self-reported practices regarding antibiotic drug resistance and antibiotic drug selection for common infections. Participants were generally familiar with guideline recommendations for antibiotic drug selection for common infections, but did not always comply with them. Reasons for nonadherence included the belief that nonrecommended agents are more likely to cure an infection, concern for patient or parent satisfaction, and fear of infectious complications. Providers inconsistently defined broad- and narrow-spectrum antibiotic agents. There was widespread concern for antibiotic resistance; however, it was not commonly considered when selecting therapy. Strategies to encourage use of first-line agents are needed in addition to limiting unnecessary prescribing of antibiotic drugs.

  17. Investigating the Antibiotic Resistance Problem.

    ERIC Educational Resources Information Center

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  18. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  19. Danger of Antibiotic Overuse (For Parents)

    MedlinePlus

    ... 1- to 2-Year-Old The Danger of Antibiotic Overuse KidsHealth > For Parents > The Danger of Antibiotic ... by not reaching for the prescription pad. How Antibiotics Work Antibiotics, first used in the 1940s, are ...

  20. Development of new antibiotics: taking off finally?

    PubMed

    Bettiol, Esther; Harbarth, Stephan

    2015-01-01

    Since 2010, awareness of the global threat caused by antimicrobial resistance (AMR) has risen considerably and multiple policy and research initiatives have been implemented. Research and development (R&D) of much-needed new antibiotics active against multiresistant pathogens is a key component of all programmes aiming at fighting AMR, but it has been lagging behind owing to scientific, regulatory and economic challenges. Although a few new antibiotics might be available in Switzerland in the next 5 years, these new agents are not based on new mechanisms of action and are not necessarily active against resistant pathogens for which there is the highest unmet medical need, i.e. multiresistant Gram-negative bacteria. Of the three new antibiotics with pending authorisation in Switzerland for systemic treatment of severe infections, oritavancin and tedizolid target Gram-positive pathogens, while only ceftolozane+tazobactam partially covers multiresistant Gram-negative pathogens. Among six antibiotics currently in phase III of clinical development, delafloxacin and solithromycin will also be useful mostly for Gram-positive infections. Importantly, the four other compounds are active against multiresistant Gram-negative pathogens: ceftazidime+avibactam, meropenem+RPX7009, eravacycline and plazomicin. The three last compounds are also active against carbapenem-resistant Enterobacteriaceae (CRE). A few compounds active against such pathogens are currently in earlier clinical development, but their number may decrease, considering the risk of failure over the course of clinical development. At last, through public and political awareness of pathogens with high public health impact and unmet medical need, development of innovative economic incentives and updated regulatory guidance, R&D of new antibiotics is slowly taking off again.

  1. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance

    PubMed Central

    Yap, Polly Soo Xi; Yiap, Beow Chin; Ping, Hu Cai; Lim, Swee Hua Erin

    2014-01-01

    For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent. PMID:24627729

  2. Selection of antibiotic resistance at very low antibiotic concentrations.

    PubMed

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  3. Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

    PubMed Central

    Sukumaran, Divya P.; Durairaj, Srinivasan; Abdulla, Mohamed Hatha

    2012-01-01

    This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary. PMID:23008708

  4. Alternatives to antibiotics-a pipeline portfolio review.

    PubMed

    Czaplewski, Lloyd; Bax, Richard; Clokie, Martha; Dawson, Mike; Fairhead, Heather; Fischetti, Vincent A; Foster, Simon; Gilmore, Brendan F; Hancock, Robert E W; Harper, David; Henderson, Ian R; Hilpert, Kai; Jones, Brian V; Kadioglu, Aras; Knowles, David; Ólafsdóttir, Sigríður; Payne, David; Projan, Steve; Shaunak, Sunil; Silverman, Jared; Thomas, Christopher M; Trust, Trevor J; Warn, Peter; Rex, John H

    2016-02-01

    Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.

  5. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    PubMed

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests.

  6. Mode of Action of Antibiotic U-24,544

    PubMed Central

    Reusser, Fritz

    1967-01-01

    Antibiotic U-24,544, a new antibacterial agent, was found to be an effective uncoupler of phosphorylation associated with the oxidation of glutamate and succinate in rat liver mitochondria. Respiration was inhibited during glutamate oxidation but not during succinate oxidation. In a medium deficient in inorganic phosphate, the agent showed slight stimulation of mitochondrial glutamate oxidation. Mitochondrial swelling induced by inorganic phosphate was suppressed. The antibiotic inhibited protein, nucleic acid, and cell wall synthesis in Mycobacterium avium cells nearly equally without a predominant inhibition of any one of these macromolecular biosynthetic processes. Nucleic acid and polypeptide synthesis remained unaffected, but respiration was inhibited in cell-free bacterial systems. It was thus concluded that the antibiotic interfered primarily with the cellular energy-generating processes. PMID:6069281

  7. Molecular mechanisms of antibiotic resistance.

    PubMed

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.

  8. Antibiotics as part of the management of severe acute malnutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Severe acute malnutrition contributes to 1 million deaths among children annually. Adding routine antibiotic agents to nutritional therapy may increase recovery rates and decrease mortality among children with severe acute malnutrition treated in the community. In this randomized, double-blind, plac...

  9. Rapid Detection of Bacterial Antibiotic Resistance: Preliminary Evaluation of PCR Assays Targeting Tetracycline Resistance Genes

    DTIC Science & Technology

    2007-08-01

    Molecular analysis of rifampin resistance in Bacillus anthracis and Bacillus cereus . Antimicrobial Agents and Chemotherapy 46: 511-513 15 DSTO-TR...fever. Infections like inhalation anthrax and pneumonic plague, caused by Bacillus anthracis and Yersinia pestis, have to be treated with an effective...Table 1. Antibiotics commonly used against diseases caused by potential BW agents Organism Disease Antibiotics Bacillus anthracis Anthrax Ciprofloxacin

  10. Antibiotics in microbial coculture.

    PubMed

    Ueda, Kenji; Beppu, Teruhiko

    2017-04-01

    Today, the frequency of discovery of new antibiotics in microbial culture is significantly decreasing. The evidence from whole-genome surveys suggests that many genes involved in the synthesis of unknown metabolites do exist but are not expressed under conventional cultivation conditions. Therefore, it is urgently necessary to study the conditions that make otherwise silent genes active in microbes. Here we overview the knowledge on the antibiotic production promoted by cocultivation of multiple microbial strains. Accumulating evidence indicates that cocultivation can be an effective way to stimulate the production of substances that are not formed during pure cultivation. Characterization of the promotive factors produced by stimulator strains is expected to give clues to the development of effective cultivation conditions for drug discovery.

  11. Antibiotics and oral contraceptives.

    PubMed

    DeRossi, Scott S; Hersh, Elliot V

    2002-10-01

    With the exception of rifampin-like drugs, there is a lack of scientific evidence supporting the ability of commonly prescribed antibiotics, including all those routinely employed in outpatient dentistry, to either reduce blood levels and/or the effectiveness of oral contraceptives. To date, all clinical trials studying the effects of concomitant antibiotic therapy (with the exception of rifampin and rifabutin) have failed to demonstrate an interaction. Like all drugs, oral contraceptives are not 100% effective with the failure rate in the typical United States population reported to be as high as 3%. It is thus possible that the case reports of unintended pregnancies during antibiotic therapy may simply represent the normal failure rate of these drugs. Considering that both drug classes are prescribed frequently to women of childbearing potential, one would expect a much higher rate of oral contraceptive failure in this group of patients if a true drug:drug interaction existed. On the other hand, if the interaction does exist but is a relatively rare event, occurring in, say, 1 in 5000 women, clinical studies such as those described in this article would not detect the interaction. The pharmacokinetic studies of simultaneous antibiotic and oral contraceptive ingestion, and the retrospective studies of pregnancy rates among oral contraceptive users exposed to antibiotics, all suffer from one potential common weakness, i.e., their relatively small sample size. Sample sizes in the pharmacokinetic trials ranged from 7 to 24 participants, whereas the largest retrospective study of pregnancy rates still evaluated less than 800 total contraceptive users. Still, the incidence of such a rare interaction would not differ from the accepted normal failure rate of oral contraceptive therapy. The medico-legal ramifications of what looks like at best a rare interaction remains somewhat "murky." On one hand, we have medico-legal experts advising the profession to exercise caution

  12. [Resistance to antibiotics].

    PubMed

    Sánchez, Jesús Silva

    2006-01-01

    Bacterial resistance to antibiotics is a major public health problem around the world causing high rates of morbi-mortality and economic problems in hospital settings. Major bacterial causing nosocomial infections are: extended-spectrum beta-lactameses (ESBL) producing enterobacteria, methicillin resistance Staphylococcus aureus, coagulase negative Staphylococcus, metallo fl-lactamases (MBL) producing Pseudomonas aeruginosa, Streptococcus pneumoniae, Enterococcus spp, Acinetobacter baumani. This last bacteria is not very often isolated in hospital settings yet, but it is multi-resistance pathogen causing high mortality. Helicobacter pylori, which is not a nosocomial pathogen but is associated to gastric diseases (from gastritis to gastric cancer). Infections prevention, to obtain an accuracy diagnostic and effective treatment, use antibiotic wisely and pathogen dissemination prevention (hand washing), are important steps to control the bacterial resistance.

  13. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity

    PubMed Central

    Erba, E; Bergamaschi, D; Ronzoni, S; Faretta, M; Taverna, S; Bonfanti, M; Catapano, C V; Faircloth, G; Jimeno, J; D'Incalci, M

    1999-01-01

    Thiocoraline, a new anticancer agent derived from the marine actinomycete Micromonospora marina, was found to induce profound perturbations of the cell cycle. On both LoVo and SW620 human colon cancer cell lines, thiocoraline caused an arrest in G1 phase of the cell cycle and a decrease in the rate of S phase progression towards G2/M phases, as assessed by using bromodeoxyuridine/DNA biparametric flow cytometric analysis. Thiocoraline does not inhibit DNA-topoisomerase II enzymes in vitro, nor does it induce DNA breakage in cells exposed to effective drug concentrations. The cell cycle effects observed after exposure to thiocoraline appear related to the inhibition of DNA replication. By using a primer extension assay it was found that thiocoraline inhibited DNA elongation by DNA polymerase α at concentrations that inhibited cell cycle progression and clonogenicity. These studies indicate that the new anticancer drug thiocoraline probably acts by inhibiting DNA polymerase α activity. © 1999 Cancer Research Campaign PMID:10362104

  14. Chemical modification of antifungal polyene macrolide antibiotics

    NASA Astrophysics Data System (ADS)

    Solovieva, S. E.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.

    2011-02-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  15. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  16. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice.

    PubMed

    Anupama, S; Laha, Preeti; Sharma, Mamta; Pathak, Kamal; Bane, Sanjay; Ingle, Arvind D; Gota, Vikram; Kalraiya, Rajiv D; Yu, Lu-Gang; Rhodes, Jonathan M; Swamy, Bale M; Inamdar, Shashikala R

    2017-04-03

    Sclerotium rolfsii lectin (SRL) is a lectin isolated from the fungus Sclerotium rolfsii and has exquisite binding specificity towards the oncofetal Thomsen-Friedenreich antigen (TF-Ag; Galβ1-3GalNAcα-O-Ser/Thr) and its derivatives. Previous studies have shown that SRL inhibits the proliferation of human colon, breast and ovarian cancer cells in vitro and suppresses tumour growth in mice when introduced intratumourally. The present study assessed the effect of SRL on tumour growth when introduced intraperitoneally in BALB/c nude mice and investigated the pharmacokinetics and biodistribution of SRL in Swiss albino mice. When 9 doses of SRL (30 mg/kg body weight/mice) was administered to BALB/c nude mice bearing human colon cancer HT-29 xenografts, a substantial reduction in tumour size was observed. A 35.8% reduction in tumour size was noted in the treated animals after 17 days. SRL treatment also inhibited angiogenesis, and the tumours from the treated animals were observed to carry fewer blood vessels and express less angiogenesis marker protein CD31, than that from the control animals. Pharmacokinetics and biodistribution analysis revealed that SRL was detected in the serum after 1 h and its level peaked after 24 h. SRL was not detected in any of the organs apart from the kidney where a trace amount was detected after 24 h of SRL injection. No significant changes were observed in any of the biochemical parameters tested including SGOT, SGPT, LDH, CREAT and BUN in the SRL-treated mice compared to these levels in the controls. This suggests that SRL has good potential to be developed as a therapeutic agent for cancer treatment and warrant further investigations in vivo and subsequent clinical trials.

  17. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    PubMed Central

    den Brok, M H M G M; Sutmuller, R P M; Nierkens, S; Bennink, E J; Frielink, C; Toonen, L W J; Boerman, O C; Figdor, C G; Ruers, T J M; Adema, G J

    2006-01-01

    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens. PMID:16953240

  18. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study

    PubMed Central

    Caplin, Martyn E; Pavel, Marianne; Ćwikła, Jarosław B; Phan, Alexandria T; Raderer, Markus; Sedláčková, Eva; Cadiot, Guillaume; Wolin, Edward M; Capdevila, Jaume; Wall, Lucy; Rindi, Guido; Langley, Alison; Martinez, Séverine; Gomez-Panzani, Edda; Ruszniewski, Philippe

    2016-01-01

    In the CLARINET study, lanreotide Autogel (depot in USA) significantly prolonged progression-free survival (PFS) in patients with metastatic pancreatic/intestinal neuroendocrine tumours (NETs). We report long-term safety and additional efficacy data from the open-label extension (OLE). Patients with metastatic grade 1/2 (Ki-67 ≤10%) non-functioning NET and documented baseline tumour-progression status received lanreotide Autogel 120 mg (n=101) or placebo (n=103) for 96 weeks or until death/progressive disease (PD) in CLARINET study. Patients with stable disease (SD) at core study end (lanreotide/placebo) or PD (placebo only) continued or switched to lanreotide in the OLE. In total, 88 patients (previously: lanreotide, n=41; placebo, n=47) participated: 38% had pancreatic, 39% midgut and 23% other/unknown primary tumours. Patients continuing lanreotide reported fewer adverse events (AEs) (all and treatment-related) during OLE than core study. Placebo-to-lanreotide switch patients reported similar AE rates in OLE and core studies, except more diarrhoea was considered treatment-related in OLE (overall diarrhoea unchanged). Median lanreotide PFS (core study randomisation to PD in core/OLE; n=101) was 32.8 months (95% CI: 30.9, 68.0). A sensitivity analysis, addressing potential selection bias by assuming that patients with SD on lanreotide in the core study and not entering the OLE (n=13) had PD 24 weeks after last core assessment, found median PFS remaining consistent: 30.8 months (95% CI: 30.0, 31.3). Median time to further PD after placebo-to-lanreotide switch (n=32) was 14.0 months (10.1; not reached). This OLE study suggests long-term treatment with lanreotide Autogel 120 mg maintained favourable safety/tolerability. CLARINET OLE data also provide new evidence of lanreotide anti-tumour benefits in indolent and progressive pancreatic/intestinal NETs. PMID:26743120

  19. Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?

    PubMed Central

    O'Malley, Grace; Heijltjes, Madelon; Houston, Aileen M.; Rani, Sweta; Ritter, Thomas; Egan, Laurence J.; Ryan, Aideen E.

    2016-01-01

    The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis. PMID:27542276

  20. Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?

    PubMed

    O'Malley, Grace; Heijltjes, Madelon; Houston, Aileen M; Rani, Sweta; Ritter, Thomas; Egan, Laurence J; Ryan, Aideen E

    2016-09-13

    The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.

  1. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    PubMed

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews.

  2. Therapeutic effect of interleukin 12 on mouse haemangiosarcomas is not associated with an increased anti-tumour cytotoxic T-lymphocyte activity.

    PubMed Central

    Vizler, C.; Rosato, A.; Calderazzo, F.; Quintieri, L.; Fruscella, P.; Wainstok de Calmanovici, R.; Mantovani, A.; Vecchi, A.; Zanovello, P.; Collavo, D.

    1998-01-01

    In syngeneic mice, the H5V polyoma middle-T oncogene-transformed endothelioma cell line induces Kaposi's sarcoma-like cavernous haemangiomas that regress transiently, probably because of an anti-tumour immune response, but eventually grow progressively and kill the host. To evaluate the generation of tumour-specific cytotoxic T lymphocytes (CTLs), spleen cells of tumour-bearing mice were restimulated with irradiated H5V cells in mixed leucocyte-tumour cell cultures. Tumour-specific CTLs were demonstrable only when low numbers of H5V stimulator cells were used (<1 H5V cell per 50 splenocytes). We found that H5V cells secrete immunosuppressive mediators because CTL generation was blocked when H5V cells culture supernatants were added to allogeneic mixed leucocyte cultures. As numerous tumour-derived immunosuppressive mediators may interfere with interleukin 12 (IL-12) production, we tested whether IL-12 treatment of the tumour-bearing mice would augment their immune response and thus suppress tumour growth. Indeed, IL-12 inhibited tumour growth and prevented mortality, but did not increase anti-H5V CTL generation either in vitro or in vivo. Moreover, the anti-tumour activity in IL-12-treated mice was abrogated by anti-interferon (IFN)-gamma monoclonal antibody (MAb) co-administration. These results strongly suggest that the anti-tumour effect of IL-12 is principally mediated by IFN-gamma release that in turn blocks H5V cell proliferation and induces the release of factors that suppress angiogenesis. PMID:9484826

  3. A novel protein from the serum of Python sebae, structurally homologous with type-γ phospholipase A(2) inhibitor, displays antitumour activity.

    PubMed

    Donnini, Sandra; Finetti, Federica; Francese, Simona; Boscaro, Francesca; Dani, Francesca R; Maset, Fabio; Frasson, Roberta; Palmieri, Michele; Pazzagli, Mario; De Filippis, Vincenzo; Garaci, Enrico; Ziche, Marina

    2011-12-01

    Cytotoxic and antitumour factors have been documented in the venom of snakes, although little information is available on the identification of cytotoxic products in snake serum. In the present study, we purified and characterized a new cytotoxic factor from serum of the non-venomous African rock python (Python sebae), endowed with antitumour activity. PSS (P. sebae serum) exerted a cytotoxic activity and reduced dose-dependently the viability of several different tumour cell lines. In a model of human squamous cell carcinoma xenograft (A431), subcutaneous injection of PSS in proximity of the tumour mass reduced the tumour volume by 20%. Fractionation of PSS by ion-exchange chromatography yielded an active protein fraction, F5, which significantly reduced tumour cell viability in vitro and, strikingly, tumour growth in vivo. F5 is composed of P1 (peak 1) and P2 subunits interacting in a 1:1 stoichiometric ratio to form a heterotetramer in equilibrium with a hexameric form, which retained biological activity only when assembled. The two peptides share sequence similarity with PIP {PLI-γ [type-γ PLA(2) (phospholipase A(2)) inhibitor] from Python reticulatus}, existing as a homohexamer. More importantly, although PIP inhibits the hydrolytic activity of PLA(2), the anti-PLA(2) function of F5 is negligible. Using high-resolution MS, we covered 87 and 97% of the sequences of P1 and P2 respectively. In conclusion, in the present study we have identified and thoroughly characterized a novel protein displaying high sequence similarity to PLI-γ and possessing remarkable cytotoxic and antitumour effects that can be exploited for potential pharmacological applications.

  4. Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis.

    PubMed

    Ryan, A E; Colleran, A; O'Gorman, A; O'Flynn, L; Pindjacova, J; Lohan, P; O'Malley, G; Nosov, M; Mureau, C; Egan, L J

    2015-03-19

    In a model of peritoneal metastasis in immune-competent mice, we show that nuclear factor (NF)-κB inhibition in CT26 colon cancer cells prevents metastasis. NF-κB inhibition, by stable overexpression of IκB-α super-repressor, induced differential polarization of co-cultured macrophages to an M1-like anti-tumour phenotype in vitro. NF-κB-deficient cancer cell-conditioned media (CT26/IκB-α SR) induced interleukin (IL)-12 and nitric oxide (NO) synthase (inducible NO synthase (iNOS)) expression in macrophages. Control cell (CT26/EV) conditioned media induced high levels of IL-10 and arginase in macrophages. In vivo, this effect translated to reduction in metastasis in mice injected with CT26/ IκB-α SR cells and was positively associated with increased CD8(+)CD44(+)CD62L(-) and CD4(+)CD44(+)CD62L(-) effector T cells. Furthermore, inhibition of NF-κB activity induced high levels of NO in infiltrating immune cells and decreases in matrix metalloproteinase-9 expression, simultaneous with increases in tissue inhibitor of metalloproteinases 1 and 2 within tumours. CT26/IκB-α SR tumours displayed increased pro-inflammatory gene expression, low levels of angiogenesis and extensive intratumoral apoptosis, consistent with the presence of an anti-tumour macrophage phenotype. Macrophage depletion reduced tumour size in CT26/EV-injected animals and increased tumour size in CT26/IκB-α SR cells compared with untreated tumours. Our data demonstrate, for the first time, that an important implication of targeting tumour cell NF-κB is skewing of macrophage polarization to an anti-tumour phenotype. This knowledge offers novel therapeutic opportunities for anticancer treatment.

  5. Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct

    PubMed Central

    Roth, A; Rohrbach, F; Weth, R; Frisch, B; Schuber, F; Wels, W S

    2005-01-01

    Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines. PMID:15812545

  6. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections

    PubMed Central

    Dou, Jian-Lin; Jiang, Yi-Wei; Xie, Jun-Qiu; Zhang, Xiao-Gang

    2016-01-01

    Staphylococcus aureus is the most common pathogen of wound infections. Thus far, methicillin-resistant S. aureus (MRSA) has become the major causative agent in wound infections, especially for nosocomial infections. MRSA infections are seldom eradicated by routine antimicrobial therapies. More concerning, some strains have become resistant to the newest antibiotics of last resort. Furthermore, horizontal transfer of a polymyxin resistance gene, mcr-1, has been identified in Enterobacteriaceae, by which resistance to the last group of antibiotics will likely spread rapidly. The worst-case scenario, “a return to the pre-antibiotic era”, is likely in sight. A perpetual goal for antibiotic research is the discovery of an antibiotic that lacks resistance potential, such as the recent discovery of teixobactin. However, when considering the issue from an ecological and evolutionary standpoint, it is evident that it is insufficient to solve the antibiotic dilemma through the use of antibiotics themselves. In this review, we summarized recent advances in antibiotic-based, antibiotic-free and ethnomedical treatments against MRSA wound infections to identify new clues to solve the antibiotic dilemma. One potential solution is to use ethnomedical drugs topically. Some ethnomedical drugs have been demonstrated to be effective antimicrobials against MRSA. A decline in antibiotic resistance can therefore be expected, as has been demonstrated when antibiotic-free treatments were used to limit the use of antibiotics. It is also anticipated that these drugs will have low resistance potential, although there is only minimal evidence to support this claim to date. More clinical trials and animal tests should be conducted on this topic. PMID:27120596

  7. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance.

