Science.gov

Sample records for antibiotic susceptibility profiles

  1. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains.

    PubMed

    Zhou, J S; Pillidge, C J; Gopal, P K; Gill, H S

    2005-02-01

    The antimicrobial susceptibilities and presence of plasmids in four new probiotic lactic acid bacteria (LAB) strains, Lactobacillus rhamnosus HN001 (DR20) HN067, Lactobacillus acidophilus HN017 and Bifidobacterium lactis HN019 (DR10), were determined. Resistance to 18 commonly used antibiotics was assessed by disk diffusion. The three Lactobacillus strains had similar antibiotic susceptibility profiles to those of Lactobacillus plantarum strain HN045 and two commercial probiotic Lactobacillus strains, GG and LA-1. The B. lactis strain HN019 had a similar profile to three commercial probiotic B. lactis strains (Bb12, HN049 and HN098). All 10 strains were sensitive to the Gram-positive spectrum antibiotics erythromycin and novobiocin, the broad-spectrum antibiotics rifampicin, spectinomycin, tetracycline and chloramphenicol and the beta-lactam antibiotics penicillin, ampicillin and cephalothin. By contrast, most strains were resistant to the Gram-negative spectrum antibiotics fusidic acid, nalidixic acid and polymyxin B and the aminoglycosides neomycin, gentamicin, kanamycin and streptomycin. All three L. rhamnosus strains (HN001, HN067 and GG) were resistant to vancomycin and several strains were also resistant to cloxacillin. Of the four new probiotic strains, only L. rhamnosus HN001 contained plasmids; however, a plasmid-free derivative of HN001 had the same antibiotic susceptibility profile as the parent strain.

  2. Antibiotic Susceptibility of Streptococcus mutans: Comparison of Serotype Profiles

    PubMed Central

    Little, Wayne A.; Thomson, Lynn A.; Bowen, William H.

    1979-01-01

    A total of 82 strains of Streptococcus mutans representing serotypes a through g were tested for susceptibility to erythromycin, penicillin, methicillin, lincomycin, tetracycline, vancomycin, gentamicin, streptomycin, neomycin, kanamycin, bacitracin, and polymyxin B. Strains included stock cultures and isolates from human and animal dental plaque. Minimal inhibitory concentrations were determined by a broth-microdilution procedure. The major differences in antibiotic susceptibility observed among the serotypes resulted with antibiotics which act on the cell surface. Bacitracin was most active against serotype a strains and polymyxin B against serotype b strains. Serotypes a, d, and g were less susceptible than the other serotypes to methicillin. PMID:464571

  3. Antibiotic susceptibility profile of bacilli isolated from the skin of healthy humans.

    PubMed

    Tarale, Prashant; Gawande, Sonali; Jambhulkar, Vinay

    2015-01-01

    In the present work, twelve bacilli were isolated from four different regions of human skin from Bela population of Nagpur district, India. The isolated bacilli were identified by their morphological, cultural and biochemical characteristics. Seven isolates were Gram negative rods, out of which five were belong to genus Pseudomonas. Three among the five Gram positive isolates were identified as Dermabactor and the remaining two Bacillus. Their antimicrobial susceptibility profile was determined by Kirby-Bauer disc diffusion method. The isolates showed resistance to several currently used broad-spectrum antibiotics. The Dermabactor genus was resistant to vancomycin, although it was earlier reported to be susceptible. Imipenem was found to be the most effective antibiotic for Pseudomonas while nalidixic acid, ampicillin and tetracycline were ineffective. Isolates of Bacillus displayed resistance to the extended spectrum antibiotics cephalosporin and ceftazidime. Imipenem, carbenicillin and ticarcillin were found to be the most effective antibiotics as all the investigated isolates were susceptible to them. Antibiotic resistance may be due to the overuse or misuse of antibiotics during the treatment, or following constant exposure to antibiotic-containing cosmetic formulations.

  4. Urinary Escherichia coli antimicrobial susceptibility profiles and their relationship with community antibiotic use in Tasmania, Australia.

    PubMed

    Meumann, Ella M; Mitchell, Brett G; McGregor, Alistair; McBryde, Emma; Cooley, Louise

    2015-10-01

    This study assessed urinary Escherichia coli antibiotic susceptibility patterns in Tasmania, Australia, and examined their association with community antibiotic use. The susceptibility profiles of all urinary E. coli isolates collected in Tasmania between January 2010 and December 2012 were included. The amount of Pharmaceutical Benefits Scheme (PBS)-subsidised use of amoxicillin, amoxicillin/clavulanic acid (AMC), cefalexin, norfloxacin, ciprofloxacin and trimethoprim was retrieved (at the Tasmanian population level) and the number of defined daily doses per 1000 population per day in Tasmania for these antibiotics was calculated for each month during the study period. Antimicrobial susceptibility data were assessed for changes over time in the 3-year study period. Antimicrobial use and susceptibility data were assessed for seasonal differences and lag in resistance following antibiotic use. Excluding duplicates, 28145 E. coli isolates were included. Resistance levels were low; 35% of isolates were non-susceptible to amoxicillin, 14% were non-susceptible to trimethoprim and <5% were non-susceptible to AMC, cefalexin, gentamicin and norfloxacin. Amoxicillin use increased by 35% during winter/spring compared with summer/autumn, and AMC use increased by 21%. No seasonal variation in quinolone use or resistance was detected. The low levels of antimicrobial resistance identified may relate to Tasmania's isolated geographical location. Significant seasonal variation in amoxicillin and AMC use is likely to be due to increased use of these antibiotics for treatment of respiratory tract infections in winter. Quinolone use is restricted by the PBS in Australia, which is the likely explanation for the low levels of quinolone use and resistance identified.

  5. Antibiotic susceptibility profile of Aeromonas species isolated from wastewater treatment plant.

    PubMed

    Igbinosa, Isoken H; Okoh, Anthony I

    2012-01-01

    This study assessed the prevalence of antibiotic-resistant Aeromonas species isolated from Alice and Fort Beaufort wastewater treatment plant in the Eastern Cape Province of South Africa. Antibiotic susceptibility was determined using the disc diffusion method, and polymerase chain reaction (PCR) assay was employed for the detection of antibiotics resistance genes. Variable susceptibilities were observed against ciprofloxacin, chloramphenicol, nalidixic acid, gentamicin, minocycline, among others. Aeromonas isolates from both locations were 100% resistant to penicillin, oxacillin, ampicillin, and vancomycin. Higher phenotypic resistance was observed in isolates from Fort Beaufort compared to isolates from Alice. Class A pse1 β-lactamase was detected in 20.8% of the isolates with a lower detection rate of 8.3% for bla(TEM) gene. Class 1 integron was present in 20.8% of Aeromonas isolates while class 2 integron and TetC gene were not detected in any isolate. The antibiotic resistance phenotypes observed in the isolates and the presence of β-lactamases genes detected in some isolates are of clinical and public health concern as this has consequences for antimicrobial chemotherapy of infections associated with Aeromonas species. This study further supports wastewater as potential reservoirs of antibiotic resistance determinants in the environment.

  6. Antibiotic Susceptibility Profile of Bacteria Isolated from Natural Sources of Water from Rural Areas of East Sikkim

    PubMed Central

    Poonia, Shubra; Singh, T. Shantikumar; Tsering, Dechen C.

    2014-01-01

    Background: Contamination of water, food, and environment with antibiotic-resistant bacteria poses a serious public health issue. Objective: The objective was to study the bacterial pollution of the natural sources of water in east Sikkim and to determine the antimicrobial profile of the bacterial isolates. Materials and Methods: A total of 225 samples, 75 each during winter, summer, and monsoon season were collected from the same source in every season for bacteriological analysis by membrane filtration method. Antibiotic susceptibility test was performed using standard disc diffusion method. Results: A total of 19 bacterial species of the genera Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Enterobacter, Citrobacter, Morganella, Pseudomonas, Acinetobacter, Flavobacterium, and Serratia were isolated and their antimicrobial sensitivity tested. Generally, most bacterial isolates except Salmonella and Shigella species were found resistant to commonly used antibiotics such as ampicillin (57.5%), trimethoprim/sulfamethoxaole (39.1%), amoxicillin/clavulanic acid (37.4%), cefixime (34.5%), tetracycline (29.1%), ceftazidime (26.3%), ofloxacin (25.9%), amikacin (8.7%), and gentamicin (2.7%) but sensitive to imipenem and piperacillin/tazobactam. Conclusion: Natural sources of water in east Sikkim are grossly contaminated with bacteria including enteropathogens. The consumption of untreated water from these sources might pose health risk to consumers. PMID:25136156

  7. Molecular characterization, serotyping, and antibiotic susceptibility profile of Leptospira interrogans serovar Copenhageni isolates from Brazil.

    PubMed

    Miraglia, Fabiana; Matsuo, Minekazo; Morais, Zenaide Maria; Dellagostin, Odir Antonio; Seixas, Fabiana Kömmling; Freitas, Julio César; Hartskeerl, Rudy; Moreno, Luisa Zanolli; Costa, Bárbara Letícia; Souza, Gisele Oliveira; Vasconcellos, Silvio Arruda; Moreno, Andrea Micke

    2013-11-01

    Leptospira interrogans serogroup Icterohaemorrhagiae is the major serogroup infecting humans worldwide, and rodents and dogs are the most significant transmission sources in urban environments. Knowledge of the prevalent serovars and their maintenance hosts is essential to understand the epidemiology of leptospirosis. In this study, 20 Leptospira isolates were evaluated by pulsed-field gel electrophoresis (PFGE), variable number tandem-repeat analysis (VNTR), serotyping, and determination of antimicrobial resistance profile. Isolates, originated from bovine, canine, human, and rodent sources, were characterized by microscopic agglutination test with polyclonal and monoclonal antibodies and were identified as L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni. MICs of antimicrobials often used in veterinary medicine were determined by broth microdilution test. Most of tested antibiotics were effective against isolates, including penicillin, ampicillin, and ceftiofur. Higher MIC variability was observed for fluoroquinolones and neomycin; all isolates were resistant to trimethoprim/sulfamethoxazole and sulphadimethoxine. Isolates were genotyped by PFGE and VNTR; both techniques were unable to discriminate between serovars Copenhageni and Icterohaemorrhagiae, as expected. PFGE clustered all isolates in 1 pulsotype, indicating that these serovars can be transmitted between species and that bovine, rodent, and dogs can maintain them in the environment endangering the human population.

  8. Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment.

    PubMed

    Maravić, Ana; Skočibušić, Mirjana; Sprung, Matilda; Samanić, Ivica; Puizina, Jasna; Pavela-Vrančić, Maja

    2012-01-01

    During an environmental study of bacterial resistance to antibiotics in coastal waters of the Kaštela Bay, Adriatic Sea, Croatia, 47 Burkholderia cepacia complex (Bcc) isolates were recovered from seawater and mussel (Mytilus galloprovincialis) samples. All isolates showed multiple antibiotic resistance. Among the isolates, two Burkholderia cenocepacia isolates produced chromosomally encoded TEM-116 extended-spectrum β-lactamase (ESBL). Analysis of outer membrane proteins revealed that decreased expression of a 36-kDa protein could be associated with a high level of β-lactam resistance in both isolates. Phenotypic study of efflux system also indicated an over-expression of Resistance-Nodulation-Cell Division (RND) efflux-mediated mechanism in one of the isolates. This study demonstrated the presence of Bcc in seawater and M. galloprovincialis, which gives evidence that coastal marine environment, including mussels, could be considered as a reservoir for Bcc species. Detection of ESBL-encoding genes indicates the potential role of these bacteria in the maintenance and dispersion of antibiotic resistance genes.

  9. Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vancomycin-resistant Enterococcus faecium (VRE) previously isolated from human wastewater effluents in a nonclinical semiclosed agri-food system in Texas were characterized for susceptibility to antibiotics and disinfectants. The 50 VRE were resistant to eight fluoroquinolones and to 10 of 17 Natio...

  10. Bacteriological Profile and Antibiotic Susceptibility Pattern of Neonatal Sepsis at a Teaching Hospital in Bayelsa State, Nigeria

    PubMed Central

    Peterside, Oliemen; Pondei, Kemebradikumo; Akinbami, Felix O

    2015-01-01

    Background: Sepsis is one of the most common causes of neonatal hospital admissions and is estimated to cause 26% of all neonatal deaths worldwide. While waiting for results of blood culture, it is necessary to initiate an empirical choice of antibiotics based on the epidemiology of causative agents and antibiotic sensitivity pattern in a locality. Objective: To determine the major causative organisms of neonatal sepsis at the Niger Delta University Teaching Hospital (NDUTH), as well as their antibiotic sensitivity patterns, with the aim of formulating treatment protocols for neonates. Methods: Within a 27-month period (1st of October 2011 to the 31st of December 2013), results of blood culture for all neonates screened for sepsis at the Special Care Baby Unit of the hospital were retrospectively studied. Results: Two hundred and thirty-three (49.6%) of the 450 neonates admitted were screened for sepsis. Ninety-seven (43.5%) of them were blood culture positive, with 52 (53.6%) of the isolated organisms being Gram positive and 45 (46.4%) Gram negative. The most frequently isolated organism was Staphylococcus aureus (51.5%) followed by Escherichia coli (16.5%) and Klebsiella pneumoniae (14.4%). All isolated organisms demonstrated the highest sensitivity to the quinolones. Conclusion: Neonatal sepsis is a significant cause of morbidity among neonates admitted at the NDUTH. There is a need for regular periodic surveillance of the causative organisms of neonatal sepsis as well as their antibiotic susceptibility pattern to inform the empirical choice of antibiotic prescription while awaiting blood culture results. PMID:26543394

  11. Optimization of an antibiotic sensitivity assay for Mycoplasma hyosynoviae and susceptibility profiles of field isolates from 1997 to 2011.

    PubMed

    Schultz, K K; Strait, E L; Erickson, B Z; Levy, N

    2012-07-06

    Mycoplasma hyosynoviae is a common agent responsible for polyarthritis leading to decreased production in swine herds worldwide. Antimicrobial agents are used to combat infections; however breakpoints for M. hyosynoviae have not yet been established. A number of methods have previously been utilized to analyze minimum inhibitory concentrations (MICs) for antibiotics against M. hyosynoviae; however these techniques as currently described are not easily standardized between laboratories. A dry microbroth dilution method was conducted to compare the minimum inhibitory concentrations (MICs) for 18 antibiotics, representative of different classes, against 24 recent isolates (23 field isolates and the type strain) of M. hyosynoviae. The MICs were determined using standard, commercially available 96-well Sensititre(®) plates containing various freeze-dried antibiotics at a range of concentrations appropriate to their potency. Clindamycin (CLI), a lincosamide antibiotic, showed the highest activity and most consistent inhibition for all isolates with an MIC(50) of ≤ 0.12 μg/ml. Tiamulin (TIA), a pleuromutilin derivative, exhibited an MIC(50) of ≤ 0.25 μg/ml. The isolates had similar levels of susceptibility to the quinolones, enrofloxacin (ENRO) and danofloxacin (DANO), exhibiting an MIC(50) of 0.25 μg/ml and 0.5 μg/ml, respectively. For the macrolides, the MIC(50) for tylosin (TYLT) and tilmicosin (TIL) was ≤ 0.25 μg/ml and ≤ 2 μg/ml respectively, but was ≤ 16 μg/ml for tulathromycin (TUL). For the aminoglycosides, the MIC(50) for gentamicin (GEN) was ≤ 0.5 μg/ml, while spectinomycin (SPE) and neomycin (NEO) had an MIC(50) of ≤ 4 μg/ml. The tetracyclines, oxytetracycline (OXY) and chlortetracycline (CTET) both had an MIC(50) of ≤ 2 μg/ml. Florfenicol (FFN) exhibited a MIC(50) of ≤ 1 μg/ml. All isolates were resistant to penicillin (PEN), ampicillin (AMP), ceftiofur (TIO), trimethoprim/sulfamethoxazole (SXT), and sulphadimethoxine (SDM) at all

  12. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes.

    PubMed

    Lajnef, Rim; Snoussi, Mejdi; Romalde, Jesús López; Nozha, Cohen; Hassen, Abdennaceur

    2012-12-01

    The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI = 0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI = 0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48 % of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45 kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater.

  13. Prevalence, Virulence Potential, and Antibiotic Susceptibility Profile of Listeria monocytogenes Isolated From Bovine Raw Milk Samples Obtained From Rajasthan, India.

    PubMed

    Sharma, Sanjita; Sharma, Vishnu; Dahiya, Dinesh Kumar; Khan, Aarif; Mathur, Manisha; Sharma, Amit

    2017-03-01

    Listeriosis is a serious foodborne disease of a global concern, and can effectively be controlled by a continuous surveillance of the virulent and multidrug-resistant strains of Listeria monocytogenes. This study was planned to investigate prevalence of L. monocytogenes in bovine raw milk samples. A total of 457 raw milk samples collected from 15 major cities in Rajasthan, India, were analyzed for the presence of L. monocytogenes by using standard microbiological and molecular methods. Five of the 457 samples screen tested positive for L. monocytogenes. Multiplex serotyping showed that 3/5 strains belonged to serotype 4b followed by one strain each to 1/2a and to 1/2c. Further virulence potential assessment indicated that all strains possessed inlA and inlC internalins, and, in addition, two strains also possessed the gene for inlB. All strains were positive for Listeriolysin O (LLO) and showed phosphatidylinositol-specific phospholipase C (PI-PLC) activity on an in vitro agar medium with variations in production levels among the strains. A good correlation between the in vitro pathogenicity test and the chick embryo test was observed, as the strains showing higher LLO and PI-PLC activity were found to be lethal to fertilized chick embryos. All strains were resistant to the majority of antibiotics and were designated as multidrug-resistant strains. However, these strains were susceptible to 9 of the 22 tested antibiotics. The maximum zone of inhibition (mm) and acceptable minimum inhibitory concentration were observed with azithromycin, and thus it could be the first choice of a treatment. Overall, the presence of multidrug-resistant L. monocytogenes strains in the raw milk of Rajasthan region is an indicator of public health hazard and highlighting the need of consumer awareness in place and implementation of stricter food safety regulations at all levels of milk production.

  14. Incidence, Antibiotic Susceptibility, and Toxin Profiles of Bacillus cereus sensu lato Isolated from Korean Fermented Soybean Products.

    PubMed

    Yim, Jin-Hyeok; Kim, Kwang-Yeop; Chon, Jung-Whan; Kim, Dong-Hyeon; Kim, Hong-Seok; Choi, Da-Som; Choi, In-Soo; Seo, Kun-Ho

    2015-06-01

    Korean fermented soybean products, such as doenjang, kochujang, ssamjang, and cho-kochujang, can harbor foodborne pathogens such as Bacillus cereus sensu lato (B. cereus sensu lato). The aim of this study was to characterize the toxin gene profiles, biochemical characteristics, and antibiotic resistance patterns of B. cereus sensu lato strains isolated from Korean fermented soybean products. Eighty-eight samples of Korean fermented soybean products purchased from retails in Seoul were tested. Thirteen of 26 doenjang samples, 13 of 23 kochujang samples, 16 of 30 ssamjang samples, and 5 of 9 cho-kochujang samples were positive for B. cereus sensu lato strains. The contamination level of all positive samples did not exceed 4 log CFU/g of food (maximum levels of Korea Food Code). Eighty-seven B. cereus sensu lato strains were isolated from 47 positive samples, and all isolates carried at least one enterotoxin gene. The detection rates of hblCDA, nheABC, cytK, and entFM enterotoxin genes among all isolates were 34.5%, 98.9%, 57.5%, and 100%, respectively. Fifteen strains (17.2%) harbored the emetic toxin gene. Most strains tested positive for salicin fermentation (62.1%), starch hydrolysis (66.7%), hemolysis (98.9%), motility test (100%), and lecithinase production (96.6%). The B. cereus sensu lato strains were highly resistant to β-lactam antibiotics such as ampicillin, penicillin, cefepime, imipenem, and oxacillin. Although B. cereus sensu lato levels in Korean fermented soybean products did not exceed the maximum levels permitted in South Korea (<10(4) CFU/g), these results indicate that the bacterial isolates have the potential to cause diarrheal or emetic gastrointestinal diseases.

  15. Disinfectant and antibiotic susceptibility profiles of Escherichia coli O157:H7 strains from cattle carcasses, feces, and hides and ground beef from the United States.

    PubMed

    Beier, Ross C; Poole, Toni L; Brichta-Harhay, Dayna M; Anderson, Robin C; Bischoff, Kenneth M; Hernandez, Charles A; Bono, James L; Arthur, Terrance M; Nagaraja, T G; Crippen, Tawni L; Sheffield, Cynthia L; Nisbet, David J

    2013-01-01

    The disinfectant and antibiotic susceptibility profiles of 344 Escherichia coli O157:H7 strains from cattle carcasses, feces, and hides and ground beef from the United States were determined. A low prevalence of antibiotic resistance was observed (14%). The highest prevalences of resistance were to sulfisoxazole (10.5%), tetracycline (9.9%), streptomycin (7%), and chloramphenicol (4.9%). Four strains were resistant to eight antibiotics (two strains from ground beef and one strain each from hide and preevisceration carcass swabs of cull cattle at harvest). Pulsed-field gel electrophoresis analysis of the E. coli O157:H7 strains revealed two major groups (designated 1 and 2) composed of 17 and 20 clusters, respectively. Clusters 1A, 1B, 1C, and 1G.1 were associated with multidrug-resistant strains. There was no observed correlation between disinfectant resistance and antibiotic resistance. Sixty-nine (20%) of the 344 strains were resistant to chlorhexidine or benzalkonium chloride or the MICs of benzyldimethyldodecylammonium chloride were elevated. Inducible resistance was observed at elevated concentrations of antibiotics (1.4%) and disinfectants (6.1%). The highest rate of disinfectant inducible resistance was to OdoBan, quaternary ammonium chlorides, and the surface disinfectants F25, FS512, and MG, which are used in dairies, restaurants, and food processing plants. High MICs (1,024 to 4,096 m g/ml) of acetic, lactic, and citric acids were found. The decreasing order of acid potency based on molar MICs (MICs(molar)) was acetic, citric, and lactic acid. The correlation of the concentration of dissociated organic acids and MICs(molar) strongly suggests that the observed inhibition of E. coli O157:H7 was primarily due to dissociated forms of the acids.

  16. Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China.

    PubMed

    Wang, Dengfeng; Wang, Zhicai; Yan, Zuoting; Wu, Jianyong; Ali, Tariq; Li, Jianjun; Lv, Yanli; Han, Bo

    2015-04-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infection in dairy animals is of great concern for livestock and public health. The aim of present study was to detect new trends of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) towards antibiotic susceptibility, resistance genes and molecular typing by methods of disc diffusion, multiplex PCR assay and multilocus sequence typing (MLST). A total of 219 S. aureus strains were isolated from bovine mastitis cases from six provinces of China, including 34 MRSA strains. The results revealed that more than 70% isolated strains showed resistance to various antibiotics, and multiple-drugs resistance to more than five categories of antibiotics was found more common. The ermC was the most prevalent resistance gene, followed by other genes; however, ermA was the least frequently detected gene. Twenty-eight mecA-negative MRSA and six mecA-positive MRSA strains were detected, and in which three strains were ST97-MRSA-IV, others were ST965-MRSA-IV, ST6-MRSA-IV and ST9-MRSA-SCCmec-NT. The mecA-negative MRSA strains were found resistant to most of the antibiotics, and harbored aac(6')/aph(2''), aph(3')-III and tetM genes higher than MSSA strains. The resistance to most of the antibiotics was significantly higher in MRSA than in MSSA strains. The MLST profiles showed that these strains mainly belonged to CC5, CC398, CC121 and CC50 lineage, especially within ST97 and ST398, while some novel sequence types (ST2154, ST2165 and ST2166) were identified and deposited in the MLST database. This indicates that the resistance of S. aureus is becoming more complicated by changes in multi-drug resistance mechanism and appearance of mecA-negative MRSA isolates, and importantly, MRSA-IV strains in different MLST types are emerging.

  17. [Rapid antibiotic susceptibility test in Clinical Microbiology].

    PubMed

    March Rosselló, Gabriel Alberto; Bratos Pérez, Miguel Ángel

    2016-01-01

    The most widely used antibiotic susceptibility testing methods in Clinical Microbiology are based on the phenotypic detection of antibiotic resistance by measuring bacterial growth in the presence of the antibiotic being tested. These conventional methods take typically 24hours to obtain results. A review is presented here of recently developed techniques for the rapid determination of antibiotic susceptibility. Data obtained with different methods such as molecular techniques, flow cytometry, chemiluminescence, mass spectrometry, commercial methods used in routine work, colorimetric methods, nephelometry, microarrays, microfluids, and methods based on cell disruption and sequencing, are analyzed and discussed in detail.

  18. Bacterial Nanoscale Cultures for Phenotypic Multiplexed Antibiotic Susceptibility Testing

    PubMed Central

    Weibull, Emilie; Antypas, Haris; Kjäll, Peter; Brauner, Annelie; Andersson-Svahn, Helene

    2014-01-01

    An optimal antimicrobial drug regimen is the key to successful clinical outcomes of bacterial infections. To direct the choice of antibiotic, access to fast and precise antibiotic susceptibility profiling of the infecting bacteria is critical. We have developed a high-throughput nanowell antibiotic susceptibility testing (AST) device for direct, multiplexed analysis. By processing in real time the optical recordings of nanoscale cultures of reference and clinical uropathogenic Escherichia coli strains with a mathematical algorithm, the time point when growth shifts from lag phase to early logarithmic phase (Tlag) was identified for each of the several hundreds of cultures tested. Based on Tlag, the MIC could be defined within 4 h. Heatmap presentation of data from this high-throughput analysis allowed multiple resistance patterns to be differentiated at a glance. With a possibility to enhance multiplexing capacity, this device serves as a high-throughput diagnostic tool that rapidly aids clinicians in prescribing the optimal antibiotic therapy. PMID:24989602

  19. Fast measurement of bacterial susceptibility to antibiotics

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Schrock, C. G.

    1977-01-01

    Method, based on photoanalysis of adenosine triphosphate using light-emitting reaction with luciferase-luciferin technique, saves time by eliminating isolation period required by conventional methods. Technique is also used to determine presence of infection as well as susceptibilities to several antibiotics.

  20. Antibiotic Susceptibility of Commensal Bacteria from Human Milk.

    PubMed

    Chen, Po-Wen; Tseng, Shu-Ying; Huang, Mao-Sheng

    2016-02-01

    Recent studies have focused on foodborne or commensal bacteria as vehicles of antibiotic resistance. However, the antibiotic resistance of milk bacteria from healthy donors is still vague in Taiwan. For this purpose, human milk samples were obtained from randomly recruited 19 healthy women between 3 and 360 days post-partum. Antibiotic susceptibility profile of bacteria from milk samples was determined. About 20 bacterial species were isolated from milk samples including Staphylococcus (6 species), Streptococcus (4 species), Enterococcus (2 species), Lactobacillus (1 species), and bacteria belonging to other genera (7 species). Some opportunistic or potentially pathogenic bacteria including Kluyvera ascorbata, Klebsiella oxytoca, Klebsiella pneumoniae, Acinetobacter baumannii, Actinomyces bovis, and Staphylococcus aureus were also isolated. Intriguingly, Staphylococcus isolates (22 strains) were resistant to 2–8 of 8 antibiotics, while Streptococcus isolates (3 strains) were resistant to 3–7 of 9 antibiotics, and members of the genus Enterococcus (5 strains) were resistant to 3–8 of 9 antibiotics. Notably, Staphylococcus lugdunensis, S. aureus, Streptococcus parasanguinis, Streptococcus pneumonia, and Enterococcus faecalis were resistant to vancomycin, which is considered as the last-resort antibiotic. Therefore, this study shows that most bacterial strains in human milk demonstrate mild to strong antibiotic resistance. Whether commensal bacteria in milk could serve as vehicles of antibiotic resistance should be further investigated.

  1. HT-SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Anti-Infective Drug Discovery.

    PubMed

    Danquah, Cynthia A; Maitra, Arundhati; Gibbons, Simon; Faull, Jane; Bhakta, Sanjib

    2016-02-08

    Antibiotic resistance is one of the major threats to global health and well-being. The past decade has seen an alarming rise in the evolution and spread of drug-resistant strains of pathogenic microbes. The emergence of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis and antimicrobial resistance among the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) as well as fungal pathogens (such as certain species of Candida, Aspergillus, Cryptococcus, and Trichophyton) poses a significant 21st century scientific challenge. With an extremely limited arsenal of efficacious antibiotics, techniques that can (a) identify novel antimicrobials and (b) detect antimicrobial resistance are becoming increasingly important. In this article, we illustrate the HT-SPOTi, an assay that is principally based on the growth of an organism on agar medium containing a range of different concentrations of drugs or inhibitors. The simple methodology makes this assay ideal for evaluating novel antimicrobial compounds as well as profiling an organism's antibiotic resistance profile.

  2. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections.

    PubMed

    Mezger, Anja; Gullberg, Erik; Göransson, Jenny; Zorzet, Anna; Herthnek, David; Tano, Eva; Nilsson, Mats; Andersson, Dan I

    2015-02-01

    To ensure correct antibiotic treatment and reduce the unnecessary use of antibiotics, there is an urgent need for new rapid methods for species identification and determination of antibiotic susceptibility in infectious pathogenic bacteria. We have developed a general method for the rapid identification of the bacterial species causing an infection and the determination of their antibiotic susceptibility profiles. An initial short cultivation step in the absence and presence of different antibiotics was combined with sensitive species-specific padlock probe detection of the bacterial target DNA to allow a determination of growth (i.e., resistance) and no growth (i.e., susceptibility). A proof-of-concept was established for urinary tract infections in which we applied the method to determine the antibiotic susceptibility profiles of Escherichia coli for two drugs with 100% accuracy in 3.5 h. The short assay time from sample to readout enables fast appropriate treatment with effective drugs and minimizes the need to prescribe broad-spectrum antibiotics due to unknown resistance profiles of the treated infection.

  3. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.

    PubMed

    Mohan, Ritika; Mukherjee, Arnab; Sevgen, Selami E; Sanpitakseree, Chotitath; Lee, Jaebum; Schroeder, Charles M; Kenis, Paul J A

    2013-11-15

    Effective treatment of clinical infections is critically dependent on the ability to rapidly screen patient samples to identify antibiograms of infecting pathogens. Existing methods for antibiotic susceptibility testing suffer from several disadvantages, including long turnaround times, excess sample and reagent consumption, poor detection sensitivity, and limited combinatorial capabilities. Unfortunately, these factors preclude the timely administration of appropriate antibiotics, complicating management of infections and exacerbating the development of antibiotic resistance. Here, we seek to address these issues by developing a microfluidic platform that relies on fluorescence detection of bacteria that express green fluorescent protein for highly sensitive and rapid antibiotic susceptibility testing. This platform possesses several advantages compared to conventional methods: (1) analysis of antibiotic action in two to four hours, (2) enhanced detection sensitivity (≈ 1 cell), (3) minimal consumption of cell samples and antibiotic reagents (<6 µL), and (4) improved portability through the implementation of normally closed valves. We employed this platform to quantify the effects of four antibiotics (ampicillin, cefalexin, chloramphenicol, tetracycline) and their combinations on Escherichia coli. Within four hours, the susceptibility of bacteria to antibiotics can be determined by detecting variations in maxima of local fluorescence intensity over time. As expected, cell density is a major determinant of antibiotic efficacy. Our results also revealed that combinations of three or more antibiotics are not necessarily better for eradicating pathogens compared to pairs of antibiotics. Overall, this microfluidic based biosensor technology has the potential to provide rapid and precise guidance in clinical therapies by identifying the antibiograms of pathogens.

