Sample records for antibiotic sensitivity testing

  1. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    PubMed

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics. Regardless of the growing concerns related to antibiotics in the environment, there are still evident knowledge gaps related to antibiotics, as there is only limited or no ecotoxicological data on many potentially harmful antibiotics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Antimicrobial susceptibility pattern in nosocomial infections caused by Acinetobacter species in Asir Region, Saudi Arabia.

    PubMed

    Abdalla, Nazar M; Osman, Amani A; Haimour, Waleed O; Sarhan, Mohammed A A; Mohammed, Mohammed N; Zyad, Eyhab M; Al-Ghtani, Abdalla M

    2013-03-15

    This study aimed at evaluating the sensitivity of antibiotics towards nosocomial infections caused by Acinetobacter species. The study took place during the period Dec. 2011- Dec. 2012 at Assir Central Hospital in collaboration with the department of microbiology, college of medicine, King Khalid University, Abha. A prospective study involving 150 patients presented with nosocomial infections due to Acinetobacter species detected by bacteriological tests; direct microscopy, culture in blood agar media, fermentation test in MacConkey media and MIC (minimum inhibitory concentration) for antibiotics sensitivity using Muller Hinton media and Chemical test using API 20. A 150 nosocomial infections in this study showed gram-negative coccobacilli, non motile, glucose-negative fermentor and oxidase negative. All isolates showed 100% sensitivity to: Imipramine, Meropenem, Colistin. From the rest of tested antibiotics the higher resistant ones were; Nitrofurantoin 87% and Cefoxitin 85%. The least resistant antibiotics; Imipenem 3% and Ticarcillin 7%. While variable resistance in the rest of tested antimicrobials. A 47 patients (31.3%) have used antibiotics prior to this study. The high rate of usage occurred in elder patients. The frequency of Acinetobacter calcoaceticus baumannii complex multi-drugs resistance ABCMDR is rising including almost all commonly used antibiotics. Only few antibiotics exert 100% sensitivity towards these bacteria.

  3. Validation of antibiotic residue tests for dairy goats.

    PubMed

    Zeng, S S; Hart, S; Escobar, E N; Tesfai, K

    1998-03-01

    The SNAP test, LacTek test (B-L and CEF), Charm Bacillus sterothermophilus var. calidolactis disk assay (BsDA), and Charm II Tablet Beta-lactam sequential test were validated using antibiotic-fortified and -incurred goat milk following the protocol for test kit validations of the U.S. Food and Drug Administration Center for Veterinary Medicine. SNAP, Charm BsDA, and Charm II Tablet Sequential tests were sensitive and reliable in detecting antibiotic residues in goat milk. All three assays showed greater than 90% sensitivity and specificity at tolerance and detection levels. However, caution should be taken in interpreting test results at detection levels. Because of the high sensitivity of these three tests, false-violative results could be obtained in goat milk containing antibiotic residues below the tolerance level. Goat milk testing positive by these tests must be confirmed using a more sophisticated methodology, such as high-performance liquid chromatography, before the milk is condemned. LacTek B-L test did not detect several antibiotics, including penicillin G, in goat milk at tolerance levels. However, LacTek CEF was excellent in detecting ceftiofur residue in goat milk.

  4. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe.

    PubMed

    De Briyne, N; Atkinson, J; Pokludová, L; Borriello, S P; Price, S

    2013-11-16

    The Heads of Medicines Agencies and the Federation of Veterinarians of Europe undertook a survey to gain a better insight into the decision-making process of veterinarians in Europe when deciding which antibiotics to prescribe. The survey was completed by 3004 practitioners from 25 European countries. Analysis was to the level of different types of practitioner (food producing (FP) animals, companion animals, equines) and country for Belgium, Czech Republic, France, Germany, Spain, Sweden and the UK. Responses indicate no single information source is universally considered critical, though training, published literature and experience were the most important. Factors recorded which most strongly influenced prescribing behaviour were sensitivity tests, own experience, the risk for antibiotic resistance developing and ease of administration. Most practitioners usually take into account responsible use warnings. Antibiotic sensitivity testing is usually performed where a treatment failure has occurred. Significant differences were observed in the frequency of sensitivity testing at the level of types of practitioners and country. The responses indicate a need to improve sensitivity tests and services, with the availability of rapid and cheaper testing being key factors.

  5. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe

    PubMed Central

    De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S. P.; Price, S.

    2013-01-01

    The Heads of Medicines Agencies and the Federation of Veterinarians of Europe undertook a survey to gain a better insight into the decision-making process of veterinarians in Europe when deciding which antibiotics to prescribe. The survey was completed by 3004 practitioners from 25 European countries. Analysis was to the level of different types of practitioner (food producing (FP) animals, companion animals, equines) and country for Belgium, Czech Republic, France, Germany, Spain, Sweden and the UK. Responses indicate no single information source is universally considered critical, though training, published literature and experience were the most important. Factors recorded which most strongly influenced prescribing behaviour were sensitivity tests, own experience, the risk for antibiotic resistance developing and ease of administration. Most practitioners usually take into account responsible use warnings. Antibiotic sensitivity testing is usually performed where a treatment failure has occurred. Significant differences were observed in the frequency of sensitivity testing at the level of types of practitioners and country. The responses indicate a need to improve sensitivity tests and services, with the availability of rapid and cheaper testing being key factors. PMID:24068699

  6. Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents.

    PubMed

    Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P; Yang, Hanjing; Hoffman, Robert M; Salih, Anya; Miller, Jeffrey H

    2011-03-01

    Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.

  7. Antibiotic Sensitivity of Micrococcus radiodurans

    PubMed Central

    Hawiger, J.; Jeljaszewicz, J.

    1967-01-01

    A wild-type strain of Micrococcus radiodurans and its nonpigmented mutant W1 were tested for sensitivity to 10 antibiotics selected from the standpoint of their mechanism of action. Representatives of groups of antibiotics inhibiting deoxyribonucleic acid (DNA) synthesis, DNA-dependent ribonucleic acid synthesis, protein synthesis, and cell wall synthesis were selected. M. radiodurans and its mutant exhibited full susceptibility to all antibiotics tested (mitomycin C, actinomycin D, chloramphenicol, dihydrostreptomycin, erythromycin, neomycin, kanamycin, benzylpenicillin, bacitracin, and vancomycin), the degree of susceptibility being of the same order as that of a standard strain of Staphylococcus aureus 209 P, with the exception of dihydrostreptomycin. PMID:4166078

  8. Analysis of antibiotic resistance pattern of S. aureus strains isolated from the Orthopedics-Traumatology Section of "Sf. Spiridon" Clinical Emergency Hospital, Iaşi.

    PubMed

    Tucaliuc, D; Alexa, O; Tuchiluş, Cristina Gabriela; Ursu, Ramona Gabriela; Tucaliuc, Elena Simona; Iancu, Luminiţa Smaranda

    2014-01-01

    The retrospective analysis of antibiotic sensibility of S. aureus strains isolated from infected patients from the Orthopedics-Traumatology Clinic of "Sf. Spiridon" Clinical Emergency Hospital, Iaşi during January 2003-December 2013, in view of determining the evolution trend of the resistance phenomenon and of pinpointing the most useful treatment for these strains. The antibiotic sensitivity test was carried out using two methods: diffusimetric-Kirby-Bauer and the MIC determination by E-test (for the strains isolated in 2013); the interpretation of the sensitivity was made in a standardized manner, in compliance with the CLSI (Clinical and Laboratory Standards Institute) standard for antibiotics testing in force. The sensitivity testing for beta-lactams proved that during the 11 years of the study, the average value of the frequency of resistant strains was of 41.59% +/- 8.68. The highest frequency of MRSA (Methicillin Restant S. aureus) strains was noticed in 2012 (58.6%), followed by 2004 (50.7%). Even if in 2013 it dropped to 38.9%, the trend calculated for 2003-2013 is slightly rising (y = 0.0073x + 0.372). Out of the total of 495 S. aureus strains that were isolated, 164 (33.13%) were completely sensitive to the tested antibiotics and 26 (5.25%) were resistant only to beta-lactams. The other MRSA strains associated multiple resistance and MIC for vancomycin varied between 0.5-2 mg/ml. Two strains whose MIC was of 0.5 mg/ml were sensitive to most classes of tested antibiotics, including beta-lactams, except for macrolides (erythromycin), and the strain whose MIC was of 2 mg/ml, was resistant to all classes of tested antibiotics, except for glycopeptides and oxazolidiones. The other tested strains had a MIC for vancomycin equal to 1 mg/ml. Due to the fact that there are infections with SAMR strains in a rather worrying percentage (53.9%) that are resistant to the other classes of antibiotics, the only therapeutic solution being the vancomycin treatment, its use should be limited solely to those cases when it is really necessary. Fortunately, no vancomycin resistant MRSA strains have been identified in our country, but this phenomenon should be kept under close surveillance.

  9. Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.

    PubMed

    Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul

    2015-09-15

    This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/z<500). The β-lactamase assay for the Escherichia coli antibiotic susceptibility test was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Antimicrobial resistence of Shigella species isolated during 2004 and 2005 from selected sites in Zimbabwe.

    PubMed

    Ndlovu, N; Tarupiwa, A; Mudzori, J T

    2006-01-01

    To determine the predominant serotype and antibiotic sensitivity pattern of Shigella isolates during 2004 and 2005 in Zimbabwe. Cross sectional study. National Microbiology Reference Laboratory (NMRL), Harare, Zimbabwe. 259 clinical isolates of Shigella species isolated during 2004 and 2005 in Zimbabwe were studied. These samples had been referred to the NMRL for further testing. Serotype and antibiotic sensitivity pattern of Shigella species. Of the 259 clinical isolates of Shigella tested the following species were serotyped; 141 (54.4%) were S. flexneri; 70 (27%) S. sonnei; 38 (14.7%) S. dysenteriae and 10 (3.9%) S. boydii. About 4% of all Shigella isolates tested showed full sensitivity to commonly used antibiotics, 20.8% were resistant to one antibiotic only while 75.3% were resistant to at least two antibiotics. The most common resistance among Shigella species was to cotrimoxazole (89%), tetracycline (73%), ampicillin (49%) and chloramphenicol (41%). High susceptibility among Shigella species was observed to nalidixic acid (86%), ciprofloxacin (99%) and ceftazidine (99%). There was a low drug resistance of Shigella species to nalidixic acid, a drug of choice in Zimbabwe, except among Shigella dysenteriae type 1 strains. Continuous monitoring of the susceptibility patterns of Shigella species is important in order to detect the emergence of drug resistance and to update guidelines for antibiotic treatment in shigellosis.

  11. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is inexpensive and commonly available, should be encouraged in all clinical settings.

  12. Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics.

    PubMed

    Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A

    2016-10-01

    The occurrence of antibiotic residues in the aquatic environment is an emerging concern. In contrast to daphnia and fish, algae are known to be particularly sensitive to antibiotic exposure. However, to date, a systematic evaluation of the sensitivity of different algal species to antibiotics has not been performed. The aim of the present study was therefore to explore the sensitivity of a battery of algal species toward antibiotic exposures. The present study investigated the growth inhibition effects of 3 major-use antibiotics, tylosin, lincomycin, and trimethoprim, on 7 algal species from the chlorophyte, cyanobacteria, and diatom groups. Based on median effective concentration (EC50) values, cyanobacteria (EC50 = 0.095-0.13 μmol/L) were found to be the most sensitive group to lincomycin followed by chlorophytes (EC50 = 7.36-225.73 μmol/L) and diatoms (EC50 > 225.73 μmol/L). Cyanobacteria were also the most sensitive group to tylosin (EC50 = 0.09-0.092 μmol/L), but, for this compound, diatoms (EC50 = 1.33-5.7 μmol/L) were more sensitive than chlorophytes (EC50 = 4.14-81.2 μmol/L). Diatoms were most sensitive to trimethoprim (EC50 = 7.36-74.61 μmol/L), followed by cyanobacteria (EC50 = 315.78-344.45 μmol/L), and chlorophytes (EC50 > 344.45 μmol/L) for trimethoprim. Although these results partly support the current approach to regulatory environmental risk assessment (whereby cyanobacterial species are recommended for use with antibiotic compounds), they indicate that for some antibiotics this group might not be the most appropriate test organism. It is therefore suggested that environmental risk assessments consider data on 3 algal groups (chlorophytes, cyanobacteria, and diatoms) and use test species from these groups, which are consistently found to be the most sensitive (Pseudokirchneriella subcapitata, Anabaena flos-aquae, and Navicula pelliculosa). Environ Toxicol Chem 2016;35:2587-2596. © 2016 SETAC. © 2016 SETAC.

  13. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    PubMed

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  14. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation

    PubMed Central

    Taheri, M.; Mortazavi, S. M. J.; Moradi, M.; Mansouri, Sh.; Nouri, F.; Mortazavi, S. A. R.; Bahmanzadegan, F.

    2015-01-01

    Background Drug resistance is widely believed to be an increasingly serious threat to global public health. We have previously reported that short term exposure of microorganisms to diagnostic ultrasound waves could significantly alter their sensitivity to antibiotics. In our previous studies, Klebsiella pneumoniae showed major differences in the sensitivity to antibiotics in exposed and non-exposed samples. This study was aimed at investigating the alteration of antibiotic resistance of Klebsiella pneumonia, after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. Materials and Methods In this in vitro study, three replicate agar plates were used for each test. The antibiotic susceptibility test was carried out using disc diffusion method on Mueller Hinton agar plates and the inhibition zones in both control and exposed groups were measured. A common Wi-Fi router was used in this study as the radiofrequency exposure source. Irradiated samples were exposed to Wi-Fi radiofrequency radiation for 3, 4.5 and 8 hours. Results Statistically significant variations of sensitivity to antibiotics were found for all studied antibiotics after 4.5 hours of RF exposure, compared to non-exposed bacteria. Interestingly, the mean diameters of the inhibition zones after 3 hours of exposure were less than those exposed for 4.5 hours. Following this rise in the sensitivity to antibiotics, a fall was observed in the bacteria exposed for 8 hours for all studied antibiotics. Conclusion The findings of this study show a statistically significant rise in the sensitivity of Klebsiella pneumoniae to different antibiotics after 4.5 hours of exposure to 2.4 GHz Wi-Fi radiation, followed by a fall after 8 hours of exposure. These observations can be interpreted by the concept of non-linearity in the responses of Klebsiella pneumoniae to different antibiotics after exposure to electromagnetic radiofrequency radiation. As in this study a minimum level of effect was needed for the induction of adaptive response, these results also confirm the validity of the so-called “window theory”. PMID:26396967

  15. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation.

    PubMed

    Taheri, M; Mortazavi, S M J; Moradi, M; Mansouri, Sh; Nouri, F; Mortazavi, S A R; Bahmanzadegan, F

    2015-09-01

    Drug resistance is widely believed to be an increasingly serious threat to global public health. We have previously reported that short term exposure of microorganisms to diagnostic ultrasound waves could significantly alter their sensitivity to antibiotics. In our previous studies, Klebsiella pneumoniae showed major differences in the sensitivity to antibiotics in exposed and non-exposed samples. This study was aimed at investigating the alteration of antibiotic resistance of Klebsiella pneumonia, after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. In this in vitro study, three replicate agar plates were used for each test. The antibiotic susceptibility test was carried out using disc diffusion method on Mueller Hinton agar plates and the inhibition zones in both control and exposed groups were measured. A common Wi-Fi router was used in this study as the radiofrequency exposure source. Irradiated samples were exposed to Wi-Fi radiofrequency radiation for 3, 4.5 and 8 hours. Statistically significant variations of sensitivity to antibiotics were found for all studied antibiotics after 4.5 hours of RF exposure, compared to non-exposed bacteria. Interestingly, the mean diameters of the inhibition zones after 3 hours of exposure were less than those exposed for 4.5 hours. Following this rise in the sensitivity to antibiotics, a fall was observed in the bacteria exposed for 8 hours for all studied antibiotics. The findings of this study show a statistically significant rise in the sensitivity of Klebsiella pneumoniae to different antibiotics after 4.5 hours of exposure to 2.4 GHz Wi-Fi radiation, followed by a fall after 8 hours of exposure. These observations can be interpreted by the concept of non-linearity in the responses of Klebsiella pneumoniae to different antibiotics after exposure to electromagnetic radiofrequency radiation. As in this study a minimum level of effect was needed for the induction of adaptive response, these results also confirm the validity of the so-called "window theory".

  16. Clinical test to detect mecA and antibiotic resistance in Staphylococcus aureus, based on novel biotechnological methods.

    PubMed

    Shahmohammadi, Mohammad Reza; Nahaei, Mohammad Reza; Akbarzadeh, Abolfazl; Milani, Morteza

    2016-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common organisms isolated from clinical samples, and has been associated with morbidity and mortality among hospitalized patients. The aim of this study was to evaluate the prevalence and antibiotic susceptibility patterns among MRSA and methicillin-sensitive S. aureus (MSSA) isolates collected from four hospitals in Iran. A total of 183 isolates of S. aureus were collected from various clinical specimens of four hospitals in Iran. The isolates were identified by using the conventional biochemical tests. Three methods-oxacillin agar disk diffusion, oxacillin agar screening, and PCR- were applied to determine susceptibility to oxacillin. The conventional disk agar diffusion test was used to evaluate the antibiotic sensitivity of our isolates against 15 antibiotics, according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Of 183 isolates, 77 isolates (42.1%) were found to be MRSA, by the PCR method. The highest antibiotic resistance was found to be against penicillin, co-trimoxazole, erythromycin, and tetracycline respectively. All isolates were susceptible to vancomycin, according to the results of disk agar diffusion. Among other antibiotics, teicoplanin (84%) and fusidic acid (80.5%) were more active against MRSA isolates. For the different methods evaluated, the sensitivities and specificities were as follows: for disk agar diffusion (84.9% and 95.9%) and for agar screening test with oxacillin concentrations of 0.6 μg/ml (70.8% and 97.4%), 4 μg/ml (96.1%and 97.2%) and 6 μg/ml (96% and 96.3%), respectively. The results of our study showed that 47% of S. aureus isolates were MRSA. Overall, in this research study, resistance to all test antimicrobial agents in MRSA isolates were higher than that of MSSA isolates. Our results also revealed that 85% of mecA-positive isolates and 15% of mecA-negative isolates were resistant to methicillin; while 96% of mecA-negative isolates were sensitive to methicillin. Meanwhile 4% of mecA-positive isolates were also sensitive to methicillin.

  17. Detection of antibiotic resistance is essential for gonorrhoea point-of-care testing: a mathematical modelling study.

    PubMed

    Fingerhuth, Stephanie M; Low, Nicola; Bonhoeffer, Sebastian; Althaus, Christian L

    2017-07-26

    Antibiotic resistance is threatening to make gonorrhoea untreatable. Point-of-care (POC) tests that detect resistance promise individually tailored treatment, but might lead to more treatment and higher levels of resistance. We investigate the impact of POC tests on antibiotic-resistant gonorrhoea. We used data about the prevalence and incidence of gonorrhoea in men who have sex with men (MSM) and heterosexual men and women (HMW) to calibrate a mathematical gonorrhoea transmission model. With this model, we simulated four clinical pathways for the diagnosis and treatment of gonorrhoea: POC test with (POC+R) and without (POC-R) resistance detection, culture and nucleic acid amplification tests (NAATs). We calculated the proportion of resistant infections and cases averted after 5 years, and compared how fast resistant infections spread in the populations. The proportion of resistant infections after 30 years is lowest for POC+R (median MSM: 0.18%, HMW: 0.12%), and increases for culture (MSM: 1.19%, HMW: 0.13%), NAAT (MSM: 100%, HMW: 99.27%), and POC-R (MSM: 100%, HMW: 99.73%). Per 100 000 persons, NAAT leads to 36 366 (median MSM) and 1228 (median HMW) observed cases after 5 years. Compared with NAAT, POC+R averts more cases after 5 years (median MSM: 3353, HMW: 118). POC tests that detect resistance with intermediate sensitivity slow down resistance spread more than NAAT. POC tests with very high sensitivity for the detection of resistance are needed to slow down resistance spread more than by using culture. POC with high sensitivity to detect antibiotic resistance can keep gonorrhoea treatable longer than culture or NAAT. POC tests without reliable resistance detection should not be introduced because they can accelerate the spread of antibiotic-resistant gonorrhoea.

  18. Isolation and identification of methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Hara, Motonobu; Yoshida, Shin-ichi; Fukuyama, Masafumi

    2006-01-01

    Contamination of tap water by Methylobacterium species has become a serious concern in hospitals. This study was planned to examine the distribution of Methylobacterium species inhabiting tap water used in Japanese hospitals and antibiotic sensitivity of the isolates in 2004. Species identification of 58 isolates was performed based on the homology of a partial sequence of 16S rDNA. The dominant Methylobacterium species in hospital water were M. aquaticum and M. fujisawaense. To examine the biochemical properties of these isolates, a carbon source utilization was tested using an API50CH kit. The phenotypic character varied widely, and was not necessarily consistent with the results of phylogenic analysis based on the partial 16S rDNA sequence, suggesting that the biochemical properties are not suitable for identification of Methylobacterium species. The isolates were also subjected to antibiotic sensitivity tests. They were resistant to 8 antibiotics, but highly sensitive to imipenem (MIC90 = 1 microg/ml) and tetracycline (MIC90 = 8 microg/ml). These findings concerning the isolates revealed the presence of Methylobacterium species with resistance to multiple antibiotics in hospital tap water.

  19. Leukocyte Agglomeration Reaction in Diagnosis of Allergy Reactions from Antibiotics,

    DTIC Science & Technology

    tested in a clinic on 80 patients with serious allergic anamnesis . The results of the studies indicate that the leukocyte agglomeration reaction is a highly sensitive immunological indicator of hypersensitivity to antibiotics.

  20. Antibiotic sensitivity pattern in blaNDM-1-positive and carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Mulla, Summaiya; Charan, Jaykaran; Rajdev, Sangita

    2016-01-01

    Background: Some studies published in recent time revealed that many bacteria from Enterobacteriaceae group are multi-antibiotic-resistant because of the production enzymes carbapenemase particularly New Delhi metallo-beta-lactamase encoded by gene called blaNDM-1. Looking at public health importance of this issue there is a need for studies at other centers to confirm or refute published findings. Objectives: This study was designed with the aim of exploring antibiotic resistance in Enterobacteriaceae group of bacteria and also to explore gene and enzyme responsible for it. Materials and Methods: Samples of Enterobacteriaceae were collected from wards and outpatient departments. Antibiotic sensitivity was checked by an automated system (VITEK 2 COMPACT). Carbapenemase production was assessed by Modified Hodge Test. Presence of blaNDM-1 was assessed by polymerase chain reaction. Statistics: Frequency and percentage were used to describe the data. Frequency of sensitivity was compared between carbapenemase producers and noncarbapenemase producers by Fisher's exact test. Results: Forty-seven percent bacteria were found to be producing carbapenemase enzyme. These bacteria were significantly less sensitive to cefoperazone, cefepime, and amikacin. Among carbapenemase-producing organisms, 3% and 6% were resistant to tigecycline and colistin, respectively. Forty percent bacteria were found to be having blaNDM-1 gene. There was a significant difference between blaNDM-1-positive and blaNDM-1-negative for sensitivity toward cefoperazone + sulbactam, imipenem, meropenem, amikacin, tobramycine, ciprofloxacin, and levofloxacin. Conclusion: Presence of carbapenemase enzyme and blaNDM-1 gene is associated with high level of resistance in Enterobacteriaceae group of bacteria and only few antibiotics have good sensitivity for these organisms. PMID:26958516

  1. Impact of Rapid Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of Antibiotic Resistance in Gonorrhea

    PubMed Central

    Tuite, Ashleigh R; Gift, Thomas L; Chesson, Harrell W; Hsu, Katherine; Salomon, Joshua A; Grad, Yonatan H

    2017-01-01

    Abstract Background Increasing antibiotic resistance limits treatment options for gonorrhea. We examined the impact of a hypothetical point-of-care (POC) test reporting antibiotic susceptibility profiles on slowing resistance spread. Methods A mathematical model describing gonorrhea transmission incorporated resistance emergence probabilities and fitness costs associated with resistance based on characteristics of ciprofloxacin (A), azithromycin (B), and ceftriaxone (C). We evaluated time to 1% and 5% prevalence of resistant strains among all isolates with the following: (1) empiric treatment (B and C), and treatment guided by POC tests determining susceptibility to (2) A only and (3) all 3 antibiotics. Results Continued empiric treatment without POC testing was projected to result in >5% of isolates being resistant to both B and C within 15 years. Use of either POC test in 10% of identified cases delayed this by 5 years. The 3 antibiotic POC test delayed the time to reach 1% prevalence of triply-resistant strains by 6 years, whereas the A-only test resulted in no delay. Results were less sensitive to assumptions about fitness costs and test characteristics with increasing test uptake. Conclusions Rapid diagnostics reporting antibiotic susceptibility may extend the usefulness of existing antibiotics for gonorrhea treatment, but ongoing monitoring of resistance patterns will be critical. PMID:28968710

  2. [Comparison of the antibiotic sensitivity of lipophilic Corynebacterium sp. isolated from patients on the day of admission and during hospitalization].

    PubMed

    Ciok-Pater, Emilia; Mikucka, Agnieszka; Gospodarek, Eugenia

    2005-01-01

    Lipophilic species of Corynebacterium are increasing problem in hospital infections. The aim of this study was to evaluate occurrence of these microorganisms in the materials taken from patients in the day of admission and during the hospitalization as well as comparison of their antibiotic sensitivity. The investigation included 65 strains isolated from hospitalized patients and 48 strains isolated from unchanged skin. Using Api Coryne test 5 species were identified. C. urealyticum dominated, the other were C. subsp. lipophilum and C. jeikeium. Among strains isolated from unchanged diseased skin the most C. jeikeium and C. accolens occurred. All strains were sensitive to glycopeptide, quinupristin/dalphopristin. The strains isolated from hospitalized patients were usually sensitive to fuside acid, doxycycline as well as tetracycline. Strains isolated from unchanged skin were sensitive to almost all tested antibiotics. In the group of 65 strains isolated from hospitalized patients 99.0% were multiresistant. In the group of strains isolated from unchanged skin only two strains were multiresistant. Differences in antibiotic sensitivity among analysed Corynebacterium sp. were confirmed. Majority of the "hospital strains" were characterized by multiresistance. Basing on these results it is possible to suppose, that multiresistance is main factor that favours lipophilic Corynebacterium species in the process of colonization of mucous membranes, skins as well as developing infections.

  3. [Identification of lactic acid bacteria in commercial yogurt and their antibiotic resistance].

    PubMed

    Qin, Yuxuan; Li, Jing; Wang, Qiuya; Gao, Kexin; Zhu, Baoli; Lv, Na

    2013-08-04

    To identify lactic acid bacteria (LAB) in commercial yogurts and investigate their antibiotic resistance. LABs were cultured from 5 yogurt brands and the isolates were identified at the species level by 16S rRNA sequence. Genotyping was performed by repetitive extragenic palindromic PCR (rep-PCR). The sensitivity to 7 antibiotics was tested for all LAB isolates by Kirby-Bauer paper diffusion (K-B method). Meanwhile, 9 antibiotic resistance genes (ARGs), including erythromycin resistance genes (ermA and ermB) and tetracycline resistance genes (tetM, tetK, tetS, tetQ, tetO, tetL and tetW), were detected by PCR amplification in the identified LAB isolates. The PCR products were confirmed by sequencing. Total 100 LABs were isolated, including 23 Lactobacillus delbrueckii ssp. bulgaricus, 26 Lactobacillus casei, 30 Streptococcus thermophilus, 5 Lactobacillus acidophilus, 6 Lactobacillus plantarum, and 10 Lactobacillus paracasei. The drug susceptibility test shows that all 100 isolates were resistant to gentamicin and streptomycin, 42 isolates were resistant to vancomycin, and on the contrary all were sensitive to cefalexin, erythromycin, tetracycline and oxytetracycline. Moreover, 5 ARGs were found in the 28 sequencing confirmed isolates, ermB gene was detected in 8 isolates, tet K in 4 isolates, tetL in 2 isolates, tetM in 4 isolates, tetO in 2 isolates. erm A, tet S, tet Q and tet W genes were not detected in the isolates. Antibiotic resistance genes were found in 53.57% (15/28) sequenced isolates, 2 -3 antibiotic resistance genes were detected in 4 isolates of L. delbrueckii ssp. bulgaricus. Some LABs were not labeled in commercial yogurt products. Antibiotic resistance genes tend to be found in the starter culture of L. delbrueckii ssp. Bulgaricus and S. thermophilus. All the LAB isolates were sensitive to erythromycin and tetracycline, even though some carried erythromycin and/or tetracycline resistance genes. We proved again that LAB could carry antibiotic resistance gene(s) though it is sensitive to antibiotics.

  4. Aerobic microbiology and culture sensitivity of head and neck space infection of odontogenic origin

    PubMed Central

    Shah, Amit; Ramola, Vikas; Nautiyal, Vijay

    2016-01-01

    Context: Head and neck space infections source, age, gender, tooth involved, fascial spaces involved, microbiological study of aerobic flora, and antibiotic susceptibilities. Aims: The aim of the present study is to identify causative aerobic microorganisms responsible for deep fascial spaces of head and neck infections and evaluate the resistance of antibiotics used in the treatment of such. Settings and Design: Prospective study in 100 patients. Materials and Methods: This prospective study was conducted on 100 patients who reported in the outpatient department and fulfilled the inclusion criteria to study aerobic microbiology and antibiotic sensitivity in head and neck space infection of odontogenic origin. Pus sample was obtained either by aspiration or by swab stick from the involved spaces, and culture and sensitivity tests were performed. Statistical Analysis Used: Chi-square test and level of significance. Results: Result showed aerobic Gram-positive isolates were 73% and aerobic Gram-negative isolates were 18%. Nine percent cases showed no growth. Streptococcus viridans was the highest isolate in 47% cases among Gram-positive bacteria, and in Gram-negative, Klebsiella pneumoniae was the highest isolate of total cases 11%. Amoxicillin showed resistance (48.4%) as compared to other antibiotics such as ceftriaxone, carbenicillin, amikacin, and imipenem had significantly higher sensitivity. Conclusions: Amoxicillin with clavulanic acid showed (64.8%) efficacy for all organisms isolated, whereas ceftriaxone showed (82.4%) efficacy and could be used in odontogenic infections for both Gram-positive and Gram-negative microorganisms. Substitution of third generation cephalosporin for amoxicillin in the empirical management of deep fascial space infections can also be used. Carbenicillin, amikacin, and imipenem showed (93.4%) sensitivity against all microorganisms and should be reserved for more severe infection. Newer and broad-spectrum antibiotics are more effective in vitro than older narrow spectrum antibiotics. PMID:28163480

  5. Zero-magnetic field effect in pathogen bacteria

    NASA Astrophysics Data System (ADS)

    Creanga, D. E.; Poiata, A.; Morariu, V. V.; Tupu, P.

    2004-05-01

    Two lots of Gram-negative bacterial strains were tested for antibiotic drug resistance after exposure to zero-magnetic field. We found that the magneto-sensitive strains represent half of the analyzed samples (three Pseudomonas and five Enterobacter strains), some of them presenting two-three times modified resistance to antibiotic, while others revealed eight or 16 times changed resistance. Pseudomonas strain magnetic sensitivity is revealed better by ampicillin and tetracycline, while Enterobacter strain magnetic sensitivity is revealed better by ampicillin, kanamycin and ofloxacin.

  6. Empirical validation of guidelines for the management of pharyngitis in children and adults.

    PubMed

    McIsaac, Warren J; Kellner, James D; Aufricht, Peggy; Vanjaka, Anita; Low, Donald E

    2004-04-07

    Recent guidelines for management of pharyngitis vary in their recommendations concerning empirical antibiotic treatment and the need for laboratory confirmation of group A streptococcus (GAS). To assess the impact of guideline recommendations and alternative approaches on identification and treatment of GAS pharyngitis in children and adults. Throat cultures and rapid antigen tests were performed on 787 children and adults aged 3 to 69 years with acute sore throat attending a family medicine clinic in Calgary, Alberta, from September 1999 to August 2002. Recommendations from 2 guidelines (those of the Infectious Diseases Society of America and of the American College of Physicians-American Society of Internal Medicine/American Academy of Family Physicians/US Centers for Disease Control and Prevention) were compared with rapid testing alone, a clinical prediction rule (ie, the modified Centor score), and a criterion standard of treatment for positive throat culture results only. Sensitivity and specificity of each strategy for identifying GAS pharyngitis, total antibiotics recommended, and unnecessary antibiotic prescriptions. In children, sensitivity for streptococcal infection ranged from 85.8% (133/155; 95% confidence interval [CI], 79.3%-90.0%) for rapid testing to 100% for culturing all. In adults, sensitivity ranged from 76.7% (56/73; 95% CI, 65.4%-85.8%) for rapid testing without culture confirmation of negative results to 100% for culturing all. In children, specificity ranged from 90.3% (270/299; 95% CI, 86.4%-93.4%) for use of modified Centor score and throat culture to 100% for culturing all. In adults, specificity ranged from 43.8% (114/260; 95% CI, 37.7%-50.1%) for empirical treatment based on a modified Centor score of 3 or 4 to 100% for culturing all. Total antibiotic prescriptions were lowest with rapid testing (24.7% [194/787]; 95% CI, 21.7%-27.8%) and highest with empirical treatment of high-risk adults (45.7% [360/787]; 95% CI, 42.2%-49.3%), due to a high rate of unnecessary prescriptions in adults (43.8% [146/333]; 95% CI, 38.4%-49.4%). Guideline recommendations for the selective use of throat cultures but antibiotic treatment based only on positive rapid test or throat culture results can reduce unnecessary use of antibiotics for treatment of pharyngitis. However, empirical treatment of adults having a Centor score of 3 or 4 is associated with a high rate of unnecessary antibiotic use. In children, strategies incorporating throat culture or throat culture confirmation of negative rapid antigen test results are highly sensitive and specific. Throat culture of all adults or those selected on the basis of a clinical prediction rule had the highest sensitivity and specificity.

  7. Combined Effects and Cross-Interactions of Different Antibiotics and Polypeptides in Salmonella bredeney.

    PubMed

    Ju, Xiangyu; Zhu, Mengjiao; Han, Jinzhi; Lu, Zhaoxin; Zhao, Haizhen; Bie, Xiaomei

    2018-05-24

    Salmonella spp. are health-threatening foodborne pathogens. The increasingly common spread of antibiotic-resistant Salmonella spp. is a major public healthcare issue worldwide. In this study, we wished to explore (1) antibiotic or polypeptide combinations to inhibit multidrug-resistant Salmonella bredeney and (2) the regulation of cross-resistance and collateral sensitivity of antibiotics and polypeptides. We undertook a study to select antibiotic combinations. Then, we promoted drug-resistant strains of S. bredeney after 15 types of antibiotic treatment. From each evolving population, the S. bredeney strain was exposed to a particular single drug. Then, we analyzed how the evolved S. bredeney strains acquired resistance or susceptibility to other drugs. A total of 105 combinations were tested against S. bredeney following the protocols of CLSI-2016 and EUCAST-2017. The synergistic interactions between drug pairings were diverse. Notably, polypeptides were more likely to be linked to synergistic combinations: 56% (19/34) of the synergistic pairings were relevant to polypeptides. Simultaneously, macrolides demonstrated antagonism toward polypeptides. The latter were more frequently related to collateral sensitivity than the other drugs because the other 13 drugs sensitized S. bredeney to polypeptides. In an experimental evolution involving 15 drugs, single drug-evolved strains were examined against the other 14 drugs, and the results were compared with the minimal inhibitory concentration of the ancestral strain. Single drug-evolved S. bredeney strains could alter the sensitivity to other drugs, and S. bredeney evolution against antibiotics could sensitize it to polypeptides.

  8. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance.

    PubMed

    Bardoloi, Vishwajeet; Yogeesha Babu, K V

    2017-07-01

    Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.

  9. In-vitro activity of flomoxef, a new oxacephem group antibiotic, against Nocardia in comparison with other cephalosporins.

    PubMed

    Yazawa, K; Mikami, Y; Uno, J; Otozai, K; Arai, T

    1989-12-01

    The susceptibility of 113 strains of pathogenic Nocardia, N. asteroides, N. farcinica, N. nova, N. brasiliensis and N. otitidiscaviarum to a new oxacephem antibiotic flomoxef was determined by an agar dilution method in comparison with those of 13 other cephalosporins. Flomoxef was two to 50 times more active against these pathogenic Nocardia than other cephalopsorins tested. However, there were differences in susceptibility to this antibiotic among these Nocardia strains. N. asteroides was the most sensitive species, followed by N. farcinica and N. nova. N. brasiliensis was moderately sensitive and N. otitidiscaviarum was resistant.

  10. Bacteria in the apical root canals of teeth with apical periodontitis.

    PubMed

    Lee, Li-Wan; Lee, Ya-Ling; Hsiao, Sheng-Huang; Lin, Hung-Pin

    2017-06-01

    Bacteria in the tooth root canal may cause apical periodontitis. This study examined the bacterial species present in the apical root canal of teeth with apical periodontitis. Antibiotic sensitivity tests were performed to evaluate whether these identified bacterial species were susceptible to specific kinds of antibiotics. Selective media plating and biochemical tests were used first to detect the bacterial species in samples taken from the apical portion of root canals of 62 teeth with apical periodontitis. The isolated bacterial species were further confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. We found concomitant presence of two (32 teeth) or three species (18 teeth) of bacteria in 50 (80.6%) out of 62 tested teeth. However, only 34 bacterial species were identified. Of a total of 118 bacterial isolates (83 anaerobes and 35 aerobes), Prophyromonas endodontalis was detected in 10; Bacteroides, Dialister invisus or Fusobacterium nucleatum in 9; Treponema denticola or Enterococcus faecalis in 8; Peptostreptococcus or Olsenella uli in 6; and Veillonella in 5 teeth. The other 25 bacterial species were detected in fewer than five teeth. Approximately 80-95% of bacterial isolates of anaerobes were sensitive to ampicillin/sulbactam (Unasyn), amoxicillin/clavulanate (Augmentin), cefoxitin, and clindamycin. For E. faecalis, 85-90% of bacterial isolates were sensitive to gentamicin and linezolid. Root canal infections are usually caused by a mixture of two or three species of bacteria. Specific kinds of antibiotic can be selected to control these bacterial infections after antibiotic sensitivity testing. Copyright © 2016. Published by Elsevier B.V.

  11. Impact of the rapid antigen detection test in diagnosis and treatment of acute pharyngotonsillitis in a pediatric emergency room.

    PubMed

    Cardoso, Débora Morais; Gilio, Alfredo Elias; Hsin, Shieh Huei; Machado, Beatriz Marcondes; de Paulis, Milena; Lotufo, João Paulo B; Martinez, Marina Baquerizo; Grisi, Sandra Josefina E

    2013-01-01

    To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.

  12. Normal flora of conjunctiva and lid margin, as well as its antibiotic sensitivity, in patients undergoing cataract surgery at Phramongkutklao Hospital.

    PubMed

    Ratnumnoi, Ravee; Keorochana, Narumon; Sontisombat, Chavalit

    2017-01-01

    This study aimed to evaluate the normal flora of conjunctiva and lid margin, as well as its antibiotic sensitivity. This was a prospective cross-sectional study. A prospective study was conducted on 120 patients who underwent cataract surgery at the Phramongkutklao Hospital from September 2014 to October 2014. Conjunctival and lid margin swabs were obtained from patients before they underwent cataract surgery. These swabs were used to inoculate blood agar and chocolate agar plates for culturing. After growth of the normal flora, the antibiotic sensitivity method using tobramycin, moxifloxacin, levofloxacin, and cefazolin was applied. Normal flora of conjunctiva and lid margin, along with its antibiotic sensitivity, from patients who underwent cataract surgery was assessed. A total of 120 eyes were included in this study, and bacterial isolation rates were identified. Five bacteria from the lid margin were cultured, namely, coagulase-negative staphylococcus (58.33%), Streptococcus spp. (2.5%), Corynebacterium (1.67%), Micrococcus spp. (1.67%), and Staphylococcus aureus (0.83%). Two bacteria from the conjunctiva were cultured, namely, coagulase-negative staphylococcus (30%) and Streptococcus spp. (0.83%). Results of antibiotic sensitivity test showed that all isolated bacteria are sensitive to cefazolin 100%, tobramycin 98.67%, levofloxacin 100%, and moxifloxacin 100%. Coagulase-negative staphylococci are the most common bacteria isolated from conjunctiva and lid margin.

  13. Antibiotic sensitivity pattern from pregnant women with urinary tract infection in Bangalore, India.

    PubMed

    Sibi, G; Kumari, Pinki; Kabungulundabungi, Neema

    2014-09-01

    To determine the antibacterial profile of pregnant women with urinaty tract infections and analyze the antibiotic sensitivity pattern for the effective treatment. A total of 395 urine samples from pregnant women with different gestational age were processed for the isolation of uropathogens and tested against eight groups of antibiotics namely penicillins, cephalosporins, fluoroquinolones, aminoglycosides, macrolides, lincosamides, glycopeptides and sulfonamides. A positive culture percentage of 46.6% was obtained with the highest urinary tract infection in third trimester gestational age. Among the uropathogens isolated, 85.6% were Gram negative and 14.4% were Gram positive with Escherichia coli as the predominant bacteria (43.9%) followed by Klebsiella oxytoca (19.4%) and Klebsiella pneumoniae (13.3%). Antibiotic sensitivity assay revealed that amikacin had the highest overall sensitivity (n=136; 76.7%) and the subsequent highest sensitivity was observed with ciprofloxacin (n=132; 73.3%), clindamycin (n=124; 68.9%), cefotaxime (n=117; 65%) and nalidixic acid (n=115; 63.9%). The findings revealed that uropathogens were more resistant to penicillins, macrolides and glycopeptides which restrict their use in treating urinaty tract infections during pregnancy. In conclusion, common causative bacteria and their antibiotic sensitivity pattern are to be determined along with their safety to mother and fetus for the effective treatment of urinary tract infections during pregnancy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Bacterial pattern and antibiotic sensitivity in children and adolescents with infected atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Samosir, C. T.; Ruslie, R. H.; Rusli, R. E.

    2018-03-01

    Atopic dermatitis (AD) is a pruritic and chronic inflammatory skin disease which affected approximately 20% in children. Bacterial infection is common in AD patients and correlates directly with AD severity. A cross-sectional study was conducted to evaluate the prevalence of bacterial skin infection in AD patients and its relation with severity of AD and also to study bacteria in the infected AD and its antibiotic sensitivity. Samples were 86 children and adolescents with an AD in Helvetia Community Health Center Medan from March 2016 until February 2017. Index of SCORing Atopic Dermatitis (SCORAD) was used to evaluate the severity of AD. Lesion and nonlesional skinwere swabbed to take sterile cultures. All bacteria noted and tested for antibiotic sensitivity. Datawere by using Chi-Square and Mann Whitney test with 95% CI and p-value<0.05 was considered statistically significant. Fifty-six AD patients (65.1%) were bacterial infected. There was a significant relationship between severity of AD and bacterial infection (p = 0.006). Staphylococcus aureus was the leading bacteria from all degrees of AD severity. Isolated Staphylococcus aureuswas sensitive to amoxicillin-clavulanate (93.3%), clindamycin (90%), erythromycin (90%), and gentamicin (90%), while sensitivity to tetracycline was low (20%).

  15. Etiology of early onset septicemia among neonates at the University College Hospital, Ibadan, Nigeria.

    PubMed

    Akindolire, Abimbola Ellen; Tongo, Olukemi; Dada-Adegbola, Hannah; Akinyinka, Olusegun

    2016-12-30

    Neonatal septicemia remains a major cause of newborn deaths in developing countries. Its burden is further compounded by the emergence of multidrug-resistant pathogens, which is related to a lack of antibiotic protocols resulting in unrestricted use of antibiotics. The absence of reliable antibiotic sensitivity testing makes the formulation of antibiotic guidelines and judicious use of antibiotics difficult. This study sought to identify the current bacterial agents associated with early onset septicemia (EOS; age <72 hours) and their antibiotic susceptibility patterns among neonates at the University College Hospital, Ibadan, Nigeria. A total of 202 inborn and outborn neonates with risk factors for or clinical features of septicemia in the first 72 hours of life had samples for blood cultures and antibiotic sensitivity patterns taken prior to treatment. Of the subjects, 95 (47.0%) were inborn and 107 (53.0%) outborn, with a M:F ratio of 1.3:1; 12.5% were culture positive, and the prevalence of EOS was 8.8/1,000 live births. The isolates were Staphylococcus aureus (52%), 30.7% of which were methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae (12%), Enterobacter aerogenes (8%), Enterococcus spp. (8%), Eschericia coli (4%), and other Gram-negatives (12%). All the isolates except Staphylococcus aureus were susceptible to ampicillin, ampicillin/sulbactam, amikacin, gentamicin, and third-generation cephalosporins. All MRSA were sensitive to amikacin, ciprofloxacin, and chloramphenicol, while all methicillin-sensitive Staphylococcus aureus were sensitive to ampicillin/sulbactam. Staphylococcus aureus was the commonest cause of EOS in our setting, with 30.7% of the Staphylococcus aureus isolates being MRSA. Only MRSA demonstrated multidrug resistance.

  16. Antibiotic Resistance in Sepsis Patients: Evaluation and Recommendation of Antibiotic Use

    PubMed Central

    Pradipta, Ivan Surya; Sodik, Dian Chairunnisa; Lestari, Keri; Parwati, Ida; Halimah, Eli; Diantini, Ajeng; Abdulah, Rizky

    2013-01-01

    Background: The appropriate selection of empirical antibiotics based on the pattern of local antibiotic resistance can reduce the mortality rate and increase the rational use of antibiotics. Aims: We analyze the pattern of antibiotic use and the sensitivity patterns of antibiotics to support the rational use of antibiotics in patients with sepsis. Materials and Methods: A retrospective observational study was conducted in adult sepsis patient at one of Indonesian hospital during January-December 2011. Data were collected from the hospital medical record department. Descriptive analysis was used in the processing and interpretation of data. Results: A total of 76 patients were included as research subjects. Lung infection was the highest source of infection. In the 66.3% of clinical specimens that were culture positive for microbes, Klebsiella pneumoniae, Escherichia coli, Staphylococcus hominis were detected with the highest frequency. The six most frequently used antibiotics, levofloxacin, ceftazidime, ciprofloxacin, cefotaxime, ceftriaxone, and erythromycin, showed an average resistance above 50%. Conclusions: The high use of antibiotic with a high level resistance requires a policy to support its rational use. Local microbial pattern based on site infection and pattern of antibiotics sensitivity test can be used as supporting data to optimize appropriateness of empirical antibiotics therapy in sepsis patients. PMID:23923107

  17. ANTIBIOTIC RESISTANCE SPECTRUM OF NON FERMENTING GRAM NEGATIVE BACILLI ISOLATED IN THE ORTHOPEDIC TRAUMATOLOGY CLINIC OF "SF. SPIRIDON" CLINICAL EMERGENCY HOSPITAL IAŞI.

    PubMed

    Tucaliuc, D; Alexa, O; Tuchiluş, Cristina Gabriela; Ursu, Ramona Gabriela; Tucaliuc, Elena Simona; Jelihovsky, I; Iancu, Luminiţa Smaranda

    2015-01-01

    The retro-prospective analysis of antibiotic sensitivity of non-fermenting gram negative bacilli strains circulating in the Orthopedics-Traumatology Clinic from "Sf. Spiridon" Emergency Clinical Hospital in view of determining the trend of the resistance phenomenon and indicating the most useful treatment for the infections caused by these strains. The retrospective component was conducted from 01.01.2003 to 31.12.2012, and the result of the diffusimetric antibiograms was taken from the hospital's informatics system; the prospective component of the study involved the collection of pathological products from the patients admitted during January-December 2013, who showed clinical suspicion of infection, in compliance with the general collection norms for the products destined for the bacteriological exam. From the total 167 strains of Pseudomonas aeruginosa isolated and identified from the patients, 48 (28.74%) were sensitive to at least one antibiotic from each tested class, 29 (17.39%) were resistant to a single antibiotic and the rest of 90 (53.89%) showed multiple resistance. We noticed a statistically significant difference between the number of strains sensitive to at least one antibiotic from each tested class and those with multiple resistance (p < 0.05). For the strains of Acinetobacter baumanii combined resistance was identified for 121 (87.04%), out of which 55 (39.56%) were resistant to two classes of antibiotics and the other (47.48%) to all three classes. The most frequently met was the association of resistance to quinolones and aminoglycosides, namely for a number of 49 strains (35.25%); only 3.59% of them were simultaneously sensitive to the three classes of antibiotics. The already high percentages and the rising trends of antibiotic resistance of non-fermenting gram-negative bacteria described in this study confirm the continuous decrease of the efficiency of antimicrobial agents and underline the necessity of a global strategy which aims at all health sectors regarding the rational use of antibiotics, on the one hand, and the continuation of studies concerning the surveillance of the antimicrobial resistance phenomenon, on the other hand.

  18. Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Kyriakides, Alexandros; Pitris, Costas

    2012-03-01

    There are three stages to a complete UTI diagnosis: (1) identification of a urine sample as positive/negative for an infection, (2) identification of the responsible bacterium, (3) antibiogram to determine the antibiotic to which the bacteria are most sensitive to. Using conventional methods, all three stages require bacterial cultures in order to provide results. This long delay in diagnosis causes a rise in ineffective treatments, chronic infections, health care costs and antibiotic resistance. In this work, SERS is used to identify a sample as positive/negative for a UTI as well as to obtain an antibiogram against different antibiotics. SERS spectra of serial dilutions of E. coli bacteria mixed with silver nanoparticles, showed a linear correlation between spectral intensity and concentration. For antibiotic sensitivity testing, SERS spectra of three species of gram negative bacteria were collected four hours after exposure to the antibiotics ciprofloxacin and amoxicillin. Spectral analysis revealed clear separation between bacterial samples exposed to antibiotics to which they were sensitive and samples exposed to antibiotics to which they were resistant. With the enhancement provided by SERS, the technique can be applied directly to urine samples leading to the development of a new, rapid method for UTI diagnosis and antibiogram.

  19. Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model.

    PubMed

    Strzępa, Anna; Majewska-Szczepanik, Monika; Lobo, Francis M; Wen, Li; Szczepanik, Marian

    2017-07-01

    Medical advances in the field of infection therapy have led to an increasing use of antibiotics, which, apart from eliminating pathogens, also partially eliminate naturally existing commensal bacteria. It has become increasingly clear that less exposure to microbiota early in life may contribute to the observed rise in "immune-mediated" diseases, including autoimmunity and allergy. We sought to test whether the change of gut microbiota with the broad spectrum antibiotic enrofloxacin will modulate contact sensitivity (CS) in mice. Natural gut microbiota were modified by oral treatment with enrofloxacin prior to sensitization with trinitrophenyl chloride followed by CS testing. Finally, adoptive cell transfers were performed to characterize the regulatory cells that are induced by microbiota modification. Oral treatment with enrofloxacin suppresses CS and production of anti-trinitrophenyl chloride IgG1 antibodies. Adoptive transfer experiments show that antibiotic administration favors induction of regulatory cells that suppress CS. Flow cytometry and adoptive transfer of purified cells show that antibiotic-induced suppression of CS is mediated by TCR αβ + CD4 + CD25 + FoxP3 + Treg, CD19 + B220 + CD5 + IL-10 + , IL-10 + Tr1, and IL-10 + TCR γδ + cells. Treatment with the antibiotic induces dysbiosis characterized by increased proportion of Clostridium coccoides (cluster XIVa), C coccoides-Eubacterium rectale (cluster XIVab), Bacteroidetes, and Bifidobacterium spp, but decreased segmented filamentous bacteria. Transfer of antibiotic-modified gut microbiota inhibits CS, but this response can be restored through oral transfer of control gut bacteria to antibiotic-treated animals. Oral treatment with a broad spectrum antibiotic modifies gut microbiota composition and promotes anti-inflammatory response, suggesting that manipulation of gut microbiota can be a powerful tool to modulate the course of CS. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Classification of bacterial samples as negative or positive for a UTI and antibiogram using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Costas

    2011-03-01

    Urinary tract infection (UTI) diagnosis requires an overnight culture to identify a sample as positive or negative for a UTI. Additional cultures are required to identify the pathogen responsible for the infection and to test its sensitivity to antibiotics. A rise in ineffective treatments, chronic infections, rising health care costs and antibiotic resistance are some of the consequences of this prolonged waiting period of UTI diagnosis. In this work, Surface Enhanced Raman Spectroscopy (SERS) is used for classifying bacterial samples as positive or negative for UTI. SERS spectra of serial dilutions of E.coli bacteria, isolated from a urine culture, were classified as positive (105-108 cells/ml) or negative (103-104 cells/ml) for UTI after mixing samples with gold nanoparticles. A leave-one-out cross validation was performed using the first two principal components resulting in the correct classification of 82% of all samples. Sensitivity of classification was 88% and specificity was 67%. Antibiotic sensitivity testing was also done using SERS spectra of various species of gram negative bacteria collected 4 hours after exposure to antibiotics. Spectral analysis revealed clear separation between the spectra of samples exposed to ciprofloxacin (sensitive) and amoxicillin (resistant). This study can become the basis for identifying urine samples as positive or negative for a UTI and determining their antibiogram without requiring an overnight culture.

  1. Prevalence and antibiotic susceptibility profiles of Listeria monocytogenes contamination of chicken flocks and meat in Oyo State, south-western Nigeria: Public health implications.

    PubMed

    Ishola, O O; Mosugu, J I; Adesokan, H K

    2016-09-01

    Food contamination with Listeria monocytogenes is on the increase posing threats to public health with growing trends in food products recalls due to suspected Listeria contamination. We conducted a cross-sectional study to determine the prevalence and antibiotic susceptibility profiles of Listeria monocytogenes (Lm) among 71 randomly selected poultry farms in Oyo State, Nigeria. A total of 450 samples comprising cloacal swabs (426) and randomly selected dressed chicken meat (24) were cultured for Lm isolation using BrillianceTM Selective Listeria Agar with antibiotics and microbial load count with Nutrient Agar. Further identification was done using microscopic, biochemical characterization and antibiotic sensitivity tests. Data were analysed using bivariate analysis and student t-test. An overall prevalence of 91.8% Lm contamination was obtained comprising 91.5% (390/426) in cloacal swabs and 95.8% (23/24) in meat. The prevalence of Lm in cloacal samples was significantly associated with poultry type (p = 0.008) and breed (p = 0.000. In addition, all the flocks had at least one positive sample yielding 100% flock prevalence. Antibiotic sensitivity test revealed that most of the isolates were resistant to common antibiotics like Ampicillin-cloxacillin and cefuroxime. The results revealed a high level of contamination with Lm in the poultry flock and meat and the observed resistance to most common antibiotics has implications for future disease control as well as public health. There is need to step up routine screening of food animal products for Listeria contamination as well as measures towards reducing such contaminations.

  2. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India.

    PubMed

    Singh, Shweta; Agarwal, Rajesh Kumar; Tiwari, Suresh C; Singh, Himanshu

    2012-03-01

    The present study was conducted to study the antibiotic resistance pattern among nontyphoidal Salmonella isolated from human, animal and meat. A total of 37 Salmonella strains isolated from clinical cases (human and animal) and meat during 2008-2009 belonging to 12 serovars were screened for their antimicrobial resistance pattern using 25 antimicrobial agents falling under 12 different antibiotic classes. All the Salmonella isolates tested showed multiple drug resistance varying from 5.40% to 100% with 16 of the 25 antibiotics tested. None of the isolates were sensitive to erythromycin and metronidazole. Resistance was also observed against clindamycin (94.59%), ampicillin (86.49%), co-trimoxazole (48.65%), colistin (45.94%), nalidixic acid (35.10%), amoxyclave (18.90%), cephalexin, meropenem, tobramycin, nitrofurantoin, tetracycline, amoxicillin (8.10% each), sparfloxacin and streptomycin (5.40% each). Isolates from clinical cases of animals were resistant to as many as 16 antibiotics, whereas isolates from human clinical cases and meat were resistant to 9 and 14 antibiotics, respectively. Overall, 19 resistotypes were recorded. Analysis of multiple antibiotic resistance index (MARI) indicated that clinical isolates from animals had higher MARI (0.25) as compared to isolates from food (0.22) and human (0.21). Among the different serotypes studied for antibiogram, Paratyhi B isolates, showed resistance to three to 13 antibiotics, whereas Typhimurium strains were resistant to four to seven antibiotics. Widespread multidrug resistance among the isolates from human, animal and meat was observed. Some of the uncommon serotypes exhibited higher resistance rate. Considerable changes in the resistance pattern were also noted. An interesting finding was the reemergence of sensitivity to some of the old antibiotics (chloromphenicol, tetracycline).

  3. [Resistance of urinary tract pathogens and the choice of antimicrobial therapy: deceptive simplicity].

    PubMed

    Rafalskiy, V V; Dovgan, E V

    2017-07-01

    Urinary tract infection (UTI) is one of the most common reasons for prescribing antibiotics in outpatient and inpatient settings. One of the main criteria for selecting antimicrobial drugs for treating UTI is data on the antibiotic resistance of uropathogens. The article discusses the difficulties in interpreting the results of antimicrobial sensitivity testing of uropathogens and the impact of antibiotic resistance of uropathogens on the clinical effectiveness of managing UTI.

  4. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    PubMed

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  5. [Using cluster analysis for evaluation of sensitivity to antibiotics of pathogens isolated from women with genital inflammatory diseases].

    PubMed

    Tsyganenko, A Ia; Kon', E V

    2007-01-01

    The study was conducted to evaluate sensitivity to 44 antibiotics of pathogens isolated from 183 women with genital inflammatory diseases and to offer schemes of antibacterial treatment. The pathogens (66.8%) were in associations. The probability of isolation of main bacteria and sexually transmitted microorganisms in different associations was estimated in the work. Using the methods of clustering analysis all the tested antibiotics were divided into 3 groups, depending on their antimicrobial activity toward bacteria isolated both in monoculture and in associations. Furagin, cefotaxime, gentamicin, cefoperazon, ceftriaxon, ciprofloxacin, pefloxacin, as well as, cefazolin, zoxan, ofloxacin, and lomefloxacin were shown to be the most effective antibiotics in vitro. The least activity was diplayed by ectericid, chlorophillipt, and ampiox. These data should be considered when choosing the antibacterial treatment of genital inflammatory diseases.

  6. Antibiotic resistance of Vibrio parahaemolyticus isolated from coastal seawater and sediment in Malaysia

    NASA Astrophysics Data System (ADS)

    Drais, Ashraf Abbas; Usup, Gires; Ahmad, Asmat

    2016-11-01

    Vibrio parahaemolyticus is widely recognized pathogenic Vibrio species due to numerous outbreaks and its' wide occurrence in the marine environment. A total of 50 Vibrio parahaemolyticus isolates were isolated from seawater and sediments in Malaysia were tested for sensitivity to 19 antibiotics using disc diffusion method. It was found that all isolates were resistant towards ampicillin (10 μg), penicillin (10 μg), methicillin (5 μg), and novobiocin (5 μg); but exhibit sensitivity to chloramphenicol (30 μg) and gentamicin (100 μg). The low percentage of sensitivity towards antibiotics was observed with the following antibiotics; amoxicillin 10μg (98%), fluconazole 25μg (98%), erythromycin 15 μg (92%), vancomycin 30 μg (92%), bacitracin 10 μg (84%), carbenicillin 100 μg (84%), cephalothin 30 μg (52%), nitrofurantion 200 μg (52%), ciprofloxacin 5 μg (40%), tetracycline 30 μg (20%), kanamycin 30 μg (10%), nalidixic acid 30 μg (10%) and streptomycin 20 μg (6%). Multiple antibiotic resistance (MAR) index was found to be 0.42-0.78. All the isolates were multi-resistant to these antibiotics. This indicates that the isolates originate from high-risk source of contamination where antibiotics are often used. Thus, there is a need for supervised use of antibiotics and frequent surveillance of V. parahaemolyticus strains for antimicrobial resistance. The presence of V. parahaemolyticus in coastal water with a high value of multiple antibiotic resistance indexes (MARI) can increase the risk of exposure to human and regular monitoring program for this potential human pathogenic bacterium is important.

  7. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria

    PubMed Central

    Yosef, Ido; Manor, Miriam; Kiro, Ruth

    2015-01-01

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones. PMID:26060300

  8. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    PubMed

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  9. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.

    PubMed

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Van den Brink, Paul J

    2018-02-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and species competition may affect the sensitivity of the cyanobacterium Microcystis aeruginosa and the green-algae Scenedesmus obliquus to the antibiotic enrofloxacin. First, we performed single-species tests to assess the toxicity of enrofloxacin under different temperature conditions (20°C and 30°C) and to assess the sensitivity of different species strains using a standard temperature (20°C). Next, we investigated how enrofloxacin contamination may affect the competition between M. aeruginosa and S. obliquus. A competition experiment was performed following a full factorial design with different competition treatments, defined as density ratios (i.e. initial bio-volume of 25/75%, 10/90% and 1/99% of S. obliquus/M. aeruginosa, respectively), one 100% S. obliquus treatment and one 100% M. aeruginosa treatment, and four different enrofloxacin concentrations (i.e. control, 0.01, 0.05 and 0.10mg/L). Growth inhibition based on cell number, bio-volume, chlorophyll-a concentration as well as photosynthetic activity were used as evaluation endpoints in the single-species tests, while growth inhibition based on measured chlorophyll-a was primarily used in the competition experiment. M. aeruginosa photosynthetic activity was found to be the most sensitive endpoint to enrofloxacin (EC50-72h =0.02mg/L), followed by growth inhibition based on cell number. S. obliquus was found to be slightly more sensitive at 20°C than at 30°C (EC50-72h cell number growth inhibition of 38 and 41mg/L, respectively), whereas an opposite trend was observed for M. aeruginosa (0.047 and 0.037mg/L, respectively). Differences in EC50-72h values between algal strains of the same species were within a factor of two. The competition experiment showed that M. aeruginosa growth can be significantly reduced in the presence of S. obliquus at a density ratio of 75/25% M. aeruginosa/S. obliquus, showing a higher susceptibility to enrofloxacin than in the single-species test. The results of this study confirm the high sensitivity of cyanobacteria to antibiotics and show that temperature and inter-strain genetic variation may have a limited influence on their response to them. The results of the competition experiment suggest that the structure of primary producer communities can be affected, at least temporarily, at antibiotic concentrations close to those that have been measured in the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland.

    PubMed

    Marasini, S; Swift, S; Dean, S J; Ormonde, S E; Craig, J P

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  11. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    PubMed Central

    Swift, S.; Dean, S. J.; Ormonde, S. E.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres. PMID:27213052

  12. The role of point-of-care tests in antibiotic stewardship for urinary tract infections in a resource-limited setting on the Thailand-Myanmar border.

    PubMed

    Chalmers, Lauren; Cross, Jessica; Chu, Cindy S; Phyo, Aung Pyae; Trip, Margreet; Ling, Clare; Carrara, Verena; Watthanaworawit, Wanitda; Keereecharoen, Lily; Hanboonkunupakarn, Borimas; Nosten, François; McGready, Rose

    2015-10-01

    Published literature from resource-limited settings is infrequent, although urinary tract infections (UTI) are a common cause of outpatient presentation and antibiotic use. Point-of-care test (POCT) interpretation relates to antibiotic use and antibiotic resistance. We aimed to assess the diagnostic accuracy of POCT and their role in UTI antibiotic stewardship. One-year retrospective analysis in three clinics on the Thailand-Myanmar border of non-pregnant adults presenting with urinary symptoms. POCT (urine dipstick and microscopy) were compared to culture with significant growth classified as pure growth of a single organism >10(5)  CFU/ml. In 247 patients, 82.6% female, the most common symptoms were dysuria (81.2%), suprapubic pain (67.8%) and urinary frequency (53.7%). After excluding contaminated samples, UTI was diagnosed in 52.4% (97/185); 71.1% (69/97) had a significant growth on culture, and >80% of these were Escherichia coli (20.9% produced extended-spectrum β-lactamase (ESBL)). Positive urine dipstick (leucocyte esterase ≥1 and/or nitrate positive) compared against positive microscopy (white blood cell >10/HPF, bacteria ≥1/HPF, epithelial cells <5/HPF) had a higher sensitivity (99% vs. 57%) but a lower specificity (47% vs. 89%), respectively. Combined POCT resulted in the best sensitivity (98%) and specificity (81%). Nearly one in ten patients received an antimicrobial to which the organism was not fully sensitive. One rapid, cost-effective POCT was too inaccurate to be used alone by healthcare workers, impeding antibiotic stewardship in a high ESBL setting. Appropriate prescribing is improved with concurrent use and concordant results of urine dipstick and microscopy. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  13. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry.

    PubMed

    Chen, Yisheng; Schwack, Wolfgang

    2014-08-22

    The world-wide usage and partly abuse of veterinary antibiotics resulted in a pressing need to control residues in animal-derived foods. Large-scale screening for residues of antibiotics is typically performed by microbial agar diffusion tests. This work employing high-performance thin-layer chromatography (HPTLC) combined with bioautography and electrospray ionization mass spectrometry introduces a rapid and efficient method for a multi-class screening of antibiotic residues. The viability of the bioluminescent bacterium Aliivibrio fischeri to the studied antibiotics (16 species of 5 groups) was optimized on amino plates, enabling detection sensitivity down to the strictest maximum residue limits. The HPTLC method was developed not to separate the individual antibiotics, but for cleanup of sample extracts. The studied antibiotics either remained at the start zones (tetracyclines, aminoglycosides, fluoroquinolones, and macrolides) or migrated into the front (amphenicols), while interfering co-extracted matrix compounds were dispersed at hRf 20-80. Only after a few hours, the multi-sample plate image clearly revealed the presence or absence of antibiotic residues. Moreover, molecular information as to the suspected findings was rapidly achieved by HPTLC-mass spectrometry. Showing remarkable sensitivity and matrix-tolerance, the established method was successfully applied to milk and kidney samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Paths to the professional and responsible use of antibiotics].

    PubMed

    Abele-Horn, Marianne; Pantke, Ellen; Eckmanns, Tim

    2018-05-01

    Germany's position on prescribing antibiotics is among the lower third in Europe. There are some countries that prescribe remarkably fewer antibiotics. In Germany, the number of out-patient antibiotic prescriptions is too high for patients with low-grade infections and non-bacterial infections. Often, broad-spectrum antibiotics are prescribed instead of narrow-spectrum antibiotics. For in-patients, perioperative prophylaxis is given for too long.In this article, different ways to reduce antibiotic prescriptions are introduced. Recommendations are given to improve the quality of therapy, implementation of diagnostics and scores, as well as information for physicians and patients.In this regard, an unsystematic literature search was done.To optimise the quality of prescribing, antibiotic checklists should be used. The important initial questions are if there is a bacterial infection and if antibiotic therapy is necessary. To apply diagnostics correctly is essential. Antibiotic use can be shortened or in some cases totally omitted if point-of-care tests (POCTs) are applied correctly. Species identification and resistance testing are essential for quality assurance. S3-guidelines are central for modern evidence-based medicine. Another key factor is good communication within the team and with patients. All measurements, like the application of POCTs, back-up prescribing, and prescribing an antibiotic, have to be communicated in a clear and sensitive way.

  15. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    PubMed

    Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H

    2017-10-01

    A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were all<0.5 and the carbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless of their resistance or susceptibility to antibiotics. This finding suggests that exogenous glutathione alone and/or in combination with existing antibiotics may be applicable to treat infections with carbapenem-associated multidrug resistant A. baumannii. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Antimicrobial susceptibility and β-lactamase production in Bacillus cereus isolates from stool of patients, food and environment samples.

    PubMed

    Savić, Dejana; Miljković-Selimović, Biljana; Lepšanović, Zorica; Tambur, Zoran; Konstantinović, Sonja; Stanković, Nemanja; Ristanović, Elizabeta

    2016-10-01

    Bacillus cereus (B. cereus) usually ingested by food can cause two types of diseases: vomiting due to the presence of emetic toxin and diarrheal syndrome, due to the presence of diarrheal toxins. Systemic manifestations can also occur. The severe forms of disease demand antibiotic treatmant. The aim of this study was to determine the differences in antibiotic susceptibility and β-lactamase activity of B. cereus isolates from stools of humans, food and environment. Identification of B. cereus was performed with selective medium, classical biochemical test and polymerase chain reaction (PCR) with primers specific for bal gene. Thirty isolates from each group were analysed for antibiotic susceptibility using the disk-diffusion assay. Production of β-lactamase was determined by cefinase test, and double-disc method. All strains identified as B. cereus using classical biochemical test, yielded 533 bp fragment with PCR. Isolates from all the three groups were susceptible to imipenem, vancomycin, and erythromycin. All isolates were susceptible to ciprofloxacin but one from the environment. A statistically significant difference between the groups was confirmed to tetracycline and trimethoprim-sulphamethoxazole sensitivity. A total of 28/30 (93.33%) samples from the foods and 25/30 (83.33%) samples from environment were approved sensitive to tetracycline, while 10/30 (33.33%) isolates from stools were sensitive. Opposite to this result, high susceptibility to trimethoprim-sulphamethoxazole was shown in samples from stools (100%), while isolates from foods (63.33%) and from environment (70%) had low susceptibility. All samples produced β-lactamases. The strains of B. cereus from all the three groups showed high rate of sensitivity to most tested antibiotics, except to tetracycline in samples from human stool and to trimethoprim-sulphamethoxazole in samples from food and environment. The production of β-lactamases was confirmed in all the strains.

  17. Analysis of etiology and drug resistance of biliary infections.

    PubMed

    Wang, Xin; Li, Qiu; Zou, Shengquan; Sun, Ziyong; Zhu, Feng

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli, Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections. The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  18. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.

    PubMed

    Lázár, Viktória; Martins, Ana; Spohn, Réka; Daruka, Lejla; Grézal, Gábor; Fekete, Gergely; Számel, Mónika; Jangir, Pramod K; Kintses, Bálint; Csörgő, Bálint; Nyerges, Ákos; Györkei, Ádám; Kincses, András; Dér, András; Walter, Fruzsina R; Deli, Mária A; Urbán, Edit; Hegedűs, Zsófia; Olajos, Gábor; Méhi, Orsolya; Bálint, Balázs; Nagy, István; Martinek, Tamás A; Papp, Balázs; Pál, Csaba

    2018-06-01

    Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.

  19. [Antibiotic consumption and bacterial sensitivity in a teaching hospital: A 5-year study].

    PubMed

    Cotteret, C; Vallières, E; Roy, H; Ovetchkine, P; Longtin, J; Bussières, J-F

    2016-10-01

    To reduce risks of antibiotic resistance, governmental and learned societies decreed the optimal use of antibiotics. The relation between antibiotic consumption and bacterial resistance increase has been clearly demonstrated over the last several years. Antibiotic consumption data and bacterial sensitivity data are regularly published, but very few publications have searched for a correlation between these two variables. This study focused on antibiotic use and consumption as well as bacterial sensitivity to these antibiotics. The main objective was to describe the changes in antibiotic consumption and bacterial sensitivity in a mother-child teaching hospital. The secondary objectives were to explore whether antibiotic use and bacterial sensitivity were correlated and to comment on the usefulness of these data for clinicians. This was a 5-year retrospective, descriptive, cross-sectional study. All samples from usually sterile biologic liquids of hospitalized pediatric patients were included in the study. The samples from outpatient clinics were excluded. All types of bacteria identified in more than 30 isolates were included in the study. The antibiotics usually used to treat these bacteria were included. To assess antibiotic consumption, we calculated the number of days of therapy per 1000 patient-days for hospitalized pediatric patients and we calculated the Pearson correlation coefficient between antibiotic consumption and sensitivity rates to these antibiotics. Two scenarios were explored: one with correlation by year and one with the next year for bacterial sensitivity. During the study period (2010-2011 to 2014-2015), overall antibiotics consumption remained relatively stable. Concerning bacterial sensitivity, we noted important changes (sensitivity rates increased for 12 antibiotic-bacteria pairs, remained stable for five, and decreased for 15). We found three significant correlations for the first scenario: Pseudomonas aeruginos-ceftazidime (P=0.01), P. aeruginosa-ciprofloxacin and fluoroquinolone consumption (P=0.02), Enterococcus sp-ampicillin and penicillin consumption (P=0.04). For the second scenario, we found only two significant correlations: coagulase-negative Staphylococcus-oxacilline and penicillin consumption (P=0.02), P. aeruginosa/piperacillin (P=0.04). This exploratory study allowed us to describe antibiotic consumption and bacterial sensitivity progression. To our knowledge, this is the first study exploring the correlation between antibiotic consumption and the bacterial sensitivity rate in pediatrics in Canada. It remains very difficult to show this correlation between these two variables because of the multiple sources of bacterial resistance. These data are particularly useful for the antimicrobial stewardship programs and for clinicians. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Management of Respiratory Infections with Use of Procalcitonin: Moving toward More Personalized Antibiotic Treatment Decisions.

    PubMed

    Wirz, Yannick; Branche, Angela; Wolff, Michel; Welte, Tobias; Nobre, Vandack; Reinhart, Konrad; Falsey, Ann R; Damas, Pierre; Beishuizen, Albertus; Deliberato, Rodrigo O; Shehabi, Yahya; Jensen, Jens-Ulrik S; Mueller, Beat; Schuetz, Philipp

    2017-12-08

    Due to overlap of clinical findings and low sensitivity of bacterial diagnostic tests, differentiation between bacterial and viral respiratory tract infections remains challenging, ultimately leading to antibiotic overuse in this population of patients. Addition of procalcitonin, a blood biomarker expressed by epithelial cells in response to bacterial infections, to the clinical assessment leads to a reduction in inappropriate antibiotic initiation. Procalcitonin also provides prognostic information about the resolution of illness, and significant decreases over time are a strong signal for the discontinuation of antibiotics. Current evidence from randomized trials indicates that procalcitonin-guided antibiotic stewardship results in a reduction in antibiotic use and antibiotic side effects, which importantly translates into improved survival of patients with respiratory infections. Inclusion of procalcitonin into antibiotic stewardship algorithms thus improves the diagnostic and therapeutic management of patients presenting with respiratory illnesses and holds great promise to mitigate the global bacterial resistance crisis.