    PubMed

    Dickey, Seth W; Cheung, Gordon Y C; Otto, Michael

    2017-03-24

    The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.

  8. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  9. [Enteropathogens and antibiotics].

    PubMed

    González-Torralba, Ana; García-Esteban, Coral; Alós, Juan-Ignacio

    2015-08-12

    Infectious gastroenteritis remains a public health problem. The most severe cases are of bacterial origin. In Spain, Campylobacter and Salmonella are the most prevalent bacterial genus, while Yersinia and Shigella are much less frequent. Most cases are usually self-limiting and antibiotic therapy is not generally indicated, unless patients have risk factors for severe infection and shigellosis. Ciprofloxacin, third generation cephalosporins, azithromycin, ampicillin, cotrimoxazole and doxycycline are the most recommended drugs. The susceptibility pattern of the different bacteria determines the choice of the most appropriate treatment. The aim of this review is to analyse the current situation, developments, and evolution of resistance and multidrug resistance in these 4 enteric pathogens.

  10. Endless Resistance. Endless Antibiotics?

    PubMed Central

    Fisher, Jed F.; Mobashery, Shahriar

    2016-01-01

    The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance. PMID:27746889

  11. The use of platensimycin and platencin to fight antibiotic resistance

    PubMed Central

    Allahverdiyev, Adil M; Bagirova, Melahat; Abamor, Emrah Sefik; Ates, Sezen Canim; Koc, Rabia Cakir; Miraloglu, Meral; Elcicek, Serhat; Yaman, Serkan; Unal, Gokce

    2013-01-01

    Infectious diseases are known as one of the most life-threatening disabilities worldwide. Approximately 13 million deaths related to infectious diseases are reported each year. The only way to combat infectious diseases is by chemotherapy using antimicrobial agents and antibiotics. However, due to uncontrolled and unnecessary use of antibiotics in particular, surviving bacteria have evolved resistance against several antibiotics. Emergence of multidrug resistance in bacteria over the past several decades has resulted in one of the most important clinical health problems in modern medicine. For instance, approximately 440,000 new cases of multidrug-resistant tuberculosis are reported every year leading to the deaths of 150,000 people worldwide. Management of multidrug resistance requires understanding its molecular basis and the evolution and dissemination of resistance; development of new antibiotic compounds in place of traditional antibiotics; and innovative strategies for extending the life of antibiotic molecules. Researchers have begun to develop new antimicrobials for overcoming this important problem. Recently, platensimycin – isolated from extracts of Streptomyces platensis – and its analog platencin have been defined as promising agents for fighting multidrug resistance. In vitro and in vivo studies have shown that these new antimicrobials have great potential to inhibit methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae by targeting type II fatty acid synthesis in bacteria. Showing strong efficacy without any observed in vivo toxicity increases the significance of these antimicrobial agents for their use in humans. However, at the present time, clinical trials are insufficient and require more research. The strong antibacterial efficacies of platensimycin and platencin may be established in clinical trials and their use in humans for coping with multidrug resistance may be

  12. Inhaled Antibiotics for Gram-Negative Respiratory Infections.

    PubMed

    Wenzler, Eric; Fraidenburg, Dustin R; Scardina, Tonya; Danziger, Larry H

    2016-07-01

    Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena.

  13. Modes and Modulations of Antibiotic Resistance Gene Expression

    PubMed Central

    Depardieu, Florence; Podglajen, Isabelle; Leclercq, Roland; Collatz, Ekkehard; Courvalin, Patrice

    2007-01-01

    Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information. PMID:17223624

  14. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts

    SciTech Connect

    Hand, W.L.; King-Thompson, N.L. , Decatur, GA )

    1990-06-01

    Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat less than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes.

  15. [Antibiotics: drug and food interactions].

    PubMed

    Hodel, M; Genné, D

    2009-10-07

    Antibiotics are widely prescribed in medical practice. Many of them induce or are subject to interactions that may diminish their anti-infectious efficiency or elicit toxic effects. Food intake can influence the effectiveness of an antibiotic. Certain antibiotics can lower the effectiveness of oral contraception. Oral anticoagulation can be influenced to a great extent by antibiotics and controls are necessary. Interactions are also possible via enzymatic induction or inhibition of cytochromes. The use of an interaction list with substrates of cytochromes enables to anticipate. Every new prescription should consider a possible drug or food interaction.

  16. Benzoyl peroxide: enhancing antibiotic efficacy in acne management.

    PubMed

    Dutil, Maha

    2010-01-01

    Benzoyl peroxide is one of the most widely used topical agents for acne. It has potent antibacterial and mild anti-inflammatory and comedolytic effects. To treat mild to moderate acne, it can be used alone or in combination with topical antibiotics and topical retinoids. The combination of benzoyl peroxide with either erythromycin or clindamycin is synergistic and well-tolerated. In more severe acne, when oral antibiotics are required, benzoyl peroxide can contribute to suppressing the emergence of resistant strains of Propionibacterium acnes.

  17. Antibiotic-Free Selection in Biotherapeutics: Now and Forever

    PubMed Central

    Mignon, Charlotte; Sodoyer, Régis; Werle, Bettina

    2015-01-01

    The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world. PMID:25854922

  18. Antibiotic drug advertising in medical journals.

    PubMed

    Gilad, Jacob; Moran, Lia; Schlaeffer, Francisc; Borer, Abraham

    2005-01-01

    Advertising is a leading strategy for drug promotion. We analysed 779 advertisements in 24 medical journals, 25% of which featured antibiotics. Antibiotic advertisements showed differences compared to those of other drugs. None addressed the issue of antibiotic resistance. Efforts to prevent antibiotic resistance should take antibiotic advertising into consideration.

  19. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents.

    PubMed

    Alarif, Walied M; Al-Footy, Khalid O; Zubair, Muhammad Sulaiman; Halid Ph, Mohamed; Ghandourah, Mohamed A; Basaif, Salim A; Al-Lihaibi, Sultan S; Ayyad, Seif-Eldin N; Badria, Farid A

    2016-01-01

    A new eudesmane sesquiterpenoid, eudesma-4(15),7-diene-5,11-diol (1) along with the known trinor-sesquiterene, teuhetenone (2), and a seco-eudesmane sesquiterpene, chabrolidione B (3), have been isolated from the Red Sea red alga Laurencia obtusa. The chemical structures were elucidated on the basis of extensive spectroscopic analysis. The antifungal and cytotoxic activities of the isolated metabolites were tested against several fungi, yeast and human mammary carcinoma cell line (MCF-7). Compounds 1 and 3 showed a much better activity [minimum inhibitory concentration (MIC): 2.9 μM] than that of amphotericin B (MIC: 4.6 μM). Interestingly, compound 2, the least active antifungal compound, retained the high anticancer activity against MCF-7 (22 μM) in comparison with cisplatin (59 μM), which was determined by employing lactate dehydrogenase assay. Compounds 1-3 are recorded here for the first time from algal flora. The chemotaxonomic importance of the isolated metabolites was discussed.

  20. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    PubMed

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  1. Reprioritizing Research Activity for the Post-Antibiotic Era: Ethical, Legal, and Social Considerations.

    PubMed

    Hey, Spencer Phillips; Kesselheim, Aaron S

    2017-03-01

    Many hold that the so-called golden era of antibiotic discovery has passed, leaving only a limited clinical pipeline for new antibiotics. A logical conclusion of such arguments is that we need to reform the current system of antibiotic drug research-including clinical trials and regulatory requirements-to spur activity in discovery and development. The United States Congress in the past few years has debated a number of bills to address this crisis, including the 2012 Generating Antibiotic Incentives Now Act and the 2016 21st Century Cures Act. Experts have also sought to advance antibiotic development by encouraging greater use of trials with noninferiority hypotheses, which are thought to be easier to conduct. The goal underlying these proposals is to stave off the post-antibiotic era by expanding the pharmaceutical armamentarium as quickly as possible. But although new antibiotic agents are necessary to combat the long-term threat of drug-resistant disease, we argue that these research policies, which effectively lower the bar for antibiotic approval, are ethically problematic. Rather, given broader public health considerations related to the full lifecycle of antibiotic use-including development of resistance-we should reject an overly permissive approach to new antibiotic approval and instead set the bar for regulatory approval at a point that will naturally direct research resources toward the most transformative chemical or social interventions.

  2. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model.

    PubMed

    Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru

    2015-04-01

    Toll-like receptor (TLR) agonists have been shown to have anti-tumour activity in basic research and clinical studies. However, TLR agonist monotherapy does not sufficiently eliminate tumours. Activation of the innate immune response by TLR agonists is effective at driving adaptive immunity via interleukin-12 (IL-12) or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, transforming growth factor-β, and indoleamine 2,3-dioxygenase (IDO). In the present study, we evaluated the anti-cancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of IDO activity. The administration of IMQ in IDO knockout (KO) mice inoculated with tumour cells significantly suppressed tumour progression compared with that in wild-type (WT) mice, and improved the survival rate. Moreover, injection with IMQ enhanced the tumour antigen-specific T helper type 1 response in IDO-KO mice with tumours. Combination therapy with IMQ and an IDO inhibitor also significantly inhibited tumour growth. Our results indicated that the enhancement of IDO expression with TLR agonists in cancer treatment might impair host anti-tumour immunity while the inhibition of IDO could enhance the therapeutic efficacy of TLR agonists via the increase of T helper type 1 immune response.

  3. Spectroscopic characterization, antioxidant and antitumour studies of novel bromo substituted thiosemicarbazone and its copper(II), nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.

    2015-01-01

    A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.

  4. New Therapeutic Strategies for Antibiotic-Resistant Select Agents

    DTIC Science & Technology

    2007-12-31

    experimental model examined the functional activities of the Gram positive Staphylococcus aureus with the Gram negative E. S 1. REPORT DATE (DD-MM-YYYY...4. TITLE AND SUBTITLE 31-12-2007 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author( s ...NAME( S ) AND ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle

  5. The Antibiotic Resistance Problem Revisited

    ERIC Educational Resources Information Center

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  6. Antibiotic use in livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic usage is a useful and commonly implemented practice in livestock and production agriculture that has progressively gained attention in recent years from consumers of animal products due to concerns about human and environmental health. Sub-therapeutic usage of antibiotics has led to a con...

  7. Development of molecularly targeted agents and immunotherapies in small cell lung cancer.

    PubMed

    Sharp, Adam; Bhosle, Jaishree; Abdelraouf, Fatma; Popat, Sanjay; O'Brien, Mary; Yap, Timothy A

    2016-06-01

    Small cell lung cancer (SCLC) is a smoking-induced malignancy with multiple toxin-associated mutations, which accounts for 15% of all lung cancers. It remains a clinical challenge with a rapid doubling time, early dissemination and poor prognosis. Despite multiple clinical trials in SCLC, platinum-based chemotherapy remains the mainstay of treatment in the first line advanced disease setting; good initial responses are nevertheless inevitably followed by disease relapse and survival ultimately remains poor. There are currently no molecularly targeted agents licenced for use in SCLC. Advances in sequencing the cancer genome and other high-throughput profiling technologies have identified aberrant pathways and mechanisms implicated in SCLC development and progression. Novel anti-tumour therapeutics that impact these putative targets are now being developed and investigated in SCLC. In this review, we discuss novel anti-tumour agents assessed in SCLC with reference to the complex molecular mechanisms implicated in SCLC development and progression. We focus on novel DNA damage response inhibitors, immune checkpoint modulators and antibody-drug conjugates that have shown promise in SCLC, and which may potentially transform treatment strategies in this disease. Finally, we envision the future management of SCLC and propose a biomarker-driven translational treatment paradigm for SCLC that incorporates next generation sequencing studies with patient tumours, circulating plasma DNA and functional imaging. Such modern strategies have the potential to transform the management and improve patient outcomes in SCLC.

  8. Which antibiotic for resistant Gram-positives, and why?

    PubMed

    Bradley, John S

    2014-01-01

    Increasing resistance in Gram-positive pathogens, particularly Staphylococcus aureus, and enterococcus, has become a major clinical problem, particularly in the hospital environment, causing significant morbidity and mortality in both healthy hosts and in those with underlying comorbidities. Increased resistance drives the use of empiric therapy with less well-studied and potentially more toxic agents. Resistance mechanisms for currently recommended agents are discussed, with options for therapy of resistant pathogens. For any new agent used, resistance is likely to develop, which underscores the concept that both antibiotics and antimicrobial resistance are ancient, and only by prudent use of antimicrobial agents and effective infection control measures when resistance arises, will effective agents be available to treat Gram-positive pathogens in the future.

  9. Clinical considerations in the treatment of acne vulgaris and other inflammatory skin disorders: focus on antibiotic resistance.

    PubMed

    Leyden, James J; Del Rosso, James Q; Webster, Guy F

    2007-06-01

    Propionibacterium acnes is an anaerobic bacterium that plays an important role in the pathogenesis of acne. Certain antibiotics that can inhibit P acnes colonization also have demonstrated anti-inflammatory activities in the treatment of acne, rosacea, and other noninfectious diseases. Decreased sensitivity of P acnes to antibiotics, such as erythromycin and tetracycline, has developed and may be associated with therapeutic failure. Benzoyl peroxide (BPO) is a nonantibiotic antibacterial agent that is highly effective against P acnes and for which no resistance against it has been detected to date. Retinoids are important components in combination therapy for acne, including use with antibiotics, and can serve as an alternative to these agents in maintenance therapy. By increasing our understanding of the multifaceted actions of antibiotics and the known clinical implications of antibiotic resistance, physicians can improve their decision making in prescribing these agents.

  10. Molecular mechanisms of antibiotic resistance.

    PubMed

    Wright, Gerard D

    2011-04-14

    Over the past decade, resistance to antibiotics has emerged as a crisis of global proportion. Microbes resistant to many and even all clinically approved antibiotics are increasingly common and easily spread across continents. At the same time there are fewer new antibiotic drugs coming to market. We are reaching a point where we are no longer able to confidently treat a growing number of bacterial infections. The molecular mechanisms of drug resistance provide the essential knowledge on new drug development and clinical use. These mechanisms include enzyme catalyzed antibiotic modifications, bypass of antibiotic targets and active efflux of drugs from the cell. Understanding the chemical rationale and underpinnings of resistance is an essential component of our response to this clinical challenge.

  11. New approaches to antibiotic discovery.

    PubMed

    Kealey, C; Creaven, C A; Murphy, C D; Brady, C B

    2017-03-08

    New antibiotics are urgently required by human medicine as pathogens emerge with developed resistance to almost all antibiotic classes. Pioneering approaches, methodologies and technologies have facilitated a new era in antimicrobial discovery. Innovative culturing techniques such as iChip and co-culturing methods which use 'helper' strains to produce bioactive molecules have had notable success. Exploiting antibiotic resistance to identify antibacterial producers performed in tandem with diagnostic PCR based identification approaches has identified novel candidates. Employing powerful metagenomic mining and metabolomic tools has identified the antibiotic'ome, highlighting new antibiotics from underexplored environments and silent gene clusters enabling researchers to mine for scaffolds with both a novel mechanism of action and also few clinically established resistance determinants. Modern biotechnological approaches are delivering but will require support from government initiatives together with changes in regulation to pave the way for valuable, efficacious, highly targeted, pathogen specific antimicrobial therapies.

  12. [Antibiotic resistance: A global crisis].

    PubMed

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics.

  13. Antibiotic prophylaxis in otolaryngologic surgery.

    PubMed

    Obeso, Sergio; Rodrigo, Juan P; Sánchez, Rafael; López, Fernando; Díaz, Juan P; Suárez, Carlos

    2010-01-01

    Since the beginning of the 80s, numerous clinical trials have shown a significant reduction in the incidence of infections in clean-contaminated upper respiratory tract surgery, due to perioperative use of antibiotics; however, there is no consensus about the best antibiotic protocol. Moreover, there are no universally accepted guidelines about flap reconstructive procedures. In otological and rhinological surgery, tonsillectomy, cochlear implant and laryngo-pharyngeal laser surgery, the use of antibiotics frequently depends on institutional or personal preferences rather than the evidence available. We reviewed clinical trials on different otorhinolaryngological procedures, assessing choice of antibiotic, length of treatment and administration route. There are no clinical trials for laryngo-pharyngeal laser surgery. Nor are there clinical trials on implant cochlear surgery or neurosurgical clean-contaminated procedures, but in these circumstances, antibiotic prophylaxis is recommended.

  14. The global need for effective antibiotics: challenges and recent advances.

    PubMed

    Högberg, Liselotte Diaz; Heddini, Andreas; Cars, Otto

    2010-11-01

    The emerging problem of antibiotic resistance is a serious threat to global public health. The situation is aggravated by a substantial decline in the research and development of antibacterial agents. Hence, very few new antibacterial classes are brought to market when older classes lose their efficacy. There has been renewed and growing attention within policy groups to: (i) address the problem; (ii) discuss incentives for the development of urgently needed new treatments; (iii) preserve the efficacy of existing therapeutic options. We briefly review the basic principles of antibiotic resistance, and contrast the increasing resistance to the dwindling antibacterial 'pipeline'. We also highlight some recent policy initiatives aiming to secure the future need of effective antibiotics.

  15. Global surveillance of antibiotic sensitivity of Vibrio cholerae*

    PubMed Central

    O'Grady, F.; Lewis, M. J.; Pearson, N. J.

    1976-01-01

    Strains of Vibrio cholerae—1156 from various parts of the world—were examined by standardized antibiotic sensitivity tests in one centre, to determine the global incidence of antibiotic resistance in this organism and to assess the extent to which differences in methods of sensitivity testing might be responsible for discrepancies in the reported incidence of resistant strains. Of the strains examined, 1127 were fully sensitive to ampicillin, chloramphenicol, tetracycline, furazolidone, and three different sulphonamides, 27 showed stable and reproducible resistance to one or more of these agents, and 2 proved to contain a minority of cells with unstable, presumably plasmid-borne, resistance to chloram-phenicol. Unstable resistance to antibiotics may be common in V. cholerae but rarely recognized, and may account for some of the discrepancies in the reported incidence of resistant strains. PMID:1088100

  16. Antibiotics and Bacterial Resistance in the 21st Century

    PubMed Central

    Fair, Richard J; Tor, Yitzhak

    2014-01-01

    Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed. PMID:25232278

  17. Antibiotic sensitivity patterns among Indian strains of avian Pasteurella multocida.

    PubMed

    Shivachandra, S B; Kumar, A A; Biswas, A; Ramakrishnan, M A; Singh, Vijendra P; Srivastava, S K

    2004-11-01

    An investigation was carried out to study the antibiotic sensitivity of avian strains of Pasteurella multocida and to select an effective antimicrobial agent for control of avian pasteurellosis in India. A total of 123 strains of P. multocida recently isolated from different avian species (chicken, duck, turkey, quail, and goose), from different regions of India were subjected to antibiotic sensitivity tests using 20 different antibiotics. Absolute resistance was observed against sulfadiazine. The studies indicated that the strains were most sensitive to chloramphenicol (73.98%), followed by enrofloxacin (71.54%), lincomycin (64.23%), norfloxacin (61.79%) and doxycycline-HCl (56.91%). The majority of the strains were found to exhibit intermediate sensitivity. Chloramphenicol was selected and suggested for treatment. Antibiogram studies also revealed the emergence of multidrug-resistant strains of P. multocida among Indian poultry.

  18. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents.

    PubMed

    Huang, Minjian; Deng, Zixin; Tian, Jian; Liu, Tiangang

    2017-02-15

    Salinomycin, a polyether antibiotic used for treatment of coccidial disease in animal husbandry, has demonstrated promising efficacy for treating different cancers. To enrich structure-activity relationship of salinomycin in tumours, we prepared a series of new triazole derivatives in specific site of salinomycin by click cycloaddition reactions, and assessed their antiproliferative activities on breast cancer cell lines. The screening results indicated that most derivatives modified at the C20 hydroxyl group have potent antitumour activity. Notably, salinomycin triazole dimers were 3.27-4.97 times more toxic than the natural substance in ERα-positive breast cancer cells (MCF-7), and had moderately improved toxicity in triple-negative breast cancer cells (MDA-MB-231).

  19. Mechanisms of bacterial resistance to macrolide antibiotics.

    PubMed

    Nakajima, Yoshinori

    1999-06-01

    Macrolides have been used in the treatment of infectious diseases since the late 1950s. Since that time, a finding of antagonistic action between erythromycin and spiramycin in clinical isolates1 led to evidence of the biochemical mechanism and to the current understanding of inducible or constitutive resistance to macrolides mediated by erm genes containing, respectively, the functional regulation mechanism or constitutively mutated regulatory region. These resistant mechanisms to macrolides are recognized in clinically isolated bacteria. (1) A methylase encoded by the erm gene can transform an adenine residue at 2058 (Escherichia coli equivalent) position of 23S rRNA into an 6N, 6N-dimethyladenine. Position 2058 is known to reside either in peptidyltransferase or in the vicinity of the enzyme region of domain V. Dimethylation renders the ribosome resistant to macrolides (MLS). Moreover, another finding adduced as evidence is that a mutation in the domain plays an important role in MLS resistance: one of several mutations (transition and transversion) such as A2058G, A2058C or U, and A2059G, is usually associated with MLS resistance in a few genera of bacteria. (2) M (macrolide antibiotics)- and MS (macrolide and streptogramin type B antibiotics)- or PMS (partial macrolide and streptogramin type B antibiotics)-phenotype resistant bacteria cause decreased accumulation of macrolides, occasionally including streptogramin type B antibiotics. The decreased accumulation, probably via enhanced efflux, is usually inferred from two findings: (i) the extent of the accumulated drug in a resistant cell increases as much as that in a susceptible cell in the presence of an uncoupling agent such as carbonylcyanide-m-chlorophenylhydrazone (CCCP), 2,4-dinitrophenol (DNP), and arsenate; (ii) transporter proteins, in M-type resistants, have mutual similarity to the 12-transmembrane domain present in efflux protein driven by proton-motive force, and in MS- or PMS-type resistants

  20. A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals.

    PubMed

    Salisbury, Janet G; Nicholls, Terence J; Lammerding, Anna M; Turnidge, John; Nunn, Michael J

    2002-09-01

    In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations.

  1. Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature.