  4. Inducing optimal substitution between antibiotics under open access to the resource of antibiotic susceptibility.

    PubMed

    Herrmann, Markus; Nkuiya, Bruno

    2016-05-15

    This paper designs a bio-economic model to examine the use of substitute antibiotic drugs (analogs) sold by an industry that has open access to the resource of the antibiotic class's susceptibility (treatment effectiveness). Antibiotics are characterized by different expected recovery rates and production costs, which in conjunction with the class's treatment susceptibility determines their relative effectiveness. Our analysis reveals that the high-quality antibiotic drug loses its comparative advantage over time making the low-quality drug the treatment of last resort in the market equilibrium and the social optimum when antibiotic susceptibility cannot replenish. However, when antibiotic susceptibility is renewable, both antibiotics may be used in the long run, and the comparative advantage of the high-quality drug may be restored in the social optimum that allows lowering infection in the long run. We develop the optimal tax/subsidy scheme that would induce antibiotic producers under open access to behave optimally and account for the social cost of infection and value of antibiotic susceptibility. We show that the welfare loss associated with the uncorrected open-access allocation is highest; when the resource of antibiotic susceptibility is non-renewable, high morbidity costs are incurred by individuals, and low social discount rates apply. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Growth-dependent bacterial susceptibility to ribosome-targeting antibiotics.

    PubMed

    Greulich, Philip; Scott, Matthew; Evans, Martin R; Allen, Rosalind J

    2015-03-01

    Bacterial growth environment strongly influences the efficacy of antibiotic treatment, with slow growth often being associated with decreased susceptibility. Yet in many cases, the connection between antibiotic susceptibility and pathogen physiology remains unclear. We show that for ribosome-targeting antibiotics acting on Escherichia coli, a complex interplay exists between physiology and antibiotic action; for some antibiotics within this class, faster growth indeed increases susceptibility, but for other antibiotics, the opposite is true. Remarkably, these observations can be explained by a simple mathematical model that combines drug transport and binding with physiological constraints. Our model reveals that growth-dependent susceptibility is controlled by a single parameter characterizing the ‘reversibility’ of ribosome-targeting antibiotic transport and binding. This parameter provides a spectrum classification of antibiotic growth-dependent efficacy that appears to correspond at its extremes to existing binary classification schemes. In these limits, the model predicts universal, parameter-free limiting forms for growth inhibition curves. The model also leads to nontrivial predictions for the drug susceptibility of a translation mutant strain of E. coli, which we verify experimentally. Drug action and bacterial metabolism are mechanistically complex; nevertheless, this study illustrates how coarse-grained models can be used to integrate pathogen physiology into drug design and treatment strategies.

  6. Antibiotic resistant bacterial profiles of anaerobic swine lagoon effluent.

    PubMed

    Brooks, J P; McLaughlin, M R

    2009-01-01

    Although land application of swine (Sus scrofa) manure lagoon effluent is a common and effective method of disposal, the presence of antibiotic-resistant bacteria, both pathogenic and commensal can complicate already understood issues associated with its safe disposal. The aim of this study was to assess antibiotic resistance in swine lagoon bacteria from sow, nursery, and finisher farms in the southeastern United States. Effluents from 37 lagoons were assayed for the presence of Escherichia coli, Campylobacter, Listeria, and Salmonella. Antibiotic resistance profiles were determined by the Kirby-Bauer swab method for 12 antibiotics comprising eight classes. Statistical analyses indicated that farm type influenced the amount and type of resistance, with nurseries and sow farms ranking as most influential, perhaps due to use of more antibiotic treatments. Finisher farms tended to have the least amount of antibiotic class resistance, signaling an overall healthier market pig, and less therapeutic or prophylactic antibiotic use. Many bacterial isolates were resistant to penicillin, cephalosporin, and tetracycline class antibiotics, while nearly all were susceptible to quinolone antibiotics. It appeared that swine farm type had a significant association with the amount of resistance associated with bacterial genera sampled from the lagoons; nurseries contributed the largest amount of bacterial resistance.

  7. [Antibiotic susceptibility and identification of clinical Pseudomonas fulva isolates].

    PubMed

    Sivolodsky, E P; Gorelova, G V; Bogoslovskaya, S P; Zueva, E V

    2014-01-01

    The earliest eight clinical strains of Pseudomonas fulva were identified in the culture collection of pseudomonads isolated in St. Petersburg in 1995-2005, that confirmed the medical importance of the species. A high level of the species identification of all the strains of P. fulva by MALDI-TOF mass-spectrometry with the use of Microflex device with database MALDI Biotyper (Bruker Daltonics Inc.) was shown. Tests for routine studies providing identification of P. fulva without the use of genetic methods were approved. The profile of the antibiotic susceptibility of the clinical strains of P. fulva was described. Acquired resistance of two P. fulva isolates to the 3rd generation cephalosporins and chloramphenicol was detected.

  8. In vitro antibiotic susceptibility of Neisseria gonorrhoeae in Jakarta, Indonesia.

    PubMed

    Lesmana, M; Lebron, C I; Taslim, D; Tjaniadi, P; Subekti, D; Wasfy, M O; Campbell, J R; Oyofo, B A

    2001-01-01

    Antibiotic susceptibilities were determined for 122 Neisseria gonorrheae isolates obtained from 400 sex workers in Jakarta, Indonesia, and susceptibilities to ciprofloxacin, cefuroxime, cefoxitin, cefotaxime, ceftriaxone, chloramphenicol, and spectinomycin were found. All isolates were resistant to tetracycline. A number of the isolates demonstrated decreased susceptibilities to erythromycin (MIC >/= 1.0 microg/ml), thiamphenicol (MIC >/= 1.0 microg/ml), kanamycin (MIC >/= 16.0 microg/ml), penicillin (MIC >/= 2.0 microg/ml), gentamicin (MIC >/= 16.0 microg/ml), and norfloxacin (MIC = 0.5 microg/ml). These data showed that certain antibiotics previously used in the treatment of gonorrhea are no longer effective.

  9. Antibiotic susceptibility in benzalkonium chloride-resistant and -susceptible Listeria monocytogenes strains.

    PubMed

    Ortiz, Sagrario; López, Pilar; López, Victoria; Martínez-Suárez, Joaquín V

    2014-07-01

    This study aimed to investigate whether Listeria monocytogenes strains with resistance to a commonly used biocide display any cross-resistance to antibiotics. Using pulsed-field gel electrophoresis (PFGE), 29 different PFGE types were previously identified in an Iberian pig abattoir and processing plant. Only three PFGE types were resistant to benzalkonium chloride (BAC), but they represented a significant proportion of the PFGE types surviving in the plant after 4 years. In the present study, a subset of 29 strains, representing the 29 different PFGE types, underwent antibiotic susceptibility testing. Antibiotic susceptibility was assessed by Etest, utilizing 12 commonly prescribed antibiotics. All of the 29 strains were susceptible to all of the antibiotics tested. The study revealed that this group of different PFGE types of L. monocytogenes, including those resistant to BAC, possesses uniform sensitivity to antibiotics.

  10. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa

    PubMed Central

    2010-01-01

    Background To evaluate the antibiogram and antibiotic resistance genes of some Vibrio strains isolated from wastewater final effluents in a rural community of South Africa. V. vulnificus (18), V. metschnikovii (3), V. fluvialis (19) and V. parahaemolyticus (12) strains were isolated from final effluents of a wastewater treatment plant (WWTP) located in a rural community of South Africa. The disk diffusion method was used for the characterization of the antibiogram of the isolates. Polymerase chain reaction (PCR) was employed to evaluate the presence of established antibiotic resistance genes using specific primer sets. Results The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT element. They were resistant to sulfamethoxazole (Sul), trimethoprim (Tmp), cotrimoxazole (Cot), chloramphenicol (Chl), streptomycin (Str), ampicillin (Amp), tetracycline (Tet) nalidixic acid (Nal), and gentamicin (Gen). The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; floR, tetA, strB, sul2 for chloramphenicol, tetracycline, streptomycin and sulfamethoxazole respectively. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. Conclusions These results demonstrate that final effluents from wastewater treatment plants are potential reservoirs of various antibiotics resistance genes. Moreover, detection of resistance genes in Vibrio strains obtained from the wastewater final effluents suggests that these resistance determinants might be further disseminated in habitats downstream of the sewage plant, thus constituting a serious health risk to the communities reliant on the receiving waterbodies. PMID:20470419

  11. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix

    PubMed Central

    Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E.; Mayo, Baltasar; Torriani, Sandra

    2016-01-01

    In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the

  12. In Vitro Antibiotic Susceptibility of Neisseria gonorrhoeae in Jakarta, Indonesia

    PubMed Central

    Lesmana, Murad; Lebron, Carlos I.; Taslim, Djufri; Tjaniadi, Periska; Subekti, Decy; Wasfy, Momtaz O.; Campbell, James R.; Oyofo, Buhari A.

    2001-01-01

    Antibiotic susceptibilities were determined for 122 Neisseria gonorrheae isolates obtained from 400 sex workers in Jakarta, Indonesia, and susceptibilities to ciprofloxacin, cefuroxime, cefoxitin, cefotaxime, ceftriaxone, chloramphenicol, and spectinomycin were found. All isolates were resistant to tetracycline. A number of the isolates demonstrated decreased susceptibilities to erythromycin (MIC ≥ 1.0 μg/ml), thiamphenicol (MIC ≥ 1.0 μg/ml), kanamycin (MIC ≥ 16.0 μg/ml), penicillin (MIC ≥ 2.0 μg/ml), gentamicin (MIC ≥ 16.0 μg/ml), and norfloxacin (MIC = 0.5 μg/ml). These data showed that certain antibiotics previously used in the treatment of gonorrhea are no longer effective. PMID:11120999

  13. History and epidemiology of antibiotic susceptibilities of Neisseria gonorrhoeae.

    PubMed

    Shigemura, Katsumi; Fujisawa, Masato

    2015-01-01

    Neisseria gonorrhoeae is a common causative microorganism of male urethritis. The most important problem with this infectious disease is antibiotic resistance. For instance, in the 1980's-1990's, most studies showed almost 100% susceptibility of N. gonorrhoeae to the representative cephalosporins, cefixime and cefpodoxime. By the late 1990s, the reported susceptibility decreased to 93.3-100% and further decreased to 82.9-100% in the early 2000's. However, reported susceptibility was revived to 95.8-100% in the late 2000's to 2010's. The susceptibility of N. gonorrhoeae to penicillins varied in different countries and regions. A 2002 Japanese study showed a resistance ratio of about 30% and while Laos, China and Korea showed 80-100% resistance. Fluoroquinolones have shown a dramatic change in their effect on N. gonorrhoeae. In the early 1990's, 0.3-1.3% of N. gonorrhoeae showed low susceptibility or resistance to ciprofloxacin in the US but this figure jumped to 9.5% by 1999. In Asia, N. gonorrhoeae ciprofloxacin resistance or lower susceptibility was about 80-90% in the early 2000's and this trend continues to the present day. Azithromycin is currently the possible last weapon for N. gonorrhoeae treatment per oral administration. The susceptibility of N. gonorrhoeae to azithromycin was 100% in Indonesia in 2004 and the latest study from Germany showed 6% resistance in strains from 2010-2011. This review summarizes the history and epidemiology of N. gonorrhoeae antibiotic susceptibilities, for which the most frequently used antibiotics vary between countries or regions.

  14. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage

    PubMed Central

    Schofield, David A.; Molineux, Ian J.; Westwater, Caroline

    2012-01-01

    The rapid identification and antibiotic susceptibility testing of Yersinia pestis is paramount for a positive prognosis. We previously engineered a Y. pestis-specific ‘bioluminescent’ reporter phage for the identification of Y. pestis. In this study, we generated an improved reporter phage and evaluated the ability of this phage to provide direct and rapid susceptibility testing. Compared to the first generation reporter, the second generation reporter exhibited a 100-fold increase in signal strength, leading to a 10-fold increase in assay sensitivity. Y. pestis antimicrobial testing in the presence of the reporter elicited bioluminescent signals that were drug concentration-dependent, and produced susceptibility profiles that mirrored the standard CLSI method. The phage-generated susceptibility profiles, however, were obtained within hours in contrast to days with the conventional method. PMID:22579583

  15. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage.

    PubMed

    Schofield, David A; Molineux, Ian J; Westwater, Caroline

    2012-08-01

    The rapid identification and antibiotic susceptibility testing of Yersinia pestis is paramount for a positive prognosis. We previously engineered a Y. pestis-specific 'bioluminescent' reporter phage for the identification of Y. pestis. In this study, we generated an improved reporter phage and evaluated the ability of this phage to provide direct and rapid susceptibility testing. Compared to the first generation reporter, the second generation reporter exhibited a 100-fold increase in signal strength, leading to a 10-fold increase in assay sensitivity. Y. pestis antimicrobial testing in the presence of the reporter elicited bioluminescent signals that were drug concentration-dependent, and produced susceptibility profiles that mirrored the standard CLSI method. The phage-generated susceptibility profiles, however, were obtained within hours in contrast to days with the conventional method.

  16. Evaluation of a rapid Bauer-Kirby antibiotic susceptibility determination.

    PubMed

    Liberman, D F; Robertson, R G

    1975-03-01

    To reduce the incubation time requirement in the Bauer-Kirby antibiotic susceptibility test, comparisons were made of the test results at 18 to 20 h (standard) and 7 to 8 h (rapid) utilizing 100 recent clinical isolates. The zone diameters for 664 disks were monitored by using the standard classification: resistant, intermediate, or susceptible. The susceptibility determination was unchanged in 558 out of 664 instances (84.0%). An analysis of the remaining 106 sets revealed that an initial interpretation of intermediate in zone size, subsequently determined resistant or susceptible, accounted for 49 of the observed differences. The reverse changes, initial resistant or susceptible subsequently classified as intermediate, accounted for 20 of the changes. In five instances the interpretation changed from susceptible to resistant; in two cases the interpretation changed from resistant to susceptible. The remaining 30 determinations were classified as indeterminant due to (i) insufficient growth at the early (7 to 8 h) determination, and to (ii) zones which were so large that they could not be measured accurately. The data indicate that zone sizes when measured to the nearest 0.1 mm can be interpreted with reasonable accuracy and the results can be available 10 to 14 h sooner.

  17. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics.

    PubMed

    Wong, Weng Ruh; Oliver, Allen G; Linington, Roger G

    2012-11-21

    Despite recognition of the looming antibiotic crisis by healthcare professionals, the number of new antibiotics reaching the clinic continues to decline sharply. This study aimed to establish an antibiotic profiling strategy using a panel of clinically relevant bacterial strains to create unique biological fingerprints for all major classes of antibiotics. Antibiotic mode of action profile (BioMAP) screening has been shown to effectively cluster antibiotics by structural class based on these fingerprints. Using this approach, we have accurately predicted the presence of known antibiotics in natural product extracts and have discovered a naphthoquinone-based antibiotic from our marine natural product library that possesses a unique carbon skeleton. We have demonstrated that bioactivity fingerprinting is a successful strategy for profiling antibiotic lead compounds and that BioMAP can be applied to the discovery of new natural product antibiotics leads.

  18. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles.

    PubMed

    Theophel, Karsten; Schacht, Veronika J; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18-24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 μg mL(-1) of vancomycin and 8 μg mL(-1) of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation.

  19. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    PubMed

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  20. Salmonella on Raw Poultry in Retail Markets in Guatemala: Levels, Antibiotic Susceptibility, and Serovar Distribution.

    PubMed

    Jarquin, Claudia; Alvarez, Danilo; Morales, Oneida; Morales, Ana Judith; López, Beatriz; Donado, Pilar; Valencia, Maria F; Arévalo, Alejandra; Muñoz, Fredy; Walls, Isabel; Doyle, Michael P; Alali, Walid Q

    2015-09-01

    The objective of this study was to determine Salmonella numbers on retail raw chicken carcasses in Guatemala and to phenotypically characterize the isolates (serotyping and antibiotic susceptibility). In total, 300 chicken carcasses were collected from seven departments in Guatemala. Salmonella numbers were determined using the most-probable-number method following the U. S. Department of Agriculture's Food Safety and Inspection Service protocol. In total, 103 isolates were obtained, all of which were tested for antibiotic susceptibility, whereas 46 isolates were serotyped. Overall, Salmonella prevalence and mean number (mean log most probable number per carcass) was 34.3% and 2.3 (95% confidence interval: 2.1 to 2.5), respectively. Significant differences (P < 0.05) in Salmonella prevalence were found by storage condition (refrigerated or ambient temperature), market type (wet markets, supermarkets, and independent poultry stores), chicken production system (integrated or nonintegrated production company), and chicken skin color (white or yellow). Chickens produced by integrated companies had lower Salmonella numbers (P < 0.05) than nonintegrated companies, and white-skin carcasses had lower numbers (P < 0.05) than yellow-skin carcasses. Among 13 different Salmonella serovars identified, Paratyphi B (34.8%) was most prevalent, followed by Heidelberg (16.3%) and Derby (11.6%). Of all the Salmonella isolates, 59.2% were resistant to one to three antibiotics and 13.6% to four or more antibiotics. Among all the serovars obtained, Salmonella Paratyphi B and Heidelberg were the most resistant to the antibiotics tested. Salmonella levels and antibiotic resistant profiles among isolates from raw poultry at the retail market level were high relative to other reports from North and South America. These data can be used by Guatemalan stakeholders to develop risk assessment models and support further research opportunities to control transmission of Salmonella spp. and

  1. Alterations in antibiotic susceptibility of urinary tract infection pathogens

    PubMed Central

    Ghorbani, Ali; Ehsanpour, Ali; Roshanzamir, Navid; Omidvar, Bita

    2012-01-01

    Background Urinary tract infection (UTI) is the third most common infection in human. New resisted strains of uropathogens have been developed due to different factors such as widespread use of antibiothics. Objectives We conducted this study to assess the recent pattern and susceptibility of uropathogens. Materials and Methods: This descriptive cross-sectional study was carried on 32600 ambulatory patients’ urine samples from six laboratories from 2008 to 2010 in Ahvaz, Khuzestan. Of those, 3000 positive culture were found. Data including underlying disease, pregnancy, catheterization and drug history were gathered by questionnaire. Susceptibility of pathogens to eight antimicrobial agents was determined. Materials and Methods This descriptive cross-sectional study was carried on 32600 ambulatory patients’ urine samples from six laboratories from 2008 to 2010 in Ahvaz, Khuzestan. Of those, 3000 positive culture were found. Data including underlying disease, pregnancy, catheterization and drug history were gathered by questionnaire. Susceptibility of pathogens to eight antimicrobial agents was determined. Results Mean age of patients was 33.87 ± 3.80 years and 84.9% of them were female. The results showed that, E. coli, Kelebsiella and Enterobacter were the most common pathogens (73.5%, 13.8% and 6.6%, respectively). E. coli was susceptible to Ciprofloxacin, Amikacin, and Nitrofurantoin in 76.9%, 76.4% and 76.1% of cases, respectively. Klebsiella was more susceptible to Ciprofloxacin, Ceftizoxim and Amikacin in 81.1%, 79.9% and 87.7% of positive cultures. Enterobacter was most susceptible to Ciprofloxacin (71.7%), but completely resistant to Ampicillin unexpectedly. Conclusions E. coli and other isolates were more sensitive to Gentamicin, Amikacin and Ciprofloxacin compared to the other antibiotics tested and therefore these may be the drugs of choice for the empiric treatment of community-acquired UTI in our region. PMID:24475385

  2. Impact of space flight on bacterial virulence and antibiotic susceptibility

    PubMed Central

    Taylor, Peter William

    2015-01-01

    Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit. PMID:26251622

  3. Impact of space flight on bacterial virulence and antibiotic susceptibility.

    PubMed

    Taylor, Peter William

    2015-01-01

    Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.

  4. Clinical isolates of Acinetobacter baumannii from a Portuguese hospital: PFGE characterization, antibiotic susceptibility and biofilm-forming ability.

    PubMed

    Duarte, Andreia; Ferreira, Susana; Almeida, Sofia; Domingues, Fernanda C

    2016-04-01

    Acinetobacter baumannii is an emerging pathogen associated with nosocomial infections that in addition has shown an increasing resistance to antibiotics. In this work the genetic diversity of A. baumannii isolates from a Portuguese hospital, their antibiotic resistance profiles and ability to form biofilms was studied. Seventy-nine clinical A. baumannii isolates were characterized by pulsed-field gel electrophoresis (PFGE) with 9 different PFGE profiles being obtained. Concerning the antimicrobial susceptibility, all A. baumannii isolates were resistant to 12 of the 17 tested antibiotics and classified as multidrug-resistant (MDR). In addition, 74.7% of the isolates showed biofilm formation ability, however no statistical significance with antibiotic resistance was observed. In contrast, urine samples isolates were more likely to form biofilms than strains isolated from other sources. Our findings highlight the high number of MDR A. baumannii isolates and the importance of the formation of biofilms as a potential virulence factor.

  5. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  6. [The comparison of antibiotic susceptibilities of uropathogenic Escherichia coli isolates in transition from CLSI to EUCAST].

    PubMed

    Süzük, Serap; Kaşkatepe, Banu; Avcıküçük, Havva; Aksaray, Sebahat; Başustaoğlu, Ahmet

    2015-10-01

    Determination of treatment protocols for infections according to antimicrobial susceptibility test (AST) results is are important for controlling the problem of antibiotic resistance. Two standards are widely used in the world. One of them is Clinical Laboratory Standards Institute (CLSI) standards used in Turkey for many years and the other is the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards which is used in European Union member countries and came into use in 2015 in Turkey. Since the EUCAST standards had higher clinical sensitivity limits particularly for gram-negative bacilli compared to CLSI (2009) standards, there will be some changes in antibiotic resistance profiles of Turkey with the use of EUCAST. CLSI has changed zone diameters after 2009 versions and the differences between the two standards were brought to a minimum level. Knowledge of local epidemiological data is important to determine empirical therapy which will be used in urinary tract infections (UTI). The aim of this study was to determine the differences of antibiotic susceptibility zone diameters based on our local epidemiological data among uropathogenic Escherichia coli isolates according to EUCAST 2014 and CLSI 2014 standards. A total of 298 E.coli strains isolated from urine samples as the cause of uncomplicated acute UTI agents, were included in the study. Isolates were identified by conventional methods and with BBL Crystal E/NF ID System (Becton Dickinson, USA). AST was performed with Kirby Bauer disk diffusion method and results were evaluated and interpreted according to the CLSI 2014 and EUCAST 2014 standards. According to the results, susceptibility rates of isolates against amikacin (100%) and trimethoprim-sulfamethoxazole (63.09%) were identical in both standards. However, statistically significant differences were observed between CLSI and EUCAST standards in terms of susceptibilities against gentamicin (91.95% and 84.56%, respectively; p= 0

  7. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Asgharzadeh, Mohammad; Varshochi, Mojtaba; Pirzadeh, Tahereh; Memar, Mohammad Yousef; Zahedi Bialvaei, Abed; Seifi Yarijan Sofla, Hasan; Alizadeh, Naser

    2015-01-01

    Aim: The aim of this study was to investigate anaerobic and aerobic bacteria profile and determination of antibiotic susceptibility pattern in aerobic bacteria. Method: Specimens were cultured using optimal aerobic and anaerobic microbiological techniques. Identification of bacterial isolates was performed by standard microbiological methods and antibiotic susceptibility testing was performed according to the guidelines of Clinical and Laboratory Standards Institute (CLSI). Result: 92 bacterial strains were isolated from 60 samples of diabetic foot ulcers. Predominant aerobic bacteria isolated from these infections were S. aureus (28%) followed by Enterobacteriaceae family (24%) including Escherichia coli (15%), Citrobacter spp. (4%), Enterobacter spp. (4%), and coagulase-negative Staphylococcus spp. (17%), Enterococcus spp. (15%), Pseudomonas aeruginosa (7%) and Acinetobacter spp. (4%). No Clostridium spp. were isolated and 4% Bacteroides fragilis obtained from anaerobic culture. All Gram-positive isolates were susceptible to linezolid while all Enterobacteriaceae showed sensitivity to imipenem. Conclusion: Most of DFIs specimens were poly microbial infection and predominant bacteria were S. aureus and B. fragilis. These wounds may require use of combined antimicrobial therapy for initial management. PMID:25699225

  8. Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    PubMed Central

    Quach, D.T.; Sakoulas, G.; Nizet, V.; Pogliano, J.; Pogliano, K.

    2016-01-01

    Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP), which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA) and -resistant (MRSA) clinical isolates of S. aureus (n = 71) within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS) from daptomycin non-susceptible (DNS) S. aureus strains (n = 20) within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice. PMID:26981574

  9. Shattering a myth - Whooping cough susceptible to antibiotics.

    PubMed

    Syed, Muhammad Ali; Jamil, Bushra; Bokhari, Habib

    2016-05-01

    Bordetella parapertussis is the causative agent of a milder form of pertussis or whooping cough. Little is reported about the antibiotic resistance patterns and mechanism of drug resistance of Bordetella parapertussis. The objective of this study has been to investigate antimicrobial resistance, distribution of integrons and presence of gene cassettes to quinolones (qnr) and sulfonamides (sul) among B. parapertussis strains' isolated from Pakistan. Thirty-five (35) samples were collected from various hospitals of Pakistan from children (median age 3 years) with pertussis-like symptoms, all were tested and confirmed to be B. Parapertussis. Resistance profile of Ampicillin, Cephalexin, Sulphamethoxazole, Chloramphenicol, Ofloxacin, Nalidixic acid, Gentamycin and Erythromycin were investigated through all samples. Majority of the isolates were found to be resistant to the afore-mentioned antibiotics except erythromycin. All isolates were resistant to quinolones phenotypically, but qnr genes were detected in only 25.7% (9/35) of isolates. On the other hand, 71.4% (25/35) isolates were resistant to sulfonamides phenotypically. From these 71% strains showing phenotypical resistance, 96% (24/25) were found to possess sul genes. Only two isolates were carrying class 1 integrons, which also harbored sul gene and qnr gene cassettes. It can be safely concluded that the phenotypic resistance patterns seemed mostly independent of presence of integrons. However, interestingly both integrons harboring strains were resistant to quinolones and sulfonamides and also possessed qnr and sul genes.

  10. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry

    PubMed Central

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  11. Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alcalifaciens and P. rustigianii strains.

    PubMed

    Stock, I; Wiedemann, B

    1998-07-01

    The natural antibiotic susceptibility of 38 Providencia rettgeri, 35 P. stuartii, 23 P. alcalifaciens and 20 P. rustigianii strains was examined. MIC values were determined by a microdilution procedure and evaluated by a table calculation programme. P. stuartii was the least susceptible Providencia sp. and was naturally resistant to tetracyclines, some penicillins, older cephalosporins, sulphamethoxazole and fosfomycin and to antibiotics to which other species of Enterobacteriaceae are also resistant. It was naturally sensitive to modern penicillins and cephalosporins, carbapenems and aztreonam, but its susceptibility to aminoglycosides and quinolones was difficult to assess. P. alcalifaciens and P. rustigianii strains were the most susceptible Providencia spp. They were naturally sensitive or intermediate to tetracyclines and sensitive to aminoglycosides and quinolones. Susceptibility to sparfloxacin, biapenem and sulphamethoxazole permitted the discrimination of P. alcalifaciens and P. rustigianii strains. The natural antibiotic susceptibility of P. rettgeri strains was between that of P. stuartii and that of the other providenciae. P. rettgeri was resistant to tetracyclines and fosfomycin, but more susceptible to aminoglycosides, quinolones, fosfomycin and numerous beta-lactam antibiotics than P. stuartii. A database is described of the natural antibiotic susceptibilities of Providencia spp. It can be used for the validation of antibiotic susceptibility test results of these micro-organisms.

  12. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection

    PubMed Central

    Theriot, Casey M.; Koenigsknecht, Mark J.; Carlson, Paul E.; Hatton, Gabrielle E.; Nelson, Adam M.; Li, Bo; Huffnagle, Gary B.; Li, Jun; Young, Vincent B.

    2014-01-01

    Antibiotics can have significant and long lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids, and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including primary bile acid taurocholate for germination, and carbon sources mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favors C. difficile germination and growth. PMID:24445449

  13. Variable Effects of Exposure to Formulated Microbicides on Antibiotic Susceptibility in Firmicutes and Proteobacteria

    PubMed Central

    Forbes, Sarah; Knight, Christopher G.; Cowley, Nicola L.; Amézquita, Alejandro; McClure, Peter; Humphreys, Gavin

    2016-01-01

    ABSTRACT Microbicides are broad-spectrum antimicrobial agents that generally interact with multiple pharmacological targets. While they are widely deployed in disinfectant, antiseptic, and preservative formulations, data relating to their potential to select for microbicide or antibiotic resistance have been generated mainly by testing the compounds in much simpler aqueous solutions. In the current investigation, antibiotic susceptibility was determined for bacteria that had previously exhibited decreased microbicide susceptibility following repeated exposure to microbicides either in formulation with sequestrants and surfactants or in simple aqueous solution. Statistically significant increases in antibiotic susceptibility occurred for 12% of bacteria after exposure to microbicides in formulation and 20% of bacteria after exposure to microbicides in aqueous solutions, while 22% became significantly less susceptible to the antibiotics, regardless of formulation. Of the combinations of a bacterium and an antibiotic for which British Society for Antimicrobial Chemotherapy breakpoints are available, none became resistant. Linear modeling taking into account phylogeny, microbicide, antibiotic, and formulation identified small but significant effects of formulation that varied depending on the bacterium and microbicide. Adaptation to formulated benzalkonium chloride in particular was more likely to increase antibiotic susceptibility than adaptation to the simple aqueous solution. In conclusion, bacterial adaptation through repeated microbicide exposure was associated with both increases and decreases in antibiotic susceptibility. Formulation of the microbicide to which the bacteria had previously adapted had an identifiable effect on antibiotic susceptibility, but it effect was typically small relative to the differences observed among microbicides. Susceptibility changes resulting in resistance were not observed. IMPORTANCE The safety of certain microbicide

  14. ANTIBIOTIC EFFECTS ON BACTERIAL PROFILE IN OSTEONECROSIS OF THE JAW

    PubMed Central

    Ji, Xiaojie; Pushalkar, Smruti; Li, Yihong; Glickman, Robert; Fleisher, Kenneth; Saxena, Deepak

    2011-01-01

    OBJECTIVE Oral infection is considered to play a critical role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ) and antibiotic therapy has become a mainstay of BRONJ therapy. This study was aimed to investigate the effect of antibiotics on bacterial diversity in BRONJ tissues. MATERIALS AND METHODS The bacterial profile from soft tissues associated with the BRONJ lesion was determined using 16S rRNA-based denaturing gradient gel electrophoresis (DGGE) and sequencing. Twenty BRONJ subjects classified as stage 0 to 2 were enrolled in this study and patient groups were divided into an antibiotic cohort (n=10) treated with systemic antibiotic and a non-antibiotic cohort (n=10) with no prior antibiotic therapy. RESULTS The DGGE fingerprints indicated no significant differences in bacterial diversity of BRONJ tissue samples. Patients on antibiotics had higher relative abundance of phylum Firmicutes with bacterial species, Streptococcus intermedius, Lactobacillus gasseri, Mogibacterium timidum and Solobacterium moorei whereas patients without antibiotics had greater amounts of Parvimonas micra, and S. anginosus. Thirty percent of bacterial populations were uncultured (yet-to be cultured) phylotypes. CONCLUSION This study using limited sample size indicated that oral antibiotic therapy may have a limited efficacy on the bacterial population associated with BRONJ lesions. PMID:21883710

  15. Rapid detection and simultaneous antibiotic susceptibility analysis of Yersinia pestis directly from clinical specimens by use of reporter phage.