  1. [Secretion analysis of pathogenic bacteria culture in 115 rural chronic nasal-sinusitis patients].

    PubMed

    Zhang, Xiaoyuan; Sun, Jingwu; Chu, Shu

    2014-05-01

    To investigate the bacteria distribution, drug bacterial sensitivity characteristics of the rural chronic rhinosinusitis (CRS). And to explore the effect of antibiotic on pathogenic bacteria culture. Choose nasal sinus secretions from 115 CRS patients living in rural areas. Aerobic bacteria culture, anaerobic bacteria culture and drug sensitive test were procedured for each sample. At the same time the use of antibiotics nearly 2 months and nearly 2 weeks were collected. Among one hundred and fifteen specimens, 17 kinds of germs were detected in 37 cases, the positive rate of aerobic bacteria was 32.17%. Staphylococcus aureus and epidermis staphylococcus aureus the most common type of aerobe in CRS patients at rural areas. There was negative result in the anaerobic bacteria culture of 17 maxillary sinus specimen. The cases of using antibiotics nearly 2 months was up to 90, accounting for 78.26%. Nearly 2 weeks, 73 cases, accounting for 63.48%. The chi-square analysis showed high bacterial culture rate, in chronic rhinosinusitis with nasal polyps (CRSwNP group), which revealed correlation between bacterial infection factors and nasal polyps formation. For CRS patients with positive result of bacterial culture, they were sensitive to ofloxacin, cefotaxime, organism, ciprofloxacin, magnitude cephalosporin, and were drug fast to penicillin G, ampicillin, erythromycin. No specific differences was found in the bacteria distribution of rural CRS. antibiotics abusage in rural CRS patients and the anaerobic bacteria culture techniques is the main factor resulting in low culture rate. Rational use of antimicrobial agents should be established on the basis of the bacterial culture and drug sensitive test.

  2. Reversing Bacterial Resistance to Antibiotics by Phage-Mediated Delivery of Dominant Sensitive Genes

    PubMed Central

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar

    2012-01-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant. PMID:22113912

  3. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    PubMed

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  4. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    NASA Astrophysics Data System (ADS)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  5. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R.

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients’ urine within 25–35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care. PMID:28350870

  6. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection.

    PubMed

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R; Sokurenko, Evgeni V

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients' urine within 25-35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.

  7. In vitro comparison of the activity of various antibiotics and drugs against new Taiwan isolates and standard strains of avian mycoplasma.

    PubMed

    Lin, M Y

    1987-01-01

    Twenty-nine antibiotics or drugs were incorporated individually into mycoplasma agar to evaluate their inhibitory activity against avian mycoplasmas: 100 recent Taiwan isolates of 7 serotypes and 10 standard strains of 7 serotypes were tested. All of the standard strains were very sensitive to erythromycin, chlorotetracycline, doxycycline, minocycline, and tetracycline, but the local isolates were highly resistant to these antibiotics. The drugs or antibiotics that possessed an MIC90 of 50 micrograms/ml or less against the local isolates were tiamulin (less than 0.4 micrograms/ml), lincospectin (2.7), josamycin (2.7), lincomycin (3.0), spectinomycin (4.8), tylosin (6.0), kanamycin (6.0), chloramphenicol (6.0), gentamicin (7.5), apramycin (24.5), doxycycline (27.4), minocycline (29.0), spiramycin (30.0), colistin (44.3), leucomycin (45.0), and streptomycin (50.0). The MIC90 of the other antibiotics or drugs was greater than 50 micrograms/ml. None of the isolates or strains were sensitive to nalidixic acid, ronidazole, penicillin, ampicillin, cephalexin, carbadox, or four sulfa drugs at a concentration about 5 times the therapeutic level.

  8. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile.

  9. [Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].

    PubMed

    Gong, Y L; Yang, Z C; Yin, S P; Liu, M X; Zhang, C; Luo, X Q; Peng, Y Z

    2016-09-20

    To analyze the distribution and drug resistance of pathogen isolated from severely burned patients with bloodstream infection, so as to provide reference for the clinical treatment of these patients. Blood samples of 162 severely burned patients (including 120 patients with extremely severe burn) with bloodstream infection admitted into our burn ICU from January 2011 to December 2014 were collected. Pathogens were cultured by fully automatic blood culture system, and API bacteria identification panels were used to identify pathogen. Kirby-Bauer paper disk diffusion method was used to detect the drug resistance of major Gram-negative and -positive bacteria to 37 antibiotics including ampicillin, piperacillin and teicoplanin, etc. (resistance to vancomycin was detected by E test), and drug resistance of fungi to 5 antibiotics including voriconazole and amphotericin B, etc. Modified Hodge test was used to further identify imipenem and meropenem resistant Klebsiella pneumonia. D test was used to detect erythromycin-induced clindamycin resistant Staphylococcus aureus. The pathogen distribution and drug resistance rate were analyzed by WHONET 5.5. Mortality rate and infected pathogens of patients with extremely severe burn and patients with non-extremely severe burn were recorded. Data were processed with Wilcoxon rank sum test. (1) Totally 1 658 blood samples were collected during the four years, and 339 (20.4%) strains of pathogens were isolated. The isolation rate of Gram-negative bacteria, Gram-positive bacteria, and fungi were 68.4% (232/339), 24.5% (83/339), and 7.1% (24/339), respectively. The top three pathogens with isolation rate from high to low were Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa in turn. (2) Except for the low drug resistance rate to polymyxin B and minocycline, drug resistance rate of Acinetobacter baumannii to the other antibiotics were relatively high (81.0%-100.0%). Pseudomonas aeruginosa was sensitive to polymyxin B but highly resistant to other antibiotics (57.7%-100.0%). Enterobacter cloacae was sensitive to imipenem and meropenem, while its drug resistance rates to ciprofloxacin, levofloxacin, cefoperazone/sulbactam, cefepime, piperacillin/tazobactam were 25.0%-49.0%, and those to the other antibiotics were 66.7%-100.0%. Drug resistance rates of Klebsiella pneumoniae to cefoperazone/sulbactam, imipenem, and meropenem were low (5.9%-15.6%, two imipenem- and meropenem-resistant strains were identified by modified Hodge test), while its drug resistance rates to amoxicillin/clavulanic acid, piperacillin/tazobactam, cefepime, cefoxitin, amikacin, levofloxacin were 35.3%-47.1%, and those to the other antibiotics were 50.0%-100.0%. (3) Drug resistance rates of methicillin-resistant Staphylococcus aureus (MRSA) to most of the antibiotics were higher than those of the methicillin-sensitive Staphylococcus aureus (MSSA). MRSA was sensitive to linezolid, vancomycin, and teicoplanin, while its drug resistance rates to compound sulfamethoxazole, clindamycin, minocycline, and erythromycin were 5.3%-31.6%, and those to the other antibiotics were 81.6%-100.0%. Except for totally resistant to penicillin G and tetracycline, MSSA was sensitive to the other antibiotics. Fourteen Staphylococcus aureus strains were resistant to erythromycin-induced clindamycin. Enterococcus was sensitive to vancomycin and teicoplanin, while its drug resistance rates to linezolid, chloramphenicol, nitrofurantoin, and high unit gentamicin were low (10.0%-30.0%), and those to ciprofloxacin, erythromycin, minocycline, and ampicillin were high (60.0%-80.0%). Enterococcus was fully resistant to rifampicin. (4) Fungi was sensitive to amphotericin B, and drug resistance rates of fungi to voriconazole, fluconazole, itraconazole, and ketoconazole were 7.2%-12.5%. (5) The mortality of patients with extremely severe burn was higher than that of patients with non-extremely severe burn. The variety of infected pathogens in patients with extremely severe burn significantly outnumbered that in patients with non-extremely severe burn (Z=-2.985, P=0.005). The variety of pathogen in severely burned patients with bloodstream infection is wide, with the main pathogens as Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa, and the drug resistance situation is grim. The types of infected pathogen in patients with extremely severe burn are more complex, and the mortality of these patients is higher when compared with that of patients with non-extremely severe burn.

  10. Streptococcus agalactiae: prevalence of antimicrobial resistance in vaginal and rectal swabs in Italian pregnant women.

    PubMed

    Matani, Chiara; Trezzi, Michele; Matteini, Alice; Catalani, Carlotta; Messeri, Daniela; Catalani, Corrado

    2016-09-01

    Intrapartum antibiotic prophylaxis (IAP) reduces both the vertical transmission of Streptococcus agalactiae or Group B Streptococcus (GBS) and the early onset of neonatal sepsis. However, existing guidelines do not recommend that antimicrobial susceptibility testing (AST) be routinely performed. Penicillin or ampicillin are indicated as first-choice antibiotics, cefazolin being an alternative in the case of history of mild allergic reactions, and vancomycin or clindamycin an alternative in the event of severe reactions. We performed a cross-sectional analysis to identify the presence of any bacterial resistance towards the antibiotics most frequently used for IAP in pregnant women with GBS positive vaginal-rectal swabs, in the Pistoia area of central Italy. Of the 255 tested samples, 65 (25.5%) were positive for GBS. Sensitivity to glycopeptides was over 90%, but lower to ampicillin and penicillin (87.10% and 87.93% respectively). Resistance towards clindamycin and erythromycin was as high as 43.75% and 32.20%. All tested GBS proved susceptible to moxifloxacin, linezolid and tigecycline. Our observed prevalence is aligned or slightly higher than data reported in other series. The less than full effectiveness and low percentages of ampicillin and penicillin sensitivity observed give cause for concern. We confirmed the increase in clindamycin and erythromycin resistance. Glycopeptides can be used as second-line antibiotics, but the complete AST of GBS should always be performed before IAP. Given that gentamicin is used synergically with penicillin when treating chorioamnionitis, it needs to be always included in the AST. This is the first study on the GBS sensitivity profile in Tuscany. Further investigation on a larger scale is required prior to implementing any changes in the current guidelines.

  11. Pre- and post-natal exposure to antibiotics and the development of eczema, recurrent wheezing and atopic sensitization in children up to the age of 4 years.

    PubMed

    Dom, S; Droste, J H J; Sariachvili, M A; Hagendorens, M M; Oostveen, E; Bridts, C H; Stevens, W J; Wieringa, M H; Weyler, J J

    2010-09-01

    Little data are available on the relationship between indirect antibiotic exposure of the child in utero or during lactation and allergic diseases. On the other hand, several studies have been conducted on the association with direct post-natal antibiotic exposure, but the results are conflicting. The aim of this study was to investigate pre- and post-natal antibiotic exposure and the subsequent development of eczema, recurrent wheeze and atopic sensitization in children up to the age of 4 years. We conducted an aetiologic study in 773 children based on a prospective birth cohort project in which environmental and health information were collected using questionnaires. Antibiotic exposure was assessed as maternal antibiotic intake during pregnancy and during lactation and as medication intake of the child. The chronology of exposures and outcomes was taken into account during the data processing. At the age of 1 and 4 years, a blood sample was taken for the quantification of specific IgE. Prenatal antibiotic exposure was significantly positively associated with eczema, whereas no association was found with recurrent wheeze and atopic sensitization. We found a positive, although statistically not significant, association between antibiotic exposure through breastfeeding and recurrent wheeze. Neither eczema nor atopic sensitization was significantly associated with antibiotic exposure through breastfeeding. Finally, we observed a negative association between the use of antibiotics in the first year of life and eczema and atopic sensitization, and also between antibiotic use after the first year of life and recurrent wheeze, eczema and atopic sensitization. Indirect exposure to antibiotics (in utero and during lactation) increases the risk for allergic symptoms in children, while direct exposure to antibiotics appears to be protective. The biological mechanisms underlying these findings still need to be elucidated.

  12. Antibiotic resistance rates and physician antibiotic prescription patterns of uncomplicated urinary tract infections in southern Chinese primary care

    PubMed Central

    Kung, Kenny; Au-Doung, Philip Lung Wai; Ip, Margaret; Lee, Nelson; Fung, Alice; Wong, Samuel Yeung Shan

    2017-01-01

    Uncomplicated urinary tract infections (UTI) are common in primary care. Whilst primary care physicians are called to be antimicrobial stewards, there is limited primary care antibiotic resistance surveillance and physician antibiotic prescription data available in southern Chinese primary care. The study aimed to investigate the antibiotic resistance rate and antibiotic prescription patterns in female patients with uncomplicated UTI. Factors associated with antibiotic resistance and prescription was explored. A prospective cohort study was conducted in 12 primary care group clinics in Hong Kong of patients presenting with symptoms of uncomplicated UTI from January 2012 to December 2013. Patients’ characteristics such as age, comorbidity, presenting symptoms and prior antibiotic use were recorded by physicians, as well as any empirical antibiotic prescription given at presentation. Urine samples were collected to test for antibiotic resistance of uropathogens. Univariate analysis was conducted to identify factors associated with antibiotic resistance and prescription. A total of 298 patients were included in the study. E. coli was detected in 107 (76%) out of the 141 positive urine samples. Antibiotic resistance rates of E. coli isolates for ampicillin, co-trimoxazole, ciprofloxacin, amoxicillin and nitrofurantoin were 59.8%, 31.8%, 23.4%, 1.9% and 0.9% respectively. E. coli isolates were sensitive to nitrofurantoin (98.1%) followed by amoxicillin (78.5%). The overall physician antibiotic prescription rate was 82.2%. Amoxicillin (39.6%) and nitrofurantoin (28.6%) were the most common prescribed antibiotics. Meanwhile, whilst physicians in public primary care prescribed more amoxicillin (OR: 2.84, 95% CI: 1.67 to 4.85, P<0.001) and nitrofurantoin (OR: 2.01, 95% CI: 1.14 to 3.55, P = 0.015), physicians in private clinics prescribed more cefuroxime and ciprofloxacin (P<0.05). Matching of antibiotic prescription and antibiotic sensitivity of E. coli isolates occurred in public than private primary care prescriptions (OR: 6.72, 95% CI: 2.07 to 21.80 P = 0.001) and for other uropathogens (OR: 6.19, 95% CI: 1.04 to 36.78 P = 0.034). Mismatching differences of antibiotic prescription and resistance were not evident. In conclusion, nitrofurantoin and amoxicillin should be used as first line antibiotic treatment for uncomplicated UTI. There were significant differences in antibiotic prescription patterns between public and private primary care. Public primary care practitioners were more likely to prescribe first line antibiotic treatment which match antibiotic sensitivity of E. coli isolates and other uropathogens. Further exploration of physician prescribing behaviour and educational interventions, particularly in private primary care may helpful. Meanwhile, development and dissemination of guidelines for primary care management of uncomplicated UTI as well as continued surveillance of antibiotic resistance and physician antibiotic prescription is recommended. PMID:28486532

  13. Sublethal Concentrations of Antibiotics Cause Shift to Anaerobic Metabolism in Listeria monocytogenes and Induce Phenotypes Linked to Antibiotic Tolerance

    PubMed Central

    Knudsen, Gitte M.; Fromberg, Arvid; Ng, Yin; Gram, Lone

    2016-01-01

    The human pathogenic bacterium Listeria monocytogenes is exposed to antibiotics both during clinical treatment and in its saprophytic lifestyle. As one of the keys to successful treatment is continued antibiotic sensitivity, the purpose of this study was to determine if exposure to sublethal antibiotic concentrations would affect the bacterial physiology and induce antibiotic tolerance. Transcriptomic analyses demonstrated that each of the four antibiotics tested caused an antibiotic-specific gene expression pattern related to mode-of-action of the particular antibiotic. All four antibiotics caused the same changes in expression of several metabolic genes indicating a shift from aerobic to anaerobic metabolism and higher ethanol production. A mutant in the bifunctional acetaldehyde-CoA/alcohol dehydrogenase encoded by lmo1634 did not have altered antibiotic tolerance. However, a mutant in lmo1179 (eutE) encoding an aldehyde oxidoreductase where rerouting caused increased ethanol production was tolerant to three of four antibiotics tested. This shift in metabolism could be a survival strategy in response to antibiotics to avoid generation of ROS production from respiration by oxidation of NADH through ethanol production. The monocin locus encoding a cryptic prophage was induced by co-trimoxazole and repressed by ampicillin and gentamicin, and this correlated with an observed antibiotic-dependent biofilm formation. A monocin mutant (ΔlmaDCBA) had increased biofilm formation when exposed to increasing concentration of co-trimoxazole similar to the wild type, but was more tolerant to killing by co-trimoxazole and ampicillin. Thus, sublethal concentrations of antibiotics caused metabolic and physiological changes indicating that the organism is preparing to withstand lethal antibiotic concentrations. PMID:27462313

  14. Antibiotic susceptibility of enterococci isolated from traditional fermented meat products.

    PubMed

    Barbosa, J; Ferreira, V; Teixeira, P

    2009-08-01

    Antibiotic susceptibility was evaluated for 182 Enterococcus spp. isolated from Alheira, Chouriça de Vinhais and Salpicão de Vinhais, fermented meat products produced in the North of Portugal. Previously, a choice was made from a group of 1060 isolates, using phenotypic and genotypic tests. From these, 76 were previously identified as Enterococcus faecalis, 44 as Enterococcus faecium, one as Enterococcus casseliflavus and 61 as Enteroccocus spp. In order to encompass several of the known chemical and functional classes of antibiotics, resistance to ampicillin, penicillin G, ciprofloxacin, chloramphenicol, erythromycin, nitrofurantoin, rifampicin, tetracycline and vancomycin was evaluated. All the isolates were sensitive to antibiotics of clinical importance, such as penicillins and vancomycin. Some differences in Minimal Inhibitory Concentrations (MICs) of antibiotics, could be associated with the enterococcal species.

  15. Comparative antibiogram of coagulase-negative Staphylococci (CNS) associated with subclinical and clinical mastitis in dairy cows.

    PubMed

    Bansal, B K; Gupta, D K; Shafi, T A; Sharma, S

    2015-03-01

    The present study was planned to determine the in vitro antibiotic susceptibility of coagulase-negative Staphylococci (CNS) strains isolated from clinical and subclinical cases of mastitis in dairy cows. Antibiotic sensitivity profile will be helpful to recommend early therapy at the field level prior to availability of CST results. The milk samples from cases of clinical mastitis received in Mastitis Laboratory, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana and those of subclinical mastitis collected during routine screening of state dairy farms, were subjected to microbial culture. Identification of CNS organisms was done by standard biochemical tests. Antibiotic sensitivity testing, based on 30 antibiotics belonging to 12 groups, was done on 58 randomly selected CNS isolates (clinical isolates: 41, subclinical isolates: 17). Isolates were highly susceptible to chloramphenicol (98.3%), gentamicin (93.1%), streptomycin (91.4%), linezolid (91.4%), ceftixozime (87.9%), cloxacillin (86.2%), clotrimazole (86.2%), bacitracin (86.2%), enrofloxacin (84.5%) and ceftrioxone + tazobactum (70.7%), while resistance was observed against amoxicillin (77.6%), penicillin (75.9%), ampicillin (74.1%) and cefoperazone (51.7%). Overall, isolates from clinical cases of mastitis had a higher resistance than subclinical isolates. CNS isolates were susceptible to chloramphenicol, gentamicin and streptomycin, while higher resistance was recorded against routinely used penicillin group.

  16. Isolation and identification of Salmonella from curry samples and its sensitivity to commercial antibiotics and aqueous extracts of Camelia sinensis (L.) and Trachyspermum ammi (L.)

    PubMed Central

    Gunasegaran, Thanes; Rathinam, Xavier; Kasi, Marimuthu; Sathasivam, Kathiresan; Sreenivasan, Sasidharan; Subramaniam, Sreeramanan

    2011-01-01

    Objective To isolate Salmonella from curry samples and to evaluate the drug sensitivity of the food-borne Salmonella and its susceptibility to specific plant extracts. Methods Salmonella was isolated from the curry samples by standard microbiological methods and was confirmed by biochemical tests. The antibiotic susceptibility test was conducted by disc diffusion method using commercially available antibiotics such as ampicillin, tetracycline, chloramphenicol, kanamycin, and penicillin. In addition, the susceptibility of the food-borne Salmonella was also evaluated against the aqueous extracts of Camelia sinensis (L.) Theaceae (tea leaves) and the Trachyspermum ammi (L.) Apiaceae ( ajwain or omum seeds). Results Out of fifty curry samples, only seven samples were identified to have Salmonella contamination. The Salmonella isolates showed a significant drug resistance pattern except for kanamycin. The plant extracts showed a considerable antibacterial activity against the isolates, indicating the presence of antimicrobial principle which can be exploited after complete pharmacological investigations. Conclusions The present study demonstrates the occurrence of Salmonella in the curry samples, and shows significant drug resistance against most of the commercially available antibiotics, except kanamycin. Antimicrobial effect of the plant extracts against the food-bone Salmonella suggests that dietary including medicinal herbs would be one strategy to manage food borne pathogens. PMID:23569772

  17. [Micromonospora resistence to definite antibiotics and their ability to produce structurally analogous antibiotics].

    PubMed

    Bibikova, M V; Ivanitskaia, L P; Tikhonova, A S

    1980-01-01

    Thirty six cultures of Micromonospora freshly isolated from soil samples were studied with respect to their sensitivity to a number of antibiotics of various structures and modes of action. It was found that all of them were highly sensitive to penicillin, ristomycin, tetracycline, rifampicin, streptomycin, olivomycin, carminomycin and dactinomycin. Significant differences in sensitivity of the Micromonospora cultures were revealed only with respect to gentamicin, tobramicin, erythromycin and lincomycin. Seven cultures were resistant to gentamicin and tobramicin and sensitive to all of the other antibiotics. Broad spectrum antibiotics were isolated from these cultures. The study of the antibiotic chemistry showed that they were 2-desoxystreptamine-containing aminoglycosides. Two cultures proved to be resistant to erythromycin and lincomycin. When identified with the use of antibiotic resistant staphylococcal strains, the crude antibiotic substances isolated from these cultures appeared to be not active against staphylococci resistant to erythromycin and lincomycin. By their chromatograpi- behaviour the antibiotics were close to macrolides. Therefore, it was found that production of aminoglycoside and macrolide antibiotics was most characteristic of Micromonospora. A certain correlation between resistance of Micromonospora to these 2 antibiotic groups and capacity for their production was shown.

  18. Antibiotic administration in the drinking water of mice.

    PubMed

    Marx, James O; Vudathala, Daljit; Murphy, Lisa; Rankin, Shelley; Hankenson, F Claire

    2014-05-01

    Although antibiotics frequently are added to the drinking water of mice, this practice has not been tested to confirm that antibiotics reach therapeutic concentrations in the plasma of treated mice. In the current investigation, we 1) tested the stability of enrofloxacin and doxycycline in the drinking water of adult, female C57BL/6 mice; 2) measured the mice's consumption of water treated with enrofloxacin, doxycycline, amoxicillin, or trimethoprim-sulfamethoxazole; and 3) used HPLC to measure plasma antibiotic concentrations in mice that had ingested treated water for 1 wk. Plasma concentrations of antibiotic were measured 1 h after the start of both the light and dark cycle. The main findings of the study were that both enrofloxacin and nonpharmaceutical, chemical-grade doxycycline remained relatively stable in water for 1 wk. In addition, mice consumed similar volumes of antibiotic-treated and untreated water. The highest plasma antibiotic concentrations measured were: enrofloxacin, 140.1 ± 10.4 ng/mL; doxycycline, 56.6 ± 12.5 ng/mL; amoxicillin, 299.2 ± 64.1 ng/mL; and trimethoprim-sulfamethoxazole, 5.9 ± 1.2 ng/mL. Despite the stability of the antibiotics in the water and predictable water consumption by mice, the plasma antibiotic concentrations were well below the concentrations required for efficacy against bacterial pathogens, except for those pathogens that are exquisitely sensitive to the antibiotic. The findings of this investigation prompt questions regarding the rationale of the contemporary practice of adding antibiotics to the drinking water of mice for systemic antibacterial treatments.

  19. Novel Quorum-Quenching Agents Promote Methicillin-Resistant Staphylococcus aureus (MRSA) Wound Healing and Sensitize MRSA to β-Lactam Antibiotics

    PubMed Central

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V.; Viswanathan, Rajesh

    2014-01-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85–91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents. PMID:25534736

  20. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics.

    PubMed

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V; Viswanathan, Rajesh; Shoham, Menachem

    2015-03-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  2. Amoxicillin rash in patients with infectious mononucleosis: evidence of true drug sensitization.

    PubMed

    Ónodi-Nagy, Katinka; Kinyó, Ágnes; Meszes, Angéla; Garaczi, Edina; Kemény, Lajos; Bata-Csörgő, Zsuzsanna

    2015-01-01

    It hasn't been clearly understood yet whether sensitization to antibiotics, the virus itself or transient loss of drug tolerance due to the virus, is responsible for the development of maculopapular exanthems following amoxicillin intake in patients with infectious mononucleosis. We aimed to examine whether sensitization to penicillin developed among patients with skin rash following amoxicillin treatment within infectious mononucleosis. Ten patients were investigated for drug sensitization by lymphocyte transformation test and six patients were further tested by prick-, intradermal and patch tests employing the penicillin's main antigens. Lymphocyte transformation test showed negative results with amoxicillin, while one patient had positive reaction to cefixime. Six patients with suspected sensitization to amoxicillin were then investigated by in vivo tests. Prick tests were negative in all six patients, but the intradermal tests showed positive reactions in four patients. Our data demonstrate that in vitro testing is not sensitive enough in determining drug sensitization to penicillin. In vivo tests should be performed to detect sensitization and indeed with skin tests our results confirmed that sensitization to aminopenicillin may develop within infectious mononucleosis.

  3. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents.

    PubMed

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend the lifetime of the current treatment arsenal.

  4. The Human Milk Protein-Lipid Complex HAMLET Sensitizes Bacterial Pathogens to Traditional Antimicrobial Agents

    PubMed Central

    Marks, Laura R.; Clementi, Emily A.; Hakansson, Anders P.

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend the lifetime of the current treatment arsenal. PMID:22905269

  5. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    NASA Astrophysics Data System (ADS)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  6. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation.

    PubMed

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9  nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    PubMed Central

    Trojan, Rugira; Razdan, Lovely

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription. PMID:27872643

  8. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India.

    PubMed

    Trojan, Rugira; Razdan, Lovely; Singh, Nasib

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacte r spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli , K. pneumoniae , A. baumannii , and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa , P. mirabilis , and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.

  9. Some probiotic characteristics of a fermented milk product based on microbiota of "Tibetan kefir grains" cultivated in Ukrainian household.

    PubMed

    Kukhtyn, Mykola; Vichko, Olena; Horyuk, Yulia; Shved, Olga; Novikov, Volodymyr

    2018-01-01

    The article describes some probiotic properties of fermented product made of natural association of Tibetan kefir grains cultivated in Ukrainian household (UTKG); also, the effect of UTKG microbiota on the growth of pathogenic microbiota and sensitivity to antibiotics was studied. It was found that the test-cultures of oppurtunistic pathogens ( Staphylococcus aureus , Bacillus mesentericus , and Mycobacterium luteum ) were sensitive; bacteriostatic zone of the test-culture ranged from 21 to 25 mm, and highly sensitive ( Proteus vulgaris and Aspergillus niger ) b acteriostatic zone exceeded 25 mm to probiotic bacteria of fermented product. UTKG microbiota is also moderately sensitive to multiple antibiotics that allows defining the obtained fermented milk product as functional with therapeutic properties. During the study of the influence of different NaCl and bile concentrations on acid-activity of UTKG it was found that active acid formation occurred at the concentrations up to 4% NaCl in cultivation medium (boiled milk) and at 20% bile and 0.45% phenol. It proves microbial association to be capable of withstanding adverse gastrointestinal conditions and continue developing.

  10. Antibiotic Susceptibility Evaluation of Group A Streptococcus Isolated from Children with Pharyngitis: A Study from Iran.

    PubMed

    Sayyahfar, Shirin; Fahimzad, Alireza; Naddaf, Amir; Tavassoli, Sara

    2015-12-01

    The aim of this study was to evaluate the antibiotic susceptibility of Group A streptococcus (GAS) to antibiotics usually used in Iran for treatment of GAS pharyngitis in children. From 2011 to 2013, children 3-15 years of age with acute tonsillopharyngitis who attended Mofid Children's Hospital clinics and emergency ward and did not meet the exclusion criteria were enrolled in a prospective study in a sequential manner. The isolates strains from throat culture were identified as GAS by colony morphology, gram staining, beta hemolysis on blood agar, sensitivity to bacitracin, a positive pyrrolidonyl aminopeptidase (PYR) test result, and the presence of Lancefield A antigen determined by agglutination test. Antimicrobial susceptibility was identified by both disk diffusion and broth dilution methods. From 200 children enrolled in this study, 59 (30%) cases were culture positive for GAS. All isolates were sensitive to penicillin G. The prevalence of erythromycin, azithromycin, and clarithromycin resistance by broth dilution method was 33.9%, 57.6%, and 33.9%, respectively. Surprisingly, 8.4% of GAS strains were resistant to rifampin. In this study, 13.5% and 32.2% of the strains were resistant to clindamycin and ofloxacin, respectively. The high rate of resistance of GAS to some antibiotics in this study should warn physicians, especially in Iran, to use antibiotics restrictedly and logically to prevent the rising of resistance rates in future. It also seems that continuous local surveillance is necessary to achieve the best therapeutic option for GAS treatment.

  11. Current trends of microorganisms and their sensitivity pattern in paediatric septic arthritis: A prospective study from tertiary care level hospital.

    PubMed

    Motwani, Girish; Mehta, Rujuta; Aroojis, Alaric; Vaidya, Sandeep

    2017-01-01

    Early treatment of septic arthritis is essential before irreversible damage to the articular cartilage occurs. Clinicians often start empirical antibiotic therapy for symptomatic relief while awaiting a definitive culture report. In present day parlance with variations in different centres in the private and public sector and rampant antibiotic abuse, a lot of resistance is being seen in the flora and their sensitivity patterns. Hence it is imperative to document and analyze these changing trends. The authors conducted a retrospective analysis of prospectively gathered data of 60 patients under 14 years of age. Joint arthrotomy was performed as a standard therapeutic protocol and the drained pus or synovial fluid was sent for gram stain and culture by 2 different methods: conventional agar plate method and BACTEC Peds Plus/F bottle method. Antibiotic susceptibility tests were done by the disc diffusion method of Clinical Laboratory Standards Institute (CLSI). The commonest presenting age group was below 1 year (80% patients) including 24 neonates. There were 19 hospital and 41 community acquired cases of septic arthritis. The hip (56%) was the commonest affected joint followed by knee (28%), shoulder joint (11%) and elbow (5%). Microorganism was isolated in 53% isolates of joint fluid only (36 culture positive patients). Conventional agar methods of culture showed positive report in only 42% patients (15/36 patients) while with the BACTEC method the yield was 71%. In the Community acquired septic arthritis, methicillin sensitive Staphylococcus aureus was isolated as commonest microbe while resistant variety of gram negative bacilli including E. coli and Klebsiella were found as predominant organism causing hospital acquired nosocomial infection of joints. The results strikingly differ in terms of response to treatment as most patients (11/19 patients) showed significant resistance to the most commonly practiced empirical antibiotic regimen of ampicillin-cloxacillin group in routine practice. When cefazolin was used as empirical antibiotic, it has shown good response and better sensitivity in 82% patients (27/33 patients). S. aureus is still the most common organism in septic arthritis. The BACTEC system was found to improve the yield of clinically significant isolates. Though a significant resistance to common antibiotic regimen is noticed, the strain is susceptible to cephalosporin group of antibiotics. We recommend the use of cephalosporine antibiotics as an empirical therapy till culture and sensitivity report are available.

  12. Multiple challenges of antibiotic use in a large hospital in Ethiopia - a ward-specific study showing high rates of hospital-acquired infections and ineffective prophylaxis.

    PubMed

    Gutema, Girma; Håkonsen, Helle; Engidawork, Ephrem; Toverud, Else-Lydia

    2018-05-03

    This project aims to study the use of antibiotics in three clinical wards in the largest tertiary teaching hospital in Ethiopia for a period of 1 year. The specific aims were to assess the prevalence of patients on antibiotics, quantify the antibiotic consumption and identify the main indications of use. The material was all the medical charts (n = 2231) retrieved from three clinical wards (internal medicine, gynecology/obstetrics and surgery) in Tikur Anbessa Specialized Hospital (TASH) in Addis Ababa between September 2013 and September 2014. Data collection was performed manually by four pharmacists. Each medical chart represented one patient. About 60% of the patients were admitted to internal medicine, 20% to each of the other two wards. The number of bed days (BD) was on average 16.5. Antibiotics for systemic use were prescribed to 73.7% of the patients (on average: 2.1 antibiotics/patient) of whom 86.6% got a third or fourth generation cephalosporin (mainly ceftriaxone). The average consumption of antibiotics was 81.6 DDD/100BD, varying from 91.8 in internal medicine and 71.6 in surgery to 47.6 in gynecology/obstetrics. The five most frequently occurring infections were pneumonia (26.6%), surgical site infections (21.5%), neutropenic fever (6.9%), sepsis (6.4%) and urinary tract infections (4.7%). About one fourth of the prescriptions were for prophylactic purposes. Hospital acquired infections occurred in 23.5% of the patients (353 cases of surgical site infection). The prescribing was based on empirical treatment and sensitivity testing was reported in only 3.8% of the cases. In the present study from three wards in the largest tertiary teaching hospital in Ethiopia, three out of four patients were prescribed antibiotics, primarily empirically. The mean antibiotic consumption was 81.6 DDD/100BD. Surgical site infections constituted a large burden of the infections treated in the hospital, despite extensive prescribing of prophylaxis. The findings show the need to implement antibiotic stewardship programs in Ethiopian hospitals with focus on rational prescribing, increased sensitivity testing and better procedures to prevent hospital acquired infections.

  13. [Evaluation of Mascia Brunelli rapid antigen test in the diagnosis of group A streptococcal pharyngitis].

    PubMed

    Barış, Ayşe; Anlıaçık, Nur; Bulut, Mehmet Emin; Deniz, Rıdvan; Yücel, Elif; Aktaş, Elif

    2017-01-01

    Pharyngitis in most cases is due to viral microorganisms however drug therapy without the detection of etiological agent leads to unnecessary use of antibiotics. On the other hand, when the etiologic agent is group A beta-hemolytic streptococci (GAS) it is important to identify the etiologic agent rapidly which will guide the treatment with appropriate antibiotics. The use of highly sensitive rapid tests will contribute significantly to early diagnosis and appropriate therapy. The aim of this study is to evaluate the efficacy of Mascia Brunelli rapid antigen test for the detection of GAS in throat swab samples. A total of 833 throat swab samples submitted to our laboratory with pre-diagnosis of pharyngitis were assessed between June 2016 and August 2016. The samples were simultaneously cultured and tested by rapid Mascia Brunelli Strep-A Card (Mascia Brunelli S.p.a, Italy). For identification, bacitracin sensitivity, PYR test and latex agglutination test in addition to Bruker MALDI-TOF MS (Daltonics, Germany) system were used. The density of GAS growth in the culture was noted. The samples that were false negative with Mascia Brunelli test were re-tested with QuickVue + Strep A Test (Quidel Corporation, San Diego, USA) rapid antigen test. A total of 833 patients, 376 (45.2%) female and 457 (54.8%) male were included in the study. The age range was between 0-94 years with a mean value of 7.86 ± 6.72. 125 (15%) and 94 (11.28%) of the samples were positive with culture and rapid antigen test, respectively. Mascia Brunelli antigen test gave negative results for 31 culture positive samples. Of these 31 samples, 28 were found positive by QuickVue + Strep A antigen test. As a result, the sensitivity of the test was found to be independent of the inoculum effect. The culture positivity rate in patients between 5-15 years was 18.4%. The sensitivity, specificity, positive predictive value, negative predictive value and the accuracy of Mascia Brunelli antigen test, with respect to culture, were 75.2%, 100%, 100%, 95.81% and 96.28%, respectively. In conclusion, the selection of rapid antigen tests with high sensitivity in the diagnosis of GAS pharyngitis will contribute to the prevention of resistance development by appropriate use of antibiotics as well as early diagnosis and appropriate treatment. However, confirmation of negative rapid antigen test results by culture is very important in terms of false diagnosis and prevention of incomplete treatment.

  14. [Sensitivity of clinical Proteus strains to antibiotics and their combinations].

    PubMed

    Sheina, E P; Arutcheva, A A

    1978-05-01

    In 1976 isolation of Proteus from wounds of patients with various purulent processes amounted to 14.5 per cent. Serotypes 0-10, 0-3 and H-3 predominated among the isolates. Sensitivity of 35 clinical strains of Proteus to 10 antibiotics, furagin and nevigramone was studied by the method of serial dilutions in liquid media. All the isolates were highly resistant to the antibiotics except gentamicin, furagin and nevigramone, the MIC of which for most of the strains was 3.12, 1.6-3.12 and 6.25-12.5 gamma/ml, respectively. The effect of 14 combinations of chemotherapeutics was also studied. The combinations of gentamicin with carbenicillin, gentamicin with ampicillin and monomycin with ampicillin proved to be most effective against the Proteus strains tested. The following combinations may be of practical value: monomycin + carbenicillin, kanamycin + ampicillin, kanamycin + carbenicillin, ampicillin + furagin, gentamicin + nevigramone. The combinations of carbenicillin with furagin and gentamicin with furagin were also rational.

  15. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    PubMed

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  16. Developing biochemical and molecular markers for cyanobacterial inoculants.

    PubMed

    Prasanna, R; Madhan, K; Singh, R N; Chauhan, A K; Nain, L

    2010-09-01

    Markers for evaluating the establishment of cyanobacteria based on their sensitivity or resistance to antibiotics, saccharide utilization patterns and PCR generated fingerprints were developed. Four selected strains (isolates from rhizosphere soils of diverse agro-ecosystems) have shown potential as diazotrophs and exhibited plant growth promoting abilities. Different responses were obtained on screening against 40 antibiotics, which aided in developing selectable antibiotic markers for each strain. Biochemical profiles generated using standardized chromogenic identification system (including saccharide utilization tests) revealed that 53 % of the saccharides tested were not utilized by any strain, while some strains exhibited unique ability for utilization of saccharides such as melibiose, cellobiose, maltose and glucosamine. PCR based amplification profiles developed using a number of primers based on repeat sequences revealed the utility of 3 primers in providing unique fingerprints for the strains.

  17. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    PubMed Central

    Ariel, Ellen; Picard, Jacqueline; Elliott, Lisa

    2017-01-01

    This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas) and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters. PMID:29147114

  18. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs

    PubMed Central

    2011-01-01

    Background The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs) as bactericidal agent on MB45. Methods Diluted Luria broth/Agar (10-3) media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs. Results and conclusions The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain. PMID:21595893

  19. Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India

    PubMed Central

    Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

    2013-01-01

    Background In this study a large random collection (n = 2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007–2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6′-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. Conclusions Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. PMID:23951238

  20. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

  1. Drug susceptibility and treatment response of common urinary tract infection pathogens in children.

    PubMed

    Chen, Pei-Chun; Chang, Luan-Yin; Lu, Chun-Yi; Shao, Pei-Lan; Tsai, I-Jung; Tsau, Yong-Kwei; Lee, Ping-Ing; Chen, Jong-Ming; Hsueh, Po-Ren; Huang, Li-Min

    2014-12-01

    To document the trends of sensitivity and to find whether it is necessary to change antibiotics in selected patients according to the sensitivity test results in our clinical practice. We collected urine culture results from 0-18-year-old patients in the National Taiwan University Hospital from January 1, 2003 to October 31, 2012. Their medical chart was reviewed to identify true pathogens responsible for their urinary tract infection (UTI). We checked the percentage of susceptibility of these pathogens to ampicillin, amoxicillin-clavulanate (AMC), cefazolin, cefmetazole, ceftriaxone, gentamicin, and trimethoprim-sulfamethoxazole (TMP-SMX) according to the Clinical and Laboratory Standards Institute (CLSI) guideline. The extended-spectrum-beta-lactamases (ESBLs) rate was also checked. In addition, we reviewed the treatment response of different antibiotics. Defervescence within 48 hours after initial antibiotics use was considered responsive. A total of 7758 urine cultures positive for Escherichia coli infection were collected during the 10-year period. The E. coli cefazolin susceptibility rate was 62-73% during 2003-2010, but it dropped to 23% in 2011 and 28% in 2012 after the new CLSI guideline (M100-S21) was released. However, other antibiotics did not show a significant difference. In UTI caused by E. coli, on average, the sensitivity rates for various antibiotics were as follows: cefmetazole, 90%; ceftriaxone, 85%; gentamicin, 77%; AMC, 61%; TMP-SMX, 47%; and ampicillin, 20%. The ESBL rate was also found to increase (2-11%; p < 0.01). The overall response rate of UTI caused by E. coli to first-line antibiotics such as first-generation cephalosporin and/or gentamicin was 78%. The susceptibility of common urinary tract pathogens to cefazolin has decreased dramatically since 2010. This trend may be due to the change in the CLSI guideline. Although the susceptibility rate to first-line empirical antibiotics shows a decreasing trend, we found that the clinical response was acceptable for our first-line empirical antibiotics. Copyright © 2013. Published by Elsevier B.V.

  2. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  3. [Antibiotic resistance of streptococcus pneumoniae among healthy nasopharyngeal carriers in seven regions of Peru].

    PubMed

    Torres, Nancy; Velásquez, Ricardo; Mercado, Erik H; Egoavil, Martha; Horna, Gertrudis; Mejía, Lida; Castillo, María E; Chaparro, Eduardo; Hernández, Roger; Silva, Wilda; Campos, Francisco E; Sáenz, Andrés; Hidalgo, Félix; Letona, Carolina; Valencia, Angel G; Cerpa, Rosario; López-de-Romaña, Bernardo; Torres, Berenice; Castillo, Fiorella; Calle, Andrea; Rabanal, Synthia; Pando, Jackeline; Lacroix, Elizabeth; Reyes, Isabel; Guerra, Humberto; Ochoa, Theresa J

    2013-01-01

    To determine the pattern of antibiotic susceptibility of isolated Streptococcus pneumoniae strains of healthy nasopharyngeal carriers younger than 2 years in seven regions of Peru. Between 2007 and 2009, nasopharyngeal swab samples were collected among 2123 healthy children aged 2-24 months in growth and development medical practices (CRED) and vaccination offices of hospitals and health centers in Lima, Piura, Cusco, Abancay, Arequipa, Huancayo, and Iquitos. The resistance to ten antibiotics through disk diffusion sensitivity testing of isolated pneumococcus strains was determined. 572 strains were isolated. High rates of resistance to co-trimoxazole (58%), penicillin (52.2% non-sensitive); tetracycline (29,1%); azithromycin (28,9%), and erythromycin (26,3%). Resistance to chloramphenicol was low (8.8%). Multiresistance was found at 29.5%. Resistance to azithromycin and penicillin was different in all seven regions (p<0,05), the highest percentage of non-sensitive strains being found in Arequipa (63,6%), whereas the lowest percentage was found in Cusco (23.4%). High levels of resistance found to penicillin, co-trimoxasole and macrolides in isolated pneumococcus strains of healthy carriers in all studied regions, and their association to a previous use of antibiotics, represent a significant public health problem in our country. This emphasizes the need to implement nationwide strategies to reduce the irrational use of antibiotics, especially among children. It is necessary to complement data of resistance to penicillin with the determination of minimal inhibitory concentration to make proper therapeutic recommendations.

  4. The comparison of printed resources bacterial contamination in libraries of Al-Zahra Hospital and Sciences Faculty of Isfahan University and the determination of their antibiotic sensitivity pattern.

    PubMed

    Rafiei, Hosein; Chadeganipour, Mostafa; Ojaghi, Rezvan; Maracy, Mohammad Reza; Nouri, Rasool

    2017-01-01

    During the library loan process, the printed resources can be a carrier of pathogenic bacteria. In this study, it was tried to compare the Bacterial Contamination Rates and their antibiotic sensitivity pattern in printed resources of a hospital and a non-hospital library. This is a cross-sectional study. Returning books from the Al-Zahra hospital library and library of Sciences faculty of Isfahan University provides the research community. The sample size, 96 cases, was calculated using quota sampling. For sampling sterile swab dipped in trypticase soy broth medium and transfer trypticase soy broth medium were used. To identify different type of isolated bacteria from Gram-staining test and biochemical tests such as; TSI, IMViC and etc., were used. 76 (79.2%) and 20 (20.8%) of cultured samples were negative and positive, the respectively. Of 20 positive samples, 11 samples (55%) belong to the family Enterobacteriaceae that after detecting by Differential teste identified all 11 samples of Enterobacter that all of them were sensitive to Gentamicin and Ofloxacin. Also the most resistance to Nitrofurantoin and Amikacin was observed. 9 cases remained (45%) were coagulase-negative Staphylococcus that all of them were sensitive to the Trimethoprim-sulfamethoxazole and Cephalexin antibiotics also the most resistance to Cefixime was observed. Considering that the Enterobacter sp and coagulase-negative Staphylococcus were separated from the books, the books as well as other hospital and medical equipment can transmit the infection to librarians, library users, patients and hospital staff, and also it can produce serious infections in patients with immune deficiency.

  5. The comparison of printed resources bacterial contamination in libraries of Al-Zahra Hospital and Sciences Faculty of Isfahan University and the determination of their antibiotic sensitivity pattern

    PubMed Central

    Rafiei, Hosein; Chadeganipour, Mostafa; Ojaghi, Rezvan; Maracy, Mohammad Reza; Nouri, Rasool

    2017-01-01

    Introduction: During the library loan process, the printed resources can be a carrier of pathogenic bacteria. In this study, it was tried to compare the Bacterial Contamination Rates and their antibiotic sensitivity pattern in printed resources of a hospital and a non-hospital library. Methods: This is a cross-sectional study. Returning books from the Al-Zahra hospital library and library of Sciences faculty of Isfahan University provides the research community. The sample size, 96 cases, was calculated using quota sampling. For sampling sterile swab dipped in trypticase soy broth medium and transfer trypticase soy broth medium were used. To identify different type of isolated bacteria from Gram-staining test and biochemical tests such as; TSI, IMViC and etc., were used. Results: 76 (79.2%) and 20 (20.8%) of cultured samples were negative and positive, the respectively. Of 20 positive samples, 11 samples (55%) belong to the family Enterobacteriaceae that after detecting by Differential teste identified all 11 samples of Enterobacter that all of them were sensitive to Gentamicin and Ofloxacin. Also the most resistance to Nitrofurantoin and Amikacin was observed. 9 cases remained (45%) were coagulase-negative Staphylococcus that all of them were sensitive to the Trimethoprim-sulfamethoxazole and Cephalexin antibiotics also the most resistance to Cefixime was observed. Conclusion: Considering that the Enterobacter sp and coagulase-negative Staphylococcus were separated from the books, the books as well as other hospital and medical equipment can transmit the infection to librarians, library users, patients and hospital staff, and also it can produce serious infections in patients with immune deficiency. PMID:28546984

  6. Elective penicillin skin testing in a pediatric outpatient setting.

    PubMed

    Jost, Barbara Capes; Wedner, H James; Bloomberg, Gordon R

    2006-12-01

    Adverse reactions associated with penicillin-type antibiotics are common in pediatric practice, leading to the subsequent unnecessary use of alternative antibiotics. IgE-mediated penicillin allergy represents only a fraction of these adverse reactions. To examine (1) the trend of penicillin skin test reactivity during a recent 10-year interval, (2) the relative distribution of specific reagents related to a positive skin test result, and (3) skin test reactivity as a function of reaction history. Penicillin testing using 3 reagents--benzylpenicilloyl polylysine, penicillin G, and sodium penicilloate (penicillin A)--was conducted in a prospective study of 359 consecutive patients referred to an outpatient pediatric allergy clinic between January 1, 1993, and May 31, 2003. We also retrospectively reviewed penicillin skin test results for 562 children previously tested between January 1, 1979, and December 31, 1992. Between 1993 and 2003, the prevalence of penicillin skin test sensitivity markedly declined. Of all the positive skin test results between 1979 and 2002, either penicillin G or sodium penicilloate or both identified 34%, with sodium penicilloate alone responsible for 8.5%. The rate of positive skin test reactions was not significantly different between patients with vs without a history of suggestive IgE-mediated reactions. A marked decline in penicillin skin test sensitivity in the pediatric age group is identified. The minor determinant reagents penicillin G and sodium penicilloate are both necessary for determining potential penicillin allergy. Relating history alone to potential penicillin sensitivity is unreliable in predicting the presence or absence of a positive skin test result.

  7. Antibiotic Administration in the Drinking Water of Mice

    PubMed Central

    Marx, James O; Vudathala, Daljit; Murphy, Lisa; Rankin, Shelley; Hankenson, F Claire

    2014-01-01

    Although antibiotics frequently are added to the drinking water of mice, this practice has not been tested to confirm that antibiotics reach therapeutic concentrations in the plasma of treated mice. In the current investigation, we 1) tested the stability of enrofloxacin and doxycycline in the drinking water of adult, female C57BL/6 mice; 2) measured the mice's consumption of water treated with enrofloxacin, doxycycline, amoxicillin, or trimethoprim–sulfamethoxazole; and 3) used HPLC to measure plasma antibiotic concentrations in mice that had ingested treated water for 1 wk. Plasma concentrations of antibiotic were measured 1 h after the start of both the light and dark cycle. The main findings of the study were that both enrofloxacin and nonpharmaceutical, chemical-grade doxycycline remained relatively stable in water for 1 wk. In addition, mice consumed similar volumes of antibiotic-treated and untreated water. The highest plasma antibiotic concentrations measured were: enrofloxacin, 140.1 ± 10.4 ng/mL; doxycycline, 56.6 ± 12.5 ng/mL; amoxicillin, 299.2 ± 64.1 ng/mL; and trimethoprim–sulfamethoxazole, 5.9 ± 1.2 ng/mL. Despite the stability of the antibiotics in the water and predictable water consumption by mice, the plasma antibiotic concentrations were well below the concentrations required for efficacy against bacterial pathogens, except for those pathogens that are exquisitely sensitive to the antibiotic. The findings of this investigation prompt questions regarding the rationale of the contemporary practice of adding antibiotics to the drinking water of mice for systemic antibacterial treatments. PMID:24827573

  8. [A case of legionnaire's disease in Germany (author's transl)].

    PubMed

    Missalek, W; Helmecke, G

    1979-12-07

    Severe bronchopneumonia in a 66-year-old patient failed to respond to sensitivity-tested antibiotics, with only erythromycin providing improvement. The indirect immunofluorescence test for legionnaire's disease gave a highly significant titre rise (eightfold). Legionnaire's disease should be considered in the differential diagnosis of treatment-resistant bronchopneumonia.

  9. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  10. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Zarei, Samira; Taheri, Mohammad; Tajbakhsh, Saeed; Mortazavi, Seyed Alireza; Ranjbar, Sahar; Momeni, Fatemeh; Masoomi, Samaneh; Ansari, Leila; Movahedi, Mohammad Mehdi; Taeb, Shahram; Zarei, Sina; Haghani, Masood

    2017-04-01

    Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium ( S. typhimurium ), Staphylococcus aureus , and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6) mm; it was 14.7 (SD 0.6) mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  11. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    PubMed Central

    León-Galván, Ma. Fabiola; Barboza-Corona, José E.; Lechuga-Arana, A. Arianna; Valencia-Posadas, Mauricio; Aguayo, Daniel D.; Cedillo-Pelaez, Carlos; Martínez-Ortega, Erika A.; Gutierrez-Chavez, Abner J.

    2015-01-01

    Thirty-two farms (n = 535 cows) located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM) and clinical mastitis (CLM) were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT) (≥3) and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY), lactation number (LN), herd size (HS), and number of days in milk (DM) were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH), LN, HS, and DM (P < 0.01), and correlations between udder quarters from the CMT were around 0.49 (P < 0.01). Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study. PMID:25815326

  12. Calf antibiotic and sulfonamide test (CAST) for screening antibiotic and sulfonamide residues in calf carcasses.

    PubMed

    Dey, Bhabani P; Reamer, Richard P; Thaker, Nitin H; Thaler, Alice M

    2005-01-01

    The Calf Antibiotic and Sulfonamide Test (CAST), a microbial inhibition screening test, was developed for detecting antibiotics and sulfonamides in bob veal calf carcasses. The test uses Bacillus megaterium ATCC 9885 as the indicator organism and Mueller Hinton agar as the growth medium. Compared to Swab Test on Premises (STOP), developed in 1970, this screening test has higher sensitivity and the ability to detect a wider range of veterinary antimicrobial residual drugs, particularly sulfonamides, at lower concentrations. Carcasses that are tested with CAST and suspected of containing chemical residue above tolerance level are retained for confirmation. Disposition of these carcasses are determined upon laboratory result. Routine testing of bob veal calves with CAST allowed the Food Safety and Inspection Service to release most calf carcasses within 24 h post-slaughter, thus conserving shipping and handling resources. However, changes in the regulation in 1990 dictate that disposition of carcasses found to contain violative levels of sulfonamide residues should be based on laboratory findings. The analysis of the data for the years 1990-1994 and 1998 indicate that the use of CAST over the years was significant, and had a direct impact on reduction of residue violations in veal carcasses. With the use of CAST, potentially harmful antimicrobial chemicals entering the human food chain through veal meat have been minimized.

  13. Novel antibacterial activity of monolaurin compared with conventional antibiotics against organisms from skin infections: an in vitro study.

    PubMed

    Carpo, Beatriz G; Verallo-Rowell, Vermén M; Kabara, Jon

    2007-10-01

    A cross-sectional laboratory study to determine the in vitro sensitivity and resistance of organisms in culture isolates from skin infections and mechanisms of action of monolaurin, a coconut lauric acid derivative, compared with 6 common antibiotics: penicillin, oxacillin, fusidic acid, mupirocin, erythromycin, and vancomycin. Skin culture samples were taken from newborn to 18-year-old pediatric patients with primary and secondarily infected dermatoses. Samples were collected and identified following standard guidelines, then sent to the laboratory for sensitivity testing against the 6 selected antibiotics and monolaurin. Sensitivity rates of Gram-positive Staphylococcus aureus, Streptococcus spp., and coagulase-negative Staphylococcus, Gram-negative E. vulneris, Enterobacter spp., and Enterococcus spp. to 20 mg/ml monolaurin was 100% and of Klebsiella rhinoscleromatis was 92.31%. Escherichia coli had progressively less dense colony growths at increasing monolaurin concentrations, and at 20 mg/ml was less dense than the control. Staphylococcus aureus, coagulase-negative Staphylococcus, and Streptococcus spp. did not exhibit any resistance to monolaurin and had statistically significant (P <.05) differences in resistance rates to these antibiotics. Monolaurin has statistically significant in vitro broad-spectrum sensitivity against Gram-positive and Gram-negative bacterial isolates from superficial skin infections. Most of the bacteria did not exhibit resistance to it. Monolaurin needs further pharmacokinetic studies to better understand its novel mechanisms of action, toxicity, drug interactions, and proper dosing in order to proceed to in vivo clinical studies.

  14. The Lymphocyte Transformation Test for Borrelia Detects Active Lyme Borreliosis and Verifies Effective Antibiotic Treatment

    PubMed Central

    von Baehr, Volker; Doebis, Cornelia; Volk, Hans-Dieter; von Baehr, Rüdiger

    2012-01-01

    Borrelia-specific antibodies are not detectable until several weeks after infection and even if they are present, they are no proof of an active infection. Since the sensitivity of culture and PCR for the diagnosis or exclusion of borreliosis is too low, a method is required that detects an active Borrelia infection as early as possible. For this purpose, a lymphocyte transformation test (LTT) using lysate antigens of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii and recombinant OspC was developed and validated through investigations of seronegative and seropositive healthy individuals as well as of seropositive patients with clinically manifested borreliosis. The sensitivity of the LTT in clinical borreliosis before antibiotic treatment was determined as 89,4% while the specificity was 98,7%. In 1480 patients with clinically suspected borreliosis, results from serology and LTT were comparable in 79.8% of cases. 18% were serologically positive and LTT-negative. These were mainly patients with borreliosis after antibiotic therapy. 2.2% showed a negative serology and a positive LTT result. Half of them had an early erythema migrans. Following antibiotic treatment, the LTT became negative or borderline in patients with early manifestations of borreliosis, whereas in patients with late symptoms, it showed a regression while still remaining positive. Therefore, we propose the follow-up monitoring of dis-seminated Borrelia infections as the main indication for the Borrelia-LTT. PMID:23091571

  15. The lymphocyte transformation test for borrelia detects active lyme borreliosis and verifies effective antibiotic treatment.

    PubMed

    von Baehr, Volker; Doebis, Cornelia; Volk, Hans-Dieter; von Baehr, Rüdiger

    2012-01-01

    Borrelia-specific antibodies are not detectable until several weeks after infection and even if they are present, they are no proof of an active infection. Since the sensitivity of culture and PCR for the diagnosis or exclusion of borreliosis is too low, a method is required that detects an active Borrelia infection as early as possible. For this purpose, a lymphocyte transformation test (LTT) using lysate antigens of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii and recombinant OspC was developed and validated through investigations of seronegative and seropositive healthy individuals as well as of seropositive patients with clinically manifested borreliosis. The sensitivity of the LTT in clinical borreliosis before antibiotic treatment was determined as 89,4% while the specificity was 98,7%. In 1480 patients with clinically suspected borreliosis, results from serology and LTT were comparable in 79.8% of cases. 18% were serologically positive and LTT-negative. These were mainly patients with borreliosis after antibiotic therapy. 2.2% showed a negative serology and a positive LTT result. Half of them had an early erythema migrans. Following antibiotic treatment, the LTT became negative or borderline in patients with early manifestations of borreliosis, whereas in patients with late symptoms, it showed a regression while still remaining positive. Therefore, we propose the follow-up monitoring of dis-seminated Borrelia infections as the main indication for the Borrelia-LTT.

  16. Effects of refrigerating preinoculated Vitek cards on microbial physiology and antibiotic susceptibility

    NASA Technical Reports Server (NTRS)

    Skweres, Joyce A.; Bassinger, Virginia J.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    Reference cultures of 16 microorganisms obtained from the American Type Culture Collection and four clinical isolates were used in standardized solutions to inoculate 60 cards for each test strain. A set of three ID and three susceptibility cards was processed in the Vitek AutoMicrobic System (AMS) immediately after inoculation. The remaining cards were refrigerated at 4 C, and sets of six cards were removed and processed periodically for up to 17 days. The preinoculated AMS cards were evaluated for microorganism identification, percent probability of correct identification, length of time required for final result, individual substrate reactions, and antibiotic minimal inhibitory/concentration (MIC) values. Results indicate that 11 of the 20 microbes tested withstood refrigerated storage up to 17 days without detectable changes in delineating characteristics. MIC results appear variable, but certain antibiotics proved to be more stable than others. The results of these exploratory studies will be used to plan a microgravity experiment designed to study the effect of microgravity on microbial physiology and antibiotic sensitivity.

  17. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    PubMed

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  19. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling.

    PubMed

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.

  20. No need for a urine culture in elderly hospitalized patients with a negative dipstick test result.

    PubMed

    Shimoni, Zvi; Hermush, Vered; Glick, Joseph; Froom, Paul

    2018-05-18

    To determine the clinical utility/disutility of canceling urine cultures in elderly patients with a negative dipstick. The cohort included consecutive patients aged ≥ 65 years hospitalized in internal medicine departments with an admission urinalysis and urine culture (January 1, 2014 to December 31, 2016). We calculated the sensitivity of the dipstick (either a trace leukocyte esterase or a positive nitrite test result) to detect patients with bacteriuria, and the decrease in urine cultures resulting from cancelation in patients with a negative dipstick. We reviewed the charts of patients with a positive culture but negative dipstick to determine if they received appropriate antibiotic therapy and if the culture results had clinical utility, defined as changes in antibiotic therapy made according to culture results in a patient who did not respond to initial antibiotic therapy. The sensitivity of the dipstick for bacteriuria was 90.8% (95% CI, 89.6-92.0%). Of the 210 patients with a positive culture but negative dipstick, 132 (62.9%) had a diagnosis clearly outside the urinary tract. Thirty-five patients (16.7%) received inappropriate differential antibiotic therapy. Urine cultures did not have clinical utility and canceling urine cultures in those with a negative dipstick would result in a 41.5% (95% CI, 40.3-42.7%) decrease in urine cultures. We conclude that canceling orders for urine cultures in the elderly patient with a negative dipstick did not have clinical disutility and would decrease inappropriate antibiotic therapy. Extrapolation to other settings is dependent on urinalysis methodology, patient selection, and physician ordering and treatment behaviors.

  1. Prevalence and bacterial etiology of subclinical mastitis in goats reared in organized farms

    PubMed Central

    Mishra, A. K.; Sharma, Nitika; Singh, D. D.; Gururaj, K.; Abhishek; Kumar, Vijay; Sharma, D. K.

    2018-01-01

    Aim: Assessment of the status of subclinical mastitis (SCM) in Jamunapari and Barbari goats in Indian organized farms, the involvement of bacterial pathogens and their sensitivity to antibiotics. Materials and Methods: A total of 181 composite milk samples were aseptically collected from the apparently healthy Barbari (n=95) and Jamunapari (n=86) goats. The California mastitis test (CMT) and somatic cell count (SCC) were used to diagnose SCM. The milk samples with CMT scores of 0 and +1 were considered as negative, while the samples with the score of +2 or +3 were taken as positive, and further, the positive samples were used for the bacteriological examination. An antibiotic sensitivity test was performed by disk diffusion method using seven commercially available antibiotic discs. Results: All the samples having CMT score of +2 or +3 demonstrated SCC more than 1 million. Overall, the prevalence of SCM in the goats was assessed as 19.89% (36/181). The prevalence of SCM in Barbari and Jamunapari goats was found as 24.21% (23/95) and 15.12% (13/86), respectively. Out of 11 isolates of Staphylococci, 9 isolates were identified as coagulase-negative Staphylococci (CNS), whereas 2 isolates were found as Staphylococcus aureus. The identified bacterial isolates (n=30) did not show antibiotic resistance. Conclusion: The current investigation showed the considerable prevalence of SCM among Jamunapari and Barbari goats which may have a negative impact on quantity and quality of the milk. CNS was found as the most prevalent cause of SCM in the goats. Negligible antibiotic resistance was found among the identified udder pathogens. PMID:29479152

  2. Beta-Lactam Antibiotic Sensitization and Its Relationship to Allergic Diseases in Tertiary Hospital Nurses

    PubMed Central

    Han, Eui-Ryoung; Lim, Seong-Wook; Lim, Seong-Ryoon; Kim, Ji-Na; Park, Sin-Young; Chae, Su-Kyoung; Lim, Hye-Hyeun; Seol, Young-Ae; Bae, You-In; Won, Young-Ho

    2010-01-01

    Purpose Skin allergies through type 1 and 4 hypersensitivity reactions are the most frequent manifestations of drug allergies. We had previously experienced a case of a nurse with cefotiam-induced contact urticaria syndrome. To aid in preventing the progression of drug-induced allergic disease in nurses, we conducted a survey of tertiary hospital nurses who were likely to have been exposed professionally to antibiotics. Methods All 539 staff nurses at a tertiary hospital were asked to respond to a questionnaire regarding antibiotic exposure. Of the 457 nurses (84.8%) who responded, 427 (79.2%) received a physical examination of the hands and 318 (59.0%) received skin prick tests with the β-lactam antibiotics cefotiam, cefoperazone, ceftizoxime, flomoxef, piperacillin and penicillin G. Results A positive response to at least one of the antibiotics occurred in 8 (2.6%) of the 311 subjects included in the analysis and stages 1 and 2 contact urticaria syndrome were observed in 38 (8.9%) and 3 (0.7%) of 427 nurses, respectively. The frequencies of a positive antibiotic skin test (6.9 versus 1.3%, χ2=7.15, P=0.018), stage 1 contact urticaria syndrome (14.4 versus 7.4%, χ2=4.33, P=0.038) and drug allergy (15.3 versus 3.6%, χ2=18.28, P=0.000) were higher in subjects with a positive skin allergy history than in those without. Allergic rhinitis (P=0.02, OR=3.86, CI=1.23-12.06), night cough (P=0.04, OR=3.12, CI=1.03-9.41) and food allergy (P=0.00, OR=9.90, CI=3.38-29.98) were significant risk factors for drug allergy. Conclusions Antibiotic sensitization and drug allergy occurred more frequently in nurses with a positive skin allergy history. Atopy may be an important risk factor for drug allergy. PMID:20358025

  3. Clinical Characteristics of 17 Patients with Moraxella Keratitis.

    PubMed

    Tobimatsu, Yui; Inada, Noriko; Shoji, Jun; Yamagami, Satoru

    2018-01-08

    To retrospectively investigate the clinical characteristics of Moraxella keratitis. We reviewed the medical records of 17 patients with Moraxella keratitis. Onset age, sex, predisposing factors, initial clinical presentations, culture and antimicrobial susceptibility testing, and management and outcome of medical treatment were investigated. Moraxella keratitis was more common in patients older than 40 years of age, and its representative initial presentation was a round-shaped ulcer with endothelial plaque (70.6%) and hypopyon (58.8%). Local predisposing factors were significantly more frequent than systemic predisposing factors (P < 0.005). Isolated strains of Moraxella (M. catarrhalis, M. osloensis, and other Moraxella spp.) were sensitive to all antibiotics tested except ampicillin. The common disease contraction period was <2 weeks. Moraxella keratitis (including the first report of M. osloensis keratitis) had local predisposing factors, high sensitivity to antibiotics, and a tendency to recover within 2 weeks.

  4. Profile of children with urinary tract infection and the utility of urine dipstick as a diagnostic tool.

    PubMed

    Ojha, A R; Aryal, U R

    2014-01-01

    Urinary tract infection is a common problem in children and its early diagnosis and treatment is important to prevent long-term complications. Urine dipstick can be an important tool in this respect. The aim of this study is to look at the utility of urine dipstick as a diagnostic tool for UTI and will also see the clinical profile of children with UTI and sensitivity pattern of antibiotics among the isolates of urine culture. Urine samples of all children below 14 years of age who were suspected of urinary tract infection were sent for routine microscopic examination and dipstick testing. Urine culture and sensitivity were sent for those samples that were tested positive for nitrite, leucocyte esterase activity or both. For every fifth sample, which is dipstick negative, a culture and sensitivity testing was done. Among 110 children enrolled, 32(29%) cases had significant bacteriuria. Out of 32 culture positive cases 18(56%) were female. Fever was the main complaint (62.5%)). Escherichia Coli was isolated in 81.25% of cases. Amikacin was sensitive in 93% and amoxicillinwas resistant in 82%. The sensitivity, specificity, positive predictive value, negative predictive value of nitrite test was 65%, 80%, 58%, 85% respectively; those of leucocyte esterase are 84%, 55%, 43%, 89% respectively; those for significant microscopic pyuria >10/hpf were 65%, 74%, 51%, 84% respectively. E. Coli is the commonest uropathogen in children with UTI. Amikacin is the most sensitive antibiotic against all the isolates. A positive dipstick both for nitrite and leucocyte esterase is associated with high sensitivity and specificity for urinary tract infection as compared to either of them positive alone. In addition, urine WBC ≥10/hpf is associated with high probability of UTI.

  5. Identification and measurement of beta-lactam antibiotic residues in milk: integration of screening kits with liquid chromatography.

    PubMed

    Harik-Khan, R; Moats, W A

    1995-01-01

    A procedure for identifying and quantitating violative beta-lactams in milk is described. This procedure integrates beta-lactam residue detection kits with the multiresidue automated liquid chromatographic (LC) cleanup method developed in our laboratory. Spiked milk was deproteinized, extracted, and subjected to reversed-phase LC using a gradient program that concentrated the beta-lactams. Amoxicillin, ampicillin, cephapirin, ceftiofur, cloxacillin, and penicillin G were, thus, separated into 5 fractions that were subsequently tested for activity by using 4 kits. beta-lactams in the positive fractions were quantitated by analytical LC methods developed in our laboratory. The LC cleanup method separated beta-lactam antibiotics from each other and from interferences in the matrix and also concentrated the antibiotics, thus increasing the sensitivity of the kits to the beta-lactam antibiotics. The procedure facilitated the task of identifying and measuring the beta-lactam antibiotics that may be present in milk samples.

  6. Validation of the BetaStar® Advanced for Tetracyclines Test Kit for the Screening of Bulk Tank and Tanker Truck Milks for the Presence of Tetracycline Drug Residues.

    PubMed

    Ankrapp, David; Schaus, Benjamin; Clements, Lauren; Klein, Frank; Rice, Jennifer; Rejman, John

    2018-05-09

    A validation study was conducted for an immunochromatographic method (BetaStar ® Advanced for Tetracyclines) for detection of tetracycline antibiotic residues in raw, commingled bovine milk. The assay was demonstrated to detect tetracycline, chlortetracycline, and oxytetracycline at levels below the FDA tolerance levels but above the maximum sensitivity thresholds established by the National Conference on Interstate Milk Shipments. Results of internal and independent laboratory dose-response studies employing spiked samples were in agreement. All three drugs at the approximate 90/95% sensitivity levels were detected in milk collected from cows that had been treated with the specific drug. Selectivity of the assay was 100%, as no false-positive results were obtained in testing 881 control milk samples. Testing the estimated 90/95 sensitivity level for tetracycline (213 ppb), chlortetracycline (272 ppb), and oxytetracycline (180 ppb) and at 1000 ppb for each antibiotic resulted in 100% positive tests for each tetracycline. Results of ruggedness experiments established the operating parameter tolerances for the test. Results of cross-reactivity testing established that the assay detects certain other tetracycline drugs but does not cross-react with any of 32 drugs belonging to seven different drug classes. Abnormally high bacterial or somatic cell counts (SCC) in raw milk produced no assay interference.

  7. Lipid Content of Antibiotic-Resistant and -Sensitive Strains of Serratia marcescens

    PubMed Central

    Chang, Chuan-Yi; Molar, Roger E.; Tsang, Joseph C.

    1972-01-01

    The lipid content of antibiotic-resistant, nonpigmented strain (Bizio) and antibiotic-sensitive, pigmented strain (08) of Serratia marcescens was studied. The resistant strain contains at least three times more total extractable lipid and phospholipid than the sensitive strain. Lysophosphatidylethanolamine, phosphatidylserine, lecithin, phosphatidylglycerol, phosphatidylethanolamine, and polyglycerolphosphatide were identified in the phospholipid fractions of both strains. Images PMID:4568257

  8. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS.

    PubMed

    Dubreil, Estelle; Gautier, Sophie; Fourmond, Marie-Pierre; Bessiral, Mélaine; Gaugain, Murielle; Verdon, Eric; Pessel, Dominique

    2017-04-01

    An approach is described to validate a fast and simple targeted screening method for antibiotic analysis in meat and aquaculture products by LC-MS/MS. The strategy of validation was applied for a panel of 75 antibiotics belonging to different families, i.e., penicillins, cephalosporins, sulfonamides, macrolides, quinolones and phenicols. The samples were extracted once with acetonitrile, concentrated by evaporation and injected into the LC-MS/MS system. The approach chosen for the validation was based on the Community Reference Laboratory (CRL) guidelines for the validation of screening qualitative methods. The aim of the validation was to prove sufficient sensitivity of the method to detect all the targeted antibiotics at the level of interest, generally the maximum residue limit (MRL). A robustness study was also performed to test the influence of different factors. The validation showed that the method is valid to detect and identify 73 antibiotics of the 75 antibiotics studied in meat and aquaculture products at the validation levels.

  9. Accuracy of microscopic urine analysis and chest radiography in patients with severe sepsis and septic shock.

    PubMed

    Capp, Roberta; Chang, Yuchiao; Brown, David F M

    2012-01-01

    Diagnosis of source of infection in patients with septic shock and severe sepsis needs to be done rapidly and accurately to guide appropriate antibiotic therapy. The purpose of this study is to evaluate the accuracy of two diagnostic studies used in the emergency department (ED) to guide diagnosis of source of infection in this patient population. This was a retrospective review of ED patients admitted to an intensive care unit with the diagnosis of severe sepsis or septic shock over a 12-month period. We evaluated accuracy of initial microscopic urine analysis testing and chest radiography in the diagnosis of urinary tract infections and pneumonia, respectively. Of the 1400 patients admitted to intensive care units, 170 patients met criteria for severe sepsis and septic shock. There were a total of 47 patients diagnosed with urinary tract infection, and their initial microscopic urine analysis with counts>10 white blood cells were 80% sensitive (95% confidence interval [CI] .66-.90) and 66% specific (95% CI .52-.77) for the positive final urine culture result. There were 85 patients with final diagnosis of pneumonia. The sensitivity and specificity of initial chest radiography were, respectively, 58% (95% CI .46-.68) and 91% (95% CI .81-.95) for the diagnosis of pneumonia. In patients with severe sepsis and septic shock, the chest radiograph has low sensitivity of 58%, whereas urine analysis has a low specificity of 66%. Given the importance of appropriate antibiotic selection and optimal but not perfect test characteristics, this population may benefit from broad-spectrum antibiotics, rather than antibiotics tailored toward a particular source of infection. Published by Elsevier Inc.