    PubMed

    Hiramatsu, Keiichi; Igarashi, Masayuki; Morimoto, Yuh; Baba, Tadashi; Umekita, Maya; Akamatsu, Yuzuru

    2012-06-01

    By screening cultures of soil bacteria, we re-discovered an old antibiotic (nybomycin) as an antibiotic with a novel feature. Nybomycin is active against quinolone-resistant Staphylococcus aureus strains with mutated gyrA genes but not against those with intact gyrA genes against which quinolone antibiotics are effective. Nybomycin-resistant mutant strains were generated from a quinolone-resistant, nybomycin-susceptible, vancomycin-intermediate S. aureus (VISA) strain Mu 50. The mutants, occurring at an extremely low rate (<1 × 10(-11)/generation), were found to have their gyrA genes back-mutated and to have lost quinolone resistance. Here we describe nybomycin as the first member of a novel class of antibiotics designated 'reverse antibiotics'.

  2. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    PubMed Central

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  3. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    PubMed Central

    Lerbech, Anne Mette; Opintan, Japheth A.; Bekoe, Samuel Oppong; Ahiabu, Mary-Anne; Tersbøl, Britt Pinkowski; Hansen, Martin; Brightson, Kennedy T. C.; Ametepeh, Samuel; Frimodt-Møller, Niels; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (CoNS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n = 246 and n = 96 respectively) from patients in two hospitals in Ghana. CoNS were identified using Gram staining, coagulase test, and MALDI-TOF/MS, and the antimicrobial susceptibility to 12 commonly used antimicrobials was determined by disk diffusion. Moreover an analytical method was developed for the determination of the nine most commonly used antimicrobial agents in Ghana by using solid-phase extraction in combination with HPLC-MS/MS using electron spray ionization. The highest frequency of resistance to CoNS was observed for penicillin V (98%), trimethoprim (67%), and tetracycline (63%). S. haemolyticus was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (≧4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial agents were detected in 64% of the analysed urine samples (n = 121) where the most frequently detected antimicrobials were ciprofloxacin (30%), trimethoprim (27%), and metronidazole (17%). The major findings of this study was that the prevalence of detected antimicrobials in urine was more frequent than the use reported by the patients and the prevalence of resistant S. haemolyticus was more frequent than other resistant CoNS species when

  4. Clinical, economic and societal impact of antibiotic resistance.

    PubMed

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  5. Agent Orange

    MedlinePlus

    ... Z) Hepatitis HIV Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research ( ... eligible Veterans a free Agent Orange Registry health exam for possible long-term health problems related to ...

  6. Systemic antibiotic therapy in periodontics

    PubMed Central

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-01-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy. PMID:23559912

  7. Systemic antibiotic therapy in periodontics.

    PubMed

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-09-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  8. [Strategies to avoid antibiotic resistance].

    PubMed

    Kees, M G

    2013-03-01

    Antibiotics are used very frequently in critically ill patients as a causal and often life-saving treatment; however, the high density of use of broad spectrum antibiotics contributes to a further deterioration in resistance trends, which makes a rational prescription behavior mandatory. This particularly includes measures which lead to the reduction of antibiotic use, i.e. rigorous indications, targeted de-escalation and limited duration. For optimal efficacy of a necessary treatment the integration of pharmacokinetic and pharmacodynamic principles can be helpful.

  9. Antibiotic resistance amongst healthcare-associated pathogens in China.

    PubMed

    Yezli, Saber; Li, Han

    2012-11-01

    The People's Republic of China, commonly known as China, comprises approximately one-fifth of the world's population. Because of the expanding size and density of its population and the frequent interaction of people with animals, China is a hotspot for the emergence and spread of new microbial threats and is a major contributor to the worldwide infectious disease burden. In recent years, the emergence and rapid spread of severe acute respiratory syndrome (SARS) generated considerable interest in the Chinese healthcare system and its infection control and prevention measures. This review examines antibiotic misuse and the status of antibiotic resistance in the Chinese healthcare system. China has high rates of antibiotic resistance driven by misuse of these agents in a healthcare system that provides strong incentives for overprescribing and in a country where self-medication is common. Tuberculosis remains a serious problem in China, with a high prevalence of multidrug-resistant and extensively drug-resistant strains. Drug resistance amongst nosocomial bacteria has been on a rapid upward trend with a strong inclination towards multidrug resistance. There is a need for effective infection prevention and control measures and strict use of antibiotics in China to control the rise and spread of antibiotic resistance in the country.

  10. Antibiotics May Trigger Mitochondrial Dysfunction Inducing Psychiatric Disorders

    PubMed Central

    Stefano, George B.; Samuel, Joshua; Kream, Richard M.

    2017-01-01

    Clinical usage of several classes of antibiotics is associated with moderate to severe side effects due to the promotion of mitochondrial dysfunction. We contend that this may be due to perturbation of unique evolutionary relationships that link selective biochemical and molecular aspects of mitochondrial biology to conserved enzymatic processes derived from bacterial progenitors. Operationally, stereo-selective conformational matching between mitochondrial respiratory complexes, cytosolic and nuclear signaling complexes appears to support the conservation of a critically important set of chemical messengers required for existential regulation of homeostatic cellular processes. Accordingly, perturbation of normative mitochondrial function by select classes of antibiotics is certainly reflective of the high degree of evolutionary pressure designed to maintain ongoing bidirectional signaling processes between cellular compartments. These issues are of critical importance in evaluating potentially severe side effects of antibiotics on complex behavioral functions mediated by CNS neuronal groups. The CNS is extremely dependent on delivery of molecular oxygen for maintaining a required level of metabolic activity, as reflected by the high concentration of neuronal mitochondria. Thus, it is not surprising to find several distinct behavioral abnormalities conforming to established psychiatric criteria that are associated with antibiotic usage in humans. The manifestation of acute and/or chronic psychiatric conditions following antibiotic usage may provide unique insights into key etiological factors of major psychiatric syndromes that involve rundown of cellular bioenergetics via mitochondrial dysfunction. Thus, a potential window of opportunity exists for development of novel therapeutic agents targeting diminished mitochondrial function as a factor in severe behavioral disorders. PMID:28063266

  11. Degradation Effect of Sulfa Antibiotics by Potassium Ferrate Combined with Ultrasound (Fe(VI)-US)

    PubMed Central

    Zhang, Kejia; Luo, Zhang; Zhang, Tuqiao; Gao, Naiyun; Ma, Yan

    2015-01-01

    Sulfa antibiotics are a family of typical broad-spectrum antibiotics, which have become one of the most frequently detected antibiotics in water, posing a great threat to human health and ecosystem. Potassium ferrate is a new type of high-efficiency multifunctional water treatment agent, collecting the effects of oxidation, adsorption, flocculation, coagulation, sterilization, and deodorization. Performance and mechanism of degradation of typical broad-spectrum antibiotics by Fe(VI)-US were further studied, investigating the degradation effect of sulfa antibiotics by single ultrasound, single potassium ferrate, and potassium ferrate-ultrasound (Fe(VI)-US). It was found that Fe(VI)-US technology had a significant role in promoting the degradation of sulfa antibiotics via orthogonal experiments. Factors evaluated included sulfa antibiotics type, pH value, potassium ferrate dosage, ultrasonic frequency, and ultrasonic power, with the pH value and potassium ferrate dosage being affected most significantly. One reason for synergy facilitating the degradation is the common oxidation of potassium ferrate and ultrasound, and the other is that Fe(III) produced promotes the degradation rate. According to the product analysis and degradation pathways of three sulfa antibiotics, ferrate-sonication sulfa antibiotics are removed by hydroxyl radical oxidation. PMID:26347876

  12. Antibiotic prophylaxis to prevent local infection in Oral Surgery: use or abuse?

    PubMed

    Sancho-Puchades, Manuel; Herráez-Vilas, José María; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2009-01-01

    Antibiotics have a well-documented efficacy in the treatment of established infections and as prophylactic agents in medically compromised patients. However, the systematic administration of antibiotics to prevent local infections in fit patients is much more controversial. The aim of this paper is to reflect on the justification for prophylactic usage of antibiotics to prevent wound infection and to reason out the most appropriate antibiotic guidelines taking into account available scientific data and studies by other authors. Numerous clinical trials question the efficacy of antibiotics in preventing wound infection. While some studies establish that antibiotics reduce the incidence of postoperative infections, others compare their efficacy to that of placebo. Thus, scientific literature suggests that every oral surgical intervention is not tributary of systematic antibiotic prophylaxis to prevent local infections. Intrinsic surgical risk factors and the patient's individual circumstances must be taken into account. Even though the efficacy of other antibiotics cannot be ruled out due to our limited comprehension of the bacteriologic interrelations intervening in the pathogenesis of postextraction local infection, the amoxicillin-clavulanic acid combination theoretically covers the complete odontogenic bacterial spectrum in Spain. When the prophylactic use of antibiotics is indicated, this should be performed preoperatively, at high doses, and its extent should not exceed 24 hours. Special attention should be paid to antiinfectious local measures that can minimize infection risk during the wound's healing period.

  13. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?

    PubMed

    Beardmore, Robert Eric; Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan

    2017-04-01

    Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic.

  14. Design of dual action antibiotics as an approach to search for new promising drugs

    NASA Astrophysics Data System (ADS)

    Tevyashova, A. N.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.

    2015-01-01

    The review is devoted to the latest achievements in the design of dual action antibiotics — heterodimeric (chimeric) structures based on antibacterial agents of different classes (fluoroquinolones, anthracyclines, oxazolidines, macrolides and so on). Covalent binding can make the pharmacokinetic characteristics of these molecules more predictable and improve the penetration of each component into the cell. Consequently, not only does the drug efficacy increase owing to inhibition of two targets but also the resistance to one or both antibiotics can be overcome. The theoretical grounds of elaboration, design principles and methods for the synthesis of dual action antibiotics are considered. The structures are classified according to the type of covalent spacer (cleavable or not) connecting the moieties of two agents. Dual action antibiotics with a spacer that can be cleaved in a living cell are considered as dual action prodrugs. Data on the biological action of heterodimeric compounds are presented and structure-activity relationships are analyzed. The bibliography includes 225 references.

  15. The Double Life of Antibiotics

    PubMed Central

    Yap, Mee-Ngan F.

    2013-01-01

    Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response. “The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily under-dose himself and by exposing his microbes to nonlethal quantities of the drug make them resistant.”~Alexander Fleming PMID:24003650

  16. Antibiotic resistance: An ethical challenge.

    PubMed

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  17. Multiscale Models of Antibiotic Probiotics

    PubMed Central

    Kaznessis, Yiannis N.

    2014-01-01

    The discovery of antibiotics is one of the most important advances in the history of humankind. For eighty years human life expectancy and standards of living improved greatly thanks to antibiotics. But bacteria have been fighting back, developing resistance to our most potent molecules. New, alternative strategies must be explored as antibiotic therapies become obsolete because of bacterial resistance. Mathematical models and simulations guide the development of complex technologies, such as aircrafts, bridges, communication systems and transportation systems. Herein, models are discussed that guide the development of new antibiotic technologies. These models span multiple molecular and cellular scales, and facilitate the development of a technology that addresses a significant societal challenge. We argue that simulations can be a creative source of knowledge. PMID:25313349

  18. β-Lactam Antibiotics Renaissance

    PubMed Central

    Qin, Wenling; Panunzio, Mauro; Biondi, Stefano

    2014-01-01

    Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors. PMID:27025744

  19. Novel target sites in bacteria for overcoming antibiotic resistance.

    PubMed

    Black, Michael T; Hodgson, John

    2005-07-29

    Resistance to marketed antibiotics continues to increase. During the last 10 years some 200 bacterial genome sequences have become available, giving rise to expectations that genomics would provide a plethora of novel targets and hence a flood of new therapeutic agents. Contrary to some predictions the genomic effort has yet to yield a substantial number of novel class agents in clinical development. What are the reasons for the differences between expectations and reality? This article reviews what has been achieved in the exploitation of bacterial genomes for the discovery of novel antibacterials.

  20. [Antithyroid agents related agranulocytosis: Literature review].

    PubMed

    Andrès, E; Weitten, T; Mourot-Cottet, R; Keller, O; Zulfiqar, A-A; Serraj, K; Vogel, T; Tebacher, M

    2016-08-01

    The antithyroid agents (carbimazole, methimazole, thiamazole, propylthiouracil and benzylthiouracile) are the drug class that is associated with a high risk of agranulocytosis. Acute and profound (<0.5×10(9)/L) isolated neutropenia occurring in a subject treated with antithyroid agents should be considered as a drug-induced agranulocytosis, until proven otherwise. The clinical spectrum ranges from discovery of acute severe but asymptomatic neutropenia, to isolated fever, localized infections (especially ear, nose and throat, or pulmonary) or septicemia. With an optimal management (discontinuation of antithyroid agents, antibiotics in the presence of fever or a documented infection, or use of hematopoietic growth factor) the current mortality is close to 2%.

  1. Antibiotics in early life and obesity.

    PubMed

    Cox, Laura M; Blaser, Martin J

    2015-03-01

    The intestinal microbiota can influence host metabolism. When given early in life, agents that disrupt microbiota composition, and consequently the metabolic activity of the microbiota, can affect the body mass of the host by either promoting weight gain or stunting growth. These effects are consistent with the role of the microbiota during development. In this Perspective, we posit that microbiota disruptions in early life can have long-lasting effects on body weight in adulthood. Furthermore, we examine the dichotomy between antibiotic-induced repression and promotion of growth and review the experimental and epidemiological evidence that supports these phenotypes. Considering the characteristics of the gut microbiota in early life as a distinct dimension of human growth and development, as well as comprehending the susceptibility of the microbiota to perturbation, will allow for increased understanding of human physiology and could lead to development of interventions to stem current epidemic diseases such as obesity, type 1 diabetes mellitus and type 2 diabetes mellitus.

  2. Antibiotic usage in animals: impact on bacterial resistance and public health.

    PubMed

    van den Bogaard, A E; Stobberingh, E E

    1999-10-01

    Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine.

  3. Evaluation of the antitumour activity of Rinvanil and Phenylacetylrinvanil on the cervical cancer tumour cell lines HeLa, CaSKi and ViBo.

    PubMed

    Sánchez-Sánchez, Luis; Alvarado-Sansininea, Jesús J; Escobar, María L; López-Muñoz, Hugo; Hernández-Vázquez, José M V; Monsalvo-Montiel, Iván; Demare, Patricia; Regla, Ignacio; Weiss-Steider, Benny

    2015-07-05

    Capsaicin is a potent inducer of apoptosis in tumourreceptor potential vanilloid 1 (TRPV1). The present study determined the IC50 and cytotoxic and apoptotic activities of the Capsaicin analogues Rinvanil and Phenylacetylrinvanil (PhAR) on three cervical cancer cell lines: HeLa, CaSKi and ViBo. These analogues possess an increased affinity for TRPV1 receptors. The IC50 obtained proved to be cytotoxic for all three cell lines; however, in the cells treated with Capsaicin both active caspase-3 and nuclear fragmentation were present. Capsaicin and its analogues also inhibited the normal proliferation of lymphocytes, suggesting that they are non-selective antitumour compounds. Finally, we discuss the possible loss of the relation between apoptosis and affinity to TRPV1, and the need for other strategies to synthesise Capsaicin analogues that can be useful in cancer treatments.

  4. Synthesis, structure, spectroscopic and in vitro antitumour studies of a novel gallium(III) complex with 2-acetylpyridine (4)N-dimethylthiosemicarbazone.

    PubMed

    Arion, Vladimir B; Jakupec, Michael A; Galanski, Markus; Unfried, Peter; Keppler, Bernhard K

    2002-07-25

    The reaction of 2-acetylpyridine 4N-dimethylthiosemicarbazone (HL) with GaCl(3) in absolute ethanol in 1:1 molar ratio yielded the complex [GaL(2)][GaCl(4)]. The crystal structure of the gallium(III) complex has been determined by X-ray diffraction methods. Infrared, electronic, ESI mass and (1)H, (13)C, (15)N and (71)Ga NMR spectra, as well as the thermal behaviour are reported. The cytotoxicity assay in several human cancer cell lines (SW480, SK-BR-3 and 41M) suggests that the gallium(III) complex might be endowed with promising antitumour properties. In vitro cytotoxic activity exceeds that of all other tested gallium(III) complexes and is slightly higher than that of HL.

  5. Bacteriocins and their position in the next wave of conventional antibiotics.

    PubMed

    Cavera, Veronica L; Arthur, Timothy D; Kashtanov, Dimitri; Chikindas, Michael L

    2015-11-01

    Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.

  6. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  7. Expedient antibiotics production: Final report

    SciTech Connect

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  8. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    PubMed

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network.

  9. Photodynamic therapy with recombinant adenovirus AdmIL-12 enhances anti-tumour therapy efficacy in human papillomavirus 16 (E6/E7) infected tumour model

    PubMed Central

    Park, Eun Kyung; Bae, Su-Mi; Kwak, Sun-Young; Lee, Sung Jong; Kim, Yong-Wook; Han, Chan-Hee; Cho, Hyun-Jung; Kim, Kyung Tae; Kim, Young-Jae; Kim, Hyun-Jung; Ahn, Woong Shick

    2008-01-01

    Immunotherapy with photodynamic therapy (PDT) offers great promise as a new alternative for cancer treatment; however, its use remains experimental. Here we investigated the utility of adenoviral delivery of interleukin-12 (AdmIL-12) as an adjuvant for PDT in mouse tumour challenge model. PDT was performed by irradiating Radachlorin in C57BL/6 mice transplanted with TC-1 cells. PDT plus AdmIL-12 treatment for tumour suppression as well as specific immune responses were evaluated with the following tests: in vitro and in vivo tumour growth inhibition, interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) assay, and cytotoxic T lymphocyte (CTL) assay. Direct intratumoral injection of AdmIL-12 resulted in a significant suppression of tumour growth compared to the control group. Treatment of PDT along with AdmIL-12 further enhanced antitumour effects significantly higher than either AdmIL-12 or PDT alone. This combined treatment resulted in complete regression of 9-mm sized tumour in every animal. We also evaluated immune responses induced by these treatments. Combined treatment significantly increased the production level of IFN-γ and TNF-α compared with that by AdmIL-12 or PDT alone. PDT plus AdmIL-12 enhanced antitumour immunity through increased expansion of the CTL subset mediated by CD8+ T cells. Taken together, these results indicate that the high anti-cancer activity of PDT with AdmIL-12 is a powerful tool against cancer therapy and is a promising subject for further investigation. PMID:18397271

  10. Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-08-01

    The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.

  11. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries.

    PubMed Central

    Okeke, I. N.; Lamikanra, A.; Edelman, R.

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  12. Discovery and development of new antimicrobial agents.

    PubMed Central

    Gootz, T D

    1990-01-01

    The unprecedented growth in the number of new antibiotics over the past two decades has been the result of extensive research efforts that have exploited the growing body of knowledge describing the interactions of antibiotics with their targets in bacterial cells. Information gained from one class of antimicrobial agents has often been used to advance the development of other classes. In the case of beta-lactams, information on structure-activity relationships gleaned from penicillins and cephalosporins was rapidly applied to the cephamycins, monobactams, penems, and carbapenems in order to discover broad-spectrum agents with markedly improved potency. These efforts have led to the introduction of many new antibiotics that demonstrate outstanding clinical efficacy and improved pharmacokinetics in humans. The current review discusses those factors that have influenced the rapid proliferation of new antimicrobial agents, including the discovery of new lead structures from natural products and the impact of bacterial resistance development in the clinical setting. The development process for a new antibiotic is discussed in detail, from the stage of early safety testing in animals through phase I, II, and III clinical trials. PMID:2404566

  13. Empiric antibiotic therapy for acute osteoarticular infections with suspected methicillin-resistant Staphylococcus aureus or Kingella.

    PubMed

    Saphyakhajon, Phisit; Joshi, Avni Y; Huskins, W Charles; Henry, Nancy K; Boyce, Thomas G

    2008-08-01

    The bacterial agents causing bone and joint infections have been changing. Currently, methicillin-resistant Staphylococcus aureus (MRSA) and Kingella kingae are emerging pathogens. For treatment of MRSA infections, clindamycin, vancomycin, and linezolid are commonly prescribed antibiotics. Kingella are sensitive to most penicillins and cephalosporins. Because MRSA osteoarticular infections tend to be severe, longer periods of antibiotic treatment with more frequent monitoring of inflammatory markers are sometimes required to obtain a complete cure with no residual complications. To assist management, we have included a clinical decision tree with antibiotic treatment protocols.

  14. Mechanisms of action of newer antibiotics for Gram-positive pathogens.

    PubMed

    Hancock, Robert Ew

    2005-04-01

    Certain Gram-positive bacteria, including meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and quinolone-resistant Streptococcus pneumoniae have achieved the status of "superbugs", in that there are few or no antibiotics available for therapy against these pathogens. Only a few classes of novel antibiotics have been introduced in the past 40 years, and all since 1999, including the streptogramin combination quinupristin/dalfopristin (Synercid), the oxazolidinone linezolid, and the lipopeptide daptomycin. This review discusses the mechanisms of antibiotic action against Gram-positive pathogens, and resistance counter-mechanisms developed by Gram-positive bacteria, with emphasis on the newer agents.

  15. Oral antibiotic treatment of staphylococcal bone and joint infections in adults.

    PubMed

    Kim, Baek-Nam; Kim, Eu Suk; Oh, Myoung-Don

    2014-02-01

    Bone and joint infections, especially implant-associated infections, are difficult to cure. Long-term antibiotic therapy, combined with appropriate surgery and the removal of prostheses, is required. The most common causative organisms in bone and joint infections are staphylococci. Oral agents are often used after an initial course of parenteral antibiotic treatment. However, it is unclear which oral regimens are most effective in staphylococcal bone and joint infections. We review various oral antibiotic regimens and discuss which regimens are effective for this indication.

  16. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.