    PubMed

    Vandamm, J P; Rajanna, C; Sharp, N J; Molineux, I J; Schofield, D A

    2014-08-01

    Yersinia pestis is a tier 1 agent due to its contagious pneumopathogenicity, extremely rapid progression, and high mortality rate. As the disease is usually fatal without appropriate therapy, rapid detection from clinical matrices is critical to patient outcomes. We previously engineered the diagnostic phage ΦA1122 with luxAB to create a "light-tagged" reporter phage. ΦA1122::luxAB rapidly detects Y. pestis in pure culture and human serum by transducing a bioluminescent signal response. In this report, we assessed the analytical specificity of the reporter phage and investigated diagnostic utility (detection and antibiotic susceptibility analysis) directly from spiked whole blood. The bioreporter displayed 100% (n = 59) inclusivity for Y. pestis and consistent intraspecific signal transduction levels. False positives were not obtained from species typically associated with bacteremia or those relevant to plague diagnosis. However, some non-pestis Yersinia strains and Enterobacteriaceae did elicit signals, albeit at highly attenuated transduction levels. Diagnostic performance was assayed in simple broth-enriched blood samples and standard aerobic culture bottles. In blood, <10(2) CFU/ml was detected within 5 h. In addition, Y. pestis was identified directly from positive blood cultures within 20 to 45 min without further processing. Importantly, coincubation of blood samples with antibiotics facilitated simultaneous antimicrobial susceptibility profiling. Consequently, the reporter phage demonstrated rapid detection and antibiotic susceptibility profiling directly from clinical samples, features that may improve patient prognosis during plague outbreaks.

  16. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    PubMed

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  17. [Causative agents of intravenous catheter-related infections and their antibiotic susceptibilities].

    PubMed

    Aktaş, Elif; Sarı, Emre Nur; Seremet Keskin, Ayşegül; Pişkin, Nihal; Külah, Canan; Cömert, Füsun

    2011-01-01

    Intravenous catheterization can lead to colonization as well as a broad spectrum of infections ranging from catheter site infections to catheter-related blood stream infections (CRBSIs). The aim of this study was to evaluate the distribution of causative agents and their antibiotic susceptibility patterns in CRBSIs and catheter site infections along with the colonization rates and colonizing microorganisms in Zonguldak Karaelmas University Hospital, Turkey. The results of cultures from catheter tips and/or intracatheter blood cultures and simultaneously taken peripheral blood cultures were sent to medical microbiology laboratory and were retrospectively investigated for 201 patients hospitalized between September 2007 and September 2009. The catheter tips were cultured by semi-quantitative and quantitative culture methods. Blood cultures from the catheters and peripheral veins were performed in BACTEC 9120 (Becton Dickinson, USA) blood culture systems. The antibiotic susceptibility tests were done by Kirby-Bauer disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Out of 201 patients included, 28 (13.9%) had CRBSIs and 13 (6.4%) had catheter site infections while colonization was defined for 55 (27.3%) patients. Of 28 patients with CRBSIs, Acinetobacter spp. were isolated from 11 including five carbapenem-resistant strains, methicillin-resistant coagulase-negative staphylococci (MRCNS) from eight, methicillin-susceptible coagulase-negative staphylococci (MSCNS) from two, Klebsiella pneumoniae from two patients and one of each patient's cultures yielded methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Pseudomonas aeruginosa, Enterococcus spp., Escherichia coli and MRCNS + Enterococcus faecium. Of 13 patients with catheter site infections, five MSCNS, two methicillin-susceptible S.aureus (MSSA), two E.coli, and one of each K.pneumoniae, MRCNS, Enterococcus spp., K.pneumoniae + P

  18. In Vitro Antibiotic Susceptibilities of Yersinia pestis Determined by Broth Microdilution following CLSI Methods

    PubMed Central

    Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K.; Worsham, Patricia L.

    2015-01-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. PMID:25583720

  19. Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics.

    PubMed

    Hejnar, Petr; Bardon, Jan; Sauer, Pavel; Kolár, Milan

    2007-04-15

    Only little is known about normal oral bacterial flora in captive snakes containing Stenotrophomonas maltophilia. This microbe has been reported as a causative agent of numerous infections in reptiles. Therefore, the goal of the study was to detect its presence in the mouths of a significant number of healthy captive snakes and determining its susceptibility to antibiotics at 30 and 37 degrees C. The isolates were obtained in 1999-2005 from mouth swabs of 115 snakes of 12 genera and 22 species-most often Elaphe guttata (24 individuals; 20.9%). Susceptibility to 24 antibiotics was tested by the microdilution method. The microbe was demonstrated in 34 (29.6%) individuals. Overall, 47 strains of S. maltophilia were acquired. Evaluation using PFGE profiles and antibiograms resulted in confirmation of one strain of S. maltophilia in 23 (20.0%) individuals, two strains in nine (7.8%) and three in two (1.8%) snakes. All tested antibiotics were more effective at 37 degrees C, with the partial exception of cotrimoxazole and cefoperazone/sulbactam. At a temperature of 37 degrees C, the lowest frequency of resistance to levofloxacin (no resistant strains), cotrimoxazole and ofloxacin (97.9% of susceptible strains) was recorded. At 30 degrees C, the most active agents were cotrimoxazole (97.9% of susceptible strains), levofloxacin (91.5%) and ofloxacin (85.1%). In conclusion, S. maltophilia is present in the mouths of about one third of healthy captive snakes, showing good susceptibility to cotrimoxazole, some fluoroquinolones and aminoglycosides. The antibiotics (particularly aminoglycosides) are more effective at 37 degrees C.

  20. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  1. [Distribution and changes of antibiotic susceptibility of genus Haemophilus (author's transl)].

    PubMed

    Kosakai, N; Oguri, T

    1976-02-01

    We studied on the distribution and changes of antibiotic susceptibility of H. influenzae, H. parainfluenzae and H. parahaemolyticus isolated from clinical materials, mainly from sputum and pharyngeal swabs. In this study we used 132 strains of H. influenzae, 89 strains of H. parainfluenzae and 43 strains of H. parahaemolyticus isolated during January and June of 1975, and estimated the susceptibility for the following eighteen antibiotics by the agar plate dilution method: ampicillin, amoxicillin, ciclacillin, sulbenicillin, carbenicillin, cephalothin, cefazolin, ceftezole, cephalexin, streptomycin, kanamycin, gentamicin, dibekacin, tetracycline, doxycycline, chloramphenicol, thiamphenicol and colistin. We compared these with previously reported results and observed the changes of antibiotic susceptibility. Ampicillin has the strongest antibiotic activity on three species of Haemophilus and the activity of four cephalosporins was weakest. Among three species H. parahaemolyticus was most susceptible and H. influenzae least susceptible to cephalosporins. Antibiotic activity of cyclacillin was rather weak. Other twelve antibiotics have good activity on Haemophilus. We could not find any ampicillin-resistant strain, but found five (3.8%) streptomycin-resistant, one (0.8%) kanamycin-resistant, eleven (8.3%) tetracycline-resistant, and seven (5.3%) chloramphenicol-resistant strains of H. influenzae. Six years ago we found five (9.6%) streptomycin-resistant and one (1.9%) tetracycline-resistant strains, but no resistant strain to other antibiotics. Tetracycline- and chloramphenicol-resistant strains are supposed to have a tendency to increase. There were very few strains which were resistant to more than two antibiotics among H. influenzae. We found a few strains resistant to tetracycline or chloramphenicol among H. parainfluenzae and H. parahaemolyticus, and one strain of H. parainfluenzae was less susceptible to ampicillin.

  2. Microbial Susceptibility and Plasmid Profiles of Methicillin-Resistant Staphylococcus aureus and Methicillin-Susceptible S. aureus

    PubMed Central

    Shahkarami, Fatemeh; Rashki, Ahmad; Rashki Ghalehnoo, Zahra

    2014-01-01

    Background: Today, significant increase in the prevalence and emergence of methicillin-resistant Staphylococcus aureus (MRSA) is a serious public health concern and is likely to have a dramatic negative impact on many current medical practices. Therefore, identification of MRSA strains is important for both clinical and epidemiological implications. Objectives: The present study was carried out to determine the frequency of methicillin resistant; antibiotic susceptibility and plasmid profiles of S. aureus recovered from different types of clinical samples of patients in Zabol, Iran. Material and Methods: Clinical samples from 500 outpatient and hospitalized patients were tested for S. aureus. The susceptibility of 106 S. aureus to 11 antibiotics was evaluated by the disk diffusion method and Etest oxacillin strips. The presence of mecA gene was investigated by polymerase chain reaction (PCR). The plasmid profile patterns of all isolates were determined by a modified alkaline lysis method. Results: A total of 67 (63.20%) strains were found to be MRSA isolates. Most of MRSA isolates showed high level of resistance to ampicillin, erythromycin, nalidixic acid, penicillin, and tetracycline. Twenty-six percent of MRSA isolates showed high level of resistance to oxacillin (minimum inhibitory concentration [MIC] ≥ 256 μg/mL). mecA gene was detected among 62 MRSA isolates. Totally, 75 isolates of both strains harbored plasmid. Conclusions: Resistance to oxacillin and other antibiotics was high, and most of the isolates were found to be multi-drug resistance (MDR). Plasmid analysis of representative S. aureus isolates also demonstrates the presence of a wide range of plasmid sizes, with no consistent relationship between plasmid profiles and resistance phenotypes. Regular surveillance of hospital infections and monitoring of their antibiotic sensitivity patterns are required to reduce MRSA prevalence. High prevalence and multi-drug resistance of MRSA isolates in southeast

  3. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  4. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    PubMed Central

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  5. Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity.

    PubMed

    Stokes, Jonathan M; French, Shawn; Ovchinnikova, Olga G; Bouwman, Catrien; Whitfield, Chris; Brown, Eric D

    2016-02-18

    A poor understanding of the mechanisms by which antibiotics traverse the outer membrane remains a considerable obstacle to the development of novel Gram-negative antibiotics. Herein, we demonstrate that the Gram-negative bacterium Escherichia coli becomes susceptible to the narrow-spectrum antibiotic vancomycin during growth at low temperatures. Heterologous expression of an Enterococcus vanHBX vancomycin resistance cluster in E. coli confirmed that the mechanism of action was through inhibition of peptidoglycan biosynthesis. To understand the nature of vancomycin permeability, we screened for strains of E. coli that displayed resistance to vancomycin at low temperature. Surprisingly, we observed that mutations in outer membrane biosynthesis suppressed vancomycin activity. Subsequent chemical analysis of lipopolysaccharide from vancomycin-sensitive and -resistant strains confirmed that suppression was correlated with truncations in the core oligosaccharide of lipopolysaccharide. These unexpected observations challenge the current understanding of outer membrane permeability, and provide new chemical insights into the susceptibility of E. coli to glycopeptide antibiotics.

  6. Antibiotic Susceptibility of Streptococcus Pyogenes Isolated from Respiratory Tract Infections in Dakar, Senegal

    PubMed Central

    Camara, Makhtar; Dieng, Assane; Boye, Cheikh Saad Bouh

    2013-01-01

    Group A Streptococcus (GAS) is one of the major causes of respiratory tract infections. The objectives of this study were to identify isolates of S. pyogenes obtained from respiratory tract infections, and to assess their susceptibility to several antibiotics. A total of 40 strains were isolated and their susceptibility to 17 antibiotics was tested using a standard disk diffusion method. The minimum inhibitory concentrations (MICs) were determined using the E-test. All isolates were sensitive to β-lactam antibiotics including penicillin, amoxicillin, and cephalosporins. Macrolides remain active with the exception of spiramycin, which showed reduced susceptibility. Out of the 40 isolates, 100% of the isolates were resistant to tetracycline. Interestingly, isolates were sensitive to chloramphenicol, teicoplanin, vancomycine, and levofloxacin, providing potential alternative choices of treatment against infections with S. pyogenes. PMID:24826076

  7. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    PubMed Central

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-01-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology. PMID:26997474

  8. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  9. Laser based enhancement of susceptibility of bacteria to antibiotic

    NASA Astrophysics Data System (ADS)

    Reznick, Yana; Banin, Ehud; Lipovsky, Anat; Lubart, Rachel; Zalevsky, Zeev

    2012-03-01

    Our objective is to test the effect of pulsed (Q-switched) and continuous wave (CW) laser light at wavelength of 532nm on the viability of free-living stationary phase bacteria with and without gentamicin (an antibiotic) treatment. Free living stationary phase gram negative bacteria (Pseudomonas aeruginosa strain PAO1) was immersed in Luria Broth (LB) solution and exposed to Q-switched and CW lasers with and without the addition of the antibiotic gentamicin. Cell viability was determined at different time points. Laser treatment alone did not reduce cell viability compared to untreated control and the gentamicin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamicin treatment, however, resulted in a synergistic effect and viability was reduced by 8 log's for P. aeruginosa PAO1.

  10. Fitness cost of antibiotic susceptibility during bacterial infection.

    PubMed

    Roux, Damien; Danilchanka, Olga; Guillard, Thomas; Cattoir, Vincent; Aschard, Hugues; Fu, Yang; Angoulvant, Francois; Messika, Jonathan; Ricard, Jean-Damien; Mekalanos, John J; Lory, Stephen; Pier, Gerald B; Skurnik, David

    2015-07-22

    Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.

  11. Identification and antibiotic susceptibility of coagulase negative staphylococci isolated in corneal/external infections

    PubMed Central

    Pinna, A.; Zanetti, S.; Sotgiu, M.; Sechi, L.; Fadda, G.; Carta, F.

    1999-01-01

    AIMS—To identify and determine antibiotic susceptibility of coagulase negative staphylococci (CoNS) isolated from patients with chronic blepharitis, purulent conjunctivitis, and suppurative keratitis.
METHODS—A retrospective review of all culture positive cases of chronic blepharitis, purulent conjunctivitis, and suppurative keratitis between July 1995 and December 1996 was performed. Cases in which CoNS were the sole isolates were analysed. Species identification was performed by using a commercially available standardised biochemical test system. Antibiotic susceptibility to penicillin, gentamicin, tetracycline, erythromycin, ciprofloxacin, and teicoplanin was determined by agar disc diffusion (Kirby-Bauer method). Teicoplanin resistance was confirmed by agar dilution.
RESULTS—42 Staphylococcus epidermidis, four S warneri, three S capitis, two S hominis, one each of S xylosus, S simulans, S equorum, and S lugdunensis were identified. 37 CoNS were penicillin resistant, 12 gentamicin resistant, 28 tetracycline resistant, 18 erythromycin resistant, four ciprofloxacin resistant, and one teicoplanin resistant (MIC, 32 µg/ml). In total, 16 strains were resistant to three or more antibiotics.
CONCLUSION—Species of CoNS apart from S epidermidis may be isolated from patients with corneal and external infection. Antibiotic susceptibility of CoNS is unpredictable and multiresistant strains are common. As a result, antibiotic susceptibility testing should be performed in all cases of clinically significant ocular infections caused by CoNS.

 PMID:10381660

  12. Susceptibility of bacterial isolates from chronic canine otitis externa to twenty antibiotics.

    PubMed

    Guedeja-Marrón, J; Blanco, J L; Ruperez, C; Garcia, M E

    1998-10-01

    In this paper we present the results of studies on the susceptibility to antibiotics of bacteria isolated from chronic canine otitis externa. We tested 46 bacterial strains (S. aureus, coagulase-negative staphylococci, Corynebacterium spp., and gram-negative bacilli) with 20 different antibiotics. We observed increased resistance to antibiotics of bacteria isolated from canine otitis externa as compared to the resistance reported earlier. This may be due to the indiscriminate use of some antibiotics in the last years and indicates the importance of sensitivity testing for the effective treatment of chronic otitis externa, especially that caused by gram-negative bacilli. The clinician may initiate empiric treatment with antibiotics before obtaining the sensitivity test results; the best results may be expected from a topical application of Bacitracin or Chloramphenicol, and from a systemic therapy with Cephalosporines. Therapeutical scheme for treating various bacterial groups are presented in the paper.

  13. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections, with focus on doxycycline.

    PubMed

    Hamad, Tarza; Hellmark, Bengt; Nilsdotter-Augustinsson, Åsa; Söderquist, Bo

    2015-12-01

    In recent years, coagulase-negative staphylococci such as Staphylococcus epidermidis have gained importance as nosocomial pathogens, especially in immunocompromised patients and prosthetic joint infections (PJIs). These infections are often long lasting and difficult to treat due to the production of bacterial biofilm and the transformation of the bacteria into a stationary growth phase. Rifampicin is able to penetrate the biofilm, but to reduce the risk of development of rifampicin resistance it should be used in combination with an additional antibiotic. In this study we used Etest to investigate the antimicrobial susceptibility of 134 clinical isolates of S. epidermidis obtained from PJIs to six oral antibiotics: doxycycline, rifampicin, linezolid, fusidic acid, clindamycin, and ciprofloxacin. We also performed synergy testing on doxycycline in combination with each of the remaining antibiotics. Ninety-three (69%) of the 134 isolates were susceptible to doxycycline, 94/134 (70%) to rifampicin, 56/134 (42%) to clindamycin, 25/134 (19%) to ciprofloxacin, 81/134 (60%) to fusidic acid, and 100% to linezolid. Thirty-two (80%) of the 40 isolates not fully susceptible to rifampicin were susceptible to doxycycline. Doxycycline in combination with each of the other investigated antibiotics exerted an additive effect on nearly half of the isolates, with the exception of clindamycin, which displayed an even higher percentage of additive effect (69%). To conclude, as the majority of the S. epidermidis isolates were susceptible to doxycycline, this antimicrobial agent may provide a potential alternative for combination therapy together with rifampicin.

  14. Association between clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic fibrosis lung

    PubMed Central

    Jansen, Gunther; Mahrt, Niels; Tueffers, Leif; Barbosa, Camilo; Harjes, Malte; Adolph, Gernot; Friedrichs, Anette; Krenz-Weinreich, Annegret; Rosenstiel, Philip; Schulenburg, Hinrich

    2016-01-01

    Background and objectives: Cystic fibrosis patients suffer from chronic lung infections that require long-term antibiotic therapy. Pseudomonas readily evolve resistance, rendering antibiotics ineffective. In vitro experiments suggest that resistant bacteria may be treated by exploiting their collateral sensitivity to other antibiotics. Here, we investigate correlations of sensitivity and resistance profiles of Pseudomonas aeruginosa that naturally adapted to antibiotics in the cystic fibrosis lung. Methodology: Resistance profiles for 13 antibiotics were obtained using broth dilution, E-test and VITEK mass spectroscopy. Genetic variants were determined from whole-genome sequences and interrelationships among isolates were analyzed using 13 MLST loci. Result: Our study focused on 45 isolates from 13 patients under documented treatment with antibiotics. Forty percent of these were clinically resistant and 15% multi-drug resistant. Colistin resistance was found once, despite continuous colistin treatment and even though colistin resistance can readily evolve experimentally in the laboratory. Patients typically harbored multiple genetically and phenotypically distinct clones. However, genetically similar clones often had dissimilar resistance profiles. Isolates showed mutations in genes encoding cell wall synthesis, alginate production, efflux pumps and antibiotic modifying enzymes. Cross-resistance was commonly observed within antibiotic classes and between aminoglycosides and β-lactam antibiotics. No evidence was found for consistent phenotypic resistance to one antibiotic and sensitivity to another within one genotype. Conclusions and implications: Evidence supporting potential collateral sensitivity in clinical P. aeruginosa isolates remains equivocal. However, cross-resistance within antibiotic classes is common. Colistin therapy is promising since resistance to it was rare despite its intensive use in the studied patients. PMID:27193199

  15. Trends in antibiotic susceptibility of bloodstream pathogens in hospitalized patients in France, 1996 to 2007.

    PubMed

    Decousser, Jean-Winoc; Lamy, Brigitte; Pina, Patrick; Allouch, Pierre Yves

    2010-03-01

    Nationwide surveys of antimicrobial susceptibility of bacteria isolated from bloodstream infections are required to fit empiric therapy to recent trends and detect emerging resistance. We report the results of a French national prospective survey based on the College of Bacteriology-Virology and Hygiene study group network performed each October during the 1996 to 2007 period, with focus on Enterobacteriaceae (7708 isolates) and Staphylococcus aureus (2271 isolates). The most relevant antimicrobial susceptibilities trends were i) a decrease in fluoroquinolones susceptibility among Enterobacteriaceae (96-90%, P < 0.0001) and Escherichia coli isolates (98-89%, P < 0.0001), respectively, ii) the slight but significant decrease in cefotaxime susceptibility among E. coli (P = 0.016), and iii) the significant increase in gentamicin susceptibility among S. aureus strains (P = 0.016). This survey reports antibiotic susceptibility of bloodstream pathogens in France. The empiric use of fluoroquinolones in severe infections should be cautiously monitored by thorough clinical and microbiologic follow-up.

  16. Antibiotic Susceptibilities of Bacteria Isolated within the Oral Flora of Florida Blacktip Sharks: Guidance for Empiric Antibiotic Therapy

    PubMed Central

    Unger, Nathan R.; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O.

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  17. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    PubMed

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline.

  18. Intestinal Alkaline Phosphatase Prevents Antibiotic-Induced Susceptibility to Enteric Pathogens

    PubMed Central

    Alam, Sayeda Nasrin; Yammine, Halim; Moaven, Omeed; Ahmed, Rizwan; Moss, Angela K.; Biswas, Brishti; Muhammad, Nur; Biswas, Rakesh; Raychowdhury, Atri; Kaliannan, Kanakaraju; Ghosh, Sathi; Ray, Madhury; Hamarneh, Sulaiman; Barua, Soumik; Malo, Nondita S.; Bhan, Atul K.; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Objective To determine the efficacy of oral supplementation of the gut enzyme intestinal alkaline phosphatase (IAP) in preventing antibiotic-associated infections from Salmonella enterica serovar Typhimurium (S. Typhimurium) and Clostridium difficile. Summary background data The intestinal microbiota plays a pivotal role in human health and well-being. Antibiotics inherently cause dysbiosis, an imbalance in the number and composition of intestinal commensal bacteria, which leads to susceptibility to opportunistic bacterial infections. Previously, we have shown that IAP preserves the normal homeostasis of intestinal microbiota and that oral supplementation with calf IAP (cIAP) rapidly restores the normal gut flora. We hypothesized that oral IAP supplementation would protect against antibiotic-associated bacterial infections. Methods C57BL/6 mice were treated with antibiotic(s) +/− cIAP in the drinking water followed by oral gavage of S. Typhimurium or C. difficile. Mice were observed for clinical conditions and mortality. After a defined period of time mice were sacrificed and investigated for hematological, inflammatory and histological changes. Results We observed that oral supplementation with cIAP during antibiotic treatment protects mice from infections with S. Typhimurium as well as C. difficile. Animals given IAP maintained their weight, had reduced clinical severity and gut inflammation, and improved survival. Conclusion Oral IAP supplementation protected mice from antibiotic-associated bacterial infections. We postulate that oral IAP supplementation could represent a novel therapy to protect against antibiotic-associated diarrhea (AAD), C. difficile-associated disease (CDAD), and other enteric infections in humans. PMID:23598380

  19. Determination of tolerance to antibiotic bactericidal activity on Kirby-Bauer susceptibility plates.

    PubMed

    Peterson, L R; Denny, A E; Gerding, D N; Hall, W H

    1980-11-01

    A rapid method utilizing Kirby-Bauer susceptibility plates was developed to determine bacterial tolerance to antibiotic bactericidal activity. After completion of initial antibiotic disk susceptibility testing, the disks containing cephalothin, cefazolin, nafcillin, oxacillin, and methicillin were removed and replaced with disks containing a potent beta-lactamase. The plates were reincubated for 18-24 hours and examined for regrowth of organisms within the original zone of inhibition. For 15 of 16 patients who had serious Staphylococcus aureus infections, the method correlated with clinical outcome of antibiotic chemotherapy. Broth dilution tests for bactericidal activity only correlated with clinical response for 11 of 16 patients. One hundred consecutive clinical S. aureus isolates tested with the new method demonstrated tolerance in 27% of strains to cephalothin, 15% to cefazolin, 1% to oxacillin, and 2% of nafcillin.

  20. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance.

    PubMed

    Smith, Sinéad M; O'Morain, Colm; McNamara, Deirdre

    2014-08-07

    The gram-negative bacterium Helicobacter pylori (H. pylori) causes chronic gastritis, gastric and duodenal ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Treatment is recommended in all symptomatic patients. The current treatment options for H. pylori infection are outlined in this review in light of the recent challenges in eradication success, largely due to the rapid emergence of antibiotic resistant strains of H. pylori. Antibiotic resistance is a constantly evolving process and numerous studies have shown that the prevalence of H. pylori antibiotic resistance varies significantly from country to country, and even between regions within the same country. In addition, recent data has shown that previous antibiotic use is associated with harbouring antibiotic resistant H. pylori. Local surveillance of antibiotic resistance is warranted to guide clinicians in their choice of therapy. Antimicrobial resistance is assessed by H. pylori culture and antimicrobial susceptibility testing. Recently developed molecular tests offer an attractive alternative to culture and allow for the rapid molecular genetic identification of H. pylori and resistance-associated mutations directly from biopsy samples or bacterial culture material. Accumulating evidence indicates that surveillance of antimicrobial resistance by susceptibility testing is feasible and necessary to inform clinicians in their choice of therapy for management of H. pylori infection.

  1. Changing susceptibility of Pseudomonas aeruginosa isolates from cystic fibrosis patients with the clinical use of newer antibiotics.

    PubMed Central

    Bosso, J A; Allen, J E; Matsen, J M

    1989-01-01

    To detect a change in antibiotic susceptibility patterns in Pseudomonas aeruginosa isolates upon the introduction and clinical use of ciprofloxacin, aztreonam, and ceftazidime, MICs for clinical isolates collected before introduction of the antibiotics, during early clinical use, and later were determined for these and seven other antipseudomonal antibiotics. Concomitant resistance to two or more antibiotics was also studied. Over the three study periods, rates of susceptibility to 9 of the 10 antibiotics decreased. The largest decrease occurred with ceftazidime. Analysis of subsets of isolates from patients treated with ciprofloxacin or aztreonam also showed declining susceptibility to the latter but a stabilization of susceptibility to the former after an initial decline. Concomitant resistance within and among antibiotic classes was common. PMID:2499252

  2. Antibiotic susceptibility of bacterial isolates from 502 dogs with respiratory signs.

    PubMed

    Rheinwald, M; Hartmann, K; Hähner, M; Wolf, G; Straubinger, R K; Schulz, B

    2015-04-04

    The aim of this study was to investigate the prevalence of bacterial species isolated from bronchoalveolar lavage fluid (BALF) samples taken from dogs with respiratory signs and to determine their antibiotic susceptibility. Clinical cases were included in the study if they showed signs of respiratory disease and data relating to bacterial culture and susceptibility of BALF samples were available. The medical records of 493 privately owned dogs that were presented between January 1989 and December 2011 were evaluated retrospectively. In 35 per cent of samples, no bacteria were cultured. Bacteria isolated from culture-positive samples included Streptococcus species (31 per cent of positive cultures), Enterobacteriaceae (30 per cent, including Escherichia coli (15 per cent)), Staphylococcus species (19 per cent), Pasteurella species (16 per cent) and Pseudomonas species (14 per cent). Bordetella bronchiseptica as a primary respiratory pathogen was isolated in 8 per cent of cases. Enrofloxacin showed the best susceptibility pattern; 86 per cent of all isolates and 87 per cent of Gram-negative bacteria were susceptible to this antibiotic. Amoxicillin/clavulanic acid yielded the best susceptibility pattern in Gram-positive bacteria (92 per cent). Therefore, these antibiotics can be recommended for empirical or first-line treatment in dogs with bacterial lower respiratory tract infections.

  3. [Bacteriological profile and antibiotic treatment of postoperative peritonitis].

    PubMed

    Missaoui, K; Marzougui, Y; Kouka, J; Dhibi, Y; Hannachi, Z; Dziri, C; Houissa, M

    2014-01-01

    addapted in 69.4% of cases. The average duration of the prescribed antibiotic was 11 days +/- 6 days. The mortality rate was 39.2%, was 32.23 days. The isolated microorganisms are those of the intestinal flora which is generally changed and thus the bacteria are selected then are multidrug resistant. Prescribing antibiotics should consider probabilistic. Thus, Imipenem-Amiklin combination seems appropriate to our ecology. This empiric antibiotic therapy is secondarily adapted to the results of susceptibility testing to limit the selection of multi-resistant organisms.

  4. [A new rapid antibiotic susceptibility test for enteric bacteria using a color change method].

    PubMed

    Kocagöz, T; Hayran, M; Kocagöz, S

    1988-01-01

    The rapid antibiotic susceptibility tests that have been developed so far cannot be used in daily work, because of their many difficulties and disadvantages. We have developed a new antibiotic susceptibility test for enteric bacteria which gives the result in 4 hours, easy to perform and inexpensive. This method depends upon the mechanism which detects the acid formed by the bacteria, by the change of the color of the pH indicator in the medium. The susceptibility of 110 different isolates of enteric bacteria (E. coli, Klebsiella, Salmonella, Shigella, Proteus, Enterobacter) to ampicillin, amikacin, trimethoprim-sulfamethoxazole, cephradine, cefazolin, erythromycin, gentamicin, and ofloxacin is examined by this new "Rapid Color Change Test" and disc diffusion method. For most organisms tested, there was a good correlation between the results of the two methods. The overall agreement is found to be 91.43%.

  5. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.

    PubMed

    He, J; Mu, X; Guo, Z; Hao, H; Zhang, C; Zhao, Z; Wang, Q

    2014-12-01

    Effective treatment of infectious diseases depends on the ability to rapidly identify the infecting bacteria and the use of sensitive antibiotics. The currently used identification assays usually take more than 72 h to perform and have a low sensitivity. Herein, we present a microbead-based microfluidic platform that is highly sensitive and rapid for bacterial detection and antibiotic sensitivity testing. The platform includes four units, one of which is used for bacterial identification and the other three are used for susceptibility testing. Our results showed that Escherichia coli O157 at a cell density range of 10(1)-10(5) CFU/μL could be detected within 30 min. Additionally, the effects of three antibiotics on E. coli O157 were evaluated within 4-8 h. Overall, this integrated microbead-based microdevice provides a sensitive, rapid, reliable, and highly effective platform for the identification of bacteria, as well as antibiotic sensitivity testing.

  6. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    PubMed

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations.

  7. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics.

    PubMed

    Samoilova, Zoya; Smirnova, Galina; Muzyka, Nadezda; Oktyabrsky, Oleg

    2014-04-01

    Antioxidant activity of green and black tea and extracts of medicinal plants and their ability to modulate antibiotic susceptibility in Escherichia coli were studied. Among a number of extracts tested the maximal capacity to scavenge DPPH radicals and chelate iron in chemical tests was found in green and black tea, Arctostaphylos uva-ursi and Vaccinium vitis-idaea. These extracts contained high level of polyphenols and in aerobic conditions exhibited prooxidant features, producing H2O2 and inducing expression of the katG gene encoding catalase HPI in E. coli cells. A good correlation between the polyphenol content and the ability of extracts to protect bacteria against peroxide stress was observed (r = 0.88). Polyphenol-rich extracts and iron chelators demonstrated the highest modulating effect on the antibiotic susceptibility by changing the time period before lysis started and by influencing the colony-forming ability of bacteria. The direction of the modulating effect was dependent on nature of antibiotic applied: under treatment with ciprofloxacin and ampicillin the extracts predominantly provided protective effects, while under treatment with kanamycin a bactericidal action was enhanced. Mechanism of modulating action of extracts on bacterial antibiotic susceptibility probably involves antioxidant, preferentially iron-chelating, or prooxidant properties of polyphenols.