  10. Bacteriological study of dacryocystitis among patients attending in Menelik II Hospital, Addis Ababa, Ethiopia.

    PubMed

    Kebede, Aster; Adamu, Yilikal; Bejiga, Abebe

    2010-01-01

    Dacryocystitis usually results from blockage of the nasolacrimal duct. The treatment of such obstruction is surgery. There is a fivefold risk of soft tissue infection after open lacrimal surgery without systemic antibiotic prophylaxis that represents a significant risk of failure in lacrimal surgery. To determine the current bacteriology of dacryocystitis and their sensitivity to different antibiotics at Menelik II Hospital. Consecutive patients with dacryocystitis who presented to the department of ophthalmology at Menelik II Hospital between May 2004 and September 2005 were included in the study. Each patient was sent for culture and sensitivity test. Culture and sensitivity tests were obtained from Ethiopian National Health Research Institute (ENHRI), Arsho, Black Lion and Emmanuel Higher clinic laboratories. One hundred fourteen patients, 58 (50.9%) males and 56 (49.1%) females, with dacryocystitis were examined The majority of cases, 82 (71.9%), were under 30 years of age. Positive results were obtained from 91 (79.8%) patients. Gram-positive and gram negative organisms were isolated from 57 (62.6%) and 34 (37.4%) samples respectively. The five most common isolates were Streptococcus pneumoniae (23%), Streptococcus pyogens (14.3%), Staphylococcus aureus (12.1%), Streptococcus viridans (9.9%) and Haemophilus influenzae (9.9%). The antibiotics to which the majority of the isolates sensitive to were chloramphenicol (82.4%), gentamycin (79.1%), erythromycin (68.1%) and tetracycline (61.5%). While Streptococcus pneumoniae was sensitive to chloramphenicol in 95.2%. its sensitivity to tetracycline was 100%. Haemophilus influenzae was sensitive to tetracycline and chloramphenicol in 88.9% and 77.8% respectively. Gram positive organisms were the most common causes of dacryocystitis. Streptococcus pneumoniae and Haemophilus Influenza was the commonest gram positive and gram negative organisms identified respectively. Chloramphenicol and tetracycline were effective against these common organisms and are recommended for the clinical treatment of dacryocystitis.

  11. [Influence of staphylococcin T on Enterococcus sp. growth].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia; Bugalski, Roman Marian; Gierlotka, Krzysztof

    2007-01-01

    Bacteriocins are ribosomally synthesised, extracellular bacterial products. Generally, spectrum of inhibition is limited to the same or closely related species to bacteriocin producer. Staphylococcin T is produced by Staphylococcus cohnii strain. The present study concerns influence of StT to 267 Enterococcus sp. strains growth isolated between 2003 and 2006 in Department of Microbiology University Hospital of dr. A. Jurasz in Bydgoszcz. S. cohnii T antagonistic ability evaluated towards bacteries on Mueller-Hinton Agar (bio Mérieux) in aerobic conditions. After 24 and 48 hours tested enterococci suspensions were plated perpendiculary. Susceptibility to antibiotics was assessed by disc diffusion method according to the guideless of Clinical and Laboratory Standards Institute and National Reference Centre for Antimicrobial Susceptibility. Among Enterococcus sp. strains tested 7.1% were sensitive to StT. The highest percentage of sensitive enterococci isolated from wound swabs, urine, blood and pus. Enterococcus faecium strains dominated (63.2%) among enterococci sensitive to StT. Moderate inhibition degree on S. cohnii T bacteriocin action was observed in majority sensitive enterococci strains. Enterococcus sp. sensitive to StT strains were frequently multidrug resistant (68.4%). According to the study results and increasing resistance to antibiotics, StT could be an alternative agent used to treat infections caused by Enterococcus sp.

  12. Beta lactam antibiotics residues in cow's milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina.

    PubMed

    Fejzic, Nihad; Begagic, Muris; Šerić-Haračić, Sabina; Smajlovic, Muhamed

    2014-08-27

    Beta lactam antibiotics are widely used in therapy of cattle, particularly for the treatment of mastitis.  Over 95% of residue testing in dairies in Bosnia and Herzegovina is for Beta lactams. The aim of this paper is to compare the efficacy of three most common screening tests for Beta lactam residues in cow's milk in our country. The tests used in the study are SNAP β Lactam test (Idexx), Rosa Charm β Lactam test and Inhibition MRL test. Study samples included: standardized concentrations of penicillin solution (0, 2, 3, 4, 5 and 6 ppb). In addition we tested milk samples from three equal size study groups (not receiving any antibiotic therapy, treated with Beta lactams for mastitis and treated with Beta lactams for diseases other than mastitis). Sensitivity and specificity were determined for each test, using standard penicillin concentrations with threshold value set at concentration of 4 ppb (Maximum residue level - MLR). Additionally we determined proportions of presumably false negative and false positive results for each test using results of filed samples testing. Agreement of test results for each test pair was assessed through Kappa coefficients interpreted by Landis-Koch scale. Detection level of all tests was shown to be well below MRL. This alongside with effects of natural inhibitors in milk contributed to finding of positive results in untreated and treated animals after the withholding period. Screening tests for beta lactam residues are important tools for ensuring that milk for human consumption is free from antibiotics residues.

  13. Beta lactam antibiotics residues in cow’s milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina

    PubMed Central

    Fejzić, Nihad; Begagić, Muris; Šerić-Haračić, Sabina; Smajlović, Muhamed

    2014-01-01

    Beta lactam antibiotics are widely used in therapy of cattle, particularly for the treatment of mastitis. Over 95% of residue testing in dairies in Bosnia and Herzegovina is for Beta lactams. The aim of this paper is to compare the efficacy of three most common screening tests for Beta lactam residues in cow’s milk in our country. The tests used in the study are SNAP β Lactam test (Idexx), Rosa Charm β Lactam test (Charm Sciences) and Inhibition MRL test (A&M). Study samples included: standardized concentrations of penicillin solution (0, 2, 3, 4, 5 and 6 ppb). In addition we tested milk samples from three equal size study groups (not receiving any antibiotic therapy, treated with Beta lactams for mastitis and treated with Beta lactams for diseases other than mastitis). Sensitivity and specificity were determined for each test, using standard penicillin concentrations with threshold value set at concentration of 4 ppb (Maximum residue level – MLR). Additionally we determined proportions of presumably false negative and false positive results for each test using results of filed samples testing. Agreement of test results for each test pair was assessed through Kappa coefficients interpreted by Landis-Koch scale. Detection level of all tests was shown to be well below MRL. This alongside with effects of natural inhibitors in milk contributed to finding of positive results in untreated and treated animals after the withholding period. Screening tests for beta lactam residues are important tools for ensuring that milk for human consumption is free from antibiotics residues. PMID:25172975

  14. In-vitro activity of augmentin against clinically important gram-positive and gram-negative bacteria in comparison with other antibiotics.

    PubMed

    Focht, J; Klietmann, W; Heilmann, H D

    1984-04-01

    The susceptibility to Augmentin of a total of 1,417 bacterial isolates was investigated. Augmentin is a new formulation of the broad-spectrum beta-lactam-antibiotic amoxicillin together with the beta-lactamase-inhibitor clavulanic acid. It was demonstrated that 88% of all isolates tested were sensitive to Augmentin, 9% were resistant. 88% of all Pseudomonas aeruginosa strains fell in the "resistant" category. Only 1/71 anaerobes and 15/286 staphylococci were classified as resistant to Augmentin.

  15. Evidence of significant synergism between antibiotics and the antipsychotic, antimicrobial drug flupenthixol.

    PubMed

    Jeyaseeli, L; Dasgupta, A; Dastidar, S G; Molnar, J; Amaral, L

    2012-06-01

    Previously, the antipsychotic, non-antibiotic compound flupenthixol dihydrochloride (Fp) was shown to exhibit distinct in vitro antibacterial activity against Gram-positive and Gram-negative bacteria and to significantly protect Swiss albino mice challenged with a known mouse virulent salmonella. The present study was designed to ascertain whether this drug could efficiently augment the action of an antibiotic or a non-antibiotic when tested in combination. A total of 12 bacterial strains belonging to various genera were selected for this study and were sensitive to the antibiotics penicillin (Pc), ampicillin, chloramphenicol, tetracycline, streptomycin, gentamicin, erythromycin, ciprofloxacin, and to the non-antibiotics methdilazine, triflupromazine, promethazine, and Fp. Pronounced and statistically significant synergism (p < 0.01) was observed when Fp was combined with Pc following the disc diffusion assay system. With the help of the checkerboard method, the fractional inhibitory concentration (FIC) index of this pair was found to be 0.375, confirming synergism. This pair of Fp+ Pc was then subjected to in vivo experiments in mice challenged with Salmonella enterica serovar Typhimurium NCTC 74. Statistical analysis of the mouse protection test suggested that this combination was highly synergistic (p < 0.001, Chi-squared analysis). Fp also revealed augmentation of its antimicrobial property when combined with streptomycin, gentamicin, ciprofloxacin, and the non-antibiotic methdilazine. The results of this study may provide alternatives for the therapy of problematic infections such as those associated with Salmonella spp.

  16. Assessing the antibiotic potential of essential oils against Haemophilus ducreyi.

    PubMed

    Lindeman, Zachary; Waggoner, Molly; Batdorff, Audra; Humphreys, Tricia L

    2014-05-27

    Haemophilus ducreyi is the bacterium responsible for the genital ulcer disease chancroid, a cofactor for the transmission of HIV, and it is resistant to many antibiotics. With the goal of exploring possible alternative treatments, we tested essential oils (EOs) for their efficacy as antimicrobial agents against H. ducreyi. We determine the minimum inhibitory concentration (MIC) of Cinnamomum verum (cinnamon), Eugenia caryophyllus (clove) and Thymus satureioides (thyme) oil against 9 strains of H. ducreyi using the agar dilution method. We also determined the minimum lethal concentration for each oil by subculturing from the MIC plates onto fresh agar without essential oil. For both tests, we used a 2-way ANOVA to evaluate whether antibiotic-resistant strains had a different sensitivity to the oils relative to non-resistant strains. All 3 oils demonstrated excellent activity against H. ducreyi, with MICs of 0.05 to 0.52 mg/mL and MLCs of 0.1-0.5 mg/mL. Antibiotic-resistant strains of H. ducreyi were equally susceptible to these 3 essential oils relative to non-resistant strains (p=0.409). E. caryophyllus, C. verum and T. satureioides oils are promising alternatives to antibiotic treatment for chancroid.

  17. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    PubMed

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  18. Analysis of beta-lactam antibiotics in incurred raw milk by rapid test methods and liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Riediker, S; Diserens, J M; Stadler, R H

    2001-09-01

    A recently developed confirmatory LC-MS method has been applied to the quantification of five major beta-lactam antibiotics in suspect raw bovine milk samples that gave a positive response with receptor-based (BetaStar) and rapid microbial inhibitory screen tests (Delvotest SP). In total, 18 presumptive positive raw milk samples were reanalyzed; 16 samples showed traces of antibiotic residues that could be identified and quantified by the LC-MS method, ranging from the limits of confirmation up to 38 microg/kg. Of the positive samples, only five (approximately 30%) were found to be violative of EU maximum residue limits. The most frequently detected antibiotic residues were cloxacillin and penicillin G, the former often in combination with amoxicillin or ampicillin. This study compares the results obtained by the three methods on identical samples and addresses how these relate to certain criteria such as sensitivity and selectivity. Furthermore, the limitations of the LC-MS method and the potential impact of the presence of frequently more than one residue in the same milk sample on the response of the rapid test methods are discussed.

  19. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    PubMed

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Barraud, Nicolas; Buson, Alberto; Jarolimek, Wolfgang; Rice, Scott A.

    2013-01-01

    The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response. PMID:24349568

  1. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  2. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    PubMed Central

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  3. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo.

    PubMed

    Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin

    2015-01-01

    Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  4. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    PubMed Central

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  5. Microbial aetiology and sensitivity of asymptomatic bacteriuria among ante-natal mothers in Mulago hospital, Uganda.

    PubMed

    Andabati, G; Byamugisha, J

    2010-12-01

    Asymptomatic bacteriuria in pregnancy is associated with potential urinary and obstetric complications. However the prevalence aetiology and antimicrobial sensitivity patterns of asymptomatic bacteriurea among women attending ante-natal care in our Hospital is not known. To determine the prevalence and identify the aetiological agents associated with asymptomatic bacteriurea in antenatal mothers in Mulago Hospital. We also intended to determine the anti-microbial sensitivity patterns of the common uropathogen in this population We performed culture and anti-microbial sensitivity tests on urine samples from 218 consecutive ante-natal mothers in Mulago Hospital. All participants did not have any clinical symptoms attributable to urinary tract infection. Twenty nine (13.3%) of the samples had significant bacterial growth and E.coli was the commonest isolate (51.2%). There was a high level (20-62%) of anti-bacterial resistance to the commonly used antibiotics. Asymptomatic bacteriuria is common among ante-natal mothers in Mulago. E. Coli that is resistant to the most commonly used antibiotics is the commonest isolate."

  6. Characterization and susceptibility patterns of clinically important Enterococcus species in eastern Nepal.

    PubMed

    Acharya, A; Khanal, A; Kanungo, R; Mohapatra, T

    2007-12-01

    Life threatening infections caused by enterococcus species with multidrug resistance has emerged as a threat to medical care in the present era. This study was conducted to characterize enterococcus species isolated from different clinical samples and to detect the pattern of susceptibility to some of the commonly used antibiotics in B.P Koirala Institute of Health Sciences (BPKIHS), a tertiary care hospital in eastern Nepal. Clinical samples submitted to the microbiology unit of Central Laboratory Service (CLS) for culture and sensitivity during March 2002 - February 2003 was analyzed. Enterococcus species were identified by colony characteristics, gram staining and relevant biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer disc diffusion technique. Of 50 Enterococcus species isolated, E. faecalis was the predominant isolate (48.0%) followed by E. faecium (32.0%) and E. avium (20.0%). Eighty-eight percent of E. faecalis showed sensitivity to cephotaxime and 87.0% to vancomycin. Multiple drug resistance was observed most commonly in E. faecium. Seventeen percent of E. faecium were resistant to vancomycin and 63.0% to ciprofloxacin and 44.0% to ampicillin. On the contrary E. avium rarely showed resistance to the antimicrobials tested including vancomycin. Enterococcal infections are common nowadays specially in hospitalized patients. Inappropriate use of antibiotics in clinical practice and poultry should be discouraged to prevent the emergence of multidrug resistant species.

  7. Lactobacillus farciminis MD, a newer strain with potential for bacteriocin and antibiotic assay.

    PubMed

    Halami, P M; Chandrashekar, A; Nand, K

    2000-03-01

    A native isolate Lactobacillus farciminis MD isolated from fermenting mushroom exhibited a high degree of sensitivity to the majority of the bacteriocins produced by strains of lactobacilli, leuconostoc and pediococci. Also, the efficacy of Lact. farciminis MD as a sensitive strain for antibiotic assay was established against different antibiotics including ampicillin, cefazoline, chloramphenicol and nitrofurantoin at concentrations of 30 microg each, showing an inhibition zone of 30 mm diameter. The high degree of sensitivity towards bacteriocins and antibiotics provide potential for the exploitation of Lact. farciminis MD in establishing very well-defined bacteriocin producers.

  8. Determination of antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods in turkey

    USDA-ARS?s Scientific Manuscript database

    This study aimed to determine the antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from animal derived foods. With disc diffusion assay, all fourteen L. monocytogenes strains were susceptible to the antibiotics, including penicillin G, vancomycin, ...

  9. Usefulness of detection of clarithromycin-resistant Helicobacter pylori from fecal specimens for young adults treated with eradication therapy.

    PubMed

    Osaki, Takako; Mabe, Katsuhiro; Zaman, Cynthia; Yonezawa, Hideo; Okuda, Masumi; Amagai, Kenji; Fujieda, Shinji; Goto, Mitsuhide; Shibata, Wataru; Kato, Mototsugu; Kamiya, Shigeru

    2017-10-01

    To prevent Helicobacter pylori infection in the younger generation, it is necessary to investigate the prevalence of antibiotic-resistant H. pylori. The aim of this study was to evaluate the method of PCR-based sequencing to detect clarithromycin (CAM) resistance-associated mutations using fecal samples as a noninvasive method. DNA extracted from fecal specimens and isolates from gastric biopsy specimens were collected from patients with H. pylori infection. Antibiotic resistance to CAM was analyzed by molecular and culture methods. The detection rates of CAM resistance-associated mutations (A2142C or A2143G) were compared before and after eradication therapy. With CAM resistance of H. pylori evaluated by antibiotic susceptibility test as a gold standard, the sensitivity and the specificity of gene mutation detection from fecal DNA were 80% and 84.8%, respectively. In contrast, using DNA of isolated strains, the sensitivity and the specificity were 80% and 100%. Of the seven cases in which eradication was unsuccessful by triple therapy including CAM, CAM-resistant H. pylori, and resistance-associated mutations were detected in three cases, CAM-resistant H. pylori without the mutation was detected in two patients, and resistance-associated mutation was only detected in one patient. PCR-based sequencing to detect CAM resistance-associated mutations using isolates or fecal samples was useful for finding antibiotic-resistant H. pylori infection. Although the specificity of the detection from fecal samples compared with antibiotic susceptibility testing was lower than that from isolates, this fecal detection method is suitable especially for asymptomatic subjects including children. Further improvement is needed before clinical application. © 2017 John Wiley & Sons Ltd.

  10. Herd diagnosis of low pathogen diarrhoea in growing pigs - a pilot study.

    PubMed

    Pedersen, Ken Steen; Johansen, Markku; Angen, Oystein; Jorsal, Sven Erik; Nielsen, Jens Peter; Jensen, Tim K; Guedes, Roberto; Ståhl, Marie; Bækbo, Poul

    2014-01-01

    The major indication for antibiotic use in Danish pigs is treatment of intestinal diseases post weaning. Clinical decisions on antibiotic batch medication are often based on inspection of diarrhoeic pools on the pen floor. In some of these treated diarrhoea outbreaks, intestinal pathogens can only be demonstrated in a small number of pigs within the treated group (low pathogen diarrhoea). Termination of antibiotic batch medication in herds suffering from such diarrhoea could potentially reduce the consumption of antibiotics in the pig industry. The objective of the present pilot study was to suggest criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. Data previously collected from 20 Danish herds were used to create a case series of clinical diarrhoea outbreaks normally subjected to antibiotic treatment. In the present study, these diarrhoea outbreaks were classified as low pathogen (<15% of the pigs having bacterial intestinal disease) (n =5 outbreaks) or high pathogen (≥15% of the pigs having bacterial intestinal disease) (n =15 outbreaks). Based on the case series, different diagnostic procedures were explored, and criteria for herd diagnosis of low pathogen diarrhoea were suggested. The effect of sampling variation was explored by simulation. The diagnostic procedure with the highest combined herd-level sensitivity and specificity was qPCR testing of a pooled sample containing 20 randomly selected faecal samples. The criteria for a positive test result (high pathogen diarrhoea outbreak) were an average of 1.5 diarrhoeic faecal pools on the floor of each pen in the room under investigation and a pathogenic bacterial load ≥35,000 per gram in the faecal pool tested by qPCR. The bacterial load was the sum of Lawsonia intracellularis, Brachyspira pilosicoli and Escherichia coli F4 and F18 bacteria per gram faeces. The herd-diagnostic performance was (herd-level) diagnostic sensitivity =0.99, diagnostic specificity =0.80, positive predictive value =0.94 and negative predictive value =0.96. The pilot study suggests criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. The suggested criteria should now be evaluated, and the effect of terminating antibiotic batch medication in herds identified as suffering from low pathogen diarrhoea should be explored.

  11. Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis.

    PubMed

    Zhang, Guojun; Zheng, Guanghui; Zhang, Yan; Ma, Ruimin; Kang, Xixiong

    2018-05-01

    Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Lyme disease: review.

    PubMed

    Biesiada, Grażyna; Czepiel, Jacek; Leśniak, Maciej R; Garlicki, Aleksander; Mach, Tomasz

    2012-12-20

    Lyme disease is a multi-organ animal-borne disease, caused by spirochetes of Borrelia burgdorferi (Bb), which typically affect the skin, nervous system, musculoskeletal system and heart. A history of confirmed exposure to tick bites, typical signs and symptoms of Lyme borreliosis and positive tests for anti-Bb antibodies, are the basis of a diagnosis. A two-step diagnosis is necessary: the first step is based on a high sensitivity ELISA test with positive results confirmed by a more specific Western blot assay. Antibiotic therapy is curative in most cases, but some patients develop chronic symptoms, which do not respond to antibiotics. The aim of this review is to summarize our current knowledge of the symptoms, clinical diagnosis and treatment of Lyme borreliosis.

  13. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study.

    PubMed

    Gasparini, Giorgio; De Gori, Marco; Calonego, Giovanni; Della Bora, Tommaso; Caroleo, Benedetto; Galasso, Olimpio

    2014-11-01

    High-dose antibiotic-loaded acrylic cement (ALAC) is used for managing peri-prosthetic joint infections (PJIs). The marked increase in resistant high-virulence bacteria is drawing the attention of physicians toward alternative antimicrobial formulations loaded into acrylic bone cement. The aim of this in vitro study was to determine the elution kinetics of 14 different high-dose ALACs. All ALAC samples showed a burst release of antibiotics in the first hour, progressively decreasing over time, and elution curves strictly adhered to a nonlinear regression analysis formula. Among aminoglycosides, commonly seen as the most appropriate antibiotics to be loaded into the bone cement, the highest elution rate was that of tobramycin. Among the glycopeptides, a class of antibiotics that should be considered to treat PJIs because of the prevalence of aminoglycoside resistance, vancomycin showed better elution than teicoplanin. Clindamycin, which can be associated with aminoglycosides to prepare ALACs and represents a useful option against the most common pathogens responsible for PJIs, showed the highest absolute and relative elutions among all the tested formulations. A noticeable elution was also detected for colistin, an antibiotic of last resort for treating multidrug-resistant bacteria. The current study demonstrates theoretical advantages in the preparation of ALAC for some antibiotics not routinely used in the clinical setting for PJIs. The use of these antibiotics based on the infecting bacteria sensitivity may represent a useful option for physicians to eradicate PJIs. In vivo testing should be considered in the future to confirm the results of this study. Copyright 2014, SLACK Incorporated.

  14. Antibiotic Therapy of Staphylococcal Infections

    PubMed Central

    Hawks, Gordon H.

    1965-01-01

    The antibiotic treatment of staphylococcal infections remains a problem. Isolation of the organism and sensitivity testing are necessary in the choice of antibiotic. Penicillin G is the most effective penicillin against non-penicillinase-producing staphy-lococci; for the penicillinase producers there is very little to choose between the semisynthetic penicillins, methicillin, cloxacillin, nafcillin and oxacillin. For patients who are hypersensitive to penicillin, the bacteriostatic drugs (erythromycin, novobiocin, tetracycline, chloramphenicol, oleandomycin) are useful for mild infections, while for more severe illness the bactericidal drugs (vancomycin, ristocetin, kanamycin, bacitracin, neomycin) have been used successfully. Acute staphylococcal enterocolitis is probably best treated by a semisynthetic penicillin. Other antibiotics which have been found useful, with clinical trials, for staphylococcal infections are cephalosporin, fucidin, cephaloridine and lincomycin. The latter drug has been reported of value in the treatment of osteomyelitis. There is little justification for the prophylactic use of antibiotics to prevent staphylococcal infection. Surgical drainage is still an important adjunct in the treatment of many staphylococcal infections. PMID:5318575

  15. Biochemical characterization of a recombinant Lactobacillus acidophilus strain expressing exogenous FomA protein.

    PubMed

    Ma, Li; Li, Fei; Zhang, Xiangyu; Feng, Xiping

    2018-04-30

    In previous research, to combine the immunogenicity of Fusobacterium nucleatum (F. nucleatum) and the probiotic properties of Lactobacillus acidophilus (L. acidophilus), we constructed a FomA-expressing L. acidophilus strain and assessed its immunogenicity. Our findings indicated that oral administration of the recombinant L. acidophilus strain reduced the risk of periodontal infection by Porphyromonas gingivalis (P. gingivalis) and F. nucleatum. However, because the exogenous FomA is an heterologous protein for the original bacterium, in this study, we assessed whether the biochemical characteristics of the recombinant L. acidophilus strain change due to the expression of the exogenous FomA protein. To test the biochemical characteristics of a recombinant L. acidophilus strain expressing exogenous FomA and assess its antibiotic sensitivity. We assessed the colony morphology, growth, acid production, and carbohydrate fermentation abilities of the recombinant L. acidophilus strain. In addition, we tested the adhesive ability and antimicrobial activity of the recombinant and assessed its antibiotic sensitivity through a drug susceptibility test. The experimental results showed that the colony and microscopic morphology of the recombinant L. acidophilus strain was consistent with the original strain, and the recombinant strain grew well when cultured under aerobic or anaerobic conditions, exhibiting a growth rate that was identical to that of the standard strain. Similarly, the supernatants of the recombinant L. acidophilus can inhibit the growth of E. coli and P. gingivalis at different concentrations, and the recombinant strain displayed essentially the same drug sensitivity profile as the original L. acidophilus. However, to our surprise, the recombinant strains exhibited a greater adhesion ability than the reference strain. Our study demonstrated that, in addition to an increased adhesion ability, the recombinant L. acidophilus strain maintained the basic characteristics of the standard strain ATCC 4356, including antibiotic sensitivity. Thus, the recombinant strains have great potential to be utilized as a safe and effective periodontitis vaccine in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts

    PubMed Central

    Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.

    1988-01-01

    Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633

  17. Practical Molecular Biology for Students: An Integrated Approach to Teaching Basic Techniques.

    ERIC Educational Resources Information Center

    Hames, B. David; And Others

    1990-01-01

    An activity that introduces students to the correct handling of bacterial recombinants, antibiotic sensitivity testing, insertional inactivation, plasmid DNA isolation, restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, hybridization, and autoradiography is presented. A list of needed materials, procedures, safety…

  18. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  19. Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis.

    PubMed

    Sulyok, Kinga M; Bekő, Katinka; Kreizinger, Zsuzsa; Wehmann, Enikő; Jerzsele, Ákos; Rónai, Zsuzsanna; Turcsányi, Ibolya; Makrai, László; Szeredi, Levente; Jánosi, Szilárd; Nagy, Sára Ágnes; Gyuranecz, Miklós

    2018-01-01

    Determining the antibiotic susceptibility profile of Mycoplasma bovis isolates in vitro provides the basis for the appropriate choice of antibiotics in the therapy. Traditionally, the antibiotic susceptibility examination of mycoplasmas is technically demanding, time-consuming and rarely performed in diagnostic laboratories. The aim of the present study was to develop rapid molecular assays to determine mutations responsible for elevated minimal inhibitory concentrations (MICs) to fluoroquinolones, tetracyclines, aminocyclitols, macrolides, lincosamides, phenicols and pleuromutilins in M. bovis. The nine mismatch amplification mutation assays (MAMA) and seven high resolution melt (HRM) tests designed in the present study enable the simultaneous detection of these genetic markers. The sensitivity of the assays varied between 10 2 -10 5 copy numbers/reaction. Cross-reactions with other mycoplasmas occurring in cattle were detected in assays targeting universal regions (e.g. 16S rRNA). Nevertheless, results of the novel method were in accordance with sequence and MICs data of the M. bovis pure cultures. Also, the tests of clinical samples containing high amount of M. bovis DNA were congruent even in the presence of other Mycoplasma spp. The presented method is highly cost-effective and can provide an antibiogram to 12 antibiotics in approximately 3-4 days when previous isolation of M. bovis is applied. In order to assure the proper identification of the genetic markers at issue, the regions examined by the MAMA and HRM tests are overlapping. In conclusion, the developed assays have potential to be used in routine diagnostics for the detection of antibiotic susceptibility in M. bovis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Sensitivity of microbial associations of periodontal lesions to antibacterial agents].

    PubMed

    Makeeva, I M; Daurova, F Yu; Byakova, S F; Ippolitov, E V; Gostev, M S; Polikushina, A O; Shubin, E V

    2016-01-01

    The aim of the study was the development of approaches to improve the effectiveness of antibiotic therapy in dental practice on the basis of determining the sensitivity of pathogenic microorganisms to antibiotics of different groups. The study included determination of the sensitivity of the microbial complexes from wound exudate of periodontal pocket and apical abscess to macrolides, quinolones, penicillins, lincosamides and 5-nitroimidazole. A survey of dentists and dental clinics patients to identify the cause and frequency of use of antibiotics and to identify possible adverse reactions was also conducted. Dentists prefer macrolide antibiotics, protected penicillins, and fluoroquinolone combined with 5-nitroimidazole. All patients have taken antibiotics themselves at least once a year. Microbial complexes in patients with acute and exacerbated apical periodontitis in 79% of cases are susceptible to amoxicillin/clavulanic acid, to azithromycin - 52%, lincomycin - 36%, 5-nitroimidazole - 68%, ciprofloxacin - 73.7%. In patients with apical abscess high rates of resistance of microbial complexes to all types of antibiotics was revealed (33% for lincomycin 76,1% for ciprofloxacin, 28,6% for 5-nitroimidazole). Patients with moderate to severe periodontitis in 90.5% are sensitive to amoxicillin/clavulanic acid and azithromycin, in 62.4% to lincomycin. Sensitivity to ciprofloxacin was detected in 85.7% of patients, in 14.3% - moderate resistance.

  1. Feasibility and effectiveness of a low cost campaign on antibiotic prescribing in Italy: community level, controlled, non-randomised trial.

    PubMed

    Formoso, Giulio; Paltrinieri, Barbara; Marata, Anna Maria; Gagliotti, Carlo; Pan, Angelo; Moro, Maria Luisa; Capelli, Oreste; Magrini, Nicola

    2013-09-12

    To test the hypothesis that a multifaceted, local public campaign could be feasible and influence antibiotic prescribing for outpatients. Community level, controlled, non-randomised trial. Provinces of Modena and Parma in Emilia-Romagna, northern Italy, November 2011 to February 2012. 1,150,000 residents of Modena and Parma (intervention group) and 3,250,000 residents in provinces in the same region but where no campaign had been implemented (control group). Campaign materials (mainly posters, brochures, and advertisements on local media, plus a newsletter on local antibiotic resistance targeted at doctors and pharmacists). General practitioners and paediatricians in the intervention area participated in designing the campaign messages. Primary outcome was the average change in prescribing rates of antibiotics for outpatient in five months, measured as defined daily doses per 1000 inhabitants/day, using health districts as the unit of analysis. Antibiotic prescribing was reduced in the intervention area compared with control area (-4.3%, 95% confidence interval -7.1% to -1.5%). This result was robust to "sensitivity analysis" modifying the baseline period from two months (main analysis) to one month. A higher decrease was observed for penicillins resistant to β lactamase and a lower decrease for penicillins susceptible to β lactamase, consistent with the content of the newsletter on antibiotic resistance directed at health professionals. The decrease in expenditure on antibiotics was not statistically significant in a district level analysis with a two month baseline period (main analysis), but was statistically significant in sensitivity analyses using either a one month baseline period or a more powered doctor level analysis. Knowledge and attitudes of the target population about the correct use of antibiotics did not differ between the intervention and control areas. A local low cost information campaign targeted at citizens, combined with a newsletter on local antibiotic resistance targeted at doctors and pharmacists, was associated with significantly decreased total rates of antibiotic prescribing but did not affect the population's knowledge and attitudes about antibiotic resistance. ClinicalTrials.gov NCT01604096.

  2. Nasal carriage of Methicillin- and Mupirocin-resistant S. aureus among health care workers in a tertiary care hospital.

    PubMed

    Agarwal, Loveleena; Singh, Amit Kumar; Sengupta, Chandrim; Agarwal, Amitabh

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) ranks top among the nosocomial pathogens. Nasal formulation of mupirocin is found to eradicate MRSA from colonized individuals, but the emergence of resistant strains is a matter of concern. Nasal swabs were collected from 200 health care workers (HCWs) who were screened for MRSA. Kirby-Bauer disc diffusion method was used to perform antibiotic susceptibility test. MRSA detection was done using a cefoxitin 30 µg disc and interpreted according to the Clinical and Laboratory Standards Institute guidelines. Determination of mupirocin resistance was performed using Epsilometer test (E-test). About 14% of HCWs showed nasal carriage of MRSA. Nursing orderlies were the predominant carriers. E-test showed four mupirocin resistant isolates. The antibiogram of the MRSA isolates revealed the higher resistance to antibiotics as compared to methicillin-sensitive Staphylococcus aureus. All the MRSA isolates were sensitive to linezolid. HCWs in our hospital showed high nasal carriage rate of MRSA, particularly the nursing orderlies which is statistically significant. It is advisable to detect mupirocin resistance among the isolates obtained from the HCWs so that in case of resistance, alternative treatment should be sought.

  3. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study

    PubMed Central

    Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin

    2015-01-01

    Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666

  4. Aptamer-Based Biosensors for Antibiotic Detection: A Review.

    PubMed

    Mehlhorn, Asol; Rahimi, Parvaneh; Joseph, Yvonne

    2018-06-11

    Antibiotic resistance and, accordingly, their pollution because of uncontrolled usage has emerged as a serious problem in recent years. Hence, there is an increased demand to develop robust, easy, and sensitive methods for rapid evaluation of antibiotics and their residues. Among different analytical methods, the aptamer-based biosensors (aptasensors) have attracted considerable attention because of good selectivity, specificity, and sensitivity. This review gives an overview about recently-developed aptasensors for antibiotic detection. The use of various aptamer assays to determine different groups of antibiotics, like β-lactams, aminoglycosides, anthracyclines, chloramphenicol, (fluoro)quinolones, lincosamide, tetracyclines, and sulfonamides are presented in this paper.

  5. Failure of Syndrome-Based Diarrhea Management Guidelines to Detect Shigella Infections in Kenyan Children

    PubMed Central

    Pavlinac, P. B.; Denno, D. M.; John-Stewart, G. C.; Onchiri, F. M.; Naulikha, J. M.; Odundo, E. A.; Hulseberg, C. E.; Singa, B. O.; Manhart, L. E.; Walson, J. L.

    2016-01-01

    Background Shigella is a leading cause of childhood diarrhea mortality in sub-Saharan Africa. Current World Health Organization guidelines recommend antibiotics for children in non cholera-endemic areas only in the presence of dysentery, a proxy for suspected Shigella infection. Methods To assess the sensitivity and specificity of the syndromic diagnosis of Shigella-associated diarrhea, we enrolled children aged 6 months to 5 years presenting to 1 of 3 Western Kenya hospitals between November 2011 and July 2014 with acute diarrhea. Stool samples were tested using standard methods for bacterial culture and multiplex polymerase chain reaction for pathogenic Escherichia coli. Stepwise multivariable logit models identified factors to increase the sensitivity of syndromic diagnosis. Results Among 1360 enrolled children, median age was 21 months (interquartile range, 11–37), 3.4% were infected with human immunodeficiency virus, and 16.5% were stunted (height-for-age z-score less than −2). Shigella was identified in 63 children (4.6%), with the most common species being Shigella sonnei (53.8%) and Shigella flexneri (40.4%). Dysentery correctly classified 7 of 63 Shigella cases (sensitivity, 11.1%). Seventy-eight of 1297 children without Shigella had dysentery (specificity, 94.0%). The combination of fecal mucous, age over 23 months, and absence of excessive vomiting identified more children with Shigella-infection (sensitivity, 39.7%) but also indicated antibiotics in more children without microbiologically confirmed Shigella (specificity, 82.7%). Conclusions Reliance on dysentery as a proxy for Shigella results in the majority of Shigella-infected children not being identified for antibiotics. Field-ready rapid diagnostics or updated evidence-based algorithms are urgently needed to identify children with diarrhea most likely to benefit from antibiotic therapy. PMID:26407270

  6. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    PubMed

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  7. Desensitization in patients with beta-lactam drug allergy.

    PubMed

    Yusin, J S; Klaustermeyer, W; Simmons, C W; Baum, M

    2013-01-01

    Patients with a history of beta-lactam antibiotic allergy are often admitted to the hospital with severe or life-threatening infections requiring beta-lactam antibiotics. Strict avoidance of beta lactams to such patients may prevent them from getting adequate coverage and can lead to an increase in the use of alternative antibiotics, which can predispose to antibiotic resistance. Past studies revealed a lower incidence of pen allergy then patients' histories suggest. Fortunately today, there are three options for patients presenting with a history of beta-lactam allergy. Penicillin skin testing, beta-lactam challenge or beta-lactam desensitization. Recently Pre Pen has been FDA re-approved and when combined with Pen G is a valid way to determine if patients are able to tolerate beta-lactam antibiotic. When these agents are not available one must decide about desensitization or challenge. When a patient has a positive penicillin skin test, desensitization or beta-lactam avoidance are the only options. This paper reviews the safety of beta-lactam desensitization. To perform a chart review on patients desensitised with beta lactam to determine if desensitizations can be performed safely without minimal complications. A retrospective chart review was performed on allergy and immunology inpatient consultations for beta-lactam desensitization between September 2003 and August 2006 at the Cedars-Sinai Medical Centre in Los Angeles. Patient data and outcomes of desensitization were analysed. A total of 13 intravenous desensitizations were performed on 12 patients. The patients consisted of eight females and four males with an average age of 65 years. Age range was 36-92 years old. All 13 intravenous desensitizations were completed without complications. No patient required a slower rate of desensitization or discontinuance of the desensitization. Patients were able to tolerate the initial therapeutic dose of their beta-lactam antibiotic and were then able to complete full therapeutic courses of their antibiotic. Beta-lactam antibiotic sensitivity continues to present a challenging problem for physicians. Patients with drug resistant infections who are unable to obtain skin testing or who test positive to skin tests may need either a challenge or desensitization. Desensitization, saved for those with a convincing beta-lactam hypersensitivity history is often the choice of last resort given the associated cost and risk of anaphylaxis. However, once desensitization is complete, patients are usually able to tolerate full doses of antibiotics for full treatment length with minimal side effects. Published by Elsevier Espana.

  8. Risk-based screening combined with a PCR-based test for group B streptococci diminishes the use of antibiotics in laboring women.

    PubMed

    Khalil, Mohammed R; Uldbjerg, Niels; Thorsen, Poul B; Henriksen, Birgitte; Møller, Jens K

    2017-08-01

    To assess the performance of a polymerase chain reaction - group B streptococci test (PCR-GBS test) - in deciding antibiotic prophylaxis in term laboring women. In this observational study, we enrolled 902 unselected Danish term pregnant women. During labor, midwives obtained vaginal swabs that were used for both GBS cultures (reference standard) and for the PCR-GBS test. Furthermore, we recorded the presence of risk factors for EOGBS (Early Onset Group B Streptococcal disease): (1) Bacteriuria during current pregnancy, (2) Prior infant with EOGBS (3) Temperature above 38.0°C during labor, and (4) Rupture of membranes ≥18h. The prevalence of GBS carriers was 12% (104 of 902), the sensitivity of the PCR-GBS test 83% (86 of 104), and the specificity 97% (774 of 798). Among the 108 with one or more EOGBS-risk factors, GBS was present in 23% (25 of 108), the sensitivity 92% (23 of 25), and the specificity 89% (74 of 83). In programs that aim to treat all laboring women with vaginal GBS-colonization (12% in the present study) with penicillin, the PCR-GBS will perform well (sensitivity 83% and specificity 97%). In programs aiming to treat only GBS-carriers among those with risk factors of EOGBS, a reduction of penicillin usage by two-thirds from 12% to 4% may be possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  10. A study of pre-antibiotic bacteriology in 125 patients with necrotizing enterocolitis.

    PubMed

    Chan, K L; Saing, H; Yung, R W; Yeung, Y P; Tsoi, N S

    1994-01-01

    Over a five-year period, 125 newborns with necrotizing enterocolitis (NEC) were managed by us. Their mean birthweight was 1700 g and mean maturity was 32 weeks. Before commencement of antibiotics, routine septic work-up was done in order to define the bacterial spectrum and antibiotic sensitivity. The study includes aerobic and anaerobic cultures of gastric and pharyngeal aspirates, blood cultures, umbilical swabs and culture of umbilical catheter tips in relevant cases. Peritoneal swab results were also analyzed if laparatomy was performed. Positive cultures were present in 45 patients (36%) with 55 positive specimens. Fifteen types of organism were isolated: the commonest was Enterobacter (29%), followed by E. coli (14.5%) and Klebsiella (13%). They were resistant to ampicillin and first-generation cephalosporin. These organisms were usually opportunistic pathogens. Overgrowth of them may be the cause of NEC. Regular review of the antibiotic sensitivity of these organisms allows prompt and appropriate choice of antibiotics. At the same time, antibiotic sensitivity for these organisms was analyzed to guide us in the choice of antibiotic therapy.

  11. Cooperation, competition and antibiotic resistance in bacterial colonies.

    PubMed

    Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R

    2018-06-01

    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.

  12. Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria.

    PubMed

    Sgibnev, Andrey; Kremleva, Elena

    2017-06-01

    We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.

  13. Persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains.

    PubMed

    Stanton, Thad B; Humphrey, Samuel B

    2011-10-01

    Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC=64 to >256 μg/ml) and to carry mosaic (recombinant) tetracycline resistance genes. Baby pigs inherit intestinal microbiota from the mother sow. In these investigations we addressed two questions. When do M. elsdenii strains from the sow colonize baby pigs? Can five antibiotic-sensitive M. elsdenii strains administered intragastrically to newborn pigs affect natural colonization of the piglets by antibiotic-resistant (AR) M. elsdenii strains from the mother? M. elsdenii natural colonization of newborn pigs was undetectable (<10(4) CFU/g [wet weight] of feces) prior to weaning (20 days after birth). After weaning, all pigs became colonized (4 × 10(5) to 2 × 10(8) CFU/g feces). In a separate study, 61% (76/125) of M. elsdenii isolates from a gravid sow never exposed to antibiotics were resistant to chlortetracycline, ampicillin, or tylosin. The inoculation of the sow's offspring with mixtures of M. elsdenii antibiotic-sensitive strains prevented colonization of the offspring by maternal AR strains until at least 11 days postweaning. At 25 and 53 days postweaning, however, AR strains predominated. Antibiotic susceptibility phenotypes and single nucleotide polymorphism (SNP)-based identities of M. elsdenii isolated from sow and offspring were unexpectedly diverse. These results suggest that dosing newborn piglets with M. elsdenii antibiotic-sensitive strains delays but does not prevent colonization by maternal resistant strains. M. elsdenii subspecies diversity offers an explanation for the persistence of resistant strains in the absence of antibiotic selection.

  14. Antimicrobial sensitivity pattern of bacterial pathogens in urinary tract infections in South Delhi, India.

    PubMed

    Akhtar, Mohammad Shabib; Mohsin, Nehal; Zahak, Ahmad; Ain, Mohammad Ruhal; Pillai, P K; Kapur, Prem; Ahmad, Mohammad Zaki

    2014-01-01

    Seventy-four bacterial proven cases of urinary tract infections were studied, and identified by Mac Conkey agar and blood agar medium separately; all the isolates were subjected to antimicrobial sensitivity testing by Stokes technique. Ninty-six percent of total isolated organisms were found to be gram negative while remaining 4% were gram positive. Among gram negatives, E. coli and gram positive S. aureus were the most prevalent organisms. The percentage of gram negative isolates were as follows, E. coli (79.7%) followed by Klebsiella (9.5%), Pseudomonas, Acinetobacter were (2.7% each), Proteus constituted (1.4%). and among gram positive S. aureus (4%). The antibiotic resistance of identified organisms was carried out by disc-diffusion method with commercially available disc of thirteen antibiotics having different mode of actions such as inhibition of cell wall synthesis, membrane permeability alternatives, inhibition of protein synthesis and DNA synthesis inhibitors. Gram negatives showed more resistance to these antibiotics as compared to gram positive organisms. The most effective antibiotic for gram negative UTI isolates is amikacin showing 63% efficacy followed by Cefotaxime 55% efficacy, Amoxicillin and Ciprofloxacin with (49% each) efficacy. Among gram positives, Chloramphenicol, Co-trimoxazole, Gentamicin, Amikacin, Ciprofloxacin and Cefotaxime are most effective with (66.6% each) efficacy, then Ampicillin, Amoxicillin, Tetracycline and norfloxacin with (33.3% each) efficacy.

  15. [Antibiotic resistance analysis of Streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital from 2012 to 2014].

    PubMed

    Ge, L L; Han, Z Y; Liu, A H; Zhu, L; Meng, J H

    2017-02-02

    Objective: To investigate the antibiotic resistance status of Streptococcus pneumoniae isolates from hospitalized children in Shanxi Children's Hospital. Method: E-test and Kirby-Bauer methods were applied to determine drug sensitivity of the isolates collected from the body fluid specimens of hospitalized children in Shanxi Children's Hospital from January 2012 to December 2014. The antimicrobial sensitivity and minimum inhibitory concentration (MIC) of Streptococcus pneumoniae to the conventional antibiotics were analyzed, in order to compare the annual trends of non-invasive isolates, while the differentiation of sensitivity from specimens. The comparison of rates was performed by Chi-squared test and Fisher's exact test. Result: A total of 671 isolates of streptococcus pneumoniae were obtained, which could be divided as non-invasive isolates(607), invasive isolates from non-cerebrospinal fluid(non-CSF)(40) and invasive isolates from cerebrospinal fluid(CSF)(24). The antimicrobial sensitivity(isolates(%)) of the 671 isolates were respectively vancomycin 671(100.0%), linezolid 671(100.0%), levofloxacin 665(99.1%), penicillin 595(88.7%), ceftriaxone 516(76.9%), cefotaxime 512(76.3%), sulfamethoxazole-trimethoprin(SMZ-TMP) 103(15.4%), clindamycin 28(4.2%), tetracycline 26(3.9%), erythromycin 12(1.8%). From 2012 to 2014, the susceptibility rates of non-invasive isolates to penicillin every year were 95.0%(96/101), 97.3%(110/113), 87.3%(343/393), respectively, and there was significant difference among the three years(χ(2)=13.266, P <0.05), and the values of MIC(50, )MIC(90) and the maximum values of MIC(mg/L) of penicillin were 0.064, 2.000, 6.000 in 2012, which grew up to 1.000, 3.000, 16.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to ceftriaxone and cefotaxime during these three years, (χ(2)=1.172, 1.198, both P >0.05). On the other hand, the values of MIC(50, )MIC(90) and the maximum value of MIC(mg/L) of ceftriaxone and cefotaxime both increased from 0.500, 2.000, 8.000 in 2012 to 0.750, 4.000, 32.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to the rest antibiotic. Based on the same examining standard of CSF, the antimicrobial sensitivity(isolates(%)) of the non-invasive isolates to ceftriaxone, cefotaxime, SMZ-TMP were respectively 281(46.3%), 278(45.8%), 78(12.9%), were significantly lower than the susceptibility rate of the invasive isolates from non-CSF (28(70%), 28(70%), 14(35%), χ(2)=8.453, 8.817, 15.094, all P <0.012 5), and lower than the invasive isolates from CSF (18(75%), 18(75%), χ(2)=7.631, 7.905, P <0.012 5; 11(45.8%), P =0.001). The sensitivity of the isolates to the rest antibiotics were similar( P >0.05). Conclusion: More than 95.0% strains of the streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital were sensitive to vancomycin, linezolid, levofloxacin, and the susceptibility rate of penicillin, ceftriaxone, cefotaxime were 88.7%, 76.9%, 76.3%. However, less than 20.0% of streptococcus pneumoniae were sensitive to erythromycin, clindamycin, SMZ-TMP and tetracycline. The susceptibility rate of penicillin of non-invasive Streptococcus pneumoniae declined by these years, and the differences to ceftriaxone and cefotaxime can be neglected, but the values of MIC(50, )MIC(90) and the maximum value of MIC of all were linearly rising. The susceptibility rate of antibiotics to ceftriaxone and cefotaxime of the non-invasive isolates was lower than the invasive isolates.

  16. Urinary tract infection diagnosis and response to antibiotics using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-02-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  17. Why sensitive bacteria are resistant to hospital infection control

    PubMed Central

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community-based transmission. Observed lack of effectiveness of control measures for sensitive strains does not provide evidence that infection control interventions have been ineffective in reducing resistant strains. PMID:29260003

  18. Why sensitive bacteria are resistant to hospital infection control.

    PubMed

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of effectiveness of control measures for sensitive strains does not provide evidence that infection control interventions have been ineffective in reducing resistant strains.

  19. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy.

    PubMed

    Dong, Tao; Zhao, Xinyan

    2015-02-17

    The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.

  20. New diagnostic methods for pneumonia in the ICU.

    PubMed

    Douglas, Ivor S

    2016-04-01

    Pneumonia leading to severe sepsis and critical illness including respiratory failure remains a common and therapeutically challenging diagnosis. Current clinical approaches to surveillance, early detection, and conventional culture-based microbiology are inadequate for optimal targeted antibiotic treatment and stewardship. Efforts to enhance diagnosis of community-acquired and health care-acquired pneumonia, including ventilator-associated pneumonia (VAP), are the focus of recent studies reviewed here. Newer surveillance definitions are sensitive for pneumonia in the ICU including VAP but consistently underdetect patients that are clinically shown to have bacterial VAP based on clinical diagnostic criteria and response to antibiotic treatment. Routinely measured plasma biomarkers, including procalcitonin and C-reactive protein, lack sufficient precision and predictive accuracy to inform diagnosis. Novel rapid microbiological diagnostics, including nucleic-acid amplification, mass spectrometry, and fluorescence microscopy-based technologies are promising approaches for the future. Exhaled breath biomarkers, including measurement of volatile organic compounds, represent a future approach. The integration of novel diagnostics for rapid microbial identification, resistance phenotyping, and antibiotic sensitivity testing into usual care practice could significantly transform the care of patients and potentially inform significantly improved targeted antimicrobial selection, de-escalation, and stewardship.

  1. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials.

    PubMed

    Martel, A; Devriese, L A; Cauwerts, K; De Gussem, K; Decostere, A; Haesebrouck, F

    2004-02-01

    Clostridium perfringens strains isolated in 2002 from the intestines of broiler chickens from 31 different farms located in Belgium were tested for susceptibility to 12 antibiotics used for therapy, growth promotion or prevention of coccidiosis. All strains were uniformly sensitive to the ionophore antibiotics monensin, lasalocid, salinomycin, maduramycin and narasin. All were sensitive to avilamycin, tylosin and amoxicillin, while flavomycin (bambermycin) showed low or no activity. Chlortetracycline and oxytetracycline were active at very low concentrations, but low-level acquired resistance was detected in 66% of the strains investigated. Fifty percent of these strains carried the tetP(B) resistance gene, while the tet(Q) gene was detected in only one strain. One strain with high-level resistance against tetracyclines carried the tet(M) gene. Sixty-three percent of the strains showed low-level resistance to lincomycin. The lnu(A) and lnu(B) genes were each only found in one strain. Compared with a similar investigation carried out in 1980, an increase was seen in resistance percentages with lincomycin (63% against 49%) and a slight decrease with tetracycline (66% against 74%).

  2. Acute sensitivity of activated sludge bacteria to erythromycin.

    PubMed

    Alighardashi, A; Pandolfi, D; Potier, O; Pons, M N

    2009-12-30

    The presence of antibiotics in water resources has been disturbing news for the stakeholders who are responsible for public health and the drinking water supply. In many cases, biological wastewater treatment plants are the final opportunity in the water cycle to trap these substances. The sensitivity of activated sludge bacteria to erythromycin, a macrolide widely used in human medicine was investigated in batch toxicity tests using a concentration range of 1-300 mg L(-1). Erythromycin, a protein synthesis inhibitor, has been found to significantly inhibit ammonification, nitritation and nitratation at concentrations higher than 20 mg L(-1). The degree of inhibition increased with greater concentrations of the antibiotic. Exposure to erythromycin also clearly affected heterotrophs, particularly filamentous bacteria, causing floc disintegration and breakage of filaments. Cell lysis was observed with the concomitant release of organic nitrogen (intracellular proteins) and soluble COD. Although erythromycin exhibits properties of a surfactant, this characteristic alone cannot explain the damage to heterotrophs: the effects from erythromycin were greater than those of Tween 80, a commonly used surfactant. Floc disruption can lead to the release of isolated bacteria, and possibly antibiotic resistance genes, into the environment.

  3. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  4. Reducing the volume of antibiotic prescriptions: a peer group intervention among physicians serving a community with special ethnic characteristics.

    PubMed

    Wilf-Miron, Rachel; Ron, Naama; Ishai, Shlomit; Chory, Hana; Abboud, Louis; Peled, Ronit

    2012-05-01

    Antibiotics are a front-line weapon against many infectious diseases. However, antibiotic overuse is the key driver of drug resistance. Previously published studies have suggested benefits of using peer-to-peer education, working with group leaders to build trust and maintain confidentiality within a quality initiative. We hypothesized that working with physicians as a peer group might be beneficial in influencing antibiotic prescribing patterns. To describe and evaluate a peer group model for an intervention to reduce the volume of antibiotic prescriptions among physicians with above average prescribing rates serving an Arab community in northern Israel. Primary care physicians in a defined geographic area who served Arab communities and had high antibiotic prescribing rates--defined as above average number of antibiotic prescriptions per office visit compared with regional and organizational averages--were recruited for the intervention. All other physicians from the same region served as a comparison group. The intervention was administered during 2007 and was completed in early 2008. Four structured meetings scheduled 2 months apart, in which the group explored the issues related to antibiotic overuse, included the following topics: adherence to clinical guidelines; the special position physicians serving Arab communities hold and the influence it has on their practices; pressure due to consumer demands; and suggestions for possible strategies to face ethnic sensitivity, mainly because of the special ties the physicians have with their communities. T-tests for independent samples were used to perform between-group comparisons for each quarter and year of observation from 2006 through 2010, and t-tests for paired samples were used to compare pre-intervention with post-intervention antibiotic prescribing rates. In the 2006 pre-intervention period, the antibiotic prescribing rates were 0.17 for the peer group (n = 11 physicians) and 0.15 for the comparison group (n = 72 physicians, P = 0.279). In 2008 following the intervention, rates were 0.12 and 0.14, respectively (P = 0.396). In the paired t-test analysis, rates declined significantly from 2006 to 2008 in the intervention group (P < 0.001) but not in the comparison group (P = 0.138). Antibiotic prescribing rates remained similar in 2009 and 2010. In the context of a community with special ethnic and cultural characteristics, an intervention relying on peer group techniques was associated with a modest reduction in the volume of antibiotic prescriptions.

  5. [Inhibition effect of Ag-antibiotic 702 on plant pathogenic fungi and related mechanisms].

    PubMed

    Wei, Sai-Jin; Du, Ya-Nan; Ni, Guo-Rong; Zhang, Hui-Wen; Tu, Guo-Quan; Pan, Xiao-Hua

    2012-12-01

    To explore the practical application value and action mechanisms of Ag-antibiotic 702 against pathogenic fungi, the inhibition spectrum of Ag-antibiotic 702 was studied by measuring the mycelium growth rate of pathogenic fungi, and the effects of Ag-antibiotic 702 on the membrane permeability of Rhizoctonia solani, a typical pathogenic fungus, were investigated, with the variations of mycelium electrolyte leakage and protein, nucleic acid, and Mg2+ and K+ contents under the action of Ag-antibiotic 702 determined, and the effects of Ag-antibiotic 702 on the cell membrane ergosterol biosynthesis and ultramicrostructure observed. The results showed that the active products of Ag-antibiotic 702 had stronger inhibition effect on 13 test pathogens, among which, Sclerotinia sclerotiorum was most sensitive, with the EC50 being 0.23 microg x mL(-1). As compared with the control, the relative electric conductivity of R. solani treated with Ag-antibiotic 702 was increased by 72.2%, the contents of protein, nucleic acid, and Mg2+ and K+ leaked from the R. solani cells were all increased, while the ergosterol content was decreased by 92.0%. The cell membrane outline was not clear, organelles were badly damaged, and vacuole appeared. It was suggested that the inhibition of ergosterol biosynthesis and the increase of membrane permeability could be the main action mechanisms of Ag-antibiotic 702 against pathogenic fungi.

  6. Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation.

    PubMed

    Towse, Adrian; Hoyle, Christopher K; Goodall, Jonathan; Hirsch, Mark; Mestre-Ferrandiz, Jorge; Rex, John H

    2017-10-01

    Healthcare systems depend on the availability of new antibiotics. However, there is a lack of treatments for infections caused by multidrug resistant (MDR) pathogens and a weak development pipeline of new therapies. One core challenge to the development of new antibiotics targeting MDR pathogens is that expected revenues are insufficient to drive long-term investment. In the USA and Europe, financial incentives have focussed on supporting R&D, reducing regulatory burden, and extending market exclusivity. Using resistance data to estimate global revenues, we demonstrate that the combined effects of these incentives are unlikely to rekindle investment in antibiotics. We analyse two supplemental approaches: a commercial incentive (a premium price model) and a new business model (an insurance model). A premium price model is familiar and readily implemented but the required price and local budget impact is highly uncertain and sensitive to cross-sectional and longitudinal variation in prevalence of antibiotic resistance. An insurance model delivering risk mitigation for payers, providers and manufacturers would provide an incentive to drive investment in the development of new antibiotics while also facilitating antibiotic conservation. We suggest significant efforts should be made to test the insurance model as one route to stimulate investment in novel antibiotics. Copyright © 2017 Office of Health Economics. Published by Elsevier B.V. All rights reserved.

  7. Virulence, Speciation and Antibiotic Susceptibility of Ocular Coagualase Negative Staphylococci (CoNS)

    PubMed Central

    Priya, Ravindran; Mythili, Arumugam; Singh, Yendremban Randhir Babu; Sreekumar, Haridas; Manikandan, Palanisamy; Panneerselvam, Kanesan

    2014-01-01

    Background: Coagulase negative Staphylococci (CoNS) are common inhabitants of human skin and mucous membranes. With the emergence of these organisms as prominent pathogens in patients with ocular infections, investigation has intensified in an effort to identify important virulence factors and to inform new approaches to treatment and prevention. Aim: To isolate CoNS from ocular specimens; to study the possible virulence factors; speciation of coagulase negative staphylococci (CoNS) which were isolated from ocular complications; antibiotic susceptibility testing of ocular CoNS. Materials and Methods: The specimens were collected from the target patients who attended the Microbiology Laboratory of a tertiary care eye hospital in Coimbatore, Tamilnadu state, India. The isolates were subjected to tube and slide coagulase tests for the identification of CoNS. All the isolates were subjected to screening for lipase and protease activities. Screening for other virulence factors viz., slime production on Congo red agar medium and haemagglutination assay with use of 96-well microtitre plates. These isolates were identified upto species level by performing biochemical tests such as phosphatase test, arginine test, maltose and trehalose fermentation tests and novobiocin sensitivity test. The isolates were subjected to antibiotic susceptibility studies, based on the revised standards of Clinical and Laboratory Standards Institutes (CLSI). Results: During the one year of study, among the total 260 individuals who were screened, 100 isolates of CoNS were obtained. Lipolytic activity was seen in all the isolates, whereas 38 isolates showed a positive result for protease. A total of 63 isolates showed slime production. Of 100 isolates, 30 isolates were analyzed for haemagglutination, where 4 isolates showed the capacity to agglutinate the erythrocytes. The results of the biochemical analysis revealed that of the 100 isolates of CoNS, 43% were Staphylococcus epidermidis. The other isolates were identified as S. xylosus (n=8), S. captis (n=16), S. haemolyticus (n=10), S. saccharolyticus (n=2), S. hominis (n=5), S. saprophyticus (n=6) and S. intermedius (n=1). On the other hand, 9 isolates were not identified. In the antibiotic susceptibility analysis, it was found that most of the isolates were sensitive to vancomycin, amikacin and linczolid and resistant to cefatoxime, oxacillin, bacitracin and nalidixic acid. Conclusion: S. epidermidis was found to be predominant in causing the ocular complications. Slime production, heamagglutination, protease and lipase activities could be the putative virulence factors of CoNS. Antibiotic susceptibility patterns of CoNS against antibacterial agents revealed maximum resistance to beta lactam groups, and the resistance was found to be higher to oxacillin, and lowest to vancomycin. PMID:24995181

  8. A two-hour antibiotic susceptibility test by ATP-bioluminescence.

    PubMed

    March Rosselló, Gabriel Alberto; García-Loygorri Jordán de Urries, María Cristina; Gutiérrez Rodríguez, María Purificación; Simarro Grande, María; Orduña Domingo, Antonio; Bratos Pérez, Miguel Ángel

    2016-01-01

    The antibiotic susceptibility test (AST) in Clinical Microbiology laboratories is still time-consuming, and most procedures take 24h to yield results. In this study, a rapid antimicrobial susceptibility test using ATP-bioluminescence has been developed. The design of method was performed using five ATCC collection strains of known susceptibility. This procedure was then validated against standard commercial methods on 10 strains of enterococci, 10 staphylococci, 10 non-fermenting gram negative bacilli, and 13 Enterobacteriaceae from patients. The agreement obtained in the sensitivity between the ATP-bioluminescence method and commercial methods (E-test, MicroScan and VITEK2) was 100%. In summary, the preliminary results obtained in this work show that the ATP-bioluminescence method could provide a fast and reliable AST in two hours. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    PubMed Central

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  10. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    PubMed

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  11. Lyme disease: review

    PubMed Central

    Czepiel, Jacek; Leśniak, Maciej R.; Garlicki, Aleksander; Mach, Tomasz

    2012-01-01

    Lyme disease is a multi-organ animal-borne disease, caused by spirochetes of Borrelia burgdorferi (Bb), which typically affect the skin, nervous system, musculoskeletal system and heart. A history of confirmed exposure to tick bites, typical signs and symptoms of Lyme borreliosis and positive tests for anti-Bb antibodies, are the basis of a diagnosis. A two-step diagnosis is necessary: the first step is based on a high sensitivity ELISA test with positive results confirmed by a more specific Western blot assay. Antibiotic therapy is curative in most cases, but some patients develop chronic symptoms, which do not respond to antibiotics. The aim of this review is to summarize our current knowledge of the symptoms, clinical diagnosis and treatment of Lyme borreliosis. PMID:23319969

  12. Combined measurement of synovial fluid α-Defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection.

    PubMed

    Deirmengian, Carl; Kardos, Keith; Kilmartin, Patrick; Cameron, Alexander; Schiller, Kevin; Parvizi, Javad

    2014-09-03

    The diagnosis of periprosthetic joint infection remains a challenge. The purpose of this study was to evaluate the combined measurement of the levels of two synovial fluid biomarkers, α-defensin and C-reactive protein (CRP), for the diagnosis of periprosthetic joint infection. One hundred and forty-nine synovial fluid aspirates, including 112 from patients with an aseptic diagnosis and thirty-seven from patients with periprosthetic joint infection, met the inclusion criteria for this prospective study. Synovial fluid aspirates were tested for α-defensin and CRP levels with use of enzyme-linked immunosorbent assay (ELISA). The Musculoskeletal Infection Society (MSIS) definition of periprosthetic joint infection was utilized for the classification of cases as aseptic or infected. Comorbidities, such as inflammatory conditions, that could confound a test for periprosthetic joint infection were documented, but the patients with such comorbidities were included in the study. The combination of synovial fluid α-defensin and CRP tests demonstrated a sensitivity of 97% and a specificity of 100% for the diagnosis of periprosthetic joint infection. Synovial fluid α-defensin tests alone demonstrated a sensitivity of 97% and a specificity of 96% for the diagnosis of periprosthetic joint infection. Synovial fluid CRP tests, with a low threshold of 3 mg/L, reversed all-false positive α-defensin results without affecting the sensitivity of the test. The diagnostic characteristics of these assays were achieved in a population of patients demonstrating a 23% rate of systemic inflammatory diseases (in the series as a whole) and a 27% rate of concurrent antibiotic treatment (in the infection group). The synovial fluid levels of α-defensin in the setting of periprosthetic joint infection were unchanged during concurrent antibiotic treatment. The combined measurement of synovial fluid α-defensin and CRP levels correctly diagnosed 99% of the cases in this study as aseptic or infected. This was achieved despite the inclusion of patients with systemic inflammatory disease and those receiving treatment with antibiotics. Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  13. Measurement of air contamination in different wards of public sector hospital, Sukkur.

    PubMed

    Memon, Badaruddin AllahDino; Bhutto, Gul Hassan; Rizvi, Wajid Hussain

    2016-11-01

    The aim of this study was to evaluate and assess the index of bacterial contamination in different wards of the Public Sector Hospital of Sukkur (Teaching) Pakistan; whether or not the air contamination was statistically different from the acceptable level using active and passive sampling. In addition to this main hypothesis, other investigations included: occurrence of the most common bacteria, whether or not the bacterial contamination in the wards was a persistent problem and identification of the effective antibiotics against the indentified bacteria. The evidence sought based on the One Sample T test suggests that there is a (statistically) significant difference between the observed (higher) than the acceptance level (p<0.01), the result based on One-Way ANOVA suggests that the contamination problem was persistent as there was no significant difference among observed contamination of all three visits at (p>0.01) and the result of antibiotic susceptibility test highlights sensitivity and resistance level of antibiotics for the indentified bacteria.

  14. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  15. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  16. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics.

    PubMed

    Karumathil, Deepti P; Nair, Meera Surendran; Gaffney, James; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2018-01-01

    Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii . This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans -cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii 's resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics ( blaP ), efflux pumps ( adeABC ), and multi-drug resistant protein ( mdrp ) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics ( P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC ( P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.

  17. Measuring Coverage in MNCH: Challenges in Monitoring the Proportion of Young Children with Pneumonia Who Receive Antibiotic Treatment

    PubMed Central

    Campbell, Harry; el Arifeen, Shams; Hazir, Tabish; O'Kelly, James; Bryce, Jennifer; Rudan, Igor; Qazi, Shamim Ahmad

    2013-01-01

    Pneumonia remains a major cause of child death globally, and improving antibiotic treatment rates is a key control strategy. Progress in improving the global coverage of antibiotic treatment is monitored through large household surveys such as the Demographic and Health Surveys (DHS) and the Multiple Indicator Cluster Surveys (MICS), which estimate antibiotic treatment rates of pneumonia based on two-week recall of pneumonia by caregivers. However, these survey tools identify children with reported symptoms of pneumonia, and because the prevalence of pneumonia over a two-week period in community settings is low, the majority of these children do not have true pneumonia and so do not provide an accurate denominator of pneumonia cases for monitoring antibiotic treatment rates. In this review, we show that the performance of survey tools could be improved by increasing the survey recall period or by improving either overall discriminative power or specificity. However, even at a test specificity of 95% (and a test sensitivity of 80%), the proportion of children with reported symptoms of pneumonia who truly have pneumonia is only 22% (the positive predictive value of the survey tool). Thus, although DHS and MICS survey data on rates of care seeking for children with reported symptoms of pneumonia and other childhood illnesses remain valid and important, DHS and MICS data are not able to give valid estimates of antibiotic treatment rates in children with pneumonia. PMID:23667338

  18. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    PubMed Central

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800–1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10−3 to 8.8 × 10−4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention. PMID:24516448

  19. Antibiotic sensitivity and resistance in Ornithobacterium rhinotracheale strains from Belgian broiler chickens.

    PubMed

    Devriese, L A; De Herdt, P; Haesebrouck, F

    2001-06-01

    Establishing the antibiotic sensitivity of the avian respiratory pathogen Ornithobacterium rhinotracheale is difficult because of the organism's complex growth requirements and the unusually frequent occurrence of resistance. The minimal inhibitory concentrations of 10 antibiotics were determined for 45 strains of O. rhinotracheale from Belgian broiler chickens collected from 45 farms between 1995 and 1998. They were compared with the type strain, which was isolated from a turkey, and a strain isolated from a rook. All the broiler strains were resistant to lincomycin and to the beta-lactams ampicillin and ceftiofur. Less than 10% of the strains were sensitive to the macrolides tylosin and spiramycin, tilmicosin and flumequine. A few strains were sensitive to enrofloxacin and doxycycline. All strains were sensitive to tiamulin.

  20. Assessment of antibiotic susceptibility of Legionella pneumophila isolated from water systems in Poland.

    PubMed

    Sikora, Agnieszka; Gładysz, Iwona; Kozioł-Montewka, Maria; Wójtowicz-Bobin, Małgorzata; Stańczak, Tomasz; Matuszewska, Renata; Krogulska, Bożena

    2017-03-21

    Several studies have reported therapy failures in patients with legionnaires'disease; however, antimicrobial resistance of clinical and environmental isolates of Legionella spp. has not yet been documented. Routine susceptibility testing of Legionella spp. is not recommended because of difficulties in determining standard minimal inhibitory concentration values. The purpose of this study was to analyze the antimicrobial susceptibility of Legionella pneumophila. strains isolated from a water supply system. Twenty-eight isolates of L. pneumophila (16 - L. pneumophila SG 1, 12 - L. pneumophila SG 2-14) obtained from water systems in public buildings in Poland were tested. Susceptibility testing was performed using the E-test method. The tested antibiotic were azithromycin, ciprofloxacin, and rifampicin. The medium used for the susceptibility testing was BCYE-, a special medium for Legionella cultivation. Among the tested strains, L. pneumophila was the only one resistant to azithromycin. It was a strain of L. pneumophila SG 2-14 isolated from the water system in a sanitorium. All isolates were found to be sensitive to ciprofloxacin and rifampicin. However, the azithromycin-resistant strain exhibited higher ciprofloxacin and rifampicin MIC (1.5 μg/ml, and 0.19 μg/ml, respectively). The MIC50 for azithromycin, ciprofloxacin, and rifampicin were 0,032, 0,125, and 0,003 μg/ml, respectively. The MIC90 for azithromycin, ciprofloxacin, and rifampicin were 0,032, 0,125, and 0,003 μg/ml, respectively. Azithromycin resistance was found in one strain of L. pneumophila SG 2-14, but the resistance mechanism is unknown and needs further study. It is possible that therapeutic failures in Legionnaires' disease may be associated with bacterial resistance which should be taken into account. The antibiotic sensitivity testing described in this study could be helpful in detecting the resistance of clinical L. pneumophila isolates. Ciprofloxacin and rifampicin have good in vitro activity against environmental L. pneumophila SG 1 and SG 2-14 in Poland.

  1. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    NASA Astrophysics Data System (ADS)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  2. High prevalence of methicillin resistant staphylococci strains isolated from surgical site infections in Kinshasa.

    PubMed

    Iyamba, Jean-Marie Liesse; Wambale, José Mulwahali; Lukukula, Cyprien Mbundu; za Balega Takaisi-Kikuni, Ntondo

    2014-01-01

    Surgical site infections (SSIs) after surgery are usually caused by Staphylococcus aureus and coagulase-negative staphylococci (CNS). In low income countries, methicillin resistant Staphylococcus aureus (MRSA) and methicillin resistant coagulase-negative staphylococci (MR-CNS) surgical site infections are particularly associated with high treatment cost and remain a source of mortality and morbidity. This study aimed to determine the prevalence and the sensitivity to antibiotics of MRSA and MR-CNS isolated from SSIs. Wound swabs were collected from 130 hospitalized surgical patients in two major hospitals of Kinshasa. S. aureus and CNS strains were identified by standard microbiological methods and latex agglutination test (Pastorex Staph-Plus). The antibiotic susceptibility of all staphylococcal strains was carried out using disk-diffusion method. Eighty nine staphylococcal strains were isolated. Out of 74 S. aureus and 15 CNS isolated, 47 (63.5%) and 9 (60%) were identified as MRSA and MR-CNS respectively. Among the MRSA strains, 47 strains (100%) were sensitive to imipenem, 39 strains (89%) to amoxycillin-clavulanic acid and 38 strains (81%) to vancomycin. All MR-CNS were sensitive to imipenem, amoxycillin-clavulanic acid and vancomycin. The isolated MRSA and MR-CNS strains showed multidrug resistance. They were both resistant to ampicillin, cotrimoxazole, erythromycin, clindamycin, ciprofloxacin, cefotaxime and ceftazidime. The results of the present study showed a high prevalence of MRSA and MR-CNS. Imipenem, amoxycillin-clavulanic acid and vancomycin were the most active antibiotics. This study suggests that antibiotic surveillance policy should become national priority as MRSA and MR-CNS were found to be multidrug resistant.

  3. A competitive trade-off limits the selective advantage of increased antibiotic production.

    PubMed

    Gerardin, Ylaine; Springer, Michael; Kishony, Roy

    2016-09-26

    In structured environments, antibiotic-producing microorganisms can gain a selective advantage by inhibiting nearby competing species 1 . However, despite their genetic potential 2,3 , natural isolates often make only small amounts of antibiotics, and laboratory evolution can lead to loss rather than enhancement of antibiotic production 4 . Here, we show that, due to competition with antibiotic-resistant cheater cells, increased levels of antibiotic production can actually decrease the selective advantage to producers. Competing fluorescently labelled Escherichia coli colicin producers with non-producing resistant and sensitive strains on solid media, we found that although producer colonies can greatly benefit from the inhibition of nearby sensitive colonies, this benefit is shared with resistant colonies growing in their vicinity. A simple model, which accounts for such local competitive and inhibitory interactions, suggests that the advantage of producers varies non-monotonically with the amount of production. Indeed, experimentally varying the amount of production shows a peak in selection for producers, reflecting a trade-off between benefit gained by inhibiting sensitive competitors and loss due to an increased contribution to resistant cheater colonies. These results help explain the low level of antibiotic production observed for natural species and can help direct laboratory evolution experiments selecting for increased or novel production of antibiotics.

  4. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  5. Antibiotic Resistance Patterns of Gram-Negative Psychrotrophic Bacteria from Bulk Tank Milk.