    PubMed

    Huh, Ae Jung; Kwon, Young Jik

    2011-12-10

    Despite the fact that we live in an era of advanced and innovative technologies for elucidating underlying mechanisms of diseases and molecularly designing new drugs, infectious diseases continue to be one of the greatest health challenges worldwide. The main drawbacks for conventional antimicrobial agents are the development of multiple drug resistance and adverse side effects. Drug resistance enforces high dose administration of antibiotics, often generating intolerable toxicity, development of new antibiotics, and requests for significant economic, labor, and time investments. Recently, nontraditional antibiotic agents have been of tremendous interest in overcoming resistance that is developed by several pathogenic microorganisms against most of the commonly used antibiotics. Especially, several classes of antimicrobial nanoparticles (NPs) and nanosized carriers for antibiotics delivery have proven their effectiveness for treating infectious diseases, including antibiotics resistant ones, in vitro as well as in animal models. This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

  17. The determinants of the antibiotic resistance process

    PubMed Central

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    Background: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals. PMID:21694883

  18. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  19. WAAR (World Alliance against Antibiotic Resistance): Safeguarding antibiotics

    PubMed Central

    2012-01-01

    Summary Resistance to antibiotics has increased recently to a dramatic extend, and the pipeline of new antibiotics is almost dry for the five next years. Failures happen already for trivial community acquired infections, like pyelonephritis, or peritonitis, and this is likely to increase. Difficult surgical procedures, transplants, and other immunosuppressive therapies will become far more risky. Resistance is mainly due to an excessive usage of antibiotics, in all sectors, including the animal one. Action is urgently needed. Therefore, an alliance against MDRO has been recently created, which includes health care professionals, consumers, health managers, and politicians. The document highlights the different proposed measures, and represents a strong consensus between the different professionals, including general practicionners, and veterinarians. PMID:22958542

  20. Antibiotic-induced release of endotoxin in chronically bacteriuric patients.

    PubMed Central

    Hurley, J C; Louis, W J; Tosolini, F A; Carlin, J B

    1991-01-01

    A novel in vivo model for the study of antibiotic-induced release of endotoxin from gram-negative bacteria is described. The model uses the chronically colonized urinary tracts of patients whose spinal cords have been injured. At baseline, the organisms were present in the range of 1 x 10(3) to 2 x 10(7) CFU/ml, and the concentration of endotoxin ranged from 2 x 10(-1) to 1 x 10(3) ng/ml in 44 studies. In 10 control studies, the concentration of endotoxin and the numbers of viable gram-negative bacteria over time changed by an average of less than 0.15 log10 units from the baseline values. At 2 h after antibiotic administration, the average decrease in CFU was 0.93 log10 units, and because antibiotics cause the release of endotoxin, an average increase in endotoxin concentration of 0.59 log10 units was noted in 21 studies with susceptible bacteria. Similar changes in response to antibiotic exposure were seen in studies with susceptible Pseudomonas bacteria in comparison with those seen in studies with susceptible members of the family Enterobacteriaceae. These results provide evidence that this novel model may be useful for comparing the effects of antibiotics with different modes of action, both as single agents and in combination, on the concentration of endotoxin in relation to changes in the numbers of bacteria, under conditions of bacterial replication and antibiotic exposure more closely resembling those found in vivo than is possible in other models. PMID:1804012

  1. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  2. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  3. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    EPA Science Inventory

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  4. [New antibiotics - standstill or progress].

    PubMed

    Rademacher, J; Welte, T

    2017-04-01

    The development of resistance to antibiotics has been ignored for a long time. But nowadays, increasing resistance is an important topic. For a decade no new antibiotics had been developed and it is not possible to quickly close this gap of new resistance and no new drugs. This work presents six new antibiotics (ceftaroline, ceftobiprole, solithromycin, tedizolid, ceftolozane/tazobactam, ceftazidime/avibactam). In part, only expert opinions are given due to lack of study results.The two 5th generation cephalosporins ceftaroline and ceftobiprole have beside their equivalent efficacy to ceftriaxone (ceftaroline) and cefipim (ceftobiprole) high activity against MRSA. The fluoroketolide solithromycin should help against macrolide-resistant pathogens and has been shown to be noninferior to the fluorochinolones. The oxazolidinone tedizolid is effective against linezolid-resistant MRSA. The two cephalosporins ceftolozane/tazobactam and ceftazidime/avibactam are not only effective against gram-negative pathogens, but they have a very broad spectrum. Due to the efficacy against extended-spectrum β‑lactamases, they can relieve the selection pressure of the carbapenems. We benefit from all new antibiotics which can take the selection pressure from other often used antibiotics. The increasing number of resistant gram-negative pathogens worldwide is alarming. Thus, focusing on the development of new drugs is extremely important.

  5. Nucleotide Selectivity of Antibiotic Kinases▿

    PubMed Central

    Shakya, Tushar; Wright, Gerard D.

    2010-01-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3′)-IIIa, APH(2″)-Ib, and MPH(2′)-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3′)-IIIa exclusively uses ATP, MPH(2′)-I exclusively uses GTP, and APH(2″)-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance. PMID:20231391

  6. Nucleotide selectivity of antibiotic kinases.

    PubMed

    Shakya, Tushar; Wright, Gerard D

    2010-05-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.

  7. Antibiotic prescribing for acute lower respiratory tract infections (LRTI) – guideline adherence in the German primary care setting: An analysis of routine data

    PubMed Central

    Pelzl, Steffen; Szecsenyi, Joachim; Laux, Gunter

    2017-01-01

    Objectives Antibiotic overprescribing in primary care has major impacts on the development of antibiotic resistance. The objective of this study is to provide insight in antibiotics prescriptions for patients suffering from cough, acute bronchitis or community acquired pneumonia in primary care. Methods Data from 2009 to 2013 of electronic health records of 12,880 patients in Germany were obtained from a research database. The prescription of antibiotics for acute lower respiratory tract infections was compared to the national S3 guideline cough from the German Society of General Practitioners and Family Medicine. Results Antibiotics were prescribed in 41% of consultations. General practitioners’ decision of whether or not to prescribe an antibiotic was congruent with the guideline in 52% of consultations and the antibiotic choice congruence was 51% of antibiotic prescriptions. Hence, a congruent prescribing decision and a prescription of recommendation was found in only 25% of antibiotic prescriptions. Split by diagnosis we found that around three quarters of antibiotics prescribed for cough (73%) and acute bronchitis (78%) were not congruent to the guidelines. In contrast to that around one quarter of antibiotics prescribed for community acquired pneumonia (28%) were not congruent to the guidelines. Conclusions Our results show that there is a big gap between guideline recommendation and actual prescribing, in the decision to prescribe and the choice of antibiotic agent. This gap could be closed by periodic quality circles on antibiotic prescribing for GPs. PMID:28350820

  8. A multifaceted approach to decrease inappropriate antibiotic use in a pediatric outpatient clinic

    PubMed Central

    Al-Tawfiq, Jaffar A.; Alawami, Amel H.

    2017-01-01

    BACKGROUND: Inappropriate use of antimicrobial agents is the major cause for the development of resistance. Thus, it is important to include outpatient clinics in the development of antibiotic stewardship program. METHODS: We report a multifaceted approach to decrease inappropriate antibiotic use in upper respiratory tract infections (URTIs) in an outpatient pediatric clinic. The interventions included educational grand round, academic detailing, and prospective audit and feedback and peer comparison. RESULTS: During the study period, a total of 3677 outpatient clinic visits for URTIs were evaluated. Of all the included patients, 12% were <1 year of age, 42% were 1–5 years, and 46% were >5 years of age. Of the total patients, 684 (17.6%) received appropriate antibiotics, 2812 (76.4%) appropriately did not receive antibiotics, and 217 (6%) inappropriately received antibiotics. The monthly rate of prescription of inappropriate antibiotics significantly decreased from 12.3% at the beginning of the study to 3.8% at the end of the study (P < 0.0001). Antibiotic prescription among those who had rapid streptococcal antigen test (RSAT) was 40% compared with 78% among those who did not have RSAT (P < 0.0001). CONCLUSIONS: The combination of education and academic detailing is important to improve antibiotic use. PMID:28197223

  9. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development.

    PubMed

    Arenz, Stefan; Wilson, Daniel N

    2016-01-07

    Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.

  10. Detection of antibiotic residues in poultry meat.

    PubMed

    Sajid, Abdul; Kashif, Natasha; Kifayat, Nasira; Ahmad, Shabeer

    2016-09-01

    The antibiotic residues in poultry meat can pose certain hazards to human health among them are sensitivity to antibiotics, allergic reactions, mutation in cells, imbalance of intestinal micro biota and bacterial resistance to antibiotics. The purpose of the present paper was to detect antibiotic residue in poultry meat. During the present study a total of 80 poultry kidney and liver samples were collected and tested for detection of different antibiotic residues at different pH levels Eschericha coli at pH 6, 7 and Staphyloccocus aureus at pH 8 & 9. Out of 80 samples only 4 samples were positive for antibiotic residues. The highest concentrations of antibiotic residue found in these tissues were tetracycline (8%) followed by ampicilin (4%), streptomycine (2%) and aminoglycosides (1%) as compared to other antibiotics like sulfonamides, neomycine and gentamycine. It was concluded that these microorganism at these pH levels could be effectively used for detection of antibiotic residues in poultry meat.

  11. Update on linezolid: the first oxazolidinone antibiotic.

    PubMed

    Wilcox, Mark H

    2005-10-01

    Linezolid is the first of an entirely new class of antibiotics, the oxazolidinones, in decades. It has a spectrum of activity against virtually all important Gram-positive pathogens. The unique mechanism of action of linezolid makes cross-resistance with other antimicrobial agents unlikely. Linezolid has both intravenous and oral formulations and the latter is 100% bioavailable. Since its first approval and marketing in March 2000 in the US, linezolid has gained approval for use in many other countries for the treatment of community-acquired and nosocomial pneumonia, complicated and uncomplicated skin and soft-tissue infections, and infections caused by methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, including cases with concurrent bacteraemia. Several earlier comprehensive reviews summarised the chemistry, mechanism of action, pharmacokinetics, clinical efficacy and safety profile of linezolid. The present review provides an update on the latest data regarding the antimicrobial activity of linezolid versus other commonly used agents, the clinical and health-economic outcomes of linezolid versus vancomycin and teicoplanin, and safety issues.

  12. Antibiotic prescribing: the need for a policy in general practice.

    PubMed Central

    Wyatt, T D; Passmore, C M; Morrow, N C; Reilly, P M

    1990-01-01

    OBJECTIVE--To see whether changes in prescribing of oral antibacterials in Northern Ireland show the need for a community antibiotics policy. DESIGN--Analysis of prescribing totals for several oral antibiotics obtained retrospectively from the prescription pricing bureau for the years 1983-7. SETTING--Audit of anti-infective prescribing in general practice in Northern Ireland over five years. MAIN OUTCOME MEASURE--Respective usage of agents defined as "common" and "occasional" in 1983. RESULTS--There was a gradual decrease in the relative use of common agents from 82% of the total in 1983 to 77% in 1987 together with a complementary increase in the use of occasional agents from 5% to 10%. Pronounced changes were noted in the use of amoxycillin, ampicillin, erythromycin, minocycline, doxycycline, and amoxycillin-clavulanic acid. CONCLUSION--Though this survey found reasonably conservative prescribing, the trend towards increased use of occasional agents has both clinical and cost implications which could be addressed by the use of a prescribing formulary. PMID:2107899

  13. [Alliance against MDRO: safeguarding antibiotics].

    PubMed

    Carlet, J; Rambaud, C; Pulcini, C

    2012-09-01

    Resistance to antibiotics has increased recently to a dramatic extend, and the pipeline of new antibiotics is almost dry for the 5 next years. Failures happen already for trivial community acquired infections, like pyelonephritis, or peritonitis, and this is likely to increase. Difficult surgical procedures, transplants, and other immunosuppressive therapies will become far more risky. Resistance is mainly due to an excessive usage of antibiotics, in all sectors, including the animal one. Action is urgently needed. Therefore, an alliance against MDRO has been recently created, which includes health care professionals, consumers, health managers, and politicians. The document highlights the different proposed measures, and represents a strong consensus between the different professionals, including general practitioners, and veterinarians.

  14. [Sinusitis--judicious antibiotic treatment].

    PubMed

    Niedzielska, Grazyna

    2007-01-01

    The paper presents different forms of sinusitis in children and adults as well as the patomechanism of sinusitis of infective and non-infective origin. The role of bacterial infection has been discussed. Participation of major pathogens of URTI such as S. pneumoniae, H. influenzae and M. catarrhalis has been highlighted and the factors influencing growth of their antibiotic-resistant stains. Guidelines concerning antibiotic therapy in children and adults, depending on disease course, age and factors influencing growth of resistant stains have been presented. Causes of failure in treatment of sinusitis have been analysed eg. in case of bacterial biofilm growth or non-neutrophilic inflammation forms. Antimicrobial treatment concerns mainly acute and aggravated infections. In case of chronic sinusitis, antibiotic therapy is complementary to surgical treatment.

  15. Cairomycin B, a New Antibiotic

    PubMed Central

    Shimi, Ibrahim R.; Abedallah, Nadia; Fathy, Shadia

    1977-01-01

    Cairomycin B is a new cyclic peptide antibiotic that was isolated from Streptomyces As-C-19 obtained from the soil of Cairo. The antibiotic had the following empirical formula: C10H15N3O3; on acid hydrolysis, it yielded aspartic acid and lysine. Spectral analysis and its chemical characteristics indicated that it was a cyclic peptide. The antibiotic melted at 120 to 121°C and was freely soluble in chloroform, ethyl acetate, and acetone, slightly soluble in alcohols, and rather insoluble in water and petroleum ether. Cairomycin B was mainly active against gram-positive bacteria, with high toxicity to experimental animals and weak serum-binding properties. PMID:855995

  16. A novel antibiotic-delivery system by using ovotransferrin as targeting molecule.

    PubMed

    Ibrahim, Hisham R; Tatsumoto, Sayuri; Ono, Hajime; Van Immerseel, Filip; Raspoet, Ruth; Miyata, Takeshi

    2015-01-23

    Synthetic antibiotics and antimicrobial agents, such as sulfonamide and triclosan (TCS), have provided new avenues in the treatment of bacterial infections, as they target lethal intracellular pathways. Sulfonamide antibiotics block synthesis of folic acid by inhibiting dihydrofolate reductase (DHFR) while TCS block fatty acid synthesis through inhibition of enoyl-ACP reductase (FabI). They are water-insoluble agents and high doses are toxic, limiting their therapeutic efficiency. In this study, an antibiotic drug-targeting strategy based on utilizing ovotransferrin (OTf) as a carrier to allow specific targeting of the drug to microbial or mammalian cells via the transferrin receptor (TfR) is explored, with potential to alleviate insolubility and toxicity problems. Complexation, through non-covalent interaction, with OTf turned sulfa antibiotics or TCS into completely soluble in aqueous solution. OTf complexes showed superior bactericidal activity against several bacterial strains compared to the activity of free agents. Strikingly, a multi-drug resistant Salmonella strain become susceptible to antibiotics-OTf complexes while a tolC-knockout mutant strain become susceptible to OTf and more sensitive to the complexes. The antibiotic bound to OTf was, thus exported through the multi-drug efflux pump TolC in Salmonella wild-type strain. Further, antibiotics-OTf complexes were able to efficiently kill intracellular pathogens after infecting human colon carcinoma cells (HCT-116). The results demonstrate, for the first time, that the TfR mediated endocytosis of OTf can be utilized to specifically target drugs directly to pathogens or intracellularly infected cells and highlights the potency of the antibiotic-OTf complex for the treatment of infectious diseases.

  17. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    PubMed

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.

  18. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    PubMed

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  19. The Complex Relationship between Virulence and Antibiotic Resistance

    PubMed Central

    Schroeder, Meredith; Brooks, Benjamin D.; Brooks, Amanda E.

    2017-01-01

    Antibiotic resistance, prompted by the overuse of antimicrobial agents, may arise from a variety of mechanisms, particularly horizontal gene transfer of virulence and antibiotic resistance genes, which is often facilitated by biofilm formation. The importance of phenotypic changes seen in a biofilm, which lead to genotypic alterations, cannot be overstated. Irrespective of if the biofilm is single microbe or polymicrobial, bacteria, protected within a biofilm from the external environment, communicate through signal transduction pathways (e.g., quorum sensing or two-component systems), leading to global changes in gene expression, enhancing virulence, and expediting the acquisition of antibiotic resistance. Thus, one must examine a genetic change in virulence and resistance not only in the context of the biofilm but also as inextricably linked pathologies. Observationally, it is clear that increased virulence and the advent of antibiotic resistance often arise almost simultaneously; however, their genetic connection has been relatively ignored. Although the complexities of genetic regulation in a multispecies community may obscure a causative relationship, uncovering key genetic interactions between virulence and resistance in biofilm bacteria is essential to identifying new druggable targets, ultimately providing a drug discovery and development pathway to improve treatment options for chronic and recurring infection. PMID:28106797

  20. 5-Alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics.

    PubMed

    Faulkner, Katherine C; Hurley, Katherine A; Weibel, Douglas B

    2016-11-15

    Antibiotic adjuvant therapy represents an exciting opportunity to enhance the activity of clinical antibiotics by co-dosing with a secondary small molecule. Successful adjuvants decrease the concentration of antibiotics used to defeat bacteria, increase activity (in some cases introducing activity against organisms that are drug resistant), and reduce the frequency at which drug-resistant bacteria emerge. We report that 5-alkyloxytryptamines are a new class of broad-spectrum antibacterial agents with exciting activity as antibiotic adjuvants. We synthesized 5-alkyloxytryptamine analogs and found that an alkyl chain length of 6-12 carbons and a primary ammonium group are necessary for the antibacterial activity of the compounds, and an alkyl chain length of 6-10 carbons increased the membrane permeability of Gram-positive and Gram-negative bacteria. Although several of the most potent analogs also have activity against the membranes of human embryonic kidney cells, we demonstrate that below the minimum inhibitory concentration (MIC)-where mammalian cell toxicity is low-these compounds may be successfully used as adjuvants for chloramphenicol, tetracycline, ciprofloxacin, and rifampicin against clinical strains of Salmonella typhimurium, Acinetobacter baumannii and Staphylococcus aureus, reducing MIC values by as much as several logs.

  1. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis

    PubMed Central

    Bleich, Rachel; Watrous, Jeramie D.; Dorrestein, Pieter C.; Bowers, Albert A.; Shank, Elizabeth A.

    2015-01-01

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called “secondary” metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin’s antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects—acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes. PMID:25713360

  2. [Which antibiotics should we report in an antibiogram, and how?].

    PubMed

    Alós, Juan-Ignacio; Rodríguez-Baño, Jesús

    2010-12-01

    The information provided in the individual susceptibility reports (antibiograms) is clinically and epidemiologically relevant, and is an important tool for antibiotic stewardship. The selection of the most appropriate antimicrobial agents to be included in the reports should be decided by each Clinical Microbiology laboratory after consulting with the departments most involved in the clinical management of infectious diseases. The clinical interest of the drugs should be the most important variable to consider; thus, reported antibiotics should have demonstrated clinical efficacy. Other variables to consider are local prevalence (in the hospital, areas of the hospital), the cost, the approved indications, and the most recent clinical guidelines regarding the drugs of choice and alternative agents. Certain antibiotics may only be reported in specific circumstances (selective reporting), which should be decided by each laboratory according to their local circumstances. It may be necessary to adapt the information provided according to the microorganism and suspected location of the infection. In some cases, it is convenient to include additional written comments or observations with the aim of helping clinicians to choose. In this review we include a proposal for our country that should be adapted to local situations.

  3. Get Smart: Know When Antibiotics Work - Symptom Relief

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  4. Get Smart: Know When Antibiotics Work - Urinary Tract Infection

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  5. Get Smart: Know When Antibiotics Work - What You Can Do

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  6. Get Smart: Know When Antibiotics Work - What Everyone Should Know

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  7. Get Smart: Know When Antibiotics Work - Ear Infections

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  8. Get Smart: Know When Antibiotics Work - Influenza (Flu)

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  9. Get Smart: Know When Antibiotics Work - Bronchitis (Chest Cold)

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  10. Get Smart: Know When Antibiotics Work - Sinus Infection (Sinusitis)

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  11. Get Smart: Know When Antibiotics Work - Sore Throat

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  12. Probiotic approach to prevent antibiotic resistance.

    PubMed

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  13. The interface between veterinary and human antibiotic use.

    PubMed

    Shryock, Thomas R; Richwine, Amy

    2010-12-01

    The identification and early development of novel antimicrobial agents for use in veterinary medicine is subject to many of the same business and technical challenges as those found in antimicrobial agent use for human infectious disease. However, as awareness that some of the antimicrobial classes used in veterinary medicine are the same as used in human medicine, concern by multiple stakeholders has increased that this nonhuman use might be contributing to the problem of antimicrobial resistance to pathogens in humans, particularly with regard to food-borne diseases, such as salmonellosis and campylobacteriosis. Consequently, the interface between veterinary and human antibiotic use and resistance, especially with respect to human microbial food safety, has begun to redirect the industry pipeline of novel antimicrobial agents to be commercialized for use in veterinary medicine.

  14. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    PubMed Central

    Wales, Andrew D.; Davies, Robert H.

    2015-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641

  15. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  16. Depletion of Regulatory T Cells Induces High Numbers of Dendritic Cells and Unmasks a Subset of Anti-Tumour CD8+CD11c+ PD-1lo Effector T Cells.

    PubMed

    Goudin, Nicolas; Chappert, Pascal; Mégret, Jérome; Gross, David-Alexandre; Rocha, Benedita; Azogui, Orly

    2016-01-01

    Natural regulatory T (Treg) cells interfere with multiple functions, which are crucial for the development of strong anti-tumour responses. In a model of 4T1 mammary carcinoma, depletion of CD25+Tregs results in tumour regression in Balb/c mice, but the mechanisms underlying this process are not fully understood. Here, we show that partial Treg depletion leads to the generation of a particular effector CD8 T cell subset expressing CD11c and low level of PD-1 in tumour draining lymph nodes. These cells have the capacity to migrate into the tumour, to kill DCs, and to locally regulate the anti-tumour response. These events are concordant with a substantial increase in CD11b+ resident dendritic cells (DCs) subsets in draining lymph nodes followed by CD8+ DCs. These results indicate that Treg depletion leads to tumour regression by unmasking an increase of DC subsets as a part of a program that optimizes the microenvironment by orchestrating the activation, amplification, and migration of high numbers of fully differentiated CD8+CD11c+PD1lo effector T cells to the tumour sites. They also indicate that a critical pattern of DC subsets correlates with the evolution of the anti-tumour response and provide a template for Treg depletion and DC-based therapy.