  8. Susceptibility of clinical Moraxella catarrhalis isolates in British Columbia to six empirically prescribed antibiotic agents

    PubMed Central

    Bandet, Tamara; Whitehead, Sue; Blondel-Hill, Edith; Wagner, Ken; Cheeptham, Naowarat

    2014-01-01

    BACKGROUND: Moraxella catarrhalis is a commensal organism of the respiratory tract that has emerged as an important pathogen for a variety of upper and lower respiratory tract infections including otitis media and acute exacerbations of chronic bronchitis. Susceptibility testing of M catarrhalis is not routinely performed in most diagnostic laboratories; rather, a comment predicting susceptibility based on the literature is attached to the report. The most recent Canadian report on M catarrhalis antimicrobial susceptibility was published in 2003; therefore, a new study at this time was of interest and importance. OBJECTIVE: To determine the susceptibility of M catarrhalis isolates from British Columbia to amoxicillin-clavulanate, doxycycline, clarithromycin, cefuroxime, levofloxacin and trimethoprimsulfamethoxazole. METHODS: A total of 117 clinical M catarrhalis isolates were isolated and tested from five Interior hospitals and two private laboratory centres in British Columbia between January and December 2012. Antibiotic susceptibility of M catarrhalis isolates was characterized using the Etest (E-strip; bioMérieux, USA) according to Clinical Laboratory Standards Institute guidelines. RESULTS: All isolates were sensitive to amoxicillin-clavulanate, doxycycline, clarithromycin, levofloxacin and trimethoprimsulfamethoxazole. One isolate was intermediately resistant to cefuroxime, representing a 99.15% sensitivity rate to the cephem agent. Cefuroxime minimum inhibitory concentrations (MICs) inhibiting 50% and 90% of organisms (MIC50 and MIC90) were highest among the antibiotics tested, and the MIC90 (3 μg/mL) of cefuroxime reached the Clinical Laboratory Standards Institute breakpoint of susceptibility. DISCUSSION: The antibiotic susceptibility of M catarrhalis isolates evaluated in the present study largely confirms the findings of previous surveillance studies performed in Canada. Cefuroxime MICs are in the high end of the sensitive range and the MIC50 and MIC90

  9. Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria

    PubMed Central

    Maisuria, Vimal B.; Hosseinidoust, Zeinab

    2015-01-01

    Phenolic compounds are believed to be promising candidates as complementary therapeutics. Maple syrup, prepared by concentrating the sap from the North American maple tree, is a rich source of natural and process-derived phenolic compounds. In this work, we report the antimicrobial activity of a phenolic-rich maple syrup extract (PRMSE). PRMSE exhibited antimicrobial activity as well as strong synergistic interaction with selected antibiotics against Gram-negative clinical strains of Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. Among the phenolic constituents of PRMSE, catechol exhibited strong synergy with antibiotics as well as with other phenolic components of PRMSE against bacterial growth. At sublethal concentrations, PRMSE and catechol efficiently reduced biofilm formation and increased the susceptibility of bacterial biofilms to antibiotics. In an effort to elucidate the mechanism for the observed synergy with antibiotics, PRMSE was found to increase outer membrane permeability of all bacterial strains and effectively inhibit efflux pump activity. Furthermore, transcriptome analysis revealed that PRMSE significantly repressed multiple-drug resistance genes as well as genes associated with motility, adhesion, biofilm formation, and virulence. Overall, this study provides a proof of concept and starting point for investigating the molecular mechanism of the reported increase in bacterial antibiotic susceptibility in the presence of PRMSE. PMID:25819960

  10. Selective Pharmacologic Inhibition of a PASTA Kinase Increases Listeria monocytogenes Susceptibility to β-Lactam Antibiotics

    PubMed Central

    Pensinger, Daniel A.; Aliota, Matthew T.; Schaenzer, Adam J.; Boldon, Kyle M.; Ansari, Israr-ul H.; Vincent, William J. B.; Knight, Benjamin; Reniere, Michelle L.; Striker, Rob

    2014-01-01

    While β-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore β-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to β-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of β-lactam antibiotics. PMID:24867981

  11. Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria.

    PubMed

    Maisuria, Vimal B; Hosseinidoust, Zeinab; Tufenkji, Nathalie

    2015-06-01

    Phenolic compounds are believed to be promising candidates as complementary therapeutics. Maple syrup, prepared by concentrating the sap from the North American maple tree, is a rich source of natural and process-derived phenolic compounds. In this work, we report the antimicrobial activity of a phenolic-rich maple syrup extract (PRMSE). PRMSE exhibited antimicrobial activity as well as strong synergistic interaction with selected antibiotics against Gram-negative clinical strains of Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. Among the phenolic constituents of PRMSE, catechol exhibited strong synergy with antibiotics as well as with other phenolic components of PRMSE against bacterial growth. At sublethal concentrations, PRMSE and catechol efficiently reduced biofilm formation and increased the susceptibility of bacterial biofilms to antibiotics. In an effort to elucidate the mechanism for the observed synergy with antibiotics, PRMSE was found to increase outer membrane permeability of all bacterial strains and effectively inhibit efflux pump activity. Furthermore, transcriptome analysis revealed that PRMSE significantly repressed multiple-drug resistance genes as well as genes associated with motility, adhesion, biofilm formation, and virulence. Overall, this study provides a proof of concept and starting point for investigating the molecular mechanism of the reported increase in bacterial antibiotic susceptibility in the presence of PRMSE.

  12. Susceptibility of Listeria monocytogenes isolated from food in Italy to antibiotics.

    PubMed

    Aureli, Paolo; Ferrini, Anna Maria; Mannoni, Veruscka; Hodzic, Snjezana; Wedell-Weergaard, Christina; Oliva, Brunello

    2003-06-25

    The susceptibility of 148 strains of Listeria monocytogenes isolated from food to antibiotics currently used in veterinary and human therapy was determined by standard agar dilution and disk diffusion methods. The antibiotics included amikacin, amoxicillin, cefazolin, chloramphenicol, erythromycin, flumequine, fosfomycin, gentamicin, kanamycin, lincomycin, oxytetracycline, rifampicin, spiramycin, streptomycin, tetracycline, tobramycin and vancomycin. Soussy's breakpoints and MIC(50)-MIC(90) values were used to classify the strains into sensitive, moderately sensitive and resistant groups. This work is part of a wider surveillance program on listeriosis started in Italy in 1995.

  13. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    PubMed Central

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-01-01

    Abstract. Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care. PMID:25321396

  14. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    NASA Astrophysics Data System (ADS)

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-10-01

    Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care.

  15. Inhibition of LpxC Increases Antibiotic Susceptibility in Acinetobacter baumannii

    PubMed Central

    García-Quintanilla, Meritxell; Caro-Vega, José M.; Pulido, Marina R.; Moreno-Martínez, Patricia; Pachón, Jerónimo

    2016-01-01

    LpxC inhibitors have generally shown poor in vitro activity against Acinetobacter baumannii. We show that the LpxC inhibitor PF-5081090 inhibits lipid A biosynthesis, as determined by silver staining and measurements of endotoxin levels, and significantly increases cell permeability. The presence of PF-5081090 at 32 mg/liter increased susceptibility to rifampin, vancomycin, azithromycin, imipenem, and amikacin but had no effect on susceptibility to ciprofloxacin and tigecycline. Potentiating existing antibiotics with LpxC inhibitors may represent an alternative treatment strategy for multidrug-resistant A. baumannii. PMID:27270288

  16. Resistance of uropathogenic bacteria to first-line antibiotics in mexico city: A multicenter susceptibility analysis

    PubMed Central

    Arredondo-García, José Luis; Soriano-Becerril, Diana; Solórzano-Santos, Fortino; Arbo-Sosa, Antonio; Coria-Jiménez, Rafael; Arzate-Barbosa, Patricia

    2007-01-01

    Abstract Background Growing antibiotic resistance demands the constant reassessment of antimicrobial efficacy, particularly in countries with wide antibiotic abuse, where higher resistance prevalence is often found. Knowledge of resistance trends is particularly important when prescribing antibiotics empirically, as is usually the case for urinary tract infections (UTIs). Currently, in Mexico City, ampicillin, cotrimoxazole (trimethoprim/sulfamethoxazole), and ciprofloxacin are used as “first-line” antibiotic treatment for UTI. Objective The aim of this study was to analyze the resistance of bacterial isolates to antibiotics, with a focus on first-line antibiotics, in Mexican pediatric patients and sexually active or pregnant female outpatients. Methods In this multicenter susceptibility analysis, bacterial isolates from urine samples collected from pediatric patients and sexually-active or pregnant female outpatients presenting with acute, uncomplicated UTIs in Mexico City from January 2006 through June 2006, were included in the study. Samples were tested for susceptibility to 10 antibiotics by the disk-diffusion method. Results Four-hundred and seventeen bacterial isolates were derived from sexually active or pregnant female outpatients (324 Escherichia coli) and pediatric patients (93 Klebsiella pneumoniae). We found a high prevalence of resistance towards the drugs used as “first-line” when treating UTIs: ampicillin, cotrimoxazole, and ciprofloxacin (79%, 60%, and 24% resistance, respectively). Ninety-eight percent of K pneumoniae isolates were resistant to ampicillin, whereas 66% of the E coli isolates were resistant to cotrimoxazole. Resistance towards third-generation cephalosporins was also high (6%–8% of E coli and 10%–28% of K pneumoniae). This was possibly caused by chromosomal β-lactamases, as 30% of all isolates were also resistant to amoxicillin/clavulanate. In contrast, 98% of the E coli isolates and 84% of the K pneumoniae strains (96

  17. Susceptibility of germfree or antibiotic-treated adult mice to Cryptosporidium parvum.

    PubMed

    Harp, J A; Wannemuehler, M W; Woodmansee, D B; Moon, H W

    1988-08-01

    Adult mice are more resistant than neonatal mice to intestinal colonization with the protozoan parasite Cryptosporidium parvum. Development of a mature intestinal flora may play a role in this resistance. We compared susceptibilities to colonization with C. parvum in adult conventional mice, adult germfree mice, and adult conventional mice treated with oral antibiotics to deplete the intestinal flora. Germfree mice of both CD1 and BALB/c strains were colonized at day 7 following inoculation with C. parvum oocysts isolated from the feces of an infected, diarrheic calf. Age-matched conventional mice of the same strains were comparatively resistant to colonization. Conventional mice treated with antibiotics remained resistant to colonization. These results suggest that the microflora in the intestine was not the sole determinant of resistance or susceptibility to colonization. The germfree adult mouse as an experimental model of cryptosporidiosis is discussed.

  18. Antibiotic Susceptibility Patterns of Pseudomonas Corneal Ulcers in Contact Lens Wearers

    PubMed Central

    Mohammadpour, Mehrdad; Mohajernezhadfard, Zahra; Khodabande, Alireza; Vahedi, Payman

    2011-01-01

    Purpose: To evaluate the resistance or susceptibility of Pseudomonas aeruginosa, the most common pathogen in contact lens keratitis and corneal ulcer, to different antibiotic regimens. Materials and Methods: This cross-sectional study included all patients with recently diagnosed contact lens corneal ulcer whose culture results were positive for P. aeruginosa, from March 2009 to March 2010. The empirical antibiotic therapy was changed to appropriate antibiotics according to the culture results, provided that satisfactory clinical improvement was not achieved with the initial antibiotic regimen. The overall sensitivity or resistance of P. aeruginosa to the most commonly used antibiotics was assessed based on the results of the antibiograms. Results: Fifty-two patients (43 females and 9 males) were included. Forty-five patients (86%) were wearing cosmetic contact lenses, while 7 patients (14%) were using therapeutic contact lenses. Thirty-nine patients (75%) were hospitalized and13 patients (25%) were followed up through an outpatient clinic. Thirty patients (58%) had central ulcers, whereas 22 patients (42%) had peripheral ulcers. Twelve patients (23%) had hypopyon in their first exam. The mean time to diagnose the ulcer after the last time wearing was 2 days (range: 12 hours to 5 days). AMT was required for 10 patients (19%). Based on the antibiograms, PA was shown to be sensitive in 100% of cases to ceftazidime and ciprofloxacin. Amikacin, imipenem, and gentamicin were the second most effective antibiotics. Conclusion: P. aeruginosa was highly sensitive to ceftazidime, ciprofloxacin, and amikacin. All cases were resistant to cefazolin. Resistance to multiple antibiotics might be a significant concern in patients with corneal ulcers. In referral centers dealing with corneal ulcers, the initial antibiotic regimens should be changed from time to time to prevent this phenomenon. PMID:21887079

  19. Cyst infection in autosomal dominant polycystic kidney disease: causative microorganisms and susceptibility to lipid-soluble antibiotics.

    PubMed

    Suwabe, T; Araoka, H; Ubara, Y; Kikuchi, K; Hazue, R; Mise, K; Hamanoue, S; Ueno, T; Sumida, K; Hayami, N; Hoshino, J; Imafuku, A; Kawada, M; Hiramatsu, R; Hasegawa, E; Sawa, N; Takaichi, K

    2015-07-01

    Cyst infection is a frequent and serious complication of autosomal dominant polycystic kidney disease (ADPKD). Lipid-soluble antibiotics like fluoroquinolones show good penetration into cysts and are recommended for cyst infection, but causative microorganisms are often resistant to these agents. This study investigated the profile of the microorganisms causing cyst infection in ADPKD, their susceptibility to lipid-soluble antibiotics, and clinical outcomes. This retrospective study reviewed all ADPKD patients admitted to Toranomon Hospital with a diagnosis of cyst infection from January 2004 to March 2014. All patients who underwent cyst drainage and had positive cyst fluid cultures were enrolled. Patients with positive blood cultures who satisfied our criteria for cyst infection or probable infection were also enrolled. There were 99 episodes with positive cyst fluid cultures and 93 episodes with positive blood cultures. The majority of patients were on dialysis. The death rate was high when infection was caused by multiple microorganisms or when there were multiple infected cysts. Gram-negative bacteria accounted for 74-79 % of the isolates in all groups, except for patients with positive hepatic cyst fluid cultures. The susceptibility of Escherichia coli to fluoroquinolones was very low in patients with hepatic cyst infection, especially those with frequent episodes and those with hepatomegaly. Fungi were detected in two episodes. Fluoroquinolone-resistant microorganisms showed a high prevalence in cyst infection. It is important to identify causative microorganisms to avoid the overuse of fluoroquinolones and to improve the outcome of cyst infection in ADPKD.

  20. Regulatory Mutations Impacting Antibiotic Susceptibility in an Established Staphylococcus aureus Biofilm.

    PubMed

    Atwood, Danielle N; Beenken, Karen E; Lantz, Tamara L; Meeker, Daniel G; Lynn, William B; Mills, Weston B; Spencer, Horace J; Smeltzer, Mark S

    2016-01-11

    We previously determined the extent to which mutations of different Staphylococcus aureus regulatory loci impact biofilm formation as assessed under in vitro conditions. Here we extend these studies to determine the extent to which those regulatory loci that had the greatest effect on biofilm formation also impact antibiotic susceptibility. The experiments were done under in vitro and in vivo conditions using two clinical isolates of S. aureus (LAC and UAMS-1) and two functionally diverse antibiotics (daptomycin and ceftaroline). Mutation of the staphylococcal accessory regulator (sarA) or sigB was found to significantly increase susceptibilities to both antibiotics and in both strains in a manner that could not be explained by changes in the MICs. The impact of a mutation in sarA was comparable to that of a mutation in sigB and greater than the impact observed with any other mutant. These results suggest that therapeutic strategies targeting sarA and/or sigB have the greatest potential to facilitate the ability to overcome the intrinsic antibiotic resistance that defines S. aureus biofilm-associated infections.

  1. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  2. Antibiotic Susceptibility and mecA Frequency in Staphylococcus epidermidis, Isolated From Intensive Care Unit Patients

    PubMed Central

    Najar-Peerayeh, Shahin; Jazayeri Moghadas, Ali; Behmanesh, Mehrdad

    2014-01-01

    Background: Coagulase-negative staphylococci (CoNS), especially Staphylococcus epidermidis, are considered as normal flora of human epithelia and also important opportunistic pathogens for nosocomial infections. S. epidermidis can also act as a reservoir for mecA, responsible for high-level resistance to methicillin and transferring it to S. aureus. Objectives: The aim of this study was to determine the prevalence of S. epidermidis as well as antibiotic susceptibility pattern and mecA prevalence in S. epidermidis isolated from intensive care unit (ICU) patients. Materials and Methods: A cross-sectional study was conducted from September 2010 to September 2011 and 184 coagulase-negative staphylococci were collected from different clinical samples in three hospitals. S. epidermidis was identified by conventional bacteriological tests. Antibiotic susceptibility testing was performed using disk diffusion method. Frequency of mecA was detected by specific PCR. Results: Frequency of S. epidermidis was 34.8%, the most susceptibility was seen to linezolid and vancomycin, and the least susceptibility was seen to tetracycline.Majority of the S. epidermidis isolates carried mecA (92.2%). The most common resistant pattern was trimethoprim-sulfamethoxazole, tetracycline, erythromycin, and methicillin resistance, found in 23.4% of the isolates, followed by resistance to methicillin as the second-most common resistant pattern, observed in 20.3% of the isolates. Conclusions: Frequency of S. epidermidis was significantly lower, compared to other studies. Presence rate of mecA and susceptibility to linezolid and vancomycin did not show significant differences with other investigations, while resistant to trimethoprim-sulfamethoxazole was significantly lower compared to other investigations, and resistance to tetracycline was significantly higher in comparison to other investigations. Presence of methicillin-resistant S. epidermidis in ICU patients, especially in individuals with

  3. Temporal Variabilities in Genetic Patterns and Antibiotic Resistance Profiles of Enterococci Isolated from Human Feces

    PubMed Central

    Nishiyama, Masateru; Shimauchi, Hidetaka; Suzuki, Yoshihiro

    2016-01-01

    Temporal variabilities in the genetic patterns and antibiotic resistance profiles of enterococci were monitored over a 7-month period. Enterococcus faecalis isolates (103 strains) collected from feces showed only one genetic pattern and antibiotic resistance profile within 0 d and 30 d. In contrast, after 60 d and 90 d, the genetic patterns and antibiotic resistance profiles of all E. faecalis isolates (8 strains) clearly differed within 30 d. These results indicate that the genetic patterns and antibiotic resistance profiles of E. faecalis in human feces changed to completely dissimilar patterns between 1 and 2 months. PMID:27265342

  4. A two-hour antibiotic susceptibility test by ATP-bioluminescence.

    PubMed

    March Rosselló, Gabriel Alberto; García-Loygorri Jordán de Urries, María Cristina; Gutiérrez Rodríguez, María Purificación; Simarro Grande, María; Orduña Domingo, Antonio; Bratos Pérez, Miguel Ángel

    2016-01-01

    The antibiotic susceptibility test (AST) in Clinical Microbiology laboratories is still time-consuming, and most procedures take 24h to yield results. In this study, a rapid antimicrobial susceptibility test using ATP-bioluminescence has been developed. The design of method was performed using five ATCC collection strains of known susceptibility. This procedure was then validated against standard commercial methods on 10 strains of enterococci, 10 staphylococci, 10 non-fermenting gram negative bacilli, and 13 Enterobacteriaceae from patients. The agreement obtained in the sensitivity between the ATP-bioluminescence method and commercial methods (E-test, MicroScan and VITEK2) was 100%. In summary, the preliminary results obtained in this work show that the ATP-bioluminescence method could provide a fast and reliable AST in two hours.

  5. Antibiotic susceptibility of Acinetobacter species in intensive care unit in Montenegro.

    PubMed

    Mijovic, Gordana; Pejakov, Ljubica; Vujosevic, Danijela

    2016-08-01

    The global increase in multidrug resistance of Acinetobacter has created widespread problems in the treatment of patients in intensive care units (ICUs). The aim of this study was to assess the current level of antimicrobial susceptibility of Acinetobacter species in ICU of Clinical Centre of Montenegro and determine their epidemiology. Antibiotic susceptibility was tested in 70 isolates of Acinetobacter collected from non-repeating samples taken from 40 patients. The first nine isolates were genotyped by repetitive sequence-based PCR (rep-PCR). Tigecycline was found to be the most active antimicrobial agent with 80.6% of susceptibility. All the isolates were multidrug resistant with fully resistance to cefalosporinas, piperacillin and piperacillin/tazobactam. More than half of them (58.5%) were probably extensively resistant. Seven out of nine examined strains were clonally related by rep-PCR. Our results showed extremely high rate of multidrug resistance (MDR) of Acinetobacter isolates and high percentage of its clonally spreading.

  6. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik.

    PubMed

    Chon, Jung-Whan; Kim, Jong-Hyun; Lee, Sun-Jin; Hyeon, Ji-Yeon; Seo, Kun-Ho

    2012-10-01

    Sunsik, a ready-to-eat food in Korea, is comprised of various agricultural and marine products, and has been an important concern in Bacillus cereus food poisoning. The aim of this study was to investigate the toxin profiles, genotypic and phenotypic patterns as well as antibiotic resistance of B. cereus strains isolated from Sunsik. A subtyping method known as automated repetitive sequence-based PCR system (DiversiLab™) was used to assess the intraspecific biodiversity of these isolates. Thirty-five B. cereus strains were isolated from 100 commercial Sunsik samples, all of which harbored at least 1 enterotoxin gene. The detection rates of nheABC, hblCDA, cytK, and entFM enterotoxin gene among all isolates were 97%, 86%, 77%, and 100%, respectively. Most strains also produced corresponding enterotoxins such as HBL (83%) and NHE (94%). One strain (2.9%) carried the emetic toxin genes, including ces and EM1, and was positive for the HEp-2 cell emetic toxin assay. Most strains were positive for various biochemical tests such as salicin hydrolysis (86%), starch fermentation (89%), hemolysis (89%), motility test (100%) and lecithinase hydrolysis (89%). All isolates were susceptible to most antibiotics although they were highly resistant to β-lactam antibiotics. By using the automated rep-PCR system, all isolates were successfully differentiated, indicating the diversity of B. cereus strains present in Sunsik.

  7. Selective reporting of antibiotic susceptibility test results in European countries: an ESCMID cross-sectional survey.

    PubMed

    Pulcini, Céline; Tebano, Gianpiero; Mutters, Nico T; Tacconelli, Evelina; Cambau, Emmanuelle; Kahlmeter, Gunnar; Jarlier, Vincent

    2017-02-01

    Selective reporting of antibiotic susceptibility test (AST) results is one possible laboratory-based antibiotic stewardship intervention. The primary aim of this study was to identify where and how selective reporting of AST results is implemented in Europe both in inpatient and in outpatient settings. An ESCMID cross-sectional, self-administered, internet-based survey was conducted among all EUCIC (European Committee on Infection Control) or EUCAST (European Committee on Antimicrobial Susceptibility Testing) national representatives in Europe and Israel. Of 38 countries, 36 chose to participate in the survey. Selective reporting of AST results was implemented in 11/36 countries (31%), was partially implemented in 4/36 (11%) and was limited to local initiatives or was not adopted in 21/36 (58%). It was endorsed as standard of care by health authorities in only three countries. The organisation of selective reporting was everywhere discretionally managed by each laboratory, with a pronounced intra- and inter-country variability. The most frequent application was in uncomplicated community-acquired infections, particularly urinary tract and skin and soft-tissue infections. The list of reported antibiotics ranged from a few first-line options, to longer reports where only last-resort antibiotics were hidden. Several barriers to implementation were reported, mainly lack of guidelines, poor system support, insufficient resources, and lack of professionals' capability. In conclusion, selective reporting of AST results is poorly implemented in Europe and is applied with a huge heterogeneity of practices. Development of an international framework, based on existing initiatives and identified barriers, could favour its dissemination as one important element of antibiotic stewardship programmes.

  8. Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods.

    PubMed

    Uysal, Ahmet; Durak, Yusuf

    2012-11-01

    Bacterial contamination in foods and antimicrobial resistance levels of common pathogenic strains causing food-borne disease are important in human health. Thus, typing technologies are important tools to determine primary sources of bacterial contamination. In this study, 40 Escherichia coli strains isolated from 85 food samples were evaluated in terms of genetic diversity, susceptibility to certain antibiotics, and plasmid profiles. Pulsed-field gel electrophoresis was used to identify the genetic relations of E. coli isolates. It was determined that the 40 E. coli strains revealed 32 different pulsotypes represented by 6 subtypes. Antibiotic susceptibility tests conducted by using a disc diffusion method against 15 antibiotics showed that although the isolates revealed 14 different types of resistance profiles, the strains showed the greatest resistance to ampicillin (77.5%), followed by ticarcillin-clavulanic acid (30%), tetracycline (22.5%), and cephalothin (14.5%). Plasmid isolations studies of the strains conducted by the method of alkaline lysis revealed that 18 (45%) of 40 E. coli strains contain 31 different plasmid bands ranging between 64.4 and 1 kb. The results showed that PFGE was a powerful method in tracking sources of food contamination and that the antibiotic resistance levels of food isolates were high and should be monitored.

  9. Antibiotic Susceptibility and Molecular Diversity of Bacillus anthracis Strains in Chad: Detection of a New Phylogenetic Subgroup

    PubMed Central

    Maho, Angaya; Rossano, Alexandra; Hächler, Herbert; Holzer, Anita; Schelling, Esther; Zinsstag, Jakob; Hassane, Mahamat H.; Toguebaye, Bhen S.; Akakpo, Ayayi J.; Van Ert, Matthew; Keim, Paul; Kenefic, Leo; Frey, Joachim; Perreten, Vincent

    2006-01-01

    We genotyped 15 Bacillus anthracis isolates from Chad, Africa, using multiple-locus variable-number tandem repeat analysis and three additional direct-repeat markers. We identified two unique genotypes that represent a novel genetic lineage in the A cluster. Chadian isolates were susceptible to 11 antibiotics and free of 94 antibiotic resistance genes. PMID:16954291

  10. Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa

    PubMed Central

    Kiran, S; Sharma, P; Harjai, K; Capalash, N

    2011-01-01

    Background and Objectives There is increasing emergence of multidrug resistant Pseudomonas aeruginosa (MDRPA) strains and drug resistance is positively-correlated with biofilm-forming ability. Since about 10% of P. aeruginosa genome is controlled by quorum sensing (QS), alteration in its antibiotic susceptibility by targeting QS was the focus of the present study. Materials and Methods One day biofilms of PAO1 and three urinary tract infection MDRPA isolates (PA2, PA8 and PA18) were formed in 96-well microtiter plate. Biofilms were exposed to concentration gradient of ciprofloxacin and gentamicin to obtain Minimum Biofilm Eradication Concentration (MBEC) by direct enumeration method. Susceptibility of 24 h biofilms was evaluated by treatment with ciprofloxacin and gentamicin per se and in combination with lactonase. The effect was also examined on 72 h biofilms by Scanning Electron Microscopy. Results Lactonase treatment did not have any effect on growth of the selected strains but 73.42, 69.1, 77.34 and 72.5% reduction of biofilm was observed after lactonase (1 unit) treatment, respectively. Antibiotics in combination with lactonase (0.3 units) resulted in an increased susceptibility of the biofilm forms by>3.3, 4, 5 and 1.5 folds of MBEC, for ciprofloxacin and>6.67, 12.5, 6 and>2.5 folds, for gentamicin respectively, which could be due to the disruption of biofilm by lactonase treatment as shown by scanning electron microscopy. Also there was significant reduction (p<0.001) in virulence factor production by the strains. Conclusion Lactonase treatment increased antibiotic susceptibility of the biofilms of MDRPA isolates underscoring the potential of quorum quenching in antimicrobial therapeutics. PMID:22347576

  11. Evolution of Helicobacter pylori susceptibility to antibiotics during a 10-year period in Lithuania.

    PubMed

    Kupcinskas, Limas; Rasmussen, Lone; Jonaitis, Laimas; Kiudelis, Gediminas; Jørgensen, Marianne; Urbonaviciene, Neringa; Tamosiunas, Vytas; Kupcinskas, Juozas; Miciuleviciene, Jolanta; Kadusevicius, Edmundas; Berg, Douglas; Andersen, Leif P

    2013-05-01

    The study evaluated the changes in the prevalence of Helicobacter pylori strains with primary resistance to antibiotics during the last 10 years in Lithuania. H. pylori susceptibilities to antibiotics were tested in 89 patients in 1998, in 81 patients in 2001 and in 90 patients in 2007/2008. Susceptibility to metronidazole, clarithromycin, amoxicillin and tetracycline was tested using E-test or agar dilution method. Susceptibility to ciprofloxacin was only tested in 2007/2008. Data about utilization of all authorized and available on market macrolides and clindamycin in Lithuania during 2003-2007 were evaluated using WHO ATC/DDD methodology. A total of 260 H. pylori strains cultured from untreated adult patients were investigated. Primary resistance rates (1998, 2001 and 2007/2008) for metronidazole were 24.7%, 33.3%, and 35.6%, for clarithromycin 1.1%, 3.7%, and 3.3% and for tetracycline 0%, 2.5% and 0% respectively. No cases of amoxicillin resistance have been detected. The resistance rate for ciprofloxacin was 5.6% in 2007/2008. Data of total macrolides and clarithromycin utilization in Lithuania revealed that despite an increase of consumption of these drugs in Lithuania during 2003-2007 in 1.5 times, the total macrolide consumption remains one of the lowest in Europe. We have not observed any significant changes in the susceptibility of H. pylori to the most widely used antibiotics during the recent 10-year period. The low resistance rate to clarithromycin might be related to the policy to avoid use of macrolides as first-line treatment for pulmonary and other infections.

  12. [Susceptibility of 36 Helicobacter pylori clinical isolates to four first-line antibiotics and virulence factors].

    PubMed

    Díaz-Reganon, J; Alarcón, T; Domingo, D; López-Brea, M

    2006-03-01

    Helicobacter pylori possess various virulence factors, including cagA and vacA genes, that are associated with more aggressive symptoms such as bleed-ing ulcer and gastric cancer. Although there are different treatment regimens, there is still a failure rate of up to 20% due to antibiotic resistance, among other causes. In our country resistance to metronidazole and clarithromycin is increasing, especially in children, although they are still susceptible to amoxicillin and tetracycline. In order to determine the susceptibility pattern to these antibiotics 36 H. pylori clinical isolates were studied. MIC was determined by agar diffusion and agar dilution, and vacA and cagA genes were detected by conventional PCR. All isolates were susceptible to amoxicillin and tetracycline. Resistance to metronidazole by diffusion or dilution tests was 35.7% and 36.1%, respectively, and to clarithromycin, 21.4% and 22.3%, respectively. There was one strain that showed intermediate resistance to clarithromycin (MIC 0.38 mg/l), using agar diffusion, and that was included among the resistant strains. Three discrepancies were observed between the diffusion and dilution methods. The vacA s1 allele was detected in 17.2% of the strains, and vacA s2 in 82.8%; 51.7% of the total were cagA+. In conclusion, all strains tested in our study were susceptible to amoxicillin and tetracycline, allowing them to be considered as first-line antibiotics, while clarithromycin and metronidazole maintain a slight increase in their resistance level. The cagA+ strains were detected in expected quantities, while the s1 allele of the vacA gene was detected in lower quantities.