    PubMed

    Decimo, Marilù; Silvetti, Tiziana; Brasca, Milena

    2016-04-01

    Bacterial resistance to antibiotics is a major global health problem and resistance of Pseudomonadaceae and Enterobacteriaceae is a serious concern. We investigated the prevalence of drug-resistance in a total of 80 psychrotrophic strains from bulk milk belonging to Pseudomonas genus (n. 63) and Enterobacteriaceae group (n. 17). All the strains were tested against 16 antibiotics. Pseudomonas were further investigated for their sensitivity against 12 additional antibiotics. Pseudomonas showed a high susceptibility toward fluoroquinolones, aminoglycosides, and piperacillin and, to a lesser extent, to imipenem, ceftazidime, cefepime. Thirty-five out of 63 Pseudomonas strains were susceptible to meropenem, while among antibiotics for which recommended breakpoints are not yet available, 55% of Pseudomonas strains had no inhibition halo in presence of nitrofurantoin, highlighting a resistance toward this drug. The results obtained in this study indicate a high efficiency of fluoroquinolones, chloramphenicol (94%), and kanamycin (76%) for Enterobacteriaceae while a high prevalence of resistant strains was found to ampicillin (13/17). Serratia marcescens is highly susceptible to fluoroquinolones, chloramphenicol, and kanamycin. Moreover, mupirocin seems to be the new antibiotic with the less efficacy for Enterobacteriaceae, with 41% of strains without halo, pointing out an important resistance. Further knowledge on resistance to known and new antibiotics among Pseudomonas species and Enterobacteriaceae of milk origin was acquired. © 2016 Institute of Food Technologists®

  6. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities.

    PubMed

    Jałowiecki, Łukasz; Chojniak, Joanna; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna

    2017-11-01

    The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.

  7. Study on Prevalence, Antibiotic Susceptibility, and tuf Gene Sequence-Based Genotyping of Species-Level of Coagulase-Negative Staphylococcus Isolated From Keratitis Caused by Using Soft Contact Lenses.

    PubMed

    Faghri, Jamshid; Zandi, Alireza; Peiman, Alireza; Fazeli, Hossein; Esfahani, Bahram Nasr; Safaei, Hajieh Ghasemian; Hosseini, Nafiseh Sadat; Mobasherizadeh, Sina; Sedighi, Mansour; Burbur, Samaneh; Oryan, Golfam

    2016-03-01

    To study on antibiotic susceptibility and identify coagulase-negative Staphylococcus (CoNS) species based on tuf gene sequencing from keratitis followed by using soft contact lenses in Isfahan, Iran, 2013. This study examined 77 keratitis cases. The samples were cultured and the isolation of CoNS was done by phenotypic tests, and in vitro sensitivity testing was done by Kirby-Bauer disk diffusion susceptibility method. Thirty-eight of isolates were conveniently identified as CoNS. In this study, 27 (71.1%), 21 (55.3%), and 16 (42.1%) were resistant to penicillin, erythromycin, and tetracycline, respectively. One hundred percent of isolates were sensitive to gentamicin, and 36 (94.7%) and 33 (86.8%) of isolates were sensitive to chloramphenicol and ciprofloxacin, respectively. Also, resistances to cefoxitin were 7 (18.4%). Analysis of tuf gene proved to be discriminative and sensitive in which all the isolates were identified with 99.0% similarity to reference strains, and Staphylococcus epidermidis had the highest prevalence among other species. Results of this study showed that CoNS are the most common agents causing contact lens-associated microbial keratitis, and the tuf gene sequencing analysis is a reliable method for distinguishing CoNS species. Also gentamycin, chloramphenicol, and ciprofloxacin are more effective than the other antibacterial agents against these types of bacteria.

  8. Use of antibiotic-loaded polymethyl methacrylate beads in the management of musculoskeletal sepsis--a retrospective study.

    PubMed

    Mohanty, S P; Kumar, M N; Murthy, N S

    2003-06-01

    To assess the use of antibiotic-loaded polymethyl methacrylate beads in the management of chronic osteomyelitis of different aetiologies: infected osteosynthesis, infected open fractures, and haematogenous osteomyelitis. Records of 49 patients with chronic osteomyelitis who were treated at Department of Orthopaedics, Kasturba Medical College, from 1995 to 1999 were studied retrospectively. The diagnosis of chronic osteomyelitis was made on the basis of clinical and radiographic features. Of the 49 patients, 4 had haematogenous osteomyelitis, which later proved to be tuberculosis, and were thus excluded. Antibiotic-loaded acrylic beads were implanted in the remaining patients after thorough debridement. The implant was removed primarily in 16 patients with infected osteosynthesis, who then underwent decompression and sequestrectomy. All wounds were closed primarily. Peri-operative antibiotics were given for 7 days. Beads were removed at the end of 3 weeks followed by bone grafting in 26 patients. Patients were followed up for an average period of 3.7 years. The infective organisms were sensitive to gentamycin in 26 cases and resistant in 19 cases; 14 cases were sensitive to cefuroxime, 11 to cloxacillin, 8 to ampicillin, and 5 to cotrimoxazole. Seven cases were resistant to all antibiotics tested. Of the 19 patients with gentamycin-resistant infection, only one had a poor result. No adverse systemic side-effects such as ototoxicity or nephrotoxicity were seen. Infection did not recur in 39 patients, but 6 patients had low-grade persistent infection at the last follow-up visit. In chronic infections, especially those following osteosynthesis, antibiotic beads are a valuable adjuvant. The most valuable advantage is that the wound can be closed primarily, thereby reducing the incidence of nosocomial infections and requirement of nursing care.

  9. Bacteriuria amongst Pregnant Women in the Buea Health District, Cameroon: Prevalence, Predictors, Antibiotic Susceptibility Patterns and Diagnosis

    PubMed Central

    Mokube, Morike Ngoe; Atashili, Julius; Halle-Ekane, Gregory Edie; Ikomey, George M.; Ndumbe, Peter M.

    2013-01-01

    Background Bacteriuria is associated with significant maternal and foetal risks. However, its prevalence is not known in our community. Objectives This study was carried out to determine the prevalence and predictors of bacteriuria in pregnant women of the Buea Health District (BHD) as well as the antibiotic sensitivity patterns of bacterial isolates. It also sought to determine the diagnostic performance of the nitrite and leucocyte esterase tests in detecting bacteriuria in these women. Methods An observational analytic cross-sectional study was carried out amongst pregnant women attending selected antenatal care centres in Buea. We recruited 102 consenting pregnant women for the study. Demographic and clinical data were collected using structured questionnaires. Clean catch midstream urine was collected from each participant in sterile leak proof containers. Samples were examined biochemically, microscopically and by culture. Significant bacteriuria was defined as the presence of ≥108 bacteria/L of cultured urine. Identification and susceptibility of isolates was performed using API 20E and ATB UR EU (08) (BioMerieux, Marcy l'Etoile, France). Results Significant bacteriuria was found in the urine of 24 of the 102 women tested giving a bacteriuria prevalence of 23.5% in pregnant women of the BHD. Asymptomatic bacteriuria was detected in 8(7.8%) of the women. There was no statistically significant predictor of bacteriuria. Escherichia coli were the most isolated (33%) uropathogens and were 100% sensitive to cefixime, cefoxitin and cephalothin. The nitrite and leucocyte esterase tests for determining bacteriuria had sensitivities of 8%, 20.8% and specificities of 98.7% and 80.8% respectively. Conclusion Bacteriuria is frequent in pregnant women in the BHD suggesting the need for routine screening by urine culture. Empiric treatment with cefixime should be instituted until results of urine culture and sensitivity are available. Nitrite and leucocyte esterase tests were not sensitive enough to replace urine culture as screening tests. PMID:23976983

  10. Bacteriuria amongst pregnant women in the Buea Health District, Cameroon: prevalence, predictors, antibiotic susceptibility patterns and diagnosis.

    PubMed

    Mokube, Morike Ngoe; Atashili, Julius; Halle-Ekane, Gregory Edie; Ikomey, George M; Ndumbe, Peter M

    2013-01-01

    Bacteriuria is associated with significant maternal and foetal risks. However, its prevalence is not known in our community. This study was carried out to determine the prevalence and predictors of bacteriuria in pregnant women of the Buea Health District (BHD) as well as the antibiotic sensitivity patterns of bacterial isolates. It also sought to determine the diagnostic performance of the nitrite and leucocyte esterase tests in detecting bacteriuria in these women. An observational analytic cross-sectional study was carried out amongst pregnant women attending selected antenatal care centres in Buea. We recruited 102 consenting pregnant women for the study. Demographic and clinical data were collected using structured questionnaires. Clean catch midstream urine was collected from each participant in sterile leak proof containers. Samples were examined biochemically, microscopically and by culture. Significant bacteriuria was defined as the presence of ≥10⁸ bacteria/L of cultured urine. Identification and susceptibility of isolates was performed using API 20E and ATB UR EU (08) (BioMerieux, Marcy l'Etoile, France). Significant bacteriuria was found in the urine of 24 of the 102 women tested giving a bacteriuria prevalence of 23.5% in pregnant women of the BHD. Asymptomatic bacteriuria was detected in 8(7.8%) of the women. There was no statistically significant predictor of bacteriuria. Escherichia coli were the most isolated (33%) uropathogens and were 100% sensitive to cefixime, cefoxitin and cephalothin. The nitrite and leucocyte esterase tests for determining bacteriuria had sensitivities of 8%, 20.8% and specificities of 98.7% and 80.8% respectively. Bacteriuria is frequent in pregnant women in the BHD suggesting the need for routine screening by urine culture. Empiric treatment with cefixime should be instituted until results of urine culture and sensitivity are available. Nitrite and leucocyte esterase tests were not sensitive enough to replace urine culture as screening tests.

  11. Antibiotics impact plant traits, even at small concentrations

    PubMed Central

    Deloy, Andrea; Volkert, Anna Martina; Leonhardt, Sara Diana; Pufal, Gesine

    2017-01-01

    Abstract Antibiotics of veterinary origin are released to agricultural fields via grazing animals or manure. Possible effects on human health through the consumption of antibiotic exposed crop plants have been intensively investigated. However, information is still lacking on the effects of antibiotics on plants themselves, particularly on non-crop species, although evidence suggests adverse effects of antibiotics on growth and performance of plants. This study evaluated the effects of three major antibiotics, penicillin, sulfadiazine and tetracycline, on the germination rates and post-germinative traits of four plant species during ontogenesis and at the time of full development. Antibiotic concentrations were chosen as to reflect in vivo situations, i.e. concentrations similar to those detected in soils. Plant species included two herb species and two grass species, and represent two crop-species and two non-crop species commonly found in field margins, respectively. Germination tests were performed in climate chambers and effects on the remaining plant traits were determined in greenhouse experiments. Results show that antibiotics, even in small concentrations, significantly affect plant traits. These effects include delayed germination and post-germinative development. Effects were species and functional group dependent, with herbs being more sensitive to antibiotics then grasses. Responses were either negative or positive, depending on plant species and antibiotic. Effects were generally stronger for penicillin and sulfadiazine than for tetracycline. Our study shows that cropland species respond to the use of different antibiotics in livestock industry, for example, with delayed germination and lower biomass allocation, indicating possible effects on yield in farmland fertilized with manure containing antibiotics. Also, antibiotics can alter the composition of plant species in natural field margins, due to different species-specific responses, with unknown consequences for higher trophic levels. PMID:28439396

  12. Toxicity of the ionophore antibiotic lasalocid to soil-dwelling invertebrates: avoidance tests in comparison to classic sublethal tests.

    PubMed

    Žižek, Suzana; Zidar, Primož

    2013-07-01

    Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It enters the environment with the use of contaminated manure on agricultural land. Despite its extensive use, the effects of lasalocid on non-target soil organisms are poorly explored. We used classical subleathal ecotoxicity tests to assess the effects of lasalocid on earthworms (Eisenia andrei) and isopods (Porcellio scaber) and compared the results with tests using avoidance behaviour as the endpoint. The results showed that avoidance is a much more sensitive endpoint. For earthworms, EC50 for avoidance (12.3 mg kg(-1) dry soil) was more than five times lower than EC50 for reproduction (69.6 mg kg(-1) dry soil). In isopods the sensitivity of the behavioural response test was even higher. While the highest lasalocid concentration 202 mg kg(-1) had no significant effects on isopod growth or survival, already the lowest used concentration in the behavioural assay (4.51 mg kg(-1)) caused significant impact on isopod behaviour. Using the avoidance test results for calculating the predicted no-effect concentration (PNEC) of lasalocid to soil invertebrates, the value is close to the predicted environmental concentration (PEC). This indicates that the use of lasalocid-contaminated manure could potentially impair the habitat function of agricultural soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Comparison of epidemiological and antibiotic susceptibility pattern of metallo-Beta-lactamase-positive and metallo-Beta-lactamase-negative strains of pseudomonas aeruginosa.

    PubMed

    Ranjan, Shikha; Banashankari, Gs; Babu, Pr Sreenivasa

    2014-07-01

    The infections caused by metallo-beta-lactamases (MBLs) producing Pseudomonas aeruginosa are associated with higher rates of mortality, morbidity, and overall healthcare costs compared to non-MBL P. aeruginosa infections. To compare the epidemiologic factors and antibiograms of MBL-positive and MBL-negative P. aeruginosa isolates in a tertiary care hospital. In an observational study, from January 2011 to December 2012, all non-duplicate P. aeruginosa isolates were subjected to an antimicrobial sensitivity test against 10 antibiotics of five different classes. All P. aeruginosa strains showing resistance to at least one of the carbapenems were subjected to the MBL-E test. Epidemiological features and antibiograms of MBL-positive and MBL-negative strains were compared and statistically analyzed. Out of 350 isolates (total sample = 5330) of P. aeruginosa, MBL was detected in 58 isolates by the E-test, resulting in a prevalence of 16.57%. Resistance to most of the antibiotics was significantly higher in the MBL-positive strains with 100% resistance to ciprofloxacin, tobramycin, and meropenem, followed by imipenem (93.10%) and gentamicin (89.66%). The prevalence of multidrug-resistant and pandrug-resistant strains was significantly higher among the MBL group as compared to that in the non-MBL group ((55.17 vs. 7.88% (P < 0.0001) and 8.62 vs. 0.68% (P = 0.0006)), respectively. MBL-positive P. aeruginosa strains showed very high resistance to various antibiotics, as compared to the non-MBL strains. Increasing prevalence of MBL-producing isolates in hospital settings makes it important to perform routine detection of MBL-positive P. aeruginosa strains by in vitro testing before antibiotic use, for the purposes of infection prevention, and control, and for minimizing the adverse outcomes of infections with MBL-producing strains.

  14. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    PubMed

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a <3-fold difference between prevalence estimates based on freshly isolated bacteria when compared to isolates collected from unprocessed fecal samples or fecal slurries that had been stored at 4°C for up to 7days. No time-dependence was evident (P>0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Streptococcal Pharyngitis: Impact of a High-Sensitivity Antigen Test on Physician Outcome

    PubMed Central

    Needham, Cynthia A.; McPherson, Kenneth A.; Webb, Kenneth H.

    1998-01-01

    The purpose of the present study was to determine whether the availability of results from a high-sensitivity, rapid test for group A streptococci (Strep A OIA; BioStar, Inc., Boulder, Colo.) improves physician outcome. The study population included 465 consecutive patients with symptoms of acute pharyngitis seen in two outpatient clinics in a large suburban medical center; one clinic, a walk-in clinic (WIC), primarily saw adult patients, and one clinic, a pediatric and adolescent medicine clinic (PED), primarily saw pediatric patients. We measured improvement in physician outcome by comparing physician intent for prescribing an antibiotic based on clinical impression with physician practice once the results of the Strep A OIA were known. Based upon intent, the physicians seeing WIC patients (WIC physicians) would have prescribed an appropriate antibiotic course for 42% of patients with cultures positive for group A beta-hemolytic streptococci (GABHS) and 61% of patients with cultures negative for GABHS. After receiving the results of the Strep A OIA, WIC physicians prescribed an appropriate antibiotic course for 81% of patients with positive cultures and 72% of patients with negative cultures. Based upon intent, the physicians seeing PED patients (PED physicians) would have prescribed an appropriate antibiotic course for 35% of patients with positive cultures and 77% of patients with negative cultures. After receiving the results of the Strep A OIA, PED physicians prescribed an appropriate antibiotic course for 90% of patients with positive cultures and 81% of patients with negative cultures. Based on a 14.5% prevalence of GABHS among WIC patients, Strep A OIA improved the overall WIC physician outcome from 58 to 74%. Based on a 31.5% prevalence of GABHS among PED patients, Strep A OIA improved the PED physician outcome from 64 to 84%. Had Strep A OIA alone guided therapeutic choice, physicians would have prescribed an appropriate antibiotic course for 95% of the patients at the time of the initial encounter. We conclude that the use of Strep A OIA improves physician outcome. PMID:9817856

  16. Travel Destinations and Sexual Behavior as Indicators of Antibiotic Resistant Shigella Strains--Victoria, Australia.

    PubMed

    Lane, Courtney R; Sutton, Brett; Valcanis, Mary; Kirk, Martyn; Walker, Cathryn; Lalor, Karin; Stephens, Nicola

    2016-03-15

    Knowledge of relationships between antibiotic susceptibility of Shigella isolates and travel destination or other risk factors can assist clinicians in determining appropriate antibiotic therapy prior to susceptibility testing. We describe relationships between resistance patterns and risk factors for acquisition in Shigella isolates using routinely collected data for notified cases of shigellosis between 2008 and 2012 in Victoria, Australia. We included all shigellosis patients notified during the study period, where Shigella isolates were tested for antimicrobial sensitivity using Clinical and Laboratory Standards Institute breakpoints. Cases were interviewed to collect data on risk factors, including recent travel. Data were analyzed using Stata 13.1 to examine associations between risk factors and resistant strains. Of the 500 cases of shigellosis, 249 were associated with overseas travel and 210 were locally acquired. Forty-six of 51 isolates of Indian origin displayed decreased susceptibility or resistance to ciprofloxacin. All isolates of Indonesian origin were susceptible to ciprofloxacin. Twenty-six travel-related isolates were resistant to all tested oral antimicrobials. Male-to-male sexual contact was the primary risk factor for 80% (120/150) of locally acquired infections among adult males, characterized by distinct periodic Shigella sonnei outbreaks. Clinicians should consider travel destination as a marker for resistance to common antimicrobials in returning travelers, where severe disease requires empirical treatment prior to receipt of individual sensitivity testing results. Repeated outbreaks of locally acquired shigellosis among men who have sex with men highlight the importance of prevention and control measures in this high-risk group. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Study of bacterial meningitis in children below 5 years with comparative evaluation of gram staining, culture and bacterial antigen detection.

    PubMed

    Yadhav Ml, Kala

    2014-04-01

    Bacterial meningitis is one of the most serious infections seen in infants and children, which is associated with acute complications and chronic morbidity. Infections of Central Nervous System (CNS) still dominate the scene of childhood neurological disorders in most of the developing tropical countries. To isolate, identify and determine the antibiotic susceptibility patterns of pathogens associated with bacterial meningitis. We also aimed to comparatively evaluate of Gram staining, culture and bacterial antigen detection in cerebrospinal fluid samples. Present comparative study included 100 CSF samples of children below the age of 5 years, who were clinically suspected meningitis cases. The samples were subjected to Gram staining, culture and Latex agglutination test (LAT). The organisms isolated in the study were characterized and antibiotic susceptibility test was done according to standard guidelines. It was done by using Gaussian test. Of the 100 cases, 24 were diagnosed as Acute bacterial meningitis (ABM) cases by. Gram staining, culture and latex agglutination test. 21 (87.5%) cases were culture positive, with 2 cases being positive for polymicrobial isolates. Gram staining was positive in 17 (70.53%) cases and LAT was positive in 18 (33.33%) cases. Streptococcus pneumoniae was the predominant organism which was isolated and it was sensitive to antibiotics. In the present study, male to female ratio was 1.27:1, which showed a male preponderance. With the combination of Gram staining, culture, and LAT, 100% sensitivity and specificity can be achieved (p < 0.001). Gram staining and LAT can detect 85% of cases of ABM. Bacterial meningitis is a medical emergency and making an early diagnosis and providing treatment early are life saving and they reduce chronic morbidity.

  18. Clinical and Diagnostic Aspects of Brucellosis and Antimicrobial Susceptibility of Brucella Isolates in Hamedan, Iran.

    PubMed

    Torkaman Asadi, Fatemeh; Hashemi, Seyyed Hamid; Alikhani, Mohammad Yousef; Moghimbeigi, Abbas; Naseri, Zahra

    2017-05-24

    Current drug regimens for brucellosis are associated with relatively high rates of therapeutic failure or relapse. Reduced antimicrobial susceptibility of Brucella spp. has been proposed recently as a potential cause of therapeutic failure. The aim of this study was to evaluate the antibiotic resistance pattern of Brucella melitensis clinical isolates by E-test method in Hamadan, west of Iran. In a 15-month period, all patients with suspected brucellosis were enrolled. Blood specimens were collected for diagnosis of brucellosis by BACTEC system and serological tests. Antimicrobial susceptibility of clinical isolates to 7 antibiotics was assessed by the E-test method. One hundred forty-nine patients with brucellosis were evaluated. 38.3% of cultures of clinical samples were positive for BACTEC system, of which 91.2% were associated with a positive serological test result. No significant associations were found between serology and the culture method. All Brucella isolates were susceptible to doxycycline, streptomycin, gentamicin, ciprofloxacin, and moxifloxacin. However, decreased sensitivity to rifampin and trimethoprim-sulfamethoxazole was found in 35.1% and 3.5% of isolates, respectively. Because of the high rates of intermediate sensitivity to rifampin among Brucella isolates, this drug should be prescribed with caution. We recommend restricting the use of rifampin for treatment of brucellosis except as an alternative drug for special situations.

  19. Antimicrobial resistance of abnormal vaginal discharges microorganisms in Ouagadougou, Burkina Faso

    PubMed Central

    Karou, Simplice D; Djigma, Florencia; Sagna, Tani; Nadembega, Christelle; Zeba, Moctar; Kabre, Aboudoulaye; Anani, Kokou; Ouermi, Djeneba; Gnoula, Charlemagne; Pietra, Virginio; Pignatelli, Salvatore; Simpore, Jacques

    2012-01-01

    Objective To assess the prevalence of bacterial strains and fungal strains infecting the vaginal tract and test their sensitivity to antibiotics in women attending Saint Camille Medical Centre in Ouagadougou. Methods From January 2008 to December 2009, a total of 2 000 vaginal swabs were cultivated for bacterial and fungal identification and isolation. Furthermore, bacterial strains were tested for their susceptibility to several antibiotics used in routine in the centre. Results The results revealed that microbial isolation and identification was attempted for 1 536/2 000 sample, a positivity rate of 76.80%. Candida albicans (48.76%), followed by Escherichia coli (16.67%), Streptococcus agalactiae (8.14%) and Staphylococcus aureus (7.55%) were the major agents of genital tract infections in patients. Mycoplasma hominis and Ureaplasma urealyticum combined accounted for less than 7%. Trichomonas vaginalis was identified in 1.04% cases. The antimicrobial tests revealed that the microorganisms developed resistance to several antibiotics including beta lactams. However, antibiotics such as cefamenzol, ciprofloxacin and norfloxacin were still active on these bacteria. Conclusions The results reveal that many sexually active women are infected by one or more microbial pathogens, probably because of the lack of hygiene or the adoption of some risky behaviors, such as not using condoms or having multiple sexual partners. Efforts should be made to address these points in the country. PMID:23569916

  20. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    PubMed

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  1. Wound infections with multi-drug resistant bacteria.

    PubMed

    Pîrvănescu, H; Bălăşoiu, M; Ciurea, M E; Bălăşoiu, A T; Mănescu, R

    2014-01-01

    Wound infections remain a public health problem, despite the progress made on improving surgical techniques and antibiotic prophylaxis application. Misuse of antibiotics to prevent bacterial infections leads to increased bacterial resistance and their dissemination. The study refers to 470 samples taken from wound infections of which only multi-drug resistant strains were selected for study, using two special culture mediums (Metistaph-2 for methicillin-resistant staphylococci and ESBLs-Agar for extended-spectrum betalactamases secreting bacteria). Sensitivity of these strains was tested using the diffusion method. Of all studied samples, a rate of 27.6 bacterial strains showed multi-drug resistance. Among them stood primarily Staphylococcus aureus; both MRSA strains and ESBL Gram negative bacteria studied showed high resistance to aminoglycosides, quinolones, third generation cephalosporins and low to fourth generation cephalosporins. No vancomycin resitant nor vancomycin-intermediate Staphylococcus aureus strains were isolated. Knowing the antibiotic resistance is very useful in antibiotic "cycling"application, avoiding this way the emergence of increased resistant strains. Celsius.

  2. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model

    PubMed Central

    Barbosa, Camilo; Beardmore, Robert; Jansen, Gunther

    2018-01-01

    The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction—irrespective of whether combinations were compared at the same level of inhibition or not—while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution. PMID:29708964

  3. Antibiotics: MedlinePlus Health Topic

    MedlinePlus

    ... or not using them properly, can add to antibiotic resistance . This happens when bacteria change and become able ... ports Pseudomembranous colitis Sensitivity analysis Related Health Topics Antibiotic Resistance Bacterial Infections Medicines National Institutes of Health The ...

  4. Tat-functionalized liposomes for the treatment of meningitis: an in vitro study

    PubMed Central

    Bartomeu Garcia, Caterina; Shi, Di; Webster, Thomas J

    2017-01-01

    Bacterial meningitis has become a global concern, because of the emergence of antibiotic-resistant bacteria. It has been demonstrated that liposomes can enter bacteria, thus providing a possible treatment for numerous infections, including meningitis. Fusogenic liposomes are pH-sensitive with a high capacity to fuse with the bacteria membrane and promote intracellular drug release. Moreover, this ability can be improved by using cell-penetrating peptides (such as Tat47–57, which is a peptide derived from the Tat protein of HIV). The purpose of this in vitro study was to demonstrate for the first time the ability of the presently prepared fusogenic liposomes, which were spherical particles with a diameter of 100 nm loaded with antibiotics and functionalized with-cell penetrating peptides (Tat47–57), to fight the main bacteria that cause meningitis. For this, vancomycin, methicillin, and ampicillin antibiotics were loaded inside fusogenic liposomes to fight Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Antibacterial activity of Tat-functionalized and nonfunctionalized liposomes loaded with antibiotics was tested by determining bacteria colony-forming units and growth-curve assays coupled with live/dead assays using fluorescence microscopy. Results showed a remarkable decrease in antibiotic minimum inhibitory concentration when all of the bacteria were treated with these novel liposomes, especially for the functionalized liposomes loaded with methicillin. With antibiotic concentrations of 1.7–3 µg/mL for Tat-functionalized liposomes loaded with methicillin, the bacteria population was totally eradicated. Cytotoxicity tests with astrocytes and endothelial cells, major cellular components of the blood–brain barrier, were also performed for all of the liposomes, including free antibiotic and the Tat peptide. Results showed much promise for the further study of the presently formulated liposomes to treat meningitis. PMID:28442909

  5. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

    PubMed

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D

    2014-07-01

    An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.

    PubMed

    Tang, Yanyan; Zhen, Li; Liu, Jingqing; Wu, Jianmin

    2013-03-05

    For appropriate selection of antibiotics in the treatment of pathogen infection, rapid antibiotic susceptibility testing (AST) is urgently needed in clinical practice. This study reports the utilization of a microfluidic pH sensor for monitoring bacterial growth rate in culture media spiked with different kinds of antibiotics. The microfluidic pH sensor was fabricated by integration of pH-sensitive chitosan hydrogel with poly(dimethylsiloxane) (PDMS) microfluidic channels. For facilitating the reflectometric interference spectroscopic measurements, the chitosan hydrogel was coated on an electrochemically etched porous silicon chip, which was used as the substrate of the microfluidic channel. Real-time observation of the pH change in the microchannel can be realized by Fourier transform reflectometric interference spectroscopy (FT-RIFS), in which the effective optical thickness (EOT) was selected as the optical signal for indicating the reversible swelling process of chitosan hydrogel stimulated by pH change. With this microfluidic pH sensor, we demonstrate that confinement of bacterial cells in a nanoliter size channel allows rapid accumulation of metabolic products and eliminates the need for long-time preincubation, thus reducing the whole detection time. On the basis of this technology, the whole bacterial growth curve can be obtained in less than 2 h, and consequently rapid AST can be realized. Compared with conventional methods, the AST data acquired from the bacterial growth curve can provide more detailed information for studying the antimicrobial behavior of antibiotics during different stages. Furthermore, the new technology also provides a convenient method for rapid minimal inhibition concentration (MIC) determination of individual antibiotics or the combinations of antibiotics against human pathogens that will find application in clinical and point-of-care medicine.

  7. Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs.

    PubMed

    Wanninger, Sabrina; Donati, Manuela; Di Francesco, Antonietta; Hässig, Michael; Hoffmann, Karolin; Seth-Smith, Helena M B; Marti, Hanna; Borel, Nicole

    2016-01-01

    In pigs, Chlamydia suis has been associated with respiratory disease, diarrhea and conjunctivitis, but there is a high rate of inapparent C. suis infection found in the gastrointestinal tract of pigs. Tetracycline resistance in C. suis has been described in the USA, Italy, Switzerland, Belgium, Cyprus and Israel. Tetracyclines are commonly used in pig production due to their broad-spectrum activity and relatively low cost. The aim of this study was to isolate clinical C. suis samples in cell culture and to evaluate their antibiotic susceptibility in vitro under consideration of antibiotic treatment on herd level. Swab samples (n = 158) identified as C. suis originating from 24 farms were further processed for isolation, which was successful in 71% of attempts with a significantly higher success rate from fecal swabs compared to conjunctival swabs. The farms were divided into three treatment groups: A) farms without antibiotic treatment, B) farms with prophylactic oral antibiotic treatment of the whole herd consisting of trimethoprime, sulfadimidin and sulfathiazole (TSS), or C) farms giving herd treatment with chlortetracycline with or without tylosin and sulfadimidin (CTS). 59 isolates and their corresponding clinical samples were selected and tested for the presence or absence of the tetracycline resistance class C gene [tet(C)] by conventional PCR and isolates were further investigated for their antibiotic susceptibility in vitro. The phenotype of the investigated isolates was either classified as tetracycline sensitive (Minimum inhibitory concentration [MIC] < 2 μg/ml), intermediate (2 μg/ml ≤ MIC < 4 μg/ml) or resistant (MIC ≥ 4 μg/ml). Results of groups and individual pigs were correlated with antibiotic treatment and time of sampling (beginning/end of the fattening period). We found clear evidence for selective pressure as absence of antibiotics led to isolation of only tetracycline sensitive or intermediate strains whereas tetracycline treatment resulted in a greater number of tetracycline resistant isolates.

  8. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    PubMed

    Lee, Spencer; Razqan, Ghaida Saleh Al; Kwon, Dong H

    2017-01-15

    Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC 90 and MBC 86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of < 0.5 and cell numbers' decrease per ml of >2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat infections with A. baumannii regardless of antibiotic resistance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Changing patterns in sensitivity of causative organisms of septicaemia in children: the need for quinolones.

    PubMed

    Orogade, A A; Akuse, R M

    2004-03-01

    A review of the pattern, and antibiotic sensitivities of blood culture isolates over a 3 year period in children presenting to the Paediatric Unit of Ahmadu Bello University Teaching Hospital, Kaduna is reported. Positive blood culture isolates were obtained in 26.9% of 1,982 children. The most prevalent isolates were Staphylococcus aureus (59.9%), Escherichia coli (16.9%) and Klebsiella (16.3%). There was a striking paucity of isolation of Salmonella typhi (1.3%) and Streptococcus. Sensitivity to commonly used drugs like ampicillin/cloxacillin, genticin, ceftazidime and chloramphenicol was low (8.0-50.0%), with a corresponding delayed fever resolution and prolonged hospital stay. 31.0-83.3% of the isolates were highly sensitive to pefloxacin, norfloxacin and ofloxacin, which were not generally recommended for use in paediatric patients. In two patients with no response to commonly used antibiotics, use of quinolones lysed their fever within 48 hours. This change of antibiotic sensitivity patterns calls for a thorough investigation into the potential role of these quinolones in paediatric chemotherapeutics either singly or in appropriate combinations with existing antibiotics.

  10. [Sensitivity and antibiotic resistance in infections of the musculoskeletal system].

    PubMed

    Mata-Hernández, Argenis; Rivera-Villa, Adrián Huematzin; Miguel-Pérez, Adrián; Pérez-Atanasio, José Manuel; Torres-González, Rubén

    2016-01-01

    Infections of the musculoskeletal system are a devastating complication for patients, due to it's long rehabilitation process and even sometimes the removal of the implant, the chronicity of infection, is often due to lack of coverage in empirical antibiotics. A retrospective, observational, descriptive cohort study was performed. All cultures form musculoskeletal system infected patients reported of sensitivity and resistance of germs isolated were analyzed. A total of 143 positive results were included. Reported more frequent germ Staphylococcus aureus accounted for 75 positive cases, followed by Escherichia coli with 31 positive results. Antibiotics with better sensitivity according to the type of microorganisms were trimethoprim-sulfamethoxazole and vancomycin, levofloxacin and linezolid, gentamicin, erythromycin and amikacin. Regarding antibiotic resistance, those reported with the highest percentage were penicillin G, amoxicillin with clavulanic acid and ampicillin. We recommend using empirical treatments in musculoskeletal system infections, trimethoprim-sulfamethoxazole are the best choice because they have the same sensitivity compare with vancomycin and a resistance rate of 7.6%. Betalactamics have a high percentage of resistance and low sensitivity so we must consider alternatives.

  11. Cost-Effectiveness of Antibiotic Prophylaxis Strategies for Transrectal Prostate Biopsy in an Era of Increasing Antimicrobial Resistance.

    PubMed

    Lee, Kyueun; Drekonja, Dimitri M; Enns, Eva A

    2018-03-01

    To determine the optimal antibiotic prophylaxis strategy for transrectal prostate biopsy (TRPB) as a function of the local antibiotic resistance profile. We developed a decision-analytic model to assess the cost-effectiveness of four antibiotic prophylaxis strategies: ciprofloxacin alone, ceftriaxone alone, ciprofloxacin and ceftriaxone in combination, and directed prophylaxis selection based on susceptibility testing. We used a payer's perspective and estimated the health care costs and quality-adjusted life-years (QALYs) associated with each strategy for a cohort of 66-year-old men undergoing TRPB. Costs and benefits were discounted at 3% annually. Base-case resistance prevalence was 29% to ciprofloxacin and 7% to ceftriaxone, reflecting susceptibility patterns observed at the Minneapolis Veterans Affairs Health Care System. Resistance levels were varied in sensitivity analysis. In the base case, single-agent prophylaxis strategies were dominated. Directed prophylaxis strategy was the optimal strategy at a willingness-to-pay threshold of $50,000/QALY gained. Relative to the directed prophylaxis strategy, the incremental cost-effectiveness ratio of the combination strategy was $123,333/QALY gained over the lifetime time horizon. In sensitivity analysis, single-agent prophylaxis strategies were preferred only at extreme levels of resistance. Directed or combination prophylaxis strategies were optimal for a wide range of resistance levels. Facilities using single-agent antibiotic prophylaxis strategies before TRPB should re-evaluate their strategies unless extremely low levels of antimicrobial resistance are documented. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. An implementation of next generation sequencing for prevention and diagnosis of urinary tract infection in urology.

    PubMed

    Mouraviev, Vladimir; McDonald, Michael

    2018-06-01

    The changing face of current infection phenotypes from planktonic to biofilm type has been developed implicating bacterial biofilms in recurrent infection. To date, no specific medical treatment exists to specifically target biofilms in the human host. Similarly, the identification of a biofilm has relied upon the analysis of tissue samples with electron microscopy or DNA identification with polymerase chain reaction (PCR) and sequencing. Standard culture and sensitivity test is not able to detect a presence of biofilms. Two types of molecular microbial diagnostic testing 'levels' are performed as noted below. In both types of analysis, the microbial DNA is extracted from the patient's sample. The patient report contains information about the pathogenic bacterial and fungal microorganisms detected, bacterial load and resistance genes to different antibiotics. Once the bacteria have been identified antibiotic recommendations are made based on research confirming the effectiveness of treatment. The technique was tested in 112 patients in different areas of urology for prevention and treatment purpose. The clinical application of next generation sequence in different clinical phase I-II trials (acute cystitis in 56 patients, rectal swabs before transrectal prostate biopsy in 32 men, neurogenic bladder in 13 patients, chronic bacterial prostatitis in 17 men) demonstrated that this novel approach extends our knowledge about the microbiome of the urogenital tract in both men and women. DNA sequence has a high sensitivity to detect a bacterial and fungal association with resistant genes to antibiotics revealed allowing to implement a targeted and individual prevention and treatment of urinary tract infection (UTI) with improved efficacy compared to standard culture and sensitivity technique. The next generation DNA sequence technology enables the discovery of new concepts regarding the role of microorganisms in diseases of the urinary tract with an individualized approach for a more accurate diagnosis, prevention, prophylaxis and treatment of UTI.

  13. Antibiotic Sensitivity Profiling and Virulence Potential of Campylobacter jejuni Isolates from Estuarine Water in the Eastern Cape Province, South Africa.

    PubMed

    Otigbu, Anthony C; Clarke, Anna M; Fri, Justine; Akanbi, Emmanuel O; Njom, Henry A

    2018-05-06

    Campylobacter jejuni (CJ) is a zoonotic microbe and a major causative organism of diarrheal infection in humans that often has its functional characteristics inactivated in stressed conditions. The current study assessed the correlation between recovered CJ and water quality parameters and the drug sensitivity patterns of the pathogen to frontline antibiotics in human and veterinary medicine. Water samples ( n = 244) from rivers/estuarines were collected from April⁻September 2016, and physicochemical conditions were recorded on-site. CJ was isolated from the samples using standard microbiological methods and subjected to sensitivity testing to 10 antibiotics. Mean CJ counts were between 1 and 5 logs (CFU/mL). Ninety-five isolates confirmed as CJ by PCR showed varying rates of resistance. Sensitivity testing showed resistance to tetracycline (100%), azithromycin (92%), clindamycin (84.2%), clarithromycin and doxycycline (80%), ciprofloxacin (77.8%), vancomycin (70.5%), erythromycin (70%), metronidazole (36.8%) and nalidixic acid (30.5%). Virulence encoding genes were detected in the majority 80/95, 84.2%) of the confirmed isolates from cdtB ; 60/95 (63.2%) from cstII ; 49/95 (51.6%) from cadF ; 45/95 (47.4%) from clpP ; 30/95 (31.6%) from htrB , and 0/95 (0%) from csrA . A multiple resistance cme ABC active efflux pump system was present in 69/95 (72.6) isolates. The presence of CJ was positively correlated with temperature ( r = 0.17), pH ( r = 0.02), dissolved oxygen ( r = 0.31), and turbidity ( r = 0.23) but negatively correlated with salinity ( r = −0.39) and conductivity ( r = −0.28). The detection of multidrug resistant CJ strains from estuarine water and the differential gene expressions they possess indicates a potential hazard to humans. Moreover, the negative correlation between the presence of the pathogen and physicochemical parameters such as salinity indicates possible complementary expression of stress tolerance response mechanisms by wild-type CJ strains.

  14. UTI diagnosis and antibiogram using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  15. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  16. Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.

    PubMed

    Gislason, April S; Choy, Matthew; Bloodworth, Ruhi A M; Qu, Wubin; Stietz, Maria S; Li, Xuan; Zhang, Chenggang; Cardona, Silvia T

    2017-01-01

    Chemogenetic approaches to profile an antibiotic mode of action are based on detecting differential sensitivities of engineered bacterial strains in which the antibacterial target (usually encoded by an essential gene) or an associated process is regulated. We previously developed an essential-gene knockdown mutant library in the multidrug-resistant Burkholderia cenocepacia by transposon delivery of a rhamnose-inducible promoter. In this work, we used Illumina sequencing of multiplex-PCR-amplified transposon junctions to track individual mutants during pooled growth in the presence of antibiotics. We found that competition from nontarget mutants magnified the hypersensitivity of a clone underexpressing gyrB to novobiocin by 8-fold compared with hypersensitivity measured during clonal growth. Additional profiling of various antibiotics against a pilot library representing most categories of essential genes revealed a two-component system with unknown function, which, upon depletion of the response regulator, sensitized B. cenocepacia to novobiocin, ciprofloxacin, tetracycline, chloramphenicol, kanamycin, meropenem, and carbonyl cyanide 3-chlorophenylhydrazone, but not to colistin, hydrogen peroxide, and dimethyl sulfoxide. We named the gene cluster esaSR for enhanced sensitivity to antibiotics sensor and response regulator. Mutational analysis and efflux activity assays revealed that while esaS is not essential and is involved in antibiotic-induced efflux, esaR is an essential gene and regulates efflux independently of antibiotic-mediated induction. Furthermore, microscopic analysis of cells stained with propidium iodide provided evidence that depletion of EsaR has a profound effect on the integrity of cell membranes. In summary, we unraveled a previously uncharacterized two-component system that can be targeted to reduce antibiotic resistance in B. cenocepacia. Copyright © 2016 American Society for Microbiology.

  17. Effects of ten antibiotics on seed germination and root elongation in three plant species.

    PubMed

    Hillis, Derek G; Fletcher, James; Solomon, Keith R; Sibley, Paul K

    2011-02-01

    We applied a screening-level phytotoxicity assay to evaluate the effects of 10 antibiotics (at concentrations ranging from 1 to 10,000 μg/L) on germination and early plant growth using three plant species: lettuce (Lactuca sativa), alfalfa (Medicago sativa), and carrot (Daucus carota). The range of phytotoxicity of the antibiotics was large, with EC₂₅s ranging from 3.9 μg/L to >10,000 μg/L. Chlortetracycline, levofloxacin, and sulfamethoxazole were the most phytotoxic antibiotics. D. carota was the most sensitive plant species, often by an order of magnitude or more, followed by L. sativa and then M. sativa. Plant germination was insensitive to the antibiotics, with no significant decreases up to the highest treatment concentration of 10,000 μg/L. Compared with shoot and total length measurements, root elongation was consistently the most sensitive end point. Overall, there were few instances where measured soil concentrations, if available in the publicly accessible literature, would be expected to exceed the effect concentrations of the antibiotics evaluated in this study. The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants.

  18. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    PubMed Central

    Kyaw, Bhone Myint; arora, Shuchi; Lim, Chu Sing

    2012-01-01

    Methicillin resistant Staphylococcus aureus (MRSA) infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore). Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections. PMID:24031910

  19. In Vitro Anti-Helicobacter pylori Activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics

    PubMed Central

    Pinchuk, Irina V.; Bressollier, Philippe; Verneuil, Bernard; Fenet, Bernard; Sorokulova, Irina B.; Mégraud, Francis; Urdaci, Maria C.

    2001-01-01

    A limited number of antibiotics can be used against Helicobacter pylori infection, and resistance jeopardizes the success of treatment. Therefore, a search for new agents is warranted. The use of probiotics to enhance gastrointestinal health has been proposed for many years, but the scientific basis of the prophylactic and therapeutic actions of probiotics has not yet been clearly delineated. Probiotic strain Bacillus subtilis 3, whose safety has previously been demonstrated, is known to have antagonistic properties against species of the family Enterobacteriaceae. In the present study, it was also found to inhibit H. pylori. The anti-H. pylori activity present in the cell-free supernatant was not related to pH or organic acid concentration. It was heat stable and protease insensitive. At least two antibiotics, detected by thin-layer chromatography (Rf values, 0.47 and 0.85, respectively) and confirmed by high-performance liquid chromatographic analysis, were found to be responsible for this anti-H. pylori activity. All H. pylori strains tested were sensitive to both compounds. One of these compounds was identified as amicoumacin A, an antibiotic with anti-inflammatory properties. MICs for H. pylori determined in solid and liquid media ranged between 1.7 and 6.8 μg/ml and 0.75 and 2.5 μg/ml, respectively. The underestimation of MICs determined in solid medium may be due to physicochemical instability of the antibiotic under these test conditions. An additive effect between amicoumacin A and the nonamicoumacin antibiotic against H. pylori was demonstrated. PMID:11600371

  20. [Successful treatment with chloramphenicol in four pediatric cases of intractable bacterial meningitis].

    PubMed

    Morita, Kayo; Abe, Yu-ichi; Itano, Atsushi; Musha, Ikuma; Koga, Takeshi; Yamazaki, Taro; Yamanouchi, Hideo

    2016-01-01

    Chloramphenicol (CP) is recently one of the rarely-used antibiotics. In this study, we present four patients with intractable bacterial meningitis, who were successfully treated with CP and discuss the therapeutic indications of CP in these pediatric cases. The patients were diagnosed as bacterial meningitis at the ages ranging from 2 months to 1 year and 4 months. The causative organisms found in three of the patients were H. influenzae and in the fourth patient, S. pneumoniae. According to the microbial sensitivity tests, these organisms were highly sensitive to antibiotics including ceftriaxone, meropenem and/or panipenem/betamipron. Treatment with these antibiotics was initially effective; however, recurrences of meningitis appeared in all patients. Administration of CP (100 mg/kg/day) started between the 11th and the 58th days, and was continued for 9 days up to 19 days. Their fever had disappeared within four days after the administration of CP, and it was confirmed that all patients completely recovered from meningitis. Two of the patients developed a mild degree of anemia, but soon recovered after the discontinuation of CP. None of them had neurological sequela. We recommend CP as one of the choices for the treatment of intractable bacterial meningitis.

  1. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus.

    PubMed

    Shibata, Hirofumi; Kondo, Kyoko; Katsuyama, Ryo; Kawazoe, Kazuyoshi; Sato, Yoichi; Murakami, Kotaro; Takaishi, Yoshihisa; Arakaki, Naokatu; Higuti, Tomihiko

    2005-02-01

    We found that ethyl gallate purified from a dried pod of tara (Caesalpinia spinosa) intensified beta-lactam susceptibility in methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus (MRSA and MSSA strains, respectively). This compound and several known alkyl gallates were tested with MRSA and MSSA strains to gain new insights into their structural functions in relation to antimicrobial and beta-lactam susceptibility-intensifying activities. The maximum activity of alkyl gallates against MRSA and MSSA strains occurred at 1-nonyl and 1-decyl gallate, with an MIC at which 90% of the isolates tested were inhibited of 15.6 microg/ml. At concentrations lower than the MIC, alkyl gallates synergistically elevated the susceptibility of MRSA and MSSA strains to beta-lactam antibiotics. Such a synergistic activity of the alkyl gallates appears to be specific for beta-lactam antibiotics, because no significant changes were observed in the MICs of other classes of antibiotics examined in this study. The length of the alkyl chain was also associated with the modifying activity of the alkyl gallates, and the optimum length was C5 to C6. The present work clearly demonstrates that the length of the alkyl chain has a key role in the elevation of susceptibility to beta-lactam antibiotics.

  2. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    PubMed

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  3. Detection of meca gene from methicillin resistant staphylococcus aureus isolates of north sumatera

    NASA Astrophysics Data System (ADS)

    Septiani Nasution, Gabriella; Suryanto, Dwi; Lia Kusumawati, R.

    2018-03-01

    Methicillin Resistant Staphylococcus aureus (MRSA) is a major pathogen associated with hospital-acquired infections (nosocomial infections). MRSA is a type of S. aureus resistant to the sub-group of beta-lactam antibiotics such as penicillin, cephalosporin, monobactam, and carbapenem. MRSA is resistant because of genetic changes caused by exposure to irrational antibiotic therapy. This study aimed to detect mecA gene in North Sumatra isolates of MRSA and to determine the pattern of antibiotic resistance in S.aureus isolates classified as MRSA by Vitek 2 Compact in the Central Public Hospital Haji Adam Malik, Medan. Samples were 40 isolates of S. aureus classified as MRSA obtained from clinical microbiology specimens. DNA isolation of the isolates was conducted by a method of freeze-thaw cycling. Amplification of mecA gene was done by PCR technique using specific primer for the gene. PCR products were visualized using mini-gel electrophoresis. The results showed that all MRSA isolates showed to have 533 bp band of mecA. Antibiotics test of Vitek 2 Compact showed that despite all isolates were resistant to beta-lactam antibiotics groups; the isolates showed multidrug resistant to other common antibiotics, such as aminoglycosides, macrolides, and fluoroquinolones. However, they were still sensitive to vancomycin (82.5% isolates), linezolid (97.5% isolates), and tigecycline (100% isolates).

  4. Antimicrobial sensitivity--A natural resource to be protected by a Pigouvian tax?

    PubMed

    Vågsholm, Ivar; Höjgård, Sören

    2010-08-01

    Since their discovery more than 70 years ago antibiotic drugs have been efficient tools for treating bacterial infections, and their use has reduced the number of fatalities and the suffering from bacterial diseases. However, the use of antibiotics may lead to resistance to the same or other antibiotics. The risk of resistance appears to be larger in veterinary medicine, since antibiotics have been given as feed-additives in animal production, the amounts given are larger, and the risk of selecting the wrong antibiotic is higher due to lack of diagnostic facilities. Historically, as resistance developed, new classes of antibiotics were developed, but today however, the flow of new substances has slowed. The resistance that arises from antibiotic use is a negative externality or a cost that is not included in the price of antibiotics since it affects the public good of antibiotic sensitivity. The negative externality implies that antibiotic consumption becomes too high. Antibiotic use can be restricted by e.g., prohibiting the use in animal feeding stuffs, prescription only use, or banning the use for animals or by using economic incentives, but restrictions on antibiotic use could have negative effects on the development of new antimicrobials since restrictions might reduce the profitability of such efforts to the pharmaceutical industry. It is therefore of interest to see what economic theory can contribute towards a solution. The objective of this study is to examine if a Pigouvian tax is an option for balancing the externalities and incentives for veterinary drug use. However, as a practical solution, it is suggested to use the costs of developing new antibiotics for determining the tax. The magnitude the tax based on European Union numbers ranges between 29 and 287euro per kilogram active substance or between 9 and 86% of the average price of commonly used antibiotics depending on the foreseen period in years (1-10 years) between the development of a new antibiotic drug. Hence, the sensitivity of bacteria to antibiotics should be managed as a finite natural resource. A tax based on the expected costs of development new antibiotic substances may offer a practical option for balancing the incentives and externalities of antibiotic use and development. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Antibiotic Exposure in the Community and Resistance Patterns of Escherichia coli Community-Acquired Bloodstream Infection.

    PubMed

    Gottesman, Bat-Sheva; Shitrit, Pnina; Katzir, Michal; Chowers, Michal

    2018-06-01

    Increasing antibiotic resistance in the community results in greater use of empiric broad spectrum antibiotics for patients at hospital admission. As a measure of antibiotic stewardship it is important to identify a patient population that can receive narrow spectrum antibiotics. To evaluate resistance patterns of Escherichia coli bloodstream infection (BSI) from strictly community-acquired infection and the impact of recent antibiotic use on this resistance. This single center, historical cohort study of adult patients with E. coli BSI was conducted from January 2007 to December 2011. Patients had no exposure to any healthcare facility and no chronic catheters or chronic ulcers. Data on antibiotic use during the previous 90 days was collected and relation to resistance patterns was assessed. Of the total number of patients, 267 BSI cases met the entry criteria; 153 patients (57%) had bacteria sensitive to all antibiotics. Among 189 patients with no antibiotic exposure, 61% of isolates (116) were pan-sensitive. Resistance to any antibiotic appeared in 114 patients and 12 were extended-spectrum beta-lactamase (ESBL) producers. Quinolone use was the main driver of resistance to any antibiotic and to ESBL resistance patterns. In a multivariate analysis, older age (odds ratio 1.1) and quinolone use (odds ratio 7) were independently correlated to ESBL. At admission, stratification by patient characteristics and recent antibiotic use can help personalize primary empirical therapy.

  6. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom.

    PubMed

    Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A

    2016-11-01

    The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng L -1 to low µg L -1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradiance-photosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC 50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 µmol L -1 compared with an EC 50 of 17.6 µmol L -1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC 50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 µmol L -1 ; EC 50 0.33 µmol L -1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide useful insights into the impacts of antibiotics on algal species.

  7. [Sensitivity of meningococci to the antagonistic activity of nasopharyngeal microflora and antibiotics].

    PubMed

    Bochkov, I A; Larina, L I

    1977-12-01

    Comparative study of the meningococcus sensitivity of various serological groups with different localization in the human organism to the antagonistic activity of normal microbes of the nasopharynx and the antibiotics it was found that strains isolated from the cerebrospinal fluid of patients suffering from cerebrospinal meningitis, chiefly of serological group A, had the greatest resistance to the antagonists. Taking into consideration the leading epidemiological role of the cultures belonging to the serological group A in the USSR, it can be supposed that meningococcus sensitivity to the nasopharyngeal antagonists was of significance for the manifestation of their pathogenic properties. No association of the antibiotic sensitivity of the same strains with reference to a definite serological group or the site of the microbe localization was revealed.

  8. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    PubMed

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (<7) were extracted more efficiently under acidic conditions and antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  9. Assessment of the Risks of Mixtures of Major Use Veterinary Antibiotics in European Surface Waters.

    PubMed

    Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A

    2016-08-02

    Effects of single veterinary antibiotics on a range of aquatic organisms have been explored in many studies. In reality, surface waters will be exposed to mixtures of these substances. In this study, we present an approach for establishing risks of antibiotic mixtures to surface waters and illustrate this by assessing risks of mixtures of three major use antibiotics (trimethoprim, tylosin, and lincomycin) to algal and cyanobacterial species in European surface waters. Ecotoxicity tests were initially performed to assess the combined effects of the antibiotics to the cyanobacteria Anabaena flos-aquae. The results were used to evaluate two mixture prediction models: concentration addition (CA) and independent action (IA). The CA model performed best at predicting the toxicity of the mixture with the experimental 96 h EC50 for the antibiotic mixture being 0.248 μmol/L compared to the CA predicted EC50 of 0.21 μmol/L. The CA model was therefore used alongside predictions of exposure for different European scenarios and estimations of hazards obtained from species sensitivity distributions to estimate risks of mixtures of the three antibiotics. Risk quotients for the different scenarios ranged from 0.066 to 385 indicating that the combination of three substances could be causing adverse impacts on algal communities in European surface waters. This could have important implications for primary production and nutrient cycling. Tylosin contributed most to the risk followed by lincomycin and trimethoprim. While we have explored only three antibiotics, the combined experimental and modeling approach could readily be applied to the wider range of antibiotics that are in use.

  10. Diabetic foot infections: Current treatment and delaying the 'post-antibiotic era'.

    PubMed

    Lipsky, Benjamin A

    2016-01-01

    Treatment for diabetic foot infections requires properly diagnosing infection, obtaining an appropriate specimen for culture, assessing for any needed surgical procedures and selecting an empiric antibiotic regimen. Therapy will often need to be modified based on results of culture and sensitivity testing. Because of excessive and inappropriate use of antibiotics for treating diabetic foot infections, resistance to the usually employed bacteria has been increasing to alarming levels. This article reviews recommendations from evidence-based guidelines, informed by results of systematic reviews, on treating diabetic foot infections. Data from the pre-antibiotic era reported rates of mortality of about 9% and of high-level leg amputations of about 70%. Outcomes have greatly improved with appropriate antibiotic therapy. While there are now many oral and parenteral antibiotic agents that have demonstrated efficacy in treating diabetic foot infections, the rate of infection with multidrug-resistant pathogens is growing. This problem requires a multi-focal approach, including providing education to both clinicians and patients, developing robust antimicrobial stewardship programmes and using new diagnostic and therapeutic technologies. Recently, new methods have been developed to find novel antibiotic agents and to resurrect old treatments, like bacteriophages, for treating these difficult infections. Medical and political leaders have recognized the serious global threat posed by the growing problem of antibiotic resistance. By a multipronged approach that includes exerting administrative pressure on clinicians to do the right thing, investing in new technologies and encouraging the profitable development of new antimicrobials, we may be able to stave off the coming 'post-antibiotic era'. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Penicillin sensitivity among children without a positive history for penicillin allergy.

    PubMed

    Cetinkaya, Feyzullah; Cag, Yakup

    2004-06-01

    To establish the prevalence of positive penicillin skin tests among outpatients without any drug reaction history. Skin testing was performed in 147 children (aged 6-13 years) who had had received a penicillin preparation at least three times in the last 12 months without any allergic reaction. Before testing, detailed pediatric and allergy history were learned and then all children were tested with benzyl penicilloyl polylysin (PPL) and mixture of minor antigenic determinants. The test procedures were made epidermally and intradermally subsequently in every subject. The overall frequency of positive skin reactions to penicillin antigens was 10.2%. A mild systemic reaction was observed in one of the children during testing with PPL. We concluded that frequent use of penicillin and other beta-lactam antibiotics leads to sensitization of children in our study population despite these children seem to be asymptomatic during testing time. Copyright 2004 Blackwell Munksgaard

  12. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    PubMed

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  13. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    PubMed

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  14. Commercial test kits for detection of Lyme borreliosis: a meta-analysis of test accuracy

    PubMed Central

    Cook, Michael J; Puri, Basant K

    2016-01-01

    The clinical diagnosis of Lyme borreliosis can be supported by various test methodologies; test kits are available from many manufacturers. Literature searches were carried out to identify studies that reported characteristics of the test kits. Of 50 searched studies, 18 were included where the tests were commercially available and samples were proven to be positive using serology testing, evidence of an erythema migrans rash, and/or culture. Additional requirements were a test specificity of ≥85% and publication in the last 20 years. The weighted mean sensitivity for all tests and for all samples was 59.5%. Individual study means varied from 30.6% to 86.2%. Sensitivity for each test technology varied from 62.4% for Western blot kits, and 62.3% for enzyme-linked immunosorbent assay tests, to 53.9% for synthetic C6 peptide ELISA tests and 53.7% when the two-tier methodology was used. Test sensitivity increased as dissemination of the pathogen affected different organs; however, the absence of data on the time from infection to serological testing and the lack of standard definitions for “early” and “late” disease prevented analysis of test sensitivity versus time of infection. The lack of standardization of the definitions of disease stage and the possibility of retrospective selection bias prevented clear evaluation of test sensitivity by “stage”. The sensitivity for samples classified as acute disease was 35.4%, with a corresponding sensitivity of 64.5% for samples from patients defined as convalescent. Regression analysis demonstrated an improvement of 4% in test sensitivity over the 20-year study period. The studies did not provide data to indicate the sensitivity of tests used in a clinical setting since the effect of recent use of antibiotics or steroids or other factors affecting antibody response was not factored in. The tests were developed for only specific Borrelia species; sensitivities for other species could not be calculated. PMID:27920571

  15. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains.

    PubMed

    Hamza, Muhammad; Nadir, Maha; Mehmood, Nadir; Farooq, Adeel

    2016-01-01

    The aim of this study is to evaluate the effect of four triterpenoids such as oleanolic acid, ursolic acid, cycloastragenol, and beta-boswellic acid alone and in combination with antibiotics against Staphylococcus aureus strains. Sixteen clinical strains of S. aureus from infected wounds were isolated. Eight were methicillin-sensitive S. aureus (MSSA), and the other eight were methicillin-resistant S. aureus (MRSA). The activity was also seen in reference S. aureus American Type Culture Collection ™ strains. The activity of all the triterpenoids and antibiotics against S. aureus was evaluated by broth microdilution method. The effectiveness was judged by comparing the minimum inhibitory concentrations (MICs) of the compounds with antibiotics. The combination of antibiotics with compounds was evaluated by their fractional inhibitory concentrations (FIC). Against both clinical and reference MSSA strains, none of the compounds exhibited comparable activity to antibiotics vancomycin or cefradine except for ursolic acid (MIC 7.8 μg/ml). Against MRSA, all compounds (MIC 16-128 μg/ml) showed lesser activity than vancomycin (MIC 5.8 μg/ml). Among triterpenoid-antibiotic combinations, the most effective were ursolic acid and vancomycin against clinical strain MSSA (FIC S 0.17). However, overall, different combinations between triterpenoids and antibiotics showed 95%-46% ( P < 0.05) reduction in MICs of antibiotics compared to when antibiotics were used alone. Cefradine, a drug not suitable for treating MRSA (MIC = 45 μg/ml), showed a remarkable decrease in its MIC (87% P< 0.01) when it was used in combination with oleanolic acid or ursolic acid in both clinical and reference strains. The tested triterpenoids are relatively weaker than antibiotics. However, when used in combination with antibiotics, they showed remarkable synergistic effect and thus can help in prolonging the viability of these antibiotics against S. aureus infections. Furthermore, reduction in MIC of cefradine with oleanolic acid indicates their potential use against MRSA.

  16. Microbiological study of therapeutic soft contact lenses used in the treatment of recurrent corneal erosion syndrome.

    PubMed

    Park, Young Min; Kwon, Han Jo; Lee, Jong Soo

    2015-03-01

    To determine the bacteriological spectrum of the removed therapeutic soft contact lenses (TSCLs) and to establish efficacy of prophylactic antibiotics on TSCLs used for 2 weeks for treatment of patients with recurrent corneal erosion syndrome (RCES). This study included idiopathic RCES treated using highly oxygen-permeable silicone hydrogel contact lenses (CLs), and treated 4 times per day with topical tobramycin 3% for 2 weeks. After TSCLs were applied for 2 weeks, the lenses were removed with sterile forceps under which a speculum was inserted, and placed on blood agar with the inner face down. The TSCLs were analyzed for bacterial colonization, and antibiotic susceptibility tests were performed for the isolates, using disk diffusion. Of the 40 lenses analyzed, 9 (22.5%) yielded positive cultures. Staphylococcus epidermidis was the most commonly isolated microorganism; there were five methicillin-sensitive coagulase-negative staphylococci and two methicillin-resistant coagulase-negative staphylococci. Furthermore, we found two lenses that were colonized by Enterobacter gergoviae and Citrobacter freundii. All cultured bacteria showed intermediate or complete sensitivity to ciprofloxacin, tigecycline, and tobramycin. Despite bacterial colonization in 9 CLs, no clinical signs of infectious keratitis were found in any of the patients with prophylactic topical tobramycin 3%. In case of using TSCLs for 2 weeks, tobramycin or ciprofloxacin may be useful as prophylactic topical antibiotics for preventing secondary corneal infections. Considering currently growing incidence of ciprofloxacin-resistant ocular isolates, tobramycin seems to be a reasonable prophylactic topical antibiotic susceptible broad spectrum of bacteria in clinics.

  17. Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics

    PubMed Central

    Nair, Sandhya; Desai, Srividya; Poonacha, Nethravathi; Vipra, Aradhana

    2016-01-01

    P128 is an antistaphylococcal protein, comprising a cell wall-degrading enzymatic region and a Staphylococcus-specific binding region, which possesses specific and potent bactericidal activity against sensitive and drug-resistant strains of Staphylococcus aureus. To explore P128's ability to kill S. aureus in a range of environments relevant to clinical infection, we investigated the anti-S. aureus activity of P128 alone and in combination with standard-of-care antibiotics on planktonic and biofilm-embedded cells. P128 was found to have potent antibiofilm activity on preformed S. aureus biofilms as detected by CFU reduction and a colorimetric minimum biofilm inhibitory concentration (MBIC) assay. Scanning electron microscopic images of biofilms formed on the surfaces of microtiter plates and on catheters showed that P128 at low concentrations could destroy the biofilm structure and lyse the cells. When it was tested in combination with antibiotics which are known to be poor inhibitors of S. aureus in biofilms, such as vancomycin, gentamicin, ciprofloxacin, linezolid, and daptomycin, P128 showed highly synergistic antibiofilm activity that resulted in much reduced MBIC values for P128 and the individual antibiotics. The synergistic effect was seen for both sensitive and resistant isolates of S. aureus. Additionally, in an in vitro mixed-biofilm model mimicking the wound infection environment, P128 was able to prevent biofilm formation by virtue of its anti-Staphylococcus activity. The potent S. aureus biofilm-inhibiting activity of P128 both alone and in combination with antibiotics is an encouraging sign for the development of P128 for treatment of complicated S. aureus infections involving biofilms. PMID:27671070

  18. Long-Term Exposure of Agricultural Soil to Veterinary Antibiotics Changes the Population Structure of Symbiotic Nitrogen-Fixing Rhizobacteria Occupying Nodules of Soybeans (Glycine max).

    PubMed

    Revellin, Cécile; Hartmann, Alain; Solanas, Sébastien; Topp, Edward

    2018-05-01

    Antibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg -1 soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion of Bradyrhizobium liaoningense organisms even at the lowest dose of 0.1 mg · kg -1 soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association between in situ treatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted. IMPORTANCE Antibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen-fixing nodules on soybean roots in a long-term field experiment. By means of various sequencing and genomic fingerprinting techniques, the repeated exposure to a mixture of tylosin, sulfamethazine, and chlortetracycline each at a nominal soil concentration of 0.1 mg · kg -1 soil was found to modify the diversity and identity of bradyrhizobia occupying the nodules. Nodule occupancy was not associated with the level of sensitivity to the antibiotics, indicating that the observed effects were not due to the direct toxicity of the antibiotics on bradyrhizobia. Altogether, these results indicate the potential for long-term impacts of antibiotics on this agronomically important symbiosis. © Crown copyright 2018.

  19. Selected Heat-Sensitive Antibiotics Are Not Inactivated During Polymethylmethacrylate Curing and Can Be Used in Cement Spacers for Periprosthetic Joint Infection.

    PubMed

    Carli, Alberto V; Sethuraman, Arvinth S; Bhimani, Samrath J; Ross, Frederick P; Bostrom, Mathias P G

    2018-06-01

    Antibiotic use in polymethylmethacrylate (PMMA) spacers has historically been limited to those which are "heat-stable" and thus retain their antimicrobial properties after exposure to the high temperatures which occur during PMMA curing. This study examines the requirement of "heat stability" by measuring temperatures of Palacos and Simplex PMMA as they cure inside commercial silicone molds of the distal femur and proximal tibia. Temperature probes attached to thermocouples were placed at various depths inside the molds and temperatures were recorded for 20 minutes after PMMA introduced and a temperature curve for each PMMA product was determined. A "heat-stable" antibiotic, vancomycin, and a "heat-sensitive" antibiotic, ceftazidime, were placed in a programmable thermocycler and exposed to the same profile of PMMA curing temperatures. Antimicrobial activity against Staphylococcus aureus was compared for heat-treated antibiotics vs room temperature controls. Peak PMMA temperatures were significantly higher in tibial (115.2°C) vs femoral (85.1°C; P < .001) spacers. In the hottest spacers, temperatures exceeded 100°C for 3 minutes. Simplex PMMA produced significantly higher temperatures (P < .05) compared with Palacos. Vancomycin bioactivity did not change against S aureus with heat exposure. Ceftazidime bioactivity did not change when exposed to femoral temperature profiles and was reduced only 2-fold with tibial profiles. The curing temperatures of PMMA in knee spacers are not high enough or maintained long enough to significantly affect the antimicrobial efficacy of ceftazidime, a known "heat-sensitive" antibiotic. Future studies should investigate if more "heat-sensitive" antibiotics could be used clinically in PMMA spacers. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Antibiotic-Resistant Bacteria: There is Hope.

    ERIC Educational Resources Information Center

    Offner, Susan

    1998-01-01

    Argues that reduction in the use of antibiotics would enable antibiotic-sensitive bacteria to flourish. Presents an activity designed to show students how a small, seemingly unimportant difference in doubling time can, over a period of time, make an enormous difference in population size. (DDR)

  1. Childhood urinary tract infection in primary care: a prospective observational study of prevalence, diagnosis, treatment, and recovery.

    PubMed

    Butler, Christopher C; O'Brien, Kathryn; Pickles, Timothy; Hood, Kerenza; Wootton, Mandy; Howe, Robin; Waldron, Cherry-Ann; Thomas-Jones, Emma; Hollingworth, William; Little, Paul; Van Der Voort, Judith; Dudley, Jan; Rumsby, Kate; Downing, Harriet; Harman, Kim; Hay, Alastair D

    2015-04-01

    The prevalence of targeted and serendipitous treatment for, and associated recovery from, urinary tract infection (UTI) in pre-school children is unknown. To determine the frequency and suspicion of UTI in children who are acutely ill, along with details of antibiotic prescribing, its appropriateness, and whether that appropriateness impacted on symptom improvement and recovery. Prospective observational cohort study in primary care sites in urban and rural areas in England and Wales. Systematic urine sampling from children aged <5 years presenting in primary care with acute illness with culture in NHS laboratories. Of 6079 children's urine samples, 339 (5.6%) met laboratory criteria for UTI and 162 (47.9%) were prescribed antibiotics at the initial consultation. In total, 576/7101 (8.1%) children were suspected of having a UTI prior to urine sampling, including 107 of the 338 with a UTI (clinician sensitivity 31.7%). Children with a laboratory-diagnosed UTI were more likely to be prescribed antibiotics when UTI was clinically suspected than when it was not (86.0% versus 30.3%, P<0.001). Of 231 children with unsuspected UTI, 70 (30.3%) received serendipitous antibiotics (that is, antibiotics prescribed for a different reason). Overall, 176 (52.1%) children with confirmed UTI did not receive any initial antibiotic. Organism sensitivity to the prescribed antibiotic was higher when UTI was suspected than when treated serendipitously (77.1% versus 26.0%; P<0.001). Children with UTI prescribed appropriate antibiotics at the initial consultation improved a little sooner than those with a UTI who were not prescribed appropriate antibiotics initially (3.5 days versus 4.0 days; P = 0.005). Over half of children with UTI on culture were not prescribed antibiotics at first presentation. Serendipitous UTI treatment was relatively common, but often inappropriate to the organism's sensitivity. Methods for improved targeting of antibiotic treatment in children who are acutely unwell are urgently needed. © British Journal of General Practice 2015.

  2. Childhood urinary tract infection in primary care: a prospective observational study of prevalence, diagnosis, treatment, and recovery

    PubMed Central

    Butler, Christopher C; O’Brien, Kathryn; Pickles, Timothy; Hood, Kerenza; Wootton, Mandy; Howe, Robin; Waldron, Cherry-Ann; Thomas-Jones, Emma; Hollingworth, William; Little, Paul; Van Der Voort, Judith; Dudley, Jan; Rumsby, Kate; Downing, Harriet; Harman, Kim; Hay, Alastair D

    2015-01-01

    Background The prevalence of targeted and serendipitous treatment for, and associated recovery from, urinary tract infection (UTI) in pre-school children is unknown. Aim To determine the frequency and suspicion of UTI in children who are acutely ill, along with details of antibiotic prescribing, its appropriateness, and whether that appropriateness impacted on symptom improvement and recovery. Design and setting Prospective observational cohort study in primary care sites in urban and rural areas in England and Wales. Method Systematic urine sampling from children aged <5years presenting in primary care with acute illness with culture in NHS laboratories. Results Of 6079 children’s urine samples, 339 (5.6%) met laboratory criteria for UTI and 162 (47.9%) were prescribed antibiotics at the initial consultation. In total, 576/7101 (8.1%) children were suspected of having a UTI prior to urine sampling, including 107 of the 338 with a UTI (clinician sensitivity 31.7%). Children with a laboratory-diagnosed UTI were more likely to be prescribed antibiotics when UTI was clinically suspected than when it was not (86.0% versus 30.3%, P<0.001). Of 231 children with unsuspected UTI, 70 (30.3%) received serendipitous antibiotics (that is, antibiotics prescribed for a different reason). Overall, 176 (52.1%) children with confirmed UTI did not receive any initial antibiotic. Organism sensitivity to the prescribed antibiotic was higher when UTI was suspected than when treated serendipitously (77.1% versus 26.0%; P<0.001). Children with UTI prescribed appropriate antibiotics at the initial consultation improved a little sooner than those with a UTI who were not prescribed appropriate antibiotics initially (3.5 days versus 4.0 days; P = 0.005). Conclusion Over half of children with UTI on culture were not prescribed antibiotics at first presentation. Serendipitous UTI treatment was relatively common, but often inappropriate to the organism’s sensitivity. Methods for improved targeting of antibiotic treatment in children who are acutely unwell are urgently needed. PMID:25824181

  3. [Comparison of the sensitivity of pathogenic staphylococci isolated in 1974 to certain antibiotics and nitrofuran derivatives].

    PubMed

    Val'vachev, N I; Vilenchik, G I; Rimzha, M I

    1976-03-01

    Sensitivity of 267 strains of pathogenic staphylococci isolated in 1974 was studied with respect to some antibiotics and nitrofuran derivatives by the method of serial dilutions on solid media. Sensitivity to penicillin, oxacillin, olemorphocycline, ristomycin and nitrofuran derivatives (furagin and salafur) was observed in 30.7 +/- 2.8, 61.8 +/-3, 29.2 +/-2.8 and 98.9 +/- 0.8 per cent of the cultures respectively.

  4. Duration of Group A Streptococcus PCR positivity following antibiotic treatment of pharyngitis.

    PubMed

    Homme, Jason H; Greenwood, Corryn S; Cronk, Lisa B; Nyre, Lisa M; Uhl, James R; Weaver, Amy L; Patel, Robin

    2018-02-01

    Polymerase chain reaction (PCR) has high sensitivity and specificity for detection of group A streptococcus (GAS) in throat swabs and is routinely used for GAS pharyngitis diagnosis at our institution. Herein we defined the natural history of throat swab GAS PCR and culture positivity during and following treatment of GAS pharyngitis. Fifty children with a PCR positive GAS throat swab were recruited for participation. Four additional throat swabs were collected over 2 weeks following the initial positive PCR result (during and following a standard course of antibiotic therapy) and tested for GAS using rapid real-time PCR and culture. After the initial positive swab, 45% had a positive PCR 2-4 days, 20% 5-7 days, 18% 8-10 days, 25% 11-13days, and 20% 14-18days later. The median time to a negative PCR was 4 days with the nadir in positive PCR results approximating the end of a typical 10-day treatment interval. Seven subjects remained persistently PCR positive. Culture results remained positive at a stable rate for each time interval, ranging from 5-10%. If a patient presents with symptoms of GAS pharyngitis after previous positive GAS PCR testing and treatment with appropriate antibiotics, it is reasonable to use PCR testing for GAS pharyngitis testing beginning one week after initial testing. Further studies are warranted to determine if this time frame can be applied to PCR testing used to detect other infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rapid and sensitive screening and selective quantification of antibiotics in human urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, He-Xing; Wang, Bin; Zhou, Ying; Jiang, Qing-Wu

    2014-12-01

    A rapid and sensitive method for the screening and selective quantification of antibiotics in urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was developed. This method allowed the injection of 200 μL urine extract. The 200-μL injection volume used in this method increased the absolute sensitivity for target antibiotics in solvent by an average 13.3 times, with a range from 8.4 to 28.5 times, compared with the 10-μL conventional injection volume. A 96-well solid phase extraction procedure was established to eliminate the contamination on the chromatographic column resulting from the large-volume injection and increase the throughput of sample preparation. Fourteen target antibiotics from six common categories (β-lactams, quinolones, tetracyclines, macrolides, sulfonamides, and chloramphenicols) were selected as model compounds, and a database containing an additional 74 antibiotics was compiled for posttarget screening. The limit of detection of the target antibiotics, defined as a signal-to-noise ratio of 3, ranged from 0.04 to 1.99 ng/mL. The mean interday recoveries ranged between 79.6 and 121.3 %, with a relative standard deviation from 2.9 to 18.3 % at three spiking levels of 20 ng/mL, 50 ng/mL, and 100 ng/mL. This method was successfully applied in 60 real urine samples from schoolchildren aged 8-11 years, and four target antibiotics (azithromycin, sulfadiazine, trimethoprim, and oxytetracycline) and two posttarget antibiotics (sulfadimidine and cefaclor) were found in the urine samples. This method can be used as a large-scale biomonitoring tool for exposure of the human population to antibiotics.