  17. Depletion of Regulatory T Cells Induces High Numbers of Dendritic Cells and Unmasks a Subset of Anti-Tumour CD8+CD11c+ PD-1lo Effector T Cells

    PubMed Central

    Goudin, Nicolas; Chappert, Pascal; Mégret, Jérome; Gross, David-Alexandre; Rocha, Benedita

    2016-01-01

    Natural regulatory T (Treg) cells interfere with multiple functions, which are crucial for the development of strong anti-tumour responses. In a model of 4T1 mammary carcinoma, depletion of CD25+Tregs results in tumour regression in Balb/c mice, but the mechanisms underlying this process are not fully understood. Here, we show that partial Treg depletion leads to the generation of a particular effector CD8 T cell subset expressing CD11c and low level of PD-1 in tumour draining lymph nodes. These cells have the capacity to migrate into the tumour, to kill DCs, and to locally regulate the anti-tumour response. These events are concordant with a substantial increase in CD11b+ resident dendritic cells (DCs) subsets in draining lymph nodes followed by CD8+ DCs. These results indicate that Treg depletion leads to tumour regression by unmasking an increase of DC subsets as a part of a program that optimizes the microenvironment by orchestrating the activation, amplification, and migration of high numbers of fully differentiated CD8+CD11c+PD1lo effector T cells to the tumour sites. They also indicate that a critical pattern of DC subsets correlates with the evolution of the anti-tumour response and provide a template for Treg depletion and DC-based therapy. PMID:27341421

  18. Spatial mapping of antibiotic resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A serious concern for modern animal production is the fear that feed antimicrobials, such as monensin, increase the potential for high levels of antibiotic resistant (AR) gene prevalence in the manure, which may subsequently be shared with soil communities and eventually be taken up by human pathoge...

  19. Antibiotics and the burn patient.

    PubMed

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work.

  20. [Antibiotic prophylaxis before kidney transplantation].

    PubMed

    Robles, N R; Gallego, E; Anaya, F; Franco, A; Valderrábano, F

    1990-02-01

    The effectiveness of antibiotic prophylaxis was evaluated in the immediate postoperative period of renal transplantation (RT). Before RT, the patients were randomly assigned to one of the following groups: 1) cefotaxime (intravenous infusion of 1 g one hour before the operation). 2) Ceftriaxone (1 g i.v. given in a similar way). 3) Control (without antibiotics). Patients who required antibiotic therapy during the first 3 postoperative weeks were excluded. 20 recipients of cadaveric renal grafts were included in each group. There were 39 males and 21 females with a mean age of 39.9 years. One patient from the cefotaxime group (5%), 2 from the ceftriaxone group (10%) and 2 from the control group (10%) developed infection of the surgical wound, all due to grampositive organisms. 19 patients had urinary tract infections: 7 from the control group (35%), 7 from the cefotaxime group (35%), and 5 from the ceftriaxone group (25%). The development of wound infection was not correlated with urea, creatinine, hemoglobin or total protein levels, or with urinary tract infection or fistula, diabetes or fever. The mean packed red cell volume of the patients who developed wound infection was 24.7 +/- 1.2 vs 28.6 +/- 6.6 in those who did not (p less than 0.01). All patients with visible hematoma and 3 of 10 with perirenal blood collection had wound infection. It was concluded that antibiotic prophylaxis for renal transplantation was useless in our patients.

  1. Antibiotic resistance: a geopolitical issue.

    PubMed

    Carlet, J; Pulcini, C; Piddock, L J V

    2014-10-01

    Antimicrobial resistance (AMR), associated with a lack of new antibiotics, is a major threat. Some countries have been able to contain resistance, but in most countries the numbers of antibiotic-resistant bacteria continue to increase, along with antibiotic consumption by humans and animals. AMR is a global issue, and concerns all decision-makers worldwide. Some initiatives have been undertaken in the last 15 years, in particular by the WHO, the European Centre for Disease Prevention and Control, and the CDC, but those initiatives were partial and poorly implemented, without coordination. Very recently, some important initiatives have been implemented by the WHO. Since 2009, a US and European joint task force, the Trans-Atlantic Task Force on Antibiotic Resistance, has been working on common recommendations. At a national level, some important initiatives have been implemented, in particular in European countries and in the USA. The Chennai declaration, in India, is also a good example of a multidisciplinary and national initiative that was highly political. Finally, several non-governmental non-profit organizations are also very active, and have helped to raise awareness about the problem of AMR. In the future, this global issue will need political involvement and strong cooperation between countries and between international agencies.

  2. Antibiotic Therapy of Staphylococcal Infections

    PubMed Central

    Hawks, Gordon H.

    1965-01-01

    The antibiotic treatment of staphylococcal infections remains a problem. Isolation of the organism and sensitivity testing are necessary in the choice of antibiotic. Penicillin G is the most effective penicillin against non-penicillinase-producing staphy-lococci; for the penicillinase producers there is very little to choose between the semisynthetic penicillins, methicillin, cloxacillin, nafcillin and oxacillin. For patients who are hypersensitive to penicillin, the bacteriostatic drugs (erythromycin, novobiocin, tetracycline, chloramphenicol, oleandomycin) are useful for mild infections, while for more severe illness the bactericidal drugs (vancomycin, ristocetin, kanamycin, bacitracin, neomycin) have been used successfully. Acute staphylococcal enterocolitis is probably best treated by a semisynthetic penicillin. Other antibiotics which have been found useful, with clinical trials, for staphylococcal infections are cephalosporin, fucidin, cephaloridine and lincomycin. The latter drug has been reported of value in the treatment of osteomyelitis. There is little justification for the prophylactic use of antibiotics to prevent staphylococcal infection. Surgical drainage is still an important adjunct in the treatment of many staphylococcal infections. PMID:5318575

  3. Antibiotic resistance in probiotic bacteria

    PubMed Central

    Gueimonde, Miguel; Sánchez, Borja; G. de los Reyes-Gavilán, Clara; Margolles, Abelardo

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue. PMID:23882264

  4. A 90Y-labelled anti-ROBO1 monoclonal antibody exhibits antitumour activity against hepatocellular carcinoma xenografts during ROBO1-targeted radioimmunotherapy

    PubMed Central

    2014-01-01

    Background ROBO1 is a membrane protein that functions in axon guidance. ROBO1 contributes to tumour metastasis and angiogenesis and may have potential as a target protein of immunotherapy because ROBO1 is specifically expressed at high levels in hepatocellular carcinoma. In this study, we examined biodistribution and radioimmunotherapy (RIT) using a radioisotope-labelled anti-ROBO1 monoclonal antibody (MAb) against hepatocellular carcinoma models. Methods ROBO1-positive HepG2 human hepatocellular carcinoma xenograft nude mice were used in this study. We conjugated anti-ROBO1 MAb with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and the conjugates were labelled with 111In and 90Y. To study biodistribution, the 111In-DOTA-anti-ROBO1 MAb was injected into HepG2 xenograft mice via the tail vein. To evaluate any antitumour effect, a RIT study was performed, and the 90Y-DOTA-anti-ROBO1 MAb was injected via the tail vein. Tumour volume, mouse weight, and blood cell count were periodically measured throughout the experiments. The tumours and organs of mice were collected, and a histopathological analysis was carried out. Results The tumour uptake of 111In-anti-ROBO1 MAb in HepG2 xenograft mice was 15.0% ± 0.69% injected dose per gram at 48 h after injection. Immunotherapy with cold-anti-ROBO1 MAb (70 μg) did not cause a significant antitumour effect. RIT with 6.7 MBq of 90Y-anti-ROBO1 MAb caused significant tumour growth suppression. Transient body weight loss and bone-marrow suppression were observed. Histopathological analyses of tumours revealed the fatal degeneration of tumour cells, significant reduction of the Ki-67 index, and an increase of the apoptosis index. Normal organs showed no significant injury, but a transient reduction of hematopoietic cells was observed in the spleen and in the sternal bone marrow. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 MAb is a promising treatment for ROBO1-positive hepatocellular

  5. A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer

    PubMed Central

    2013-01-01

    Introduction Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib. Methods In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response. Results We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups

  6. Collective antibiotic tolerance: Mechanisms, dynamics, and intervention

    PubMed Central

    Meredith, Hannah R.; Srimani, Jaydeep K.; Lee, Anna J.; Lopatkin, Allison J.; You, Lingchong

    2016-01-01

    Bacteria have developed resistance against every antibiotic at an alarming rate, considering the timescale at which new antibiotics are developed. Thus, there is a critical need to use antibiotics more effectively, extend the shelf life of existing antibiotics, and minimize their side effects. This requires understanding the mechanisms underlying bacterial drug responses. Past studies have focused on survival in the presence of antibiotics by individual cells, as genetic mutants or persisters. In contrast, a population of bacterial cells can collectively survive antibiotic treatments lethal to individual cells. This tolerance can arise by diverse mechanisms, including resistance-conferring enzyme production, titration-mediated bistable growth inhibition, swarming, and inter-population interactions. These strategies can enable rapid population recovery after antibiotic treatment, and provide a time window for otherwise susceptible bacteria to acquire inheritable genetic resistance. Here, we emphasize the potential for targeting collective antibiotic tolerance behaviors as an antibacterial treatment strategy. PMID:25689336

  7. Alliance for the Prudent Use of Antibiotics

    MedlinePlus

    ... Competencies Current Projects Completed Projects The Center for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance ... visit our partner lab at the Center for Adaptation Genetics and Drug Resistance . Antibiotic Resistance in the ...

  8. When and How to Take Antibiotics

    MedlinePlus

    ... complete dose, and they will not work to kill all your disease causing bacteria. Taking partial doses ... dose of the appropriate antibiotic is needed to kill all the harmful bacteria. How safe are antibiotics? ...

  9. Origins and evolution of antibiotic resistance.

    PubMed

    Davies, Julian; Davies, Dorothy

    2010-09-01

    Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

  10. Antibiotic stewardship programmes and the surgeon's role.

    PubMed

    Çakmakçi, M

    2015-04-01

    Inappropriate antibiotic use is a frequent occurrence, especially in surgical units. Among the unnecessary costs of such usage are unfavourable outcomes for patients and the emergence and spread of resistant bacteria. Antibiotic stewardship programmes aim to limit the spread of antibiotic resistance by promoting thoughtful prescribing of antibiotics. Such programmes usually try to control inappropriate use of antibiotics; to optimize the choice of drug, dosing, route, and duration of therapy; to maximize clinical cure or prevention of infection; and to limit unwanted effects and excess cost. In this paper, I discuss the impact of improper use of antibiotics and outline why I believe that antibiotic stewardship is likely to be the best way of dealing with it. Engagement of surgeons in antibiotic stewardship programmes is crucial to their success.

  11. Evolving medicinal chemistry strategies in antibiotic discovery.

    PubMed

    Pawlowski, Andrew C; Johnson, Jarrod W; Wright, Gerard D

    2016-12-01

    Chemical modification of synthetic or natural product antibiotic scaffolds to expand potency and spectrum and to bypass mechanisms of resistance has dominated antibiotic drug discovery and proven immensely successful. However, the inexorable evolution of drug resistance coupled with a drought in innovation in antibiotic discovery contribute to a dearth of new drugs entering to market. Better understanding of the physicochemical properties of antibiotic chemical space is required to inform new antibiotic discovery. Innovations such as the development of antibiotic adjuvants to preserve efficacy of existing drugs together with expanding antibiotic chemical diversity through synthetic biology or new techniques to mine antibiotic producing organisms, are required to bridge the growing gap between the need for new drugs and their discovery.

  12. Origins and Evolution of Antibiotic Resistance

    PubMed Central

    Davies, Julian; Davies, Dorothy

    2010-01-01

    Summary: Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory. PMID:20805405

  13. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance.

    PubMed

    Cantón, Rafael; Horcajada, Juan Pablo; Oliver, Antonio; Garbajosa, Patricia Ruiz; Vila, Jordi

    2013-09-01

    Hospitals are considered an excellent compartment for the selection of resistant and multi-drug resistant (MDR) bacteria. The overuse and misuse of antimicrobial agents are considered key points fuelling this situation. Antimicrobial stewardship programs have been designed for better use of these compounds to prevent the emergence of resistant microorganisms and to diminish the upward trend in resistance. Nevertheless, the relationship between antibiotic use and antimicrobial resistance is complex, and the desired objectives are difficult to reach. Various factors affecting this relationship have been advocated including, among others, antibiotic exposure and mutant selection windows, antimicrobial pharmacodynamics, the nature of the resistance (natural or acquired, including mutational and that associated with horizontal gene transfer) and the definition of resistance. Moreover, antimicrobial policies to promote better use of these drugs should be implemented not only in the hospital setting coupled with infection control programs, but also in the community, which should also include animal and environmental compartments. Within hospitals, the restriction of antimicrobials, cycling and mixing strategies and the use of combination therapies have been used to avoid resistance. Nevertheless, the results have not always been favorable and resistant bacteria have persisted despite the theoretical benefits of these strategies. Mathematical models as well as microbiological knowledge can explain this failure, which is mainly related to the current scenario involving MDR bacteria and overcoming the fitness associated with resistance. New antimicrobials, rapid diagnostic and antimicrobial susceptibility testing and biomarkers will be useful for future antimicrobial stewardship interventions.

  14. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae

    PubMed Central

    Vuotto, Claudia; Longo, Francesca; Balice, Maria Pia; Donelli, Gianfranco; Varaldo, Pietro E.

    2014-01-01

    The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae. PMID:25438022

  15. Basis for selecting optimum antibiotic regimens for secondary peritonitis.

    PubMed

    Maseda, Emilio; Gimenez, Maria-Jose; Gilsanz, Fernando; Aguilar, Lorenzo

    2016-01-01

    Adequate management of severely ill patients with secondary peritonitis requires supportive therapy of organ dysfunction, source control of infection and antimicrobial therapy. Since secondary peritonitis is polymicrobial, appropriate empiric therapy requires combination therapy in order to achieve the needed coverage for both common and more unusual organisms. This article reviews etiological agents, resistance mechanisms and their prevalence, how and when to cover them and guidelines for treatment in the literature. Local surveillances are the basis for the selection of compounds in antibiotic regimens, which should be further adapted to the increasing number of patients with risk factors for resistance (clinical setting, comorbidities, previous antibiotic treatments, previous colonization, severity…). Inadequate antimicrobial regimens are strongly associated with unfavorable outcomes. Awareness of resistance epidemiology and of clinical consequences of inadequate therapy against resistant bacteria is crucial for clinicians treating secondary peritonitis, with delicate balance between optimization of empirical therapy (improving outcomes) and antimicrobial overuse (increasing resistance emergence).

  16. [Epidemiological overview of antibiotic resistance in France and worldwide].

    PubMed

    Arlet, Guillaume

    2012-09-01

    Antibiotic resistance appeared early after the introduction of these molecules in therapeutic. But, this resistance has long been confined to care facilities. Twenty years ago, resistance emerged in community with the methicillin resistance in Staphylococcus aureus and also with the reduced susceptibility to penicillin in pneumococci, which are good examples. Fortunately, for these two species, in France, the situation appears to be controlled. The most worrying now is the emergence of resistance to major antimicrobial agents in Escherichia coli both in community and in hospitals. The third-generation cephalosporins and the fluoroquinolones are concerned. This situation is currently not well controlled here and worldwide. The only recourse remaining carbapenems, antibiotics reserved for hospital use. Unfortunately, new mechanisms of resistance to these molecules are emerging.

  17. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    PubMed Central

    Seiler, Claudia; Berendonk, Thomas U.

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account. PMID:23248620

  18. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection.

    PubMed

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R; Sokurenko, Evgeni V

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients' urine within 25-35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.

  19. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R.

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients’ urine within 25–35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care. PMID:28350870

  20. Prevalence of antibiotic use: a comparison across various European health care data sources

    PubMed Central

    Ruigómez, Ana; Downey, Gerry; Bate, Andrew; Garcia Rodriguez, Luis Alberto; Huerta, Consuelo; Gil, Miguel; de Abajo, Francisco; Requena, Gema; Alvarez, Yolanda; Slattery, Jim; de Groot, Mark; Souverein, Patrick; Hesse, Ulrik; Rottenkolber, Marietta; Schmiedl, Sven; de Vries, Frank; Tepie, Maurille Feudjo; Schlienger, Raymond; Smeeth, Liam; Douglas, Ian; Reynolds, Robert; Klungel, Olaf

    2015-01-01

    Abstract Purpose There is widespread concern about increases in antibiotic use, but comparative data from different European countries on rates of use are lacking. This study was designed to measure and understand the variation in antibiotic utilization across five European countries. Methods Seven European healthcare databases with access to primary care data from Denmark, Germany, the Netherlands, Spain and the UK were used to measure and compare the point and 1‐year‐period prevalence of antibiotic use between 2004 and 2009. Descriptive analyses were stratified by gender, age and type of antibiotic. Separate analyses were performed to measure the most common underlying indications leading to the prescription of an antibiotic. Results The average yearly period prevalence of antibiotic use varied from 15 (Netherlands) to 30 (Spain) users per 100 patients. A higher prevalence of antibiotic use by female patients, the very young (0–9 years) and old (80+ years), was observed in all databases. The lowest point prevalence was recorded in June and September and ranged from 0.51 (Netherlands) to 1.47 (UK) per 100 patients per day. Twelve percent (Netherlands) to forty‐nine (Spain) percent of all users were diagnosed with a respiratory tract infection, and the most common type of antibiotic prescribed were penicillin. Conclusion Using identical methodology in seven EU databases to assess antibiotic use allowed us to compare drug usage patterns across Europe. Our results contribute quantitatively to the true understanding of similarities and differences in the use of antibiotic agents in different EU countries. © 2015 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons, Ltd. PMID:26152658

  1. Tympanoplasty surgery and prophylactic antibiotics: surgical results.

    PubMed

    John, D G; Carlin, W V; Lesser, T H; Carrick, D G; Fielder, C

    1988-06-01

    This paper reports a multicentre, controlled, blind, prospective, randomized study into the use of prophylactic systemic antibiotics in myringoplasty surgery. A total of 130 individuals were randomly allocated to either an antibiotic or a non-antibiotic group. Each individual was clinically and audiometrically assessed preoperatively, and 8 weeks postoperatively. It was found that systemic prophylactic antibiotics did not influence either the success rate of myringoplasty surgery or the audiometric result.

  2. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    PubMed

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  3. Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture.

    PubMed

    Scarano, Christian; Spanu, Carlo; Ziino, Graziella; Pedonese, Francesca; Dalmasso, Alessandra; Spanu, Vincenzo; Virdis, Salvatore; De Santis, Enrico P L

    2014-07-01

    Extensive use of antimicrobial agents in finfish farming and the consequent selective pressure lead to the acquisition of antibiotic resistance in aquaculture environment bacteria. Vibrio genus represents one of the main pathogens affecting gilthead sea bream. The development of antibiotic resistance by Vibrio represents a potential threat to human health by exchange of resistant genes to human pathogens through food chain. The objective of the present study was to conduct a multisite survey on the antibiotic resistance of Vibrio spp. isolated from gilthead sea bream reared in Italian mariculture. Vibrio spp. strains were isolated from skin, gills, muscles and intestinal content of 240 gilthead sea bream. A random selection of 150 strains was sequenced for species identification. Resistance against 15 antimicrobial agents was tested by the broth microdilution method. Vibrio harveyi and Vibrio alginolyticus accounted for 36.7% and 33.3% of the isolates respectively. 96% of the strains showed multiple resistance to the tested drugs, with two strains, Vibrio aestuarianus and Vibrio harveyi resistant to 10 and 9 antibiotics, respectively. Ampicillin, amoxicillin, erythromycin and sulfadiazine showed low efficacy against Vibrio spp. Rational use of antimicrobial agents and surveillance on antibiotic administration may reduce the acquisition of resistance by microorganisms of aquatic ecosystems.

  4. Delivery of antibiotics with polymeric particles.

    PubMed

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  5. New business models for antibiotic innovation.

    PubMed

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  6. Overcoming the current deadlock in antibiotic research.

    PubMed

    Schäberle, Till F; Hack, Ingrid M

    2014-04-01

    Antibiotic-resistant bacteria are on the rise, making it harder to treat bacterial infections. The situation is aggravated by the shrinking of the antibiotic development pipeline. To finance urgently needed incentives for antibiotic research, creative financing solutions are needed. Public-private partnerships (PPPs) are a successful model for moving forward.

  7. Pipeline of Known Chemical Classes of Antibiotics

    PubMed Central

    d’Urso de Souza Mendes, Cristina; de Souza Antunes, Adelaide Maria

    2013-01-01

    Many approaches are used to discover new antibiotic compounds, one of the most widespread being the chemical modification of known antibiotics. This type of discovery has been so important in the development of new antibiotics that most antibiotics used today belong to the same chemical classes as antibiotics discovered in the 1950s and 1960s. Even though the discovery of new classes of antibiotics is urgently needed, the chemical modification of antibiotics in known classes is still widely used to discover new antibiotics, resulting in a great number of compounds in the discovery and clinical pipeline that belong to existing classes. In this scenario, the present article presents an overview of the R&D pipeline of new antibiotics in known classes of antibiotics, from discovery to clinical trial, in order to map out the technological trends in this type of antibiotic R&D, aiming to identify the chemical classes attracting most interest, their spectrum of activity, and the new subclasses under development. The result of the study shows that the new antibiotics in the pipeline belong to the following chemical classes: quinolones, aminoglycosides, macrolides, oxazolidinones, tetracyclines, pleuromutilins, beta-lactams, lipoglycopeptides, polymyxins and cyclic lipopeptides. PMID:27029317

  8. Do topical antibiotics help corneal epithelial trauma?

    PubMed Central

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible. PMID:8268742

  9. Antibiotic-responsive histiocytic ulcerative colitis in 9 dogs.

    PubMed

    Hostutler, Roger A; Luria, Brian J; Johnson, Susan E; Weisbrode, Steven E; Sherding, Robert G; Jaeger, Jordan Q; Guilford, W Grant

    2004-01-01

    Canine histiocytic ulcerative colitis (HUC) is characterized by colonic inflammation with predominantly periodic acid-Schiff (PAS)-positive macrophages. The inflammation results in colonic thickening, ulcerations, and distortion of normal glandular architecture. Resultant clinical signs consist of chronic large bowel diarrhea, tenesmus, and marked weight loss, and the disease frequently results in euthanasia. Conventional therapy consists of some combination of prednisone, azathioprine, sulfasalazine, and metronidazole. Nine dogs (8 Boxers and 1 English Bulldog) with histologic confirmation of HUC were treated with antibiotic therapy (either with enrofloxacin alone or in combination with metronidazole and amoxicillin). Clinical signs, physical examination findings, laboratory abnormalities, and the histologic severity of the disease were evaluated. Four of the 9 dogs had been treated previously with conventional therapy and had failed to respond favorably; then, these dogs were placed on antibiotic therapy (enrofloxacin, n = 1; enrofloxacin, metronidazole, and amoxicillin, n = 3) and had resolution of clinical signs within 3-12 days. Five dogs were treated solely with antibiotic therapy (enrofloxacin, n = 1; enrofloxacin and metronidazole, n = 1; enrofloxacin, metronidazole, and amoxicillin, n = 3), and clinical signs resolved in 2-7 days. Repeated biopsy specimens were obtained from 5 dogs after treatment, and all showed marked histologic improvement. The increase in body weight after treatment was statistically significant (P = .01). Three dogs currently are not on any treatment and have had resolution of clinical signs for up to 14 months. These observations suggest that an infectious agent responsive to antibiotics plays an integral role in the clinical manifestation of canine HUC, and they support the use of antibiotics in its treatment.