  13. [Evolution of use of antibiotics of restricted prescription and trend of bacterial susceptibility in Concepcion Regional Hospital, Chile].

    PubMed

    Morales, Felipe E; Villa, Lorenzo A; Fernández, Pola B; López, Mariela A; Mella, Sergio; Muñoz, Maritza

    2012-10-01

    The aim of this study was analyze the use of restricted antibiotics by patients hospitalized between 2004 and 2008 in Guillermo Grant Benavente Hospital in Concepcion. Also we attempted to identify possible correlations between antibiotic consumption and patterns of bacterial susceptibility. We performed a retrospective observational study that quantified the use of restricted antibiotics using DDD/100-bed-days, and cumulative susceptibility reports informed by the hospital's microbiology laboratory for bacterial susceptibility. The consumption of restricted antibiotics significantly increased between 2004 and 2008 (35%, p = 0.005). The groups with largest use were glycopeptides (37%) and carbapenems (30 %). These results can be explained by the emergence of endemic Methicillin-resistant Staphylococcus aureus (MRSA) and of Extended-spectrum beta-lactamase (ESBL) Gram negative bacilli. Results showed a decrease in susceptibility of P. aeruginosa to imipenem (p = 0.038) and K. pneumoniae to ciprofloxacin (p = 0.021). The total consumption of restricted antibiotic has significantly increased, especially among complex medical services. A significant decrease in bacterial susceptibility has been observed mainly in gram-negative bacilli. The monitoring of antimicrobial prescribing practices and local susceptibility patterns are essential to promote the rational use of antibiotics.

  14. Serotype/serogroup-specific antibiotic non-susceptibility of invasive and non-invasive Streptococcus pneumoniae, Switzerland, 2004 to 2014.

    PubMed

    Hauser, Christoph; Kronenberg, Andreas; Allemann, Aurélie; Mühlemann, Kathrin; Hilty, Markus

    2016-05-26

    Concurrent analysis of antibiotic resistance of colonising and invasive Streptococcus pneumoniae gives a more accurate picture than looking at either of them separately. Therefore, we analysed 2,129 non-invasive and 10,996 invasive pneumococcal isolates from Switzerland from 2004 to 2014, which spans the time before and after the introduction of the heptavalent (PCV7) and 13-valent (PCV13) conjugated pneumococcal polysaccharide vaccines. Serotype/serogroup information was linked with all antibiotic resistance profiles. During the study period, the proportion of non-susceptible non-invasive and invasive isolates significantly decreased for penicillin, ceftriaxone, erythromycin and trimethoprim/sulfamethoxazole (TMP-SMX). This was most apparent in non-invasive isolates from study subjects younger than five years (penicillin (p = 0.006), erythromycin (p = 0.01) and TMP-SMX (p = 0.002)). Resistant serotypes/serogroups included in PCV7 and/or PCV13 decreased and were replaced by non-PCV13 serotypes (6C and 15B/C). Serotype/serogroup-specific antibiotic resistance rates were comparable between invasive and non-invasive isolates. Adjusted odds ratios of serotype/serogroup-specific penicillin resistance were significantly higher in the west of Switzerland for serotype 6B (1.8; 95% confidence interval (CI): 1.4-4.8), 9V (3.4; 95% CI: 2.0-5.7), 14 (5.3; 95% CI: 3.8-7.5), 19A (2.2; 95% CI: 1.6-3.1) and 19F (3.1; 95% CI: 2.1-4.6), probably due to variations in the antibiotic consumption.

  15. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India

    PubMed Central

    Saha, Sunayana; Nayak, Sridhara; Bhattacharyya, Indrani; Saha, Suman; Mandal, Amit K.; Chakraborty, Subhanil; Bhattacharyya, Rabindranath; Chakraborty, Ranadhir; Franco, Octavio L.; Mandal, Santi M.; Basak, Amit

    2014-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 2008–2013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change. PMID:25278932

  16. Impacts of antibiotics on in vitro UVA-susceptibility of human skin fibroblasts.

    PubMed

    Le Gall, Rozenn; Marchand, Cécile; Rees, Jean-François

    2005-01-01

    Many studies of UVA-induced cell damage use skin cells obtained during plastic surgery. As the skin is contaminated by micro-organisms, antibiotics need to be added to primary skin cell culture media. This study analysed the impact of the most widely used agents, penicillin, streptomycin, and amphotericin B deoxycholate (amB), on UVA-irradiated human skin fibroblasts. The results show that the presence of amB in cell culture media increases the susceptibility of fibroblasts to UVA and the intracellular level of reactive oxygen species, even when cells are irradiated in amB-free saline. This photosensitising effect of amB can be prevented if the antifungal agent is removed from the culture medium at least 24 hours before irradiation. Moreover, the use of streptomycin during cell culture partly protects cells against the UVA-induced mortality linked to amB. Acellular tests on lipid micelles suggest that this protective effect could result from an inhibition of lipid peroxidation by the antibacterial agent. In conclusion, antibiotics should be used with care in cell culture media if the cells are to be used in physiological studies of fine mechanisms in UVA-susceptibility of skin cells. In other cases, cells should be maintained in antibiotic-free media for 24 hours before irradiation.

  17. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India.

    PubMed

    Saha, Sunayana; Nayak, Sridhara; Bhattacharyya, Indrani; Saha, Suman; Mandal, Amit K; Chakraborty, Subhanil; Bhattacharyya, Rabindranath; Chakraborty, Ranadhir; Franco, Octavio L; Mandal, Santi M; Basak, Amit

    2014-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 2008-2013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change.

  18. Optimized In Vitro Antibiotic Susceptibility Testing Method for Small-Colony Variant Staphylococcus aureus

    PubMed Central

    Precit, Mimi R.; Wolter, Daniel J.; Griffith, Adam; Emerson, Julia; Burns, Jane L.

    2016-01-01

    Staphylococcus aureus small-colony variants (SCVs) emerge frequently during chronic infections and are often associated with worse disease outcomes. There are no standardized methods for SCV antibiotic susceptibility testing (AST) due to poor growth and reversion to normal-colony (NC) phenotypes on standard media. We sought to identify reproducible methods for AST of S. aureus SCVs and to determine whether SCV susceptibilities can be predicted on the basis of treatment history, SCV biochemical type (auxotrophy), or the susceptibilities of isogenic NC coisolates. We tested the growth and stability of SCV isolates on 11 agar media, selecting for AST 2 media that yielded optimal SCV growth and the lowest rates of reversion to NC phenotypes. We then performed disk diffusion AST on 86 S. aureus SCVs and 28 isogenic NCs and Etest for a subset of 26 SCVs and 24 isogenic NCs. Growth and reversion were optimal on brain heart infusion agar and Mueller-Hinton agar supplemented with compounds for which most clinical SCVs are auxotrophic: hemin, menadione, and thymidine. SCVs were typically nonsusceptible to either trimethoprim-sulfamethoxazole or aminoglycosides, in accordance with the auxotrophy type. In contrast, SCVs were variably nonsusceptible to fluoroquinolones, macrolides, lincosamides, fusidic acid, and rifampin; mecA-positive SCVs were invariably resistant to cefoxitin. All isolates (both SCVs and NCs) were susceptible to quinupristin-dalfopristin, vancomycin, minocycline, linezolid, chloramphenicol, and tigecycline. Analysis of SCV auxotrophy type, isogenic NC antibiograms, and antibiotic treatment history had limited utility in predicting SCV susceptibilities. With clinical correlation, this AST method and these results may prove useful in directing treatment for SCV infections. PMID:26729501

  19. Identification and antibiotic susceptibility pattern of coagulase-negative staphylococci in various clinical specimens

    PubMed Central

    2013-01-01

    Objective: Antibiotic resistance is a global problem and is more prevalent in developing countries. Coagulase-negative staphylococci (CoNS) are recognized as important pathogen for nosocomial infections. This study was carried out to identify CoNS in various clinical specimens and to determine its antimicrobial susceptibility pattern. Methods: A total of 2989 specimens of blood, pus and wound swab were collected from wards, casualty, ICU and OPD, out of these, staphylococci were isolated in 1000 specimens, of which 381 were identified as CoNS. Culture, gram stain, catalase, coagulase test and antimicrobial susceptibility pattern were done according to clinical manual of microbiology. A total of fourteen antibiotics were used in this study. Susceptibility testing was done by Kirby Bauer disc diffusion technique. Results: Antimicrobial resistance of CoNS were Oxacillin (70.3%), Amoxicillin (74.8%), Amoxicillin+clavulanate (32.8%), Ciprofloxacin (35.2%), Ofloxacin (33.6%), Ceftriaxone (30.4%), Erythromycin (58.3%), Clindamycin (16.3%), Daptomycin (42.5%), Kanamycin (52.2%), Fusidic acid (41.7%), Doxycycline (24.7%), Vancomycin (2.6%) and Linezolid (0.8%). Maximum Oxacillin resistance was between 80 to 90 percent in a group of patients having age of 45 to 65 years and those suffering from cancer or admitted in ICU. Conclusion: The study concluded that CoNS showed significant level of resistance against most of the widely used therapeutic agents. PMID:24550966

  20. Oropharyngeal gonorrhoea: rate of co-infection with sexually transmitted infection, antibiotic susceptibility and treatment outcome.

    PubMed

    Manavi, K; Zafar, F; Shahid, H

    2010-02-01

    The aim of the present study is to investigate the rate of co-infections with other sexually transmitted infections (STIs), antibiotic susceptibility and management of oropharyngeal gonorrhoea diagnosed in a busy genitourinary medicine clinic. The method involved a retrospective study on consecutive patients diagnosed with oropharyngeal gonorrhoea. A total of 131 patients were diagnosed with oropharyngeal gonorrhoea over the study period. The median age of the infected patients was 28 (interquartile range: 22 to 35) years. Forty-one (31%) of patients were younger than 24 years. High rates of co-infection with urethral gonorrhoea (37%), rectal gonorrhoea (37%) or chlamydial infection (16%) were identified. Thirty patients (23%) had only oropharyngeal infection. Twenty-two (17%) patients' isolates showed resistance to at least one antibiotic. Antibiotic resistance among oropharyngeal gonococcal isolates was above 5% between 2000 and 2009. Test-of-cure (TOC) was carried out for only 63 (48%) of patients; none had positive culture. Among 46 isolates treated with cefixime 400 mg/stat, 27 (59%) had TOC; all were negative. Repeat TOC was not carried out for any of the patients. In conclusion, successful management of oropharyngeal gonorrhoea should comprise of counselling, partner notification and TOC after treatment with appropriate antibiotic regimen.

  1. Antibiotic Susceptibility Evaluation of Group A Streptococcus Isolated from Children with Pharyngitis: A Study from Iran

    PubMed Central

    2015-01-01

    Background The aim of this study was to evaluate the antibiotic susceptibility of Group A streptococcus (GAS) to antibiotics usually used in Iran for treatment of GAS pharyngitis in children. Materials and Methods From 2011 to 2013, children 3-15 years of age with acute tonsillopharyngitis who attended Mofid Children's Hospital clinics and emergency ward and did not meet the exclusion criteria were enrolled in a prospective study in a sequential manner. The isolates strains from throat culture were identified as GAS by colony morphology, gram staining, beta hemolysis on blood agar, sensitivity to bacitracin, a positive pyrrolidonyl aminopeptidase (PYR) test result, and the presence of Lancefield A antigen determined by agglutination test. Antimicrobial susceptibility was identified by both disk diffusion and broth dilution methods. Results From 200 children enrolled in this study, 59 (30%) cases were culture positive for GAS. All isolates were sensitive to penicillin G. The prevalence of erythromycin, azithromycin, and clarithromycin resistance by broth dilution method was 33.9%, 57.6%, and 33.9%, respectively. Surprisingly, 8.4% of GAS strains were resistant to rifampin. In this study, 13.5% and 32.2% of the strains were resistant to clindamycin and ofloxacin, respectively. Conclusion The high rate of resistance of GAS to some antibiotics in this study should warn physicians, especially in Iran, to use antibiotics restrictedly and logically to prevent the rising of resistance rates in future. It also seems that continuous local surveillance is necessary to achieve the best therapeutic option for GAS treatment. PMID:26788405

  2. Prevalence of antibiotic susceptibility and resistance of Escherichia coli in acute uncomplicated cystitis in Korea

    PubMed Central

    Kim, Jae Heon; Sun, Hwa Yeon; Kim, Tae Hyong; Shim, Sung Ryul; Doo, Seung Whan; Yang, Won Jae; Lee, Eun Jung; Song, Yun Seob

    2016-01-01

    Abstract Background: The aim of this study is to determine the prevalence of antibiotic susceptibility and resistance of Escherichia coli Escherichia coli (E coli) in female uncomplicated cystitis in Korea using meta-analysis. Methods: A cross-search of the literature was performed with MEDLINE for all relevant data published before October 2015 and EMBASE from 1980 to 2015, the Cochrane Library, KoreaMed, RISS, KISS, and DBPia were also searched. Observational or prospective studies that reported the prevalence of antimicrobial susceptibility and resistance of E coli were selected for inclusion. No language or time restrictions were applied. We performed a meta-analysis using a random effects model to quantify the prevalence of antimicrobial susceptibility and resistance of E coli. Results: Ten studies were eligible for the meta-analysis, which together included a total of 2305 women with uncomplicated cystitis. The overall resistance rate to antibiotics was 0.28 (95% confidence interval [CI]: 0.25, 0.32). The pooled resistance rates were 0.08 (95% CI: 0.06, 0.11) for cephalosporin, 0.22 (95% CI: 0.18, 0.25) for fluoroquinolone (FQ), and 0.43 (95% CI: 0.35, 0.51) for trimethoprim/sulfamethoxazole (TMP/SMX). Regression analysis showed that resistance to FQ is increasing (P = 0.014) and resistance to TMP/SMX is decreasing (P = 0.043) by year. The generation of cephalosporin was not a significant moderator of differences in resistance rate. Conclusion: The resistance rate of FQ in Korea is over 20% and is gradually increasing. Although the resistance rate of TMP/SMX is over 40%, its tendency is in decreasing state. Antibiotic strategies used for the treatment of uncomplicated cystitis in Korea have to be modified. PMID:27603359

  3. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma

    PubMed Central

    Russell, Shannon L; Gold, Matthew J; Hartmann, Martin; Willing, Benjamin P; Thorson, Lisa; Wlodarska, Marta; Gill, Navkiran; Blanchet, Marie-Renée; Mohn, William W; McNagny, Kelly M; Finlay, Brett B

    2012-01-01

    Allergic asthma rates have increased steadily in developed countries, arguing for an environmental aetiology. To assess the influence of gut microbiota on experimental murine allergic asthma, we treated neonatal mice with clinical doses of two widely used antibiotics—streptomycin and vancomycin—and evaluated resulting shifts in resident flora and subsequent susceptibility to allergic asthma. Streptomycin treatment had little effect on the microbiota and on disease, whereas vancomycin reduced microbial diversity, shifted the composition of the bacterial population and enhanced disease severity. Neither antibiotic had a significant effect when administered to adult mice. Consistent with the ‘hygiene hypothesis', our data support a neonatal, microbiota-driven, specific increase in susceptibility to experimental murine allergic asthma. PMID:22422004

  4. Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics.

    PubMed

    Heindorf, Magdalena; Kadari, Mahendar; Heider, Christine; Skiebe, Evelyn; Wilharm, Gottfried

    2014-01-01

    Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii.

  5. Impact of Acinetobacter baumannii Superoxide Dismutase on Motility, Virulence, Oxidative Stress Resistance and Susceptibility to Antibiotics

    PubMed Central

    Heider, Christine; Skiebe, Evelyn; Wilharm, Gottfried

    2014-01-01

    Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii. PMID:25000585

  6. Susceptibility profile of vaginal yeast isolates from Brazil.

    PubMed

    Ribeiro, M A; Dietze, R; Paula, C R; Da Matta, D A; Colombo, A L

    2001-01-01

    Vaginal specimens for culture were obtained from two hundred and five immunocompetent, non-hospitalized patients selected among all women attending the Gynecology and Obstetric Ambulatory Clinic of the University of Espírito Santo, Brazil, during a 2-year period (From 1998 to 1999). Patients were checked for signs and symptoms of vulvovaginitis and previous use of topical and systemic antifungal drugs. Yeast isolates were identified by classical methods and the antifungal susceptibility profile was determined according to NCCLS microbroth assay. The prevalence of vaginal yeast isolates from asymptomatic women was 25% (30/121) and 60% (50/84) among patients with symptoms of vulvovaginitis. Candida albicans was the most frequently isolated species in both groups (46% and 90%, respectively), followed by C. glabrata (13% and 6%, respectively). All isolates were susceptible to amphotericin B. Only ten isolates had dose dependent susceptibility (DDS) or resistance to azoles; and seven of these were non-albicans species. Based on our results we suggest that species identification and antifungal susceptibility testing need not be routinely performed in immunocompetent women, and may be reasonable only for the minority of patients with complicated vulvovaginal candidiasis that fail to respond to therapy.

  7. Antibiotics

    MedlinePlus

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  8. Diversity and antibiotic susceptibility of autochthonous dairy enterococci isolates: are they safe candidates for autochthonous starter cultures?

    PubMed Central

    Terzić-Vidojević, Amarela; Veljović, Katarina; Begović, Jelena; Filipić, Brankica; Popović, Dušanka; Tolinački, Maja; Miljković, Marija; Kojić, Milan; Golić, Nataša

    2015-01-01

    Enterococci represent the most controversial group of dairy bacteria. They are found to be the main constituent of many traditional Mediterranean dairy products and contribute to their characteristic taste and flavor. On the other hand, during the last 50 years antibiotic-resistant enterococci have emerged as leading causes of nosocomial infections worldwide. The aim of this study was to determine the diversity, technological properties, antibiotic susceptibility and virulence traits of 636 enterococci previously isolated from 55 artisan dairy products from 12 locations in the Western Balkan countries (WBC) of Serbia, Croatia and Bosnia and Herzegovina. All strains were identified both by microbiological and molecular methods. The predominant species was Enterococcus durans, followed by Enterococcus faecalis and Enterococcus faecium. Over 44% of the isolates were resistant to ciprofloxacin and erythromycin, while 26.2% of the isolates were multi-resistant to three or more antibiotics belonging to different families. 185 isolates (29.1%) were susceptible to all 13 of the antibiotics tested. The antibiotic-susceptible isolates were further tested for possible virulence genes and the production of biogenic amines. Finally, five enterococci isolates were found to be antibiotic susceptible with good technological characteristics and without virulence traits or the ability to produce biogenic amines, making them possible candidates for biotechnological application as starter cultures in the dairy industry. PMID:26441888

  9. High prevalence of Salmonella in tegu lizards (Tupinambis merianae), and susceptibility of the serotypes to antibiotics.

    PubMed

    Maciel, B M; Argôlo Filho, R C; Nogueira, S S C; Dias, J C T; Rezende, R P

    2010-12-01

    Species of tegu (Tupinambis) are the largest lizards in South America. Large numbers of these lizards are hunted; there is a vigorous trade in their skins and the meat is consumed by rural and native peoples. The animals are also bred in captivity, an economic activity for rural populations which can help in the animals' conservation. Faecal samples from 30 captive-born tegus were analysed for the presence of Salmonella in two separate samplings. In the first analysis, samples from 26 animals (87%) yielded Salmonella enterica of which 23% were of Rubislaw serotype; 20% Carrau and Agona serotypes; 7% Infantis and Saint-Paul serotypes; 3% Panama and Brandenburg serotypes; 10% were S. enterica subsp. enterica and 7% were rough form. In the second analysis, four tegus (13%) which had been negative in the first sampling were positive, thus, 100% of the animals studied carried the bacterium. Antibiotic susceptibility showed resistance to sulfonamide in 82% of the isolates, streptomycin in 64%, tetracycline in 6% and Chloramphenicol in 20%. Two animals carried strains of the same serotype with different patterns of antibiotic susceptibility. Although it is well known that reptiles are a significant source of Salmonella, to our knowledge, its prevalence in tegu has not been studied previously.

  10. Antibiotic Susceptibility and Molecular Screening of Class I Integron in Salmonella Isolates Recovered from Retail Raw Chicken Carcasses in China.

    PubMed

    Meng, Xiaofeng; Zhang, Zengfeng; Li, Keting; Wang, Yin; Xia, Xiaodong; Wang, Xin; Xi, Meili; Meng, Jianghong; Cui, Shenghui; Yang, Baowei

    2017-03-01

    Salmonella is one of the leading causes for foodborne diseases. Foods, particularly those of animal origin, act as an important role for Salmonella transmission. In this study, the antibiotic susceptibility of 743 Salmonella isolates recovered from retail raw chicken carcasses in eight provinces was tested, and the isolates were also screened for the presence of class I integron and drug-resistant gene cassettes. One hundred thirteen (15.21%) isolates were harboring class I integron. A higher percentage of integron-positive Salmonella isolates were found in retail chicken in Sichuan Province (29.33%), followed by Beijing (22.14%), Shaanxi (19.15%), Guangxi (14.13%), Henan (12.50%), Shanghai (7.25%), Fujian (8.22%), and Guangdong (6.25%) Provinces. The respective prevalence of class I integron in Salmonella isolates recovered from retail chickens in large, free, and small markets was 16.31%, 14.04%, and 15.27%. Moreover, 20.13%, 14.02%, and 13.74% of Salmonella isolates recovered from retail chickens stored in frozen, chilled, and ambient conditions, respectively, were positive for class I integron. Subsequent sequencing of class I integron revealed the presence of 10 gene cassettes harboring resistance genes (dfrA17-aadA5, dfrA17-aadA5, dfrA1-aadA1, dfrA12-aadA2, dfrA17-aadA5-aadA4, dfrA1-aadA1-aadA2, dfrA1, dfrA5, aadA2, aacA4-catB8-aadA1-dfrA1-(aac6-II)-(blaCARB-8), blaPSE-1-blaP1). The most prevalent gene cassette was dfrA17-aadA5 (59.62%). Class I integron-positive isolates were significantly more resistant to multiple antibiotics, and they commonly exhibited corresponding antibiotic resistance profiles to the antibiotic resistance gene cassettes harbored in their class I integron. The results indicated that class I integron with different antibiotic resistance gene cassettes that were prevalent in Salmonella isolates differed from provinces, marketplaces, and chicken storage conditions.

  11. [Antibiotic Susceptibility of Vibrio cholerae non O1/non O139 Serogroups Isolated from Environment in the Rostov Region].

    PubMed

    Selyanskaya, N A; Trishina, A V; Verkina, L M; Arkhangelskaya, I V; Kruglikov, V D; Zlenko, Yu M

    2014-01-01

    Analysis of the antibioticograms of 22 strains of Vibrio cholerae non O1/non O139 serogroups (ctxA- tepA-) isolated from the environment in the Rostov Region in 2011 showed that all the cultures were susceptible to ciprofloxacin, aminoglycosides, ceftriaxone, trimetoprime/sulfamethoxazole and resistant to levomycetin and furazolidone. 32%, 18% and 9% of the isolates were resistant to tetracycline, rifampicin and nalidixic acid respectively. No strains of V. cholerae susceptible to all the tested antimicrobials were detected. 37% of the V. cholerae isolates was resistant to two antibacterials and the others showed multiple resistance and contained 3-6 r-determinants of antibiotic resistance. Since the antibiotic resistance genes in Vibrio cholerae non O1/non O139 serogroups are often located on mobile genetic elements (plasmids, interferons, SXT elements), many strains of such organisms, the same as the natural environment, could serve as reservoirs of antibiotic resistance. The presence of antibiotic resistance r-determinants in the investigated strains in various combinations, the antibiotic resistance variability in the isolates collected on the same territory within a relatively short period of time require monitoring of antibiotic susceptibility in them and the use of the antibiotic for the etiotropic therapy only in strict accordance with the antibioticogram of the culture isolated from the concrete patient.

  12. Antibiotic susceptibility of sulfamethoxazole-trimethoprim resistant Stenotrophomonas maltophilia strains isolated at a tertiary care centre in Hungary.

    PubMed

    Juhász, Emese; Pongrácz, Júlia; Iván, Miklós; Kristóf, Katalin

    2015-09-01

    Sulfamethoxazole-trimethoprim (SXT) is the drug-of-choice in Stenotrophomonas maltophilia caused infections. There has been an increase in resistance to SXT of S. maltophilia over recent years. In this study 30 S. maltophilia clinical isolates resistant to SXT were investigated. Antibiotic susceptibilities for ciprofloxacin, moxifloxacin, levofloxacin, doxycycline, tigecycline, ceftazidime, colistin and chloramphenicol were determined by broth microdilution method. None of the strains were susceptible to ciprofloxacin, tigecycline, ceftazidime or colistin. Only 37% of the isolates were susceptible to levofloxacin or moxifloxacin. Two isolates resistant to all tested antibiotic agents and two others susceptible only to doxycycline were further investigated: susceptibility for combinations of antibiotics was analyzed by checkerboard technique. According to the fractional inhibitory concentration indices calculated, moxifloxacin plus ceftazidime combination was found to be synergistic in each case. Genetic testing revealed the predominance of sul1 gene. Our study concluded that the range of effective antibiotic agents is even more limited in infections caused by SXT-resistant S. maltophilia. In these cases, in vitro synergistic antibiotic combinations could be potential therapeutic options.

  13. Effects of refrigerating preinoculated Vitek cards on microbial physiology and antibiotic susceptibility

    NASA Technical Reports Server (NTRS)

    Skweres, Joyce A.; Bassinger, Virginia J.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    Reference cultures of 16 microorganisms obtained from the American Type Culture Collection and four clinical isolates were used in standardized solutions to inoculate 60 cards for each test strain. A set of three ID and three susceptibility cards was processed in the Vitek AutoMicrobic System (AMS) immediately after inoculation. The remaining cards were refrigerated at 4 C, and sets of six cards were removed and processed periodically for up to 17 days. The preinoculated AMS cards were evaluated for microorganism identification, percent probability of correct identification, length of time required for final result, individual substrate reactions, and antibiotic minimal inhibitory/concentration (MIC) values. Results indicate that 11 of the 20 microbes tested withstood refrigerated storage up to 17 days without detectable changes in delineating characteristics. MIC results appear variable, but certain antibiotics proved to be more stable than others. The results of these exploratory studies will be used to plan a microgravity experiment designed to study the effect of microgravity on microbial physiology and antibiotic sensitivity.

  14. [Group B streptococci: serotyping data and susceptibility to antibiotics (author's transl)].

    PubMed

    Rousset, A; Lévy, A; Minck, R

    1977-10-01

    A study of the prevalence of group B streptococci in women (covering 6,000 samples) shows the vaginal presence to be comprised between 6.34 and 16.8%. The highest rate is found in a Centre for venereal diseases. The use of selective media results in a 50 to 75% increase in the number of germ-carries. The distribution found after serotyping of 1,469 strains has been studied. Over half of the strains isolated from the vagina and from infants belong to serotype II and III, one third of the strains causing serious infections are of type III; however, there is a wide dispersion of the serotypes found in neonatal infections. The test for pigmentation on Columbia medium offers an excellent approach for the diagnosis of group B streptococci. MIC testing of 7 antibiotics for 782 strains of various serotypes demonstrates high susceptibility to the beta-lactam antibiotics and makes it possible to detect rare strains with features of polyresistance to chloramphenicol and some macrolide antibiotics.

  15. Reducing the Level of Undecaprenyl Pyrophosphate Synthase Has Complex Effects on Susceptibility to Cell Wall Antibiotics.

    PubMed

    Lee, Yong Heon; Helmann, John D

    2013-06-24

    Undecaprenyl pyrophosphate synthase (UppS) catalyzes the formation of the C55 lipid carrier (UPP) that is essential for bacterial peptidoglycan biosynthesis. Here we selected a vancomycin (VAN)-resistant derivative of Bacillus subtilis W168 which contains a single-point mutation in the ribosome-binding site (RBS) of the uppS gene designated uppS1. Genetic reconstruction experiments demonstrate that the uppS1 allele is sufficient to confer low-level VAN resistance and causes reduced UppS translation. The decreased level of UppS renders B. subtilis slightly more susceptible to many late-acting cell wall antibiotics including β-lactams, but significantly more resistant to fosfomycin and D-cycloserine, antibiotics that interfere with the very early steps of cell wall synthesis. We further show that the uppS1 allele leads to slightly elevated expression of the σ(M) regulon, possibly helping to compensate for the stress caused by a decrease in UPP levels. Notably, the uppS1 mutation increases resistance to VAN, fosfomycin, and D-cycloserine in wild-type cells, but this effect is greatly reduced or eliminated in a sigM mutant background. Our findings suggest that, although UppS is an attractive antibacterial target, incomplete inhibition of UppS function may lead to increased resistance to some cell wall-active antibiotics.

  16. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  17. Spectrum, antibiotic susceptibility and virulence factors of bacterial infections complicating severe acute pancreatitis.

    PubMed

    Israil, A M; Palade, R; Chifiriuc, M C; Vasile, D; Grigoriu, M; Voiculescu, D; Popa, D

    2011-01-01

    Secondary infection of pancreatic necrotic tissue and peripancreatic fluid is a serious complication of acute pancreatitis resulting in significant morbidity and mortality. The aim of this study was to find out the spectrum of bacterial infections, their antibiotic susceptibility patterns and virulence features in patients with severe acute pancreatitis (SAP). A total of 19 patients with acute pancreatitis were consecutively selected from 153 clinical cases of septic abdominal surgical emergencies (age 29-80, 12 males, 7 females) admitted during 2009-2011, in the First Surgical Clinic of the University Emergency Hospital of Bucharest. All 19 SAP cases were submitted to pre-operatory antibiotic empiric treatment. Ten cases were culture negative, in spite of the positive microscopy registered in eight of them. The rest of nine cases were culture positive, 17 different bacterial strains being isolated and identified as belonging to eight aerobic and four anaerobic species. Polymicrobial infection was seen in six patients and the etiology was dominated by Gram-negative bacilli, followed by gut anaerobic bacteria, attesting their colonic origin. The susceptibility testing of the isolated strains confirmed in vitro in all cases the efficiency of the antibiotics that had been used in the empiric pre-operatory treatment. Out of 19 cases submitted to pre-operatory empiric treatment, 14 proved a favorable evolution and five a lethal outcome. The host depending factors (sepsis and other co-morbidities), as well as the aggressivity of the isolated microbial strains (mediated by the presence of different factors implicated in adherence, toxicity and invasion) were found to contribute to the unfavorable, even lethal clinical outcome of SAP cases. In spite of all theoretical controversies, the antibiotic therapy remains at present a very important therapeutic mean for the SAP treatment; although it cannot solve the septic necrotizing pancreatitis in 100% of cases, however

  18. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance.

  19. Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy.

    PubMed

    Athamneh, A I M; Alajlouni, R A; Wallace, R S; Seleem, M N; Senger, R S

    2014-01-01

    Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research.

  20. Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny.