  6. Synthesis and anti Methicillin resistant Staphylococcus aureus activity of substituted chalcones alone and in combination with non-beta-lactam antibiotics.

    PubMed

    Tran, Thanh-Dao; Do, Tuong-Ha; Tran, Ngoc-Chau; Ngo, Trieu-Du; Huynh, Thi-Ngoc-Phuong; Tran, Cat-Dong; Thai, Khac-Minh

    2012-07-15

    A total of 30 chalcone analogues was synthesized via a base catalyzed Claisen Schmidt condensation and screened for their in vitro antibacterial activity against Methicillin-sensitive Staphylococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA) alone or in combination with non beta-lactam antibiotics namely ciprofloxacin, chloramphenicol, erythromycin, vancomycin, doxycycline and gentamicin. In the checkerboard technique, fractional inhibitory concentration indices (FICI) show that the following combinations like ciprofloxacin with 25 (4'-bromo-2-hydroxychalcone); doxycycline with 21 (4-hydroxychalcone); doxycycline with 25; and doxycycline with 4 (2',2-dihydroxychalcone) were synergistic against MRSA. In term SAR study, the relationship between chalcone structure and their antibacterial activity against S. aureus and synergy with tested antibiotics were discussed. Possible mechanisms for antibacterial activity of chalcones alone as well as the synergistic effect in combinations were proposed by molecular modeling studies, respectively. Combinations of chalcones with conventional antibiotics could be an effective alternative in the treatment of infection caused by MRSA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Infectious complications after esophagectomy.

    PubMed

    Neoral, Cestmir; Horakova, Martina; Aujesky, Rene; Chudacek, Josef; Hanulik, Vojtech; Chroma, Magdalena; Kolar, Milan

    2012-06-01

    Esophageal cancer is a serious diagnosis that has a relative incidence of 4/100,000 inhabitants in the Czech Republic. This disorder is managed predominantly by surgery. The steps to improving the outcome of treatment include a multifactorial approach. The role of operative technique in improving outcomes seems to have reached its limits. However, antibiotic prophylaxis and the treatment of complicating bacterial infections continue to play important roles. A total of 85 patients with strictly defined antibiotic prophylaxis during surgical esophagectomy were included in our study. Bacterial strains were isolated from the patient's clinical materials after operation; only one strain from each patient, the first to be isolated, was tested for antibiotic sensitivity. Infectious complications were observed in 15.3% of patients and the mortality rate from infectious complications reached 30.8%. The most frequently documented complicated infection was pneumonia (69.2%) and the most frequent pathogens were enteric bacteria (56.5%). Some bacterial strains producing extended-spectrum beta-lactamases and AmpC beta-lactamases were found. The infections in our patient set were of endogenous origin. In cases of pneumonia, it is appropriate to begin with antibiotics effective against enteric bacteria and Pseudomonas aeruginosa.

  8. Antibiotic sensitivity pattern of uropathogens from pregnant women with urinary tract infection in Abakaliki, Nigeria.

    PubMed

    Onoh, Rc; Umeora, Ouj; Egwuatu, Ve; Ezeonu, Po; Onoh, Tjp

    2013-01-01

    Urinary tract infection (UTI) is a common bacterial infection during pregnancy and a significant cause of perinatal and maternal morbidity and mortality. The causative bacteria have remained virtually the same although with variations in individual prevalence. There has been an increasing resistance by these bacteria to the commonly available antibiotics. To determine the prevalence of UTI, the common causative bacteria, and their antibiotic sensitivity pattern among pregnant women with UTI. This is a descriptive study that was carried out at the Obstetrics Department of two tertiary institutions in Abakaliki, Ebonyi State, Nigeria (Federal Medical Center and Ebonyi State University Teaching Hospital) over a period of 12 months. Midstream urine specimens from selected pregnant women with clinical features of UTI were collected for microscopy, culture, and sensitivity. The results were analyzed with the 2008 Epi Info™ software. A total of 542 pregnant women presented with symptoms of UTI and were recruited for the study over the study period. Of the 542 pregnant women, 252 (46.5%) had significant bacteriuria with positive urine culture and varying antibiotic sensitivity pattern. The prevalence of symptomatic UTI was 3%. Escherichia coli was the most common bacteria isolated with a percentage of 50.8%. Other isolated micro organisms included Stapylococcus aereus (52 cultures, 20.6%), Proteus mirabilis (24 cultures, 9.5%), S. saprophyticus (18 cultures, 7.1%), Streptococcus spp. (14 cultures, 5.6%), Citrobacter spp. (5 cultures, 2.0%), Klebsiella spp. (4 cultures, 1.6%), Enterobacter spp. (4 cultures, 1.6%), and Pseudomonas spp. (3 cultures, 1.2%). Levofloxacin had the highest overall antibiotic sensitivity of 92.5%. Others with overall antibiotic sensitivity pattern greater than 50% included cefpodoxime (87.3%), ofloxacin (77.4%), ciprofloxacin (66.7%), ceftriaxone (66.7%), and gentamicin (50.8%). E. coli was the most common etiological agent of UTI in pregnancy with Enterococcus (Staphylococcus) gaining prominence. Cephalosporin and quinolones were shown to be very effective against the organisms causing UTI in these pregnant women.

  9. ANTIMICROBIAL SENSITIVITY PATTERNS OF MAJOR ZOONOTIC PATHOGENS FROM A SEASON-LONG “FARM-TO-FORK” STUDY OF ALL NATURAL, ANTIBIOTIC-FREE, PASTURE-RAISED BROILER FLOCKS IN THE SOUTHEASTERN UNITED STATES

    USDA-ARS?s Scientific Manuscript database

    Introduction: The prevalence of antibiotic resistance microorganisms has significant implications for environmental, animal, and human health. One focus is the use of antibiotics in animal agriculture and its effects on antibiotic resistant bacterial populations within those systems, but before thi...

  10. ANTIMICROBIAL SENSITIVITY PATTERNS OF MAJOR ZOONOTIC PATHOGENS FROM A SEASON-LONG “FARM-TO-FORK” STUDY OF ALL NATURAL, ANTIBIOTIC-FREE, PASTURE-RAISED BROILER FLOCKS IN THE SOUTHEASTERN UNITED STATES

    USDA-ARS?s Scientific Manuscript database

    Background: The prevalence of antibiotic resistance microorganisms has significant implications for environmental, animal, and human health. One focus is the use of antibiotics in animal agriculture and its effects on antibiotic resistant bacterial populations within those systems, but before this ...

  11. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    PubMed

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  12. Posttreatment Lyme disease syndrome.

    PubMed

    Aucott, John N

    2015-06-01

    The prognosis following appropriate antibiotic treatment of early or late Lyme disease is favorable but can be complicated by persistent symptoms of unknown cause termed posttreatment Lyme disease syndrome (PTLDS), characterized by fatigue, musculoskeletal pain, and cognitive complaints that persist for 6 months or longer after completion of antibiotic therapy. Risk factors include delayed diagnosis, increased severity of symptoms, and presence of neurologic symptoms at time of initial treatment. Two-tier serologic testing is neither sensitive nor specific for diagnosis of PTLDS because of variability in convalescent serologic responses after treatment of early Lyme disease. Optimal treatment of PTLDS awaits more precise understanding of the pathophysiologic mechanisms involved in this illness and future treatment trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-08-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was observed were: penicillin, erythromycin, dicloxacillin, ampicillin, cephalothin, and chloramphenicol. We therefore conclude that MDR is common among Salmonella isolates originating from wild animals in captivity in Sinaloa.

  14. Serratia marcescens osteomyelitis in Cushing's disease

    PubMed Central

    Martins, Hugo F G; Raposo, Alexandra; Baptista, Isabel; Almeida, Julio

    2015-01-01

    We report a case of a 46-year-old man with fever, hypotension and arthralgias of the ankles and knees after brain surgery for a pituitary tumour causing Cushing's disease. Blood and urine cultures isolated Serratia marcescens; antibiotic susceptibility testing showed sensitivity to piperacillin-tazobactan and ciprofloxacin. Articular MRI showed inflammation and necrosis of both knees and ankles, and left hip and right elbow (compatible with osteomyelitis). Culture of an ankle abscess on the ankle joint was positive for Serratia marcescens. Bone scintigraphy confirmed osteomyelitic lesions. Medical treatment included antibiotics and strong opioid therapy for 14 weeks. The patient was discharged clinically improved maintaining ciprofloxacin for 24 additional weeks based on clinical and analytic recovery. PMID:26621903

  15. Management of neonatal sepsis at Muhimbili National Hospital in Dar es Salaam: diagnostic accuracy of C-reactive protein and newborn scale of sepsis and antimicrobial resistance pattern of etiological bacteria.

    PubMed

    Mkony, Martha Franklin; Mizinduko, Mucho Michael; Massawe, Augustine; Matee, Mecky

    2014-12-05

    We determined the accuracy of Rubarth's newborn scale of sepsis and C- reactive protein in diagnosing neonatal sepsis and assessed antimicrobial susceptibility pattern of etiological bacteria. This cross sectional study was conducted at Muhimbili National Hospital in Dar es Salaam, Tanzania between July 2012 and March 2013. Neonates suspected to have sepsis underwent physical examination using Rubarth's newborn scale of sepsis (RNSOS). Blood was taken for culture and antimicrobial sensitivity testing, full blood picture and C - reactive protein (CRP) performed 12 hours apart. The efficacy of RNSOS and serial CRP was assessed by calculating sensitivity, specificity, negative and positive predictive values, receiver operating characteristics (ROC) analysis as well as likelihood ratios (LHR) with blood culture result used as a gold standard. Out of 208 blood samples, 19.2% had a positive blood culture. Single CRP had sensitivity and specificity of 87.5% and 70.9% respectively, while RNSOS had sensitivity of 65% and specificity of 79.7%. Serial CRP had sensitivity of 69.0% and specificity of 92.9%. Combination of CRP and RNSOS increased sensitivity to 95.6% and specificity of 56.4%. Combination of two CRP and RNSOS decreased sensitivity to 89.1% but increased specificity to 74%. ROC for CRP was 0.86; and for RNSOS was 0.81. For CRP the LHR for positive test was 3 while for negative test was 0.18, while for RNSOS the corresponding values were 3.24 and for negative test was 0.43. Isolated bacteria were Klebsiella spp 14 (35%), Escherichia coli 12 (22.5%), Coagulase negative staphlococci 9 (30%), Staphylococcus aureus 4 (10%), and Pseudomonas spp 1 (2.5%). The overall resistance to the WHO recommended first line antibiotics was 100%, 92% and 42% for cloxacillin, ampicillin and gentamicin, respectively. For the second line drugs resistance was 45%, 40%, and 7% for ceftriaxone, vancomycin and amikacin respectively. Single CRP in combination with RNSOS can be used for rapid identification of neonates with sepsis due to high sensitivity (95.6%) but cannot exclude those without sepsis due to low specificity (56.4%). Serial CRP done 12hrs apart can be used to exclude non-cases. This study demonstrated very high levels of resistance to the first-line antibiotics.

  16. Helicobacter pylori: prevalence and antibiotic susceptibility among Kenyans.

    PubMed

    Kimang'a, Andrew Nyerere; Revathi, Gunturu; Kariuki, Samuel; Sayed, Shahin; Devani, Smita

    2010-01-01

    Helicobacter pylori infection in Kenya is staggeringly high. Evidence links infection of the gastric mucosa by H. pylori with subsequent development of gastric pathologies. We investigated the prevalence of H. pylori in dyspeptic patients, its relationship with gastric pathologies, and associated antibiotic susceptibility profiles, and compared two media to find the appropriate medium that enhances growth and expedites culture and isolation. Rapid urease and histological tests were used to screen for H. pylori. Culture was performed to test sensitivity and evaluate media. Selective and nutritional supplements were added to culture media (Colombia blood agar and brain-heart infusion agar) for growth enhancement. E-test strips for metronidazole, amoxicillin and clarithromycin were used for susceptibility testing. The prevalence of H. pylori infection in children was 73.3%, and 54.8% in adults. All the H. pylori investigated in this study were largely sensitive to clarithromycin (100%, minimum inhibiting concentration (MIC) <2 microg/ml), amoxicillin (100%, MIC <2 microg/ml) and metronidazole (95.4%, MIC <8 microg/ml). There was, however, occasional resistance to metronidazole (4.6%, MIC >8 microg/ml). Both Colombia blood and brain-heart infusion agar, with the supplements, effectively supported H. pylori growth. Growth was achieved in an average of 36 hours for primary isolations and 24 hours for subcultures. The media described here reduce the time required to culture and isolate bacteria and perform susceptibility testing. Despite the high prevalence of H. pylori infection, the associated pathology is low and does not parallel H. pylori prevalence in the population.

  17. Ecological consequences of antibiotic exposure to periphyton in naturally colonizing stream mesocosms

    EPA Science Inventory

    Tetracycline and its derivatives are extensively used human and animal antibiotics, and enter stream ecosystems via point and non-point sources. Laboratory studies indicate that microbial organisms are more sensitive to antibiotics than invertebrates or fish, and may indicate t...

  18. [The etiology of urinary tract infections].

    PubMed

    Avio, C M; Ceccherini, M; Pierotti, R; Falcone, G

    1977-01-01

    The Authors have planned a program in order to file and elaborate with a computer the results of urine cultures. From 8.600 specimens, about 86% were negative or doubtful. The data obtained from 1201 positive cultures were processed in order to state the absolute and relative frequency of the bacterial species isolated and their distribution according to their genera, antibiotic resistence, month and sex. Among the most representative species the pattern of antibiotic resistence was surveyed. E. coli shows very high frequency (38%). The frequency of Pseudomonas increases while staphylococci frequency decreases as compared with the previous statements of various Authors. The analysis of the antibiotic sensitivity spectrum of 534 specimens shows that about 50% of E. coli strains are sensitive to 10, 11 and 12 antibiotics and their pattern of resistence involves no more than 9 antibiotics; on the contrary more than 60% of Pseudomonas and Proteus rettgeri are resistant to 10, 11 or 12 antibiotics and at any rate to no less than seven. Enterobacter and Proteus mirabilis present an intermediate pattern of resistence.

  19. Sensitizing pathogens to antibiotics using the CRISPR-Cas system.

    PubMed

    Goren, Moran; Yosef, Ido; Qimron, Udi

    2017-01-01

    The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Streamlining antibiotic therapy with procalcitonin protocols: consensus and controversies.

    PubMed

    Haubitz, Sebastian; Mueller, Beat; Schuetz, Philipp

    2013-04-01

    Accumulating evidence supports procalcitonin (PCT) as an accurate surrogate biomarker for likelihood and severity of bacterial infections. In community-acquired pneumonia and other respiratory infections, PCT-guided antibiotic therapy algorithms resulted in reduced antibiotic exposure while maintaining a similar or even better level of safety compared with standard care. Reductions in antibiotic use translate into lower treatment costs, decreased risk of side effects and decreased bacterial multiresistance. This is especially important, as acute respiratory infections represent the most frequent reason for antibiotic prescriptions worldwide. Still, there is some controversy about the benefits of PCT measurement in sepsis patients in the intensive care unit and for nonrespiratory infections. Highly sensitive PCT assays are readily available in many hospitals today, and point-of-care assays with high enough sensitivity for antibiotic guidance are expected to be available soon. Herein, the authors provide an overview of recent studies evaluating PCT in different clinical situations and an outlook of currently enrolling or upcoming interventional trials.

  1. [Analysis of drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa strains isolated from burn wards].

    PubMed

    Liu, Shuhua; Liu, Pinghong; Xue, Xiaodong; Chen, Zhaojun; Pei, Decui

    2014-02-01

    To analyze the drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa (IRPA) strains isolated from burn wards. From June 2011 to June 2012, 30 strains of IRPA were isolated from wound excretion, sputum, and venous catheter attachment from burn patients hospitalized in Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine. Drug resistance of the IRPA to 12 antibiotics commonly used in clinic, including ceftazidime, amikacin, ciprofloxacin, etc., was tested with K-B paper agar disk diffusion method. Metallo-β-lactamase (MBL)-producing IRPA was detected by synergism test with imipenem-2-mercaptoethanol. Plasmid of IRPA was extracted, and it was inserted into competent cells, producing transformation strains (TSs). Drug resistance of TSs to imipenem and the MBL-producing TSs were detected. The genes blaIMP, blaVIM, blaOXA-1, blaOXA-2 and blaOXA-10 of IRPA and the TSs were detected by polymerase chain reaction. The drug resistance of IRPA producing MBL or OXA enzyme was summed up. The sensitive rates of the 30 strains of IRPA to the 12 antibiotics were equal to or above 60.0%. Six strains of MBL-producing IRPA were screened. Twenty-four TSs were resistant to imipenem, and 6 strains among them were MBL-producing positive. Among the 30 strains of IRPA, 6 strains and their corresponding TSs carried blaVIM; 20 strains and their corresponding TSs carried blaOXA-10; no strain was detected to carry blaIMP, blaOXA-1 or blaOXA-2. Two strains and their corresponding TSs were detected carrying both blaVIM and blaOXA-10. No significant difference of drug resistance was observed between strains producing only MBL or OXA enzyme, with the same high resistance to β-lactam antibiotics and some degree of sensitivity to aminoglycoside antibiotics. Strains producing enzymes MBL and OXA were all resistant to the 12 antibiotics. IRPA strains isolated from burn wards of Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine are multidrug-resistant, and they mainly produce type B and D carbapenemases.

  2. Comparison of Epidemiological and Antibiotic Susceptibility Pattern of Metallo-Beta-Lactamase-Positive and Metallo-Beta-Lactamase-Negative Strains of Pseudomonas Aeruginosa

    PubMed Central

    Ranjan, Shikha; Banashankari, GS; Babu, PR Sreenivasa

    2014-01-01

    Background: The infections caused by metallo-beta-lactamases (MBLs) producing Pseudomonas aeruginosa are associated with higher rates of mortality, morbidity, and overall healthcare costs compared to non-MBL P. aeruginosa infections. Purpose: To compare the epidemiologic factors and antibiograms of MBL-positive and MBL-negative P. aeruginosa isolates in a tertiary care hospital. Methods: In an observational study, from January 2011 to December 2012, all non-duplicate P. aeruginosa isolates were subjected to an antimicrobial sensitivity test against 10 antibiotics of five different classes. All P. aeruginosa strains showing resistance to at least one of the carbapenems were subjected to the MBL-E test. Epidemiological features and antibiograms of MBL-positive and MBL-negative strains were compared and statistically analyzed. Results: Out of 350 isolates (total sample = 5330) of P. aeruginosa, MBL was detected in 58 isolates by the E-test, resulting in a prevalence of 16.57%. Resistance to most of the antibiotics was significantly higher in the MBL-positive strains with 100% resistance to ciprofloxacin, tobramycin, and meropenem, followed by imipenem (93.10%) and gentamicin (89.66%). The prevalence of multidrug-resistant and pandrug-resistant strains was significantly higher among the MBL group as compared to that in the non-MBL group ((55.17 vs. 7.88% (P < 0.0001) and 8.62 vs. 0.68% (P = 0.0006)), respectively. Conclusions: MBL-positive P. aeruginosa strains showed very high resistance to various antibiotics, as compared to the non-MBL strains. Increasing prevalence of MBL-producing isolates in hospital settings makes it important to perform routine detection of MBL-positive P. aeruginosa strains by in vitro testing before antibiotic use, for the purposes of infection prevention, and control, and for minimizing the adverse outcomes of infections with MBL-producing strains. PMID:25328336

  3. De-Escalation of Antibiotics Does Not Increase Mortality in Critically Ill Surgical Patients.

    PubMed

    Turza, Kristin C; Politano, Amani D; Rosenberger, Laura H; Riccio, Lin M; McLeod, Matthew; Sawyer, Robert G

    2016-02-01

    Overuse of broad-spectrum antibiotics results in microbial resistance and financially is a healthcare burden. Antibiotic de-escalation refers to starting treatment of a presumed infection with broad-spectrum antibiotics and narrowing drug spectrum based on culture sensitivities. A study was designed to evaluate antibiotic de-escalation at a tertiary care center. We hypothesized that antibiotic de-escalation would not be associated with increased patient mortality rates or worsening of the primary infection. All infections treated in a single, tertiary care Surgical ICU between August 2009 and December 2011 were reviewed. Antibiotic treatment was classified by skilled reviewers as being either de-escalated or not. Outcomes were evaluated. Univariate statistics were performed (Fisher exact test, Chi-square for categorical data; student t-test for continuous variables). Multivariable logistic regression was completed. A total of 2,658 infections were identified. De-escalation was identified for 995 infections and non-deescalation occurred in 1,663. Patients were similar in age (de-escalated 55 ± 16 y vs. 56 ± 16, p = 0.1) and gender (de-escalated 60% males vs. 58%, p = 0.4). There were substantially greater APACHE II scores in non-deescalated patients (15 ± 8 vs. 14 ± 8, p = 0.03). A greater mortality rate among patients with infections treated without de-escalation was observed compared with those treated with de-escalation (9% vs. 6%, p = 0.002). Total antibiotic duration was substantially longer in the de-escalated group (15 ± 13 d vs. 13 ± 13, p = 0.0001). Multivariable analysis found that de-escalation decreased mortality rates (OR = 0.69; 95%CI, 0.49-0.97; p = 0.04) and high APACHE II score independently increased mortality rates (OR = 1.2; 95%CI, 1.1-1.2; p = 0.0001). Other parameters included were age and infection site. Antibiotic de-escalation was not associated with increased mortality rates, but the duration of antibiotic use was longer in this group. Greater mortality rates were observed in the non-deescalated group, but this likely owes at least in part to their relatively greater severity of disease classification (APACHE II). Further investigation will help evaluate whether antibiotic de-escalation will improve the quality of patient care.

  4. Old dog begging for new tricks – Current practices and future directions in the diagnosis of delayed antimicrobial hypersensitivity

    PubMed Central

    Konvinse, KC; Phillips, E; White, KD; Trubiano, JA

    2016-01-01

    Purpose of review Antimicrobials are a leading cause of severe T-cell-mediated adverse drug reactions (ADRs). The purpose of this review is to address the current understanding of antimicrobial cross-reactivity and the ready availability of and evidence for in vitro, in vivo and ex vivo diagnostics for T-cell-mediated ADRs. Recent findings Recent literature has evaluated the efficacy of traditional antibiotic allergy management including patch testing, skin prick testing, intradermal testing and oral challenge. While patch and intradermal testing are specific for the diagnosis of immune-mediated (IM) ADRs, they suffer from drug-specific limitations in sensitivity. The use of ex vivo diagnostics, especially ELISpot has been highlighted as a promising new approach to assigning causality. Knowledge of true rates of antimicrobial cross-reactivity aids empirical antibiotic choice in the setting of previous IM-ADRs. Summary In an era of increasing antimicrobial resistance and use of broad-spectrum antimicrobial therapy, ensuring patients are assigned the correct “allergy label” is essential. Re-exposure to implicated antimicrobials, especially in the setting of severe adverse cutaneous reaction is associated with significant morbidity and mortality. The process through which an antibiotic label gets assigned, acted on and maintained is still imprecise. Predicting T-cell-mediated ADRs via personalised approaches, including HLA-typing may pave future pathways to safer antimicrobial prescribing guidelines. PMID:27753687

  5. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    PubMed

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Helicobacter pylori diagnostic tests in children: review of the literature from 1999 to 2009.

    PubMed

    Guarner, Jeannette; Kalach, Nicolas; Elitsur, Yoram; Koletzko, Sibylle

    2010-01-01

    The array of tests that can be used for diagnosis of Helicobacter pylori infection is large, and it can be confusing to define which test to use particularly in children where results may not be comparable to those obtained in adult patients. Using PubMed, we reviewed the English literature from January 1999 to May 2009 to identify articles that determined sensitivity and specificity of H. pylori invasive and non-invasive diagnostic tests in children. We excluded articles that presented a review of the literature, abstracts, case reports, or series where children's results could not be separated from adult populations. Of the tissue based methods, rapid urease tests have better sensitivity than histology to detect presence of H. pylori; however, histology can detect the pathology associated with disease including gastritis, intestinal metaplasia, and other conditions that could be the cause of the child's symptoms. Culture of gastric tissues or stool has 100% specificity but sensitivity is low. Of the serologic tests, immunoblot has the best sensitivity. The urea breath tests have >75% sensitivity for detection of H. pylori before and after treatment. Immunoassays in stool using monoclonal antibodies have >95% sensitivity for detection of H. pylori before and after treatment. PCR testing can be performed in tissue and stool samples and can detect genes associated to antibiotic resistance. In summary, the current commercial non-invasive tests have adequate sensitivity and specificity for detecting the presence of H. pylori; however, endoscopy with histopathology is the only method that can detect H. pylori and lesions associated with the infection.

  7. A case of acute generalized exanthematous pustulosis due to amoxicillin-clavulanate with multiple positivity to beta-lactam patch testing.

    PubMed

    Bomarrito, L; Zisa, G; Delrosso, G; Farinelli, P; Galimberti, M

    2013-09-01

    We present a case of acute generalized exanthematous pustolosis (AGEP) induced by amoxicillin-clavulanate. Clinical diagnosis was confirmed by symptoms presentation and  histological features (Euroscar score point compatible with definite diagnosis). Patch testing performer six months later confirmed sensitization to the culprit drug and showed positivity also to other beta-lactam antibiotics (penicillin G and cephalexin). We believe that a T cell delayed response to betalactams common ring could be involved.

  8. Development of an algorithm for phenotypic screening of carbapenemase-producing Enterobacteriaceae in the routine laboratory.

    PubMed

    Robert, Jérôme; Pantel, Alix; Merens, Audrey; Meiller, Elodie; Lavigne, Jean-Philippe; Nicolas-Chanoine, Marie-Hélène

    2017-01-17

    Carbapenemase-producing Enterobacteriaceae (CPE) are difficult to identify among carbapenem non-susceptible Enterobacteriaceae (NSE). We designed phenotypic strategies giving priority to high sensitivity for screening putative CPE before further testing. Presence of carbapenemase-encoding genes in ertapenem NSE (MIC > 0.5 mg/l) consecutively isolated in 80 French laboratories between November 2011 and April 2012 was determined by the Check-MDR-CT103 array method. Using the Mueller-Hinton (MH) disk diffusion method, clinical diameter breakpoints of carbapenems other than ertapenem, piperazicillin+tazobactam, ticarcillin+clavulanate and cefepime as well as diameter cut-offs for these antibiotics and temocillin were evaluated alone or combined to determine their performances (sensitivity, specificity, positive and negative likelihood ratios) for identifying putative CPE among these ertapenem-NSE isolates. To increase the screening specificity, these antibiotics were also tested on cloxacillin-containing MH when carbapenem NSE isolates belonged to species producing chromosomal cephalosporinase (AmpC) but Escherichia coli. Out of the 349 ertapenem NSE, 52 (14.9%) were CPE, including 39 producing OXA-48 group carbapenemase, eight KPC and five MBL. A screening strategy based on the following diameter cut offs, ticarcillin+clavulanate <15 mm, temocillin <15 mm, meropenem or imipenem <22 mm, and cefepime <26 mm, showed 100% sensitivity and 68.1% specificity with the better likelihood ratios combination. The specificity increased when a diameter cut-off <32 mm for imipenem (76.1%) or meropenem (78.8%) further tested on cloxacillin-containing MH was added to the previous strategy for AmpC-producing isolates. The proposed strategies that allowed for increasing the likelihood of CPE among ertapenem-NSE isolates should be considered as a surrogate for carbapenemase production before further CPE confirmatory testing.

  9. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    PubMed Central

    McCall, Ingrid C.; Perrot, Véronique; Weiss, Howard; Ovesepian, Armen; Baquero, Fernando

    2017-01-01

    ABSTRACT We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn) operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures. PMID:28174311

  10. Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against Pseudomonas aeruginosa In Vitro and In Vivo▿ †

    PubMed Central

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E.; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals. PMID:20956602

  11. Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo.

    PubMed

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.

  12. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    PubMed

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  13. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori.

    PubMed

    Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee

    2016-01-01

    Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori . Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA . This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.

  14. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori

    PubMed Central

    Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee

    2016-01-01

    Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains. PMID:28018334

  15. [Comparison of techniques for coliform bacteria extraction from sediment of Xochimilco Lake, Mexico].

    PubMed

    Fernández-Rendón, Carlos L; Barrera-Escorcia, Guadalupe

    2013-01-01

    The need to separate bacteria from sediment in order to appropriately count them has led to test the efficacy of different techniques. In this research, traditional techniques such as manual shaking, homogenization, ultrasonication, and surfactant are compared. Moreover, the possibility of using a set of enzymes (pancreatine) and an antibiotic (ampicillin) for sediment coliform extraction is proposed. Samples were obtained from Xochimilco Lake in Mexico City. The most probable number of coliform bacteria was determined after applying the appropriate separation procedure. Most of the techniques tested led to numbers similar to those of the control (manual shaking). Only with the use of ampicillin, a greater total coliform concentration was observed (Mann-Whitney, z = 2.09; p = 0.03). It is possible to propose the use of ampicillin as a technique for total coliform extraction; however, it is necessary to consider sensitivity of bacteria to the antibiotic.

  16. [Analysis of drug resistance of Acinetobacter baumannii in wound of children with traffic injury and its relationship with antibiotic use].

    PubMed

    Liu, S; Wang, C; Fu, Y X

    2017-07-20

    Objective: To know the drug resistance of Acinetobacter baumannii (AB) in wound of children with traffic injury and its relationship with antibiotic use. Methods: Wound exudate of 226 children with traffic injury admitted to our unit from January 2010 to December 2015 were collected. API bacteria identification panels and fully automatic microbiological identification system were used to identify pathogens. Kirby-Bauer paper disk diffusion method was used to detect the drug resistance of pathogens to 18 antibiotics including amoxycillin/clavulanic acid, piperacillin/tazobactam, and imipenem. The detection situation of pathogen of children's wounds and drug resistance of detected AB to 18 antibiotics in each year were collected. Forty-six AB positive children (2 children excluded) were divided into imipenem-resistant group (IR, n =19) and non imipenem-resistant group (NIR, n =25) according to whether AB was 100% resistant to imipenem. Drug resistance of AB in wounds of children to 18 antibiotics in two groups was compared. The antibiotic use of AB positive children was collected, and the antibiotic use intensity of children in two groups was compared. Data were processed with Fisher's exact test, independent sample t test, and corrected t test. Results: (1) The detection rates of pathogen in wounds of children in 2010-2015 were 95.6% (43/45), 89.8% (53/59), 81.3% (148/182), 81.1% (107/132), 81.6% (120/147), and 77.5% (62/80), respectively, showing a trend of decreasing year by year. A total of 665 strains and 75 pathogens were detected, and the top 5 pathogens with detection rate from high to low were AB, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermidis, and Escherichia coli, respectively. (2) Drug resistance rates of AB to amoxycillin/clavulanic acid, cefazolin, aztreonam, and piperacillin were all 100%, while AB was 100% sensitive to polymyxin, and the total drug resistance rates of AB to the other 13 antibiotics were all above 50%. The drug resistance rate of AB in wounds of children to piperacillin was higher than that to piperacillin/tazobactam in 2010-2015. (3) Except for imipenem, amoxycillin/clavulanic acid, cefazolin, aztreonam, piperacillin, and polymyxin, the drug resistance rates of AB in wounds of children in group IR to the other 12 antibiotics were higher than those in group NIR (with P values below 0.01). Besides, AB strains in wounds of children in group IR were completely resistant to at least 3 kinds of antibiotics including carbapenems, aminoglycosides, and quinolones, so that they were multidrug-resistant AB. (4) A total of 32 antibiotics were used in 46 AB positive children, and the 10-top-used antibiotics with use intensity from high to low were cefoperazone/sulbactam, piperacillin/tazobactam, cefazolin, imipenem, ceftizoxime, amoxycillin/clavulanate, ceftazidime, cefepime, amoxycillin/sulbactam, and cefmetazole, respectively. (5) Twenty-one antibiotics were not included in the comparison because of their small amount of usage. For the other 11 antibiotics, only the use intensity of metronidazole of children in two groups was statistically different ( t =-3.104, P <0.05). There was no statistically significant difference in total antibiotic use of children in two groups ( t =0.368, P >0.05). Conclusions: AB is one of the main pathogens in wounds of children with traffic injury, with high drug resistant rate. The high intensity of antibiotic use may lead to its drug resistance. In this study, the top-used antibiotics were in accord with AB resistant drugs, indicating a lack of normative use of antibiotics.

  17. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice.

    PubMed

    Htoutou Sedlakova, Miroslava; Hanulik, Vojtech; Chroma, Magdalena; Hricova, Kristyna; Kolar, Milan; Latal, Tomas; Schaumann, Reiner; Rodloff, Arne C

    2011-05-01

    Enterobacteriaceae producing ESBL and AmpC enzymes can be associated with failure of antibiotic therapy and related morbidity and mortality. Their routine detection in microbiology laboratories is still a problem. The aim of this study was to compare the sensitivity of selected phenotypic methods. A total of 106 strains of the Enterobacteriaceae family were tested, in which molecular biology methods confirmed the presence of genes encoding ESBL or AmpC. In ESBL-positive strains, the sensitivity of the ESBL Etest (AB Biodisk) and a modified double-disk synergy test (DDST) were evaluated. AmpC strains were tested by a modified AmpC disk method using 3-aminophenylboronic acid. For simultaneous detection of ESBL and AmpC, the microdilution method with a modified set of antimicrobial agents was used. The sensitivity of the ESBL Etest was 95%; the modified DDST yielded 100% sensitivity for ESBL producers and the AmpC test correctly detected 95% of AmpC-positive strains. The sensitivity of the modified microdilution method was 87% and 95% for ESBL and AmpC beta lactamases, respectively. The detection of ESBL and AmpC beta lactamases should be based on specific phenotypic methods such as the modified DDST, ESBL Etest, AmpC disk test and the modified microdilution method.

  18. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice

    PubMed Central

    Sedlakova, Miroslava Htoutou; Hanulik, Vojtech; Chroma, Magdalena; Hricova, Kristyna; Kolar, Milan; Latal, Tomas; Schaumann, Reiner; Rodloff, Arne C.

    2011-01-01

    Summary Background Enterobacteriaceae producing ESBL and AmpC enzymes can be associated with failure of antibiotic therapy and related morbidity and mortality. Their routine detection in microbiology laboratories is still a problem. The aim of this study was to compare the sensitivity of selected phenotypic methods. Material/Methods A total of 106 strains of the Enterobacteriaceae family were tested, in which molecular biology methods confirmed the presence of genes encoding ESBL or AmpC. In ESBL-positive strains, the sensitivity of the ESBL Etest (AB Biodisk) and a modified double-disk synergy test (DDST) were evaluated. AmpC strains were tested by a modified AmpC disk method using 3-aminophenylboronic acid. For simultaneous detection of ESBL and AmpC, the microdilution method with a modified set of antimicrobial agents was used. Results The sensitivity of the ESBL Etest was 95%; the modified DDST yielded 100% sensitivity for ESBL producers and the AmpC test correctly detected 95% of AmpC-positive strains. The sensitivity of the modified microdilution method was 87% and 95% for ESBL and AmpC beta lactamases, respectively. Conclusions The detection of ESBL and AmpC beta lactamases should be based on specific phenotypic methods such as the modified DDST, ESBL Etest, AmpC disk test and the modified microdilution method. PMID:21525803

  19. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedicker, J.; Li, L; Kline, T

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less

  20. Comparative analysis of virulence and resistance profiles of Salmonella Enteritidis isolates from poultry meat and foodborne outbreaks in northern Jordan

    PubMed Central

    Jaradat, Ziad W; Abedel Hafiz, Leena; Ababneh, Mustafa M; Ababneh, Qotaibah O; Al Mousa, Waseem; Al-Nabulsi, Anas; Osaili, Tareq M; Holley, Richard

    2014-01-01

    This study was conducted to isolate Salmonella Enteritidis from poultry samples and compare their virulence and antibiotic resistance profiles to S. Enteritidis isolated from outbreaks in northern Jordan. Two hundred presumptive isolates were obtained from 302 raw poultry samples and were subjected to further analysis and confirmation. A phylogenic tree based on 16S rRNA sequencing was constructed and selected isolates representing each cluster were further studied for their virulence in normal adult Swiss white mice. The most virulent strains were isolated from poultry samples and had an LD50 of 1.55 × 105 CFU, while some of the outbreak isolates were avirulent in mice. Antibiotic resistance profiling revealed that the isolates were resistant to seven of eight antibiotics screened with each isolate resistant to multiple antibiotics (from two to six). Of the poultry isolates, 100%, 88.9%, 77.8%, 66.7%, and 50% showed resistance to nalidixic acid, ciprofloxacin, ampicillin, cephalothin, and cefoperazone, respectively. Two outbreak isolates were sensitive to all tested antibiotics, while 71.4% were resistant to cefoperazone and only 28.6% showed resistance to nalidixic acid. Salmonella outbreak isolates were genetically related to poultry isolates as inferred from the 16S rRNA sequencing, yet were phenotypically different. Although outbreak strains were similar to poultry isolates, when tested in the mouse model, some of the outbreak isolates were highly virulent while others were avirulent. This might be due to a variation in susceptibility of the mouse to different S. Enteritidis isolates. PMID:24780883

  1. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China

    PubMed Central

    Dong, Derong; Zou, Dayang; Liu, Hui; Yang, Zhan; Huang, Simo; Liu, Ningwei; He, Xiaoming; Liu, Wei; Huang, Liuyu

    2015-01-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in hospital-acquired infections and exhibits increasing antibiotic resistance. A rapid and sensitive molecular method for its detection in clinical samples is needed to guide therapeutic treatment and to control P. aeruginosa outbreaks. In this study, we established a polymerase spiral reaction (PSR) method for rapid detection of P. aeruginosa by targeting the toxA gene, which regulates exotoxin A synthesis. Real-time turbidity monitoring and a chromogenic visualization using hydroxynaphthol blue were used to assess the reaction. All 17 non- P. aeruginosa strains tested negative, indicating the high specificity of the PSR primers. The detection limit was 2.3 pg/μl within 60 min at isothermal temperature (65°C), 10-fold more sensitive than conventional PCR. Then, the PSR assay was applied to a clinical surveillance of P. aeruginosa in three top hospitals in Beijing, China. Of the 130 sputum samples collected from ICU patients with suspected multi-resistant infections, 37 P. aeruginosa isolates were identified from the positive samples. All clinical strains belonged to 10 different P. aeruginosa multilocus sequence typing groups and exhibited high resistance to carbapenems, cephalosporins, and aminoglycosides. Interestingly, of the 33 imipenem-resistant isolates, 30 (90.9%) had lost the outer membrane porin oprD gene. Moreover, isolate SY-95, containing multiple antibiotic resistance genes, possessed the ability to hydrolyze all antibiotics used in clinic and was susceptible only to polymyxin B. Our study showed the high level of antibiotic resistance and co-occurrence of resistance genes in the clinical strains, indicating a rapid and continuing evolution of P. aeruginosa. In conclusion, we developed a P. aeruginosa PSR assay, which could be a useful tool for clinical screening, especially in case of poor resources, or for point-of-care testing. PMID:26500639

  2. Typhoid outbreak in Songkhla, Thailand 2009-2011: clinical outcomes, susceptibility patterns, and reliability of serology tests.

    PubMed

    Limpitikul, Wannee; Henpraserttae, Narong; Saksawad, Rachanee; Laoprasopwattana, Kamolwish

    2014-01-01

    To determine the clinical manifestations and outcomes, the reliability of Salmonella enterica serotype Typhi (S ser. Typhi) IgM and IgG rapid tests, and the susceptibility patterns and the response to treatment during the 2009-2011 typhoid outbreak in Songkhla province in Thailand. The medical records of children aged <15 years with S ser. Typhi bacteremia were analysed. The efficacy of the typhoid IgM and IgG rapid tests and susceptibility of the S ser. Typhi to the current main antibiotics used for typhoid (amoxicillin, ampicillin, cefotaxime, ceftriaxone, co-trimoxazole, and ciprofloxacin), were evaluated. S ser. Typhi bacteremia was found in 368 patients, and all isolated strains were susceptible to all 6 antimicrobials tested. Most of the patients were treated with ciprofloxacin for 7-14 days. The median time (IQR) of fever before treatment and duration of fever after treatment were 5 (4, 7) days and 4 (3, 5) days, respectively. Complications of ascites, lower respiratory symptoms, anemia (Hct <30%), and ileal perforation were found in 7, 7, 22, and 1 patients, respectively. None of the patients had recurrent infection or died. The sensitivities of the typhoid IgM and IgG tests were 58.3% and 25.6% respectively, and specificities were 74.1% and 50.5%, respectively. Most of the patients were diagnosed at an early stage and treated with a good outcome. All S ser. Typhi strains were susceptible to standard first line antibiotic typhoid treatment. The typhoid IgM and IgG rapid tests had low sensitivity and moderate specificity.

  3. Molecular characterization and determination of antimicrobial resistance of Mycoplasma gallisepticum isolated from chickens.

    PubMed

    Pakpinyo, Somsak; Sasipreeyajan, Jiroj

    2007-11-15

    In this study, three consecutive approaches of molecular characterization, determination of minimum inhibitory concentration (MIC) and antimicrobial tested on Mycoplasma gallisepticum (MG) isolated from chicken farms were investigated. These approaches were conducted between 2004 and 2005 to 134 MG samples collected from five different regions of the intensive farming area of Thailand. Twenty MG isolates and four reference strains including S6, F, ts-11, and 6/85 were classified according to Random Amplification of Polymorphic DNA (RAPD) patterns prior to the antimicrobial tests. These isolates exhibited 5 different genotypes (A-E). Consequently, MG isolates representing each genotype were tested on 11 registered antibiotics. The levels of MIC were determined. Three antibiotics, doxycycline (0.20 microg/ml), tiamulin (0.10 microg/ml), and tylosin (0.33 microg/ml), gave the least MICs among all effective drugs. Break point comparisons of each antimicrobial suggested that the MG isolates were most sensitive to lincomycin, oxytetracycline, tiamulin, and tylosin. Some MG isolates had an intermediate effect on josamycin and were resistant to enrofloxacin and erythromycin. Our results also indicated that MG isolated and collected from the region and nearby districts had similar RAPD patterns showing properties of antimicrobial resistance. The RAPD patterns may imply the frequent use of antibiotics and a resistant strain of MG. This is the first report of genetic characterization using RAPD reflected by the levels of MIC against MG. The information is useful to plan for prophylactic and therapeutic impacts on the poultry industry especially in the area of intensive use of antibiotics.

  4. Improving antibiotic prescribing by general practitioners: a protocol for a systematic review of interventions involving pharmacists

    PubMed Central

    Saha, Sajal K; Hawes, Lesley; Mazza, Danielle

    2018-01-01

    Introduction Effective antibiotic options in general practice for patients with infections are declining significantly due to antibiotic over-prescribing and emerging antibiotic resistance. To better improve antibiotic prescribing by general practitioner (GP), pharmacist–GP collaborations have been promoted under antibiotic stewardship programmes. However, there is insufficient information about whether and how pharmacists help GPs to more appropriately prescribe antibiotics. This systematic review aims to determine whether pharmacist-led or pharmacist-involved interventions are effective at improving antibiotic prescribing by GPs. Methods and analysis A systematic review of English language randomised controlled trials (RCTs), cluster RCTs, controlled before-and-after studies and interrupted time series studies cited in MEDLINE, EMBASE, EMCARE, CINAHL Plus, PubMed, PsycINFO, Cochrane Central Register of Controlled Trials and Web of Science databases will be conducted. Studies will be included if a pharmacist is involved as the intervention provider and GPs are the intervention recipients in general practice setting. Data extraction and management will be conducted using Effective Practice and Organisation of Care data abstraction tools and a template for intervention description and replication. The Cochrane and ROBINS-I risk of bias assessment tools will be used to assess the methodological quality of studies. Primary outcome measures include changes (overall, broad spectrum and guidelines concordance) of GP-prescribed antibiotics. Secondary outcomes include quality of antibiotic prescribing, delayed antibiotic use, acceptability and feasibility of interventions. Meta-analysis for combined effect and forest plots, χ2 test and I2 statistics for detailed heterogeneity and sensitivity analysis will be performed if data permit. Grading of Recommendations Assessment, Development and Evaluation and Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols guidance will be used to report findings. Ethics and dissemination No ethics approval is required as no primary, personal or confidential data are being collected in this study. The findings will be disseminated to national and international scientific sessions and published in a peer-reviewed journal. PROSPERO registration number CRD42017078478. PMID:29654036

  5. [Fundamental studies on legionellosis--the growth with in Acanthamoeba sp. and antibiotics susceptibility of Legionella spp. isolated from soil samples in Japan].

    PubMed

    Furuhata, Katsunori; Miyamoto, Hiroshi; Hara, Motonobu; Fukuyama, Masafumi

    2003-02-01

    As part of an epidemiological study of legionellosis, we investigated the growth within Acanthamoeba sp. and antibiotic susceptibility of 62 strains of Legionella spp. isolated from surface soils nationwide in 2001. 1) All strains tested grew in Acanthamoeba sp., suggesting that the strains were pathogenic. The minimum bacterial number required for the growth in the amoeba was 10(3)-10(8) CFU/ml and there were differences between the strains. 2) Susceptibility to 10 drugs was investigated using the Etest. The MIC90 values of imipenem, as a beta-lactam, and rifampicin, as an antitubercular agent, were 0.047 microgram/ml and 0.064 microgram/ml, respectively, showing high sensitivity. In contrast, sensitivity to minocycline, as a tetracycline, and piperacillin, as a beta-lactam, was low and the MIC90 values were 12 micrograms/ml and 16 micrograms/ml, respectively. Sensitivity to minocycline was particularly low, with a MIC value of 32 micrograms/ml, in two strains. The above findings suggested that all soil-derived strains were pathogenic, and susceptibility of the strains tended to be slightly lower than that of clinical isolates.

  6. Nasal carriage and antimicrobial susceptibility of Staphylococcus aureus in healthy preschool children in Ujjain, India.

    PubMed

    Pathak, Ashish; Marothi, Yogyata; Iyer, Rama V; Singh, Binita; Sharma, Megha; Eriksson, Bo; Macaden, Ragini; Lundborg, Cecilia Stålsby

    2010-12-29

    There is increasing evidence that community acquired S. aureus infections are spreading among healthy children. Nasal colonization with S. aureus plays pivotal role in the increasing prevalence of resistant community acquired S. aureus infections worldwide. A regular surveillance system is important in ensuring quality of patient care. The aim of the study was to assess the prevalence of and the factors associated with nasal carriage of S. aureus and its antibiotic sensitivity pattern among healthy children in Ujjain, India. A prospective study was done in paediatric outpatient clinics of R.D. Gardi medical college Ujjain, India. Healthy children from 1 month to 59 months of age were included. Information on previously known risk factors for nasal colonization was collected using a pre-tested questionnaire. Swabs from anterior nares were collected and transported in Amies transport media with charcoal and cultured on 5% sheep blood agar. Antibiotic sensitivity tests were performed using Kirby Bauer's disc diffusion method according to performance standards of Clinical and Laboratory Standard Institute guidelines. Of the 1,562 children from 1-month up-to five years of age included in the study 98 children tested positive for nasal carriage of S. aureus. The prevalence of nasal carriage of S. aureus was 6.3% (95% CI 5.1-7.5) out of which 16.3% (95% CI 8.9-23.8) were methicillin-resistant S. aureus (MRSA). The factors associated with nasal carriage were "child attending preschool" (OR 4.26, 95% CI 2.25-8.03; P = 0.007) or "school" (OR 3.02, 95% CI 1.27-7.18; P < 0.001) and "family size more than 10 members" (OR 2.76 95% CI 1.06-7.15; P = 0.03). The sensitivity pattern of isolated S. aureus showed resistance to commonly used oral antibiotics while resistance to glycopeptides was not noted. We found a relatively low rate of nasal carriage of S. aureus in children below five years when compared to children of older age groups in India. Yet, prevalence of MRSA was relatively high.

  7. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques.

    PubMed

    Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert

    2015-02-01

    Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Experimental and In-Silico Investigation of Anti-Microbial Activity of 1-Chloro-2-Isocyanatoethane Derivatives of Thiomorpholine, Piperazine and Morpholine.

    PubMed

    Nwuche, Charles O; Ujam, Oguejiofo T; Ibezim, Akachukwu; Ujam, Ifeoma B

    2017-01-01

    The Antibiogram properties of 1-chloro-2-isocyanatoethane derivatives of thiomorpholine (CTC), piperazine (CPC) and morpholine (CMC) were evaluated by the approved agar well diffusion, the minimum inhibitory concentration (MIC) and in silico techniques. A total of fourteen microbial cultures consisting of ten bacteria and four yeast strains were used in the biological study while affinity of the compounds for DNA gyrase, a validated antibacterial drug target, was investigated by docking method. Results indicate that both thiomorpholine and piperazine had zero activity against the Gram negative organisms tested. With morpholine, similar result was obtained except that cultures of Escherichia coli (ATCC 15442) and Salmonella typhi (ATCC 6539) presented with weak sensitivity (7-8 mm) as shown by the inhibition zone diameter (IZD) measurement. The Gram positive organisms were more sensitive to morpholine than the other compounds. The highest IZD values of 15-18 mm were achieved except for Streptococcus pneumoniae (ATCC 49619) in which mobility of the compound stopped after 12 mm. S. pneumoniae was resistant to both thiomorpholine and piperazine. The yeast strains were not sensitive to any of the studied compounds investigated. The MIC tests evaluated against a reference antibiotic show that while morpholine was most active at 4 μg.ml-1 against both B. cereus ATCC (14579) and B. subtilis, the least active compound was thiomorpholine which inhibited S. aureus (ATCC 25923) at 64 μg.ml-1. The three compounds demonstrated high affinity for the target protein (DNA gyrase) ranging from -4.63 to -5.64 Kcal/mol and even showed better ligand efficiencies than three known antibiotics; chlorobiocin, ciprofloxacin and tetracycline. This study identified the studied compounds as potential antibiotic leads with acceptable physicochemical properties and gave the molecular basis for the observed interactions between the compounds and the target protein which can be harnessed in structural optimization process.

  9. Development of an antibiotic spectrum score based on veterans affairs culture and susceptibility data for the purpose of measuring antibiotic de-escalation: a modified Delphi approach.

    PubMed

    Madaras-Kelly, Karl; Jones, Makoto; Remington, Richard; Hill, Nicole; Huttner, Benedikt; Samore, Matthew

    2014-09-01

    Development of a numerical score to measure the microbial spectrum of antibiotic regimens (spectrum score) and method to identify antibiotic de-escalation events based on application of the score. Web-based modified Delphi method. Physician and pharmacist antimicrobial stewards practicing in the United States recruited through infectious diseases-focused listservs. Three Delphi rounds investigated: organisms and antibiotics to include in the spectrum score, operationalization of rules for the score, and de-escalation measurement. A 4-point ordinal scale was used to score antibiotic susceptibility for organism-antibiotic domain pairs. Antibiotic regimen scores, which represented combined activity of antibiotics in a regimen across all organism domains, were used to compare antibiotic spectrum administered early (day 2) and later (day 4) in therapy. Changes in spectrum score were calculated and compared with Delphi participants' judgments on de-escalation with 20 antibiotic regimen vignettes and with non-Delphi steward judgments on de-escalation of 300 pneumonia regimen vignettes. Method sensitivity and specificity to predict expert de-escalation status were calculated. Twenty-four participants completed all Delphi rounds. Expert support for concepts utilized in metric development was identified. For vignettes presented in the Delphi, the sign of change in score correctly classified de-escalation in all vignettes except those involving substitution of oral antibiotics. The sensitivity and specificity of the method to identify de-escalation events as judged by non-Delphi stewards were 86.3% and 96.0%, respectively. Identification of de-escalation events based on an algorithm that measures microbial spectrum of antibiotic regimens generally agreed with steward judgments of de-escalation status.

  10. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.

    PubMed

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-08-11

    A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV-vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL(-1) can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    PubMed

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  12. The detection limits of antimicrobial agents in cow's milk by a simple Yoghurt Culture Test.

    PubMed

    Mohsenzadeh, M; Bahrainipour, A

    2008-09-15

    The aim of this study was to study performance of Yoghurt Culture Test (YCT) in the detection of antimicrobial residues in milk. For this purpose, the sensitivity of YCT for 15 antibiotics were determined. For each drug, 8 concentrations were tested. The detection limits of YCT at 2.5 h and 4 h incubation were determined (microg kg(-1)): 15 and 37.5, penicillin G; 4 and 5, ampicillin; 5 and 7.5, amoxycillin; 100 and 200, cephalexin; 80 and 100, cefazoline; 100 and 200, oxytetracycline; 500 and 100, chlortetracycline; 100 and 200, tetracycline; 150 and 200, doxycycline; 200 and 400, sulphadimidine; 500 and 1000, gentamycin; 1000 and 1500, spectinomycin; 400 and 500, erythromycin; 50 and 100, tylosin; 5000 and 10000, chloramphenicol. The YCT detection limits at 2.5 h incubation for ampicillin, cephalexin, tetracycline, oxytetracycline and tylosin are similar to those obtained as Maximum Residue Limit (MRL) according to Regulation 2377/90 EEC as set out by the European Union. In addition the detection limits of YCT for some antibiotics were lower than some of microbial inhibitor test.

  13. Selenium-mediated protection in reversing the sensitivity of bacterium to the bactericidal antibiotics.

    PubMed

    Li, Zhonglei; Tan, Jun; Shao, Lei; Dong, Xiaojing; Ye, Richard D; Chen, Daijie

    2017-05-01

    Inducing production of damaging reactive oxygen species (ROS) is an important criterion to distinguish the bactericidal antibiotics from bacteriostatic antibiotics. Selenoenzymes were generally recognized to be a powerful antioxidant capable of scavenging free radicals, protecting the cells from the harmful effects of ROS. Therefore, the present study was carried out to investigate the selenium (Se)-mediated protection in reversing antibiotic sensitivity and the role of selenoenzymes in alleviating the negative effects of oxidative stress. The cellular antioxidant activity of Se-enriched bacteria was analyzed, as well as intracellular ROS production and elimination when Se-enriched bacteria in the presence of various antibiotics. Compared to complete inhibition of the parental strain by bactericidal antibiotics, it only exhibited slight and reversible inhibition of Se-enriched Escherichia coli ATCC25922 and Staphylococcus aureus ATCC25923 at the same conditions, which indicated that intracellular selenium provided substantial protection against antibiotics. ROS generation caused by bactericidal antibiotics was confirmed by fluorescence spectrophotometry using 2', 7'-dichloro- uorescein diacetate (DCFH-DA) as substrate. The time course experiments of pretreatment with selenium showed significant decrease of ROS level at 2h. In summary, the present study provides experimental evidence supporting selenoenzymes has good scavenging effect to ROS and can protect bacteria from oxidative stress injury induced by bactericidal antibiotics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Detection of food-borne bacteria in ready to eat betel leaf sold at local markets in Mymensingh.

    PubMed

    Haque, Md Mazedul; Sarker, Md Atiqur Rahman; Rifa, Rafia Afroze; Islam, Md Ariful; Khatun, Mst Minara

    2017-09-01

    The present study was undertaken to determine bacterial load as well as characterize bacterial flora of ready to eat (RTE) betel leaf sold at local markets in Mymensingh city. A total of 25 RTE betel leaf samples were collected from five local markets such as Kamal-Ranjit (KR) market, Shesh more, Kewatkhali, Jobber more, and Ganginar par. Total viable count of bacteria in betel leaf (log 10 mean colony forming unit±standard deviation/ml) was 7.58±0.04 for KR market, 7.72±0.06 for Shesh more, 7.62±0.04 for Kewatkhali, 7.40±0.03 for Jobber more, and 7.60±0.06 for Ganginar par. A total of 98 bacterial isolates belong to five genera ( Escherichia coli , Salmonella spp., Vibrio spp., Bacillus spp., and Staphylococcus spp.) were identified. The prevalence of E. coli was 17.34%, Salmonella spp. was 25.51%, Vibrio spp. was 19.39%, Bacillus spp. was 18.37%, and Staphylococcus spp. was 19.39%. Antibiotic sensitivity test showed that all isolates were sensitive to two antibiotics such as ciprofloxacin and gentamicin. Four isolates ( E. coli , Salmonella spp., Vibrio spp., and Staphylococcus spp.) were resistant to two antibiotics (ampicillin and cephalexin). Antibiogram profile of bacterial isolates of betel leaf suggests that they were multidrug resistance. Data of this study indicate that betel leaf sold at local market harbors multidrug resistance food-borne bacteria which might cause public health hazards if these antibiotic resistant transfer to human through food chain.

  15. Detection of food-borne bacteria in ready to eat betel leaf sold at local markets in Mymensingh

    PubMed Central

    Haque, Md. Mazedul; Sarker, Md. Atiqur Rahman; Rifa, Rafia Afroze; Islam, Md. Ariful; Khatun, Mst. Minara

    2017-01-01

    Aim: The present study was undertaken to determine bacterial load as well as characterize bacterial flora of ready to eat (RTE) betel leaf sold at local markets in Mymensingh city. Materials and Methods: A total of 25 RTE betel leaf samples were collected from five local markets such as Kamal-Ranjit (KR) market, Shesh more, Kewatkhali, Jobber more, and Ganginar par. Results: Total viable count of bacteria in betel leaf (log10 mean colony forming unit±standard deviation/ml) was 7.58±0.04 for KR market, 7.72±0.06 for Shesh more, 7.62±0.04 for Kewatkhali, 7.40±0.03 for Jobber more, and 7.60±0.06 for Ganginar par. A total of 98 bacterial isolates belong to five genera (Escherichia coli, Salmonella spp., Vibrio spp., Bacillus spp., and Staphylococcus spp.) were identified. The prevalence of E. coli was 17.34%, Salmonella spp. was 25.51%, Vibrio spp. was 19.39%, Bacillus spp. was 18.37%, and Staphylococcus spp. was 19.39%. Antibiotic sensitivity test showed that all isolates were sensitive to two antibiotics such as ciprofloxacin and gentamicin. Four isolates (E. coli, Salmonella spp., Vibrio spp., and Staphylococcus spp.) were resistant to two antibiotics (ampicillin and cephalexin). Antibiogram profile of bacterial isolates of betel leaf suggests that they were multidrug resistance. Conclusion: Data of this study indicate that betel leaf sold at local market harbors multidrug resistance food-borne bacteria which might cause public health hazards if these antibiotic resistant transfer to human through food chain. PMID:29062191

  16. Nasal carriage of Staphylococcus aureus in Australian (pre-clinical and clinical) medical students.

    PubMed

    Stubbs, E; Pegler, M; Vickery, A; Harbour, C

    1994-06-01

    The nasal carriage of Staphylococcus aureus in 808 Australian medical students was studied. Five groups of students experienced varying degrees of clinical exposure in a hospital environment ranging from 0 to 42 months. The overall percentage of carriers among the five groups did not vary. However, with increasing clinical exposure there was a decrease in the percentage of isolates sensitive to all antibiotics tested, and an increase in the carriage of S. aureus resistant to three or more antibiotics. No carriers of methicillin-resistant S. aureus (MRSA) were detected. The comparative rates of S. aureus carriage between female and male students varied. The relevance of medical students as nasal carriers of S. aureus in the hospital environment today is discussed.

  17. Probing minority population of antibiotic-resistant bacteria.

    PubMed

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Community Intervention to Decrease Antibiotics Used for Self-Medication Among Latino Adults

    PubMed Central

    Mainous, Arch G.; Diaz, Vanessa A.; Carnemolla, Mark

    2009-01-01

    PURPOSE Recent evidence in Latino communities indicates substantial self-medication with antibiotics obtained without a prescription (WORx). We implemented and evaluated a culturally sensitive educational intervention to decrease antibiotic self-medication. METHODS We conducted a community-based intervention with preintervention and postintervention measures in the intervention community (Charleston, South Carolina) as well as a postintervention measure in a control community (Greenville, South Carolina) 200 miles away. The 9-month culturally sensitive intervention included multiple media sources (pamphlets, radio, newspapers). We evaluated the use of antibiotics WORx in the United States, as well as the likelihood of importing antibiotics, by surveying Latino adults in the intervention (n = 250) and in the control community (n = 250). RESULTS Most adults in the intervention community (69%) and the control community (60%) reported some exposure to messages about the inappropriate use of antibiotics, and 25.9% in the intervention community and 8.6% in the control community reported seeing our patient education pamphlets. A substantial proportion of Latino adults in both the intervention (31%) and control communities (20%) have obtained antibiotics WORx in the United States. In multivariate analyses, exposure to an educational message was not a significant predictor of having acquired antibiotics WORx in the United States in past 12 months. The primary predictor of respondents’ having acquired antibiotics WORx in the United States was whether they had bought antibiotics WORx outside the United States. CONCLUSIONS Novel approaches are needed to decrease the use of antibiotics WORx in Latino communities, as focusing only on education may not be sufficient to change behaviors common in their home countries. PMID:19901311

  19. Penicillin sensitivity of gonococci isolated in Australia, 1981-6. Australian Gonococcal Surveillance Programme.

    PubMed

    1988-06-01

    The sensitivity to penicillin of about 25,000 gonococcal isolates tested in Australia during the five years to 30 June 1986 was assessed in a collaborative multicentric study. Increasing resistance to the penicillin group of antibiotics was observed during the course of this study and was manifested both as increased levels of chromosomally mediated intrinsic resistance and by an increasing incidence of penicillinase producing strains of Neisseria gonorrhoeae (PPNG). Pronounced regional differences in the levels of intrinsic resistance, the incidence of infections with PPNG, and the endemic spread of PPNG strains were observed.

  20. Reagent strip testing is not sensitive for the screening of asymptomatic bacteriuria in pregnant women.

    PubMed

    Lumbiganon, Pisake; Chongsomchai, Chompilas; Chumworathayee, Bundit; Thinkhamrop, Jadsada

    2002-08-01

    The objective of the study was to assess the diagnostic performance of the reagent strip in screening for asymptomatic bacteriuria in pregnant women using urine culture as a gold standard. This study comprised 204 asymptomatic pregnant women who attended their first antenatal care at Srinagarind Hospital, Khon Kaen University from April 1, 1999 to June 30, 1999. Women with symptoms of urinary tract infection, antibiotic treatment within the previous 7 days, pregnancy-induced hypertension, bleeding per vagina and history of urinary tract diseases were excluded. Urine specimens were collected by clean catched midstream urine technique for urinalysis, reagent strip test and urine culture. Diagnostic performance of reagent strip in terms of sensitivity, specificity, positive and negative predictive value was analyzed. Urine reagent strip test had a sensitivity of 13.9 per cent, a specificity of 95.6 per cent, a positive predictive value of 46.1 per cent, a negative predictive value of 80.6 per cent in detecting asymptomatic bacteriuria in pregnant women.

  1. [Epidemiological aspects relating to the determination of fosfomycin sensitivity: results of a study on 300 strains isolated in a hospital milieu in Turin].

    PubMed

    Vanini, G C; Moiraghi Ruggenini, A; Grassi, R; Maury, F; Giardini, F

    1979-01-01

    The AA. evaluated the sensitivity to Fosfomycin and to other commonly used antibiotics of 105 bacterial strains isolated from hospital environment and 195 from pathological materials. They also studied the problem of bacterial resistence to Fosfomycin considering the frequency of "inner colonies" and of bacterial cross-resistance to other antibiotics.

  2. Influence of point-of-care C-reactive protein testing on antibiotic prescription habits in primary care in the Netherlands.

    PubMed

    Schuijt, Tim J; Boss, David S; Musson, Ruben E A; Demir, Ayse Y

    2018-03-27

    Bacterial resistance to antibiotics represents a serious global challenge that is associated with high morbidity and mortality. One of the most important causes of this threat is antibiotic overuse. The Dutch College of General Practitioners (DCGP) recommends the use of point-of-care (POC) testing for C-reactive protein (CRP) in two guidelines ('Acute Cough' and 'Diverticulitis') to achieve a more sensible prescription pattern of antibiotics. To evaluate the use of POC-CRP testing in light of the DCGP guidelines and the effect of CRP measurements on antibiotic prescription policy in primary care. In a prospective observational study, which included 1756 patients, general practitioners (GPs) were asked to complete a questionnaire after every POC-CRP testing, stating the indication for performing the test, the CRP result and their decision whether or not to prescribe antibiotics. Indications were verified against the DCGP guidelines and categorized. Antibiotic prescription was evaluated in relation to CRP concentrations. Indications to perform POC-CRP test and the prescription pattern of antibiotics based on CRP value varied considerably between GPs. Differences in antibiotic prescription rate were most obvious in patients who presented with CRP values between 20 and 100 mg/l, and could in part be explained by the indication for performing POC-CRP test and patient age. Most GPs followed the DCGP guidelines and used low CRP values to underpin their decision to refrain from antibiotic prescription. Peer-based reflection on differences in POC-CRP usage and antibiotic prescription rate amongst GPs may further nourish a more critical approach to prescription of antibiotics.

  3. A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections

    PubMed Central

    Hu, Yanmin; Shamaei-Tousi, Alireza; Liu, Yingjun; Coates, Anthony

    2010-01-01

    In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates. PMID:20676403

  4. Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte‐derived dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Katrin, E-mail: ksebastian@ukaachen.de; Ott, Hagen; Zwadlo-Klarwasser, Gabriele

    Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides – which are the most frequent cause of adverse drug reactions – were co-incubated with THP-1, MUTZ-LC, or primary monocyte‐derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIRmore » and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines. -- Highlights: ► We tested the sensitizing potential of small molecular weight drugs in vitro. ► In vitro assays were performed with moDCs and THP-1 cells. ► Beta-lactam antibiotics can be recognized as sensitizing compounds. ► They affect the expression of metabolic enzymes, cytokines and transcription factors. ► Sulfamethoxazole has no measurable effect on THP-1 cells and moDCs.« less

  5. Rapid antigen detection test for group A streptococcus in children with pharyngitis.

    PubMed

    Cohen, Jérémie F; Bertille, Nathalie; Cohen, Robert; Chalumeau, Martin

    2016-07-04

    Group A streptococcus (GAS) accounts for 20% to 40% of cases of pharyngitis in children; the remaining cases are caused by viruses. Compared with throat culture, rapid antigen detection tests (RADTs) offer diagnosis at the point of care (within five to 10 minutes). To determine the diagnostic accuracy of RADTs for diagnosing GAS in children with pharyngitis. To assess the relative diagnostic accuracy of the two major types of RADTs (enzyme immunoassays (EIA) and optical immunoassays (OIA)) by indirect and direct comparison. We searched CENTRAL, MEDLINE, EMBASE, Web of Science, CDSR, DARE, MEDION and TRIP (January 1980 to July 2015). We also conducted related citations tracking via PubMed, handsearched reference lists of included studies and relevant review articles, and screened all articles citing included studies via Google Scholar. We included studies that compared RADT for GAS pharyngitis with throat culture on a blood agar plate in a microbiology laboratory in children seen in ambulatory care. Two review authors independently screened titles and abstracts for relevance, assessed full texts for inclusion, and carried out data extraction and quality assessment using the QUADAS-2 tool. We used bivariate meta-analysis to estimate summary sensitivity and specificity, and to investigate heterogeneity across studies. We compared the accuracy of EIA and OIA tests using indirect and direct evidence. We included 98 unique studies in the review (116 test evaluations; 101,121 participants). The overall methodological quality of included studies was poor, mainly because many studies were at high risk of bias regarding patient selection and the reference standard used (in 73% and 43% of test evaluations, respectively). In studies in which all participants underwent both RADT and throat culture (105 test evaluations; 58,244 participants; median prevalence of participants with GAS was 29.5%), RADT had a summary sensitivity of 85.6%; 95% confidence interval (CI) 83.3 to 87.6 and a summary specificity of 95.4%; 95% CI 94.5 to 96.2. There was substantial heterogeneity in sensitivity across studies; specificity was more stable. There was no evidence of a trade-off between sensitivity and specificity. Heterogeneity in accuracy was not explained by study-level characteristics such as whether an enrichment broth was used before plating, mean age and clinical severity of participants, and GAS prevalence. The sensitivity of EIA and OIA tests was comparable (summary sensitivity 85.4% versus 86.2%). Sensitivity analyses showed that summary estimates of sensitivity and specificity were stable in low risk of bias studies. In a population of 1000 children with a GAS prevalence of 30%, 43 patients with GAS will be missed. Whether or not RADT can be used as a stand-alone test to rule out GAS will depend mainly on the epidemiological context. The sensitivity of EIA and OIA tests seems comparable. RADT specificity is sufficiently high to ensure against unnecessary use of antibiotics. Based on these results, we would expect that amongst 100 children with strep throat, 86 would be correctly detected with the rapid test while 14 would be missed and not receive antibiotic treatment.

  6. Thin-layer chromatographic determination of erythromycin and other macrolide antibiotics in livestock products.

    PubMed

    Petz, M; Solly, R; Lymburn, M; Clear, M H

    1987-01-01

    A method is described for determination of 4 macrolide antibiotics in livestock products. Erythromycin, tylosin, oleandomycin, and spiramycin were extracted from animal tissues, milk, and egg with acetonitrile at pH 8.5. Cleanup was done by adding sodium chloride and dichloromethane, evaporating the organic layer, and subsequent acid/base partitioning. After the antibiotics were separated by thin-layer chromatography (TLC), they were reacted with xanthydrol and could be detected as purple spots down to 0.02 mg/kg without interference by other commonly used therapeutic drugs (23 were tested). Anisaldehyde-sulfuric acid, cerium sulfate-molybdic acid, phosphomolybdic acid, and Dragendorff's reagent proved to be less sensitive as visualizing agents. For quantitation, TLC plates were scanned at 525 nm. Recoveries were between 71 and 96% for erythromycin and tylosin in liver, muscle, and egg at the 0.1-0.5 mg/kg level and 51% for erythromycin in milk at the 0.02 mg/kg level (coefficient of variation = 10-18%). Bioautography with Bacillus subtilis was used to confirm results, in addition to TLC analysis of derivatized antibiotics and liquid chromatography with electrochemical detection. Various derivatization procedures for erythromycin were investigated for improved ultra-violet or fluorescence detection in liquid chromatography.

  7. Synergistic Interactions of Vancomycin with Different Antibiotics against Escherichia coli: Trimethoprim and Nitrofurantoin Display Strong Synergies with Vancomycin against Wild-Type E. coli

    PubMed Central

    Zhou, Alice; Kang, Tina Manzhu; Yuan, Jessica; Beppler, Casey; Nguyen, Caroline; Mao, Zhiyuan; Nguyen, Minh Quan

    2014-01-01

    Gram-negative bacteria are normally resistant to the antibiotic vancomycin (VAN), which cannot significantly penetrate the outer membrane. We used Escherichia coli mutants that are partially sensitive to VAN to study synergies between VAN and 10 other antibiotics representing six different functional categories. We detected strong synergies with VAN and nitrofurantoin (NTR) and with VAN and trimethoprim (TMP) and moderate synergies with other drugs, such as aminoglycosides. These synergies are powerful enough to show the activity of VAN against wild-type E. coli at concentrations of VAN as low as 6.25 μg/ml. This suggests that a very small percentage of exogenous VAN does enter E. coli but normally has insignificant effects on growth inhibition or cell killing. We used the results of pairwise interactions with VAN and the other 10 antibiotics tested to place VAN into a functional category of its own, as previously defined by Yeh et al. (P. Yeh, A. I. Tschumi, and R. Kishony, Nat Genet 28:489–494, 2006, http://dx.doi.org/10.1038/ng1755). PMID:25348521

  8. Incidence of multidrug resistant Vibrio parahaemolyticus isolated from Ponnani, South India.

    PubMed

    Reyhanath, Pilakka Veettil; Kutty, Ranjeet

    2014-04-01

    The prevalence of Vibrio parahaemolyticus has been reported from Ponnani earlier, however incidence of multidrug resistant strains have been encountered recently in clinical laboratories. The source for such strains and their presence in this major fish landing centre has been investigated. Antibiotic sensitivity tests on isolates of V. parahaemolyticus isolated from three different substrates were conducted following disc diffusion method. Populations of V. parahaemolyticus (cfu/ml) were relatively high in sediment samples (7.67 ± 2.08), compared to shrimp (5.33 ±1.53) and water samples (3.67 ± 1.15). V. parahaemolyticus isolated from water showed relatively higher antibiotic resistance pattern compared to other two groups. The highest incidence of antibiotic resistance was recorded against cephalothin and nitrofurantonine; the lowest was against tobramycin, piperacillin and amikacin. Maximum multiple drug resistant (MDR) strains were encountered from water samples followed by shrimps. Results emerging from the present study clearly showed that Ponnani has a fairly good population of antibiotic resistant strains of V. parahaemolyticus. The present study provides an insight on the microbial population of V. parahaemolyticus in Ponnani harbour and warrants the need to develop control measures to reduce incidences of post-harvest contamination of seafood.