  10. In Vitro Antibiotic Susceptibilities of Yersinia pestis Determined by Broth Microdilution following CLSI Methods

    PubMed Central

    Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K.; Worsham, Patricia L.

    2015-01-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. PMID:25583720

  11. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo.

    PubMed

    Hengzhuang, Wang; Høiby, Niels; Ciofu, Oana

    2014-01-01

    Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish an efficient dosing regimen and to minimize the development of antimicrobial tolerance and resistance in biofilm infections. Unfortunately, most previous PK/PD studies of antibiotics have been done on planktonic cells, and extrapolation of the results on biofilms is problematic as bacterial biofilms differ from planktonic grown cells in the growth rate, gene expression, and metabolism. Here, we set up several protocols for the studies of PK/PD of antibiotics in biofilm infections of P. aeruginosa in vitro and in vivo. It should be underlined that none of the protocols in biofilms have yet been certificated for clinical use or proved useful for guidance of antibiotic therapy.

  12. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often?

    PubMed Central

    Ciampolini, J; Harding, K

    2000-01-01

    In this review the pathophysiology of chronic bacterial osteomyelitis is summarised, focusing on how bacteria succeed so often in overcoming both host defence mechanisms and antibiotic agents. Bacteria adhere to bone matrix and orthopaedic implants via receptors to fibronectin and to other structural proteins. They subsequently elude host defences and antibiotics by "hiding" intracellularly, by developing a slimy coat, or by acquiring a very slow metabolic rate. The presence of an orthopaedic implant also causes a local polymorphonuclear cell defect, with decreased ability to kill phagocytosed bacteria. Osteolysis is determined locally by the interaction of bacterial surface components with immune system cells and subsequent cytokine production. The increasing development of antibiotic resistance by Staphylococcus aureus and S epidermidis will probably make conservative treatment even less successful than it is now. A close interaction between orthopaedic surgeons and physicians, with combined medical and operative treatment, is to be commended.


Keywords: osteomyelitis; joint replacement infection; antibiotics; osteolysis PMID:10908375

  13. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics.

    PubMed

    Wong, Weng Ruh; Oliver, Allen G; Linington, Roger G

    2012-11-21

    Despite recognition of the looming antibiotic crisis by healthcare professionals, the number of new antibiotics reaching the clinic continues to decline sharply. This study aimed to establish an antibiotic profiling strategy using a panel of clinically relevant bacterial strains to create unique biological fingerprints for all major classes of antibiotics. Antibiotic mode of action profile (BioMAP) screening has been shown to effectively cluster antibiotics by structural class based on these fingerprints. Using this approach, we have accurately predicted the presence of known antibiotics in natural product extracts and have discovered a naphthoquinone-based antibiotic from our marine natural product library that possesses a unique carbon skeleton. We have demonstrated that bioactivity fingerprinting is a successful strategy for profiling antibiotic lead compounds and that BioMAP can be applied to the discovery of new natural product antibiotics leads.

  14. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void?

    PubMed

    Brown, David

    2015-12-01

    Concern over antibiotic resistance is growing, and new classes of antibiotics, particularly against Gram-negative bacteria, are needed. However, even if the scientific hurdles can be overcome, it could take decades for sufficient numbers of such antibiotics to become available. As an interim solution, antibiotic resistance could be 'broken' by co-administering appropriate non-antibiotic drugs with failing antibiotics. Several marketed drugs that do not currently have antibacterial indications can either directly kill bacteria, reduce the antibiotic minimum inhibitory concentration when used in combination with existing antibiotics and/or modulate host defence through effects on host innate immunity, in particular by altering inflammation and autophagy. This article discusses how such 'antibiotic resistance breakers' could contribute to reducing the antibiotic resistance problem, and analyses a priority list of candidates for further investigation.

  15. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome

    PubMed Central

    Arenz, Stefan; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S.; Blanchard, Scott C.; Wilson, Daniel N.

    2016-01-01

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis. PMID:27330110

  16. Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods.

    PubMed

    Blackburn, C D; Davies, A R

    1994-12-01

    Strains of Aeromonas spp., Salmonella enteritidis phage type 4, Salmonella typhimurium, verotoxigenic Escherichia coli O157:H7 (VTEC) and Yersinia enterocolitica resistant to streptomycin, nalidixic acid and a combination of both antibiotics were selected. When compared with the parent strains, most of the antibiotic-resistant strains had slightly slower growth rates at their optimum incubation temperature but the difference was reduced progressively when the temperature was lowered. Some antibiotic-resistant strains had considerably slower growth rates in the presence of the relevant antibiotic and these were not used further. Several agar and impedance media with added streptomycin and nalidixic acid were assessed for the enumeration of the antibiotic-resistant strains in artificially contaminated stored foods. Differential/selective media were required to enumerate low numbers of antibiotic-resistant strains in certain foods. The following agar and impedance media were selected: Aeromonas Agar (Ryan) for Aeromonas spp., Xylose Lysine Agar and Lysine Iron Cysteine Neutral Red Medium for Salmonella, Eosin Methylene Blue Agar and Coliform Medium for VTEC, and Yersinia Selective Agar without selective agents for Yersinia enterocolitica. The agar and impedance media have been used successfully to enumerate antibiotic-resistant strains inoculated into foods and stored at different temperatures.

  17. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics.

    PubMed

    Bengtsson-Palme, Johan; Hammarén, Rickard; Pal, Chandan; Östman, Marcus; Björlenius, Berndt; Flach, Carl-Fredrik; Fick, Jerker; Kristiansson, Erik; Tysklind, Mats; Larsson, D G Joakim

    2016-12-01

    Sewage treatment plants (STPs) have repeatedly been suggested as "hotspots" for the emergence and dissemination of antibiotic-resistant bacteria. A critical question still unanswered is if selection pressures within STPs, caused by residual antibiotics or other co-selective agents, are sufficient to specifically promote resistance. To address this, we employed shotgun metagenomic sequencing of samples from different steps of the treatment process in three Swedish STPs. In parallel, concentrations of selected antibiotics, biocides and metals were analyzed. We found that concentrations of tetracycline and ciprofloxacin in the influent were above predicted concentrations for resistance selection, however, there was no consistent enrichment of resistance genes to any particular class of antibiotics in the STPs, neither for biocide and metal resistance genes. The most substantial change of the bacterial communities compared to human feces occurred already in the sewage pipes, manifested by a strong shift from obligate to facultative anaerobes. Through the treatment process, resistance genes against antibiotics, biocides and metals were not reduced to the same extent as fecal bacteria. The OXA-48 gene was consistently enriched in surplus and digested sludge. We find this worrying as OXA-48, still rare in Swedish clinical isolates, provides resistance to carbapenems, one of our most critically important classes of antibiotics. Taken together, metagenomics analyses did not provide clear support for specific antibiotic resistance selection. However, stronger selective forces affecting gross taxonomic composition, and with that resistance gene abundances, limit interpretability. Comprehensive analyses of resistant/non-resistant strains within relevant species are therefore warranted.

  18. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome.

    PubMed

    Arenz, Stefan; Juette, Manuel F; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S; Blanchard, Scott C; Wilson, Daniel N

    2016-07-05

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.

  19. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    PubMed Central

    Aoki, Wataru; Ueda, Mitsuyoshi

    2013-01-01

    Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety. PMID:24276381

  20. High-order TRAIL oligomer formation in TRAIL-coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer.

    PubMed

    De Miguel, Diego; Gallego-Lleyda, Ana; Ayuso, José María; Pejenaute-Ochoa, Dolores; Jarauta, Vidal; Marzo, Isabel; Fernández, Luis J; Ochoa, Ignacio; Conde, Blanca; Anel, Alberto; Martinez-Lostao, Luis

    2016-12-28

    During the last years, a great effort has been invested into developing new TRAIL formulations with increased bioactivity, trying to overcome the resistance to conventional soluble TRAIL (sTRAIL) exhibited by many primary tumours. In our group, we have generated artificial lipid nanoparticles decorated with sTRAIL (LUV-TRAIL), emulating the physiological TRAIL-containing exosomes by which T-cells release TRAIL upon activation. We already demonstrated that LUV-TRAIL has greater cytotoxicity against both chemoresistant haematologic tumour cells and epithelial carcinoma cells compared to a form of sTRAIL similar to that used in clinical trials. In this study we have tested LUV-TRAIL in several human colon cancer cell lines with different sensitivity to sTRAIL. LUV-TRAIL significantly improved sTRAIL cytotoxicity in all colon cancer cell lines tested. Trying to ascertain the molecular mechanism by which LUV-TRAIL exhibited improved cytotoxicity, we demonstrated that TRAIL-coated lipid nanoparticles were able to activate DR5 more efficiently than sTRAIL, and this relied on LUV-TRAIL ability to promote DR5 clustering on the cell surface. Moreover, we show that TRAIL molecules are arranged in higher order oligomers only in LUV-TRAIL, which may explain their enhanced DR5 clustering ability. Finally, LUV-TRAIL showed significantly better antitumour activity than sTRAIL in an in vivo model using HCT-116 xenograft tumours in nude mice, validating its potential clinical application.

  1. Prolonged infusions of β-lactam antibiotics: implication for antimicrobial stewardship.

    PubMed

    George, Jomy M; Towne, Trent G; Rodvold, Keith A

    2012-08-01

    The optimal dosage and administration of antibiotics are not only important measures to combat antimicrobial resistance, but they are also integral to antimicrobial stewardship. In light of a diminishing antibiotic pipeline and an alarming rise in resistance, the optimal dosage and administration of antimicrobial agents have been under a great deal of scrutiny. Prolonged infusions of β-lactam antibiotics have been proposed as an alternate dosing strategy. To summarize the evidence on prolonged infusions of β-lactam agents and provide their clinical implications for antimicrobial stewardship, we performed a MEDLINE search (1950-2011) of all relevant articles. This article provides a review of data from Monte Carlo simulations, clinical outcome analyses, and pharmacoeconomic studies. Furthermore, protocol implementation strategies are discussed to address antimicrobial stewardship.

  2. Surface modeling of soil antibiotics.

    PubMed

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  3. Antibiotics from microbes: converging to kill.

    PubMed

    Fischbach, Michael A

    2009-10-01

    As genetically encoded small molecules, antibiotics are phenotypes that have resulted from mutation and natural selection. Advances in genetics, biochemistry, and bioinformatics have connected hundreds of antibiotics to the gene clusters that encode them, allowing these molecules to be analyzed using the tools of evolutionary biology. This review surveys examples of convergent evolution from microbially produced antibiotics, including the convergence of distinct gene clusters on similar phenotypes and the merger of distinct gene clusters into a single functional unit. Examining antibiotics through an evolutionary lens highlights the versatility of biosynthetic pathways, reveals lessons for combating antibiotic resistance, and provides an entry point for studying the natural roles of these natural products.

  4. Lysozyme as an alternative to growth promoting antibiotics in swine production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lysozyme is a naturally occurring enzyme found in bodily secretions such as tears, saliva, and milk. It functions as an antimicrobial agent by cleaving the peptidoglycan component of bacterial cell walls, which leads to cell death. Antibiotics are also antimicrobials and have been fed at subtherape...

  5. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  6. Antibiotic resistance in cancer patients.

    PubMed

    Gudiol, Carlota; Carratalà, Jordi

    2014-08-01

    Bacterial infection is one of the most frequent complications in cancer patients and hematopoietic stem cell transplant recipients. In recent years, the emergence of antimicrobial resistance has become a significant problem worldwide, and cancer patients are among those affected. Treatment of infections due to multidrug-resistant (MDR) bacteria represents a clinical challenge, especially in the case of Gram-negative bacilli, since the therapeutic options are often very limited. As the antibiotics active against MDR bacteria present several disadvantages (limited clinical experience, higher incidence of adverse effects, and less knowledge of the pharmacokinetics of the drug), a thorough acquaintance with the main characteristics of these drugs is mandatory in order to provide safe treatment to cancer patients with MDR bacterial infections. Nevertheless, the implementation of antibiotic stewardship programs and infection control measures is the cornerstone for controlling the development and spread of these MDR pathogens.

  7. Resistance to Antibiotics Mediated by Target Alterations

    NASA Astrophysics Data System (ADS)

    Spratt, Brian G.

    1994-04-01

    The development of resistance to antibiotics by reductions in the affinities of their enzymatic targets occurs most rapidly for antibiotics that inactivate a single target and that are not analogs of substrate. In these cases of resistance (for example, resistance to rifampicin), numerous single amino acid substitutions may provide large decreases in the affinity of the target for the antibiotic, leading to clinically significant levels of resistance. Resistance due to target alterations should occur much more slowly for those antibiotics (penicillin, for example) that inactivate multiple targets irreversibly by acting as close analogs of substrate. Resistance to penicillin because of target changes has emerged, by unexpected mechanisms, only in a limited number of species. However, inactivating enzymes commonly provide resistance to antibiotics that, like penicillin, are derived from natural products, although such enzymes have not been found for synthetic antibiotics. Thus, the ideal antibiotic would be produced by rational design, rather than by the modification of a natural product.

  8. Use of antibiotics in plant agriculture.

    PubMed

    Stockwell, V O; Duffy, B

    2012-04-01

    Antibiotics are essential for control of bacterial diseases of plants, especially fire blight of pear and apple and bacterial spot of peach. Streptomycin is used in several countries; the use of oxytetracycline, oxolinic acid and gentamicin is limited to only a few countries. Springtime antibiotic sprays suppress pathogen growth on flowers and leaf surfaces before infection; after infection, antibiotics are ineffective. Antibiotics are applied when disease risk is high, and consequently the majority of orchards are not treated annually. In 2009 in the United States, 16,465 kg (active ingredient) was applied to orchards, which is 0.12% of the total antibiotics used in animal agriculture. Antibiotics are active on plants for less than a week, and significant residues have not been found on harvested fruit. Antibiotics have been indispensable for crop protection in the United States for more than 50 years without reports of adverse effects on human health or persistent impacts on the environment.

  9. Antibiotic prescribing practices by dentists: a review

    PubMed Central

    Dar-Odeh, Najla Saeed; Abu-Hammad, Osama Abdalla; Al-Omiri, Mahmoud Khaled; Khraisat, Ameen Sameh; Shehabi, Asem Ata

    2010-01-01

    Antibiotics are prescribed by dentists for treatment as well as prevention of infection. Indications for the use of systemic antibiotics in dentistry are limited, since most dental and periodontal diseases are best managed by operative intervention and oral hygiene measures. However, the literature provides evidence of inadequate prescribing practices by dentists, due to a number of factors ranging from inadequate knowledge to social factors. Here we review studies that investigated the pattern of antibiotic use by dentists worldwide. The main defects in the knowledge of antibiotic prescribing are outlined. The main conclusion is that, unfortunately, the prescribing practices of dentists are inadequate and this is manifested by over-prescribing. Recommendations to improve antibiotic prescribing practices are presented in an attempt to curb the increasing incidence of antibiotic resistance and other side effects of antibiotic abuse. PMID:20668712

  10. Local antibiotic delivery with demineralized bone matrix.

    PubMed

    Lewis, Christine S; Supronowicz, Peter R; Zhukauskas, Rasa M; Gill, Elise; Cobb, Ronald R

    2012-03-01

    A method of care for these infected nonunions is prolonged intravenous systemic antibiotic treatment and implantation of methyl methacrylate antibiotic carrier beads to delivery high local doses of antibiotics. This method requires a second surgery to remove the beads once the infection has cleared. Recent studies have investigated the use of biodegradable materials that have been impregnated with antibiotics as tools to treat bone infections. In the present study, human demineralized bone matrix (DBM) was investigated for its ability to be loaded with an antibiotic. The data presented herein demonstrates that this osteoinductive and biodegradable material can be loaded with gentamicin and release clinically relevant levels of the drug for at least 13 days in vitro. This study also demonstrates that the antibiotic loaded onto the graft has no adverse effects on the osteoinductive nature of the DBM as measured in vitro and in vivo. This bone void filler may represent a promising option for local antibiotic delivery in orthopedic applications.

  11. Designing Safer and Greener Antibiotics

    PubMed Central

    Jordan, Andrew; Gathergood, Nicholas

    2013-01-01

    Since the production of the first pharmaceutically active molecules at the beginning of the 1900s, drug molecules and their metabolites have been observed in the environment in significant concentrations. In this review, the persistence of antibiotics in the environment and their associated effects on ecosystems, bacterial resistance and health effects will be examined. Solutions to these problems will also be discussed, including the pharmaceutical industries input, green chemistry, computer modeling and representative ionic liquid research. PMID:27029311

  12. A novel class of lipophilic quinazoline-based folic acid analogues: cytotoxic agents with a folate-independent locus

    PubMed Central

    Skelton, L A; Ormerod, M G; Titley, J; Kimbell, R; Brunton, L A; Jackman, A L

    1999-01-01

    Three lipophilic quinazoline-based aminomethyl pyridine compounds, which differ only in the position of the nitrogen in their pyridine ring, are described. CB300179 (2-pyridine), CB300189 (4-pyridine) and CB30865 (3-pyridine) all inhibited isolated mammalian TS with IC50 values of 508, 250 and 156 nM respectively. CB30865 was the most potent growth inhibitory agent (IC50 values in the range 1– 100 nM for several mouse and human cell types). CB300179 and CB300189 were active in the micromolar range. Against W1L2 cells, CB300179 and CB300189 demonstrated reduced potency in the presence of exogenous thymidine (dThd), and against a W1L2:C1 TS overproducing cell line. In contrast, CB30865 retained activity in these systems. Furthermore, combinations of precursors and end products of folate metabolism, e.g. dThd/hypoxanthine (HX) or leucovorin (LV), did not prevent activity. CB30865 did not interfere with the incorporation of tritiated dThd, uridine or leucine after 4 h. A cell line was raised with acquired resistance to CB30865 (W1L2:R865; > 200-fold), which was not cross-resistant to CB300179 or CB300189. In addition, W1L2:R865 cells were as sensitive as parental cells to agents from all the major chemotherapeutic drug classes. CB300179 and CB300189 induced an S phase accumulation (preventable by co-administration of dThd). No cell cycle redistribution was observed following exposure (4–48 h) to an equitoxic concentration of CB30865. In the NCI anticancer drug-discovery screen, CB30865 displayed a pattern of activity which was not consistent with known anti-tumour agents. These data suggest that CB30865 represents a class of potent potential anti-tumour agents with a novel mechanism of action. © 1999 Cancer Research Campaign PMID:10206279

  13. A novel class of lipophilic quinazoline-based folic acid analogues: cytotoxic agents with a folate-independent locus.

    PubMed

    Skelton, L A; Ormerod, M G; Titley, J; Kimbell, R; Brunton, L A; Jackman, A L

    1999-04-01

    Three lipophilic quinazoline-based aminomethyl pyridine compounds, which differ only in the position of the nitrogen in their pyridine ring, are described. CB300179 (2-pyridine), CB300189 (4-pyridine) and CB30865 (3-pyridine) all inhibited isolated mammalian TS with IC50 values of 508, 250 and 156 nM respectively. CB30865 was the most potent growth inhibitory agent (IC50 values in the range 1-100 nM for several mouse and human cell types). CB300179 and CB300189 were active in the micromolar range. Against W1L2 cells, CB300179 and CB300189 demonstrated reduced potency in the presence of exogenous thymidine (dThd), and against a W1L2:C1 TS overproducing cell line. In contrast, CB30865 retained activity in these systems. Furthermore, combinations of precursors and end products of folate metabolism, e.g. dThd/hypoxanthine (HX) or leucovorin (LV), did not prevent activity. CB30865 did not interfere with the incorporation of tritiated dThd, uridine or leucine after 4 h. A cell line was raised with acquired resistance to CB30865 (W1L2:R865; > 200-fold), which was not cross-resistant to CB300179 or CB300189. In addition, W1L2:R865 cells were as sensitive as parental cells to agents from all the major chemotherapeutic drug classes. CB300179 and CB300189 induced an S phase accumulation (preventable by co-administration of dThd). No cell cycle redistribution was observed following exposure (4-48 h) to an equitoxic concentration of CB30865. In the NCI anticancer drug-discovery screen, CB30865 displayed a pattern of activity which was not consistent with known anti-tumour agents. These data suggest that CB30865 represents a class of potent potential anti-tumour agents with a novel mechanism of action.

  14. Why is antibiotic resistance a deadly emerging disease?

    PubMed

    Courvalin, P

    2016-05-01

    Evolution of bacteria towards resistance to antimicrobial agents, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. In this review, we will consider the biochemical mechanisms and the genetics that bacteria use to offset antibiotic selective pressure. The data provided are mainly, if not exclusively, taken from the work carried out in the laboratory, although there are numerous other examples in the literature.

  15. Antibiotics and the gut microbiota.

    PubMed

    Modi, Sheetal R; Collins, James J; Relman, David A

    2014-10-01

    Antibiotics have been a cornerstone of innovation in the fields of public health, agriculture, and medicine. However, recent studies have shed new light on the collateral damage they impart on the indigenous host-associated communities. These drugs have been found to alter the taxonomic, genomic, and functional capacity of the human gut microbiota, with effects that are rapid and sometimes persistent. Broad-spectrum antibiotics reduce bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Furthermore, antibiotic treatment selects for resistant bacteria, increases opportunities for horizontal gene transfer, and enables intrusion of pathogenic organisms through depletion of occupied natural niches, with profound implications for the emergence of resistance. Because these pervasive alterations can be viewed as an uncoupling of mutualistic host-microbe relationships, it is valuable to reconsider antimicrobial therapies in the context of an ecological framework. Understanding the biology of competitive exclusion, interspecies protection, and gene flow of adaptive functions in the gut environment may inform the design of new strategies that treat infections while preserving the ecology of our beneficial constituents.

  16. Desensitization to antibiotics in children.

    PubMed

    Cernadas, Josefina R

    2013-02-01

    Drug hypersensitivity reactions can occur to almost all drugs and antibiotics are among the most common cause for this kind of reactions. Drug hypersensitivity may affect any organ or system, and manifestations range widely in clinical severity from mild pruritus to anaphylaxis. In most cases, the suspected drug is avoided in the future. In case of infection, there is usually a safe antibiotic alternative. Nonetheless, in some cases, no alternative treatment exists for optimal therapy. Under these circumstances, desensitization may be performed. Drug desensitization is defined as the induction of a temporary state of tolerance to a drug which can only be maintained by continuous administration of the medication responsible for the hypersensitivity reaction. Desensitization is mainly performed in IgE-mediated reactions. Increasing doses of the implicated drug are administered over a short period of time, until the therapeutic dose is achieved and tolerated. Very few studies confined to children are found in literature. Most of them are case reports. In general, the proposed desensitization schemes are similar to those used in adults differing only in the final dose administered. The purpose of this study is to review desensitization to antibiotics in children presenting and discussing three clinical practical cases of desensitization in this age group.