    PubMed

    Adib, N; Ghanbarpour, R; Solatzadeh, H; Alizade, H

    2014-03-01

    Escherichia coli (E. coli) strains are the major cause of urinary tract infections (UTI) and belong to the large group of extra-intestinal pathogenic E. coli. The purposes of this study were to determine the antibiotic resistance profile, virulence genes and phylogenetic background of E. coli isolates from UTI cases. A total of 137 E. coli isolates were obtained from UTI samples. The antimicrobial susceptibility of confirmed isolates was determined by disk diffusion method against eight antibiotics. The isolates were examined to determine the presence and prevalence of selected virulence genes including iucD, sfa/focDE, papEF and hly. ECOR phylo-groups of isolates were determined by detection of yjaA and chuA genes and fragment TspE4.C2. The antibiogram results showed that 71% of the isolates were resistant to cefazolin, 60.42% to co-trimoxazole, 54.16% to nalidixic acid, 36.45% to gentamicin, 29.18% to ciprofloxacin, 14.58% to cefepime, 6.25% to nitrofurantoin and 0.00% to imipenem. Twenty-two antibiotic resistance patterns were observed among the isolates. Virulence genotyping of isolates revealed that 58.39% isolates had at least one of the four virulence genes. The iucD gene was the most prevalent gene (43.06%). The other genes including sfa/focDE, papEF and hly genes were detected in 35.76%, 18.97% and 2.18% isolates, respectively. Nine combination patterns of the virulence genes were detected in isolates. Phylotyping of 137 isolates revealed that the isolates fell into A (45.99%), B1 (13.14%), B2 (19.71%) and D (21.16%) groups. Phylotyping of multidrug resistant isolates indicated that these isolates are mostly in A (60.34%) and D (20.38%) groups. In conclusion, the isolates that possessed the iucD, sfa/focDE, papEF and hly virulence genes mostly belonged to A and B2 groups, whereas antibiotic resistant isolates were in groups A and D. Escherichia coli strains carrying virulence factors and antibiotic resistance are distributed in specific phylogenetic

  1. Antimicrobial Susceptibility Profiles of Staphylococcus aureus Isolates Recovered from Humans, Environmental Surfaces, and Companion Animals in Households of Children with Community-Onset Methicillin-Resistant S. aureus Infections.

    PubMed

    Morelli, John J; Hogan, Patrick G; Sullivan, Melanie L; Muenks, Carol E; Wang, Jeffrey W; Thompson, Ryley M; Burnham, Carey-Ann D; Fritz, Stephanie A

    2015-10-01

    Our objective was to determine the antibiotic susceptibility profiles of Staphylococcus aureus isolates recovered from 110 households of children with community-onset methicillin-resistant S. aureus (MRSA) infections. Cultures were obtained from household members, household objects, and dogs and cats, yielding 1,633 S. aureus isolates. The S. aureus isolates were heterogeneous, although more than half were methicillin resistant. The highest proportion of MRSA was found in bathrooms. The majority of isolates were susceptible to antibiotics prescribed in outpatient settings.

  2. First national survey of antibiotic susceptibility of the Bacteroides fragilis group: emerging resistance to carbapenems in Argentina.

    PubMed

    Fernández-Canigia, Liliana; Litterio, Mirta; Legaria, María C; Castello, Liliana; Predari, Silvia C; Di Martino, Ana; Rossetti, Adelaida; Rollet, Raquel; Carloni, Graciela; Bianchini, Hebe; Cejas, Daniela; Radice, Marcela; Gutkind, Gabriel

    2012-03-01

    The antibiotic susceptibility rates of 363 clinical Bacteroides fragilis group isolates collected from 17 centers in Argentina during the period from 2006 to 2009 were as follows: piperacillin-tazobactam, 99%; ampicillin-sulbactam, 92%; cefoxitin, 72%; tigecycline, 100%; moxifloxacin, 91%; and clindamycin, 52%. No metronidazole resistance was detected in these isolates during this time period. Resistance to imipenem, doripenem, and ertapenem was observed in 1.1%, 1.6%, and 2.3% of B. fragilis group strains, respectively. B. fragilis species showed a resistance profile of 1.5% to imipenem, 1.9% to doripenem, and 2.4% to ertapenem. This is the first report of carbapenem resistance in Argentina. The cfiA gene was present in 8 out of 23 isolates, all of them belonging to the B. fragilis species and displaying reduced susceptibility or resistance to carbapenems (MICs ≥ 4 μg/ml). Three out of eight cfiA-positive isolates were fully resistant to carbapenems, while 5 out of 8 isolates showed low-level resistance (MICs, 4 to 8 μg/ml). The inhibition by EDTA was a good predictor of the presence of metallo-β-lactamases in the fully resistant B. fragilis strains, but discrepant results were observed for low-level resistant isolates. B. fragilis was more susceptible to antimicrobial agents than other Bacteroides species. Bacteroides vulgatus species was the most resistant to ampicillin-sulbactam and piperacillin-tazobactam, and B. thetaiotaomicron/ovatus strains showed the highest level of resistance to carbapenems, with an unknown resistance mechanism. B. vulgatus and the uncommon non-Bacteroides fragilis species were the most resistant to moxifloxacin, showing an overall resistance rate of 15.1%.

  3. Impaired inactivation of digestive proteases: The possible key factor for the high susceptibility of germ-free and antibiotic-treated animals to gut epithelial injury

    PubMed Central

    Qin, Xiaofa

    2017-01-01

    Recent study shows that germ-free and antibiotic-treated animals are highly susceptible to gut epithelial injury. This paper addresses that impaired inactivation of digestive proteases may be the key factor for the increased susceptibility. PMID:28251033

  4. Impaired inactivation of digestive proteases: The possible key factor for the high susceptibility of germ-free and antibiotic-treated animals to gut epithelial injury.

    PubMed

    Qin, Xiaofa

    2017-02-15

    Recent study shows that germ-free and antibiotic-treated animals are highly susceptible to gut epithelial injury. This paper addresses that impaired inactivation of digestive proteases may be the key factor for the increased susceptibility.

  5. Phenotype, genotype, and antibiotic susceptibility of Swedish and Thai oral isolates of Staphylococcus aureus

    PubMed Central

    Blomqvist, Susanne; Leonhardt, Åsa; Arirachakaran, Pratanporn; Carlen, Anette; Dahlén, Gunnar

    2015-01-01

    Objective The present study investigated phenotypes, virulence genotypes, and antibiotic susceptibility of oral Staphylococcus aureus strains in order to get more information on whether oral infections with this bacterium are associated with certain subtypes or related to an over-growth of the S. aureus variants normally found in the oral cavity of healthy carriers. Materials and methods A total number of 157 S. aureus strains were investigated. Sixty-two strains were isolated from Swedish adults with oral infections, 25 strains were from saliva of healthy Swedish dental students, and 45 strains were from tongue scrapings of HIV-positive subjects in Thailand, and 25 Thai strains from non-HIV controls. The isolates were tested for coagulase, nitrate, arginine, and hemolysin, and for the presence of the virulence genes: hlg, clfA, can, sdrC, sdrD, sdrE, map/eap (adhesins) and sea, seb, sec, tst, eta, etb, pvl (toxins). MIC90 and MIC50 were determined by E-test against penicillin V, oxacillin, amoxicillin, clindamycin, vancomycin, fusidic acid, and cefoxitin. Results While the hemolytic phenotype was significantly (p<0.001) more common among the Thai strains compared to Swedish strains, the virulence genes were found in a similar frequency in the S. aureus strains isolated from all four subject groups. The Panton-Valentine leukocidin (PVL) genotype was found in 73–100% of the strains. More than 10% of the strains from Swedish oral infections and from Thai HIV-positives showed low antibiotic susceptibility, most commonly for clindamycin. Only three methicillin-resistant S. aureus (MRSA) strains were identified, two from oral infections and one from a Thai HIV patient. Conclusions S. aureus is occasionally occurring in the oral cavity in both health and disease in Sweden and Thailand. It is therefore most likely that S. aureus in opportunistic oral infections originate from the oral microbiota. S. aureus should be considered in case of oral infections and complaints

  6. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    PubMed Central

    Trojan, Rugira; Razdan, Lovely

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription. PMID:27872643

  7. Comparison of agar dilution and antibiotic gradient strip test with broth microdilution for susceptibility testing of swine Brachyspira species.

    PubMed

    Mirajkar, Nandita S; Gebhart, Connie J

    2016-03-01

    Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics.

  8. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital

    PubMed Central

    Sabir, Sumera; Ahmad Anjum, Aftab; Ijaz, Tayyaba; Asad Ali, Muhammad; ur Rehman Khan, Muti; Nawaz, Muhammad

    2014-01-01

    Objective: The study was conducted to isolate and determine the antibiotic resistance in E. coli from urinary tract infections in a tertiary care hospital, Lahore. Methods: Urine samples (n=500) were collected from patients with signs and symptoms of Urinary tract infections. Bacteria were isolated and identified by conventional biochemical profile. Antibiotic resistance pattern of E. coli against different antibiotic was determined by Kirby-Baur method. Results: Bacterial etiological agent was isolated from 402 samples with highest prevalence of E. coli (321, 80%) followed by Staphylococcus aureus (9.4%), Proteus species (5.4%) and Pseudomonas species (5.2%). The E. coli were highly resistant to penicillin (100%), amoxicillin (100%) and cefotaxime (89.7%), followed by intermediate level of resistance to ceftazidime (73.8%), cephradine (73.8%), tetracycline (69.4%), doxycycline (66.6%), augmentin (62.6%), gentamycin (59.8%), cefuroxime (58.2%), ciprofloxacin (54.2%), cefaclor (50%), aztreonam (44.8%), ceftriaxone (43.3%), imipenem (43.3%), and low level of resistance to streptomycin (30%), kanamycin (19.9%), tazocin (14%), amikacin (12.7%) and lowest to norfloxacin (11.2%). Out of 321 E. coli isolates, 261 (81%) were declared as multiple drug resistant and 5 (1.5%) were extensive drug resistant. Conclusion: It is concluded that most of the urinary tract infections in human are caused by multiple drug resistant E. coli. PMID:24772149

  9. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing.

    PubMed

    Croxatto, Antony; Prod'hom, Guy; Durussel, Christian; Greub, Gilbert

    2014-10-15

    Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.

  10. Preparation of a Blood Culture Pellet for Rapid Bacterial Identification and Antibiotic Susceptibility Testing

    PubMed Central

    Croxatto, Antony; Prod'hom, Guy; Durussel, Christian; Greub, Gilbert

    2014-01-01

    Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections. PMID:25350577

  11. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.

    PubMed Central

    Roth, B L; Poot, M; Yue, S T; Millard, P J

    1997-01-01

    A fluorescent nucleic acid stain that does not penetrate living cells was used to assess the integrity of the plasma membranes of bacteria. SYTOX Green nucleic acid stain is an unsymmetrical cyanine dye with three positive charges that is completely excluded from live eukaryotic and prokaryotic cells. Binding of SYTOX Green stain to nucleic acids resulted in a > 500-fold enhancement in fluorescence emission (absorption and emission maxima at 502 and 523 nm, respectively), rendering bacteria with compromised plasma membranes brightly green fluorescent. SYTOX Green stain is readily excited by the 488-nm line of the argon ion laser. The fluorescence signal from membrane-compromised bacteria labeled with SYTOX Green stain was typically > 10-fold brighter than that from intact organisms. Bacterial suspensions labeled with SYTOX Green stain emitted green fluorescence in proportion to the fraction of permeabilized cells in the population, which was quantified by microscopy, fluorometry, or flow cytometry. Flow cytometric and fluorometric approaches were used to quantify the effect of beta-lactam antibiotics on the cell membrane integrity of Escherichia coli. Detection and discrimination of live and permeabilized cells labeled with SYTOX Green stain by flow cytometry were markedly improved over those by propidium iodide-based tests. These studies showed that bacterial labeling with SYTOX Green stain is an effective alternative to conventional methods for measuring bacterial viability and antibiotic susceptibility. PMID:9172364

  12. Bacillus anthracis diagnostic detection and rapid antibiotic susceptibility determination using 'bioluminescent' reporter phage.

    PubMed

    Schofield, David A; Sharp, Natasha J; Vandamm, Joshua; Molineux, Ian J; Spreng, Krista A; Rajanna, Chythanya; Westwater, Caroline; Stewart, George C

    2013-11-01

    Genetically modified phages have the potential to detect pathogenic bacteria from clinical, environmental, or food-related sources. Herein we assess an engineered 'bioluminescent' reporter phage (Wß::luxAB) as a clinical diagnostic tool for Bacillus anthracis, the etiological agent of anthrax. Wß::luxAB is able to rapidly (within minutes) detect a panel of B. anthracis strains by transducing a bioluminescent phenotype. The reporter phage displays species specificity by its inability, or significantly reduced ability, to detect members of the closely related Bacillus cereus group and other common bacterial pathogens. Using spiked clinical specimens, Wß::luxAB detects B. anthracis within 5 h at clinically relevant concentrations, and provides antibiotic susceptibility information that mirrors the CLSI method, except that data are obtained at least 5-fold faster. Although anthrax is a treatable disease, a positive patient prognosis is dependent on timely diagnosis and appropriate therapy. Wß::luxAB rapidly detects B. anthracis and determines antibiotic efficacy, properties that will help patient outcome.

  13. Molecular and antibiotic susceptibility characterization of Aerococcus viridans isolated from porcine urinary infection.

    PubMed

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-02-29

    Aerococcus viridans has been reported as a human and animal pathogen causing urinary tract infection, arthritis, pneumonia, meningitis and endocarditis. Routinely, A. viridans is not surveyed in clinical diagnosis laboratories and commonly is misidentified as other bacteria. There is no concrete data on the prevalence and impact of the pathogen to both human and animal health. In the present study, we report the isolation and molecular and antibiotic susceptibility characterization of A. viridans strains from porcine urinary infections. A total of 22 isolates were identified as A. viridans by MALDI-TOF MS and confirmed by 16S rRNA gene sequencing. Isolates were genotyped by single enzyme amplified fragments length polymorphism (SE-AFLP) that resulted in 19 clusters of which 81.2% were composed by single isolates. The high genetic heterogeneity corroborates previous studies and appears to be a particularity of A. viridans. The minimal inhibitory concentration (MIC) values also presented variability especially for ceftiofur, fluoroquinolones and aminoglycosides. The high MICs of aminoglycosides, tetracyclines and macrolides seen among the A. viridans corroborate previous reports and the widespread veterinary usage of these antibiotics demand attention for the implication of A. viridans infection to both human and animal health.

  14. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods.

    PubMed

    Brandão, Marcelo Luiz Lima; Umeda, Natália Scudeller; Jackson, Emily; Forsythe, Stephen James; de Filippis, Ivano

    2017-05-01

    Several Cronobacter species are opportunistic pathogens that cause infections in humans. The aim of this study was to detect Cronobacter spp. from 90 samples of retail foods in Brazil, and characterize the strains by phenotypic tests, molecular assays and antibiotic susceptibility. Three isolation methodologies were evaluated using different selective enrichments and the isolates were identified using Vitek 2.0, PCRs protocols, fusA allele sequencing and multilocus sequence typing (MLST). Thirty-eight samples (42.2%) contained Cronobacter spp., and the highest percentage was found in flours (66.7%, 20/30), followed by spices and herbs (36.7%, 11/30), and cereal mixes for children (23.3%, 7/30). The 45 isolates included four species: C. sakazakii (n = 37), C. malonaticus (n = 3), C. dublinensis (n = 3), and C. muytjensii (n = 2); that presented 20 different fusA alleles. MLST analysis revealed 32 sequence types (STs), 13 of which were newly identified. All strains were sensitive to all antibiotics (n = 10) tested. The combination of CSB/v enrichment with DFI plating was considered the most efficient for Cronobacter spp. isolation. This study revealed the presence of Cronobacter spp. in foods commercialized in Brazil and the isolates showed a high diversity after MLST analysis and included two strains of the C. sakazakii ST4 neonatal meningitic pathovar.

  15. Antibiotic Susceptibility of Biofilm Cells and Molecular Characterisation of Staphylococcus hominis Isolates from Blood

    PubMed Central

    Mendoza-Olazarán, Soraya; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Rodríguez-Noriega, Eduardo; Llaca-Díaz, Jorge; Camacho-Ortiz, Adrián; González, Gloria M.; Casillas-Vega, Néstor; Garza-González, Elvira

    2015-01-01

    Objectives We aimed to characterise the staphylococcal cassette chromosome mec (SCCmec) type, genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus hominis isolates from blood. Methods The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with the cefoxitin disk test. mecA gene and SCCmec were detected by multiplex PCR. Genetic relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and composition were evaluated by staining with crystal violet and by detachment assay, respectively; and the biofilm index (BI) was determined. Detection and expression of icaADBC genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic susceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells (minimum biofilm eradication concentration, MBEC) were determined by the broth dilution method. Results Eighty-five percent (57/67) of isolates were methicillin resistant and mecA positive. Of the mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones were detected, with two to five isolates each. Among all isolates, 91% (61/67) were categorised as strong biofilm producers. Biofilm biomass composition was heterogeneous (polysaccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15) isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol. Conclusions S. hominis isolates were highly resistant to methicillin and other antimicrobials. Most of the detected SCCmec types were different than those described for S. aureus. Isolates indicated low clonality. The results indicate that S. hominis is a strong biofilm producer with an extracellular

  16. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Renaud, Helen J; Klaassen, Curtis D

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin+imipenem and cephalothin+neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin+imipenem but stimulated by cephalothin+neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism.

  17. Antibiotic Susceptibility of Enterohemorrhagic Escherichia coli O157:H7 Isolated from an Outbreak in Japan in 1996

    PubMed Central

    Tsuboi, Isami; Ida, Hirohisa; Yoshikawa, Eiji; Hiyoshi, Suehiro; Yamaji, Emiko; Nakayama, Issei; Nonomiya, Tomoko; Shigenobu, Fritz; Shimizu, Masaki; O’Hara, Koji; Sawai, Tetsuo; Mizuoka, Keiji

    1998-01-01

    The antibiotic susceptibilities of 43 strains of Escherichia coli O157:H7 identified in the summer of 1996 in Japan were investigated. Growth of 90% of O157 strains was inhibited at a concentration of ≤0.5 μg/ml by several agents including fosfomycin with glucose-6-phosphate. PMID:9527800

  18. Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics.

    PubMed

    Subramanian, Sreedhar; Roberts, Carol L; Hart, C Anthony; Martin, Helen M; Edwards, Steve W; Rhodes, Jonathan M; Campbell, Barry J

    2008-02-01

    There is increasing evidence that Escherichia coli organisms are important in Crohn's disease (CD) pathogenesis. In CD tissue they are found within macrophages, and the adherent-invasive CD ileal E. coli isolate LF82 can replicate inside macrophage phagolysosomes. This study investigates replication and antibiotic susceptibility of CD colonic E. coli isolates inside macrophages. Replication of CD colonic E. coli within J774-A1 murine macrophages and human monocyte-derived macrophages (HMDM) was assessed by culture and lysis after gentamicin killing of noninternalized bacteria and verified by electron microscopy (EM). All seven CD colonic isolates tested replicated within J774-A1 macrophages by 3 h (6.36-fold +/- 0.7-fold increase; n = 7 isolates) to a similar extent to CD ileal E. coli LF82 (6.8-fold +/- 0.8-fold) but significantly more than control patient isolates (5.2-fold +/- 0.25-fold; n = 6; P = 0.006) and E. coli K-12 (1.0-fold +/- 0.1-fold; P < 0.0001). Replication of CD E. coli HM605 within HMDM (3.9-fold +/- 0.7-fold) exceeded that for K-12 (1.4-fold +/- 0.2-fold; P = 0.03). EM showed replicating E. coli within macrophage vacuoles. Killing of HM605 within J774-A1 macrophages following a 3-h incubation with antibiotics at published peak serum concentrations (C(max)) was as follows: for ciprofloxacin, 99.5% +/- 0.2%; rifampin, 85.1% +/- 6.6%; tetracycline, 62.8% +/- 6.1%; clarithromycin, 62.1% +/- 5.6% (all P < 0.0001); sulfamethoxazole, 61.3% +/- 7.0% (P = 0.0007); trimethoprim, 56.3% +/- 3.4% (P < 0.0001); and azithromycin, 41.0% +/- 10.5% (P = 0.03). Ampicillin was not effective against intracellular E. coli. Triple antibiotic combinations were assessed at 10% C(max), with ciprofloxacin, tetracycline, and trimethoprim causing 97% +/- 0.0% killing versus 86% +/- 2.0% for ciprofloxacin alone. Colonic mucosa-associated E. coli, particularly CD isolates, replicate within macrophages. Clinical trials are indicated to assess the efficacy of a combination

  19. Bacteriological study of neonatal sepsis and antibiotic susceptibility pattern of isolates in Kathmandu, Nepal.

    PubMed

    Shrestha, R K; Rai, S K; Khanal, L K; Manda, P K

    2013-03-01

    Bloodstream infections in neonates are life-threatening emergencies. Identification of the common bacteria causing such infections and their susceptibility patterns will provide necessary information for timely intervention. This study was done to determine the prevalence of neonatal septicaemia, identify the bacterial isolates and study their antimicrobial susceptibility pattern in neonates admitted to the neonatal intensive care unit of Nepal Medical College Teaching Hospital (NMCTH), Kathmandu, Nepal. This descriptive-analytical study was conducted in NMCTH from July 2011 to January 2012. Blood culture of all neonates who were suspected for neonatal sepsis was performed. Bacterial isolation, identification and antimicrobial susceptibility testing were done by standard microbiological method. Out of 120 neonates suspected of having neonatal sepsis, 30.8% (37/120) were blood culture positive (i.e. prevalence = 30.8%). The most common causative agents of neonatal sepsis was Staphylococcus aureus (56.8%; 21/37) followed by Klebsiella pneumoniae (21.7%; 8/37), Pseudomonas aeruginosa (13.4%; 5/37) and others. Neonatal sepsis was more frequent in male neonates (32.5%) while (26.5%) in female neonates in the ratio of 1.2:1 (p > 0.05). Neonatal sepsis was significantly higher (58.3%) in low birth weight (LBW) (< 2.5kg) neonates compared with good birth weight (GBW) (23.9%) (< 0.05). Prevalence was higher in preterm neonates (57.8%; 11/19) as compared with term-babies (25.7%) (P = 0.05). Generally, all of the isolates were sensitive to most of the antibiotics used as the first line drugs like amikacin, gentamicin, cefotaxime and ampicillin except Acinetobacter baumannii. This organisms was only sensitive towards cotrimoxazole, azithromicin, cefotaxime and ceftazidime.

  20. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    SciTech Connect

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D.

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.

  1. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  2. Vancomycin resistant enterococci in urine cultures: Antibiotic susceptibility trends over a decade at a tertiary hospital in the United Kingdom

    PubMed Central

    Toner, Liam; Papa, Nathan; Aliyu, Sani H.; Dev, Harveer; Al-Hayek, Samih

    2016-01-01

    Purpose Enterococci are a common cause of urinary tract infection and vancomycin-resistant strains are more difficult to treat. The purpose of this surveillance program was to assess the prevalence of and determine the risk factors for vancomycin resistance in adults among urinary isolates of Enterococcus sp. and to detail the antibiotic susceptibility profile, which can be used to guide empirical treatment. Materials and Methods From 2005 to 2014 we retrospectively reviewed 5,528 positive Enterococcus sp. urine cultures recorded in a computerized laboratory results database at a tertiary teaching hospital in Cambridge, United Kingdom. Results Of these cultures, 542 (9.8%) were vancomycin resistant. No longitudinal trend was observed in the proportion of vancomycin-resistant strains over the course of the study. We observed emerging resistance to nitrofurantoin with rates climbing from near zero to 40%. Ampicillin resistance fluctuated between 50% and 90%. Low resistance was observed for linezolid and quinupristin/dalfopristin. Female sex and inpatient status were identified as risk factors for vancomycin resistance. Conclusions The incidence of vancomycin resistance among urinary isolates was stable over the last decade. Although resistance to nitrofurantoin has increased, it still serves as an appropriate first choice in uncomplicated urinary tract infection caused by vancomycin-resistant Enterococcus sp. PMID:26981595

  3. Prevalence, antibiotic susceptibility and characterization of antibiotic resistant genes among carbapenem-resistant Gram-negative bacilli and yeast in intestinal flora of cancer patients in North Lebanon.

    PubMed

    Christophy, Rima; Osman, Marwan; Mallat, Hassan; Achkar, Marcel; Ziedeh, Azzam; Moukaddem, Walid; Dabboussi, Fouad; Hamze, Monzer

    2017-02-15

    The emergence and spread of carbapenem-resistant bacteria are a significant clinical and public health concern. The aim of the study is to determine the prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts in cancer patients under chemotherapy. 41 stool samples collected from cancer patients in Nini hospital in Tripoli, North Lebanon have been analyzed. After isolating yeasts and carbapenem-resistant bacteria, a biochemical identification and antimicrobial susceptibility profile were determined. The mechanism of enzymatic carbapenem-resistance was detected by searching for carbapenemases by both Hodge test and PCR assays. The association of several mechanisms of resistance was also searched. 46.3% (19/41) of patients were colonized by yeast. Candida glabrata (6/19) was the major species. The prevalence of carbapenem-resistant bacteria was 24.4% (10/41) including Escherichia coli (5/10), Enterobacter cloacae (1/10), Enterobacter aerogenes (1/10) Edwardsiella hoshinae (1/10) Pantoea agglomerans (1/10) and Pseudomonas stutzeri (1/10). PCR and sequencing of the amplified fragments revealed that Pseudomonas stutzeri (1/1) carried VIM gene and Enterobacter aerogenes (1/1) and E. coli (1/5) carried OXA-48 gene. The other Enterobacteriaceae were resistant to carbapenems by mechanisms other than a carbapenemase including hyperproduction of cephalosporinase (4/10), extended spectrum beta-lactamases (1/10) and both cephalosporinase and extended spectrum beta-lactamases (2/10). High prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts were detected in cancer patients under chemotherapy. In order to prevent the development of endogenous infection and the dissemination of antimicrobial resistance, an implementation of antibiotic stewardship programs and infection control measures is required in hospitals particularly in the department of chemotherapy.

  4. Pathogens and antimicrobial susceptibility profiles in critically ill patients with bloodstream infections: a descriptive study

    PubMed Central

    Savage, Rachel D.; Fowler, Robert A.; Rishu, Asgar H.; Bagshaw, Sean M.; Cook, Deborah; Dodek, Peter; Hall, Richard; Kumar, Anand; Lamontagne, François; Lauzier, François; Marshall, John; Martin, Claudio M.; McIntyre, Lauralyn; Muscedere, John; Reynolds, Steven; Stelfox, Henry T.; Daneman, Nick

    2016-01-01

    Background: Surveillance of antimicrobial resistance is vital to guiding empirical treatment of infections. Collating and reporting routine data on clinical isolate testing may offer more timely information about resistance patterns than traditional surveillance network methods. Methods: Using routine microbiology testing data collected from the Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness retrospective cohort study, we conducted a descriptive secondary analysis among critically ill patients in whom bloodstream infections had been diagnosed in 14 intensive care units (ICUs) in Canada. The participating sites were located within tertiary care teaching hospitals and represented 6 provinces and 10 cities. More than 80% of the study population was accrued from 2011-2013. We assessed the epidemiologic features of the infections and corresponding antimicrobial susceptibility profiles. Susceptibility testing was done according to Clinical Laboratory Standards Institute guidelines at accredited laboratories. Results: A total of 1416 pathogens were isolated from 1202 patients. The most common organisms were Escherichia coli (217 isolates [15.3%]), Staphylococcus aureus (175 [12.4%]), coagulase-negative staphylococci (117 [8.3%]), Klebsiella pneumoniae (86 [6.1%]) and Streptococcus pneumoniae (85 [6.0%]). The contribution of individual pathogens varied by site. For 13 ICUs, gram-negative susceptibility rates were high for carbapenems (95.4%), tobramycin (91.2%) and piperacillin-tazobactam (90.0%); however, the proportion of specimens susceptible to these agents ranged from 75.0%-100%, 66.7%-100% and 75.0%-100%, respectively, across sites. Fewer gram-negative bacteria were susceptible to fluoroquinolones (84.5% [range 64.1%-97.2%]). A total of 145 patients (12.1%) had infections caused by highly resistant microorganisms, with significant intersite variation (range 2.6%-24.0%, χ2 = 57.50, p < 0.001). Interpretation: We assessed the epidemiologic

  5. Simultaneous Identification and Susceptibility Determination to Multiple Antibiotics of Staphylococcus aureus by Bacteriophage Amplification Detection Combined with Mass Spectrometry.

    PubMed

    Rees, Jon C; Pierce, Carrie L; Schieltz, David M; Barr, John R

    2015-07-07

    The continued advance of antibiotic resistance in clinically relevant bacterial strains necessitates the development and refinement of assays that can rapidly and cost-effectively identify bacteria and determine their susceptibility to a panel of antibiotics. A methodology is described herein that exploits the specificity and physiology of the Staphylococci bacteriophage K to identify Staphylococcus aureus (S. aureus) and determine its susceptibility to clindamycin and cefoxitin. The method uses liquid chromatography-mass spectrometry to monitor the replication of bacteriophage after it is used to infect samples thought to contain S. aureus. Amplification of bacteriophage K indicates the sample contains S. aureus, for it is only in the presence of a suitable host that bacteriophage K can amplify. If bacteriophage amplification is detected in samples containing the antibiotics clindamycin or cefoxitin, the sample is deemed to be resistant to these antibiotics, respectively, for bacteriophage can only amplify in a viable host. Thus, with a single work flow, S. aureus can be detected in an unknown sample and susceptibility to clindamycin and cefoxitin can be ascertained. This Article discusses implications for the use of bacteriophage amplification in the clinical laboratory.

  6. Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes.

    PubMed

    Bertsch, David; Muelli, Mirjam; Weller, Monika; Uruty, Anaïs; Lacroix, Christophe; Meile, Leo

    2014-02-01

    The aims of this study were to assess antibiotic resistance pheno- and genotypes in foodborne, clinical, and environmental Listeria isolates, as well as to elucidate the horizontal gene transfer potential of detected resistance genes. A small fraction of in total 524 Listeria spp. isolates (3.1%) displayed acquired antibiotic resistance mainly to tetracycline (n = 11), but also to clindamycin (n = 4) and trimethoprim (n = 3), which was genotypically confirmed. In two cases, a tetracycline resistance phenotype was observed together with a trimethoprim resistance phenotype, namely in a clinical L. monocytogenes strain and in a foodborne L. innocua isolate. Depending on the applied guidelines, a differing number of isolates (n = 2 or n = 20) showed values for ampicillin that are on the edge between intermediate susceptibility and resistance. Transferability of the antibiotic resistance genes from the Listeria donors, elucidated in vitro by filter matings, was demonstrated for genes located on transposons of the Tn916 family and for an unknown clindamycin resistance determinant. Transfer rates of up to 10(-5) transconjugants per donor were obtained with a L. monocytogenes recipient and up to 10(-7) with an Enterococcus faecalis recipient, respectively. Although the prevalence of acquired antibiotic resistance in Listeria isolates from this study was rather low, the transferability of these resistances enables further spread in the future. This endorses the importance of surveillance of L. monocytogenes and other Listeria spp. in terms of antibiotic susceptibility.