  9. Antibiotic prescribing practices for patients with fever in the transition from presumptive treatment of malaria to 'confirm and treat' in Zambia: a cross-sectional study.

    PubMed

    Ndhlovu, Micky; Nkhama, Emmy; Miller, John M; Hamer, Davidson H

    2015-12-01

    To evaluate antibiotic use among patients presenting to primary healthcare facilities with febrile illness in Zambia. We analysed data from a 2011 nationwide cross-sectional health facility survey of routine malaria case management in Zambia. Patient consultation observation and medical record charts were used to calculate the proportion of febrile patients who were prescribed antibiotics, stratified by symptoms, health workers' diagnosis and malaria test results. Logistic regression was used to identify factors affecting antibiotic prescribing behaviour. Of 872 patients presenting with fever, 651 (74.6%) were tested for malaria. Among those tested, 608 (93.4%) had analysable results; 230 (37.8%) had positive results. Antibiotics were prescribed to 69/230 (30.0%), 247/378 (65.3%) and 132/221 (59.7%) of those who tested positive, negative and those 'not tested', respectively. Furthermore, antibiotics were prescribed to 36/59 (61.0%) and 242/322 (75.1%) of those diagnosed with diarrhoea and upper respiratory tract infection (URTI), respectively. Among patients prescribed any antibiotic, concurrent antimalarial prescribing occurred in 66/69 (95.6%), 32/247 (12.9%) and 19/132 (14.4%) for those with positive results, negative results and 'not tested', respectively. Respiratory symptoms, diagnosis of URTI, malaria or skin disease and level of health care in the health delivery system were associated with antibiotic prescribing. Testing positive for malaria or receiving a malaria diagnosis was associated with reduced antibiotic prescribing, while testing negative, not being tested or a diagnosis of URTI resulted in higher rates of antibiotic prescribing. There is a need for improving diagnostic capacity for non-malaria causes of febrile illness at healthcare delivery points and limiting antibiotic use to patients with definite bacterial infections. © 2015 John Wiley & Sons Ltd.

  10. Breast Implant-Associated Infections: The Role of the National Surgical Quality Improvement Program and the Local Microbiome.

    PubMed

    Cohen, Justin B; Carroll, Cathy; Tenenbaum, Marissa M; Myckatyn, Terence M

    2015-11-01

    The most common cause of surgical readmission after breast implant surgery remains infection. Six causative organisms are principally involved: Staphylococcus epidermidis and S. aureus, Escherichia, Pseudomonas, Propionibacterium, and Corynebacterium. The authors investigated the infection patterns and antibiotic sensitivities to characterize their local microbiome and determine ideal antibiotic selection. A retrospective review of 2285 consecutive implant-based breast procedures was performed. Included surgical procedures were immediate and delayed breast reconstruction, tissue expander exchange, and cosmetic augmentation. Patient demographics, chemotherapy and/or irradiation status, implant characteristics, explantation reason, time to infection, microbiological data, and antibiotic sensitivities were reviewed. Forty-seven patients (2.1 percent) required inpatient admission for antibiotics, operative explantation, or drainage by interventional radiology. The infection rate varied depending on surgical procedure, with the highest rate seen in mastectomy and immediate tissue expander reconstruction (6.1 percent). The mean time to explantation was 41 days. Only 50 percent of infections occurred within 30 days of the indexed National Surgical Quality Improvement Program operation. The most commonly isolated organisms were coagulase-negative Staphylococcus (27 percent), methicillin-sensitive S. aureus (25 percent), methicillin-resistant S. aureus (7 percent), Pseudomonas (7 percent), and Peptostreptococcus (7 percent). All Gram-positive organisms were sensitive to vancomycin, linezolid, tetracycline, and doxycycline; all Gram-negative organisms were sensitive to gentamicin and cefepime. Empiric antibiotics should be vancomycin (with the possible inclusion of gentamicin) based on their broad effectiveness against the authors' unique microbiome. Minor infections should be treated with tetracycline or doxycycline as a second-line agent. National Surgical Quality Improvement Program data are adequate for monitoring and comparing breast infections but certainly not comprehensive. Therapeutic, IV.

  11. Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    Uskoković, Vuk

    2015-01-01

    This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically “perfect” antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics. PMID:25746204

  12. Paediatric bacterial keratitis cases in Shanghai: microbiological profile, antibiotic susceptibility and visual outcomes

    PubMed Central

    Hong, J; Chen, J; Sun, X; Deng, S X; Chen, L; Gong, L; Cao, W; Yu, X; Xu, J

    2012-01-01

    Purpose The purpose of this study was to review the microbiological profile, in vitro antibiotic susceptibility and visual outcomes of paediatric microbial keratitis in Shanghai, China over the past 6 years. Methods Medical records of patients aged ≤16 years were reviewed, who were diagnosed as having bacterial keratitis between 1 January 2005 and 31 December 2010. Bacterial culture results and in vitro antibiotic susceptibility were analysed. A logistic regression analysis was conducted to evaluate the relationship between visual impairment and possible risk factors. Results Eighty consecutive cases of paediatric bacterial keratitis cases were included, among which 59 were identified as having positive culture. Staphylococcus epidermidis was the most commonly isolated organism (n=23; 39.0%), followed by Streptococcus pneumoniae (n=11; 18.6%) and Pseudomonas aeruginosa (n=6; 10.2%). Antibiotic sensitivities revealed that tested bacteria had low resistance rates to fluoroquinolones and aminoglycosides (8.3–18.4% and 12.5–24.4%, respectively). Multivariate logistic regression analysis proved that visual impairment was significantly associated with Gram-negative bacterial infection (odds ratio (OR)=7.626; P=0.043) and an increasing number of resistant antibiotics (OR=0.385; P=0.040). Conclusions S. epidermidis was the most common isolated organism in Shanghai paediatric keratitis. The fluoroquinolones and aminoglycosides remained good choices for treating these patients. Gram-negative bacterial infection and an increasing number of resistant antibiotics were associated with worse visual prognoses in paediatric keratitis. PMID:23079751

  13. Heterogeneity and antibiotic resistance in Propionibacterium acnes isolates and its therapeutic implications: blurring the lines between commensal and pathogenic phylotypes.

    PubMed

    Sadhasivam, Suresh; Sinha, Mau; Saini, Swamini; Kaur, Simar Preet; Gupta, Tanvi; Sengupta, Shiladitya; Ghosh, Shamik; Sardana, Kabir

    2016-11-01

    Acne vulgaris is a multifactorial skin disease associated with the colonization of Propionibacterium acnes. Antibiotics are a mainstay of treatment for acne, yet the emergence of resistance against the currently approved antibiotics is a serious concern. In this case report, a slow responder had multiple Propionibacterium acnes isolates with varied levels of sensitivity to the conventional antibiotics. The bacterial isolates obtained from acne samples collected from the patient were analyzed for phylogeny, and was found to be largely restricted to two different lineage patterns. Propionibacterium acnes phylotype IA1, which is considered to be pathogenic, displayed clindamycin sensitivity, but phylotype IB, which is associated with commensals, exhibited high clindamycin resistance. Sensitivity analysis revealed uniform resistance to macrolides, but susceptibility to tetracycline and nadifloxacin. These results implicate Propionibacterium acnes in the pathophysiology of acne vulgaris, although the lines between commensal and pathological phylotypes may be blurred. Switching the patient to a combination of minocycline and nadifloxacin resulted in a significant improvement in the clinical lesions. Such a science-driven judicious selection of antibiotics can minimize the probability of development of resistance, and might be the way forward in the treatment of acne. © 2016 Wiley Periodicals, Inc.

  14. Group B Streptococcus prophylaxis in patients who report a penicillin allergy: a follow-up study.

    PubMed

    Critchfield, Agatha S; Lievense, Stacey P; Raker, Christina A; Matteson, Kristen A

    2011-02-01

    The purpose of this study was to compare adherence to the 2002 Centers for Disease Control (CDC) guidelines for the prevention of perinatal group B Streptococcus (GBS) disease in patients who are allergic to penicillin during the years 2004-2006 and 2008. Previous data from our institution revealed suboptimal adherence to the 2002 CDC guidelines for GBS prophylaxis among women who are allergic to penicillin. These data caused the hospital to implement a series of interventions. The original cohort (2004-2006) was compared with a cohort of women who delivered between April 2008 and January 2009 (n = 74) to determine whether the proportion of women who had antimicrobial sensitivity testing and who had received an appropriate antibiotic had improved. In 2008, 76% (95% confidence interval, 66-84%) of GBS-positive women who are allergic to penicillin received an appropriate antibiotic (compared with 16.2% in 2004-2006; P < .001). Antimicrobial sensitivity testing was performed in 79.4% of cases (95% confidence interval, 68-87%), compared with 11.4% in 2004-2006 (P < .001). With directed intervention, adherence to the 2002 CDC guidelines for GBS prophylaxis in women who are allergic to penicillin improved dramatically. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. Validation of a Five Plate Test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC.

    PubMed

    Gaudin, V; Hedou, C; Rault, A; Verdon, E

    2010-07-01

    The STAR protocol is a Five Plate Test (FPT) developed several years ago at the Community Reference Laboratory (CRL) for the screening of antimicrobial residues in milk and muscle. This paper presents the validation of this method according to European Decision 2002/657/EC and to an internal guideline for validation. A validation protocol based on 'simulated tissues' and on a list of 16 representative antimicrobials to be validated was implemented in our laboratory during several months for the STAR protocol. The performance characteristics of the method were determined (specificity, detection capabilities CCbeta, applicability, ruggedness). In conclusion, the STAR protocol is applicable to the broad-spectrum detection of antibiotic residues in muscles of different animal species (pig, cattle, sheep, poultry). The method has good specificity (false-positive rate = 4%). The detection capabilities were determined for 16 antibiotics from different families in relation to their respective maximum residue limit (MRL): beta-lactams (penicillins and cephalosporins < or = MRL), tetracyclines (< or = MRL and < or = 2.5 MRL), macrolides (2 MRL), quinolones (< or = 2 MRL), some sulphonamides (< or = 3 MRL), and trimethoprim (2 MRL). However, the sensitivity of the STAR protocol towards aminoglycosides (> 8 MRL) and florfenicol (< or = 10 MRL) was unsatisfactory (>MRL). The two objectives of this study were met: firstly, to validate the STAR protocol according to European Decision 2002/657/EC, then to demonstrate that the validation guideline developed to implement this decision is applicable to microbiological plate tests even for muscle. The use of simulated tissue appeared a good compromise between spiked discs with antibiotic solutions and incurred tissues. In addition, the choice of a list of representative antibiotics allowed the reduction of the scope of the validation, which was already costly in time and effort.

  16. Antibiotic therapy for Shigella dysentery.

    PubMed

    Prince Christopher R H; David, Kirubah V; John, Sushil M; Sankarapandian, Venkatesan

    2010-01-20

    Shigella dysentery is a relatively common illness and occasionally causes death, worldwide. Mild symptoms are self-limiting but in more severe cases, antibiotics are recommended for cure and preventing relapse. The antibiotics recommended are diverse, have regional differences in sensitivity, and have side effects. To evaluate the efficacy and safety of antibiotics for treating Shigella dysentery. In June 2009 we identified all relevant trials from the following databases: Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2008, issue 4), MEDLINE, EMBASE, LILACS and the metaRegister of Controlled Trials (mRCT). We also checked conference proceedings for relevant abstracts, and contacted researchers, organizations, and pharmaceutical companies. Randomized controlled trials of antibiotics for Shigella dysentery. Four authors, working in pairs, independently assessed trial eligibility, methodological quality, and extracted data. We calculated risk ratios (RR) with 95% confidence intervals (CI) for dichotomous data, and used the random-effects model for significant heterogeneity. We explored possible sources of heterogeneity, when present, in subgroup analyses of participant age and percentage of participants with confirmed Shigella infection. Sixteen trials (1748 participants), spanning four decades and with differing sensitivity to Shigella isolates, met the inclusion criteria. Seven were judged to be at risk of bias due to inadequate allocation concealment or blinding, and 12 due to incomplete reporting of outcome data. Limited data from one three-armed trial of people with moderately severe illness suggest that antibiotics reduce the episodes of diarrhoea at follow-up (furazolidone versus no drug RR 0.21, 95% CI 0.09 to 0.48, 73 participants; cotrimoxazole versus no drug RR 0.30, 95% CI 0.15 to 0.59, 76 participants).There was insufficient evidence to consider any class of antibiotic superior in efficacy in treating Shigella dysentery, but heterogeneity for some comparisons limits confidence in the results. All the antibiotics studied were safe. There was inadequate evidence regarding the role of antibiotics in preventing relapses. Antibiotics reduce the duration of Shigella dysentery.Regularly updated local or regional antibiotic sensitivity patterns to different species and strains of Shigella are required to guide empiric therapy. More trials adhering to standard guidelines are required to evaluate the role of antibiotics in the treatment of severe forms of Shigella dysentery and in groups who are at high risk of complications.

  17. Antibiotic therapy for Shigella dysentery.

    PubMed

    Christopher, Prince Rh; David, Kirubah V; John, Sushil M; Sankarapandian, Venkatesan

    2010-08-04

    Shigella dysentery is a relatively common illness and occasionally causes death, worldwide. Mild symptoms are self-limiting but in more severe cases, antibiotics are recommended for cure and preventing relapse. The antibiotics recommended are diverse, have regional differences in sensitivity, and have side effects. To evaluate the efficacy and safety of antibiotics for treating Shigella dysentery. In June 2009 we identified all relevant trials from the following databases: Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2008, issue 4), MEDLINE, EMBASE, LILACS and the metaRegister of Controlled Trials (mRCT). We also checked conference proceedings for relevant abstracts, and contacted researchers, organizations, and pharmaceutical companies. Randomized controlled trials of antibiotics for Shigella dysentery. Four authors, working in pairs, independently assessed trial eligibility, methodological quality, and extracted data. We calculated risk ratios (RR) with 95% confidence intervals (CI) for dichotomous data, and used the random-effects model for significant heterogeneity. We explored possible sources of heterogeneity, when present, in subgroup analyses of participant age and percentage of participants with confirmed Shigella infection. Sixteen trials (1748 participants), spanning four decades and with differing sensitivity to Shigella isolates, met the inclusion criteria. Seven were judged to be at risk of bias due to inadequate allocation concealment or blinding, and 12 due to incomplete reporting of outcome data. Limited data from one three-armed trial of people with moderately severe illness suggest that antibiotics reduce the episodes of diarrhoea at follow-up (furazolidone versus no drug RR 0.21, 95% CI 0.09 to 0.48, 73 participants; cotrimoxazole versus no drug RR 0.30, 95% CI 0.15 to 0.59, 76 participants).There was insufficient evidence to consider any class of antibiotic superior in efficacy in treating Shigella dysentery, but heterogeneity for some comparisons limits confidence in the results. All the antibiotics studied were safe. There was inadequate evidence regarding the role of antibiotics in preventing relapses. Antibiotics reduce the duration of Shigella dysentery.Regularly updated local or regional antibiotic sensitivity patterns to different species and strains of Shigella are required to guide empiric therapy. More trials adhering to standard guidelines are required to evaluate the role of antibiotics in the treatment of severe forms of Shigella dysentery and in groups who are at high risk of complications.

  18. A Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, a biocontrol antibiotic produced by Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    Strains of Pseudomonas fluorescens that produce the antibiotic 2,4-diacetylphloroglucinol (DAPG) are biocontrol agents of a variety of soilborne pathogens. DAPG is active against a broad spectrum of organisms ranging from bacteria to higher plants. This suggests that the antibiotic may target basic...

  19. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, a biocontrol antibiotic produced by Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    2,4-diacetylphloroglucinol (2,4-DAPG) is an antibiotic produced by Pseudomonas fluorescens that plays a key role in the ability of the bacterium to suppress phytopathogenic fungi. 2,4-DAPG has broad antibiotic activity, affecting organisms ranging from bacteria to higher plants. The biosynthesis and...

  20. Prevalence and Characterization of Salmonella in Animal Meals Collected from Rendering Operations.

    PubMed

    Jiang, Xiuping

    2016-06-01

    As part of the Salmonella Education Reduction Program, the Animal Protein Producers Industry initiated a yearlong microbiological survey of animal meals from 1 January to 31 December 2010. The types of animal meals included poultry meal, pork and beef crax, meat meal, meat and bone meal, feather meal, blood meal, and fish meal from a variety of rendering operations (n = 65). Salmonella was positive in 731 (8.3%) of 8,783 analyzed samples, with contamination rates as 1.0, 33.2, and 21.3% from samples collected right after press, being loaded out, or unidentified, respectively. The randomly selected positive Salmonella samples (n = 100) representing 1.1% of the total samples tested were enumerated by the most-probable-number (MPN) method. The Salmonella contamination level ranged from <0.03 (below the detection limit) to 240 MPN/g with a median MPN per gram of 0.036. Among 102 Salmonella isolates from those 100 positive samples, a total of 42 Salmonella serotypes or groups were identified with Montevideo (13%), Senftenberg (11%), Mbandaka (7%), Orion (7%), Livingstone (6%), Tennessee (4%), Infantis (4%), Cerro (4%), and group C1 (4%) as the most predominant ones. Those Salmonella isolates were further analyzed for antimicrobial resistance to the 15 most common antibiotics by using the National Antimicrobial Resistance Monitoring System gram-negative plate. Most Salmonella isolates (n = 94) were sensitive to all antibiotics tested, with seven isolates resistant to one antibiotic and one resistant to seven antibiotics. Clearly, the prevalence of Salmonella in animal meals declined compared with previous surveys, and none of the Salmonella serotypes concerning target animal health were isolated. In addition, most Salmonella isolates remained susceptible to the majority of the 15 most commonly used antibiotics.

  1. Repeat Rifaximin for Irritable Bowel Syndrome: No Clinically Significant Changes in Stool Microbial Antibiotic Sensitivity.

    PubMed

    Pimentel, M; Cash, B D; Lembo, A; Wolf, R A; Israel, R J; Schoenfeld, P

    2017-09-01

    Rifaximin has demonstrated efficacy and safety for diarrhea-predominant irritable bowel syndrome (IBS-D). To determine the rifaximin repeat treatment effect on fecal bacterial antibiotic susceptibility. Patients with IBS in Trial 3 (TARGET 3) study who responded to open-label rifaximin 550 mg three times daily for 2 weeks, with symptom recurrence within 18 weeks, were randomized to double-blind treatment: two 2-week repeat courses of rifaximin or placebo, separated by 10 weeks. Prospective stool sample collection occurred before and after open-label rifaximin, before and after the first repeat course, and at the end of the study. Susceptibility testing was performed with 11 antibiotics, including rifaximin and rifampin, using broth microdilution or agar dilution methods. Of 103 patients receiving open-label rifaximin, 73 received double-blind rifaximin (n = 37) or placebo (n = 36). A total of 1429 bacterial and yeast isolates were identified, of which Bacteroidaceae (36.7%) and Enterobacteriaceae (33.9%) were the most common. In the double-blind phase, Clostridium difficile was highly susceptible to rifaximin [minimum inhibitory concentration (MIC) range 0.008-1 µg/mL] and rifampin (MIC range 0.004-0.25 µg/mL). Following double-blind rifaximin treatment, Staphylococcus isolates remained susceptible to rifaximin at all visits (MIC 50 range ≤0.06-32 µg/mL). Rifaximin exposure was not associated with long-term cross-resistance of Bacteroidaceae, Enterobacteriaceae, and Enterococcaceae to rifampin or nonrifamycin antibiotics tested. In this study, short-term repeat treatment with rifaximin has no apparent long-term effect on stool microbial susceptibility to rifaximin, rifampin, and nonrifamycin antibiotics. CLINICALTRIALS. NCT01543178.

  2. Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl.

    PubMed

    Abu-Elala, N; Abdelsalam, M; Marouf, Sh; Setta, A

    2015-11-01

    The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits. © 2015 The Society for Applied Microbiology.

  3. Species Identification and Antibiotic Susceptibilities of Coagulase- Negative Staphylococci Isolated from Urinary Tract Infection Specimens.

    PubMed

    Hashmi, Asra; Abdullah, Farhan Essa; Abdullah, Nihal Essa; Kazmi, Shahana Urooj

    2016-07-01

    To determine the incidence of Coagulase- negative S. aureusin urinary tract infections and sensitivities of these isolates to antimicrobial agents. Cohort study. Dr. Essa Laboratory and Immunology and Infectious Disease Research Laboratory (IIDRL), Microbiology Department, University of Karachi, from January 2009 to January 2010. Urine specimens, suggestive of urinary tract infection (UTI), were identified. Speciation of isolates was done using API-20 Staph.system. Screening of extracellular products was done using SDS-PAGE electrophoresis and Hemolysin on blood-agar plates. Minimum inhibitory concentration (MICs) of antibiotics was estimated by microtiter well plate method. Frequency and percentages were determined and chi-square test was used for comparing proportions with significance at p < 0.05. Coagulase - negative S. aureus(CONS) were the cause of urinary tract infection in 56 out of 1866 outpatient (3%) and 164 of 1261 inpatient (13%), urinary tract infections (p < 0.001). Two hundred and twenty CONS isolates were identified. The most common CONS identified was S. saprophyticus (31%, 68 strains). The relative frequency of Coagulase - negative S. aureuswas 6% (13 strains). All isolates were sensitive to Vancomycin and Linezolid. Resistance was 69% to Ampicillin, 53% to Methicillin, and 37.5% to Ciprofloxacin. CONS are a potential uropathogens, with capability of slime production and resistance to common empirical prescriptions. This also warrants formulation of an appropriate antibiotic policy that covers CONS.

  4. Exit-site infections by non-diphtheria corynebacteria in CAPD.

    PubMed

    Schiffl, Helmut; Mücke, Claudia; Lang, Susanne M

    2004-01-01

    Non-diphtheria corynebacteria species cause disease in risk populations such as immunocompromised patients and patients with indwelling medical devices. Despite reports of exit-site infection and peritonitis caused by non-diphtheria corynebacteria, these organisms are frequently dismissed as contaminants. During a 10-year observation period, we prospectively identified 8 cases of exit-site/tunnel infections caused by 2 different species of corynebacteria (Corynebacterium striatum in 5 and C. jeikeium in 3 cases). Four patients experienced a second episode of exit-site infection 3 months (2 cases), 25 months, and 40 months, respectively, after termination of an oral cephalosporin therapy of 4 to 6 weeks' duration. Non-diphtheria corynebacteria accounted for 9% of all exit-site infections during the study period. All catheter-related infections healed; no catheter had to be removed. The diagnosis of catheter-related non-diphtheria corynebacteria infection may be suspected when Gram stain shows gram-positive rods and with colony morphology and commercial biochemical identification systems. Susceptibility of non-diphtheria corynebacteria to antibiotics may vary, especially in C. jeikeium. Virtually all Corynebacterium species are sensitive to vancomycin. Empirical antibiotic therapy with vancomycin should be initiated while antibiotic susceptibility testing is being carried out. Oral cephalosporin may be an alternative treatment regimen for exit-site infections if sensitive. This study highlights the importance of non-diphtheria corynebacteria as emerging nosocomial pathogens in the population of end-stage renal disease patients on on continuous ambulatory peritoneal dialysis.

  5. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk

    NASA Astrophysics Data System (ADS)

    Shi, Qiaoqiao; Huang, Jie; Sun, Yaning; Yin, Mengqi; Hu, Mei; Hu, Xiaofei; Zhang, Zhijun; Zhang, Gaiping

    2018-05-01

    An ultrasensitive method for the detection of antibiotics in milk is developed based on inexpensive, simple, rapid and portable lateral flow immunoassay (LFI) strip, in combination with high sensitivity surface-enhanced Raman spectroscopy (SERS). In our strategy, an immunoprobe was prepared from colloidal gold (AuNPs) conjugated with both a monoclonal antibody against neomycin (NEO-mAb) and a Raman probe molecule 4-aminothiophenol (PATP). The competitive interaction with immunoprobe between free NEO and the coated antigen (NEO-OVA) resulted in the change of the amount of the immobilized immunoprobe on the paper substrate. The LFI procedure was completed within 15 min. The Raman intensity of PATP on the test line of the LFI strip was measured for the quantitative determination of NEO. The IC50 and the limit of detection (LOD) of this assay are 0.04 ng/mL and 0.216 pg/mL of NEO, respectively. There is no cross-reactivity (CR) of the assay with other compounds, showing high specificity of the assay. The recoveries for milk samples with added NEO are in the range of 89.7%-105.6% with the relative standard deviations (RSD) of 2.4%-5.3% (n = 3). The result reveals that this method possesses high specificity, sensitivity, reproducibility and stability, and can be used to detect a variety of antibiotic residues in milk samples.

  6. Group A beta-hemolytic streptococcal pharyngitis and carriage rate among Egyptian children: a case-control study.

    PubMed

    Abd El-Ghany, Shereen Mohamed; Abdelmaksoud, Abeer Ahmed; Saber, Sally Mohamed; Abd El Hamid, Dalia Hosni

    2015-01-01

    Improper prescription of antibiotics for treatment of acute pharyngitis predisposes to emergence of a carrier state and antibiotic-resistant strains of group A streptococci (GAS). We sought to identify the frequency and antimicrobial susceptibility patterns of group A streptococci among Egyptian children with acute pharyngitis compared with asymptomatic children. Case-control study conducted from September 2013 to August 2014 at a pediatric outpatient clinic in Egypt. Throat swabs were collected from children with acute pharyngitis and from asymptomatic children. We evaluated the accuracy of McIsaac scores and the rapid antigen detection test (RADT) for diagnosis of GAS pharyngitis with throat culture as a reference test. Antimicrobial susceptibility testing of GAS isolates was done by the disc diffusion method. Of 142 children with acute pharyngitis (cases) and 300 asymptomatic children (controls) (age range, 4-16 years), GAS pharyngitis was diagnosed in 60/142 children (42.2%); 48/300 (16%) were found to be carriers. All GAS isolates in the case group were sensitive to penicillin; however, an MIC90 (0.12 micro g/mL) for penicillin is high and an alarming sign. The resistance rate to macrolides was 70% with the cMLSB phenotype in 65.1%. The sensitivities and specificities were 78.3% and 73.2% for McIsaac score of >=4 and 81.1% and 93.9% for RADT, respectively. GAS isolates in the control group were 100% sensitive to penicillin, while 12.5% and 37.5% were resistant to macrolides and tetracycline, respectively. An increased MIC90 for GAS isolates to penicillin is an alarming sign. A high frequency of resistance to macrolides was also observed.

  7. Reinventing the Wheel: Impact of Prolonged Antibiotic Exposure on Multi-Drug Resistant Ventilator-Associated Pneumonia in Trauma Patients.

    PubMed

    Lewis, Richard H; Sharpe, John P; Swanson, Joseph M; Fabian, Timothy C; Croce, Martin A; Magnotti, Louis J

    2018-04-16

    Multi-drug resistant (MDR) strains of both Acinetobacter baumannii (AB) and Pseudomonas aeruginosa (PA) as causative VAP pathogens are becoming increasingly common. Still, the risk factors associated with this increased resistance have yet to be elucidated. The purpose of this study was to examine the changing sensitivity patterns of these pathogens over time and determine which risk factors predict MDR in trauma patients with VAP. Patients with either AB or PA VAP over 10 years were stratified by pathogen sensitivity (sensitive (SEN) and MDR), age, severity of shock and injury severity. Prophylactic and empiric antibiotic days, risk factors for severe VAP and mortality were compared. Multivariable logistic regression (MLR) was performed to determine which risk factors were independent predictors of MDR. 397 patients were identified with AB or PA VAP. There were 173 episodes of AB (91 SEN and 82 MDR) and 224 episodes of PA (170 SEN and 54 MDR). The incidence of MDR VAP did not change over the study (p=0.633). Groups were clinically similar with the exception of 24-hour transfusions (14 vs 19 units, p = 0.009) and extremity AIS (1 vs 3, p<0.001), both significantly increased in the MDR group. Antibiotic exposure as well as mIEAT (63% vs 81%, p<0.001) were significantly increased in the MDR group. MLR identified prophylactic antibiotic days (OR 23.1; 95%CI 16.7-28, p<0.001) and mIEAT (OR 18.1; 95%CI 12.2-26.1, p=0.001) as independent predictors of MDR after adjusting for severity of shock, injury severity, severity of VAP and antibiotic exposure. Prolonged exposure to unnecessary antibiotics remains one of the strongest predictors for the development of antibiotic resistance. MLR identified prophylactic antibiotic days and mIEAT an independent risk factors for MDR VAP. Thus, limiting prophylactic antibiotic days is the only potentially modifiable risk factor for the development of MDR VAP in trauma patients. Level III, Prognostic LEVEL OF EVIDENCE: Multi-drug resistant, antibiotic exposure.

  8. Reconsidering the Current Preterm Premature Rupture of Membranes Antibiotic Prophylactic Protocol.

    PubMed

    Wolf, Maya Frank; Miron, Dan; Peleg, David; Rechnitzer, Hagai; Portnov, Igor; Salim, Raed; Keness, Yoram; Reich, Dan; Ami, Moshe Ben; Peretz, Avi; Koshnir, Amir; Shachar, Inbar Ben

    2015-11-01

    The purpose of our study was to determine whether the current antibiotic regimen for preterm premature rupture of membranes (PPROM) is adequate for covering the current causative agents and sensitivities of chorioamnionitis and early-onset neonatal sepsis. During a 3-year period, we retrieved the results from placental and amniotic membrane cultures obtained at delivery in cases of maternal fever, chorioamnionitis, and PPROM, and from blood cultures obtained from neonates with early-onset sepsis (EOS) in three participating hospitals. Sensitivity of pathogens to antimicrobial agents was performed using routine microbiologic techniques. There were 1,133 positive placental or amniotic cultures, 740 (65.3%) were from gram-negative Enterobacteriaceae. There were 27 neonates diagnosed with EOS with positive blood cultures. Aerobic Enterobacteriaceae accounted for 14 cases (52%) and group B streptococcus for 7 cases (26%). Of the Escherichia coli and Klebsiella sp., only 38% were sensitive to ampicillin. Local pathogens and their antibiotic sensitivity profiles should be explored every few years and an effective antibiotic protocol chosen to cover the main pathogens causing chorioamnionitis and EOS. Consideration should be made for changing ampicillin in women with PPROM to a regimen with better coverage of gram-negative Enterobacteriaceae. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  10. Kinetics activity of Yersinia Intermedia Against ZnO Nanoparticles Either Synergism Antibiotics by Double-Disc Synergy Test Method.

    PubMed

    Fathi Azar Khavarani, Motahareh; Najafi, Mahla; Shakibapour, Zahra; Zaeifi, Davood

    2016-03-01

    Bacterial resistance to the commonly used antibacterial agents is an increasing challenge in the medicine, and a major problem for the health care systems; the control of their spread is a constant challenge for the hospitals. In this study, we have investigated the antimicrobial activity of the Zinc Oxide nanoparticles against clinical sample; Yersinia intermedia bacteria. Nanoparticle susceptibility constants and death kinetic were used to evaluate the antimicrobial characteristics of the Zinc Oxide (ZnO) against the bacteria. Antimicrobial tests were performed with 10 8 cfu.mL -1 at baseline. At first, Minimum Inhibitory Concentration (MIC) of ZnO was determined and then nanoparticle suspension at one and two times of the MIC was used for death kinetic and susceptibility constant assay at 0 to 360 min treatment time. ZnO nanoparticles with size ranging from 10 to 30 nm showed the highest susceptibility reaction against Y. intermedia (Z=39.06 mL.μg -1 ). The process of Y. intermedia death in ZnO suspension was assumed to follow the first-order kinetics and the survival ratio of bacteria decreased with the increasing treatment time. An increased concentration of the nanoparticle was seen to enhance the bactericidal action of the nanoparticle. Then we performed the best ratio of the nanoparticles on semi-sensitive and resistance antibiotic for the bacteria. However, based on experimental results, synergy of ZnO nanoparticles and Oxacilin was determined and Y. intermedia showed a higher sensitivity compared to the ZnO nanoparticles alone. The results of the present study illustrates that ZnO has a strong antimicrobial effect and could potentially be employed to aid the bacterial control. It could also improve- antibacterial effects in combination with the antibiotics.

  11. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    PubMed

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  12. Use of antibiotics in paediatric long-term care facilities.

    PubMed

    Murray, M T; Johnson, C L; Cohen, B; Jackson, O; Jones, L K; Saiman, L; Larson, E L; Neu, N

    2018-06-01

    Adult long-term care (LTC) facilities have high rates of antibiotic use, raising concerns about antimicrobial resistance. Few studies have examined antibiotic use in paediatric LTC facilities. To describe antibiotic use in three paediatric LTC facilities and to describe the factors associated with use. A retrospective cohort study was conducted from September 2012 to December 2015 in three paediatric LTC facilities. Medical records were reviewed for demographics, healthcare-associated infections (HAIs), antimicrobial use and diagnostic testing. Logistic regression was used to identify predictors for antibiotic use. The association between susceptibility testing results and appropriate antibiotic coverage was determined using Chi-squared test. Fifty-eight percent (413/717) of residents had at least one HAI, and 79% (325/413) of these residents were treated with at least one antibiotic course, totalling 2.75 antibiotic courses per 1000 resident-days. Length of enrolment greater than one year, having a neurological disorder, having a tracheostomy, and being hospitalized at least once during the study period were significantly associated with receiving antibiotics when controlling for facility (all P < 0.001). Diagnostic testing was performed for 40% of antibiotic-treated HAIs. Eighty-six percent of antibiotic courses for identified bacterial pathogens (201/233) provided appropriate coverage. Access to susceptibility testing was not associated with appropriate antibiotic choice (P = 0.26). Use of antibiotics in paediatric LTC facilities is widespread. There is further need to assess antibiotic use in paediatric LTC facilities. Evaluation of the adverse outcomes associated with inappropriate antibiotic use, including the prevalence of resistant organisms in paediatric LTC facilities, is critical. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Multifaceted antibiotic treatment analysis of methicillin-sensitive Staphylococcus aureus bloodstream infections.

    PubMed

    Weber, Zhanni; Ariano, Robert; Lagacé-Wiens, Philippe; Zelenitsky, Sheryl

    2016-12-01

    Given the overall prevalence and poor prognosis of Staphylococcus aureus bloodstream infections (BSIs), the study of treatment strategies to improve patient outcomes is important. The aim of this study was to conduct a multifaceted antibiotic treatment analysis of methicillin-sensitive S. aureus (MSSA) BSI and to characterise optimal early antibiotic therapy (within the first 7 days of drawing the index blood culture) for this serious infection. Antibiotic selection was categorised as optimal targeted (intravenous cloxacillin or cefazolin), optimal broad (piperacillin/tazobactam or meropenem), adequate (vancomycin) or inadequate (other antibiotics or oral therapy). A TSE (timing, selection, exposure) score was developed to comprehensively characterise early antibiotic therapy, where higher points corresponded to prompt initiation, optimal antibiotic selection and longer exposure (duration). Amongst 71 cases of complicated MSSA-BSI, end-of-treatment (EOT) response (i.e. clinical cure) was improved when at least adequate antibiotic therapy was initiated within 24 h [71.7% (33/46) vs. 48.0% (12/25); P = 0.047]. Clinical cure was also more likely when therapy included ≥4 days of optimal targeted antibiotics within the first 7 days [74.4% (29/39) vs. 50.0% (16/32); P = 0.03]. The TSE score was an informative index of early antibiotic therapy, with EOT cure documented in 72.0% (36/50) compared with 42.9% (9/21) of cases with scores above and below 15.2, respectively (P = 0.02). In multivariable analysis, lower Charlson comorbidity index, presence of BSI on admission, and optimising early antibiotic therapy, as described above, were associated with clinical cure in patients with MSSA-BSI. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  14. Emerge of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran.

    PubMed

    Hosseinzadeh, Zahra; Sedigh Ebrahim-Saraie, Hadi; Sarvari, Jamal; Mardaneh, Jalal; Dehghani, Behzad; Rokni-Hosseini, Seyed Mohammad Hossein; Motamedifar, Mohammad

    2018-06-01

    One of the most important emerging carbapenem-resistant bacteria is Klebsiella pneumoniae (K. pneumoniae). The present study aimed to investigate the antibiotic susceptibility pattern of K. pneumoniae isolates and detection of carbapenemase producing K. pneumoniae obtained from Iranian hospitalized patients. This cross-sectional study was performed on 211 K. pneumoniae isolates which were recovered from different clinical specimens from 2014 to 2015. Modified Hodge test (MHT) and double disk synergy test (DDST) were done for detection of carbapenemase and metallo-beta-lactamase (MBL) producing K. pneumoniae. The presence of antibiotic resistance determinants was investigated by polymerase chain reaction (PCR) method. The results of antibiotic susceptibility showed that all isolates were resistant to ampicillin, and then mostly resistant to piperacillin and ceftazidime with 76.3% and 66.8%, respectively. On the other hand, the highest sensitivity was toward polymyxin B, followed by carbapenems. Of 29 carbapenem-resistant isolates, all were high-level imipenem-resistant isolates (Minimum inhibitory concentration ≥4), except 4 isolates. The results of MHT and DDST showed that 93.1% (27/29) of carbapenem-resistant isolates were carbapenemase and MBL producing isolates, respectively. The presence of bla NDM-1 and bla OXA-48-like genes was detected in 27 (10.9%) and 2 (0.9%) isolates, respectively. This is the first identification of bla NDM-1 and bla OXA-48-like in K. pneumoniae in Southwestern Iran and the highest reported prevalence of bla NDM in this bacterium from Iran. Since carbapenem-resistant isolates containing New Delhi metallo-beta-lactamase 1 (NDM-1) were almost resistant to all the tested antibiotics, the resistance due to this gene may be increased in the near future as a potential health threat. Copyright © 2017. Published by Elsevier Taiwan LLC.

  15. A survey on microorganisms and their sensitivity by E-test in ventilator-associated pneumonia at Toxicological-Intensive Care Unit of Loghman-Hakim Hospital.

    PubMed

    Talaie, Haleh; Sabeti, Shahram; Mahdavinejad, Arezou; Barari, Behjat; Kamalbeik, Sepideh

    2010-12-01

    Ventilator associated pneumonia (VAP) is the most common nosocomial infection at ICUs, with high mortality and morbidity. The diagnostic method for VAP is based on the combination of clinical, radiological, and microbiological criteria. Lower respiratory tract culture results are useful to confirm the etiology of VAP and adjusted antibiotics. Endotracheal aspiration (EA) is the simplest noninvasive technique for performing lower respiratory tract culture, with high sensitivity and moderately high specificity. The aim of this survey was to evaluate the quantitative cultures of endotracheal aspirates in VAP patients and the sensitivity patterns of microorganisms through E-test. Among 582 ICU admitted patients who were under mechanical ventilation for more than 48 hours, 72 suspected patients of VAP were prospectively evaluated during a 10 month period. Evaluation of our ICU standards by APACHE III scoring, and GCS were carried out on the first day of admission in all patients. Quantitative cultures of EA were performed on all 72 patients. Antibiotic resistance pattern of isolated pathogens was defined by E-test. VAP was confirmed in 46 out of 72 cases (50, 69.4% males and 22, 30.6% females - mean age was 33 +/- 12 years) through quantitative cultures of EA samples. The probable incidence of VAP was 7.9% (per ventilated patients > or = 48 hours). The mean APACHE III score was 31.28 +/- 16. GCS in most of the patients was between 8 and 12. Staphylococcus aureus was the most frequently isolated organism (58.7%), with high sensitivity to Amikacin, Ciprofloxacin, and Teicoplanin (>92%); Pseudomonas aeruginosa was the second most frequent organism (17.4 percent); Acinetobacter isolates were potentially drug resistant, and only Amikacin was effective. Tracheal aspirates in combination with clinical findings show important roles in the management of VAP and decrease inappropriate antimicrobial therapy. S. aureus is the main agent leading to VAP in the TICU of the Loghman Hakim Hospital.

  16. [Interrelation of the antibiotic sensitivity (resistance) of staphylococci, clinical forms of the infection and production of protein A].

    PubMed

    Fomenko, G A

    1984-06-01

    Two hundred and thirty-two strains of Staph. aureus isolated from patients with staphylococcal infections were studied. The strains were isolated from the blood of patients with sepsis, from the purulent foci on the skin and in the subcutaneous fat, from the nasopharyngeal mucosa of patients with tonsillitis and inflammation of the upper respiratory tract, from the sputum of patients with the pneumonia signs and from the pus of patients with otitis. The pathogens were identified with the routine methods. The quantitative content of protein A in the strains was determined by the method of indirect hemagglutination with red blood cells sensitized with the hemolytic serum. The data obtained were analysed with regard to the strain group and characteristics of the strain resistance or sensitivity to benzylpenicillin, erythromycin, oleandomycin, chloramphenicol, streptomycin, neomycin, kanamycin, monomycin, ristomycin and furagin K. Statistically significant differences in the protein A content in certain strain groups were observed. These differences might be correlated with the strain antibiotic resistance but not sensitivity. Pronounced changes in the levels of protein A were detected in the staphylococcal hemocultures resistant to erythromycin and streptomycin. The cultures resistant to erythromycin were characterized by decreased content of protein A and those resistant to streptomycin were characterized by increased content of protein A. Comparison of the antibiotic sensitivity of the strains of 5 groups by variation statistics revealed significant differences in the levels of sensitivity to streptomycin, neomycin, kanamycin, monomycin, ristomycin and furagin K but not to erythromycin, oleandomycin and chloramphenicol in the strains of certain groups. The staphylococcal hemocultures isolated from patients with sepsis proved to be the most sensitive to the antibiotics.

  17. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis.

    PubMed

    Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H

    2012-06-01

    The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.

  18. The persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive M. elsdenii strains to prevent colonization of swine by antibiotic-resistant strains

    USDA-ARS?s Scientific Manuscript database

    Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC = 64->256 micro g/ml) and to carry mosaic (re...

  19. Uncomplicated E Coli Urinary Tract Infection in College Women: A Follow-Up Study of E Coli Sensitivities to Commonly Prescribed Antibiotics

    ERIC Educational Resources Information Center

    Ansbach, Robert K.; Dybus, Karen; Bergeson, Rachel

    2005-01-01

    Treatment of uncomplicated urinary tract infections (UTIs) has changed in the past few years with researchers advocating empiric treatment for shorter periods of time without the use of cultures. Researchers report that antibiotic resistance of Escherichia coli (E coli) to commonly prescribed antibiotics in uncomplicated UTIs has been increasing.…

  20. How Nature Morphs Peptide Scaffolds into Antibiotics

    PubMed Central

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  1. Antibiotic sensitivity pattern of causative organisms of neonatal septicemia in an urban hospital of Bangladesh.

    PubMed

    Monjur, Forhad; Rizwan, Farhana; Asaduzzaman, Muhammad; Nasrin, Nishat; Ghosh, Nobo Krishna; Apu, Apurba Sarker; Haque, Fazlul

    2010-06-01

    The information of the sensitivity pattern of the causative organisms is very important for effective control of septicemia in neonates. To determine the proportion and profile of pathogenic bacteria in the blood cultures of the neonates with clinically suspected septicemia and their susceptibility pattern to antimicrobial agents for developing a unified antibiotic treatment protocol. A cross-sectional retrospective study was conducted over a period of 3 year and 4 months (39 months). The study included 1000 patients admitted in the selected hospital in Bangladesh. Blood samples for culture were taken aseptically before starting antibiotic therapy. Microorganisms were isolated and identified by standard microbiological processes which include colony morphology, Gram stain, and biochemical profiles. Antimicrobial sensitivity patterns were performed by Kirby-Bauer's disc diffusion method against imipenem, ciprofloxacin, ceftazidime, chloramphenicol, netilmicin, gentamicin, ceftriaxone, aztreonam, cefotaxime, cephalexin, and ampicillin. Among the patients, 633 (63.3%) were males and 367 (36.7%) were females. Blood cultures were found positive in 194 (19.4%) neonates. The organisms isolated were Pseudomonas spp. (31.4%), Klebsiella pneumoniae (23.2%), Staphylococcus aureus (12.4%), Escherichia coli (7.2%), Acinatobactor (5.7%), Gram-negative Bacilli (4.1%), Flavobacterium spp. (3.6%), Serratia spp. (5.7%), Citrobacter fruendi (3.1%), Streptococcus species (2.6%), and Enterobacter spp. (1.0%). A majority of the bacterial isolates in neonatal sepsis were found sensitive to imipenem (91.8%) and ciprofloxacin (57.2%) and resistant to commonly used antibiotics, eg. ampicillin (96.4%) and cephalexin (89.2%). The problem can be mitigated by careful selection and prudent use of available antibiotics.

  2. Detection of tetQ and ermF antibiotic resistance genes in Prevotella and Porphyromonas isolates from clinical specimens and resident microbiota of humans.

    PubMed

    Arzese, A R; Tomasetig, L; Botta, G A

    2000-05-01

    Gram-negative anaerobes belonging to the genera Fusobacterium, Prevotella and Porphyromonas were investigated for the presence of tetQ and ermF, which have been shown to be spread by conjugal elements. One hundred isolates from either sites of infection or various body sites in healthy subjects were studied. PCR was used to detect tetQ, and DNA-DNA hybridization studies on EcoRI chromosomal digests were undertaken to detect the presence of tetQ and ermF. Antibiotic sensitivity assays were performed on selected isolates to detect tetracycline, erythromycin and penicillin resistance. Twenty Fusobacterium isolates lacked tetQ, and were tetracycline sensitive. Twenty per cent of Prevotella spp. isolates both from clinical specimens and from healthy subjects were found to possess tetQ. Of 20 Porphyromonas isolates tested, one (Porphyromonas levii) from a case of bacterial vaginosis was shown to possess tetQ in the chromosome. The presence of tetQ was always associated with tetracycline resistance. Four isolates of Prevotella melaninogenica and one isolate of Prevotella were ermF-positive, although expression of erythromycin resistance was not consistently associated with detection of this gene. Antibiotic resistance phenotypes of Prevotella isolates were shown to be related to specific chromosomal restriction patterns by hybridization studies: tetracycline resistance and tetracycline/erythromycin resistance are conferred by Bacteroides tetracycline-resistant ERL elements, whereas the tetracycline/penicillin resistance phenotype could be due to spread of elements identified in Prevotella only. Tetracycline/erythromycin-resistant and tetracycline/erythromycin/penicillin-resistant P. melaninogenica isolates were found in this study. It appeared that the presence of tetQ and ermF in Bacteroides and Prevotella contributed to the persistence of antibiotic resistance isolates within the host and to potential spread to other organisms through conjugal elements.

  3. [Neisseria gonorrhoeae: antimicrobial resistance and study of population dynamics. Situation in Barcelona in 2011].

    PubMed

    Serra-Pladevall, Judit; Barberá-Gracia, María Jesús; Roig-Carbajosa, Glòria; Juvé-Saumell, Rosa; Gonzalez-Lopez, Juan José; Bartolomé-Comas, Rosa; Andreu-Domingo, Antònia

    2013-11-01

    Due to the high rates of antimicrobial resistance to certain antibiotics, together with the emergence of Neisseria gonorrhoeae (NG) with reduced susceptibility and resistance to third-generation cephalosporins, gonococcal infection is becoming a public health problem. The objectives of the study were: To keep track of the antimicrobial susceptibility of NG strains obtained from January to August 2011. To study the population dynamics. The antimicrobial susceptibility was studied by disk-diffusion and E-test. The genotyping was performed by NG-MAST method. Of a total of 100strains studied, 59% showed intermediate sensitivity to penicillin and 9% were resistant. According to EUCAST, we detected 3gonococci with reduced susceptibility to ceftriaxone, 10 to cefixime and one with high-level resistance to both antibiotics (MIC 1.5μg/ml). MIC50 and MIC90 to cefixime were 0.016 and 0.125μg/ml, respectively, whereas to ceftriaxone they were <0.016 and 0.064μg/ml, respectively. Almost all (99%) of the strains were resistant to doxycycline, 53% to ciprofloxacin, 3% to azithromycin, and 1% to spectinomycin. The most prevalent ST was ST1407, predominantly associated to resistance or reduced sensitivity to cephalosporins or macrolides. NG has developed significant rates of resistance to various antibiotics. One strain has been detected with high level resistance to third generation cephalosporins, and several strains with reduced susceptibility. An increase in MIC50 and MIC90 to these antibiotics has also been observed. NG population structure remains stable and common to the rest of Europe, although two new ST (ST7226 and ST7227) have been identified that could be selected and acquire high levels of resistance to cephalosporins. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. Immunological aspects of nonimmediate reactions to beta-lactam antibiotics.

    PubMed

    Rodilla, Esther Morena; González, Ignacio Dávila; Yges, Elena Laffond; Bellido, Francisco Javier Múñoz; Bara, María Teresa Gracia; Toledano, Félix Lorente

    2010-09-01

    beta-lactam antibiotics are the agents most frequently implied in immune drug adverse reactions. These can be classified as immediate or nonimmediate according to the time interval between the last drug administration and their onset. Mechanisms of immediate IgE-mediated reactions are widely studied and are therefore better understood. Nonimmediate reactions include a broad number of clinical entities like mild maculopapular exanthemas, the most common, and other less frequent but more severe reactions such as Stevens-Johnson syndrome, toxic epidermal necrolysis, acute exanthematic pustulosis or cytopenias. These nonimmediate reactions are mainly mediated by T cells but the precise underlying mechanisms are not well elucidated. This fact complicates the allergological evaluation of patients with this type of reaction and available tests have demonstrated poor sensitivity and specificity.

  5. Selective pressure of antibiotic pollution on bacteria of importance to public health.

    PubMed

    Tello, Alfredo; Austin, Brian; Telfer, Trevor C

    2012-08-01

    Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance.

  6. Acute otitis media disease management.

    PubMed

    Pichichero, M E; Casey, J R

    2003-10-01

    A first step in management decisions regarding otitis media must focus on accurate diagnosis to distinguish normal from acute otitis media (AOM) from otitis media with effusion (OME) or a retracted tympanic membrane without middle ear effusion. There are several classification schemes for AOM that may impact management decisions: patients with acute, persistent, recurrent, or chronic AOM may have a different distribution of bacterial pathogens and a different likelihood of success from antimicrobial therapy. Patient age, prior treatment history and daycare attendance are other important variables. The natural history of AOM without antibiotic treatment is generally favorable; however, from the few studies available, this is difficult to quantitate because the diagnosis was infrequently confirmed by tympanocentesis leaving the possibility that many patients entered into these trials may not have had bacterial AOM. Antibiotic choices should reflect pharmacokinetic/pharmacodynamic data and clinical trial results demonstrating effectiveness in eradication of the most likely pathogens based on tympanocentesis sampling and antibiotic sensitivity testing. Thereafter, compliance factors such as formulation, dosing schedule and duration of treatment and accessibility factors such as availability and cost should be taken into account. The increasing prevalence of antibiotic resistance among AOM pathogens and the changing susceptibility profiles of these bacteria should be considered in antibiotic selection. Current best practice recommends amoxicillin for uncomplicated AOM; continuing or switching to an alternative antibiotic based on clinical response after 48 hours of therapy; and selection of second line antibiotics as first line choices when the patient has already been on an antibiotic within the previous month or is otitis prone. Preferred second-line agents frequently noted in various guidelines include amoxicillin/clavulanate, cefdinir, cefpodoxime, cefprozil, and cefuroxime. Three injections of ceftriaxone or gatifloxacin (when approved) or diagnostic/therapeutic tympanocentisis (when approved) become a third-line treatment option. No single antibiotic or management strategy is ideal for all patients.

  7. Drug-sensitivity of El Tor vibrio strains isolated in the Philippines in 1964 and 1965*

    PubMed Central

    Kuwahara, Shogo; Goto, Sachiko; Kimura, Masatake; Abe, Hisao

    1967-01-01

    About 1500 strains of El Tor vibrios, isolated in 1964 and 1965 in the Philippines, were examined for their susceptibilities to 17 drugs. All the strains tested were highly sensitive to dihydroxymethyl-furalazine, and most were highly sensitive to tetracycline hydrochloride, chloramphenicol and erythromycin, and moderately sensitive to novobiocin, dihydrostreptomycin sulfate, kanamycin and neomycin. They showed a remarkable fluctuation of sensitivity to ampicillin, cefaloridine, cefalotin and sulfafurazole, and a high resistance to benzylpenicillin sodium, oleandomycin and spiramycin. Experimental confirmation was provided of the fact that El Tor vibrios and non-agglutinable vibrios can be distinguished from classical cholera vibrios by their resistance to polymyxin B and colistin. Highly streptomycin-resistant strains, and to a lesser extent ampicillin- and sulfafurazole-resistant strains, were relatively often isolated from cholera patients who had been treated with antibiotics. One patient yielded a strain resistant to tetracycline, chloramphenicol, streptomycin and sulfafurazole. PMID:4870079

  8. Estimating the proportion of pneumonia attributable to pneumococcus in Kenyan adults: latent class analysis.

    PubMed

    Jokinen, Jukka; Scott, J Anthony G

    2010-09-01

    Community-acquired pneumonia is a common cause of hospitalization among African adults, and Streptococcus pneumoniae is assumed to be a frequent cause. Pneumococcal conjugate vaccine is currently being introduced into childhood immunization programs in Africa. The case for adult vaccination is dependent on the contribution of the pneumococcus to the hospital pneumonia burden. Pneumococcal diagnosis is complex because there is no gold standard, and culture methods are invalidated by antibiotic use. We used latent class analysis to estimate the proportion of pneumonia episodes caused by pneumococcus. Furthermore, we extended this methodology to evaluate the effect of antimicrobial treatment on test accuracies and the prevalence of the disease. The study combined data from 5 validation studies of pneumococcal diagnostic tests performed on 281 Kenyan adults with pneumonia. The proportion of pneumonia episodes attributable to pneumococcus was 0.46 (95% confidence interval = 0.36-0.57). Failure to account for the effect of antimicrobial exposure underestimates this proportion as 0.32. A history of antibiotic exposure was a poor predictor of antimicrobial activity in patients' urine. Blood culture sensitivity for pneumococcus was estimated at 0.24 among patients with antibiotic exposure, and 0.75 among those without. The large contribution of pneumococcus to adult pneumonia provides a strong case for the investigation of pneumococcal vaccines in African adults.

  9. Antimicrobial susceptibility patterns of enterobacteriaceae isolated from HIV-infected patients in Kinshasa.

    PubMed

    Iyamba, Jean-Marie Liesse; Wambale, José Mulwahali; Takaisi-Kikuni, Ntondo Za Balega

    2014-01-01

    People infected by Human Immunodeficiency Virus (HIV) are susceptible to develop severe bacterial infections. We set out to determine the frequency and the sensitivity to antibiotics of enterobaceriaceae isolated from urine and feces of HIV-infected persons. Urine and feces samples were collected from HIV-infected patients of the Centre de Traitement Ambulatoire de Kabinda (CTA/Kabinda, Kinshasa) and analyzed at the Reference National Laboratory for HIV/AIDS and Sexually Transmitted Infections. The isolated enterobacteriaceae strains were identified by conventional microbiological methods. Antibiotic sensitivity pattern was carried out by disc diffusion method. THE FOLLOWING BACTERIA PATHOGENS WERE ISOLATED: Escherichia coli, Klebsiella, Enterobacter, Proteus, and Providencia. Most species were sensitive to cefotaxim, ceftriaxon, and gentamicin and resistant to chloramphenicol, cotrimoxazole, tetracycline, and norfloxacin. The results of the present study show that the most frequently bacteria isolated were Esherichia coli and cefotaxim, ceftriaxon, and gentamicin were the most active antibiotics.

  10. [Relevant allergans by periorbital allergic contact dermatitis. Oxybuprocain, an underestimated allergen].

    PubMed

    Blaschke, V; Fuchs, T

    2003-08-01

    Periorbital allergic contact dermatitis is a rare disease and the main differential diagnoses are atopic and seborrhoeic dermatitis. The diagnosis is based on clinical appearance, patient history and patch testing. Current systematic overviews on contact allergens involved are lacking and with changes in medical preparations, new relevant antigens may emerge. Based on the systematic data of the information network of dermatological clinics (IVDK), patch test reactions in 48,969 patients tested between 1996 and 2000 were evaluated. A total of 763 patients suffered from periorbital dermatitis which was suspected to be due to the use of topical medication. The most common epidermal sensitizations in the general population were observed against nickel and fragrances. In the periorbital dermatitis group, sensitization against local anaesthetics and antibiotics was more frequent than in the general population. In three patients, oxybuprocain was identified as the causative agent, which has not yet been recognized as a common allergen.

  11. An assessment of antibiotic therapy of urinary tract infection in elderly, hospitalised patients.

    PubMed

    McCaig, D J; Stewart, D; Harvey, Y; Downie, G; Scott, C J

    1995-11-01

    The aim of the study was to compare the antibiotic treatment actually received by elderly, hospitalised patients with urinary tract infection (UTI) with 'optimal' therapy (as gauged by compliance with antibiotic policy, infecting organism, sensitivity data, patient renal function and cost). UTI was more common in females and in catheterised patients and E.Coli was the commonest pathogen. Trimethoprim and co-amoxiclav were the drugs used most frequently for either empirical or sensitivity data-based treatment. In 96% of infections a drug with appropriate action was administered. Often, however, treatment could have been optimised by substituting a cheaper suitable antibiotic, by standardising duration of therapy and ensuring that doses were adjusted for renal impairment. Savings from the use of 'optimal' therapy were estimated at 17%. There is clearly considerable scope for positive input from the clinical pharmacist in this area.

  12. [The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)].

    PubMed

    Joly, B; Cluzel, R

    1975-01-01

    The authors have studied 116 Gram-negative strains, 27 of which were sensitive to antibiotics and 89 showed multiple resistance. The MIC of mercury chloride, mercuric nitrate and of an aqueous solution of mercuresceine were much higher in the case of the sensitive strains. The transfer of resistance to mercury, which has been achieved in 56% of cases, was always accompanied by transfer of resistance to the antibiotics. The MIC of phenylmercury borate, mercurothiolic acid and other heavy metals (such as: cobaltous nitrate, silver nitrate, cadmium nitrate, nickel nitrate, zinc nitrate, copper sulphate and sodium arsenate) are approximatively the same for all strains. The normal concentrations of mercury in nature are lower than the rate of microbial selection. But in areas of accumulation, particularly in biological chains or in hospitals, the mercury compounds could play a part in the selection of antibiotic resistant Gram-negative bacteria.

  13. Urinary tract infections in pregnancy: evaluation of diagnostic framework.

    PubMed

    Jido, Tukur Ado

    2014-01-01

    This study was performed with the objective to examine the diagnostic framework for urinary tract infection (UTI) in pregnancy and physician response to the clinical diagnosis and to correlate responses to the results of urine culture and sensitivity. Over a 6-month period, 81 consecutive patients attending the labor ward admission of a district general hospital with the diagnosis of UTI during pregnancy were analyzed. Relevant information on symptom complex, result of dipstick urinalysis and culture and sensitivity were recorded. Data were analyzed using descriptive statistics. Of the 78 patients analyzed, 79% had increased urinary frequency, 73.1% had suprapubic pains and 53.1% had dysuria. All the patients had urinalysis with dipsticks, 41 (52.6%) were positive for nitrites and 64 (82.1%) were positive for leukocyte esterase. All 78 patients had urine culture and sensitivity, 21 (26.8%) of who were positive, and coliforms were the most commonly isolated pathogens. The sensitivity for nitrite was 80.9%, specificity 57.9% and positive predictive value 41.4%. The corresponding figures for leukocyte esterase were sensitivity 100%, specificity 24.6% and positive predictive value 32.8%. Sixty-six (84.6%) patients had treatment started on the basis of the clinical diagnosis, mostly with co-amoxyclavullinic acid or amoxicillin alone. A high resistance rate to these empirically chosen antibiotics was seen in the sensitivity pattern of isolated pathogens. Current clinical diagnostic algorithms for the diagnosis of UTI when applied in the context of pregnancy have low specificity and positive predictive values; yet, empirical antibiotics are frequently employed on this basis. These are often not in keeping with the sensitivity pattern of isolated organisms. There is need for a continuing research for more specific bedside tests.

  14. The antibiotic susceptibility patterns of uropathogens among children with urinary tract infection in Shiraz.

    PubMed

    Pouladfar, Gholamreza; Basiratnia, Mitra; Anvarinejad, Mojtaba; Abbasi, Pejman; Amirmoezi, Fatemeh; Zare, Samaneh

    2017-09-01

    Urinary tract infection (UTI) is one of the most common bacterial infections in pediatrics. Delay in diagnosis and treatment can cause significant morbidity. The physicians knowledge regarding the symptoms, microorganisms that caused UTI, and effective antibiotics in a geographical area can help them to select the appropriate antibiotics. This study was performed to determine the prevalence of bacteria that cause UTI and their susceptibility to common antibiotics as well as the common symptoms and associated factors in children of Shiraz, Southern Iran.This cross sectional study was performed among 202 children with UTI, aged 2 months to 18 years old, between August and November 2014 in pediatric medical centers of Shiraz University of Medical Sciences. Urine samples were collected using urinary catheter or suprapubic in children < 2 years and mid-stream in children over 2 years, respectively. The type of micro-organisms causing UTI was determined and evaluation of antibiotic susceptibility for each organism was assayed by the Kirby Bauer method using antibiogram test. Patient's information was collected through checking the medical documents and interview with parents.Our results showed that the frequency of UTI was significantly higher in girls (70.3%) than in boys. The most commonly discovered pathogens were Escherichia coli (E coli) (51.5%), followed by Klebsiella spp. (16.8%), and Enterococcus spp. (9.9%). Overall susceptibility test showed the highest resistance to ampicillin (81.2%) and cotrimoxazole (79.2%), and the highest sensitivity to imipenem (90.1%) and Gentamicin (65.3%). Gram negative and positive bacteria showed the highest antibiotic resistance to amoxicillin (83.8%) and clindamycin (100%), respectively. In addition, production of extended spectrum beta lactamase (ESBL) was 69.2% and 30.8% in E coli and Kelebsiella respectively.The efficacy of third generation of the cephalosporins was reduced because of the high rate of production of ESBL and drug resistance. These results inform the physician as to which antibiotics are appropriate to prescribe for the patient, as well as urine culture reports and following the patient's clinical response so that high antimicrobial resistance is not developed at the community level.

  15. The antibiotic susceptibility patterns of uropathogens among children with urinary tract infection in Shiraz

    PubMed Central

    Pouladfar, Gholamreza; Basiratnia, Mitra; Anvarinejad, Mojtaba; Abbasi, Pejman; Amirmoezi, Fatemeh; Zare, Samaneh

    2017-01-01

    Abstract Urinary tract infection (UTI) is one of the most common bacterial infections in pediatrics. Delay in diagnosis and treatment can cause significant morbidity. The physician's knowledge regarding the symptoms, microorganisms that caused UTI, and effective antibiotics in a geographical area can help them to select the appropriate antibiotics. This study was performed to determine the prevalence of bacteria that cause UTI and their susceptibility to common antibiotics as well as the common symptoms and associated factors in children of Shiraz, Southern Iran. This cross sectional study was performed among 202 children with UTI, aged 2 months to 18 years old, between August and November 2014 in pediatric medical centers of Shiraz University of Medical Sciences. Urine samples were collected using urinary catheter or suprapubic in children < 2 years and mid-stream in children over 2 years, respectively. The type of micro-organisms causing UTI was determined and evaluation of antibiotic susceptibility for each organism was assayed by the Kirby Bauer method using antibiogram test. Patient's information was collected through checking the medical documents and interview with parents. Our results showed that the frequency of UTI was significantly higher in girls (70.3%) than in boys. The most commonly discovered pathogens were Escherichia coli (E coli) (51.5%), followed by Klebsiella spp. (16.8%), and Enterococcus spp. (9.9%). Overall susceptibility test showed the highest resistance to ampicillin (81.2%) and cotrimoxazole (79.2%), and the highest sensitivity to imipenem (90.1%) and Gentamicin (65.3%). Gram negative and positive bacteria showed the highest antibiotic resistance to amoxicillin (83.8%) and clindamycin (100%), respectively. In addition, production of extended spectrum beta lactamase (ESBL) was 69.2% and 30.8% in E coli and Kelebsiella respectively. The efficacy of third generation of the cephalosporins was reduced because of the high rate of production of ESBL and drug resistance. These results inform the physician as to which antibiotics are appropriate to prescribe for the patient, as well as urine culture reports and following the patient's clinical response so that high antimicrobial resistance is not developed at the community level. PMID:28906365

  16. An enzyme-free homogenous electrochemical assay for sensitive detection of the plasmid-mediated colistin resistance gene mcr-1.

    PubMed

    Li, Bo; Chai, Zhixin; Yan, Xiaohui; Liu, Chunchen; Situ, Bo; Zhang, Ye; Pan, Weilun; Luo, Shihua; Liu, Jianhua; Zheng, Lei

    2018-05-22

    Antibiotic resistance associated with the mcr-1 gene of Gram-negative bacteria, which confers resistance to drugs of last resort and has the potential to spread via plasmids, is one of the most pressing issues facing global health today. Point-of-care testing for the mcr-1 gene is needed to aid in the identification of colistin resistance in the field and to control its horizontal transmission. Here, we report the successful development of an enzyme-free homogenous electrochemical strategy for sensitive detection of the antibiotic resistance gene mcr-1 using the hybridization chain reaction and mcr-1-specific toehold probe. The long double-stranded DNA polymer produced using this strategy could be detected by assessing the diffusion of methylene blue towards the surface of a screen-printed gold electrode. Under optimized conditions, a linear relationship was observed between the variation of peak current and the natural logarithm of the mcr-1 gene concentration in the range of 1 nM to 1 μM with a detection limit of 0.78 nM (S/N = 3). This enzyme-free, isothermal platform is a rapid, portable, disposable, and sensitive method for detection of plasmid-mediated colistin resistance.

  17. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    NASA Astrophysics Data System (ADS)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  18. Challenges in implementing the new BASHH guidelines for the management of gonorrhoea.

    PubMed

    Rodgers, S; Murgatroyd, M; Perez, K; Kingston, M; Lee, V

    2014-02-01

    Neisseria gonorrhoeae has progressively developed reduced sensitivity to different classes of antibiotics. The British Association for Sexual Health and HIV (BASHH) updated guidelines for the diagnosis and management of gonorrhoea in 2011. New recommendations include an increased dose of ceftriaxone with adjuvant use of azithromycin, as well as test of cure (TOC) in all cases. We present an audit of adherence to new antibiotic prescribing guidelines as well as TOC uptake in an inner city genitourinary medicine clinic. Among the 271 (242 male, 29 female) patients included, 96% (n = 260) received the new first-line treatment. Test of cure uptake was found to be suboptimal at 55% (n = 149) with the majority (67%) of these taking place within 20 days of treatment. The new first-line treatment for gonorrhoea is feasible and generally accepted by patients. However the TOC uptake is low, emphasising the need for robust follow-up and recall policies. Further study is required into the optimal timing for TOC.

  19. Design, development, and evaluation of visual aids for communicating prescription drug instructions to nonliterate patients in rural Cameroon.

    PubMed

    Ngoh, L N; Shepherd, M D

    1997-03-01

    In this study, culturally sensitive visual aids designed to help convey drug information to nonliterate female adults who had a prescription for a solid oral dosage form of antibiotic medications were developed and evaluated. The researchers conceptualized the educational messages while a local artist produced the visual aids. Seventy-eight female ambulatory patients were evaluated for comprehension and compliance with antibiotic prescription instructions. The study was conducted in three health centers in Cameroon, West Africa and followed a pre-test, post-test, and follow-up format for three groups: two experimental, and one control. All participants were randomly assigned to either experimental or control groups, 26 patients to each group. Subjects in the experimental groups received visual aids alone or visual aids plus an Advanced Organizer. A comparison of the three groups showed that subjects in the experimental groups scored significantly higher than the control group in both the comprehension and compliance measures.

  20. The Problem of Helicobacter pylori Resistance to Antibiotics: A Systematic Review in Latin America

    PubMed Central

    Camargo, M. Constanza; García, Apolinaria; Riquelme, Arnoldo; Otero, William; Camargo, Claudia A.; Hernandez-García, Tomas; Candia, Roberto; Bruce, Michael G.; Rabkin, Charles S.

    2014-01-01

    OBJECTIVES Latin America has a high prevalence of Helicobacter pylori infection and associated diseases, including gastric cancer. Antibiotic therapy can eradicate the bacterial infection and decrease associated morbidity and mortality. To tailor recommendations for optimal treatments, we summarized published literature and calculated region- and country-specific prevalences of antibiotic resistance. METHODS Searches of PubMed and regional databases for observational studies evaluating H. pylori antibiotic resistance yielded a total of 59 independent studies (56 in adults, 2 in children, and 1 in both groups) published up to October 2013 regarding H. pylori isolates collected between 1988 and 2011. Study-specific prevalences of primary resistance to commonly prescribed antibiotics were summarized using random-effects models. Between-study heterogeneity was assessed by meta-regression. As a sensitivity analysis, we extended our research to studies of patients with prior H. pylori-eradication therapy. RESULTS Summary prevalences of antimicrobial primary resistance among adults varied by antibiotic, including 12% for clarithromycin (n = 35 studies), 53% for metronidazole (n = 34), 4% for amoxicillin (n = 28), 6% for tetracycline (n = 20), 3% for furazolidone (n = 6), 15% for fluoroquinolones (n = 5), and 8% for dual clarithromycin and metronidazole (n = 10). Resistance prevalence varied significantly by country, but not by year of sample collection. Analyses including studies of patients with prior therapy yielded similar estimates. Pediatric reports were too few to be summarized by meta-analysis. CONCLUSIONS Resistance to first-line anti- H. pylori antibiotics is high in Latin American populations. In some countries, the empirical use of clarithromycin without susceptibility testing may not be appropriate. These findings stress the need for appropriate surveillance programs, improved antimicrobial regulations, and increased public awareness. PMID:24589670

  1. Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples

    PubMed Central

    Colomer-Lluch, Marta; Jofre, Juan; Muniesa, Maite

    2011-01-01

    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment. PMID:21390233

  2. [Antimicrobial sensitivity of Escherichia coli strains with K1 antigen isolated from pregnant women and newborns].

    PubMed

    Kaczmarek, Agnieszka; Budzyńska, Anna; Gospodarek, Eugenia

    2011-01-01

    The aim of this study was comparison of the susceptibility to antibiotics of E. coli strains with K1 antigen (E. coli K1+) and non-K1 E. coli strains (E. coli K1-). This study included 67 of E. coli K1+ and 67 of E. coli K1- strains isolated in the time period from June to September of 2008 from pregnant women and newborns hospitalized at dr. J. Biziel University Hospital number 2 L. Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń. Antimicrobial susceptibility of E. coli strains was tested by the disc-diffusion method, on the Mueller Hinton 2 Agar (Becton Dickinson). It was found that 64,2% of E. coli K1+ strains and 53,7% of E. coli K1-strains were susceptible to all tested antibiotics and chemioterapeutics. E. coli K1- strains were more often than E. coli K1+ nonsusceptible to at least one antimicrobial agent. The obtained results indicate that E. coli K1+ strains significant differed in the susceptibility to ampicillin/sulbactam (85,1% versus 95,5%) (p=0,041), cephalothin (70,1% versus 85,1%) (p=0,038) and tetracycline (91,0% versus 74,6%) (p=0,012) from E. coli K1-strains. All tested E. coli K1+ and K1-strains were sensitive to piperacillin/tazobactam, cefoperazone/sulbactam, cefotaxime, ceftazidime, cefepime, imipenem, amikacin, netilmicin and tigecycline. There weren't the ESBL-producing strains among tested E. coli K1+ and K1- rods.

  3. Combined in vivo and in vitro approach for the characterization of penicillin-specific polyclonal lymphocyte reactivity: tolerance tests with safe penicillins instead of challenge with culprit drugs.

    PubMed

    Sachs, B; Al Masaoudi, T; Merk, H F; Erdmann, S

    2004-10-01

    Amino-penicillins are a major cause of delayed-type reactions to penicillins. The aim of this study was to establish a diagnostic approach for the characterization of the individual penicillin-specific polyclonal lymphocyte reactivity in order to detect side chain-specific sensitization to amino-penicillins. Patients can then be advised to undergo a tolerance test with safe penicillins instead of provocation with culprit penicillins for confirmation of penicillin allergy. We investigated penicillin-specific polyclonal lymphocyte reactivity in nine patients with delayed-type reactions to amino-penicillins by a combined in vivo (patch, prick and intracutaneous tests with delayed readings) and in vitro (lymphocyte transformation test, LTT) approach. A combination of LTT and skin tests improved the sensitivity for the characterization of penicillin-specific polyclonal lymphocyte reactivity and allowed the detection of three different patterns of lymphocyte reactivity. Four patients showed a side chain-specific sensitization to amino-penicillins in vivo and in vitro and were advised to undergo tolerance tests with safe penicillins. Two patients agreed and were exposed to parenteral benzyl-penicillin and oral phenoxymethyl-penicillin which they tolerated without complications. These data suggest that a combined in vivo and in vitro approach is helpful for the detection of side chain-specific sensitization to amino-penicillins. Patients with such sensitization are very likely to tolerate safe penicillins, thereby expanding their therapeutic options when antibiotic treatment is required.

  4. [Identification and drug susceptibility testing of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis].