  17. Sources of antibiotics: Hot springs.

    PubMed

    Mahajan, Girish B; Balachandran, Lakshmi

    2016-11-24

    The discovery of antibiotics heralded an era of improved health care. However, the over-prescription and misuse of antibiotics resulted in the development of resistant strains of various pathogens. Since then, there has been an incessant search for discovering novel compounds from bacteria at various locations with extreme conditions. The soil is one of the most explored locations for bioprospecting. In recent times, hypersaline environments and symbiotic associations have been investigated for novel antimicrobial compounds. Among the extreme environments, hot springs are comparatively less explored. Many researchers have reported the presence of microbial life and secretion of antimicrobial compounds by microorganisms in hot springs. A pioneering research in the corresponding author's laboratory resulted in the identification of the antibiotic Fusaricidin B isolated from a hot spring derived eubacteria, Paenibacillus polymyxa, which has been assigned a new application for its anti-tubercular properties. The corresponding author has also reported anti-MRSA and anti-VRE activity of 73 bacterial isolates from hot springs in India.

  18. Antibiotic resistance in Burkholderia species.

    PubMed

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.

  19. Detecting agents.

    PubMed Central

    Johnson, Susan C

    2003-01-01

    This paper reviews a recent set of behavioural studies that examine the scope and nature of the representational system underlying theory-of-mind development. Studies with typically developing infants, adults and children with autism all converge on the claim that there is a specialized input system that uses not only morphological cues, but also behavioural cues to categorize novel objects as agents. Evidence is reviewed in which 12- to 15-month-old infants treat certain non-human objects as if they have perceptual/attentional abilities, communicative abilities and goal-directed behaviour. They will follow the attentional orientation of an amorphously shaped novel object if it interacts contingently with them or with another person. They also seem to use a novel object's environmentally directed behaviour to determine its perceptual/attentional orientation and object-oriented goals. Results from adults and children with autism are strikingly similar, despite adults' contradictory beliefs about the objects in question and the failure of children with autism to ultimately develop more advanced theory-of-mind reasoning. The implications for a general theory-of-mind development are discussed. PMID:12689380

  20. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    PubMed Central

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  1. Effects of Luteolin and Quercetin in Combination with Some Conventional Antibiotics against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Usman Amin, Muhammad; Khurram, Muhammad; Khan, Taj Ali; Faidah, Hani S.; Ullah Shah, Zia; Ur Rahman, Shafiq; Haseeb, Abdul; Ilyas, Muhammad; Ullah, Naseem; Umar Khayam, Sahibzada Muhammad; Iriti, Marcello

    2016-01-01

    The present study was designed to evaluate the effects of flavonoids luteolin (L) and quercetin + luteolin (Q + L) in combination with commonly used antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates and S. aureus (ATCC 43300). Minimum inhibitory concentrations (MICs) of L and Q + L, as well as the MICs of flavonoids in combination with antibiotics were determined and results showed an increased activity of flavonoids with antibiotics. The synergistic, additive, or antagonistic relationships between flavonoids (L and Q + L) and antibiotics were also evaluated, and additive and synergistic effects were observed for some antibiotic + flavonoid combinations. In addition, some combinations were also found to damage the bacterial cytoplasmic membrane, as assessed through potassium leakage assay. The effects of flavonoids and flavonoids + antibiotics on mecA gene mutations were also tested, and no functional variation was detected in the coding region. PMID:27879665

  2. Subinhibitory Antibiotic Therapy Alters Recurrent Urinary Tract Infection Pathogenesis through Modulation of Bacterial Virulence and Host Immunity

    PubMed Central

    Hannan, Thomas J.; MacPhee, Roderick A.; Schwartz, Drew J.; Macklaim, Jean M.; Gloor, Gregory B.; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J.; Burton, Jeremy P.

    2015-01-01

    ABSTRACT The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. PMID:25827417

  3. Membrane Interactions Of The Anthracycline Antibiotics

    NASA Astrophysics Data System (ADS)

    Burke, Thomas G.; Doroshow, James H.; Tritton, Thomas R.

    1988-06-01

    The intrinsic fluorescence properties of the anthracycline antitumor antibiotics were exploited here to study the manner in which a 14-valerate substituent modulated relative drug location and dynamics in fluid-phase bilayers at 37°C. Using Adriamycin (A), N,N-dimethyladriamycin (NDA), N-trifluoroacetyladriamycin (NTA), N-benzyladriamycin (NBA), and their corresponding valerate-substituted analogs (AD48, AD199, AD32 and AD198, respectively), the accessibilities of bound fluorophores to membrane-impermeable iodide were evaluated in quenching experiments conducted at constant ionic strength, while the diffusive motions of these agents were studied through the use of lifetime-resolved anisotropy plots. Incorporation of a bulky 14-valerate side chain into an anthracycline was found to enhance the hindered rotations experienced by a bound drug molecule, with limiting anisotropy (a.) values increasing from 0.166 to 0.258 for NTA and from 0 243 to 1 0.264 for NBA. However, the bimolecular quenching rate constants (x10 M ls ) for membrane-bound A (1.4), AD48 (1.1), NDA (1.8), AD199 (1.1), NBA (0.8), AD198 (0.7), NTA (0.4) and AD32 (0.5) indicate that the hydrophobic side chain was not, in general, a strong modulator of fluorophore penetration into the bilayer.

  4. Antibiotic Therapy for Infective Endocarditis in Childhood

    PubMed Central

    Calza, Leonardo; Manfredi, Roberto; Chiodo, Francesco

    2006-01-01

    Infective endocarditis is relatively uncommon in childhood, but its epidemiology has changed in the past three to four decades and its incidence has been increasing in recent years. With the improved survival rates of children with congenital heart diseases and the overall decreased frequency of rheumatic valvular heart disease in developed countries, congenital cardiac abnormalities now represent the predominant underlying condition for infective endocarditis in children over the age of two years in Western Europe and Northern America. Moreover, the complex management of neonatal and pediatric intensive care unit patients has increased the risk of catheter-related endocarditis. More specifically, the surgical correction of congenital heart alterations is associated with the risk of postoperative infections. Endocarditis in children may be difficult to diagnosis and manage. Emerging resistant bacteria, such as methicillin- or vancomycin-resistant staphylococci and vancomycin-resistant enterococci, are becoming a new challenge for conventional antibiotic therapy. Newer antimicrobial compounds recently introduced in clinical practice, such as streptogramins and oxazolidinones, may be effective alternatives in children with endocarditis sustained by Gram-positive cocci resistant to glycopeptides. Home intravenous therapy has become an acceptable approach for stable patients who are at low risk for embolic complications. However, further clinical studies are needed in order to assess efficacy and safety of these antimicrobial agents in children. This review should help outline the most appropriate antimicrobial treatments for infective endocarditis in children. PMID:23118646

  5. Parameters important in short antibiotic courses.

    PubMed

    Pechère, J C

    2000-01-01

    The aim of antibiotic therapy is pathogen eradication, which is often assumed on the basis of the alleviation of the signs and symptoms of the disease. Pharmacokinetic/pharmacodynamic in vitro and animal models have now been developed to predict bacteriological efficacy and to establish dosing regimens that are effective and control the development of resistance. These models may be applied to the evaluation of new short-course dosing regimens, lasting no longer than 3 - 5 days. Single-dose therapy, using agents with a prolonged duration of action, is currently employed for streptococcal pharyngitis, uncomplicated gonorrhoea and uncomplicated lower urinary tract infections in women. The use of short-course therapy in immunocompetent patients for the treatment of community-acquired infections that have a low bacterial load is feasible. Such regimens may have a number of advantages over those currently employed, which typically involve dosing for 7 - 10 days. These advantages include improved tolerability, reduction in healthcare costs, enhanced patient compliance and the prevention of the emergence of resistance.

  6. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay; Marappan, Nathiya; Gajendran, Sabari Srinivasan; Viswanathan, Vinodhini

    2016-01-01

    Aim/Background: Medicinal plants have ability to resist microorganisms by synthesizing secondary metabolites such as phenols. Rosmarinic acid (RA) is a phenylpropanoid widely distributed in plants and well known as therapeutic and cosmetic agent. Methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to all kinds of β-lactams, threatens even most potent antibiotics. To improve the efficiency of antibiotics against multi-drug resistant bacteria and to reduce the antibiotic dose, the antibacterial activity and the synergistic effect of RA with standard antibiotics against S. aureus and MRSA was investigated. Materials and Methods: Antibacterial activity of RA against S. aureus and a clinical isolate of MRSA was evaluated by agar well diffusion method. Minimum inhibitory concentration (MIC) of RA was determined by broth dilution method. Synergism of RA with various antibiotics against S. aureus and MRSA was studied by broth checkerboard method and time-kill kinetic assay. Effect of RA on microbial surface components recognizing adhesive matrix molecules (MSCRAMM’s) of S. aureus and MRSA was studied using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Results: MIC of RA was found to be 0.8 and 10 mg/ml against S. aureus and MRSA, respectively. RA was synergistic with vancomycin, ofloxacin, and amoxicillin against S. aureus and only with vancomycin against MRSA. The time-kill analysis revealed that synergistic combinations were a more effective than individual antibiotics. MSCRAMM’s protein expression of S. aureus and MRSA was markedly suppressed by RA + vancomycin combination rather than RA alone. Conclusion: The synergistic effects of RA with antibiotics were observed against S. aureus and MRSA. RA showed inhibitory effect on the surface proteins MSCRAMM’s. Even though RA was shown to exhibit a synergistic effect with antibiotics, the MIC was found to be higher. Thus, further studies on increasing the efficacy of RA can develop it

  7. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates

    PubMed Central

    Aiyegoro, Olayinka; Adewusi, Adekanmi; Oyedemi, Sunday; Akinpelu, David; Okoh, Anthony

    2011-01-01

    Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds. PMID:21845091

  8. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India.

    PubMed

    Singh, Shweta; Agarwal, Rajesh Kumar; Tiwari, Suresh C; Singh, Himanshu

    2012-03-01

    The present study was conducted to study the antibiotic resistance pattern among nontyphoidal Salmonella isolated from human, animal and meat. A total of 37 Salmonella strains isolated from clinical cases (human and animal) and meat during 2008-2009 belonging to 12 serovars were screened for their antimicrobial resistance pattern using 25 antimicrobial agents falling under 12 different antibiotic classes. All the Salmonella isolates tested showed multiple drug resistance varying from 5.40% to 100% with 16 of the 25 antibiotics tested. None of the isolates were sensitive to erythromycin and metronidazole. Resistance was also observed against clindamycin (94.59%), ampicillin (86.49%), co-trimoxazole (48.65%), colistin (45.94%), nalidixic acid (35.10%), amoxyclave (18.90%), cephalexin, meropenem, tobramycin, nitrofurantoin, tetracycline, amoxicillin (8.10% each), sparfloxacin and streptomycin (5.40% each). Isolates from clinical cases of animals were resistant to as many as 16 antibiotics, whereas isolates from human clinical cases and meat were resistant to 9 and 14 antibiotics, respectively. Overall, 19 resistotypes were recorded. Analysis of multiple antibiotic resistance index (MARI) indicated that clinical isolates from animals had higher MARI (0.25) as compared to isolates from food (0.22) and human (0.21). Among the different serotypes studied for antibiogram, Paratyhi B isolates, showed resistance to three to 13 antibiotics, whereas Typhimurium strains were resistant to four to seven antibiotics. Widespread multidrug resistance among the isolates from human, animal and meat was observed. Some of the uncommon serotypes exhibited higher resistance rate. Considerable changes in the resistance pattern were also noted. An interesting finding was the reemergence of sensitivity to some of the old antibiotics (chloromphenicol, tetracycline).

  9. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance

    PubMed Central

    El-Halfawy, Omar M.; Klett, Javier; Ingram, Rebecca J.; Loutet, Slade A.; Murphy, Michael E. P.; Martín-Santamaría, Sonsoles

    2017-01-01

    ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. PMID:28292982

  10. Evaluation of skin cancer chemoprevention potential of sunscreen agents using the Epstein-Barr virus early antigen activation in vitro assay.

    PubMed

    Kapadia, G J; Rao, G S; Takayasu, J; Takasaki, M; Iida, A; Suzuki, N; Konoshima, T; Tokuda, H

    2013-04-01

    In our continuing search for novel cancer chemopreventive compounds of natural and synthetic origin, we have evaluated 14 commonly used ultraviolet (UV) sunscreen agents (designated UV-1 to UV-14) for their skin cancer chemoprevention potential. They belong to 8 different chemical categories: aminobenzoate (UV-5, UV-7, UV-8 and UV-14), benzophenone (UV-1, UV-2, UV-3 and UV-13), benzotriazole (UV-10), benzyloxyphenol (UV-9), cinnamate (UV-6), quinolone (UV-4), salicylate (UV-11) and xanthone (UV-12). In the in vitro assay employed, the sunscreens were assessed by their inhibition of the Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in human lymphoblastoid Raji cells. All sunscreens tested were found to exhibit anti-tumour promoting activity: listed in decreasing order, moderate (UV-11, UV-2, UV-7, UV-12, UV-3, UV-9 and UV-14) to weak (UV-1, UV-6, UV-8, UV-16, UV-5, UV-4 and UV-10) with octyl salicylate (UV-11) as the most potent and drometrizole (UV-10) as the least potent among the compounds evaluated. A plausible relationship between the antioxidant property of sunscreens and their ability to promote anti-tumour activity was noted. The results call for a comprehensive analysis of skin cancer chemoprevention potential of currently used UV sunscreen agents around the globe to identify those with the best clinical profile.

  11. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice

    PubMed Central

    Lau, Janet; Cheung, Jeanne; Navarro, Armando; Lianoglou, Steve; Haley, Benjamin; Totpal, Klara; Sanders, Laura; Koeppen, Hartmut; Caplazi, Patrick; McBride, Jacqueline; Chiu, Henry; Hong, Rebecca; Grogan, Jane; Javinal, Vincent; Yauch, Robert; Irving, Bryan; Belvin, Marcia; Mellman, Ira; Kim, Jeong M.; Schmidt, Maike

    2017-01-01

    Expression of PD-L1, the ligand for T-cell inhibitory receptor PD-1, is one key immunosuppressive mechanism by which cancer avoids eradication by the immune system. Therapeutic use of blocking antibodies to PD-L1 or its receptor PD-1 has produced unparalleled, durable clinical responses, with highest likelihood of response seen in patients whose tumour or immune cells express PD-L1 before therapy. The significance of PD-L1 expression in each cell type has emerged as a central and controversial unknown in the clinical development of immunotherapeutics. Using genetic deletion in preclinical mouse models, here we show that PD-L1 from disparate cellular sources, including tumour cells, myeloid or other immune cells can similarly modulate the degree of cytotoxic T-cell function and activity in the tumour microenvironment. PD-L1 expression in both the host and tumour compartment contribute to immune suppression in a non-redundant fashion, suggesting that both sources could be predictive of sensitivity to therapeutic agents targeting the PD-L1/PD-1 axis. PMID:28220772

  12. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  13. An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo.

    PubMed

    Kiesgen, Stefan; Arndt, Michaela A E; Körber, Christoph; Arnold, Ulrich; Weber, Tobias; Halama, Niels; Keller, Armin; Bötticher, Benedikt; Schlegelmilch, Anne; Liebers, Nora; Cremer, Martin; Herold-Mende, Christel; Dyckhoff, Gerhard; Federspil, Philippe A; Jensen, Alexandra D; Jäger, Dirk; Kontermann, Roland E; Mier, Walter; Krauss, Jürgen

    2015-02-01

    Cytotoxic ribonucleases such as the leopard frog derivative Ranpirnase (Onconase(®)) have emerged as a valuable new class of cancer therapeutics. Clinical trials employing single agent Ranpirnase in cancer patients have demonstrated significant clinical activity and surprisingly low immunogenicity. However, dose-limiting toxicity due to unspecific uptake of the RNase into non-cancerous cells is reached at relatively low concentrations of > 1 mg/m(2). We have in the present study generated a dimeric anti-EGFR Ranpirnase-diabody fusion protein capable to deliver two Ranpirnase moieties per molecule to EGFR-positive tumour cells. We show that this compound mediated far superior efficacy for killing EGFR-positive tumour cells than a monomeric counterpart. Most importantly, cell killing was restricted to EGFR-positive target cells and no dose-limiting toxicity of Ranpirnase-diabody was observed in mice. These data indicate that by targeted delivery of Ranpirnase non-selective toxicity can be abolished and suggests Ranpirnase-diabody as a promising new drug for therapeutic interventions in EGFR-positive cancers.

  14. Antibiotic policies in Central Eastern Europe.

    PubMed

    Cizman, Milan; Beovic, Bojana; Krcmery, Vladimir; Barsic, Bruno; Tamm, Eda; Ludwig, Endre; Pelemis, Mojimir; Karovski, Kliment; Grzesiowski, Pavel; Gardovska, Dace; Volokha, Alla; Keuleyan, Emma; Stratchounski, Leonid; Dumitru, Carstina; Titov, Leonid P; Usonis, Vytantas; Dvorák, Peter

    2004-09-01

    To assess the antibiotic policies in Central Eastern European (CEE) countries, a questionnaire on the prevalence of resistance, antibiotic consumption data for ambulatory and hospital care and antibiotic policies, was mailed to national representatives. Data on antibiotic resistance and consumption of antibiotics at national levels are limited and vary considerably among countries. The importance of surveillance data in altering perceptions of the prevalence of resistance is shown by the comparison of surveillance data and interview data. Interview data without surveillance data produced the widest range of estimates of the prevalence of resistance in streptococcus pneumonia -5% in Lithuania and 82% in Belarus. The average consumption of antibiotics in ambulatory care in eight CEE countries in 2001 was 19.35 defined daily doses (DDD)/1000 inhabitants per day, (range 13.1 - 24.8 DDD) and in hospitals in six CEE countries was 2.2 DDD/1000 inhabitants per day (range 1.3-4.5). Over the counter sales of antibiotics are available in some countries. Antibiotic policy interventions do not exist or only apply to specific problems or interventions. Better implementation of antibiotic interventions and education on antibiotic use should be a high priority in this region. An effective strategy requires close co-operation, consultations and partnership at national and international level in particular, via existing international organisations.

  15. National campaigns to improve antibiotic use.

    PubMed

    Goossens, Herman; Guillemot, Didier; Ferech, Matus; Schlemmer, Benoit; Costers, Michiel; van Breda, Marije; Baker, Lee J; Cars, Otto; Davey, Peter G

    2006-05-01

    High levels of antibiotic consumption are driving levels of bacterial resistance that threaten public health. Nonetheless, antibiotics still provide highly effective treatments for common diseases with important implications for human health. The challenge for public education is to achieve a meaningful reduction in unnecessary antibiotic use without adversely affecting the management of bacterial infections. This paper focuses on the lessons learned from national campaigns in countries (Belgium and France) with high antibiotic use. Evaluation of these national campaigns showed the importance of television advertising as a powerful medium to change attitudes and perhaps also behaviour with regard to antibiotics. Moreover, in both countries, strong evidence suggested reduced antibiotic prescribing. However, adverse effects associated with a reduction in antibiotic prescribing were not monitored. We conclude that carefully designed mass education campaigns could improve antibiotic use nationally and should be considered in countries with high antibiotic use. However, these campaigns should employ techniques of social marketing and use appropriate outcome measures. The benefits and risks of such campaigns have been less well established in countries where antibiotic use is already low or declining.

  16. Development of antibiotics and the future of marine microorganisms to stem the tide of antibiotic resistance

    PubMed Central

    Kasanah, Noer; Hamann, Mark T

    2016-01-01

    Antibiotics remain essential tools in the control of infectious diseases. With the emergence of new diseases, resistant forms of diseases such as tuberculosis and malaria, as well as the emergence of multidrug-resistant bacteria, it has become essential to develop novel antibiotics. Development of the existing antibiotics involved three strategies, including discovery of new target sites, modification of existing antibiotic structures, and the identification of new resources for novel antibiotics. Marine microorganisms have clearly become an essential new resource in the discovery of new antibiotic leads. PMID:15600239

  17. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    PubMed Central

    Krupp, Karl; Madhivanan, Purnima

    2015-01-01

    The emergence of multi-drug resistant sexually transmitted infections (STIs) is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are “largely inevitable” and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI. PMID:26392647

  18. Antibiotic-producing bacteria from stag beetle mycangia.

    PubMed

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  19. Antimicrobial Evaluation of Nocathiacins, a Thiazole Peptide Class of Antibiotics

    PubMed Central

    Pucci, Michael J.; Bronson, Joanne J.; Barrett, John F.; DenBleyker, Kenneth L.; Discotto, Linda F.; Fung-Tomc, Joan C.; Ueda, Yasutsugu

    2004-01-01

    Nocathiacins are cyclic thiazolyl peptides with inhibitory activity against gram-positive bacteria. BMS-249524 (nocathiacin I), identified from screening a library of compounds against a multiply antibiotic-resistant Enterococcus faecium strain, was used as a lead chemotype to obtain additional structurally related compounds. The MIC assay results of BMS-249524 and two more water-soluble derivatives, BMS-411886 and BMS-461996, revealed potent in vitro activities against a variety of gram-positive pathogens including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin intermediate-resistant S. aureus, vancomycin-resistant enterococci, Mycobacterium tuberculosis and Mycobacterium avium. Analysis of killing kinetics revealed that these compounds are bactericidal for S. aureus with at least a 3-log10 reduction of bacterial growth within 6 h of exposure to four times the MICs. Nocathiacin-resistant mutants were characterized by DNA sequence analyses. The mutations mapped to the rplK gene encoding the L11 ribosomal protein in the 50S subunit in a region previously shown to be involved in the binding of related thiazolyl peptide antibiotics. These compounds demonstrated potential for further development as a new class of antibacterial agents with activity against key antibiotic-resistant gram-positive bacterial pathogens. PMID:15388422

  20. Gramicidin A: A New Mission for an Old Antibiotic

    PubMed Central

    2015-01-01

    Gramicidin A (GA) is a channel-forming ionophore that renders biological membranes permeable to specific cations which disrupts cellular ionic homeostasis. It is a well-known antibiotic, however it’s potential as a therapeutic agent for cancer has not been widely evaluated. In two recently published studies, we showed that GA treatment is toxic to cell lines and tumor xenografts derived from renal cell carcinoma (RCC), a devastating disease that is highly resistant to conventional therapy. GA was found to possess the qualities of both a cytotoxic drug and a targeted angiogenesis inhibitor, and this combination significantly compromised RCC growth in vitro and in vivo. In this review, we summarize our recent research on GA, discuss the possible mechanisms whereby it exerts its anti-tumor effects, and share our perspectives on the future opportunities and challenges to the use of GA as a new anticancer agent.