  7. Species-specific PCR for the Diagnosis and Determination of Antibiotic Susceptibilities of Brucella Strains Isolated from Tehran, Iran

    PubMed Central

    Irajian, Gholam Reza; Masjedian Jazi, Faramarz; Mirnejad, Reza; Piranfar, Vahhab; Zahraei salehi, Taghi; Amir Mozafari, Noor; Ghaznavi-rad, Ehsanollah; Khormali, Mahmoud

    2016-01-01

    Background: Brucellosis is an endemic zoonotic disease in the Middle East. This study intended to design a uniplex PCR assay for the detection and differentiation of Brucella at the species level and determining the antibiotic susceptibility pattern of Brucella in Iran. Methods: Sixty-eight Brucella specimens (38 animal and 30 human specimens) were analyzed using PCR (using one pair of primers). Antibiotic susceptibility patterns were evaluated and compared using the E-Test and disk diffusion susceptibility test. Tigecycline susceptibility pattern was compared with other antibiotics. Results: Thirty six isolates of B. melitensis, 2 isolates of B. abortus and 1 isolate of B. suis from the 38 animal specimens, 24 isolates of B. melitensis and 6 isolates of B. abortus from the 30 human specimens were differentiated. The MIC50 values of doxycycline for human and animal specimens were 125 and 10 μg/ml, respectively, tigecycline 0.064 μg/ml for human specimens and 0.125μg/ml for animal specimens, and trimethoprim/ sulfamethoxazole and ciprofloxacin 0.065 and 0.125μg/ml, respectively, for both human and animal specimens. The highest MIC50 value of streptomycin in the human specimens was 0.5μg/ml and 1μg/ml for the animal specimens. The greatest resistance shown was to tetracycline and gentamicin, respectively. Conclusion: Uniplex PCR for the detection and differentiation of Brucella at the strain level is faster and less expensive than multiplex PCR, and the antibiotics doxycycline, rifampin, trimethoprim-sulfamethoxazole, ciprofloxacin, and ofloxacin are the most effective antibiotics for treating brucellosis. Resistance to tigecycline is increasing, and we recommend that it be used in a combination regimen. PMID:27799972

  8. Antibiotic susceptibility and molecular epidemiology of Panton-Valentine leukocidin-positive meticillin-resistant Staphylococcus aureus: An international survey.

    PubMed

    Macedo-Viñas, Marina; Conly, John; Francois, Patrice; Aschbacher, Richard; Blanc, Dominique S; Coombs, Geoffrey; Daikos, George; Dhawan, Benu; Empel, Joanna; Etienne, Jerome; Figueiredo, Agnes Marie Sá; George Golding Cnisp; Han, Lizhong; Kim, Hong Bin; Köck, Robin; Larsen, Anders; Layer, Franziska; Lo, Janice; Maeda, Tadashi; Mulvey, Michael; Pantosti, Annalisa; Saga, Tomoo; Schrenzel, Jacques; Simor, Andrew; Skov, Robert; Van Rijen, Miranda; Wang, Hui; Zakaria, Zunita; Harbarth, Stephan

    2014-03-01

    The antibiotic susceptibility and molecular epidemiology of Panton-Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) isolates reported from 17 countries in the Americas, Europe and, Australia-Asia were analysed. Among a total of 3236 non-duplicate isolates, the lowest susceptibility was observed to erythromycin in all regions. Susceptibility to ciprofloxacin showed large variation (25%, 75% and 84% in the Americas, Europe and Australia-Asia, respectively). Two vancomycin-intermediate PVL-positive MRSA isolates were reported, one from Hong Kong and the other from The Netherlands. Resistance to trimethoprim/sulfamethoxazole and linezolid was <1%. Among 1798 MRSA isolates from 13 countries that were tested for the requested 10 non-β-lactam antibiotics, 49.4% were multisusceptible. However, multiresistant isolates (resistant to at least three classes of non-β-lactam antibiotics) were reported from all regions. Sequence type 30 (ST30) was reported worldwide, whereas ST80 and ST93 were exclusive to Europe and Australia, respectively. USA300 and related clones (ST8) are progressively replacing the ST80 clone in several European countries. Eight major clusters were discriminated by multilocus variable-number tandem repeat assay (MLVA), showing a certain geographic specificity. PVL-positive MRSA isolates frequently remain multisusceptible to non-β-lactam agents, but multiresistance is already prevalent in all regions. Surveillance of MRSA susceptibility patterns should be monitored to provide clinicians with the most current information regarding changes in resistance patterns.

  9. Multicentric study in five African countries of antibiotic susceptibility for three main pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

    PubMed

    Zerouali, Khalid; Ramdani-Bouguessa, Nadjia; Boye, Cheikh; Hammami, Adnane

    2016-08-01

    Antibiotic resistance is a growing clinical and epidemiological problem. We report on the antibiotic susceptibility of three pathogens isolated from patients in Algeria, Egypt, Morocco, Senegal, and Tunisia during 2010-2011. In total, 218 Streptococcus pneumoniae, 428 Staphylococcus aureus, and 414 Pseudomonas aeruginosa strains were collected. S. pneumoniae resistance was noted against penicillin (30.2%), erythromycin (27.4%), cefpodoxime (19.1%), amoxicillin (12.0%), cefotaxime (7.4%), and levofloxacin (3.2%). All the strains were teicoplanin susceptible. Staphylococcus aureus methicillin resistance differed between countries, from 5.0% in Senegal to 62.7% in Egypt. Levofloxacin resistance was low in all countries, and the highest rate (in Egypt) was still only 13.6% for intermediate and resistant strains combined. Most strains were susceptible to fosfomycin (99.3%) and pristinamycin (94.2%). P. aeruginosa resistance was found against levofloxacin (30.4%), ciprofloxacin (29.9%), tobramycin (19.7%), ceftazidime (19.2%), and imipenem (17.9%), but not colistin. Antibiotic susceptibility varied widely between countries, with resistance typically most prevalent in Egypt.

  10. Susceptibility of Haemophilus influenzae to chloramphenicol and eight beta-lactam antibiotics.

    PubMed Central

    Thirumoorthi, M C; Kobos, D M; Dajani, A S

    1981-01-01

    We examined the minimal inhibitory concentrations and minimal bactericidal concentrations of chloramphenicol, ampicillin, ticarcillin, cefamandole, cefazolin, cefoxitin, cefotaxime, ceforanide, and moxalactam for 100 isolates of Haemophilus influenzae, 25 of which produced beta-lactamase. Susceptibility was not influenced by the capsular characteristic of the organism. The mean minimal inhibitory concentrations of cefamandole, ticarcillin, and ampicillin for beta-lactamase-producing strains were 3-, 120-, and 400-fold higher than their respective mean minimal inhibitory concentrations for beta-lactamase-negative strains. No such difference was noted for the other antibiotics. We performed time-kill curve studies, using chloramphenicol, ampicillin, cefamandole, cefotaxime, and moxalactam with two concentrations of the antimicrobial agents (4 or 20 times the minimal inhibitory concentrations) and two inoculum sizes (10(4) or 10(6) colony-forming units per ml). The inoculum size had no appreciable effect on the rate of killing of beta-lactamase-negative strains. The rates at which beta-lactamase-producing strains were killed by chloramphenicol, cefotaxime, and moxalactam was not influenced by the inoculum size. Whereas cefamandole in high concentrations was able to kill at 10(6) colony-forming units/ml of inoculum, it had only a temporary inhibiting effect at low drug concentrations. Methicillin and the beta-lactamase inhibitor CP-45,899 were able to neutralize the inactivation of cefamandole by a large inoculum of beta-lactamase-producing H. influenzae. PMID:6974541

  11. Antibiotic susceptibility, antibacterial activity and characterisation of Enterococcus faecium strains isolated from breast milk

    PubMed Central

    Kıvanç, Sertaç Argun; Kıvanç, Merih; Yiğit, Tülay

    2016-01-01

    Enterococci, which have useful biotechnological applications, produce bacteriocins, including those that exert anti-Listerial activity. The present study aimed to determine the antibiotic susceptibility patterns and antimicrobial activity of Enterococcus faecium strains isolated from human breast milk. The strains were identified using carbohydrate fermentation tests and ribotyping. Subsequently, the antibacterial activity of the isolates was investigated, and the quantities of lactic acid and hydrogen peroxide produced, and the proteolytic activity of E. faecium, were determined. In addition, biofilm formation by E. faecium strains was assessed. E. faecium strains exhibited antimicrobial activity against food-borne and clinical bacterial isolates. Furthermore, following 24 h incubation, the tested strains exhibited resistance to a pH range of 2.0–9.5 and tolerance of bile acid, lysozyme activity and phenol. Supernatants of the E. faecium TM13, TM15, TM17 and TM18 strains were shown to be effective against Listeria monocytogenes, and were also resistant to heat. Further studies are required in order to determine whether certain strains of E. faecium may be used for the development of novel antibacterial agents. PMID:27602088

  12. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles

    PubMed Central

    Youenou, Benjamin; Favre-Bonté, Sabine; Bodilis, Josselin; Brothier, Elisabeth; Dubost, Audrey; Muller, Daniel; Nazaret, Sylvie

    2015-01-01

    Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain’s phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance–nodulation–division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer. PMID:26276674

  13. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    PubMed

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy.

  14. Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay

    PubMed Central

    Zhao, Pan; Zhang, Xiujuan; Du, Pengcheng; Li, Guilian; Li, Luxi; Li, Zhenjun

    2017-01-01

    Nocardia species are ubiquitous in natural environments and can cause nocardiosis. Trimethoprim-sulfamethoxazole has long been the monotherapy treatment of choice, but resistance to this treatment has recently emerged. In this study, we used microplate Alamar Blue assays to determine the antimicrobial susceptibility patterns of 65 standard Nocardia isolates, including 28 type strains and 20 clinical Nocardia isolates, to 32 antimicrobial agents, including 13 little studied drugs. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 98% of the isolates. Linezolid, meropenem, and amikacin were also highly effective, with 98%, 95%, and 90% susceptibility, respectively, among the isolates. The isolates showed a high percentage of resistance or nonsusceptibility to isoniazid, rifampicin, and ethambutol. For the remaining antimicrobials, resistance was species-specific among isolates and was observed in traditional drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered standard Nocardia species are reported, as are the results for rarely reported clinical antibiotics. We also provide a timely update of antimicrobial susceptibility patterns that includes three new drug pattern types. The data from this study provide information on antimicrobial activity against specific Nocardia species and yield important clues for the optimization of species-specific Nocardia therapies. PMID:28252662

  15. Isolation of environmental bacteria from surface and drinking water in mafikeng, South Africa, and characterization using their antibiotic resistance profiles.

    PubMed

    Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses; Ateba, Collins Njie

    2014-01-01

    The aim of this study was to isolate and identify environmental bacteria from various raw water sources as well as the drinking water distributions system in Mafikeng, South Africa, and to determine their antibiotic resistance profiles. Water samples from five different sites (raw and drinking water) were analysed for the presence of faecal indicator bacteria as well as Aeromonas and Pseudomonas species. Faecal and total coliforms were detected in summer in the treated water samples from the Modimola dam and in the mixed water samples, with Pseudomonas spp. being the most prevalent organism. The most prevalent multiple antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. All organisms tested were resistant to erythromycin, trimethoprim, and amoxicillin. All isolates were susceptible to ciprofloxacin and faecal coliforms and Pseudomonas spp. to neomycin and streptomycin. Cluster analysis based on inhibition zone diameter data suggests that the isolates had similar chemical exposure histories. Isolates were identified using gyrB, toxA, ecfX, aerA, and hylH gene fragments and gyrB, ecfX, and hylH fragments were amplified. These results demonstrate that (i) the drinking water from Mafikeng contains various bacterial species and at times faecal and total coliforms. (ii) The various bacteria are resistant to various classes of antibiotics.

  16. Wolbachia pipientis Growth Kinetics and Susceptibilities to 13 Antibiotics Determined by Immunofluorescence Staining and Real-Time PCR

    PubMed Central

    Fenollar, Florence; Maurin, Max; Raoult, Didier

    2003-01-01

    Wolbachia spp. are strict intracellular bacteria that infect a wide range of arthropods and filarial nematodes. Filarial nematodes are important causes of human diseases. There is increasing evidence that Wolbachia spp. influence important functions in the biology of the hosts, specifically, infertility. Preliminary experiments with humans and animals have suggested that antibiotics with activity against Wolbachia may help to treat filariasis. In this study, we determined using a real-time quantitative PCR assay the growth kinetics of a strain of Wolbachia pipientis from a mosquito grown in Aa23 cells. The doubling time was estimated to be 14 h. We then determined the susceptibilities of this strain to 13 antibiotics by two methods: an immunofluorescent-antibody test and a real-time quantitative PCR assay. Both techniques gave similar results. Doxycycline and rifampin were the most effective compounds, with MICs of 0.125 and 0.06 to 0.125 μg/ml, respectively. Fluoroquinolones were less effective, with MICs of 2 to 4 μg/ml for ciprofloxacin, 2 μg/ml for ofloxacin, and 1 μg/ml for levofloxacin. β-Lactams (penicillin G, amoxicillin, ceftriaxone) were not effective at concentrations up to 128 μg/ml. The MIC of erythromycin was >32 μg/ml, whereas that of telithromycin was 8 μg/ml. Other antibiotic compounds were bacteriostatic only at high concentrations, including gentamicin, co-trimoxazole, and thiamphenicol. The real-time PCR assay was a convenient and reliable technique for determination of the antibiotic susceptibilities of Wolbachia. It may help in the future to simplify antibiotic susceptibility testing of strict intracellular pathogens. PMID:12709338

  17. Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses.

    PubMed

    Gantzhorn, Mette Rørbæk; Pedersen, Karl; Olsen, John Elmerdahl; Thomsen, Line Elnif

    2014-07-02

    Salmonella sp. continues to be one of the most important foodborne pathogens. Control measures in terms of cleaning and disinfection on food production plants are very important for limiting the risk of contaminated food products to reach the consumer. In the last decade concern has arisen that bacteria exposed to disinfectants can develop resistance toward disinfectants and can have a higher risk of developing antibiotic resistance. The objectives of this study were to examine the prevalence of biocide resistant Salmonella sp. in Danish pig slaughterhouses, to evaluate if there was a correlation between susceptibilities to biocides and antibiotics, and to examine if cleaning and disinfection select isolates with changed susceptibility toward biocides or antibiotics. Salmonella sp. was isolated from the environment in Danish pig slaughterhouses before and after cleaning and disinfection. The susceptibility toward three different biocides, triclosan and two commercial disinfection products: Desinfect Maxi, a quaternary ammonium compound, and Incimaxx DES, an acetic compound, was determined. We found no resistance toward the biocides tested, but we did find that isolates obtained after cleaning had higher minimum inhibitory concentration (MIC) values toward one of the disinfectants (Incimaxx DES) compared to isolates obtained before cleaning and disinfection. This could indicate selection of strains that are more tolerant, due to the cleaning and disinfection. Furthermore, we found that there was a weak statistical correlation between MICs toward the biocides and some antibiotics, but no difference in log(MIC)s toward antibiotics between isolates obtained before and after cleaning, nor did we find any difference in the number of resistances of isolates obtained before and after cleaning and disinfection.

  18. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic.

    PubMed Central

    Quan, S; Venter, H; Dabbs, E R

    1997-01-01

    Mycobacterium smegmatis inactivates rifampin by ribosylating this antibiotic. The gene responsible for this ability was cloned and was shown to confer low-level resistance to this antibiotic (MIC increase, about 12-fold) in related organisms. A 600-bp subclone responsible for ribosylating activity and resistance carried an open reading frame of 429 bp. Targeted disruption of the gene in M. smegmatis resulted in mutants with much increased susceptibility to rifampin (MICs of 1.5 instead of 20 microg/ml) as well as the loss of antibiotic-inactivating ability. Also, disruption of this gene led to a much lower frequency of occurrence of spontaneous high-level rifampin-resistant mutants. PMID:9371349

  19. Antibiotic susceptibility of coagulase-negative staphylococci (CoNS): emergence of teicoplanin-non-susceptible CoNS strains with inducible resistance to vancomycin.

    PubMed

    Ma, Xiao Xue; Wang, En Hua; Liu, Yong; Luo, En Jie

    2011-11-01

    Coagulase-negative staphylococci (CoNS) have become increasingly recognized as important agents of nosocomial infection. One of the characteristics of CoNS is their resistance to multiple antimicrobial agents commonly used for the treatment of staphylococcal infections. CoNS strains (n = 745) isolated from a university teaching hospital in China between 2004 and 2009 were tested for antibiotic resistance. The antibiotics were placed into three categories based on resistance levels of the CoNS strains to these antibiotics: high resistance (resistance rate >70 %), including penicillin G, oxacillin and erythromycin; medium resistance (resistance rate between 30 and 70 %), including tetracycline, clindamycin, ciprofloxacin, trimethoprim/sulfamethoxazole and chloramphenicol; and low resistance (resistance rate <30 %), including rifampicin, ceftizoxime and gentamicin. We also found that the prevalence of strains non-susceptible to teicoplanin increased from 4.5 to 6.7 % between 2008 and 2009. A one-step vancomycin agar selection experiment and subsequent population analysis revealed potentially vancomycin-resistant subpopulations that have been selected from the teicoplanin-non-susceptible strains. Vigilant surveillance of nosocomial isolates of CoNS is needed to determine their resistance to glycopeptides.

  20. Prevalence and Antibiotic Susceptibility Patterns of Extended-Spectrum ß-Lactamase and Metallo-ß-Lactamase-Producing Uropathogenic Escherichia coli Isolates.

    PubMed

    Ghadiri, Hamed; Vaez, Hamid; Razavi-Azarkhiavi, Kamal; Rezaee, Ramin; Haji-Noormohammadi, Mehdi; Rahimi, Ali Asghar; Vaez, Vahid; Kalantar, Enayatollah

    2014-01-01

    Healthcare professionals worldwide have expressed concern over infections by extended-spectrum ß-lactamase (ESBL) and metallo-ß-lactamase (MBL)-producing bacteria. We evaluated the prevalence of ESBL- and MBL-producing Escherichia coli (E. coli) isolated from community-acquired urinary tract infections (UTIs) and their antibiotic-resistance profiles at 3 private laboratories in Tehran, Iran. E. coli isolates were mostly susceptible to meropenem (90.4%) and imipenem (90.0%), followed by amikacin (89.0%) and gentamicin (84.7%). Moreover, we detected that, of the E. coli isolates, 67 (22.3%) were ESBL producers and 21 (7.0%) of E. coli isolates were MBL positive via the imipenem-ethylenediaminetetraacetic acid (EDTA) combined disc test. This report is the first, to our knowledge, on the prevalence of MBL-producing uropathogenic E. coli (UPEC) strains in Iran. The antibiotic resistance of E. coli isolates revealed that 122 (40.7%) were multidrug resistant. The high number of antibiotic-resistant and ß-lactamase-producing UPEC strains necessitates further attention and consideration, particularly MBL-producing strains.

  1. Changes in antibiotic usage and susceptibility in nosocomial Enterobacteriaceae and Pseudomonas isolates following the introduction of ertapenem to hospital formulary.

    PubMed

    Graber, C J; Hutchings, C; Dong, F; Lee, W; Chung, J K; Tran, T

    2012-01-01

    There is concern that widespread usage of ertapenem may promote cross-resistance to other carbapenems. To analyse the impact that adding ertapenem to our hospital formulary had on usage of other broad-spectrum agents and on susceptibilities of nosocomial Enterobacteriaceae and Pseudomonas isolates, we performed interrupted time-series analyses to determine the change in linear trend in antibiotic usage and change in mean proportion and linear trend of susceptibility pre- (March 2004-June 2005) and post- (July 2005-December 2008) ertapenem introduction. Usage of piperacillin-tazobactam (P=0·0013) and ampicillin-sulbactam (P=0·035) declined post-ertapenem introduction. For Enterobacteriaceae, the mean proportion susceptible to ciprofloxacin (P=0·016) and piperacillin-tazobactam (P=0·038) increased, while the linear trend in susceptibility significantly increased for cefepime (P=0·012) but declined for ceftriaxone (P=0·0032). For Pseudomonas, the mean proportion susceptible to cefepime (P=0·011) and piperacillin-tazobactam (P=0·028) increased, as did the linear trend in susceptibility to ciprofloxacin (P=0·028). Notably, no significant changes in carbapenem susceptibility were observed.

  2. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    NASA Astrophysics Data System (ADS)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  3. A Novel Microfluidic Assay for Rapid Phenotypic Antibiotic Susceptibility Testing of Bacteria Detected in Clinical Blood Cultures

    PubMed Central

    Spaak, Johanna; Cars, Otto; Tängdén, Thomas; Lagerbäck, Pernilla

    2016-01-01

    Background Appropriate antibiotic therapy is critical in the management of severe sepsis and septic shock to reduce mortality, morbidity and health costs. New methods for rapid antibiotic susceptibility testing are needed because of increasing resistance rates to standard treatment. Aims The purpose of this study was to evaluate the performance of a novel microfluidic method and the potential to directly apply this method on positive blood cultures. Methods Minimum inhibitory concentrations (MICs) of ciprofloxacin, ceftazidime, tigecycline and/or vancomycin for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus were determined using a linear antibiotic concentration gradient in a microfluidic assay. Bacterial growth along the antibiotic gradient was monitored using automated time-lapse photomicrography and growth inhibition was quantified by measuring greyscale intensity changes in the images. In addition to pure culture MICs, vancomycin MICs were determined for S. aureus from spiked and clinical blood cultures following a short centrifugation step. The MICs were compared with those obtained with the Etest and for S. aureus and vancomycin also with macrodilution. Results The MICs obtained with the microfluidic assay showed good agreement internally as well as with the Etest and macrodilution assays, although some minor differences were noted between the methods. The time to possible readout was within the range of 2 to 5 h. Conclusions The examined microfluidic assay has the potential to provide rapid and accurate MICs using samples from positive clinical blood cultures and will now be tested using other bacterial species and antibiotics. PMID:27974860

  4. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures

    PubMed Central

    Georgieva, Ralitsa; Yocheva, Lyubomira; Tserovska, Lilia; Zhelezova, Galina; Stefanova, Nina; Atanasova, Akseniya; Danguleva, Antonia; Ivanova, Gergana; Karapetkov, Nikolay; Rumyan, Nevenka; Karaivanova, Elena

    2015-01-01

    Antimicrobial activity and antibiotic susceptibility were tested for 23 Lactobacillus and three Bifidobacterium strains isolated from different ecological niches. Agar-well diffusion method was used to test the antagonistic effect (against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Candida albicans) of acid and neutralized (pH 5.5) lyophilized concentrated supernatants (cell-free supernatant; CFS) and whey (cell-free whey fractions; CFW) from de Man–Rogosa–Sharpe/trypticase-phytone-yeast broth and skim milk. Acid CFS and CFW showed high acidification rate-dependent bacterial inhibition; five strains were active against C. albicans. Neutralized CFS/CFW assays showed six strains active against S. aureus (L. acidophilus L-1, L. brevis 1, L. fermentum 1, B. animalis subsp. lactis L-3), E. coli (L. bulgaricus 6) or B. cereus (L. plantarum 24-4В). Inhibition of two pathogens with neutralized CFS (L. bulgaricus 6, L. helveticus 3, L. plantarum 24-2L, L. fermentum 1)/CFW (L. plantarum 24-5D, L. plantarum 24-4В) was detected. Some strains maintained activity after pH neutralization, indicating presence of active substances. The antibiotics minimum inhibitory concentrations (MICs) were determined by the Epsilometer test method. All strains were susceptible to ampicillin, gentamicin, erythromycin and tetracycline. Four lactobacilli were resistant to one antibiotic (L. rhamnosus Lio 1 to streptomycin) or two antibiotics (L. acidophilus L-1 and L. brevis 1 to kanamycin and clindamycin; L. casei L-4 to clindamycin and chloramphenicol). Vancomycin MICs > 256 μg/mL indicated intrinsic resistance for all heterofermentative lactobacilli. The antimicrobially active strains do not cause concerns about antibiotic resistance transfer and could be used as natural biopreservatives in food and therapeutic formulations. PMID:26019620

  5. Mutations in the primary sigma factor σA and termination factor rho that reduce susceptibility to cell wall antibiotics.

    PubMed

    Lee, Yong Heon; Helmann, John D

    2014-11-01

    Combinations of glycopeptides and β-lactams exert synergistic antibacterial activity, but the evolutionary mechanisms driving resistance to both antibiotics remain largely unexplored. By repeated subculturing with increasing vancomycin (VAN) and cefuroxime (CEF) concentrations, we isolated an evolved strain of the model bacterium Bacillus subtilis with reduced susceptibility to both antibiotics. Whole-genome sequencing revealed point mutations in genes encoding the major σ factor of RNA polymerase (sigA), a cell shape-determining protein (mreB), and the ρ termination factor (rho). Genetic-reconstruction experiments demonstrated that the G-to-C substitution at position 336 encoded by sigA (sigA(G336C)), in the domain that recognizes the -35 promoter region, is sufficient to reduce susceptibility to VAN and works cooperatively with the rho(G56C) substitution to increase CEF resistance. Transcriptome analyses revealed that the sigA(G336C) substitution has wide-ranging effects, including elevated expression of the general stress σ factor (σ(B)) regulon, which is required for CEF resistance, and decreased expression of the glpTQ genes, which leads to fosfomycin (FOS) resistance. Our findings suggest that mutations in the core transcriptional machinery may facilitate the evolution of resistance to multiple cell wall antibiotics.

  6. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp.

    PubMed

    Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina

    2014-01-01

    Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci.

  7. Geostatistical Microscale Study of Magnetic Susceptibility in Soil Profile and Magnetic Indicators of Potential Soil Pollution.

    PubMed

    Zawadzki, Jarosław; Fabijańczyk, Piotr; Magiera, Tadeusz; Rachwał, Marzena

    Directional variograms, along the soil profile, can be useful and precise tool that can be used to increase the precision of the assessment of soil pollution. The detail analysis of spatial variability in the soil profile can be also an important part of the standardization of soil magnetometry as a screening method for an assessment of soil pollution related to the dust deposition. The goal of this study was to investigate the correlation between basic parameters of spatial correlations of magnetic susceptibility in the soil profile, such as a range of correlation and a sill, and selected magnetometric indicators of soil pollution. Magnetic indicators were an area under the curve of magnetic susceptibility versus a depth in the soil profile, values of magnetic susceptibility at depths ranging from 1 to 10 cm, and maximum and background values of magnetic susceptibility in the soil profile. These indicators were previously analyzed in the literature. The results showed that a range of correlation of magnetic susceptibility was significantly correlated with magnetic susceptibility measured at depths 1, 2, and 3 cm. It suggests that a range of correlation is a good measure of pollutants' dispersion in the soil profile. The sill of the variogram of magnetic susceptibility was found to be significantly correlated with the area under the curve of plot of magnetic susceptibility that is related to the soil pollution. In consequence, the parameters of microscale spatial variability of magnetic susceptibility in s soil profile are important measures that take into consideration the spatial aspect of s soil pollution.

  8. Microarray-based long oligonucleotides probe designed for Brucella Spp. detection and identification of antibiotic susceptibility pattern.

    PubMed

    Khazaei, Zahra; Najafi, Ali; Piranfar, Vahhab; Mirnejad, Reza

    2016-04-01

    Brucella spp. is a common zoonotic infection referred to as Brucellosis, and it is a serious public health problem around the world. There are currently six classical species (pathogenic species in both animals and humans) within the genus Brucella. The ability and practicality facilitated by a microarray experiment help us to recognize Brucella spp. and its antibiotic resistant gene. Rapid phenotypic determination of antibiotic resistance is not possible by disk diffusion methods. Thus, evaluating antibiotics pattern and Brucella detection appear necessary technique by molecular methods in brucellosis. So, the aim of this study was to design a microarray long oligonucleotides probe and primer for the complete diagnosis of Brucella spp. and obtaining genetic profiles for antibiotic resistance in bacteria at the same time. In this study, we designed 16 antibiotic-resistant gene solid-phase primers with similar melting temperatures of 60 °C and 16 long oligonucleotide probes. These primers and probes can identify tetracycline-, chloramphenicol-, and aminoglycoside-resistant genes, respectively. The design of microarray probes is a versatile process that be done in a wide range of selections. Since the long oligo microarray probes are the best choices for specific diagnosis and definite treatment, this group of probes was designed in the present survey.

  9. Microarray-based long oligonucleotides probe designed for Brucella Spp. detection and identification of antibiotic susceptibility pattern

    PubMed Central

    Khazaei, Zahra; Najafi, Ali; Piranfar, Vahhab; Mirnejad, Reza

    2016-01-01

    Brucella spp. is a common zoonotic infection referred to as Brucellosis, and it is a serious public health problem around the world. There are currently six classical species (pathogenic species in both animals and humans) within the genus Brucella. The ability and practicality facilitated by a microarray experiment help us to recognize Brucella spp. and its antibiotic resistant gene. Rapid phenotypic determination of antibiotic resistance is not possible by disk diffusion methods. Thus, evaluating antibiotics pattern and Brucella detection appear necessary technique by molecular methods in brucellosis. So, the aim of this study was to design a microarray long oligonucleotides probe and primer for the complete diagnosis of Brucella spp. and obtaining genetic profiles for antibiotic resistance in bacteria at the same time. In this study, we designed 16 antibiotic-resistant gene solid-phase primers with similar melting temperatures of 60 °C and 16 long oligonucleotide probes. These primers and probes can identify tetracycline-, chloramphenicol-, and aminoglycoside-resistant genes, respectively. The design of microarray probes is a versatile process that be done in a wide range of selections. Since the long oligo microarray probes are the best choices for specific diagnosis and definite treatment, this group of probes was designed in the present survey. PMID:27280008

  10. Antibiotic susceptibility and molecular mechanisms of macrolide resistance in streptococci isolated from adult cystic fibrosis patients.

    PubMed

    Thornton, Christina S; Grinwis, Margot E; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2015-11-01

    The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2%)], and higher rates of resistance to tetracycline (∼34%) and sulfamethoxazole/trimethoprim (∼45%). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4%) and erythromycin (51.6%)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the mef (efflux pump) or erm (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome.

  11. Rapid and accurate direct antibiotic susceptibility testing of blood culture broths using MALDI Sepsityper combined with the BD Phoenix automated system.

    PubMed

    Hazelton, Briony; Thomas, Lee C; Olma, Thomas; Kok, Jen; O'Sullivan, Matthew; Chen, Sharon C-A; Iredell, Jonathan R

    2014-12-01

    Antibiotic susceptibility testing with the BD Phoenix system on bacterial cell pellets generated from blood culture broths using the Bruker MALDI Sepsityper kit was evaluated. Seventy-six Gram-negative isolates, including 12 with defined multi-resistant phenotypes, had antibiotic susceptibility testing (AST) performed by Phoenix on the cell pellet in parallel with conventional methods. In total, 1414/1444 (97.9 %) of susceptibility tests were concordant, with only 1 (0.07 %) very major error. This novel method has the potential to reduce the turnaround time for AST results by up to a day for Gram-negative bacteraemias.

  12. Antimicrobial Susceptibility Profiles of Staphylococcus aureus Isolates Recovered from Humans, Environmental Surfaces, and Companion Animals in Households of Children with Community-Onset Methicillin-Resistant S. aureus Infections

    PubMed Central

    Morelli, John J.; Hogan, Patrick G.; Sullivan, Melanie L.; Muenks, Carol E.; Wang, Jeffrey W.; Thompson, Ryley M.

    2015-01-01

    Our objective was to determine the antibiotic susceptibility profiles of Staphylococcus aureus isolates recovered from 110 households of children with community-onset methicillin-resistant S. aureus (MRSA) infections. Cultures were obtained from household members, household objects, and dogs and cats, yielding 1,633 S. aureus isolates. The S. aureus isolates were heterogeneous, although more than half were methicillin resistant. The highest proportion of MRSA was found in bathrooms. The majority of isolates were susceptible to antibiotics prescribed in outpatient settings. PMID:26248385

  13. Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam.