    PubMed

    Li, W B; Ji, L Y; Xu, D L; Liu, H C; Zhao, X Q; Wu, Y M; Wan, K L

    2018-05-10

    Objective: To understand the etiological characteristics and drug susceptibility of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis and provide evidence for the prevention and control of infectious mastitis in cows. Methods: The milk sample was collected from a cow with mastitis, which was pretreated with 4 % NaOH and inoculated with L-J medium for Mycobacterium isolation. The positive cultures were initially identified by acid-fast staining and multi-loci PCR, then Mycobacterium species was identified by the multiple loci sequence analysis (MLSA) with 16S rRNA , hsp65 , ITS and SodA genes. The drug sensitivity of the isolates to 27 antibiotics was tested by alamar blue assay. Results: Two anti-acid stain positive strains were isolated from the milk of a cow with mastitis, which were identified as non- tuberculosis mycobacterium by multi-loci PCR, and multi-loci nucleic acid sequence analysis indicated that one strain was Mycobacterium thermoresistibile and another one was Mycobacterium elephantis . The results of the drug susceptibility test showed that the two strains were resistant to most antibiotics, including rifampicin and isoniazid, but they were sensitive to amikacin, moxifloxacin, levofloxacin, ethambutol, streptomycin, tobramycin, ciprofloxacin and linezolid. Conclusions: Mycobacterium thermoresistibile and Mycobacterium elephantis were isolated in a cow with mastitis and the drug susceptibility spectrum of the pathogens were unique. The results of the study can be used as reference for the prevention and control the infection in cows.

  5. Antibiotics in frozen bone grafts can cause allergic reactions in recipient patients.

    PubMed

    Crnogaca, Kresimir; Bicanic, Goran; Delimar, Domagoj

    2015-02-01

    Antibiotic prophylaxis is a routine procedure during total hip arthroplasty (THA), and the vast majority of cadavers within the multitissue procurement receive one or more antibiotics. Upon harvesting, bone grafts are stored in the bone banks on the temperature as low as -80°C for up to 5 years. It is shown in the literature that the antibiotics remain active and viable in the bone grafts even after being exposed to extremely low temperatures in the prolonged periods. Possibility of remnant antibiotic concentrations in the bone grafts and the fact that these antibiotic remnants maintain active even after being exposed to extremely low temperatures create the environment in which the possibility for the allergic reaction in sensitive patient receiving bone graft exists. We hypothesize that harvested bone grafts containing active antibiotic substance have the potential for local and systemic allergic reaction in sensitive recipient patients thus increasing morbidity and the costs of the treatment. Allergic reactions can mimic surgical site infections as well with the consequent substantial pitfalls in the treatment. Following that, in the setting of an assumed but not confirmed surgical site infection, the immunological evaluation on antibiotics for recipients of bone grafts could be added to the standard diagnostic algorithms. In addition, bone banks should be obliged to provide information of all potential drugs that can be found in every specific bone graft to the end users. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Antibiogram for Periprosthetic Infections: A Tool for Better Informed Selection of Empiric Antibiotics for Surgical Site Infections.

    PubMed

    Chidester, Jeremy R; Danci, Ioana; Lewis, Priya; Biskup, Nataliya; Kim, Hahns; Gupta, Subhas

    2016-05-01

    Periprosthetic infection after breast reconstruction is not an uncommon complication, with incidence up to 24%. These infections are often treated empirically without knowing the causative bacteria or its sensitivities to various antibiotics. Even if cultures are obtained, results may not be available for several days. A retrospective chart review of 553 patients at a single institution between January 2009 and July 2014 was performed, identifying patients who (1) underwent implant-based breast reconstruction and subsequently suffered an infection and (2) had cultures available with sensitivities. We reviewed patient demographics, implant characteristics, prophylactic intravenous antibiotics, oral antibiotic maintenance used, microbiologic details, and outcomes. The goal was to identify the most common causative bacteria, as well as their sensitivities to commonly used antibiotics, to help guide antibiotic decision-making. Of the 553 patients who underwent implant-based reconstruction, 114 (20.6%) patients suffered periprosthetic infections. Of these patients, 32 (28.1%) patients (56 reconstructions, with 33 tissue expanders and 23 implants) had cultures performed revealing 43 bacterial species, with the most common being Staphylococcus aureus (23.2%) and Pseudomonas aeruginosa (26.8%). Ceftazidime and piperacillin/tazobactam were equally effective covering 100% of Pseudomonas, enteric, and atypical organisms (P = 1), whereas vancomycin covered 100% of gram-positive organisms. Trimethoprim/sulfamethoxazole covered 100% of S. aureus, whereas clindamycin only covered 71% of S. aureus (P = 0.03). Additionally, trimethoprim/sulfamethoxazole was better able to cover atypical and enteric organisms. Ciprofloxacin covered 71% of Pseudomonas compared with 56% for levofloxacin (P = 0.14). Interestingly, cephalexin, a common choice for perioperative prophylaxis, was highly ineffective for gram-positive species in patients who later returned with infections. This study supports the efficacy of current intravenous antibiotics protocols but questions the efficacy of both clindamycin and levofloxacin in empirically treating periprosthetic infections and cephalexin in providing effective perioperative prophylaxis against skin flora. Because bacterial sensitivities vary by location and patient population, this study encourages other centers to develop their own antibiogram specifically tailored to periprosthetic infections to improve antimicrobial decision making and potentially improve implant salvage.

  7. Antimicrobial resistance pattern in a tertiary care hospital: An observational study

    PubMed Central

    Saravanan, Revathy; Raveendaran, Vinod

    2013-01-01

    Context: The number of organisms developing resistance to commonly used antibiotics is increasing among the various generations. The exact national scenario of antimicrobial resistance (AMR) is not known in India owing to the absence of a central monitoring agency. Aims: The aim of this study is to identify the group of organisms developing resistance, to know the classes of drugs against, which resistance has emerged and to assess the possible factors that can favor the development of AMR so that antibiotic policy can be formulated for the proper and effective use of antibiotics. Settings and Design: An observational study was conducted for a period of 1 year from August 2011 to July 2012 in a tertiary care hospital in Pondicherry. Subjects and Methods: Data regarding culture and sensitivity of the organisms isolated from different sources such as urine, blood, wound swab/pus, stool, sputum and tracheal aspirations were collected from the records of the Microbiology Department. Sample processing, identification of organisms to the genus and/or species level and antimicrobial sensitivity were carried out as per the Clinical and Laboratory Standards Institute guidelines on the 999 samples received. Results: Out of 999 samples, 125 (12.5%) showed significant growth of organisms exhibiting resistance to either single or multiple drugs. Out of 84 (67.2%) in-patients and 41 (32.8%) out-patient samples, Escherichia was the most common organism isolated with a total of 41 (32.8%), followed by Methicillin sensitive Staphylococcus aureus, 26 (20.8%), Klebsiella 25 (20%), Methicillin resistant Staphylococcus aureus 17 (13.6%), Pseudomonas 10 (8%), Proteus 2 (1.6%), 1 (0.8%) each of Citrobacter and Enterococci. Maximum resistance was observed with commonly used first line antimicrobials such as co-trimoxazole, ampicillin, amoxicillin, amoxyclav, fluoroquinolones, third generation cephalosporins and nalidixic acid. Least resistant or highly sensitive were amikacin, nitrofurantoin, gentamycin and doxycycline among the gram-negative bacteria. Macrolides, clindamycin, gentamycin, nitrofurantoin, vancomycin were the most sensitive antimicrobials against the gram-positive bacteria. Lack of knowledge on the consequences of inappropriate use of antibiotics was exhibited by 63% of subjects in our study. Conclusions: AMR was more with hospital acquired organisms and against commonly used antibiotics that are available since long period. Variation of resistance and sensitivity pattern with time and geographical location is identified. Periodic AMR monitoring and rotation of antibiotics are suggested to restrict further emergence of resistance. PMID:24808672

  8. Tolerance in Nonhuman Primates by Delayed Mixed Chimerism

    DTIC Science & Technology

    2014-10-01

    swelling at the surgical site was noted, associated with cellulitis tracking proximally in the recipient forearm and purulent discharge from the...antibiotic sensitivity screening and empirical antibiotic therapy started. This treatment resulted in rapid improvement, with relief of cellulitis

  9. Is Vancomycine Still a Choice for Chronic Osteomyelitis Empirical Therapy in Iran?

    PubMed Central

    Izadi, Morteza; Zamani, Mohammad Mahdi; Mousavi, Seyed Ahmad; Sadat, Seyed Mir Mostafa; Siami, Zeinab; Vais Ahmadi, Noushin; Jonaidi Jafari, Nematollah; Shirvani, Shahram; Majidi Fard, Mojgan; Imani Fooladi, Abbas Ali

    2012-01-01

    Background Pyogenic bacteria and especially Staphylococcus aurous (S. aurous) are the most common cause of chronic osteomyelitis. Not only treatment protocol of chronic osteomyelitis occasionally is amiss but also this malady responds to treatment difficultly. Objectives This study investigates antibiotic resistance pattern of S. aurous isolated from Iranian patients who suffer from chronic osteomyelitis by two methods: disk diffusion (Kirby bauyer) and E-test (Epsilometer test) to find Vancomycin susceptibility and MIC (Minimum inhibitory concentration). Patients and Methods One hundred and thirty one patients who suffer from chronic osteomyelitis which have been referred to both governmental and private hospitals at 2010 were tried out for culturing of osteomyelitis site (sites). Antibiotic susceptibility and MIC of isolated bacteria were investigated by Kirby bauyer and E-test respectively. Results Samples were collected from bone (73.4%), surrounding tissue (14.6%) and wound discharge (12%). S. aureus was isolated from 49.6% of the samples. According to disc diffusion, methicillin resistance S. aureus (MRSA) was 75% and Vancomycin resistance S. aurous (VRSA) was 0% and based on MIC, MRSA was 68.5% and VRSA was 0%. According to MIC experiments, maximum sensitivity was against to Vancomycin (90.2%) and ciprofloxacin (54.4%) respectively but based on disc diffusion, maximum sensitivity was against to Vancomycin (97.7%) and ciprofloxacin (43.2%), respectively (P = 0.001). E-test (9.8%) in comparison with Disc diffusion (2.3%) showed higher percent of intermediate susceptibility to Vancomycin (P = 0.017). Conclusions Comparison of antibiograms and MICs showed that Kirby bauyer technique especially for detection of VISA strains is not reliable comparison with E-test. Already VRSA strains have not detected in Iranian chronic osteomyelitis, Thus Vancomycin is the first choice for chronic osteomyelitis empirical therapy in Iran yet. PMID:23483042

  10. Load and Prevalence of Antimicrobial-Resistant Escherichia coli from Fresh Goat Meat in Arusha, Tanzania.

    PubMed

    Mwanyika, Gaspary; Call, Douglas R; Rugumisa, Benardether; Luanda, Catherine; Murutu, Rehema; Subbiah, Murugan; Buza, Joram

    2016-09-01

    Given the potential public health risks associated with a burgeoning goat meat industry in Tanzania, we estimated the load of Escherichia coli and the prevalence of antibiotic-resistant strains for goat meat by using a cross-sectional study design (June to July 2015). Five large (n = 60 samples) and five small (n = 64 samples) slaughterhouses were sampled over a period of four to six visits each. Meat rinsate was prepared and plated onto MacConkey agar, and presumptive E. coli colonies were enumerated and reported as CFU per milliliter of rinsate. In total, 2,736 presumptive E. coli isolates were tested for antibiotic drug sensitivity by using breakpoint assays against 11 medically important antibiotics. E. coli was recovered from almost all the samples (96.8%), with counts ranging from 2 to 4 log CFU ml -1 , and there was no significant difference (P = 0.43) in recovery according to facility size (average, 3.37 versus 3.13 log CFU ml -1 , large and small, respectively). Samples from large facilities had relatively higher prevalence (P = 0.026) of antibiotic-resistant E. coli compared with small facilities. This was mostly explained by more ampicillin (30.1 versus 12.8%) and amoxicillin (17.6 versus 4.5%) resistance for large versus small facilities, respectively, and more tetracycline resistance for small facilities (5.6 versus 10.6%, respectively). Large slaughter operations may serve as foci for dissemination of antibiotic-resistant bacteria via food products. More effective hygiene practices during slaughter and meat handling would limit the probability of transmitting antibiotic-resistant E. coli in goat meat.

  11. Macrolones Are a Novel Class of Macrolide Antibiotics Active against Key Resistant Respiratory Pathogens In Vitro and In Vivo.

    PubMed

    Čipčić Paljetak, Hana; Verbanac, Donatella; Padovan, Jasna; Dominis-Kramarić, Miroslava; Kelnerić, Željko; Perić, Mihaela; Banjanac, Mihailo; Ergović, Gabrijela; Simon, Nerrisa; Broskey, John; Holmes, David J; Eraković Haber, Vesna

    2016-09-01

    As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Macrolones Are a Novel Class of Macrolide Antibiotics Active against Key Resistant Respiratory Pathogens In Vitro and In Vivo

    PubMed Central

    Verbanac, Donatella; Padovan, Jasna; Dominis-Kramarić, Miroslava; Kelnerić, Željko; Perić, Mihaela; Banjanac, Mihailo; Ergović, Gabrijela; Simon, Nerrisa; Broskey, John; Holmes, David J.; Eraković Haber, Vesna

    2016-01-01

    As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo. MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy. PMID:27353268

  13. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem

    PubMed Central

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco

    2015-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. PMID:26459905

  14. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.

    PubMed

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Host population structure and treatment frequency maintain balancing selection on drug resistance

    PubMed Central

    Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc

    2017-01-01

    It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542

  16. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish.

    PubMed

    Guidi, Letícia Rocha; Santos, Flávio Alves; Ribeiro, Ana Cláudia S R; Fernandes, Christian; Silva, Luiza H M; Gloria, Maria Beatriz A

    2017-01-15

    The objective of this study was to develop and validate a fast, sensitive and simple liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the screening of six classes of antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, sulfonamides and tetracyclines) in fish. Samples were extracted with trichloroacetic acid. LC separation was achieved on a Zorbax Eclipse XDB C18 column and gradient elution using 0.1% heptafluorobutyric acid in water and acetonitrile as mobile phase. Analysis was carried out in multiple reaction monitoring mode via electrospray interface operated in the positive ionization mode, with sulfaphenazole as internal standard. The method was suitable for routine screening purposes of 40 antibiotics, according to EC Guidelines for the Validation of Screening Methods for Residues of Veterinary Medicines, taking into consideration threshold value, cut-off factor, detection capability, limit of detection, sensitivity and specificity. Real fish samples (n=193) from aquaculture were analyzed and 15% were positive for enrofloxacin (quinolone), one of them at a higher concentration than the level of interest (50µgkg -1 ), suggesting possible contamination or illegal use of that antibiotic. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In Vitro Antibiotic Susceptibilities of Burkholderia mallei (Causative Agent of Glanders) Determined by Broth Microdilution and E-Test

    PubMed Central

    Heine, Henry S.; England, Marilyn J.; Waag, David M.; Byrne, W. Russell

    2001-01-01

    In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents. PMID:11408233

  18. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics.

    PubMed

    Zouiten, Amina; Mehri, Ines; Beltifa, Asma; Ghorbel, Asma; Sire, Olivier; Van Loco, Joris; Abdenaceur, Hassen; Reyns, Tim; Ben Mansour, Hedi

    2017-05-01

    Vibrio is characterized by a large number of species and some of them are human pathogens causing gastro intestinal and wound infections through the ingestion or manipulation of contaminated fishes including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from wild and farm sea bream (Sparus aurata L.) along the Tunisian coast from December 2015 to April 2016. Therefore, the antibiograms indicate a difference between farmed and wild fish. Resistance against amoxicillin antibiotic appears for the bacteria isolated from wild fish, while those from aquaculture farming presented sensitivity to amoxicillin and resistance to antibiotics colistin and fusidic acid. The chloramphenicol antibiotic exhibited a high sensitivity in all isolated bacteria. In fact, traces of amoxicillin in the organs of the fish from Hergla farm were detected by UPLC-MS/MS analysis during December 2016 to April 2016. In addition, antibiotics were detected in January 2014 with high concentration of norfloxacin 2262 ng/g in fish from Hergla coast. The results obtained in this work indicated that the use and presence of antibiotics in water impacts on the occurrence of resistant bacteria and the detection of antibiotic in fish. Copyright © 2017. Published by Elsevier Ltd.

  19. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA.

    PubMed

    Naquin, Anthony; Shrestha, Arsen; Sherpa, Mingma; Nathaniel, Rajkumar; Boopathy, Raj

    2015-01-01

    Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Epidemiologic diagnostic of nosocomial suppurative-septic infections of Pseudomonas etiology based on intraspecies typing of causative agent].

    PubMed

    Fel'dblium, I V; Zakharova, Iu A; Nikolaeva, A M; Fedotova, O S

    2013-01-01

    Scientific justification of optimization of epidemiologic diagnostic of suppurative-septic infection (SSI) caused by Pseudomonas aeruginosa based on comparability of antibiotic sensitivity and beta-lactamase production. Intraspecies typing of 37 P. aeruginosa strains isolated during microbiological monitoring of 106 patients and 131 objects of clinical environment of surgical and obstetrician hospitals by using a complex ofphenotypic and molecular-biological methods including determination of sensitivity to antibiotics by serial dilutions method and PCR-diagnostics with determination of TEM, SHV, CTX, OXA, MBL, VIM genes was performed. P. aeruginosa strains combined into groups by isolation location during studies turned out to be heterogeneous by sensitivity to antibiotics and beta-lactamase production that allowed to form subgroups of strains by focality attribute. Isolates recovered from different SSI foci had significant differences in minimal inhibitory concentration (MIC) reaching 1024 times. MIC parameter within subgroups did not exceed 8 - 16 consequent dilutions. Use of a complex of phenotypic and molecular-biologic methods of causative agent typing including determination of sensitivity to antibiotics by serial dilutions method and evaluation of beta-lactamase production allowed to establish a mechanism of development of SSI epidemic process caused by P. aeruginosa, detect origins and reservoirs of infection in hospital, modes and factors of transmission and reach maximum justification of epidemiologic control and prophylaxis measures of localization of foci of nosocomial infections of pseudomonas etiology.

  1. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Extrachromosomal DNA length and antibiograms of Staphylococcus aureus and Pseudomonas aeruginosa isolated from tears of HIV/AIDS patients after curing with sodium dodecyl sulphate.

    PubMed

    Ajayi, B O; Otajevwo, F D

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa strains were isolated from eye swab samples randomly obtained from 100 seropositive HIV/AIDS patients who reported to various anti-retroviral treatment clinics at the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria. Invitro antibiotic sensitivity patterns of strains before curing were determined by the Kirby-Bauer disc diffusion technique. Resistance plasmid DNA of multidrug resistant strains was cured with 0.1% sodium dodecyl sulphate and cured strains were again subjected to in vitro antibiotic sensitivity testing. EcoRI and Hind III restriction endonuclease enzymes were used to make cuts on extracted plasmid DNA whose length sizes were then determined. A total of 36 (36.0%) strains made up of 27 (75.0%) Staphylococcus. aureus and 9 (25.0%) Pseudomonas aeruginosa were isolated of which 7 (19.4%) strains showed multidrug resistance to ciprofloxacin, pefloxacin, ofloxacine, gentamycin, tetracycline, ampicillin, chloramphenicol, nitrofurantoin and erythromycin. All seven multidrug resistant strains before curing, recorded 85.7%, 42.9%, 14.3% and 14.3% sensitivity in that decreasing order to ciprofloxacin, pefloxacin, ofloxacin and gentamycin respectively. There was 0.0% sensitivity each to tetracycline and ampicillin. After curing, there was enhanced sensitivity of 100.0%, 85.7%, 28.6% and 71.4% respectively. There was also 28.6% and 57.1% improved sensitivity to tetracycline and ampicillin after curing. Before curing, there was 76.2% average resistance to all used antibiotics and this reduced to 47.6% after curing Staph. aureus plasmid DNA. In the case of Pseudomonas aeruginosa, there was an average resistance of 76.3% before curing which fell to 42.5% after curing. EcoRI restriction enzyme gave the plasmid DNA length of Staphylococcus aureus strain 04 as 4.0Kb and this size depended upon the distance between recognition sites. Isolation of 36 (36.0%) strains of both isolates from 100 eye swabs shows the danger these organisms portend to all categories of opticians. The cheapness and high sensitivity of gentamycin justifies its use as eye drops for treatment of some eye infections. Curing of plasmid DNA is an indication that if SDS is administered to the organisms in sublethal doses, it can lead to the elimination of plasmid DNA without adverse effect on the genomic DNA of the bacterial strains.

  3. Extrachromosomal DNA Length and Antibiograms of Staphylococcus aureus and Pseudomonas aeruginosa Isolated from Tears of HIV/AIDS Patients after Curing with Sodium Dodecyl Sulphate

    PubMed Central

    B. O., Ajayi; F. D., Otajevwo

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa strains were isolated from eye swab samples randomly obtained from 100 seropositive HIV/AIDS patients who reported to various anti-retroviral treatment clinics at the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria. Invitro antibiotic sensitivity patterns of strains before curing were determined by the Kirby-Bauer disc diffusion technique. Resistance plasmid DNA of multidrug resistant strains was cured with 0.1% sodium dodecyl sulphate and cured strains were again subjected to invitro antibiotic sensitivity testing. EcoRI and Hind III restriction endonuclease enzymes were used to make cuts on extracted plasmid DNA whose length sizes were then determined. A total of 36 (36.0%) strains made up of 27 (75.0%) Staphylococcus. aureus and 9 (25.0%) Pseudomonas aeruginosa were isolated of which 7 (19.4%) strains showed multidrug resistance to ciprofloxacin, pefloxacin, ofloxacine, gentamycin, tetracycline, ampicillin, chloramphenicol, nitrofurantoin and erythromycin. All seven multidrug resistant strains before curing, recorded 85.7%, 42.9%, 14.3% and 14.3% sensitivity in that decreasing order to ciprofloxacin, pefloxacin, ofloxacin and gentamycin respectively. There was 0.0% sensitivity each to tetracycline and ampicillin. After curing, there was enhanced sensitivity of 100.0%, 85.7%, 28.6% and 71.4% respectively. There was also 28.6% and 57.1% improved sensitivity to tetracycline and ampicillin after curing. Before curing, there was 76.2% average resistance to all used antibiotics and this reduced to 47.6% after curing Staph. aureus plasmid DNA. In the case of Pseudomonas aeruginosa, there was an average resistance of 76.3% before curing which fell to 42.5% after curing. EcoRI restriction enzyme gave the plasmid DNA length of Staphylococcus aureus strain 04 as 4.0Kb and this size depended upon the distance between recognition sites. Isolation of 36 (36.0%) strains of both isolates from 100 eye swabs shows the danger these organisms portend to all categories of opticians. The cheapness and high sensitivity of gentamycin justifies its use as eye drops for treatment of some eye infections. Curing of plasmid DNA is an indication that if SDS is administered to the organisms in sublethal doses, it can lead to the elimination of plasmid DNA without adverse effect on the genomic DNA of the bacterial strains. PMID:22980121

  4. Study of Pre-disposing Factors of Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Antibiotic Prescribing Pattern with Reference to Antibiotic Sensitivity Test.

    PubMed

    Shrestha, R; Shrestha, B; Shakya Shrestha, S; Pant, A; Prajapati, B; Karmacharya, B M

    2015-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) affects about 329 million people worldwide, which is nearly 5% of the entire global population. In the context of Nepal, COPD accounts for 43% of the non-communicable disease burden and 2.56% of hospitalizations. Various pre-disposing factors like bacterial, viral, fungal, smoking, occupational exposures and genetic factors have been proposed to precipitate COPD and its exacerbation though, the definitive pre-disposing factors and factors related to acute exacerbation have not been determined in the context of Nepal. Objective To find out the pre-disposing factors and the related causative agents for COPD. Method A cross sectional study was conducted in a tertiary care hospital. Patients of all age group who were diagnosed as COPD and admitted in the hospital were included in this study. Patients were interviewed using structured questionnaire. The sociodemographic data including personal and medical history were recorded from those participants. In addition, sputum from those patients was sent for culture to investigate the possible responsible pathogens as well as its antibiotic sensitivity pattern. Result A total of 150 patients having Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) who have admitted from either emergency or out-patient department of the hospital were included in this study. Among the total number of patients, more than half of them were female (n=82). In addition, analysis of occupations shows that most of them were either farmer (36.0%) or housewife (30.7%). In total studied patients (n=150), most of them were using traditional firewood (83%) for cooking purpose and majority of patients (91%) were smokers. Most of the sputum samples show growth of gram-positive cocci (26.7%) and gram negative bacilli (27.5%). Considering the overall sensitivity pattern, the higher sensitivity was recorded for Co-trimoxazole and Ciprofloxacin while higher rate of resistance was noted for Penicillin group of drugs. The most widely used antibiotics were found to be Cephalosporin group of drugs (68%). Conclusion The present study revealed that the case of COPD is more in female and the commonest pre-disposing factor is found to be smoke/firewood. Cephalosporin group of drugs is the most commonly prescribed drug.

  5. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  6. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination.

    PubMed

    Wang, Xiaorong; Kang, Yu; Luo, Chunxiong; Zhao, Tong; Liu, Lin; Jiang, Xiangdan; Fu, Rongrong; An, Shuchang; Chen, Jichao; Jiang, Ning; Ren, Lufeng; Wang, Qi; Baillie, J Kenneth; Gao, Zhancheng; Yu, Jun

    2014-02-11

    Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses. Heteroresistance is essentially phenotypic heterogeneity, where a population-based strategy is thought to be at work, being assumed to be variable cell-to-cell resistance to be selected under antibiotic stress. Exact mechanisms of heteroresistance and its roles in adaptation to antibiotic stress have yet to be fully understood at the molecular and single-cell levels. In our study, we have not been able to detect any apparent subset of "resistant" cells selected by antibiotics; on the contrary, cell populations differentiate into phenotypic subsets with variable growth statuses and hydrolase expression. The growth rate appears to be sensitive to stress intensity and plays a key role in controlling hydrolase expression at both the bulk population and single-cell levels. We have shown here, for the first time, that phenotypic heterogeneity can be beneficial to a growing bacterial population through task allocation and interphenotypic collaboration other than partitioning cells into different categories of selective advantage.

  7. Risk factors for infection development after transrectal prostate biopsy and the role of resistant bacteria in colonic flora.

    PubMed

    Eruz, Emine Dilek; Yalci, Aysun; Ozden, Eriz; Aslaner, Halide; Ogucu-Durgun, Suna; Koseoglu-Taymur, Deniz Derya; Memikoglu, Kemal Osman; Erdem, Hakan; Kurt, Halil

    2017-02-28

    In this study, we aimed to identify risk factors for the development of infectious complications after prostate biopsy and to investigate the role of intestinal colonization of bacteria that are resistant to prophylactic antibiotics. A total of 168 patients who had undergone transrectal prostate biopsy (TRPB) under ciprofloxacin and gentamycin prophylaxis were included in the study. Stool cultures and subsequent antibiotic susceptibility testing were performed in all patients before the start of antibiotic prophylaxis. Of the 168 patients, 17 (10.1%) developed urinary tract infection (UTI), while 6 (3.57%) developed sepsis within seven days after biopsy. Ciprofloxacin-resistant bacterial colonization was detected in 81 (48.2%) of the patients. None of the patients with ciprofloxacin-sensitive bacteria in intestinal flora developed a UTI. The colonization of intestinal ciprofloxacin-resistant bacteria increased UTI risk significantly after TRPB (p < 0.0001). Urolithiasis history, presence of permanent urinary catheterization, hospitalization history for more than 48 hours in the last year, and recent antibiotic usage significantly increased UTI risk after TRPB. Development of an infection was more frequent in patients with resistant bacterial colonization. We hope to guide more comprehensive studies designed to find a standard prophylactic regimen for TRPB that can be used all over the world.

  8. Effects of Vancomycin Versus Nafcillin in Enhancing Killing of Methicillin-Susceptible Staphylococcus aureus Causing Bacteremia by Human Cathelicidin LL37

    PubMed Central

    Le, Jennifer; Dam, Quang; Schweizer, Marin; Thienphrapa, Wdee; Nizet, Victor; Sakoulas, George

    2016-01-01

    Recent studies have demonstrated that anti-staphylococcal beta-lactam antibiotics, like nafcillin, render methicillin-resistant Staphylococcus aureus (MRSA) more susceptible to killing by innate host defense peptides (HDPs), such as cathelicidin LL-37. We compared the effects of growth in 1/4 minimum inhibitory concentration (MIC) of nafcillin or vancomycin on LL-37 killing of 92 methicillin-susceptible S. aureus (MSSA) isolates. For three randomly selected strains among these, we examined the effects of nafcillin, vancomycin, daptomycin, or linezolid on LL-37 killing and autolysis. Growth in the presence of sub-inhibitory nafcillin significantly enhanced LL-37 killing of MSSA compared to vancomycin and antibiotic-free controls. Nafcillin also reduced MSSA production of the golden staphylococcal pigment staphyloxanthin in 39% of pigmented strains vs. 14% for vancomycin. Among antibiotics tested, only nafcillin resulted in significantly increased MSSA autolysis. These studies point to additional mechanisms of anti-staphylococcal activity of nafcillin beyond direct bactericidal activity, properties that vancomycin and other antibiotic classes do not exhibit. The ability of nafcillin to enhance sensitivity to innate host defense peptides may contribute to its superior effectiveness against MSSA as suggested by studies comparing clinical outcomes to vancomycin treatment. PMID:27234592

  9. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    NASA Astrophysics Data System (ADS)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  10. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs.

    PubMed

    Jardine, Jocelyn Leonie; Abia, Akebe Luther King; Mavumengwana, Vuyo; Ubomba-Jaswa, Eunice

    2017-09-15

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria , Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.

  11. Potential of phytoceuticals to affect antibiotic residue detection tests in cow milk in a randomised trial

    PubMed Central

    Mullen, Keena AE; Beasley, Erin; Rizzo, Julio Q; Washburn, Steven P; Baynes, Ronald E; Mason, Sharon E

    2017-01-01

    Mastitis is a costly disease for dairy farmers. Some dairy farmers use herbal products, or phytoceuticals, to treat mastitis. Phytoceuticals have not been approved for this use by the United States Food and Drug Administration, and have not been tested to determine how they impact antibiotic residue detection testing. The current study tested the potential for phytoceuticals to cause positive results on two milk antibiotic residue screening tests, the Delvotest P and Charm SL Beta-lactam test, or to interfere with the detection of antibiotics by these tests. The three phytoceuticals tested were labelled for intramammary, topical or intravulvar administration. Testing was performed in vitro using the products diluted in milk obtained from healthy organic dairy cows. Phytoceuticals were tested at concentrations ranging from 1.5 per cent to 100 per cent. Concentration levels were replicated at least twice on each milk antibiotic residue screening test. The Delvotest P is based on detection of bacterial inhibitors and no positive results were obtained for any product at concentrations less than 50 per cent. The Charm SL Beta-lactam test uses a receptor for the detection of beta-lactam antibiotics and no concentration of phytoceuticals caused an interference with these tests. Based on dilution of the products in bovine milk at physiologically achievable levels, phytoceutical products tested at levels expected after treatment do not cause positive test results for the Delvotest P nor do they interfere with the Charm SL Beta-lactam test in detection of various antibiotics. PMID:28890791

  12. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria.

    PubMed

    Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-06-01

    Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.

  13. Evaluation of the GADD45α-GFP GreenScreen HC assay for rapid and reliable in vitro early genotoxicity screening.

    PubMed

    Luzy, Anne-Pascale; Orsini, Nicolas; Linget, Jean-Michel; Bouvier, Guy

    2013-11-01

    Twenty-two of Galderma's proprietary compounds were tested in the GADD45α-GFP 'GreenScreen HC' assay (GS), the SOS-ChromoTest and the Mini-Ames to evaluate GSs performance for early genotoxicity screening purposes. Forty more characterized compounds were also tested, including antibiotics: metronidazole, clindamycin, tetracycline, lymecycline and neomycin; and catecholamines: resorcinol mequinol, hydroquinone, one aneugen carbendazim, one corticoid dexamethasone, one peroxisome proliferator-activated receptor rosiglitazone, one pesticide carbaryl and two further proprietary molecules with in vitro genotoxicity data. With proprietary molecules, this study concluded that the GS renders the SOS-ChromoTest obsolete for in vitro screening. The GS confirmed all results of the Mini-Ames test (100% concordance). Compared with the micronucleus test, the GS showed a concordance of 82%. With known compounds, the GS ranked the potency of positive results for catecholamines in accordance with other genotoxicity tests and showed very reproducible results. It confirmed positive results for carbendazim, for tetracycline antibiotics and for carbaryl. The GS produced negative results for metronidazole, a nitroreduction-specific bacterial mutagen, for dexamethasone (a non-genotoxic apoptosis inducer), for rosiglitazone (a GADD45γ promoter inducer) and for clindamycin and neomycin (inhibitors of macromolecular synthesis in bacteria). As such, the GS appears to be a reproducible, robust, specific and sensitive test for genotoxicity screening. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Antibiotic susceptibility of Estrella lausannensis, a potential emerging pathogen.

    PubMed

    de Barsy, Marie; Bottinelli, Lavinia; Greub, Gilbert

    2014-09-01

    Estrella lausannensis is a new Chlamydia-related bacterium, belonging to the Criblamydiaceae family. As suggested by its species name, this bacterium harbors a peculiar star shape. E. lausannensis is able to infect a wide range of amoebal, fish and mammalian cell lines. Moreover, seroprevalence of 2.9% was reported in children and in women with tubal pathology, showing that humans are commonly exposed to this recently discovered strict intracellular bacteria considered as a potential pathogen. Antibiotic susceptibility was determined using two approaches: qPCR and cellular mortality assay. Antibiotics classically used against intracellular bacteria were tested, including β-lactams, fluoroquinolones, cyclines and macrolides. We showed that E. lausannensis is resistant to β-lactams and fluoroquinolones, and sensitive to cyclines. Interestingly, E. lausannensis is slightly resistant to azithromycin with a MIC of 2 μg/ml, which is 10 fold higher compared to Waddlia chondrophila and Parachlamydia acanthamoebae MIC's. A single A2059C mutation in 23S rRNA gene could be responsible for this unexpected resistance. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. An Escherichia coli strain, PGB01, isolated from feral pigeon Faeces, thermally fit to survive in pigeon, shows high level resistance to trimethoprim.

    PubMed

    Kumar, Arvind; Tiwary, Bipransh Kumar; Kachhap, Sangita; Nanda, Ashis Kumar; Chakraborty, Ranadhir

    2015-01-01

    In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon's gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr.

  16. BRIEF REPORT: The Role of Point of Care Testing for Patients with Acute Pharyngitis

    PubMed Central

    Atlas, Steven J; McDermott, Steven M; Mannone, Carol; Barry, Michael J

    2005-01-01

    Background There is no consensus favoring a particular strategy for evaluating patients with pharyngitis. Objective To compare a clinical decision aid and a rapid office-based point of care (POC) test with routine culture for group A β-hemolytic streptococcus (GAS). Design Prospective observational study. Participants Among 179 patients enrolled, 150 were eligible and 148 had POC testing and cultures initially performed. Measurements An encounter form included eligibility criteria, clinical information based upon the Centor rule, and treatment provided. Sensitivity and specificity of POC test compared to routine culture for GAS. Results Thirty-eight patients (25.7%) had a positive GAS culture. The POC test was 92.1% sensitive (95% confidence interval [CI] 80% to 98%) and 100% specific (95% CI 97% to 100%). Although the Centor rule did not adequately discriminate among symptomatic patients with or without GAS (receiver operating curve area 0.63), the 3 patients with a false-negative POC test had a Centor score of less than 2. Among patients with a negative POC test, 26% initially received antibiotics. Conclusions For patients with a Centor score of ≥2, a POC test was highly sensitive for GAS. Future studies should confirm these results and assess whether implementation of POC testing as part of a local practice guideline can decrease variability in testing and treatment. PMID:16050888

  17. ["Antibiotic hierarchy" oriented antibacterial chemotherapy in urinary tract infections].

    PubMed

    Walther, H; Meyer, F P; Kiessig, R; Müller, G W

    1982-12-01

    The resistance of 708 germs isolated from 656 samples of ambulatory urological and gynecological origin was determined. The sensitivity of E. coli, proteus types and Pseudomonas aeruginosa to internationally used antibiotics was registered in detail as percentages. On the basis of the frequency of the germs and their resistence, an antibiotic "hierarchy" is drawn up, which can simplify the initial choice of therapy, especially in out-patient treatment.

  18. Gene expression analysis of the SdeAB multidrug efflux pump in antibiotic-resistant clinical isolates of Serratia marcescens.

    PubMed

    Dalvi, S D; Worobec, E A

    2012-01-01

    Many isolates of Serratia marcescens, a well-known opportunistic pathogen, can be multidrug resistant. Fluoroquinolones are among the most important groups of antibiotics used for treatment of these organisms. However, fluoroquinolone resistance among S. marcescens isolates is fast increasing. Drug extrusion through efflux pumps like SdeAB/ HasF is one of the major mechanisms of resistance to fluoroquinolones. This study was carried out to analyze, through gene expression analysis of sdeB, the relative contribution of this mechanism toward fluoroquinolone resistance in clinical isolates of Serratia. Total RNA from 45 clinical isolates of S. marcescens was isolated. Quantitative real-time RT PCR was performed on the extracted RNA to study the gene expression of sdeB and was normalized to the sdeB expression in the standard strain of S. marcescens. Of the 45 isolates analyzed, sdeB expression was found to be elevated in 20 isolates (44%). Of these 20 isolates, eight (40%) were fully resistant to at least one of the fluoroquinolones studied. Conversely, of the 20 isolates that over-expressed sdeB, 12 (60%) were fully sensitive to all fluoroquinolones tested. Drug efflux pumps are an important means of fluoroquinolone resistance among clinically important species of Serratia. The expression of these pumps can be up-regulated in the presence of antibiotics and have the potential for changing the phenotype from sensitive to resistant, thus contributing to therapeutic failures.

  19. Incremental cost of nosocomial bacteremia according to the focus of infection and antibiotic sensitivity of the causative microorganism in a university hospital.

    PubMed

    Riu, Marta; Chiarello, Pietro; Terradas, Roser; Sala, Maria; Garcia-Alzorriz, Enric; Castells, Xavier; Grau, Santiago; Cots, Francesc

    2017-04-01

    To estimate the incremental cost of nosocomial bacteremia according to the causative focus and classified by the antibiotic sensitivity of the microorganism.Patients admitted to Hospital del Mar in Barcelona from 2005 to 2012 were included. We analyzed the total hospital costs of patients with nosocomial bacteremia caused by microorganisms with a high prevalence and, often, with multidrug-resistance. A control group was defined by selecting patients without bacteremia in the same diagnosis-related group.Our hospital has a cost accounting system (full-costing) that uses activity-based criteria to estimate per-patient costs. A logistic regression was fitted to estimate the probability of developing bacteremia (propensity score) and was used for propensity-score matching adjustment. This propensity score was included in an econometric model to adjust the incremental cost of patients with bacteremia with differentiation of the causative focus and antibiotic sensitivity.The mean incremental cost was estimated at &OV0556;15,526. The lowest incremental cost corresponded to bacteremia caused by multidrug-sensitive urinary infection (&OV0556;6786) and the highest to primary or unknown sources of bacteremia caused by multidrug-resistant microorganisms (&OV0556;29,186).This is one of the first analyses to include all episodes of bacteremia produced during hospital stays in a single study. The study included accurate information about the focus and antibiotic sensitivity of the causative organism and actual hospital costs. It provides information that could be useful to improve, establish, and prioritize prevention strategies for nosocomial infections.

  20. Spectrum of systemic bacterial infections during febrile neutropenia in pediatric oncology patients in tertiary care pediatric center.

    PubMed

    Siddaiahgari, Sirisharani; Manikyam, A; Kumar, K Anand; Rauthan, A; Ayyar, R

    2014-01-01

    Outcome of pediatric cancers has significantly improved with modern chemotherapy and good supportive care. However, febrile neutropenia remains one of the important limiting factors in these patients especially with the emergence of resistant organisms. Choosing appropriate antimicrobials is possible only if we understand the local microbial spectrum and their sensitivity pattern. To study the likely etiologic agents and their antibiotic sensitivity pattern among systemic infections in children with cancer. This is a prospective study. The study was conducted at a tertiary care center for pediatrics, in which culture samples representing blood stream infections and others like urinary tract infections sent from the Oncology services of the Hospital during the year of 2013 were analyzed. The microbiological profile and antibiotic sensitivity pattern of these isolates were studied. There were 89 isolates that represented blood and urinary tract infections in neutropenic patients with cancer.Out of 89 positive cultures 76 were gram negative isolates. The most common gram negative bacterial isolates were Escherichia coli 33 (37%), followed by Pseudomonas 21 (23.5%). Acinetobacter grew in 2 patients (2.2%). Extended spectrum beta-lactamases (ESBL's), carbepenem resistant and pan-resistant organisms seen in 28 (31.4%), 5 (5.6%) and 2 cases (2.3%) respectively. Over all Gram-positive organisms were 13/89 (12.3%). Staphylococcus was the most common Gram-positive organism and methicillin resistant Staphylococcus aureus seen in 5 each. Gram-negative organism is a common isolate in cancer children with febrile neutropenia, which is resistant to first-line antibiotic cefepime. Meropenem is most sensitive antibiotic and ESBL's are sensitive to piperacillin-tazobactam.

  1. Bacteriological Profile of Isolates From Urine Samples in Patients of Benign Prostatic Hyperplasia and or Prostatitis Showing Lower Urinary Tract Symptoms.

    PubMed

    Mishra, Prem Prakash; Prakash, Ved; Singh, Kashmir; Mog, H; Agarwal, Sumit

    2016-10-01

    The incidence of Benign Prostatic Hyperplasia (BPH) or Prostatitis is increasing considerably worldwide. The Lower Urinary Tract Symptoms (LUTS) due to bacterial aetiology are one of the common factors for the complications among the patients. To determine the bacterial agents and their antibiotic sensitivity pattern from the urine samples of patients of BPH or Prostatitis showing symptoms of LUTS. The cross-sectional study was carried out in the Department of Microbiology of Rohilkhand Medical College and Hospital of Northern India from June 2014 to May 2015. A total of 105 urine specimens from patients of BPH and/ or Prostatitis were cultured by a semi-quantitative method. The isolated bacteria were identified by colony morphology, Gram's staining, motility and biochemical tests. Antibiotic sensitivity was done according to the CLSI 2007 guidelines by disc diffusion method. Data was analysed by SPSS and Microsoft office 2007. Proportions and percentages were used as statistical measures. The urine cultures from patients with BPH and or chronic Prostatitis, showed n=66/105 (62.85%) culture positivity. Out of 66 isolates the frequency was in following order Escherichia coli 21/66 (31.81%), Klebsiella spp 19/66 (28.78%), Staphylococcus aureus 11/66 (16.66%), Pseudomonas aeruginosa (10.60%), Proteus spp, Enterococcus spp, Acinetobacter spp and Citrobacter spp. The most susceptible 1 st , 2 nd and 3 rd line antibiotics for Gram negative isolates were ampicillin, amikacin and tigecycline respectively. Amongst the Gram positive isolates, the susceptible 1 st , 2 nd and 3 rd line antibiotics were cefoxitin, vancomycin, teicoplanin and linezolid. Multidrug resistance was seen in Escherichia coli (n=6), Klebsiella spp (n=7), Pseudomonas aeruginosa (n=4) and Staphylococcus aureus (n=3). Based on the above findings we can say that accurate aetiology of the LUTS among the patients of BPH and/or Prostatitis is warranted to initiate the therapeutic management. Based on our study we state that the prime pathogens are E.coli , Klebsiella among Gram negative isolates and S. aureus among Gram positive. The most sensitive drugs are aminoglycosides, tetracyclines and carbepenems for Gram neagtive isolates and oxazolidinones and glycopeptides among Gram positive isolates.

  2. [Resistance of uropathogenic strains of Escherichia coli in pregnant women and other women in generative ages in comparison with antibiotics consumption in Zagreb].

    PubMed

    Culig, Josip; Mlinarić-Dzepina, Ana; Leppée, Marcel; Vranes, Jasmina

    2010-02-01

    To compare resistance of uropathogenic strains of Escherichia coli (UPEC) to antibiotics in women in generative ages and pregnant women during two year period (2004 and 2008) in Zagreb, and comparison of resistance and the consumption of antibiotics. The standard disk-diffusion method was used for sensitivity testing to 16 different antibiotics. Data on antibiotic utilization were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants using Anatomical-Therapeutic-Chemical/DDD methodology. Data on antibiotic consumption during pregnancy were collected using a questionnaire filled in by 893 women after delivery. During 2004 resistance of UPEC to antimicrobial drugs was not different in pregnant and in non-pregnant women, with the exception of amoxicillin and nitrofurantoin, with statistically higher resistance in pregnant women (p < 0.01). Four years later the statistically higher resistance to norfloxacin was observed in non-pregnant women (p < 0.01). Comparing the resistance in 2004 and 2008, in the both groups of women a statistically significant decrease of resistance to cefalexin and nitrofurantoin was detected (p < 0.01). Outpatient utilization of antimicrobial drugs in Zagreb increased significantly, from 32 to 39 DDD/1000 inhabitants per day. The most used antibiotic was co-amoxiclav, and its utilization increased from 9.6 to 12.2 DDD/1000/day. Amoxicillin and co-amoxiclav were used during pregnancy by 9.6% interviewed women. The observed significant decrease of resistance to cefalexin makes that antibiotic the drug of choice for treatment of urinary tract infections in women in generative ages, and together with coamoxiclav can be administered in pregnancy. Constant monitoring of urinary tract pathogens resistance to antimicrobial agents ensures the effectiveness of empirical therapy, whose versatile use is limited due the potentially harmful effects of antimicrobial drugs on fetus.

  3. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. Differences in inpatient and outpatient management.

    PubMed

    Heim, Nils; Faron, Anton; Wiedemeyer, Valentin; Reich, Rudolf; Martini, Markus

    2017-10-01

    The microbial flora of infections of the orofacial region of odontogenic origin is typically polymicrobial. Shortly after mass production of the first antibiotics, antibiotic resistant microorganisms were observed. A 28-months retrospective study evaluated hospital records of 107 patients that were treated for head and neck infections of odontogenic origin. All patients underwent surgical incision and drainage. There were 65 male (61%) and 42 female (39%) patients ranging in age from 5 to 91 years, with a mean age of 48 years (SD = 21). 52 patients underwent outpatient management and 55 patients inpatient management. A total of 92 bacterial strains were isolated from 107 patients, accounting for 0.86 isolates per patient. Overall 46 bacterial strains were isolated from patients that underwent outpatient and 34 bacterial strains that underwent inpatient treatment. 32.6% of the strains, isolated from outpatient treated individuals showed resistances against one or more of the tested antibiotics. Isolated strains of inpatient treated individuals showed resistances in 52.9%. According to this study's data, penicillin continues to be a highly effective antibiotic to be used against viridans streptococci, group C Streptococci and prevotella, whereas clindamycin was not shown to be effective as an empirical drug of choice for most odontogenic infections. Microorganisms that show low susceptibility to one or more of the standard antibiotic therapy regimes have a significantly higher chance of causing serious health problems, a tendency of spreading and are more likely to require an inpatient management with admission of IV antibiotics. Penicillin continues to be a highly effective antibiotic to be used against viridans streptococci, group C Streptococci and prevotella, whereas clindamycin could not be shown to be effective as an empirical drug of choice for a high number of odontogenic infections. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. The Pattern of Antibiotic Prescribing by Dental Practitioners in Zagreb, Croatia.

    PubMed

    Perić, Marina; Perković, Ivana; Romić, Martina; Simeon, Paris; Matijević, Jurica; Mehičić, Goranka Prpić; Krmek, Silvana Jukić

    2015-06-01

    Bacterial resistance is considered a consequence of misuse or overuse of antibiotics. Dentistry significantly contributes to this increasing public health problem. The aim of this cross-sectional study was to examine the pattern of antibiotics prescribed by Croatian dentists in Zagreb area. Out of 220 Doctors of Dental Medicine (DMDs) from Zagreb 110 responded to survey. Prior to the research an ethical approval was obtained. Participants were directly contacted. The questionnaire consisted of two parts: general data on DMDs and the part concerning indications, duration, type and dosage of antibiotic therapy. Data were processed using MS Excel and SPSS for Windows, Version 17.0. Statistical significance was tested by Fisher's exact test, chi-square test, Mann-Whitney U test and Spearman's rank correlation at the level of statistical significance p<0.05. During the period of two months, the doctors prescribed antibiotics to 1,500 patients, 690 (46%) were men and 810 (54%) women. The most often prescribed antibiotics were penicillin (72.5% of patients), represented mostly by amoxicillin in combination with clavulanic acid (57.6%). The most common indication for the prescribed antibiotics was periapical or periodontal abscess (44%). Definite clinical indication (71.2%) was stated as the most common reason for antibiotic prescription. Antibiotic therapy usually lasted 7 days (62.9%). The doctors prescribed daily doses of antibiotics according to the instructions for the use of specific drugs. The examined subjects prescribe antibiotics according to the curriculum taught at the School of Dental Medicine for majority of types, doses and duration of the treatments, although antibiotics over-prescription in cases without medical indication was observed. The national guidelines on antibiotic regimens are required in order to reduce unnecessary antibiotic use. Copyright© by the National Institute of Public Health, Prague 2015.

  5. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    PubMed Central

    Dai, Jing; Hamon, Morgan; Jambovane, Sachin

    2016-01-01

    The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. PMID:28952587

  6. Fatal Septicaemia Following Suprapubic Cystostomy in a Paraplegic Patient: Never Do a Cystostomy without Prior Urine Culture and Appropriate Antibiogram!

    PubMed Central

    Vaidyanathan, Subramanian; Soni, Bakul M.; Oo, Tun; Hughes, Peter L.; Singh, Gurpreet

    2010-01-01

    Neuropathic urinary bladder is often colonised by multidrug-resistant bacteria. We report a 64-year-old male spinal cord injury patient with paraplegia, who received gentamicin on empirical basis before undergoing suprapubic cystostomy, as antibiotic sensitivity report of urine was not available. This patient developed fulminate septicaemia. Although appropriate antibiotic therapy (meropenem) was started when this patient manifested features of sepsis, acute renal failure occurred and he expired. Inappropriate initial antimicrobial therapy was the major contributory factor for this patient's mortality. Learning points from this case are (1) never do a cystostomy without prior urine culture and appropriate antibiogram; (2) in a chronic spinal cord injury patient, full blood count, liver function tests, albumin level, and albumin to globulin ratio should be performed before any surgical procedure. PMID:20589219

  7. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    PubMed

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

  8. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia.

    PubMed

    Lubell, Yoel; Blacksell, Stuart D; Dunachie, Susanna; Tanganuchitcharnchai, Ampai; Althaus, Thomas; Watthanaworawit, Wanitda; Paris, Daniel H; Mayxay, Mayfong; Peto, Thomas J; Dondorp, Arjen M; White, Nicholas J; Day, Nicholas P J; Nosten, François; Newton, Paul N; Turner, Paul

    2015-11-11

    Poor targeting of antimicrobial drugs contributes to the millions of deaths each year from malaria, pneumonia, and other tropical infectious diseases. While malaria rapid diagnostic tests have improved use of antimalarial drugs, there are no similar tests to guide the use of antibiotics in undifferentiated fevers. In this study we estimate the diagnostic accuracy of two well established biomarkers of bacterial infection, procalcitonin and C-reactive protein (CRP) in discriminating between common viral and bacterial infections in malaria endemic settings of Southeast Asia. Serum procalcitonin and CRP levels were measured in stored serum samples from febrile patients enrolled in three prospective studies conducted in Cambodia, Laos and, Thailand. Of the 1372 patients with a microbiologically confirmed diagnosis, 1105 had a single viral, bacterial or malarial infection. Procalcitonin and CRP levels were compared amongst these aetiological groups and their sensitivity and specificity in distinguishing bacterial infections and bacteraemias from viral infections were estimated using standard thresholds. Serum concentrations of both biomarkers were significantly higher in bacterial infections and malaria than in viral infections. The AUROC for CRP in discriminating between bacterial and viral infections was 0.83 (0.81-0.86) compared with 0.74 (0.71-0.77) for procalcitonin (p < 0.0001). This relative advantage was evident in all sites and when stratifying patients by age and admission status. For CRP at a threshold of 10 mg/L, the sensitivity of detecting bacterial infections was 95% with a specificity of 49%. At a threshold of 20 mg/L sensitivity was 86% with a specificity of 67%. For procalcitonin at a low threshold of 0.1 ng/mL the sensitivity was 90% with a specificity of 39%. At a higher threshold of 0.5 ng/ul sensitivity was 60% with a specificity of 76%. In samples from febrile patients with mono-infections from rural settings in Southeast Asia, CRP was a highly sensitive and moderately specific biomarker for discriminating between viral and bacterial infections. Use of a CRP rapid test in peripheral health settings could potentially be a simple and affordable measure to better identify patients in need of antibacterial treatment and part of a global strategy to combat the emergence of antibiotic resistance.

  9. Cost-effectiveness of standard vs intensive antibiotic regimens for transrectal ultrasonography (TRUS)-guided prostate biopsy prophylaxis.

    PubMed

    Adibi, Mehrad; Pearle, Margaret S; Lotan, Yair

    2012-07-01

    Multiple studies have shown an increase in the hospital admission rates due to infectious complications after transrectal ultrasonography (TRUS)-guided prostate biopsy (TRUSBx), mostly related to a rise in the prevalence of fluoroquinolone-resistant organisms. As a result, multiple series have advocated the use of more intensive prophylactic antibiotic regimens to augment the effect of the widely used fluoroquinolone prophylaxis for TRUSBx. The present study compares the cost-effectiveness fluoroquinolone prophylaxis to more intensive prophylactic antibiotic regimens, which is an important consideration for any antibiotic regimen used on a wide-scale for TRUSBx prophylaxis. To compare the cost-effectiveness of fluoroquinolones vs intensive antibiotic regimens for transrectal ultrasonography (TRUS)-guided prostate biopsy (TRUSBx) prophylaxis. Risk of hospital admission for infectious complications after TRUSBx was determined from published data. The average cost of hospital admission due to post-biopsy infection was determined from patients admitted to our University hospital ≤1 week of TRUSBx. A decision tree analysis was created to compare cost-effectiveness of standard vs intensive antibiotic prophylactic regimens based on varying risk of infection, cost, and effectiveness of the intensive antibiotic regimen. Baseline assumption included cost of TRUSBx ($559), admission rate (1%), average cost of admission ($5900) and cost of standard and intensive antibiotic regimens of $1 and $33, respectively. Assuming a 50% risk reduction in admission rates with intensive antibiotics, the standard regimen was slightly less costly with average cost of $619 vs $622, but was associated with twice as many infections. Sensitivity analyses found that a 1.1% risk of admission for quinolone-resistant infections or a 54% risk reduction attributed to the more intensive antibiotic regimen will result in cost-equivalence for the two regimens. Three-way sensitivity analyses showed that small increases in probability of admission using the standard antibiotics or greater risk reduction using the intensive regimen result in the intensive prophylactic regimen becoming substantially more cost-effectiveness even at higher costs. As the risk of admission for infectious complications due to TRUSBx increases, use of an intensive prophylactic antibiotic regimen becomes significantly more cost-effective than current standard antibiotic prophylaxis. © 2011 BJU INTERNATIONAL.

  10. Phototoxicity assessment of drugs and cosmetic products using E. coli.

    PubMed

    Verma, K; Agrawal, N; Misra, R B; Farooq, M; Hans, R K

    2008-02-01

    A gram negative bacteria Escherichia coli (Dh5alpha strain) was developed as an alternate test system of phototoxicity. Eight drugs (antibiotics) and cosmetic products (eight face creams) were examined for their phototoxicity using this test system. Five known phototoxic compounds were used to validate the test system. UVA-radiation induced phototoxicity of these compounds was tested by agar gel diffusion assay. Decrease in colony forming units (CFU) was taken as an end point of phototoxicity. The phototoxic compounds and antibiotics produced significant reduction in CFU (p<0.001) at 80 microg/ml concentrations under exposure to UVA-radiation (5.4-10.8 J/cm(2)). One face cream was found phototoxic and produced significant decrease in CFU of E. coli at 1.0mg/ml concentration under UVA exposure (10.8 J/cm(2)). The minimum effective concentration of tetracycline and dose of UVA-radiation were also determined by observing growth inhibition of E. coli through disc diffusion assay. The observations suggested that E. coli can be used as an alternative test system for phototoxicity evaluation of chemicals. A battery of test systems is required to conclude the toxic/phototoxic potential of a chemical agent. In view of the speed, easiness, sensitivity and low cost, E. coli is introduced as one of the alternate test system for phototoxicity studies in safety evaluation of various chemical ingredients or formulations used in cosmetics and drugs.

  11. Estimated saving of antibiotics in pharyngitis and lower respiratory tract infections if general practitioners used rapid tests and followed guidelines.

    PubMed

    Llor, Carles; Moragas, Ana; Cots, Josep M; López-Valcárcel, Beatriz González

    General practitioners (GP) in Spain do not have access to rapid tests and adherence to guidelines is usually suboptimal. The aim of the study is to evaluate the estimated number of antibiotics that could have been saved if GPs had appropriately used these tests and had followed the guidelines. Observational study. Primary care centres from eight Autonomous Communities in Spain. GPs who had not participated in previous studies on rational use of antibiotics. GPs registered all the cases of pharyngitis and lower respiratory tract infections (LRTI) during 15 working days in 2015, by means of a 47-item audit. Actual GPs' antibiotic prescription and estimated number of antibiotics that could have been saved according to recent guidelines. A total of 126 GPs registered 1012 episodes of pharyngitis and 1928 LRTIs. Antibiotics were given or patients were referred in 497 patients with pharyngitis (49.1%) and 963 patients with LRTI (49.9%). If GPs had appropriately used rapid antigen detection tests and C-reactive protein tests and had strictly followed current guidelines, antibiotics would have been given to 7.6% and 15.1%, respectively, with an estimated saving of 420 antibiotics in patients with sore throat (estimated saving of 84.5%; 95% CI: 81.1-87.4%) and 672 antibiotics in LRTIs (estimated saving of 69.8%,95% CI: 67.1-72.5%). GP adherence to guidelines and a correct introduction of rapid tests in clinical practice in Spain could result in a considerable saving of unnecessary prescription of antibiotics in pharyngitis and LRTIs. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  12. The Antibio experiment. [Spacelab D1 mission

    NASA Technical Reports Server (NTRS)

    Lapchine, L.; Moatti, N.; Richoilley, G.; Templier, J.; Gasset, G.; Tixador, R.

    1988-01-01

    An experiment was flown on Spacelab to confirm the results of the Cytos 2 experiment on Salyut 7, which found an increase in minimal inhibitory concentration in in-flight cultures, i.e., an increase of antibiotic resistance. The 1 g centrifuge on Biorack was also used to differentiate the effects of cosmic rays and microgravity. The antibiotic sensitivity of bacteria cultivated in vitro during orbital flight was studied. The bacteria was E. coli, the antibiotic was Colistin. An increase of antibiotic resistance is observed. Three explanations are offered: stimulation of bacterial proliferation in space; a relationship between the transport of antibiotics into cells and modifications of cellular envelope permeability; and a combined effect of both phenomena.

  13. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics.

    PubMed

    Klarin, Bengt; Larsson, Anders; Molin, Göran; Jeppsson, Bengt

    2018-05-24

    Recultured Lactobacillus plantarum 299v-like strains were tested regarding antibiotic susceptibility, and no decrease was detected. Antibiotics are frequently used to treat patients in intensive care units (ICUs) and are associated with a significant risk of selection of resistant bacterial strains. In particular, it is possible that genetic transfer of antibiotic resistance to the resident gastrointestinal flora, as well as to administered probiotics, may be increased in the ICU setting. The aim of the present investigation was to detect possible changes in antimicrobial susceptibility in reisolates of the probiotic strain Lactobacillus plantarum 299v (Lp299v) given to antibiotic treated, critically ill patients. Lp299v-like strains were identified in cultures of biopsies and fecal samples from 32 patients given the probiotic strain enterally in two previous ICU studies. The patients received a variety of antibiotics. Isolates with the same genomic RAPD profile (RAPD-type) as Lp299v were obtained to enable monitoring of antibiotic susceptibility by E-tests. Forty-two isolates, collected throughout the course of illness, were tested against 22 different antibiotics. No obvious decrease in susceptibility was found for 21 of the tested antibiotics. There was a tendency toward decreased susceptibility to ampicillin. The stable antibiotic susceptibility profiles of the Lp299v-like isolates studied here suggests this probiotic is less likely to acquire resistance when administered to critically ill patients treated with broad-spectrum antibiotics. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Correcting a Fundamental Flaw in the Paradigm for Antimicrobial Susceptibility Testing.

    PubMed

    Ersoy, Selvi C; Heithoff, Douglas M; Barnes, Lucien; Tripp, Geneva K; House, John K; Marth, Jamey D; Smith, Jeffrey W; Mahan, Michael J

    2017-06-01

    The emergence and prevalence of antibiotic-resistant bacteria are an increasing cause of death worldwide, resulting in a global 'call to action' to avoid receding into an era lacking effective antibiotics. Despite the urgency, the healthcare industry still relies on a single in vitro bioassay to determine antibiotic efficacy. This assay fails to incorporate environmental factors normally present during host-pathogen interactions in vivo that significantly impact antibiotic efficacy. Here we report that standard antimicrobial susceptibility testing (AST) failed to detect antibiotics that are in fact effective in vivo; and frequently identified antibiotics that were instead ineffective as further confirmed in mouse models of infection and sepsis. Notably, AST performed in media mimicking host environments succeeded in identifying specific antibiotics that were effective in bacterial clearance and host survival, even though these same antibiotics failed in results using standard test media. Similarly, our revised media further identified antibiotics that were ineffective in vivo despite passing the AST standard for clinical use. Supplementation of AST medium with sodium bicarbonate, an abundant in vivo molecule that stimulates global changes in bacterial structure and gene expression, was found to be an important factor improving the predictive value of AST in the assignment of appropriate therapy. These findings have the potential to improve the means by which antibiotics are developed, tested, and prescribed. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Strategies for the screening of antibiotic residues in eggs: comparison of the validation of the classical microbiological method with an immunobiosensor method.

    PubMed

    Gaudin, Valérie; Rault, Annie; Hedou, Celine; Soumet, Christophe; Verdon, Eric

    2017-09-01

    Efficient screening methods are needed to control antibiotic residues in eggs. A microbiological kit (Explorer® 2.0 test (Zeu Inmunotech, Spain)) and an immunobiosensor kit (Microarray II (AM® II) on Evidence Investigator™ system (Randox, UK)) have been evaluated and validated for screening of antibiotic residues in eggs, according to the European decision EC/2002/657 and to the European guideline for the validation of screening methods. The e-reader™ system, a new automatic incubator/reading system, was coupled to the Explorer 2.0 test. The AM II kit can detect residues of six different families of antibiotics in different matrices including eggs. For both tests, a different liquid/liquid extraction of eggs had to be developed. Specificities of the Explorer 2.0 and AM II kit were equal to 8% and 0% respectively. The detection capabilities were determined for 19 antibiotics, with representatives from different families, for Explorer 2.0 and 12 antibiotics for the AM II kit. For the nine antibiotics having a maximum residue limit (MRL) in eggs, the detection capabilities CCβ of Explorer 2.0 were below the MRL for four antibiotics, equal to the MRL for two antibiotics and between 1 and 1.5 MRLs for the three remaining antibiotics (tetracyclines). For the antibiotics from other families, the detection capabilities were low for beta-lactams and sulfonamides and satisfactory for dihydrostreptomycin (DHS) and fluoroquinolones, which are usually difficult to detect with microbiological tests. The CCβ values of the AM II kit were much lower than the respective MRLs for three detected antibiotics (tetracycline, oxytetracycline, tylosin). Concerning the nine other antibiotics, the detection capabilities determined were low. The highest CCβ was obtained for streptomycin (100 µg kg -1 ).

  16. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    PubMed Central

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  17. Streptococcus pneumoniae and Haemophilus influenzae type b carriage in Chinese children aged 12-18 months in Shanghai, China: a cross-sectional study.

    PubMed

    Hu, Jiayu; Sun, Xiaodong; Huang, Zhuoying; Wagner, Abram L; Carlson, Bradley; Yang, Jianping; Tang, Suwen; Li, Yunyi; Boulton, Matthew L; Yuan, Zhengan

    2016-04-14

    The bacteria Streptococcus pneumoniae (pneumococcus) and Haemophilus influenzae type b (Hib) are leading causes of childhood pneumonia and meningitis and are major contributors to worldwide mortality in children younger than 5 years of age. Asymptomatic nasopharyngeal carriage of pneumococcus and Hib was determined for healthy children in Shanghai in 2009. Children from 5 immunization clinics were enrolled in this study. Specimens from the nasopharynx were collected and cultured in Columbia and chocolate agar to identify pneumococcal and Hib carriage. Pneumococcal specimens were serotyped with the Neufeld test, and antibiotic resistance for pneumococcal and Hib specimens used the E-test method. Significance of risk factors for carriage was assessed through chi-square tests. Among 614 children, 16.6% had pneumococcal carriage and 8.0% Hib carriage. The predominant serotype of pneumococcus that was isolated was 19 F (52.9%); serotype coverage was 68.6% for both 7-valent pneumococcal conjugate vaccine (PCV) and PCV-10, and 82.3% for PCV-13. Household residency and father's education were both significantly related to pneumococcal and Hib carriage. The majority of S. pneumoniae isolates were sensitive to most antimicrobials but there were high levels of resistance to azithromycin (51.0 %) and erythromycin (51.0%). Haemophilus influenzae isolates were sensitive to almost all antimicrobials tested although 12.2% of isolates were resistant to ampicillin. The pneumococcal and Hib vaccines require payment, and the children with the highest burden of disease may not be receiving these vaccines. Moreover, the presence of high antibiotic susceptibility towards pneumococcus, and to a lesser extent towards Hib, underscores the need for preventive protection against these diseases. Public funding of pneumococcal and Hib vaccines would be one mechanism to increase uptake of these vaccines.

  18. Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis

    PubMed Central

    Cockell, Charles S.

    2017-01-01

    Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics. PMID:28123098

  19. Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis.

    PubMed

    Harrison, Jesse P; Angel, Roey; Cockell, Charles S

    2017-01-01

    Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics. © 2017 The Author(s).

  20. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    PubMed

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  1. Antibiotic Resistance among Clinical Ureaplasma Isolates Recovered from Neonates in England and Wales between 2007 and 2013

    PubMed Central

    Chalker, Victoria J.; Jones, Lucy C.; Maxwell, Nicola C.; Spiller, O. Brad

    2015-01-01

    Ureaplasma spp. are associated with numerous clinical sequelae with treatment options being limited due to patient and pathogen factors. This report examines the prevalence and mechanisms of antibiotic resistance among clinical strains isolated from 95 neonates, 32 women attending a sexual health clinic, and 3 patients under investigation for immunological disorders, between 2007 and 2013 in England and Wales. MICs were determined by using broth microdilution assays, and a subset of isolates were compared using the broth microdilution method and the Mycoplasma IST2 assay. The underlying molecular mechanisms for resistance were determined for all resistant isolates. Three isolates carried the tet(M) tetracycline resistance gene (2.3%; confidence interval [CI], 0.49 to 6.86%); two isolates were ciprofloxacin resistant (1.5%; CI, 0.07 to 5.79%) but sensitive to levofloxacin and moxifloxacin, while no resistance was seen to any macrolides tested. The MIC values for chloramphenicol were universally low (2 μg/ml), while inherently high-level MIC values for gentamicin were seen (44 to 66 μg/ml). The Mycoplasma IST2 assay identified a number of false positives for ciprofloxacin resistance, as the method does not conform to international testing guidelines. While antibiotic resistance among Ureaplasma isolates remains low, continued surveillance is essential to monitor trends and threats from importation of resistant clones. PMID:26459899

  2. Antibiotic Resistance among Clinical Ureaplasma Isolates Recovered from Neonates in England and Wales between 2007 and 2013.

    PubMed

    Beeton, Michael L; Chalker, Victoria J; Jones, Lucy C; Maxwell, Nicola C; Spiller, O Brad

    2016-01-01

    Ureaplasma spp. are associated with numerous clinical sequelae with treatment options being limited due to patient and pathogen factors. This report examines the prevalence and mechanisms of antibiotic resistance among clinical strains isolated from 95 neonates, 32 women attending a sexual health clinic, and 3 patients under investigation for immunological disorders, between 2007 and 2013 in England and Wales. MICs were determined by using broth microdilution assays, and a subset of isolates were compared using the broth microdilution method and the Mycoplasma IST2 assay. The underlying molecular mechanisms for resistance were determined for all resistant isolates. Three isolates carried the tet(M) tetracycline resistance gene (2.3%; confidence interval [CI], 0.49 to 6.86%); two isolates were ciprofloxacin resistant (1.5%; CI, 0.07 to 5.79%) but sensitive to levofloxacin and moxifloxacin, while no resistance was seen to any macrolides tested. The MIC values for chloramphenicol were universally low (2 μg/ml), while inherently high-level MIC values for gentamicin were seen (44 to 66 μg/ml). The Mycoplasma IST2 assay identified a number of false positives for ciprofloxacin resistance, as the method does not conform to international testing guidelines. While antibiotic resistance among Ureaplasma isolates remains low, continued surveillance is essential to monitor trends and threats from importation of resistant clones. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  4. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  5. Antibiotic sensitivity pattern of bacteria from diabetic foot infections Haji Adam Malik central general hospital

    NASA Astrophysics Data System (ADS)

    Bulolo, B. A.; Pase, M. A.; Ginting, F.

    2018-03-01

    Increasing rate of Diabetic Foot Infections (DFIs) caused by multi-drug-resistance pathogens plays a huge role in the duration of hospitalization, morbidity, and mortality of diabetic patients. The aim of the study is to assess the antibiotic sensitivity pattern of bacteria in DFIs and causative microorganisms. Using cross-sectional retrospective study, data were collected from medical records of DFIs patients previously hospitalized atHaji Adam Malik Hospital, Medan from January to July 2017. 33 patients met the criteria and got enrolled in the study. The classification of DFIs was evaluated according to Wagner’s Classification. Evaluation of antibiotic sensitivity and identification of causative microorganisms were performed in standard microbiologic methods. The most common grade of DFIs was Grade-4 (48.5%), followed by Grade-3 (39.4%) and Grade-5 (9.1%). A total of 12 pathogens were identified. The most common infecting microorganism isolated on pus cultures was Klebsiella pneumonia (33.3%), followed by Escherichia coli (24.2%), Acinetobacter baumanni (12.1%), and Staphylococcus aureus (9.1%). Frequent susceptible antibiotics were Amikacin (88.8%), Imipenem (87%), Meropenem (84.6%), Erythromycin (75%), and Cefoperazone/Sulbactam (68.9%). DFIs are polymicrobial infections in this study K. pneumonia was the most common cause microorganism.

  6. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms.

    PubMed

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M; Van Bambeke, Françoise

    2013-06-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections.

  7. A Combined Pharmacodynamic Quantitative and Qualitative Model Reveals the Potent Activity of Daptomycin and Delafloxacin against Staphylococcus aureus Biofilms

    PubMed Central

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M.

    2013-01-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections. PMID:23571532

  8. Simultaneous quantification of antibiotics in wastewater from pig farms by capillary electrophoresis.

    PubMed

    Díaz-Quiroz, Carlos A; Francisco Hernández-Chávez, J; Ulloa-Mercado, Gabriela; Gortáres-Moroyoqui, Pablo; Martínez-Macías, Rosario; Meza-Escalante, Edna; Serrano-Palacios, Denisse

    2018-06-15

    Pig farming is an important activity in the economic development of Mexico with millions of tons of meat produced annually. Antibiotics are used in therapeutic dose to prevent diseases, and sometimes as growth promoters. These compounds are not completely metabolized; they are carried into the environment in its active form at concentrations that could induce antibiotic resistance in bacteria, which could be transferred to human pathogens by horizontal gene transfer. The objective of this work was to develop methods of analysis for simultaneous quantification of the antibiotics Oxytetracycline (OXT), Chlortetracycline (CLT), Enrofloxacin (ENRO) and Ciprofloxacin (CIPRO) by field-amplified sampling injection in capillary zone electrophoresis (FASI-CZE). The method was validated by parameters of (1) linearity, obtaining a lineal range of 0.05 at 1 μg mL -1 for ENRO and CIPRO, and from 0.1 to 1 μg mL -1 for OXT and CLT; (2) precision, obtaining values <5% of standard deviation for CIPRO and ENRO and <10% of standard deviation for OXT and CLT; (3) accuracy, with recovery values from 93 to 115%; (4) selectivity, with values of resolution >2 for the all antibiotics tested. To prove the method, a sample of wastewater from a local pig farm was analyzed, detecting a concentration of 0.140 ± 0.009 for OXT. This concentration was higher than the minimal selective concentration, indicating the point in which resistance to a determined antibiotic could develop. The methods were validated with precision and sensitivity comparable to chromatographic methods, which can be used to analyze wastewater from pig farms directly. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Antibiotic resistance and clonal diversity of invasive Staphylococcus aureus in the rural Ashanti Region, Ghana.