  1. Monitoring the influence of antibiotic exposure using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Zemanek, Pavel; Bernatova, Silvie; Jezek, Jan; Sery, Mojmir; Jakl, Petr; Siler, Martin; Ruzicka, Filip

    2014-03-01

    Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

  2. Antibiotics

    NASA Astrophysics Data System (ADS)

    Anhalt, John P.

    A 28-year-old man was transferred to our hospital and underwent surgery for resection of an aortic graft infected with Klebsiella pneumoniae. Antimicrobial therapy consisted of amikacin, cefazolin, chloramphenicol, sulfamethoxazole, and trimethoprim. A request for amikacin and sulfamethoxazole assays was received by the laboratory along with information that the patient had received tobramycin until 24 h before the serum was obtained.

  3. Randomized controlled trials of antibiotics for neonatal infections: a systematic review

    PubMed Central

    Kaguelidou, Florentia; Turner, Mark A; Choonara, Imti; van Anker, John; Manzoni, Paolo; Alberti, Corinne; Langhendries, Jean-Paul; Jacqz-Aigrain, Evelyne

    2013-01-01

    Aims Antibiotics are a key resource for the management of infectious diseases in neonatology and their evaluation is particularly challenging. We reviewed medical literature to assess the characteristics and quality of randomized controlled trials on antibiotics in neonatal infections. Methods We performed a systematic search of PubMed, Embase and the Cochrane Library from January 1995 to March 2010. Bibliographies of relevant articles were also hand-searched. We included all randomized controlled trials that involved neonates and evaluated the use of an antibiotic agent in the context of a neonatal infectious disease. Methodological quality was evaluated using the Jadad scale and the Cochrane Risk of Bias Tool. Two reviewers independently assessed studies for inclusion and evaluated methodological quality. Results A total of 35 randomized controlled trials were evaluated. The majority were conducted in a single hospital institution, without funding. Median sample size was 63 (34–103) participants. The most frequently evaluated antibiotic was gentamicin. Respectively, 18 (51%) and 17 (49%) trials evaluated the therapeutic or prophylactic use of antibiotics in various neonatal infections. Overall, the methodological quality was poor and did not improve over the years. Risk of bias was high in 66% of the trials. Conclusions Design and reporting of randomized controlled trials of antibacterial agents in neonates should be improved. Nevertheless, the necessity of implementing such trials when antibacterial efficacy has already been established in other age groups may be questioned and different methods of evaluation should be further developed. PMID:23488627

  4. Improving known classes of antibiotics: an optimistic approach for the future.

    PubMed

    Bush, Karen

    2012-10-01

    New antibiotic agents are desperately needed to treat the multidrug-resistant pathogens that continue to emerge at alarming rates. Many of the agents that have entered full clinical development since 1995 have been members of previously accepted classes of antibiotics. Among these are a new aminoglycoside (plazomicin), anti-MRSA cephalosporins (ceftobiprole and ceftaroline), a monocyclic β-lactam (BAL30072), the β-lactamase inhibitor combination of tazobactam with the anti-pseudomonal cephalosporin ceftolozane, β-lactam combinations with new non-β-lactam inhibitors (MK-7655 with imipenem, and avibactam with ceftazidime and ceftaroline), new macrolides (cethromycin and solithromycin), oxazolidinones (tedizolid phosphate and radezolid), and quinolones (delafloxacin, nemonoxacin and JNJ-Q2). Resistance and safety issues have been circumvented by some of these new agents that have well-established mechanisms of action and defined pathways leading toward regulatory approval.

  5. Plasmid encoded antibiotics inhibit protozoan predation of Escherichia coli K12.

    PubMed

    Ahmetagic, Adnan; Philip, Daniel S; Sarovich, Derek S; Kluver, Daniel W; Pemberton, John M

    2011-09-01

    Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to 'graze' on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan "plaque" formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.

  6. Induction of anti-tumour lymphocytes in cancer patients after brief exposure to supernatants from cultures of anti-CD3-stimulated allogeneic lymphocytes.

    PubMed Central

    Baxevanis, C. N.; Tsiatas, M. L.; Cacoullos, N. T.; Spanakos, G.; Liacos, C.; Missitzis, I.; Papadhimitriou, S. I.; Papamichail, M.

    1997-01-01

    The present study investigated the ability of supernatants collected from cultures of healthy donor-derived peripheral blood mononuclear cells (HD-PBMCs) stimulated with anti-CD3 monoclonal antibody (MAb) (allogeneic CD3 supernatants; ACD3S) to induce, upon brief exposure, tumour-reactive cytotoxic lymphocytes in cancer patients' PBMCs. ACD3S enhanced natural killer (NK) and lymphokine-activated killer (LAK) cell-mediated cytotoxicity. ACD3S contained increased levels of interleukins (IL) 1, 2, 6, 7 and 12, as well as of granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma-interferon (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha). MAbs against these cytokines significantly reduced the ACD3S-induced cytotoxicity. ACD3S-induced cytotoxicity was not inhibited by anti-CD4, CD8 and MHC class I MAbs, but was markedly reduced in the presence of MAb against CD18. In contrast to HD-PBMC, ACD3S derived from cancer patients' lymphocytes exhibited lower levels of the above-mentioned cytokines and exerted reduced biological activity. In conclusion, ACD3S are able to activate, upon short-term incubation, tumour-reactive lymphocytes from cancer patients' PBMCs that lyse a variety of tumour targets, including autologous tumours. ACD3S contain high levels of certain cytokines that positively influence the induction of autologous tumour-reactive lymphocytes. Such supernatants can be collected easily from healthy donors and stored until use in clinical trials for adoptive cellular therapy of cancer. They may also be indicated in the construction of cytokine cocktails that have the ability to induce anti-tumour cytotoxicity. PMID:9376269

  7. Microbiological effects of sublethal levels of antibiotics.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2014-07-01

    The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.

  8. Counteracting selection for antibiotic-resistant bacteria

    PubMed Central

    Yosef, Ido; Manor, Miriam; Qimron, Udi

    2016-01-01

    ABSTRACT The occurrence of antibiotic-resistant bacterial pathogens is on the rise because antibiotics exert selection pressure that kills only the antibiotic-sensitive pathogens. Sanitation and cleansing of hospital surfaces and the skin of medical personnel do not counteract this selective pressure, but rather indiscriminately reduce total pathogens on treated surfaces. Here, we discuss two recently introduced genetic strategies, based on temperate bacteriophages as DNA-delivery vehicles, that aim to sensitize bacteria to antibiotics and selectively kill the antibiotic-resistant ones. Outlooks for rendering one such approach more efficient and applicable are proposed. We believe that using an end product designed according to the provided principles on hospital surfaces and in hand-sanitizers will facilitate substitution of antibiotic-resistant pathogens with sensitive ones. PMID:27144084

  9. Insights into antibiotic resistance through metagenomic approaches.

    PubMed

    Schmieder, Robert; Edwards, Robert

    2012-01-01

    The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.

  10. Antibiotic stewardship: a focus on ambulatory care.

    PubMed

    Gangat, M Azhar; Hsu, Jennifer L

    2015-01-01

    Antibiotic resistance is one of the major health threats facing modern medicine. While there are many tactics to address this issue, antibiotic stewardship has been shown effective in reducing antimicrobial resistance, adverse drug effects, mortality and health care cost. Most antibiotic stewardship programs have evolved within acute care settings where the bulk of resistant infections are identified. Unfortunately, hospitals are just the tip of the iceberg in terms of overall antibiotic use. The vast majority of the antibiotic prescriptions are dispensed in ambulatory care settings, making this a critical target for stewardship programs. This article discusses the global need for antibiotic stewardship, highlights the importance of outpatient stewardship, and discusses strategies and challenges for implementation of stewardship in community settings.

  11. Antibiotic prescribing in primary care, adherence to guidelines and unnecessary prescribing - an Irish perspective

    PubMed Central

    2012-01-01

    Background Information about antibiotic prescribing practice in primary care is not available for Ireland, unlike other European countries. The study aimed to ascertain the types of antibiotics and the corresponding conditions seen in primary care and whether general practitioners (GPs) felt that an antibiotic was necessary at the time of consultation. This information will be vital to inform future initiatives in prudent antibiotic prescribing in primary care. Methods Participating GPs gathered data on all antibiotics prescribed by them in 100 consecutive patients’ consultations as well as data on the conditions being treated and whether they felt the antibiotic was necessary. Results 171 GPs collected data on 16,899 consultations. An antibiotic was prescribed at 20.16% of these consultations. The majority were prescribed for symptoms or diagnoses associated with the respiratory system; the highest rate of prescribing in these consultations were for patients aged 15–64 years (62.23%). There is a high rate of 2nd and 3rd line agents being used for common ailments such as otitis media and tonsillitis. Amoxicillin, which is recommended as 1st line in most common infections, was twice as likely to be prescribed if the prescription was for deferred used or deemed unnecessary by the GP. Conclusion The study demonstrates that potentially inappropriate prescribing is occurring in the adult population and the high rate of broad-spectrum antimicrobial agents is a major concern. This study also indicates that amoxicillin may be being used for its placebo effect rather than specifically for treatment of a definite bacterial infection. PMID:22640399

  12. Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance

    PubMed Central

    Allan, Raymond N.; Morgan, Samantha; Brito-Mutunayagam, Sanjita; Skipp, Paul; Feelisch, Martin; Hayes, Stephen M.; Hellier, William; Clarke, Stuart C.; Stoodley, Paul; Burgess, Andrea; Ismail-Koch, Hasnaa; Salib, Rami J.; Webb, Jeremy S.; Hall-Stoodley, Luanne

    2016-01-01

    Streptococcus pneumoniae is one of the key pathogens responsible for otitis media (OM), the most common infection in children and the largest cause of childhood antibiotic prescription. Novel therapeutic strategies that reduce the overall antibiotic consumption due to OM are required because, although widespread pneumococcal conjugate immunization has controlled invasive pneumococcal disease, overall OM incidence has not decreased. Biofilm formation represents an important phenotype contributing to the antibiotic tolerance and persistence of S. pneumoniae in chronic or recurrent OM. We investigated the treatment of pneumococcal biofilms with nitric oxide (NO), an endogenous signaling molecule and therapeutic agent that has been demonstrated to trigger biofilm dispersal in other bacterial species. We hypothesized that addition of low concentrations of NO to pneumococcal biofilms would improve antibiotic efficacy and that higher concentrations exert direct antibacterial effects. Unlike in many other bacterial species, low concentrations of NO did not result in S. pneumoniae biofilm dispersal. Instead, treatment of both in vitro biofilms and ex vivo adenoid tissue samples (a reservoir for S. pneumoniae biofilms) with low concentrations of NO enhanced pneumococcal killing when combined with amoxicillin-clavulanic acid, an antibiotic commonly used to treat chronic OM. Quantitative proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) identified 13 proteins that were differentially expressed following low-concentration NO treatment, 85% of which function in metabolism or translation. Treatment with low-concentration NO, therefore, appears to modulate pneumococcal metabolism and may represent a novel therapeutic approach to reduce antibiotic tolerance in pneumococcal biofilms. PMID:26856845

  13. Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance.

    PubMed

    Allan, Raymond N; Morgan, Samantha; Brito-Mutunayagam, Sanjita; Skipp, Paul; Feelisch, Martin; Hayes, Stephen M; Hellier, William; Clarke, Stuart C; Stoodley, Paul; Burgess, Andrea; Ismail-Koch, Hasnaa; Salib, Rami J; Webb, Jeremy S; Faust, Saul N; Hall-Stoodley, Luanne

    2016-04-01

    Streptococcus pneumoniaeis one of the key pathogens responsible for otitis media (OM), the most common infection in children and the largest cause of childhood antibiotic prescription. Novel therapeutic strategies that reduce the overall antibiotic consumption due to OM are required because, although widespread pneumococcal conjugate immunization has controlled invasive pneumococcal disease, overall OM incidence has not decreased. Biofilm formation represents an important phenotype contributing to the antibiotic tolerance and persistence ofS. pneumoniaein chronic or recurrent OM. We investigated the treatment of pneumococcal biofilms with nitric oxide (NO), an endogenous signaling molecule and therapeutic agent that has been demonstrated to trigger biofilm dispersal in other bacterial species. We hypothesized that addition of low concentrations of NO to pneumococcal biofilms would improve antibiotic efficacy and that higher concentrations exert direct antibacterial effects. Unlike in many other bacterial species, low concentrations of NO did not result inS. pneumoniaebiofilm dispersal. Instead, treatment of bothin vitrobiofilms andex vivoadenoid tissue samples (a reservoir forS. pneumoniaebiofilms) with low concentrations of NO enhanced pneumococcal killing when combined with amoxicillin-clavulanic acid, an antibiotic commonly used to treat chronic OM. Quantitative proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) identified 13 proteins that were differentially expressed following low-concentration NO treatment, 85% of which function in metabolism or translation. Treatment with low-concentration NO, therefore, appears to modulate pneumococcal metabolism and may represent a novel therapeutic approach to reduce antibiotic tolerance in pneumococcal biofilms.

  14. [Pilot project of a pediatric antibiotic stewardship initiative at the Hauner children's hospital].

    PubMed

    Huebner, J; Rack-Hoch, A L; Pecar, A; Schmid, I; Klein, C; Borde, J P

    2013-07-01

    The steady increase in antimicrobial resistance is of growing concern in healthcare. Antibiotic Stewardship [ABS] Strategies are important tools to control antibiotic use and -prevent antimicrobial resistance. An increasing number of institutions are developing ABS initiatives also in pediatrics. However, few data are available assessing the implementation and efficiency of these pediatric ABS programs.At the Dr. von Hauner Children's Hospital, Ludwig-Maximilian University, a tertiary care pediatric reference center, a pediatric ABS Team has been implemented. Key structural elements were the same as for adult patients, but antimicrobials agents selected for monitoring and appropriate clinical endpoints are different in pediatrics.Key features were: 1. prospective-audit with feedback and formulary restriction and 2. pre-authorization (also referred to as prior approval). The ABS team consisted of one pediatric infectious disease specialist, one clinical fellow in pediatric infectious diseases, and one clinical pharmacist with training in infectious diseases.With the implementation of a pediatric ABS strategy we could significantly influence antimicrobial consumption in our hospital. Cost-savings are estimated to be above 330 000 € per year, and concomitantly the use of broad-spectrum antibiotics and antifungal compounds was significantly reduced.Antibiotic Stewardship [ABS] Strategies may be an effective tool to control antibiotic use in the setting of a large tertiary pediatric teaching hospital. A national guideline for ABS initiatives may help to further improve rational use of antibiotics in the hospital setting.

  15. New antibiotics for bad bugs: where are we?

    PubMed Central

    2013-01-01

    Bacterial resistance to antibiotics is growing up day by day in both community and hospital setting, with a significant impact on the mortality and morbidity rates and the financial burden that is associated. In the last two decades multi drug resistant microorganisms (both hospital- and community-acquired) challenged the scientific groups into developing new antimicrobial compounds that can provide safety in use according to the new regulation, good efficacy patterns, and low resistance profile. In this review we made an evaluation of present data regarding the new classes and the new molecules from already existing classes of antibiotics and the ongoing trends in antimicrobial development. Infectious Diseases Society of America (IDSA) supported a proGram, called “the ′10 × ´20′ initiative”, to develop ten new systemic antibacterial drugs within 2020. The microorganisms mainly involved in the resistance process, so called the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae) were the main targets. In the era of antimicrobial resistance the new antimicrobial agents like fifth generation cephalosporins, carbapenems, monobactams, β-lactamases inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines active against Gram-positive pathogens, like vancomycin-resistant S. aureus (VRSA) and MRSA, penicillin-resistant streptococci, and vancomycin resistant Enterococcus (VRE) but also against highly resistant Gram-negative organisms are more than welcome. Of these compounds some are already approved by official agencies, some are still in study, but the need of new antibiotics still does not cover the increasing prevalence of antibiotic-resistant bacterial infections. Therefore the management of antimicrobial resistance should also include fostering coordinated actions by all stakeholders, creating policy guidance, support

  16. [The prehospital use of antibiotics in military operations].

    PubMed

    Rump, A

    2012-03-01

    War wounds usually show abundant devitalized tissue and often contain foreign material (environmental matter, shrapnels, and bullets). Thus, they are particularly prone to infection. Moreover, evacuation to a medical treatment facility and surgical debridement are often delayed due to tactical constraints. Thus, the early administration of an antibiotic on the ground in a prehospital setting seems justified to slow bacterial growth and the development of early infection. However, antibiotics are never a substitute for surgical treatment. The mix of microorganisms expected in war wounds is highly variable and determines the choice of the antibacterial agent. In a prehospital setting and in the absence of medical or paramedical personnel, the antibiotic must be administered orally (combat pill pack). In view of the antibacterial activity as well as pharmacokinetic and pharmaceutical properties, a combination of a fluoroquinolone active against Pseudomonas and a lincomycine with a high oral bioavailability at high doses seems to be a rational choice (ciprofloxacine 750 mg or alternatively levofloxacine 500 mg+clindamycine 600 mg tablets). If oral administration is excluded (unconsciousness, penetrating abdominal trauma, shock), the parenteral administration will be delayed until the patient has been taken in charge by medical or paramedical personnel. In that case, the intravenous administration of an association of an ureidopenicilline with antibacterial activity against Pseudomonas and a ß-lactamase-inhibitor at high doses could be a rational choice (piperacilline 4 g+tazobactam 0.5 g) (Tazocilline®). An antibiotic treatment beyond the time of surgery may become necessary in individual patients depending on the local features of the wound and should be prescribed by the medical officer in charge of the patient on a case-by-case basis.

  17. Antibiotic prophylaxis in children with relapsing urinary tract infections: review.

    PubMed

    Mangiarotti, P; Pizzini, C; Fanos, V

    2000-04-01

    Recurrent urinary tract infections (UTIs) are observed in 30-50% of children after the first UTI. Of these, approximately 90% occur within 3 months of the initial episode. The basic aim of antibiotic prophylaxis in children with malformative uropathy and/or recurrent UTIs, is to reduce the frequency of UTIs. The bacteria most frequently responsible for UTI are gram-negative organisms, with Escherichia coli accounting for 80% of urinary tract pathogens. In children with recurrent UTIs and in those treated with antibiotic prophylaxis there is a greater incidence of UTI due to Proteus spp., Klebsiella spp. and Enterobacter spp., whereas Pseudomonas spp., Serratia spp. and Candida spp. are more frequent in children with urogenital abnormalities and/or undergoing invasive instrumental investigations. Several factors are involved in the pathogenesis of UTI, the main ones being circumcision, periurethral flora, micturition disorders, bowel disorders, local factors and hygienic measures. Several factors facilitate UTI relapse: malformative uropathies, particularly of the obstructive type; vesico-ureteric reflux (VUR); previous repeated episodes of cystitis and/or pyelonephritis (3 or more episodes a year), even in the absence of urinary tract abnormalities; a frequently catheterized neurogenic bladder; kidney transplant. The precise mechanism of action of low-dose antibiotics is not yet fully known. The characteristics of the ideal prophylactic agent are presented in this review, as well as indications, dosages, side effects, clinical data of all molecules. While inappropriate use of antibiotic prophylaxis encourages the emergence of microbial resistance, its proper use may be of great value in clinical practice, by reducing the frequency and clinical expression of UTIs and, in some cases such as VUR, significantly helping to resolve the underlying pathology.

  18. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus.

    PubMed

    Wencewicz, Timothy A; Long, Timothy E; Möllmann, Ute; Miller, Marvin J

    2013-03-20

    Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a β-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 μM for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.

  19. Variable Effects of Exposure to Formulated Microbicides on Antibiotic Susceptibility in Firmicutes and Proteobacteria

    PubMed Central

    Forbes, Sarah; Knight, Christopher G.; Cowley, Nicola L.; Amézquita, Alejandro; McClure, Peter; Humphreys, Gavin

    2016-01-01

    ABSTRACT Microbicides are broad-spectrum antimicrobial agents that generally interact with multiple pharmacological targets. While they are widely deployed in disinfectant, antiseptic, and preservative formulations, data relating to their potential to select for microbicide or antibiotic resistance have been generated mainly by testing the compounds in much simpler aqueous solutions. In the current investigation, antibiotic susceptibility was determined for bacteria that had previously exhibited decreased microbicide susceptibility following repeated exposure to microbicides either in formulation with sequestrants and surfactants or in simple aqueous solution. Statistically significant increases in antibiotic susceptibility occurred for 12% of bacteria after exposure to microbicides in formulation and 20% of bacteria after exposure to microbicides in aqueous solutions, while 22% became significantly less susceptible to the antibiotics, regardless of formulation. Of the combinations of a bacterium and an antibiotic for which British Society for Antimicrobial Chemotherapy breakpoints are available, none became resistant. Linear modeling taking into account phylogeny, microbicide, antibiotic, and formulation identified small but significant effects of formulation that varied depending on the bacterium and microbicide. Adaptation to formulated benzalkonium chloride in particular was more likely to increase antibiotic susceptibility than adaptation to the simple aqueous solution. In conclusion, bacterial adaptation through repeated microbicide exposure was associated with both increases and decreases in antibiotic susceptibility. Formulation of the microbicide to which the bacteria had previously adapted had an identifiable effect on antibiotic susceptibility, but it effect was typically small relative to the differences observed among microbicides. Susceptibility changes resulting in resistance were not observed. IMPORTANCE The safety of certain microbicide

  20. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms.

    PubMed

    Woappi, Yvon; Gabani, Prashant; Singh, Arya; Singh, Om V

    2016-01-01

    Widespread overuse of antibiotics has led to the emergence of numerous antibiotic-resistant bacteria; among these are antibiotic-subsisting strains capable of surviving in environments with antibiotics as the sole carbon source. This unparalleled expansion of antibiotic resistance reveals the potent and diversified resistance abilities of certain bacterial strains. Moreover, these strains often possess hypermutator phenotypes and virulence transmissibility competent for genomic and proteomic propagation and pathogenicity. Pragmatic and prospicient approaches will be necessary to develop efficient therapeutic methods against such bacteria and to understand the extent of their genomic adaptability. This review aims to reveal the niches of these antibiotic-catabolizing microbes and assesses the underlying factors linking natural microbial antibiotic production, multidrug resistance, and antibiotic-subsistence.