    PubMed

    Dekker, Denise; Wolters, Manuel; Mertens, Eva; Boahen, Kennedy Gyau; Krumkamp, Ralf; Eibach, Daniel; Schwarz, Norbert G; Adu-Sarkodie, Yaw; Rohde, Holger; Christner, Martin; Marks, Florian; Sarpong, Nimako; May, Jürgen

    2016-11-29

    Staphylococcus aureus is among the most common pathogens isolated from blood cultures in Ghana; yet the epidemiology of blood infections in rural settings is poorly described. This study aims to investigate antimicrobial susceptibility and clonal diversity of S. aureus causing bloodstream infections in two hospitals in the Ashanti Region, Ghana. Blood cultures were performed for all febrile patients (≥37.5 °C) on hospital admission. Antibiotic susceptibility testing for S. aureus isolates was carried out by the VITEK 2 system. Multiplex polymerase chain reaction (PCR) was used to detect S. aureus-specific nuc gene, Panton-Valentine leukocidin (PVL), and methicillin-resistant S. aureus (MRSA)-specific mecA and mecC genes. The population structure of S. aureus was assessed by spa typing. In total, 9,834 blood samples were cultured, out of which 0.6% (n = 56) were positive for S. aureus. Multidrug resistance (MDR) was detected in 35.7% (n = 20) of the S. aureus strains, of which one was a MRSA. The highest rate of antibiotic resistance was seen for commonly available antibiotics, including penicillin (n = 55; 98.2%), tetracycline (n = 32; 57.1%) and trimethoprim/sulfamethoxazole (n = 26; 46.4%). Of all S. aureus strains, 75.0% (n = 42) carried the PVL-encoding genes. We found 25 different spa types with t355 (n = 11; 19.6%), t314 (n = 8; 14.3%), t084 (n = 8; 14.3%) and t311 (n = 5; 8.9%) being predominant. The study exhibited an alarmingly large level of antibiotic resistance to locally available antibiotics. The frequency of genetically diverse and PVL-positive methicillin-sensitive S. aureus (MSSA) was high and could represent a reservoir for the emergence of virulent PVL-positive MRSA clones.

  10. Contact allergy in patients with rosacea: a clinic-based, prospective epidemiological study.

    PubMed

    Jappe, U; Schäfer, T; Schnuch, A; Uter, W

    2008-11-01

    Rosacea is a relatively common inflammatory skin disease of unknown prevalence. The proportion of contact allergy complicating rosacea and its therapy, respectively, is largely unknown. To estimate the prevalence of specific contact allergy in rosacea patients and to compare this with the prevalence observed in the general population and in general patch test patients. In this prospective monocentre study, 78 patients with rosacea were investigated for contact sensitizations via patch testing the standard series, constituents of topical formulations, preservatives, fragrances, topically applied drugs and, if available, patient's own products. Positive reactions occurred to nickel (II) sulphate (12 of 78, 15.4%), fragrance mix I (4 of 77, 5.2%), balsam of Peru (8 of 77, 10.4%; significantly elevated prevalence compared to that observed in the population-based KORA study), potassium dichromate (4 of 78, 5.1%) and Lyral (3 of 78, 3.8%). Regarding topical antibiotics, only 1 of 78 (1.3%) patients was positive to neomycin sulphate, and none to metronidazole; however, 6 of 75 (8%) patients were positive to gentamicin sulphate, and 4 of 76 (5.3%) patients were positive to framycetin sulphate. No allergic but irritant patch test reactions, instead, were provoked by various patients' own products as well as by the irritant sodium lauryl sulphate (SLS) even in low concentrations. Despite the limited power of the study, a strikingly high prevalence of contact allergy to gentamicin sulphate was observed, which is probably due to antibiotic treatment of rosacea-associated eye symptoms. The reactions to the irritant SLS probably mirror the extreme skin sensitivity in rosacea.

  11. Antimicrobial sensitivity patterns of cerebrospinal fluid (CSF) isolates in Namibia: implications for empirical antibiotic treatment of meningitis.

    PubMed

    Mengistu, Assegid; Gaeseb, Johannes; Uaaka, Gottfried; Ndjavera, Christophine; Kambyambya, Kennedy; Indongo, Lazarus; Kalemeera, Francis; Ntege, Christopher; Mabirizi, David; Joshi, Mohan P; Sagwa, Evans

    2013-01-01

    Bacterial meningitis is a medical emergency associated with high mortality rates. Cerebrospinal fluid (CSF) culture is the "gold standard" for diagnosis of meningitis and it is important to establish the susceptibility of the causative microorganism to rationalize treatment. The Namibia Standard Treatment Guidelines (STGs) recommends initiation of empirical antibiotic treatment in patients with signs and symptoms of meningitis after taking a CSF sample for culture and sensitivity. The objective of this study was to assess the antimicrobial sensitivity patterns of microorganisms isolated from CSF to antibiotics commonly used in the empirical treatment of suspected bacterial meningitis in Namibia. This was a cross-sectional descriptive study of routinely collected antibiotic susceptibility data from the Namibia Institute of Pathology (NIP) database. Results of CSF culture and sensitivity from January 1, 2009 to May 31, 2012, from 33 state hospitals throughout Namibia were analysed. The most common pathogens isolated were Streptococcus species, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and Escherichia coli. The common isolates from CSF showed high resistance (34.3% -73.5%) to penicillin. Over one third (34.3%) of Streptococcus were resistance to penicillin which was higher than 24.8% resistance in the United States. Meningococci were susceptible to several antimicrobial agents including penicillin. The sensitivity to cephalosporins remained high for Streptococcus, Neisseria, E. coli and Haemophilus. The highest percentage of resistance to cephalosporins was seen among ESBL K. pneumoniae (n = 7, 71%-100%), other Klebsiella species (n = 7, 28%-80%), and Staphylococcus (n = 36, 25%-40%). The common organisms isolated from CSF were Streptococcus Pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and E. coli. All common organisms isolated from CSF showed high sensitivity to cephalosporins used in the empirical treatment of meningitis. The resistance of the common isolates to penicillin is high. Most ESBL K. pneumoniae were isolated from CSF samples drawn from neonates and were found to be resistant to the antibiotics recommended in the Namibia STGs. Based on the above findings, it is recommended to use a combination of aminoglycoside and third-generation cephalosporin to treat non-ESBL Klebsiella isolates. Carbapenems (e.g., meropenem) and piperacillin/tazobactam should be considered for treating severely ill patients with suspected ESBL Klebsiella infection. Namibia should have a national antimicrobial resistance surveillance system for early detection of antibiotics that may no longer be effective in treating meningitis and other life-threatening infections due to resistance.

  12. Inference of Antibiotic Resistance and Virulence Among Diverse Group A Streptococcus Strains Using emm Sequencing and Multilocus Genotyping Methods

    DTIC Science & Technology

    2009-09-04

    apparent GAS-associated conditions were sampled by oropharyn- geal swab. Swabs were streaked on blood agar plates using Table 3. Isolate properties by...testing, samples were re-streaked on blood agar plates (5% sheep blood in TSA base) (Hardy Diagnostics, Santa Maria, CA), and incubated at 35–37uC with 5–10...sensitivity (A-disk method, Hardy Diagnostics) and positive GAS latex agglutination reaction (Hardy Diagnostics). Confirmed GAS isolates were then

  13. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm.

    PubMed

    Zhang, Qing-Zhao; Zhao, Ke-Qing; Wu, Yang; Li, Xian-Hui; Yang, Chen; Guo, Li-Min; Liu, Chun-Hong; Qu, Di; Zheng, Chun-Quan

    2017-01-01

    Staphylococcus aureus (S. aureus) is hard to be eradicated, not only due to the emergence of antibiotic resistant strains but also because of its ability to form biofilm. Antibiotics are the major approach to treating biofilm infections, but their effects are unsatisfactory. One of the potential alternative treatments for controlling biofilm infections is photodynamic therapy (PDT), which requires the administration of photosensitizer, followed by light activation. 5-aminolevulinic acid (ALA), a natural photosensitizer prodrug, presents favorable characteristics, such as easy penetration and rapid clearance. These advantages enable ALA-based PDT (ALA-PDT) to be well-tolerated by patients and it can be repeatedly applied without cumulative toxicity or serious side effects. ALA-PDT has been proven to be an effective treatment for multidrug resistant pathogens; however, the study of its effect on S. aureus biofilm is limited. Here, we established our PDT system based on the utilization of ALA and a light-emitting diode, and we tested the effect of ALA-PDT on S. aureus biofilm as well as the combined effect of ALA-PDT and antibiotics on S. aureus biofilm. Our results showed that ALA-PDT has a strong antibacterial effect on S. aureus biofilm, which was confirmed by the confocal laser scanning microscope. We also found that lethal photosensitization occurred predominantly in the upper layer of the biofilm, while the residual live bacteria were located in the lower layer of the biofilm. In addition, the improved bactericidal effect was observed in the combined treatment group but in a strain-dependent manner. Our results suggest that ALA-PDT is a potential alternative approach for future clinical use to treat S. aureus biofilm-associated infections, and some patients may benefit from the combined treatment of ALA-PDT and antibiotics, but drug sensitivity testing should be performed in advance.

  14. Identification of patients at high risk for Clostridium difficile infection: development and validation of a risk prediction model in hospitalized patients treated with antibiotics.

    PubMed

    van Werkhoven, C H; van der Tempel, J; Jajou, R; Thijsen, S F T; Diepersloot, R J A; Bonten, M J M; Postma, D F; Oosterheert, J J

    2015-08-01

    To develop and validate a prediction model for Clostridium difficile infection (CDI) in hospitalized patients treated with systemic antibiotics, we performed a case-cohort study in a tertiary (derivation) and secondary care hospital (validation). Cases had a positive Clostridium test and were treated with systemic antibiotics before suspicion of CDI. Controls were randomly selected from hospitalized patients treated with systemic antibiotics. Potential predictors were selected from the literature. Logistic regression was used to derive the model. Discrimination and calibration of the model were tested in internal and external validation. A total of 180 cases and 330 controls were included for derivation. Age >65 years, recent hospitalization, CDI history, malignancy, chronic renal failure, use of immunosuppressants, receipt of antibiotics before admission, nonsurgical admission, admission to the intensive care unit, gastric tube feeding, treatment with cephalosporins and presence of an underlying infection were independent predictors of CDI. The area under the receiver operating characteristic curve of the model in the derivation cohort was 0.84 (95% confidence interval 0.80-0.87), and was reduced to 0.81 after internal validation. In external validation, consisting of 97 cases and 417 controls, the model area under the curve was 0.81 (95% confidence interval 0.77-0.85) and model calibration was adequate (Brier score 0.004). A simplified risk score was derived. Using a cutoff of 7 points, the positive predictive value, sensitivity and specificity were 1.0%, 72% and 73%, respectively. In conclusion, a risk prediction model was developed and validated, with good discrimination and calibration, that can be used to target preventive interventions in patients with increased risk of CDI. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Ocular flora and their antibiotic susceptibility in patients having cataract surgery in Italy.

    PubMed

    Papa, Vincenzo; Blanco, Anna Rita; Santocono, Marcello

    2016-09-01

    To characterize the ocular flora in a consecutive group of patients having cataract surgery and to determine the antibiotic susceptibility profile of isolates to several ophthalmic antibiotics. Hospital Di Stefano, Catania, Italy. Observational case series. Conjunctival and eyelid cultures from patients were obtained 14 days before surgery and, if positive, repeated the day of the surgery. Antimicrobial susceptibility for aminoglycosides (netilmicin and tobramycin), fluoroquinolones (ofloxacin, levofloxacin, and moxifloxacin), chloramphenicol, and azithromycin was tested using the Kirby-Bauer disk diffusion method. Susceptibility was also tested for oxacillin, cefuroxime, and vancomycin. All positive patients received a 2-day preoperative course of 3 mg/mL netilmicin ophthalmic solution 4 times a day. The recovery rate of microorganisms after antibiotic treatment compared with baseline was calculated. One hundred twenty consecutive patients were included in the study. Cultures were positive in 72.5% of patients; 131 isolates, mainly gram-positive, were identified. Staphylococcus epidermidis (58.0%) and Staphylococcus aureus (15.3%) were the most frequently isolated microorganisms. Methicillin-resistant staphylococci accounted for 3.8% of S epidermidis and 20.0% of S aureus. A high in vitro susceptibility (>90%) for all isolates, including multiresistant coagulase-negative Staphylococcus, was obtained for netilmicin, vancomycin, and cefuroxime. The recovery rate of isolates before surgery was reduced by 93.9% (P < .001). Conjunctival and lid margin isolates were sensitive to netilmicin, vancomycin, and cefuroxime. Microorganisms were less susceptible to other ophthalmic antibiotics, with the exception of moxifloxacin. A 2-day preoperative course with topical netilmicin reduced most bacteria identified on the conjunctiva and eyelids. Dr. Papa and Ms. Blanco are employees of Società Industria Farmaceutica Italiana SpA. Dr. Santocono has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Access to point-of-care tests reduces the prescription of antibiotics among antibiotic-requesting subjects with respiratory tract infections.

    PubMed

    Llor, Carl; Bjerrum, Lars; Munck, Anders; Cots, Josep M; Hernández, Silvia; Moragas, Ana

    2014-12-01

    General practitioners (GPs) often feel uncomfortable when patients request an antibiotic when there is likely little benefit. This study evaluates the effect of access to point-of-care tests on decreasing the prescription of antibiotics in respiratory tract infections in subjects who explicitly requested an antibiotic prescription. Spanish GPs registered all cases of respiratory tract infections over a 3-week period before and after an intervention undertaken in 2008 and 2009. Patients with acute sinusitis, pneumonia, and exacerbations of COPD were excluded. Two types of interventions were performed: the full intervention group received prescriber feedback with discussion of the results of the first registry, courses for GPs, guidelines, patient information leaflets, workshops, and access to point-of-care tests (rapid streptococcal antigen detection test and C-reactive protein test); and the partial intervention group underwent all of the above interventions except for the workshop and access to point-of-care tests. A total of 210 GPs were assigned to the full intervention group and 71 to the partial intervention group. A total of 25,479 subjects with respiratory tract infections were included, of whom 344 (1.4%) requested antibiotic prescribing. Antibiotics were more frequently prescribed to subjects requesting them compared with those who did not (49.1% vs 18.5%, P < .001). In the group of GPs assigned to the partial intervention group, 53.1% of subjects requesting antibiotics received a prescription before and 60% after the intervention, without statistical differences being observed. In the group of GPs assigned to the full intervention group, the percentages were 55.1% and 36.2%, respectively, with a difference of 18.9% (95% CI: 6.4%-30.6%, P < .05). Access to point-of-care tests reduces antibiotic use in subjects who explicitly request an antibiotic prescription. Copyright © 2014 by Daedalus Enterprises.

  17. Longer time to antibiotics and higher mortality among septic patients with non-specific presentations--a cross sectional study of Emergency Department patients indicating that a screening tool may improve identification.

    PubMed

    Wallgren, Ulrika Margareta; Antonsson, Viktor Erik; Castrén, Maaret Kaarina; Kurland, Lisa

    2016-01-06

    The presentation of sepsis is varied and our hypotheses were that septic patients with non-specific presentations such as decreased general condition (DGC) have a less favourable outcome, and that a screening tool could increase identification of these patients. We aimed to: 1) assess time to antibiotics and in-hospital mortality among septic patients with ED chief complaint DGC, as compared with septic patients with other ED chief complaints, and 2) determine whether a screening tool could improve identification of septic patients with non-specific presentations such as DGC. Cross sectional study comparing time to antibiotics (Mann Whitney and Kaplan-Meier tests), and in-hospital mortality (logistic regression), between 61 septic patients with ED chief complaint DGC and 516 septic patients with other ED chief complaints. The sensitivity and specificity of the modified Robson screening tool was compared with that of ED doctor clinical judgment (McNemar's two related samples test) among 122 patients presenting to the ED with chief complaint DGC, of which 61 were discharged with ICD code sepsis. Septic patients presenting to the ED with the chief complaint DGC had a longer median time to antibiotics (05:26 h:minutes; IQR 4:00-10:40, vs. 03:56 h:minutes; IQR 2:21-7:32) and an increased in-hospital mortality (crude OR = 4.01; 95% CI, 2.19-7.32), compared to septic patients with other ED chief complaints. This association remained significant when adjusting for sex, age, priority, comorbidity and fulfilment of the Robson score (OR 4.31; 95% CI, 2.12-8.77). The modified Robson screening tool had a higher sensitivity (63.0 vs. 24.6%, p < 0.001), but a lower specificity (68.3 vs. 100.0%, p < 0.001), as compared to clinical judgment. This is, to the best of our knowledge, the first study comparing outcome of septic patients according to ED chief complaint. Septic patients presenting with a non-specific ED presentation, here exemplified as the chief complaint DGC, have a less favourable outcome. Our results indicate that implementation of a screening tool may increase the identification of septic patients. The results indicate that septic patients presenting with ED chief complaint DGC constitute a vulnerable patient group with delayed time to antibiotics and high in-hospital mortality. Furthermore, the results support that implementation of a screening tool may be beneficial to improve identification of these patients.

  18. Seminal Corynebacterium strains in infertile men with and without leucocytospermia.

    PubMed

    Mashaly, M; Masallat, D T; Elkholy, A A; Abdel-Hamid, I A; Mostafa, T

    2016-04-01

    This study aimed to identify seminal Corynebacterium strains in infertile men with and without leucocytospermia. Semen samples from 60 infertile men were allocated into two equal groups: semen samples with leucocytospermia and semen samples without leucocytospermia. Semen culture for Corynebacterium species was carried out on Columbia agar medium confirmed by Gram-stained film and biochemical tests followed by analytical profile index biotyping and antibiotic susceptibility. Bacterial isolates were detected in 20/60 semen cultures (33.3%) as Corynebacteria, Staphylococci, Alpha haemolytic streptococci and E. coli. In all, 12/60 (20%) had Corynebacterium positive semen culture, whereas C. seminal was the major isolated species followed by C. amycolatum, C. jekium and C. urealyticum. There was nonsignificant difference between patients with/without Corynebacterium positive culture regarding sperm concentration and normal sperm morphology; however, in positive cultures sperm motility was significantly lower compared with negative cultures. Antimicrobial sensitivity among Corynebacteria strains was highest for vancomycin, rifampicin then imipenem, ampicillin + sulbactam, ciprofloxacin. It is concluded that positive semen cultures for different Corynebacteria species were demonstrated in infertile men, whereas Corynebacterium seminale was the most common isolated species. Vancomycin, rifampicin then imipenem and ampicillin + sulbactam are recommended as sensitive antibiotics. © 2015 Blackwell Verlag GmbH.

  19. Utility of galactomannan antigen detection in bronchoalveolar lavage fluid in immunocompromised patients.

    PubMed

    Brownback, Kyle R; Pitts, Lucas R; Simpson, Steven Q

    2013-09-01

    Diagnosis of invasive pulmonary aspergillosis (IPA) is a challenging process in immunocompromised patients. Galactomannan (GM) antigen detection in bronchoalveolar lavage (BAL) fluid is a method to detect IPA with improved sensitivity over conventional studies. We sought to determine the diagnostic yield of BAL GM assay in a diverse population of immunocompromised patients. A retrospective review of 150 fiberoptic bronchoscopy (FOB) with BAL for newly diagnosed pulmonary infiltrate in immunocompromised patients was performed. Patient information, procedural details and laboratory studies were collected. BAL and serum samples were evaluated for GM using enzyme-linked immunoassay. Of 150 separate FOB with BAL, BAL GM was obtained in 143 samples. There were 31 positive BAL GM assays. In those 31 positive tests, 13 were confirmed as IPA, giving a positive predictive value of 41.9%. There was one false negative BAL GM. Of the 18 false positive BAL GM, 4 were receiving piperacillin-tazobactam and 11 were receiving an alternative beta-lactam antibiotic. BAL GM assay shows excellent sensitivity for diagnosing IPA. There was a significant number of false positive BAL GM assays and several of those patients were receiving beta-lactam antibiotics at the time of bronchoscopy. © 2013 Blackwell Verlag GmbH.

  20. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    PubMed

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  1. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hoettges, Kai F.; Dale, Jeremy W.; Hughes, Michael P.

    2007-09-01

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.

  2. Staphylococcus aureus carriage rates and antibiotic resistance patterns in patients with acne vulgaris.

    PubMed

    Delost, Gregory R; Delost, Maria E; Armile, James; Lloyd, Jenifer

    2016-04-01

    Overuse of antibiotics has led to the development of antibiotic-resistant strains of Staphylococcus aureus, which are occurring more frequently within the community. We sought to determine whether long-term antibiotic therapy for acne alter the carriage rate and antibiotic resistance profiles of S aureus. This was a prospective, cross-sectional, quasiexperimental study. Samples of anterior nares were obtained from dermatology patients given a diagnosis of acne vulgaris (n = 263) who were treated with antibiotics (n = 142) or who were not treated with antibiotics (n = 121). Specimens were tested for the presence of S aureus by growth on mannitol salt agar and then isolated on 5% sheep blood agar. Identification was confirmed based on colonial morphology, Gram stain, catalase, and coagulase testing. Antibiotic susceptibility testing was performed using the VITEK 2 system (bioMerieux, Marcy-l'Étoile, France). The S aureus carriage rate was significantly lower in patients with acne treated with antibiotics (6.3%) compared with those not treated with antibiotics (15.7%; P = .016). The percentage of S aureus isolates resistant to 1 or more antibiotics did not significantly differ between the 2 groups (P = .434). Cross-sectional study, patient compliance, and effects of prior acne treatments are limitations. Treatment of patients with acne using antibiotics decreases the S aureus carriage rate but does not significantly alter the antibiotic resistance rates. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. [How sensible are bacteriological tests in periodontology?].

    PubMed

    Mikx, F H; Renggli, H H

    1994-12-01

    Periodontitis is a mixed infection with subgingival bacteria that belong to the microflora of the host. The bacteriological tests (Microscopy, Culture, Omnigene, Affirm DP and Evalusite) are mainly aimed at spirochetes or A. actinomycetemcomitans, P. gingivalis and P. intermedia. The detection limits of the different tests vary and, therefore, the detection levels are between 0.01-10% of the subgingival microflora. However, threshold levels to distinguish between diseased and carrier state are not established and the low sensitivity and specificity of the tests limit their diagnostic usefulness. The correlation between the tested bacteria and periodontitis does not mean a causal relationship. As a result, the justification of the elimination of the tested bacteria is questionable. The tests of the subgingival plaque do not only add to the microbiological knowledge, but might also promote the overtreatment with antibiotics, such as the in the Netherlands popular combination of amoxicilline and metronidazole. The balance between host and microflora can be restored in most patients by mechanical elimination of the mainly Gram negative anaerobic subgingival plaque. In special occasions metronidazole can be empirically prescribed in order to support the subgingival debridement. In the relatively rare occasions of superinfection, a sensitivity test of the subgingival microbiota is recommended.

  4. Effects of Subinhibitory Concentrations of Antibiotics on Alpha-Toxin (hla) Gene Expression of Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Isolates

    PubMed Central

    Ohlsen, Knut; Ziebuhr, Wilma; Koller, Klaus-Peter; Hell, Wolfgang; Wichelhaus, Thomas A.; Hacker, Jörg

    1998-01-01

    Concentrations of antibiotics below the MIC are able to modulate the expression of virulence-associated genes. In this study, the influence of subinhibitory doses of 31 antibiotics on the expression of the gene encoding the staphylococcal alpha-toxin (hla), a major virulence factor of Staphylococcus aureus, was investigated with a novel gene fusion protocol. The most striking observation was a strong induction of hla expression by subinhibitory concentrations of β-lactams and an almost complete inhibition of alpha-toxin expression by clindamycin. Whereas glycopeptide antibiotics had no effect, the macrolide erythromycin and several aminoglycosides reduced and fluoroquinolones slightly stimulated hla expression. Furthermore, Northern blot analysis of hla mRNA and Western blot (immunoblot) analysis of culture supernatants of both methicillin-sensitive and methicillin-resistant S. aureus strains revealed that methicillin-induced alpha-toxin expression is a common phenomenon of alpha-toxin-producing strains. Some methicillin-resistant S. aureus isolates produced up to 30-fold more alpha-toxin in the presence of 10 μg of methicillin per ml than in its absence. The results indicate that the novel gene fusion technique is a useful tool for studying the modulation of virulence gene expression by antibiotics. Moreover, the results suggest that the effects of certain antibiotics on virulence properties may be relevant for the management of S. aureus infections. PMID:9797209

  5. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex.more » The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.« less

  6. Residual antibiotics in decontaminated human cardiovascular tissues intended for transplantation and risk of falsely negative microbiological analyses.

    PubMed

    Buzzi, Marina; Guarino, Anna; Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato

    2014-01-01

    We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives.

  7. Residual Antibiotics in Decontaminated Human Cardiovascular Tissues Intended for Transplantation and Risk of Falsely Negative Microbiological Analyses

    PubMed Central

    Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato

    2014-01-01

    We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives. PMID:25397402

  8. Combined effects of prenatal medication use and delivery type are associated with eczema at age 2 years.

    PubMed

    Wegienka, G; Havstad, S; Zoratti, E M; Kim, H; Ownby, D R; Johnson, C C

    2015-03-01

    Separately, prenatal antibiotics and Caesarian delivery have been found to be associated with increased risk of allergic diseases. It is not clear whether these factors may modify the effect of each other. To assess whether the associations between delivery types and eczema, sensitization and total IgE at age 2 years were modified by maternal use of prenatal medications. Prenatal charts of women enrolled in the WHEALS birth cohort were reviewed for delivery mode and medications prescribed and administered throughout their entire pregnancy, including systemic antibiotics and vaginally applied antifungal medications. The associations between the delivery mode and select medications and, eczema, sensitization (≥ 1 of 10 allergen-specific IgE ≥ 0.35 IU/mL) and total IgE at age 2 years were assessed. There was a lower risk of eczema among vaginally vs. c-section born children (relative risk adjusted for race = aRR = 0.77, 95% CI 0.56, 1.05). Although not statistically significantly different, this association was stronger among the subset of children born vaginally to a mother who did not use systemic antibiotics or vaginal antifungal medications (aRR = 0.69, 95% CI 0.44, 1.08) compared to those born vaginally to mothers who used systemic antibiotics or vaginal antifungals (aRR = 0.81, 95% CI 0.57, 1.14). A protective association between vaginal birth and sensitization (aRR = 0.86, 95% CI 0.72, 1.03) was similar for those children born vaginally to a mother who did not (aRR = 0.87, 95% CI 0.69, 1.10) and who did (RR = 0.85, 95% CI 0.70, 1.04) use systemic antibiotics or vaginal antifungal medications. There were no associations with total IgE. Children born vaginally had lower risk of eczema and sensitization compared with those born via c-section; however, the protective association with eczema may be slightly weakened when mothers took systemic antibiotics or vaginally applied medications during pregnancy. © 2014 John Wiley & Sons Ltd.

  9. Dynamics of serotype 14 Streptococcus pneumoniae population causing acute respiratory infections among children in China (1997-2012).

    PubMed

    He, Mingming; Yao, Kaihu; Shi, Wei; Gao, Wei; Yuan, Lin; Yu, Sangjie; Yang, Yonghong

    2015-07-11

    In the last decade, the Streptococcus pneumoniae population has changed, mainly due to the abuse of antibiotics. The aim of this study was to determine the genetic structure of 144 S. pneumonia serotype 14 isolates collected from children with acute respiratory infections during 1997-2012 in China. All isolated pneumococci were tested for their sensitivity to 11 kinds of antibiotics with the E-test method or disc diffusion. The macrolides resistance genes ermB and mefA, as well as the sulfamethoxazole-trimethoprim resistance gene dihydrofolate reductase (DHFR) were detected by polymerase chain reaction (PCR). The sequence types (STs) were analyzed with multilocus sequence typing (MLST). From 1997 to 2012, the percentage of serotype 14 S. pneumonia isolates in the whole isolates increased. All of the 144 serotype 14 S. pneumonia isolates were susceptible to amoxicillin-clavulanic acid, vancomycin and levofloxacin. No penicillin resistant isolate was found, and the intermediate rate was as low as 0.7 %. Erythromycin resistance was confirmed among 143 isolates. The ermB gene was determined in all erythromycin resistant isolates, and the mefA gene was positive additionally in 13 of them. The non-susceptibility rate to the tested cephalosporins increased from 1997-2012. All trimethoprim-resistant isolates contained the Ile100-Leu mutation. Overall, 30 STs were identified, among which ST876 was the most prevalent, followed by ST875. During the study period, the percentage of CC876 increased from 0 % in 1997-2000 to 96.4 % in 2010-2012, whereas CC875 decreased from 84.2 to 0 %. CC876 showed higher non-susceptibility rates to β-lactam antibiotics than CC875. The percentage of serotype 14 S. pneumonia isolates increased over time in China. The increase of resistance to β-lactam antibiotics in this serotype isolates was associated with the spread of CC876.

  10. Disagreement between the results from three commercial tests for the detection of Borrelia-specific serum antibodies in the Netherlands associated with antibiotic treatment for Lyme borreliosis: a retrospective study.

    PubMed

    van Gorkom, T; Kremer, K; Voet, W; Notermans, D W; Vlaminckx, B J M; Sankatsing, S U C; Thijsen, S F T

    2017-11-01

    The diagnosis of Lyme borreliosis is challenging because of the often non-specific symptoms and persisting antibodies after infection. We investigated the diagnostic characteristics of two enzyme-linked immunosorbent assays (ELISAs) and an immunoblot for the detection of Borrelia-specific serum antibodies using different test strategies in individuals with and without antibiotic treatment for Lyme borreliosis. This retrospective study included healthy individuals, patients with active Lyme neuroborreliosis and patients treated for Lyme neuroborreliosis. Two ELISAs were compared: the C6 ELISA and the SERION ELISA. Equivocal and positive results were confirmed by immunoblot. We included 174 healthy individuals, of whom 27 (15.5%) were treated for Lyme borreliosis in the past, 36 patients were treated for Lyme neuroborreliosis and 27 patients had active Lyme neuroborreliosis. All the active Lyme neuroborreliosis patients were reactive in both ELISAs (100% sensitivity); less reactivity was seen in the other three groups (range 17.7% to 69.4%). The concordance between the ELISA results was high in active Lyme neuroborreliosis patients (26/27; 96.3%) and healthy individuals (131/147; 89.1%), but lower in treated healthy individuals (18/27; 66.7%) and treated Lyme neuroborreliosis patients (18/36; 50.0%) (p ≤ 0.005). This study showed that antibiotic treatment against Lyme borreliosis was strongly associated with discordant ELISA and test strategy results (odds ratio: 10.52; p < 0.001 and 9.98; p = 0.014, respectively) suggesting antibiotic treatment influences the pace at which the various antibodies directed to the different antigens used in both ELISAs wane. Among treated neuroborreliosis patients, the SERION ELISA stayed positive for a longer period after infection compared to the C6 ELISA. This should be taken into consideration when requesting and/or interpreting Lyme serology.

  11. Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review

    PubMed Central

    Keskar, Mrudul R; Jugade, Ravin M

    2015-01-01

    Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics. PMID:26609215

  12. Contribution of urinary tract infection to the burden of febrile illnesses in young children in rural Kenya

    PubMed Central

    O’Meara, Wendy Prudhomme; Holland, Thomas L.; Armstrong, Janice

    2017-01-01

    Introduction The clinical features of UTI in young children may not localize to the urinary tract and closely resemble other febrile illnesses. In malaria endemic areas, a child presenting with fever is often treated presumptively for malaria without investigation for UTI. Delayed or inadequate treatment of UTI increases the risk of bacteremia and renal scarring in young children and subsequently complications as hypertension and end stage renal disease in adulthood. Methods A cross-sectional study was carried out in a hospital in western Kenya. Inpatients and outpatients 2 months to five years with axillary temperature ≥37.5°C and no antibiotic use in the previous week were enrolled between September 2012 and April 2013. Urine dipstick tests, microscopy, and cultures were done and susceptibility patterns to commonly prescribed antibiotics established. UTI was defined as presence of pyuria (a positive urine dipstick or microscopy test) plus a positive urine culture. Results A total of 260 subjects were recruited; 45.8% were female and the median age was 25months (IQR: 13, 43.5). The overall prevalence of UTI was 11.9%. Inpatients had a higher prevalence compared to outpatients (17.9% v 7.8%, p = 0.027). UTI co-existed with malaria but the association was not significant (OR 0.80, p = 0.570). The most common organisms isolated were Escherichia coli (64.5%) and Staphylococcus aureus (12.9%) and were sensitive to ciproflaxin, cefuroxime, ceftriaxone, gentamycin and nitrofurantoin but largely resistant to more commonly used antibiotics such as ampicillin (0%), amoxicillin (16.7%), cotrimoxazole (16.7%) and amoxicillin-clavulinate (25%). Conclusion Our study demonstrates UTI contributes significantly to the burden of febrile illness in young children and often co-exists with other infections. Multi-drug resistant organisms are common therefore choice of antimicrobial therapy should be based on local sensitivity pattern. PMID:28323886

  13. Contribution of urinary tract infection to the burden of febrile illnesses in young children in rural Kenya.

    PubMed

    Masika, Wechuli Geoffrey; O'Meara, Wendy Prudhomme; Holland, Thomas L; Armstrong, Janice

    2017-01-01

    The clinical features of UTI in young children may not localize to the urinary tract and closely resemble other febrile illnesses. In malaria endemic areas, a child presenting with fever is often treated presumptively for malaria without investigation for UTI. Delayed or inadequate treatment of UTI increases the risk of bacteremia and renal scarring in young children and subsequently complications as hypertension and end stage renal disease in adulthood. A cross-sectional study was carried out in a hospital in western Kenya. Inpatients and outpatients 2 months to five years with axillary temperature ≥37.5°C and no antibiotic use in the previous week were enrolled between September 2012 and April 2013. Urine dipstick tests, microscopy, and cultures were done and susceptibility patterns to commonly prescribed antibiotics established. UTI was defined as presence of pyuria (a positive urine dipstick or microscopy test) plus a positive urine culture. A total of 260 subjects were recruited; 45.8% were female and the median age was 25months (IQR: 13, 43.5). The overall prevalence of UTI was 11.9%. Inpatients had a higher prevalence compared to outpatients (17.9% v 7.8%, p = 0.027). UTI co-existed with malaria but the association was not significant (OR 0.80, p = 0.570). The most common organisms isolated were Escherichia coli (64.5%) and Staphylococcus aureus (12.9%) and were sensitive to ciproflaxin, cefuroxime, ceftriaxone, gentamycin and nitrofurantoin but largely resistant to more commonly used antibiotics such as ampicillin (0%), amoxicillin (16.7%), cotrimoxazole (16.7%) and amoxicillin-clavulinate (25%). Our study demonstrates UTI contributes significantly to the burden of febrile illness in young children and often co-exists with other infections. Multi-drug resistant organisms are common therefore choice of antimicrobial therapy should be based on local sensitivity pattern.

  14. Bacterial isolates and their antimicrobial susceptibility patterns among pediatric patients with urinary tract infections.

    PubMed

    Ayelign, Birhanu; Abebe, Betelehem; Shibeshi, Adugna; Meshesha, Sosina; Shibabaw, Tewodros; Addis, Zelalem; Gelaw, Aschalew; Dagnew, Mulat

    2018-01-01

    Urinary tract infection is a common pediatric problem with the potential to produce long-term morbidity. Therefore, appropriate diagnosis and prompt treatment is required. However, studies about magnitude of uropathogenicity and antimicrobial resistance pattern of pediatric urinary tract infection (UTI) are lacking in resource limited countries including Ethiopia. This study was aimed to determine bacterial isolates, antimicrobial susceptibility pattern among pediatric patients with UTI. A cross- sectional study was conducted. Pathogenic bacterial isolates were identified by culture and biochemical methods following standard procedures. Antimicrobial susceptibility testing of the isolates for commonly used antibiotics was done using the standard disc diffusion method on Muller Hinton agar. Associations between dependent and independent variables were measured using chi-square test and within 95% confidence interval. P values <0.05 were considered as statistically significant. A total of 310 pediatric patients were included in the study, and 82 (26.45%) bacterial isolates were detected. Gram- negative bacteria were predominant etiologic agents of UTI in this study. E. coli was the most frequently occurring pathogen (n=45; 54.88%) followed by S. aureus and P.aeruginosa (n=8; 9.75% for both), P. vulgaris , P.aeruginosa (n=4; 4.88%, for both) and Enterococcus species (n=3; 3.66%). All K. pneumoniae , P. mirabilis , and K. ozanae straines were 100% resistance to ampicillin, followed by P. aeruginosa (87.5%) and E. coli (69%). While all Gram- positive bacterial isolates were 100% sensitive to ciprofloxacin. Malnutrition, history of catherization and previous history of UTI were independently associated with UTI (p=0.000). There was a high prevalence of uropathogenic bacteria and drug resistance particularly to ampicillin (72%) and tetracycline (37.80%). This condition indicates that antibiotic selection should be based on knowledge of the local prevalence of bacterial organisms and antibiotic sensitivities rather than empirical treatment.

  15. Evaluation of microbiological, cellular and risk factors associated with subclinical mastitis in female buffaloes

    PubMed Central

    de Oliveira Moura, Emmanuella; do Nascimento Rangel, Adriano Henrique; de Melo, Maria Celeste Nunes; Borba, Luiz Henrique Fernandes; de Lima Júnior, Dorgival Morais; Novaes, Luciano Patto; Urbano, Stela Antas; de Andrade Neto, Júlio César

    2017-01-01

    Objective This study aimed to evaluate the microbiological and cellular milk profile for the diagnosis of subclinical mastitis in female buffaloes and to assess risk factors for predisposition of the disease. Methods Analyses were carried out by standard plate count (SPC), identification of species and antibiotic resistance, somatic cell count (SCC), electrical electrical conductivity of milk (ECM), and lactoferrin content in milk. Teat cups were swabbed to evaluate risk factors, observing hyperkeratosis, milking vacuum pressure and cleanliness of the site. Hence, 30 female buffaloes were randomly selected (15 from a group in early lactation and 15 in late lactation). Results The most common bacteria in the microbiological examination were Staphylococcus spp., Streptococcus spp. and Corynebacterium sp. In the antibiotic sensitivity test, 10 (58.82%) of the 17 antibiotics tested were sensitive to all isolates, and resistant bacteria were Streptococcus uberis, Streptococcus dysgalactiae, Streptococcus haemolyticus, and Escherichia coli. It was observed that positive samples in the microbiological examination showed total bacterial count between 9.10×103 to 6.94×106 colony forming units/mL, SCC between 42,000 to 4,320,000 cells/mL and ECM ranging from 1.85 to 7.40 mS/cm. It was also found that the teat cups had high microbial counts indicating poor hygiene, and even faults in the cleanliness of the animals’ waiting room were observed. It is concluded that values of SCC above 537,000 cells/mL and ECM above 3.0 mS/mL are indications of mammary gland infection for this herd; however, the association of these values with a microbiological analysis is necessary to more accurately evaluate the health status of mammary glands with subclinical mastitis. Conclusion Through phenotypic characterization of bacteria involved in the samples, the genera Staphylococcus spp., Streptococcus spp., and Corynebacterimum bovis were the most prevalent in this study. Faults in environment and equipment hygienization are factors that are directly associated with mastitis. PMID:28183165

  16. Antibiotic Utilization and the Role of Suspected and Diagnosed Mosquito-borne Illness Among Adults and Children With Acute Febrile Illness in Pune, India.

    PubMed

    Robinson, Matthew L; Kadam, Dileep; Kagal, Anju; Khadse, Sandhya; Kinikar, Aarti; Valvi, Chhaya; Basavaraj, Anita; Bharadwaj, Renu; Marbaniang, Ivan; Kanade, Savita; Raichur, Priyanka; Sachs, Jonathan; Klein, Eili; Cosgrove, Sara; Gupta, Amita; Mave, Vidya

    2018-05-02

    Antibiotic resistance mechanisms originating in low- and middle- income countries are among the most common worldwide. Reducing unnecessary antibiotic use in India, the world's largest antibiotic consumer, is crucial to control antimicrobial resistance globally. Limited data describing factors influencing Indian clinicians to start or stop antibiotics are available. Febrile adults and children admitted to a public tertiary care hospital in Pune, India, were enrolled. Antibiotic usage and clinical history were recorded. Immunoassays for mosquito-borne disease and bacterial cultures were performed by protocol and clinician-directed testing. Clinical factors were assessed for association with empiric antibiotic initiation and discontinuation by day 5 using multivariable logistic regression and propensity score-matched Cox proportional hazard models. Among 1486 participants, 683 (82%) adults and 614 (94%) children received empiric antibiotics. Participants suspected of having mosquito-borne disease were less likely to receive empiric antibiotics (adjusted odds ratio [AOR], 0.5; 95% confidence interval [CI], .4-.8). Empiric antibiotics were discontinued in 450 (35%) participants by day 5. Dengue or malaria testing performed before day 4 was positive in 162 (12%) participants, and was associated with antibiotic discontinuation (AOR, 1.7; 95% CI, 1.2-2.4). In a propensity score-matched model accounting for admission suspicion of mosquito-borne disease, positive dengue or malaria tests increased hazard of antibiotic discontinuation (hazard ratio, 1.6; 95% CI, 1.2-2.0). Most patients with acute febrile illness in an Indian public hospital setting receive empiric antibiotics. Mosquito-borne disease identification is associated with reduced empiric antibiotic use and faster antibiotic discontinuation.

  17. MRSA Incidence and Antibiotic Trends in Urban Hand Infections: A 10-Year Longitudinal Study.

    PubMed

    Kistler, Justin M; Thoder, Joseph J; Ilyas, Asif M

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most reported pathogen in hand infections at urban medical centers throughout the country. Antibiotic sensitivity trends are not well known. The purposes of this study were to examine and determine the drug resistance trends for MRSA infections of the hand and to provide recommendations for empiric antibiotic treatment based on sensitivity profiles. A 10-year longitudinal, retrospective chart review was performed on all culture-positive hand infections encountered at a single urban medical center from 2005 to 2014. The proportions of all organisms were calculated for each year and collectively. MRSA infections were additionally subanalyzed for antibiotic sensitivity. A total of 815 culture-positive hand infections were identified. Overall, MRSA grew on culture in 46% of cases. A trend toward decreasing annual MRSA incidence was noted over the 10-year study period. There was a steady increase in polymicrobial infections during the same time. Resistance to clindamycin increased steadily during the 10-year study, starting at 4% in 2008 but growing to 31% by 2014. Similarly, levofloxacin resistance consistently increased throughout the study, reaching its peak at 56% in 2014. The annual incidence of MRSA in hand infections has declined overall but remains the most common pathogen. There has been an alternative increase in the number of polymicrobial infections. MRSA resistance to clindamycin and levofloxacin consistently increased during the study period. Empiric antibiotic therapy for hand infections should not only avoid penicillin and other beta-lactams but should also consider avoiding clindamycin and levofloxacin for empiric treatment.

  18. Invasive bacterial infections in a pediatric oncology unit in a tertiary care center.

    PubMed

    Trehan, A; Totadri, S; Gautam, V; Bansal, D; Ray, P

    2014-01-01

    Multidrug resistant (MDR) pathogens are becoming a major problem worldwide, more so in the immunocompromised hosts resulting in the urgent need of antibiotic stewardship. To analyze the organisms isolated and the drug resistance pattern in a pediatric oncology unit. Data pertaining to infections with 128 positive cultures in patients with febrile neutropenia over a period of 1-year are presented. The unit antibiotic policy is decided depending on the sensitivity of the prevailing common organisms. We isolated Gram-negative organisms in 56% cases. Escherichia coli and Klebseilla were the most frequent lactose fermenting Gram-negative Bacilli and Pseudomonas and Acinetobacter the nonfermenting Gram-negative Bacilli. Only 20-30% of the Gram-negative organisms cultured were sensitive to a 3rd/4th generation cephalosporin. The combination of a beta-lactam/inhibitor covered 2/3rd of Gram-negative organisms. About 80% of the organisms were sensitive to carbapenems. There was no colistin resistance. About 44% of our cultures grew a Gram-positive bacterial organism and included coagulase negative Staphylococcus. We had an incidence of methicillin resistant Staphylococcus aureus to be 30%. About 30% of the enterococci isolated in our unit were vancomycin-resistant enterococci. About 23% of patients with a positive bacterial culture died. Infections in pediatric cancer patient's account for about 15-20% of the deaths in developing countries as these patients are at a high risk for developing MDR infections. Resistance rates among Gram-positive and Gram-negative organisms have increased worldwide. Every unit needs a rational antibiotic policy. Antibiotic de-escalation and judicious decrease in the duration of antibiotics needs to be practiced.

  19. Antibiotic resistance and polymorphism in the quinolone resistance-determining region of Campylobacter spp. isolated from 1-day-old ducklings.

    PubMed

    Hamed, Engy A; AbdelRahman, Mona A A; Shalaby, Azhar G; Morsy, Mai M; Nasef, Soad A

    2016-05-01

    Thirty-three isolates of Campylobacter coli and three isolates of Campylobacter jejuni were recovered from 150 1-day-old ducklings. All isolates were sensitive to chloramphenicol and amikacin, but resistant to sulfamethoxazole-trimethoprim (SXT) by the disc diffusion method. Most isolates were susceptible to tetracycline and erythromycin, but resistant to ofloxacin and ciprofloxacin. Of the 33 C. coli isolates, nine were positive for the tetracycline resistance gene tet(O), although only two of these were resistant to tetracycline in the disc diffusion test. None of the isolates possessed mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene infrequently linked to FQ-resistance. The finding indicated that ducklings may be a source of antibiotic resistant Campylobacter spp. with potential poultry and public health hazard. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products.

    PubMed

    Landeta, G; Curiel, J A; Carrascosa, A V; Muñoz, R; de las Rivas, B

    2013-03-01

    Technological and safety-related properties were analyzed in a coagulase-negative staphylococci (CNS) collection isolated from Spanish dry-cured meat products in order to use them as starter cultures. The highest nitrate reductase and proteolytic activity was showed by Staphylococcus carnosus and Staphylococcus equorum. Only a few strains were able to form biofilms and the presence of the ica gene was analyzed on them. In relation to antibiotic resistance, all S. carnosus and most of the S. equorum strains were sensitive to the antibiotics tested and the presence of the blaZ gene in the β-lactamic resistant strains was studied. Biogenic amines were produced by 25% of the strains analyzed being all the S. carnosus strains tyramine producers. Taking into account the studied properties, two S. equorum strains could be selected as adequate and safe potential starter cultures for the elaboration of meat products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs

    PubMed Central

    Jardine, Jocelyn Leonie; Mavumengwana, Vuyo

    2017-01-01

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment. PMID:28914802

  2. Revision of Infected Total Knee Arthroplasty: Two-Stage Reimplantation Using an Antibiotic-Impregnated Static Spacer

    PubMed Central

    Almeida, Fernando; Renovell, Pablo; Morante, Elena; López, Raúl

    2013-01-01

    Background A two-stage revision remains as the "gold standard" treatment for chronically infected total knee arthroplasties. Methods Forty-five septic knee prostheses were revised with a minimum follow-up of 5 years. Static antibiotic-impregnated cement spacers were used in all cases. Intravenous antibiotics according to sensitivity test of the culture were applied during patients' hospital stay. Oral antibiotics were given for another 5 weeks. Second-stage surgery was undertaken after control of infection with normal erythrocyte sedimentation rate and C-reactive protein values. Extensile techniques were used if needed and metallic augments were employed for bone loss in 32 femoral and 29 tibial revisions. Results The average interval between the first-stage resection and reimplantation was 4.4 months. Significant improvement was obtained with respect to visual analog scale pain and clinical and functional scores, and infection was eradicated in 95.6% of cases following a two-stage revision total knee arthroplasty. Radiographic evaluation showed suitable alignment without signs of mechanical loosening. Conclusions This technique is a reasonable procedure to eradicate chronic infection in knee arthroplasty and provides proper functional and clinical results. However, it sometimes requires extensile surgical approaches that could imply arduous surgeries. Metallic augments with cementless stems available in most of the knee revision systems are a suitable alternative to handle bone deficiencies, avoiding the use of bone allografts with its complications. PMID:24009903

  3. Epigallocatechin gallate as a modulator of Campylobacter resistance to macrolide antibiotics.

    PubMed

    Kurinčič, Marija; Klančnik, Anja; Smole Možina, Sonja

    2012-11-01

    Comprehensive therapeutic use of macrolides in humans and animals is important in the selection of macrolide-resistant Campylobacter isolates. This study shows high co-resistance to erythromycin, azithromycin, clarithromycin, dirithromycin and tylosin, with contributions from the 23S rRNA gene and drug efflux systems. The CmeABC efflux pump plays an important role in reduced macrolide susceptibility, accompanied by contributions from the CmeDEF efflux pump and potentially a third efflux pump. To improve clinical performance of licensed antibiotics and chemotherapeutic agents, it is important to understand the factors in Campylobacter that affect susceptibility to macrolide antibiotics. Using mutants that lack the functional genes coding for the CmeB and CmeF efflux pump proteins and the CmeR transcriptional repressor, we show that these efflux pumps are potential targets for the development of therapeutic strategies that use a combination of a macrolide with an efflux pump inhibitor (EPI) to restore macrolide efficacy. The natural phenolic compound epigallocatechin gallate (EGCG) has good modulatory activity over the extrusion across the outer membrane of the macrolides tested, both in sensitive and resistant Campylobacter isolates. Comparing EGCG with known chemical EPIs, correlations in the effects on the particular macrolide antibiotics were seen. EGCG modifies Campylobacter multidrug efflux systems and thus could have an impact on restoring macrolide efficacy in resistant strains. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. A Rapid Phenotypic Whole Cell Screening Approach for the Identification of Small Molecule Inhibitors that Counter Beta-lactamase Resistance in Pseudomonas aeruginosa

    PubMed Central

    Collia, Deanna; Bannister, Thomas D.; Tan, Hao; Jin, Shouguang; Langaee, Taimour; Shumate, Justin; Scampavia, Louis; Spicer, Timothy P.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen which is prevalent in hospitals and continues to develop resistance to multiple classes of antibiotics. Historically, β-lactam antibiotics have been the first line of therapeutic defense. However, the emergence of multidrug-resistant (MDR) strains of P. aeruginosa, such as AmpC β-lactamase overproducing mutants, limits the effectiveness of current antibiotics. Among AmpC hyper producing clinical isolates, inactivation of AmpG, which is essential for the expression of AmpC, increases bacterial sensitivity to β-lactam antibiotics. We hypothesize that inhibition of AmpG activity will enhance the efficacy of β-lactams against P. aeruginosa. Here, using a highly drug resistant AmpC inducible laboratory strain PAO1, we describe an ultra-high throughput whole cell turbidity assay designed to identify small molecule inhibitors of the AmpG. We screened 645K compounds to identify compounds with the ability to inhibit bacterial growth in the presence of Cefoxitin; an AmpC inducer, and identified 2,663 inhibitors which were also tested in the absence of Cefoxitin to determine AmpG specificity. The Z′ and S:B were robust at 0.87 ± 0.05 and 2.2 ± 0.2, respectively. Through a series of secondary and tertiary studies, including a novel luciferase based counterscreen, we ultimately identified 8 potential AmpG specific inhibitors. PMID:28850797

  5. Revision of infected total knee arthroplasty: two-stage reimplantation using an antibiotic-impregnated static spacer.

    PubMed

    Silvestre, Antonio; Almeida, Fernando; Renovell, Pablo; Morante, Elena; López, Raúl

    2013-09-01

    A two-stage revision remains as the "gold standard" treatment for chronically infected total knee arthroplasties. Forty-five septic knee prostheses were revised with a minimum follow-up of 5 years. Static antibiotic-impregnated cement spacers were used in all cases. Intravenous antibiotics according to sensitivity test of the culture were applied during patients' hospital stay. Oral antibiotics were given for another 5 weeks. Second-stage surgery was undertaken after control of infection with normal erythrocyte sedimentation rate and C-reactive protein values. Extensile techniques were used if needed and metallic augments were employed for bone loss in 32 femoral and 29 tibial revisions. The average interval between the first-stage resection and reimplantation was 4.4 months. Significant improvement was obtained with respect to visual analog scale pain and clinical and functional scores, and infection was eradicated in 95.6% of cases following a two-stage revision total knee arthroplasty. Radiographic evaluation showed suitable alignment without signs of mechanical loosening. This technique is a reasonable procedure to eradicate chronic infection in knee arthroplasty and provides proper functional and clinical results. However, it sometimes requires extensile surgical approaches that could imply arduous surgeries. Metallic augments with cementless stems available in most of the knee revision systems are a suitable alternative to handle bone deficiencies, avoiding the use of bone allografts with its complications.

  6. A Rapid Phenotypic Whole-Cell Screening Approach for the Identification of Small-Molecule Inhibitors That Counter β-Lactamase Resistance in Pseudomonas aeruginosa.

    PubMed

    Collia, Deanna; Bannister, Thomas D; Tan, Hao; Jin, Shouguang; Langaee, Taimour; Shumate, Justin; Scampavia, Louis; Spicer, Timothy P

    2018-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is prevalent in hospitals and continues to develop resistance to multiple classes of antibiotics. Historically, β-lactam antibiotics have been the first line of therapeutic defense. However, the emergence of multidrug-resistant (MDR) strains of P. aeruginosa, such as AmpC β-lactamase overproducing mutants, limits the effectiveness of current antibiotics. Among AmpC hyperproducing clinical isolates, inactivation of AmpG, which is essential for the expression of AmpC, increases bacterial sensitivity to β-lactam antibiotics. We hypothesize that inhibition of AmpG activity will enhance the efficacy of β-lactams against P. aeruginosa. Here, using a highly drug-resistant AmpC-inducible laboratory strain PAO1, we describe an ultra-high-throughput whole-cell turbidity assay designed to identify small-molecule inhibitors of the AmpG. We screened 645,000 compounds to identify compounds with the ability to inhibit bacterial growth in the presence of cefoxitin, an AmpC inducer, and identified 2663 inhibitors that were also tested in the absence of cefoxitin to determine AmpG specificity. The Z' and signal-to-background ratio were robust at 0.87 ± 0.05 and 2.2 ± 0.2, respectively. Through a series of secondary and tertiary studies, including a novel luciferase-based counterscreen, we ultimately identified eight potential AmpG-specific inhibitors.

  7. Cooperativity between antibiotics and antiseptics: testing the bactericidal effect.

    PubMed

    Jenull, S; Laggner, H; Hassl, I; Velimirov, B; Huettinger, M; Zemann, N

    2017-12-02

    Treatment with antibiotics together with local application of antiseptics is common in wound care. We investigated the effectiveness of an antiseptic in two variations: octenidine (Oct) and octenidine+ (Oct+ with isotonic glucose addition). Using the agar diffusion test with cultures of pathogenic Staphylococcus aureus and the non-pathogenic Bordetella petrii, we compared the effectiveness of octenidine to the classical antiseptics beta-isodona (povidone-iodine; PI), chlorhexidine (Chl) and taurolin (Tau) alone, and in combination with various common antibiotics to uncover cooperativity between antiseptics and antibiotics. We detected strong interactions between antibiotics and antiseptics, that either enhanced or reduced the bactericidal efficiency. Effectiveness was dependent on the type of organism tested. Oct applied together with ineffective antibiotics frequently led to effective growth inhibition of Bordetella petrii. With Staphylococcus aureus we did not find such an effect. To this end, we reason that positively charged Oct may associate with antibiotic compounds via electrostatic interactions and guide it more efficiently to the bacterial cell wall. Interaction with antibiotics sometimes led to sequestration and reduced availability of some antiseptic/antibiotic combinations, but never with Oct. These data provide new arguments for decision planning concerning the choice of agent in the treatment of wound infections.

  8. Biochemical characters and antibiotic susceptibility of Staphylococcus aureus isolates.

    PubMed

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Roy, Somenath

    2011-06-01

    To observe the biochemical characters and antibiotic susceptibility of isolated Staphylococcus aureus (S. auerus) strains against some conventional and traditional antibiotics. Thirty post operative pathogenic isolated S. aureus strains were used in this study. Bacterial culture was done in Mueller-Hinton broth at 37 °C. Characters of these strains were determined by traditional biochemical tests such as hydrolysis test of gelatin, urea, galactose, starch and protein, and fermentation of lactose and sucrose. Antibiotic susceptibility were carried out by minimum inhibitory concentration test, minium bactericidal concentration test, disc agar diffusion test and brain heart infusion oxacillin screening agar. From this study, it was observed that 100% S. aureus isolates showed positive results in gelatin, urea and galactose hydrolysis test, 50% isolates were positive in starch hydrolysis test, 35% in protein hydrolysis test, 100% isolates in lactose fermenting test, but no isolate was positive in sucrose fermenting test. Antibiotic susceptibility testing suggested that 20% of isolates were resistant to kanamycin and 46.67% were resistant to oxacillin. These findings show that all these isolates have gelatin, urea, galactose hydrolysis and lactose fermenting activity. 20% of these isolates were resistant to kanamycin and 46.67% were resistant to oxacillin.

  9. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance.

    PubMed

    Filippova, Ekaterina V; Kieser, Karen J; Luan, Chi-Hao; Wawrzak, Zdzislaw; Kiryukhina, Olga; Rubin, Eric J; Anderson, Wayne F

    2016-06-01

    Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  10. Strategies to Prevent, Treat, and Provoke Corynebacterium-Associated Hyperkeratosis in Athymic Nude Mice

    PubMed Central

    Burr, Holly N; Lipman, Neil S; White, Julie R; Zheng, Junting; Wolf, Felix R

    2011-01-01

    Athymic nude mice infected with Corynebacterium bovis typically exhibit transient hyperkeratotic dermatitis. Our vivarium experienced an increased incidence of disease characterized by persistent skin lesions and increased mortality, leading to this study. For detection of infection, skin and buccal swab methods showed comparable sensitivities in nude mice. Various prevention, treatment, and eradication strategies were evaluated through clinical assessment, microbiology, and histopathology. In experimentally naïve athymic nude mice, a 2-wk course of prophylactic amoxicillin-containing diet (1200 ppm amoxicillin; effective dose, 200 mg/kg) was ineffective at preventing infection or disease. There was also no significant difference in disease duration or severity in athymic nude mice that received amoxicillin diet or penicillin–streptomycin topical spray (penicillin, 2500 U/mL; streptomycin, 2500 µg/mL). Prolonged treatment with 4 or 8 wk of amoxicillin diet cleared only a small number of athymic nude mice that had subclinical C. bovis infections. Antibiotic sensitivity of C. bovis isolates demonstrated a small colony isolate with less susceptibility to all antibiotics compared with a large colony isolate. Resistance did not appear to develop after prolonged treatment with amoxicillin. Provocation testing by administration of cyclophosphamide (50 mg/kg IP every 48 to 72 h for 90 d) to subclinically infected athymic nude mice resulted in prolonged clinical disease that waxed and waned without progression to severe disease. Our findings suggest that antibiotic prophylaxis and treatment of clinical disease in experimentally naïve mice is unrewarding, eradication of bacterial infection is difficult, and severe disease associated with C. bovis is likely multifactorial. PMID:21640035

  11. Prevalence and Characterization of Oxacillin Susceptible mecA-Positive Clinical Isolates of Staphylococcus aureus Causing Bovine Mastitis in India.

    PubMed

    Mistry, Hiral; Sharma, Paresh; Mahato, Sudipta; Saravanan, R; Kumar, P Anand; Bhandari, Vasundhra

    2016-01-01

    Bovine mastitis caused by multidrug resistant Staphylococcus aureus is a huge problem reported worldwide, resulting in prolonged antibiotic treatment and death of livestock. The current study is focused on surveillance of antibiotic susceptibility along with genotypic and phenotypic characterization of the pathogenic S. aureus strains causing mastitis in India. One hundred and sixty seven milk samples were collected from mastitis-affected cows from different farms in India resulting in thirty nine isolated S. aureus strains. Antibiotic sensitivity profiling revealed the majority of the strains (n = 24) to be multidrug resistant and eleven strains showed reduced susceptibility to vancomycin (MICs = 2μg/ml). All strains were oxacillin sensitive, but 19 strains were positive for the mecA gene, which revealed the occurrence of oxacillin susceptible mecA positive strains (OS-MRSA) for the first time from India. Additionally, 32 strains were positive for the pvl gene, a virulence determinant; of these 17 were also OS-MRSA strains. Molecular characterization based on multilocus sequence typing (MLST), spa typing, agr typing and SCCmec classification revealed strains belonging to different groups. Moreover, strains showed spa types (t2526, t9602) and MLST sequence types, ST-72, ST-88 and ST-239 which have been earlier reported in human infections. The prevalence of OS-MRSA strains indicates the importance of including both the genetic and phenotypic tests in characterizing S. aureus strains. Increased genotypic variability with strain related to human infections and pvl positive isolates indicates a worrisome situation with the possibility of bilateral transfer.

  12. Sonographic Differentiation of Complicated From Uncomplicated Appendicitis: Implications for Antibiotics-First Therapy.

    PubMed

    Xu, Yingding; Jeffrey, R Brooke; Chang, Stephanie T; DiMaio, Michael A; Olcott, Eric W

    2017-02-01

    To evaluate sonographic findings as indicators of complicated versus uncomplicated appendicitis in the setting of known appendicitis, a necessary distinction in deciding whether to proceed with antibiotic therapy or with appendectomy. With Institutional Review Board approval and Health Insurance Portability and Accountability Act compliance, appendiceal sonograms of 119 patients with histopathologically proven appendicitis were retrospectively blindly reviewed to determine the presence or absence of the normally echogenic submucosal layer, the presence of mural hyperemia, periappendiceal fluid, appendicoliths, and hyperechoic periappendiceal fat and to determine the maximum outside diameter. Results were compared with the presence of complicated versus uncomplicated appendicitis on histopathologic examination and assessed by both univariate and mulitvariate logistic regression; confidence intervals (CIs) of proportions were assessed by the exact binomial test. Thirty-two (26.9%) of the 119 patients had complicated appendicitis, including 11 with gangrenous appendicitis without perforation and 21 with gangrenous appendicitis and perforation. Loss of the submucosal layer was the only independent significant indicator of complicated appendicitis in multivariate regression (P < .001) and provided sensitivity and specificity values of 100.0% (95% CI, 89.1%-100.0%) and 92.0% (95% CI, 84.1%-96.7%), respectively. Loss of the normally echogenic submucosal layer was the most useful sonographic finding for discriminating complicated from uncomplicated appendicitis, being the only finding independently and significantly associated with complicated appendicitis and, additionally, providing both high sensitivity and high specificity. This information may help a physician decide whether to proceed with antibiotic therapy or with appendectomy when treating a patient with appendicitis. © 2016 by the American Institute of Ultrasound in Medicine.

  13. [L forms of Staphylococcus aureus. Behavior of coagulase, hemolytic and desoxyribonuclease activities and antibiotic sensitivity].

    PubMed

    Loschiavo, F; Giarrizzo, S

    1977-01-01

    L Forms derived from strains of coagulase positive Staphylococcus aureus, have, on the whole, preserved their DNAsic, haemolitic and coagulastic activities. L. forms showed high resistence to antibiotics acting on the bacterial cell-wall. The sensibility to other antibiotics was, roughly, analogous for the L forms as well as for the bacterial strains ones, with the exception of the clortetraciclin and the diidrostreptomicin, ehich proved to be comparatively more active on the L forms.

  14. IgE-mediated immune responses and airway detection of Aspergillus and Candida in adult cystic fibrosis.

    PubMed

    Baxter, Caroline G; Moore, Caroline B; Jones, Andrew M; Webb, A Kevin; Denning, David W

    2013-05-01

    The recovery of Aspergillus and Candida from the respiratory secretions of patients with cystic fibrosis (CF) is common. Their relationship to the development of allergic sensitization and effect on lung function has not been established. Improved techniques to detect these organisms are needed to increase knowledge of these effects. A 2-year prospective observational cohort study was performed. Fifty-five adult patients with CF had sputum monitored for Aspergillus by culture and real-time polymerase chain reaction and Candida by CHROMagar and carbon assimilation profile (API/ID 32C). Skin prick tests and ImmunoCAP IgEs to a panel of common and fungal allergens were performed. Lung function and pulmonary exacerbation rates were monitored over 2 years. Sixty-nine percent of patient sputum samples showed chronic colonization with Candida and 60% showed colonization with Aspergillus. There was no association between the recovery of either organism and the presence of specific IgE responses. There was no difference in lung function decline for patients with Aspergillus or Candida colonization compared with those without (FEV₁ percent predicted, P = .41 and P = .90, respectively; FVC % predicted, P = .87 and P = .37, respectively). However, there was a significantly greater decline in FEV1 and increase in IV antibiotic days for those sensitized to Aspergillus (FEV₁ decline, P = .03; IV antibiotics days, P = .03). Allergic sensitization is not associated with recovery of Candida or Aspergillus from the sputum of patients with CF. Aspergillus but not Candida sensitization is associated with greater lung function decline and pulmonary exacerbations.

  15. Detection of LipL32-specific IgM by ELISA in sera of patients with a clinical diagnosis of leptospirosis

    PubMed Central

    Vedhagiri, Kumaresan; Velineni, Sridhar; Timoney, John F; Shanmughapriya, Santhanam; Vijayachari, Paluru; Narayanan, Ramasamy; Natarajaseenivasan, Kalimuthusamy

    2013-01-01

    Successful treatment of leptospirosis is heavily dependent on early diagnosis and prompt initiation of antibiotic therapy. An ELISA test to detect specific IgM antibodies against LipL32 for early diagnosis of leptospirosis is described and evaluated here. One thousand one hundred and eighty sera from clinically suspected leptospirosis cases were enrolled together with 109 healthy volunteers selected from an endemic area between October 2007 and January 2010. Patients were categorized based on their clinical signs and symptoms. Sera were screened for leptospiral antibodies by the microscopic agglutination test (MAT) using a panel of locally circulating serovars followed by enzyme-linked immunosorbent assay (ELISA) based on recombinant LipL32 from Leptospira interrogans serovar Autumnalis strain N2. The sensitivity and specificity of the ELISA test were determined to establish its diagnostic efficiency. The cut-off value was determined to be 0.205. Overall sensitivity and specificity compared to the MAT were found to be 96.4 and 90.4%, respectively. The LipL32-specific IgM ELISA had good sensitivity and acceptable specificity and may be a candidate for the early serodiagnosis of human leptospirosis. PMID:23683367

  16. The choice of antibiotic in open fractures in a teaching hospital in a developing country.

    PubMed

    Alonge, T O; Salawu, S A; Adebisi, A T; Fashina, A N

    2002-06-01

    Open fracture wounds may be contaminated, and the use of an appropriate antibiotic in the early stages of management reduces the risk of osteomyelitis developing. Environmental factors influence both the type of micro-organisms that are isolated from these wounds and the antibiotics that are chosen to manage the wounds. Before this study, the choice of antibiotic in the management of open fractures in our hospital was based on tradition and 'best guess' antibiotics. In a prospective study of 52 open fractures seen in the accident and emergency unit of University College Hospital, Ibadan, between January and June 2000, the positive bacterial culture yield was more than 70%. Staphylococcus aureus was the commonest microbial isolate, accounting for 37.5% of total isolates. The antibiotic sensitivity pattern revealed high efficacies for pefloxacin, ciprofloxacin and ceftriaxone against the isolated micro-organisms. In comparative costs, these antibiotics are cheaper than the combination of the 'best guess' antibiotics that were used previously. On the strength of this finding, we have suggested a change in the antibiotic policy of the hospital with regard to the antibiotic regimen to be used to complement the surgical management of open fractures.

  17. Antibiotic Screening of Urine Culture for Internal Quality Audit at Amrita Hospital, Kochi.

    PubMed

    Suresh, Aswathy; Gopinathan, Anusha; Dinesh, Kavitha R; Kumar, Anil

    2017-07-01

    Urine antimicrobial activity is a seldom analysed laboratory test which greatly impacts the quantification of urine specimens. Presence of antimicrobial activity in the urine reduces the bacterial load in these specimens. Hence, the chances of erroneously reporting insignificant bacteriuria can be reduced on analysis of the antimicrobial activity in urine. The aim of the study was to measure the antimicrobial activity of urine samples obtained from patients in a tertiary care hospital. A total of 100 urine specimens were collected from the study group. Tests like wet mount, Gram staining and culture were performed. Antimicrobial susceptibility testing was done on the bacteria isolated from each specimen. The urine specimens were reported as significant bacteriuria (>105 Colony Forming Unit (CFU)/ml) and insignificant bacteriuria (<105 CFU/ml - clean catch midstream urine; <102 CFU/ml - catheterized urine sample) according to the CFU/ml. Staphylococcus aureus ATCC ® 25923 ™ and Escherichia coli ATCC ® 25922 ™ were used to identify the presence of antimicrobial activity in the urine sample by Urine Anti-Bacterial substance Assay (UABA). McNemar test was used for statistical analysis using Statistical Package for the Social Sciences (SPSS) version 21.0. On analysis of the antimicrobial activity of urine sample with the prior antibiotic history of the patients, 17 were true positives and 43 were true negatives. Twenty six of samples with UABA positivity were culture negative and 28 samples with UABA positivity were culture positive. Sensitivity and specificity of the test was 85% and 53.8% respectively. Accuracy of the test was 60%. The p-value of UABA was <0.001. Enterobacteriaceae was the most common bacterial family isolated from the urine specimens. A total of 85% patients responded to treatment. Presence of antimicrobial activity in urine has a great impact on the interpretation of urine culture reports. Identification of urine antimicrobial activity helps in evaluating the quantification of bacterial growth reported in urine culture. It facilitates speedy recovery of patients by early administration of antibiotics.

  18. Impact of the diagnostic process on the accuracy of source identification and time to antibiotics in septic emergency department patients.

    PubMed

    Uittenbogaard, Annemieke J M; de Deckere, Ernie R J T; Sandel, Maro H; Vis, Alice; Houser, Christine M; de Groot, Bas

    2014-06-01

    Timely administration of effective antibiotics is important in sepsis management. Source-targeted antibiotics are believed to be most effective, but source identification could cause time delays. First, to describe the accuracy/time delays of a diagnostic work-up and the association with time to antibiotics in septic emergency department (ED) patients. Second, to assess the fraction in which source-targeted antibiotics could have been administered solely on the basis of patient history and physical examination. Secondary analysis of the prospective observational study on septic ED patients was carried out. The time to test result availability was associated with time to antibiotics. The accuracy of the suspected source of infection in the ED was assessed. For patients with pneumosepsis, urosepsis, and abdominal sepsis, combinations of signs and symptoms were assessed to achieve a maximal positive predictive value for the sepsis source, identifying a subset of patients in whom source-targeted antibiotics could be administered without waiting for diagnostic test results. The time to antibiotics increased by 18 (95% confidence interval: 12-24) min/h delay in test result availability (n=323). In 38-79% of patients, antibiotics were administered after additional tests, whereas the ED diagnosis was correct in 68-85% of patients. The maximal positive predictive value of signs and symptoms was 0.87 for patients with pneumosepsis and urosepsis and 0.75 for those with abdominal sepsis. Use of signs and symptoms would have led to correct ED diagnosis in 33% of patients. Diagnostic tests are associated with delayed administration of antibiotics to septic ED patients while increasing the diagnostic accuracy to only 68-85%. In one-third of septic ED patients, the choice of antibiotics could have been accurately determined solely on the basis of patient history and physical examination.

  19. Prevalence, assessment, and antimicrobial resistance patterns of Salmonella from raw chicken eggs in Haramaya, Ethiopia.

    PubMed

    Kemal, Jelalu; Sibhat, Berhanu; Menkir, Sissay; Beyene, Desta

    2016-11-24

    The presence of antimicrobial-resistant Salmonella in poultry and poultry products, including eggs, is a global public health concern. This study aimed to estimate the levels and patterns of antimicrobial resistance of Salmonella from chicken eggs and assess consumers' raw egg consumption and farmers' handling practices. A total of 300 egg samples were collected from Haramaya open market (n = 150) and Haramaya University poultry farm (n = 150) in Ethiopia. Questionnaires were administered to egg sellers and buyers. A sterile cotton swab was used to sample the surface of eggs. The shells were sterilized and the egg content sampled. Isolation was done using the conventional methods for the detection of Salmonella, following the standard guidelines from ISO 6579. Sensitivity to 12 selected antibiotics was tested following the procedure of the Clinical and Laboratory Standards Institute. A level of 5.3% was observed among eggs shells from the open market and 0% among egg shells from the poultry farm, for an overall level of 2.7%. There was a significant difference (p = 0.004) between the prevalence of Salmonella spp. in sample site and sample type. Of the antimicrobials tested, Salmonella isolates were all resistant to erythromycin and clindamycin. Isolates were sensitive to ciprofloxacin (100%) and chloramphenicol (87.5%). All isolates were resistant to multiple antibiotics. One-third of the consumers were found to have eaten raw eggs for perceived medicinal values. To minimize the potential contamination of eggs by pathogens, the eggs should be properly handled, transported, and stored.

  20. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies.

    PubMed

    Fàbregas, N; Ewig, S; Torres, A; El-Ebiary, M; Ramirez, J; de La Bellacasa, J P; Bauer, T; Cabello, H

    1999-10-01

    A study was undertaken to assess the diagnostic value of different clinical criteria and the impact of microbiological testing on the accuracy of clinical diagnosis of suspected ventilator associated pneumonia (VAP). Twenty five deceased mechanically ventilated patients were studied prospectively. Immediately after death, multiple bilateral lung biopsy specimens (16 specimens/patient) were obtained for histological examination and quantitative lung cultures. The presence of both histological pneumonia and positive lung cultures was used as a reference test. The presence of infiltrates on the chest radiograph and two of three clinical criteria (leucocytosis, purulent secretions, fever) had a sensitivity of 69% and a specificity of 75%; the corresponding numbers for the clinical pulmonary infection score (CPIS) were 77% and 42%. Non-invasive as well as invasive sampling techniques had comparable values. The combination of all techniques achieved a sensitivity of 85% and a specificity of 50%, and these values remained virtually unchanged despite the presence of previous treatment with antibiotics. When microbiological results were added to clinical criteria, adequate diagnoses originating from microbiological results which might have corrected false positive and false negative clinical judgements (n = 5) were countered by a similar proportion of inadequate diagnoses (n = 6). Clinical criteria had reasonable diagnostic values. CPIS was not superior to conventional clinical criteria. Non-invasive and invasive sampling techniques had diagnostic values comparable to clinical criteria. An algorithm guiding antibiotic treatment exclusively by microbiological results does not increase the overall diagnostic accuracy and carries the risk of undertreatment.

Top