    PubMed

    Thai, Truong Ha; Hirai, Takuya; Lan, Nguyen Thi; Yamaguchi, Ryoji

    2012-05-15

    The spread of antibiotic resistance via meat poses a serious public health concerns. During 2007-2009, a total of 586 retail meat samples (318 pork and 268 chicken meats) were collected from three provinces (Bac Ninh, Ha Noi and Ha Tay) of North Vietnam to determine the prevalence of Salmonella. Isolates were characterized by serotyping and antibiotic susceptibility testing. Approximately 39.6% (n=126) of pork and 42.9% (n=115) of chicken samples were Salmonella-positive, and 14 Salmonella serovars were identified. Anatum (15.8%) was the most common serovar, followed by Infantis (13.3%), Emek (10.4%), Derby and Rissen (9.5%), Typhimurium (9.1%), Reading (7.5%) and London (6.2%). The isolation frequency of serovars Enteritidis, Albany, Hadar, Weltevreden, Newport and Blockey ranged from 1.2%-5.8%. Resistance to at least one antibiotic agent was detected in 78.4% of isolates (n=189) and the most frequent resistance were to tetracycline (58.5%), sulphonamides (58.1%), streptomycin (47.3%), ampicillin (39.8%), chloramphenicol (37.3%), trimethoprim (34.0%) and nalidixic acid (27.8%). No Salmonella isolates were resistant to ceftazidime. Chicken isolates had higher resistance to antibiotic agents than pork isolates (P<0.05). It showed that 159 Salmonella isolates belong to the 14 serovars were multidrug resistant (MDR) and 50 MDR patterns were found. This study indicated that Salmonella serovars isolated from retail meat samples were resistant to multiple antibiotics and this resistance was widespread among different serovars. The widespread resistance may have arisen from misuse or overuse of antibiotics during animal husbandry in North Vietnam.

  14. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina.

    PubMed

    Raspanti, Claudia G; Bonetto, Cesar C; Vissio, Claudina; Pellegrino, Matías S; Reinoso, Elina B; Dieser, Silvana A; Bogni, Cristina I; Larriestra, Alejandro J; Odierno, Liliana M

    2016-01-01

    Coagulase-negative staphylococci (CNS) are a common cause of bovine subclinical mastitis (SCM). The prevalence of CNS species causing SCM identified by genotyping varies among countries. Overall, the antimicrobial resistance in this group of organisms is increasing worldwide; however, little information exists about a CNS species resistant to antibiotics. The aim of the present study was to genotypically characterize CNS at species level and to determine the prevalence and antibiotic resistance profiles of CNS species isolated from bovine SCM in 51 dairy herds located in the central region of the province of Cordoba, Argentina. In this study, we identified 219 CNS isolates at species level by PCR-restriction fragment length polymorphism of the groEL gene. Staphylococcus chromogenes (46.6%) and Staphylococcus haemolyticus (32%) were the most prevalent species. A minimum of three different CNS species were present in 41.2% of the herds. S. chromogenes was isolated from most of the herds (86.3%), whereas S. haemolyticus was isolated from 66.7% of them. The broth microdilution method was used to test in vitro antimicrobial susceptibility. Resistance to a single compound or two related compounds was expressed in 43.8% of the isolates. S. chromogenes and S. haemolyticus showed a very high proportion of isolates resistant to penicillin. Resistance to two or more non-related antimicrobials was found in 30.6% of all CNS. S. haemolyticus exhibited a higher frequency of resistance to two or more non-related antimicrobials than S. chromogenes.

  15. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes.

    PubMed

    Puah, Suat Moi; Chua, Kek Heng; Tan, Jin Ai Mary Anne

    2016-02-05

    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.

  16. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence.

    PubMed

    Oosterik, Leon H; Peeters, Laura; Mutuku, Irene; Goddeeris, Bruno M; Butaye, Patrick

    2014-06-01

    Avian pathogenic Escherichia coli (APEC) causes huge annual losses in the poultry industry worldwide. Multiresistance against antibiotics of APEC strains is increasingly seen in broilers, although much is still unknown about strains from laying hens where use of antibiotics is limited. Disinfection can reduce the infection burden. However, little is known about the presence of resistance against these products. Ninety-seven APEC strains were isolated from Belgian laying hens. The resistance to different classes of antibiotics was determined as well as the minimum inhibitory concentrations (MIC; agar and broth dilution) and minimum bactericidal concentrations (MBC) of five disinfectants most often used in the poultry industry (formaldehyde, glutaraldehyde, glyoxal, hydrogen peroxide, and a quaternary ammonium compound). The presence of integrons was determined by PCR Resistance to ampicillin (35.1%), nalidixic acid (38.1%), sulfonamides (SULFA, 41.2%), and tetracycline (TET, 53.6%) was high but resistance to other tested antibiotics was low. Nevertheless, two extended spectrum beta-lactamase producers were found. The MIC of the disinfectants for the APEC strains showed a Gaussian distribution, indicating that there was no acquired resistance. MBCs were similar to MICs via the broth dilution method, showing the bactericidal effect of the disinfectants. Twenty-one strains (21.6%) were found positive for class 1 integrons and a positive association between integron presence and resistance to trimethoprim, SULFA, and TET was found. No association could be found between integron presence and phylogenetic group affiliation. Susceptibility of APEC strains from laying hens to antibiotics is, in general, very high. Phenotypic resistance to commonly used disinfectants could not be found, indicating that the current use of disinfectants in the laying hen industry did not select for resistance.

  17. Antibiotic sensitivity profiles do not reliably distinguish relapsing or persisting infections from reinfections in cats with chronic renal failure and multiple diagnoses of Escherichia coli urinary tract infection.

    PubMed

    Freitag, Thurid; Squires, Richard A; Schmid, Jan; Elliott, Jonathan; Rycroft, Andrew N

    2006-01-01

    Older cats with chronic renal failure (CRF) commonly develop urinary tract infections (UTI). Uropathogenic Escherichia coli (UPEC) is identified as the causal agent of UTI in most affected cats. Infections are often complicated, and UPEC infections may persist or recur in these cats. Antibiotic sensitivity profiles have been used to distinguish relapsing or persisting UTI from reinfection by different clones of the same species. However, the accuracy with which antibiograms discriminate different urinary E coli clones in cats is uncertain. We studied 17 cystocentesis-derived UPEC isolates collected from 5 cats with stable CRF and multiple diagnoses of UTI. UTIs were classified as relapses versus persistent infections or reinfections using antibiograms determined by Kirby-Bauer discs and Etests. Subsequently, clonality of UPEC isolates was determined by pulsed-field gel electrophoresis (PFGE). A comparison of PFGE results with antibiograms indicated that antibiotic resistance patterns varied considerably within several individual E coli clones. Both antibiotic susceptibility tests differentiated between relapsing or persistent infections and reinfections with only 58% overall efficiency. Thus, antibiotic sensitivity profiles cannot be relied upon to distinguish between persisting or relapsing infections as compared to reinfections in cats with CRF and multiple diagnoses of E coli UTI.

  18. Dissemination of Enterococcus faecalis and Enterococcus faecium in a ricotta processing plant and evaluation of pathogenic and antibiotic resistance profiles.

    PubMed

    Fernandes, Meg da Silva; Fujimoto, Graciela; de Souza, Leandro Pio; Kabuki, Dirce Yorika; da Silva, Márcio José; Kuaye, Arnaldo Yoshiteru

    2015-04-01

    In this work, the sources of contamination by Enterococcus spp. in a ricotta processing line were evaluated. The isolated strains were tested for virulence genes (gelE, cylA,B, M, esp, agg, ace, efaA, vanB), expression of virulence factors (hemolysin and gelatinase), and the resistance to 10 different antibiotics. Enterococcus faecium and Enterococcus faecalis were subjected to discriminatory identification by intergenic spacer region (ITS)-polymerase chain reaction and sequencing of the ITS region. The results showed that Enterococcus spp. was detected in the raw materials, environment samples and the final product. None of the 107 Enterococcus isolates were completely free from all virulence genes considered. A fraction of 21.5% of the isolates containing all of the genes of the cylA, B, M operon also expressed β-hemolysis. Most of the isolates showed the gelE gene, but only 9.3% were able to hydrolyze gelatin. In addition, 23.5% of the observed Enterococcus isolates had the vanB gene but were susceptible to vancomycin in vitro. The dissemination of antibiotic-resistant enterococci was revealed in this study: 19.3% of the E. faecium samples and 78.0% of the E. faecalis samples were resistant to at least one of the antibiotics tested. Sequencing of region discriminated 5 and 7 distinct groups among E. faecalis and E. faecium, respectively. Although some similarity was observed among some of the isolates, all E. faecalis and E. faecium isolates had genetic differences both in the ITS region and in the virulence profile, which makes them different from each other.

  19. Virulence determinants, antimicrobial susceptibility, and molecular profiles of Erysipelothrix rhusiopathiae strains isolated from China

    PubMed Central

    Ding, Yi; Zhu, Dongmei; Zhang, Jianmin; Yang, Longsheng; Wang, Xiangru; Chen, Huanchun; Tan, Chen

    2015-01-01

    The aim of this study was to understand the epidemiology, serotype, antibiotic sensitivity, and clonal structure of Erysipelothrix rhusiopathiae strains in China. Forty-eight strains were collected from seven provinces during the period from 2012 to 2013. Pulse-field electrophoresis identified 32 different patterns which were classified into clonal groups A–D. Most pulsed-field gel electrophoresis (PFGE) patterns were observed in clonal complex A and B, suggesting high diversity of genetic characterization in these two predominant clonal complexes. Antibiotic sensitivity test shows that all the stains were susceptible to ampicillin, erythromycin, and cefotaxime, and resistant to kanamycin, cefazolin, sulfadiazine, and amikacin. Erythromycin and ampicillin are recommended as first-line antibiotics for treatment of E. rhusiopathiae in China. The high variation in PFGE pattern among the main clonal groups shows that the E. rhusiopathiae in China may originate from different lineages and sources instead of from expansion of a single clonal lineage across different regions. PMID:26975059

  20. Virulence determinants, antimicrobial susceptibility, and molecular profiles of Erysipelothrix rhusiopathiae strains isolated from China.

    PubMed

    Ding, Yi; Zhu, Dongmei; Zhang, Jianmin; Yang, Longsheng; Wang, Xiangru; Chen, Huanchun; Tan, Chen

    2015-11-01

    The aim of this study was to understand the epidemiology, serotype, antibiotic sensitivity, and clonal structure of Erysipelothrix rhusiopathiae strains in China. Forty-eight strains were collected from seven provinces during the period from 2012 to 2013. Pulse-field electrophoresis identified 32 different patterns which were classified into clonal groups A–D. Most pulsed-field gel electrophoresis (PFGE) patterns were observed in clonal complex A and B, suggesting high diversity of genetic characterization in these two predominant clonal complexes. Antibiotic sensitivity test shows that all the stains were susceptible to ampicillin, erythromycin, and cefotaxime, and resistant to kanamycin, cefazolin, sulfadiazine, and amikacin. Erythromycin and ampicillin are recommended as first-line antibiotics for treatment of E. rhusiopathiae in China. The high variation in PFGE pattern among the main clonal groups shows that the E. rhusiopathiae in China may originate from different lineages and sources instead of from expansion of a single clonal lineage across different regions.

  1. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents

    PubMed Central

    Colquhoun, Jennifer M.; Wozniak, Rachel A. F.; Dunman, Paul M.

    2015-01-01

    Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional

  2. Microbial profiles at baseline and not the use of antibiotics determine the clinical outcome of the treatment of chronic periodontitis.

    PubMed

    Bizzarro, S; Laine, M L; Buijs, M J; Brandt, B W; Crielaard, W; Loos, B G; Zaura, E

    2016-02-01

    Antibiotics are often used in the treatment of chronic periodontitis, which is a major cause of tooth loss. However, evidence in favour of a microbial indication for the prescription of antibiotics is lacking, which may increase the risk of the possible indiscriminate use of antibiotics, and consequent, microbial resistance. Here, using an open-ended technique, we report the changes in the subgingival microbiome up to one year post-treatment of patients treated with basic periodontal therapy with or without antibiotics. Antibiotics resulted in a greater influence on the microbiome 3 months after therapy, but this difference disappeared at 6 months. Greater microbial diversity, specific taxa and certain microbial co-occurrences at baseline and not the use of antibiotics predicted better clinical treatment outcomes. Our results demonstrate the predictive value of specific subgingival bacterial profiles for the decision to prescribe antibiotics in the treatment of periodontitis, but they also indicate the need for alternative therapies based on ecological approaches.

  3. Microbial profiles at baseline and not the use of antibiotics determine the clinical outcome of the treatment of chronic periodontitis

    PubMed Central

    Bizzarro, S.; Laine, M. L.; Buijs, M. J.; Brandt, B. W.; Crielaard, W.; Loos, B. G.; Zaura, E.

    2016-01-01

    Antibiotics are often used in the treatment of chronic periodontitis, which is a major cause of tooth loss. However, evidence in favour of a microbial indication for the prescription of antibiotics is lacking, which may increase the risk of the possible indiscriminate use of antibiotics, and consequent, microbial resistance. Here, using an open-ended technique, we report the changes in the subgingival microbiome up to one year post-treatment of patients treated with basic periodontal therapy with or without antibiotics. Antibiotics resulted in a greater influence on the microbiome 3 months after therapy, but this difference disappeared at 6 months. Greater microbial diversity, specific taxa and certain microbial co-occurrences at baseline and not the use of antibiotics predicted better clinical treatment outcomes. Our results demonstrate the predictive value of specific subgingival bacterial profiles for the decision to prescribe antibiotics in the treatment of periodontitis, but they also indicate the need for alternative therapies based on ecological approaches. PMID:26830979

  4. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics

    PubMed Central

    Zucchi, Paola C.; Chen, Alice; Raux, Brian R.; Kirby, James E.; McCoy, Christopher; Eliopoulos, George M.

    2016-01-01

    Increasing resistance among Gram-negative uropathogens limits treatment options, and susceptibility data for multidrug-resistant isolates are limited. We assessed the activity of five oral agents against 91 multidrug-resistant Gram-negative urine isolates that were collected from emergency department/hospitalized patients. Fosfomycin and nitrofurantoin were most active (>75% susceptibility). Susceptibilities to sulfamethoxazole-trimethoprim, ciprofloxacin, and ampicillin were ≤40%; empirical use of these agents likely provides inadequate coverage in areas with a high prevalence of multidrug-resistant uropathogens. PMID:26883704

  5. New rapid and simple methods for detection of bacteria and determination of their antibiotic susceptibility by using phage mutants.

    PubMed

    Ulitzur, Nirit; Ulitzur, Shimon

    2006-12-01

    Three new methods applying a novel approach for rapid and simple detection of specific bacteria, based on plaque formation as the end point of the phage lytic cycle, are described. Different procedures were designed to ensure that the resulting plaques were derived only from infected target bacteria ("infectious centers"). (i) A pair of amber mutants that cannot form plaques at concentrations lower than their reversion rate underwent complementation in the tested bacteria; the number of plaques formed was proportional to the concentration of the bacteria that were coinfected by these phage mutants. (ii) UV-irradiated phages were recovered by photoreactivation and/or SOS repair mediated by target bacteria and plated on a recA uvrA bacterial lawn in the dark to avoid recovery of noninfecting phages. (iii) Pairs of temperature-sensitive mutants were allowed to coinfect their target bacteria at the permissive temperature, followed by incubation of the plates at the restrictive temperature to avoid phage infection of the host cells. This method allowed the omission of centrifuging and washing the infected cells. Only phages that recovered by recombination or complementation were able to form plaques. The detection limit was 1 to 10 living Salmonella or Escherichia coli O157 cells after 3 to 5 h. The antibiotic susceptibility of the target bacteria could also be determined in each of these procedures by preincubating the target bacteria with antibiotic prior to phage infection. Bacteria sensitive to the antibiotic lost the ability to form infectious centers.

  6. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination

    PubMed Central

    Aloni-Grinstein, Ronit; Schuster, Ofir; Yitzhaki, Shmuel; Aftalion, Moshe; Maoz, Sharon; Steinberger-Levy, Ida; Ber, Raphael

    2017-01-01

    The early symptoms of tularemia and plague, which are caused by Francisella tularensis and Yersinia pestis infection, respectively, are common to other illnesses, resulting in a low index of suspicion among clinicians. Moreover, because these diseases can be treated only with antibiotics, rapid isolation of the bacteria and antibiotic susceptibility testing (AST) are preferable. Blood cultures of patients may serve as a source for bacteria isolation. However, due to the slow growth rates of F. tularensis and Y. pestis on solid media, isolation by plating blood culture samples on proper agar plates may require several days. Thus, improving the isolation procedure prior to antibiotic susceptibility determination is a major clinically relevant need. In this study, we developed a rapid, selective procedure for the isolation of F. tularensis and Y. pestis from blood cultures. We examined drop-plating and plasma purification followed by immunomagnetic separation (IMS) as alternative isolation methods. We determined that replacing the classical isolation method with drop-plating is advantageous with respect to time at the expense of specificity. Hence, we also examined isolation by IMS. Sub-localization of F. tularensis within blood cultures of infected mice has revealed that the majority of the bacteria are located within the extracellular fraction, in the plasma. Y. pestis also resides within the plasma. Therefore, the plasma fraction was isolated from blood cultures and subjected to an IMS procedure using polyclonal anti-F. tularensis live vaccine strain (LVS) or anti-Y. pestis antibodies conjugated to 50-nm nano-beads. The time required to reach an inoculum of sufficient bacteria for AST was shortest when using the plasma and IMSs for both bacteria, saving up to 2 days of incubation for F. tularensis and 1 day for Y. pestis. Our isolation procedure provides a proof of concept for the clinical relevance of rapid isolation for AST from F. tularensis- and Y. pestis

  7. Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Vibrio parahaemolyticus from Ready-to-Eat Foods in China

    PubMed Central

    Xie, Tengfei; Xu, Xiaoke; Wu, Qingping; Zhang, Jumei; Cheng, Jianheng

    2016-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne outbreaks, particularly outbreaks associated with consumption of fish and shellfish, and represents a major threat to human health worldwide. This bacterium harbors two main virulence factors: the thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH). Additionally, various serotypes have been identified. The extensive use of antibiotics is a contributing factor to the increasing incidence of antimicrobial-resistant V. parahaemolyticus. In the current study, we aimed to determine the incidence and features of V. parahaemolyticus in ready-to-eat (RTE) foods in China. We found 39 V. parahaemolyticus strains on Chinese RTE foods through investigation of 511 RTE foods samples from 24 cities in China. All isolates were analyzed for the presence of tdh and trh gene by PCR, serotyping was performed using multiplex PCR, antibiotic susceptibility analysis was carried out using the disk diffusion method, and molecular typing was performed using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) typing and multilocus sequence typing (MLST). The results showed that none of the isolates were positive for tdh and trh. Most of the isolates (33.3%) were serotype O2. Antimicrobial susceptibility results indicated that most strains were resistant to streptomycin (89.7%), cefazolin (51.3%), and ampicillin (51.3%). The isolates were grouped into five clusters by ERIC-PCR and four clusters by MLST. We updated 10 novel loci and 33 sequence types (STs) in the MLST database. Thus, our findings demonstrated the presence of V. parahaemolyticus in Chinese RTE foods, provided insights into the dissemination of antibiotic-resistant strains, and improved our knowledge of methods of microbiological risk assessment in RTE foods. PMID:27148231

  8. Proteomic Analysis Reveals That Metabolic Flows Affect the Susceptibility of Aeromonas hydrophila to Antibiotics

    PubMed Central

    Yao, Zujie; Li, Wanxin; Lin, Yi; Wu, Qian; Yu, Feifei; Lin, Wenxiong; Lin, Xiangmin

    2016-01-01

    The overuse of antibiotics results in the development of antibiotic resistance and limits the useful life of these drugs in fighting bacteria, including Aeromonas hydrophila, a well-known opportunistic pathogen that causes serious infections in fish and other animals. In this study, we investigated the adaptive resistance mechanism in A. hydrophila by multiple proteomic methods. Dimethyl labeling and label-free methods were performed to compare the differential expression of proteins in response to various doses of oxytetracycline (OXY). The results point to the conclusions that, in response to OXY stress, translational processes increase the abundance of these proteins whereas largely central metabolic pathways decrease their abundance. To confirm our hypothesis, various exogenous metabolites were compounded with OXY, and the resulting survival capabilities were measured. Results show that 7 metabolites (malic acid, serine, methionine, etc.) significantly decreased the survival capabilities of A. hydrophila in the presence of OXY, whereas 4 metabolites (arginine, lysine, tyrosine, etc.) did the opposite. Further investigation suggests that a compound comprising exogenous metabolites in combination with various antibiotics could have a significant bactericidal effect and might come into widespread use, especially together with tetracycline antibiotics. These findings may provide new clues to the antimicrobial treatment of A. hydrophila infection. PMID:27991550

  9. Antimicrobial edible apple films inactivate antibiotic resistant and susceptible Campylobacter jejuni strains on chicken breast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the leading cause of bacterial diarrheal illness worldwide. Many strains are now becoming multi-drug resistant. To help overcome this problem, apple-based edible films containing carvacrol and cinnamaldehyde were evaluated for their effectiveness against antibiotic resistant...

  10. Prevalence, serotype, virulence characteristics, clonality and antibiotic susceptibility of pathogenic Yersinia enterocolitica from swine feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Swine are the only known animal reservoir of Yersinia enterocolitica (YE), a human pathogen. Since YE is a fecal organism of swine, the primary goal of this study was to evaluate the prevalence, serotype, virulence plasmid (pYV)-associated characteristics, clonality, and antibiotic su...

  11. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations

    PubMed Central

    Miftahussurur, Muhammad; Syam, Ari Fahrial; Nusi, Iswan Abbas; Makmun, Dadang; Waskito, Langgeng Agung; Zein, Lukman Hakim; Akil, Fardah; Uwan, Willy Brodus; Simanjuntak, David; Wibawa, I Dewa Nyoman; Waleleng, Jimmy Bradley; Saudale, Alexander Michael Joseph; Yusuf, Fauzi; Mustika, Syifa; Adi, Pangestu; Maimunah, Ummi; Maulahela, Hasan; Rezkitha, Yudith Annisa Ayu; Subsomwong, Phawinee; Nasronudin; Rahardjo, Dadik; Suzuki, Rumiko; Akada, Junko; Yamaoka, Yoshio

    2016-01-01

    Information regarding Helicobacter pylori antibiotic resistance in Indonesia was previously inadequate. We assessed antibiotic susceptibility for H. pylori in Indonesia, and determined the association between virulence genes or genetic mutations and antibiotic resistance. We recruited 849 dyspeptic patients who underwent endoscopy in 11 cities in Indonesia. E-test was used to determine the minimum inhibitory concentration of five antibiotics. PCR-based sequencing assessed mutations in 23S rRNA, rdxA, gyrA, gyrB, and virulence genes. Next generation sequencing was used to obtain full-length sequences of 23S rRNA, infB, and rpl22. We cultured 77 strains and identified 9.1% with clarithromycin resistance. Low prevalence was also found for amoxicillin and tetracycline resistance (5.2% and 2.6%, respectively). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were demonstrated. Strains isolated from Sumatera Island had significantly higher metronidazole resistance than those from other locations. Metronidazole resistant strains had highly distributed rdxA amino acid substitutions and the 23S rRNA A2143G mutation was associated with clarithromycin resistance (42.9%). However, one strain with the highest MIC value had a novel mutation in rpl22 without an A2143G mutation. Mutation at Asn-87 and/or Asp-91 of gyrA was associated with levofloxacin-resistance and was related to gyrB mutations. In conclusions, although this is a pilot study for a larger survey, our current data show that Indonesian strains had the high prevalence of metronidazole and levofloxacin resistance with low prevalence of clarithromycin, amoxicillin, and tetracycline resistance. Nevertheless, clarithromycin- or metronidazole-based triple therapy should be administered with caution in some regions of Indonesia. PMID:27906990

  12. Antibiotic Susceptibilities of Enterococcus Species Isolated from Hospital and Domestic Wastewater Effluents in Alice, Eastern Cape Province of South Africa

    PubMed Central

    Iweriebor, Benson Chuks; Gaqavu, Sisipho; Obi, Larry Chikwelu; Nwodo, Uchechukwu U.; Okoh, Anthony I.

    2015-01-01

    Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard

  13. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Su, Jian-Qiang; Chen, Zheng; Zhou, Xue; Zhu, Yong-Guan

    2014-08-19

    Reclaimed water irrigation (RWI) in urban environments is becoming popular, due to rapid urbanization and water shortage. The continuous release of residual antibiotics and antibiotic resistance genes (ARGs) from reclaimed water could result in the dissemination of ARGs in the downstream environment. This study provides a comprehensive profile of ARGs in park soils exposed to RWI through a high-throughput quantitative PCR approach. 147 ARGs encoding for resistance to a broad-spectrum of antibiotics were detected among all park soil samples. Aminoglycoside and beta-lactam were the two most dominant types of ARGs, and antibiotic deactivation and efflux pump were the two most dominant mechanisms in these RWI samples. The total enrichment of ARGs varied from 99.3-fold to 8655.3-fold compared to respective controls. Six to 60 ARGs were statistically enriched among these RWI samples. Four transposase genes were detected in RWI samples. TnpA-04 was the most enriched transposase gene with an enrichment was up to 2501.3-fold in Urumqi RWI samples compared with control soil samples. Furthermore, significantly positive correlation was found between ARGs and transposase abundances, indicating that transposase might be involved in the propagation of ARGs. This study demonstrated that RWI resulted in the enrichment of ARGs in urban park soils.

  14. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources.

    PubMed

    Odeyemi, Olumide A; Ahmad, Asmat

    2017-01-01

    This study aimed to investigate antibiotics resistance pattern and phenotyping of Aeromonas species isolated from different aquatic sources in Melaka, Malaysia. A total of 53 Aeromonas species were isolated from the following sources: sediment (n = 13), bivalve (n = 10), sea cucumber (n = 16) and sea water (n = 14) and resistance to 12 antibiotics - Tetracycline (30 μg), Kanamycin (30 μg), Oxytetracycline (30 μg), Ampicillin (10 μg), Streptomycin (10 μg), Gentamicin (10 μg), Sulphamethoxazole (25 μg), Nalixidic acid (30 μg), Trimethoprim (1.25 μg), Novobiocin (5 μg), Penicilin (10 μg) and Chloramphenicol (10 μg) was tested. The results obtained from this study reveal multi drug resistance pattern among the isolates. All the isolates were completely resistant to Ampicillin, Novobiocin, Sulphamethoxazole and Trimethoprim, respectively but susceptible to Tetracycline (100%), Kanamycin (5.7%), Gentamicin (5.7%) and Oxytetracycline (24.5%). Antibiotics phenotyping of the bacteria revealed 21 different phenotypes among the isolates.

  15. Direct laser light enhancement of susceptibility of bacteria to gentamicin antibiotic

    NASA Astrophysics Data System (ADS)

    Reznick, Yana; Banin, Ehud; Lipovsky, Anat; Lubart, Rachel; Zalevsky, Zeev

    2011-11-01

    ObjectivesTo test the effect of pulsed (Q-switched) and continuous wave (CW) laser light at wavelength of 532 nm on the viability of free-living stationary phase bacteria with and without gentamicin (an antibiotic) treatment. MethodsFree living stationary phase gram negative bacteria ( Pseudomonas aeruginosa strain PAO1) was immersed in Luria Broth (LB) solution and exposed to Q-switched and CW lasers with and without the addition of the antibiotic gentamicin. Cell viability was determined at different time points. ResultsLaser treatment alone did not reduce cell viability compared to untreated control and the gentamicin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamicin treatment, however, resulted in a synergistic effect and viability was reduced by 8 logs for P. aeruginosa PAO1. ConclusionsCombination of laser light with gentamicin shows an improved efficacy against P. aeruginosa.

  16. Incidence and antibiotic susceptibility of genital mycoplasmas in sexually active individuals in Hungary.

    PubMed

    Pónyai, K; Mihalik, N; Ostorházi, E; Farkas, B; Párducz, L; Marschalkó, M; Kárpáti, S; Rozgonyi, F

    2013-11-01

    The aim of this study was to examine the incidence and antibiotic sensitivity of Ureaplasma urealyticum and Mycoplasma hominis strains cultured from the genital discharges of sexually active individuals who attended our STD outpatient service. Samples were taken with universal swab (Biolab®, Budapest, Hungary) into the Urea-Myco DUO kit (Bio-Rad®, Budapest, Hungary) and incubated in ambient air for 48 h at 37 °C. The determination of antibiotic sensitivity was performed in U9 and arginin broth using the SIR Mycoplasma kit (Bio-Rad®, Budapest, Hungary) under the same conditions. Between 01.05.2008 and 31.12.2011, 373/4,466 (8.35 %) genito-urethral samples with U. urealyticum and 41/4,466 (0.91 %) genito-urethral samples with M. hominis infection were diagnosed in sexually active individuals in the National STD Center, Semmelweis University. U. urealyticum was isolated in 12.54 % in the cervix and 4.1 % in the male urethra, while M. hominis was isolated in 1.33 % in the cervix and 0.51 % in the male urethra. The affected age group was between 21 and 60 years old. U. urealyticum strains were sensitive to tetracycline (95.9 %), doxycycline (97.32 %), and azithromycin (85.79 %), and resistant to erythromycin (81.23 %), clindamycin (75.06 %), and ofloxacin (25.2 %). Cross-resistance occurred in 38.71 % of patients to erythromycin and clindamycin. M. hominis strains were sensitive to clindamycin, ofloxacin, and doxycycline in more than 95 %, to tetracycline in 82.92 %, and no cross-resistance was detected among the antibiotics. Our study confirms that the continuously changing antibiotic resistance of ureaplasmas and mycoplasmas should be followed at least in a few centers in every country, so as to determine the best local therapy options for sexually transmitted infection (STI) patients.

  17. Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic susceptible and resistant bacteria

    PubMed Central

    Stables, Melanie J.; Newson, Justine; Ayoub, Samir S.; Brown, Jeremy; Hyams, Catherine J.; Gilroy, Derek W.

    2017-01-01

    Inhibition of cyclooxygenase (COX)-derived prostaglandins (PGs) by non-steroidal anti-inflammatory drugs (NSAIDs) mediates leukocyte killing of bacteria. However, the relative contribution of COX 1 versus COX 2 to this process as well as the mechanisms controlling it in mouse and humans are unknown. Indeed, the potential of NSAIDs to facilitate leukocyte killing of drug-resistance bacteria warrants investigation. Therefore, we carried a series of experiments in mouse and humans finding that COX 1 is the predominant isoform active in PG synthesis during infection and that its prophylactic or therapeutic inhibition primes leukocytes to kill bacteria by increasing phagocytic uptake and reactive oxygen intermediate-mediated killing in a cAMP-dependent manner. Moreover, NSAIDs enhance bacterial killing in humans, exerting an additive effect when used in combination with antibiotics. Finally, NSAIDs, through the inhibition of COX prime the innate immune system to mediate bacterial clearance of penicillin-resistant Streptococcus pneumoniae serotype 19A, which is a well recognised vaccine escape serotype of particular concern given its increasing prevalence and multi-antibiotic resistance. Therefore, these data underline the importance of lipid mediators in host responses to infection and the potential of inhibitors of PG signaling pathways as adjunctive therapies, particularly in the context of antibiotic resistance. PMID:20606163

  18. Nitrite Modulates Bacterial Antibiotic Susceptibility and Biofilm Formation in Association with Airway Epithelial Cells

    PubMed Central

    Zemke, Anna C; Shiva, Sruti; Burn, Jane L.; Moskowitz, Samuel M.; Pilewski, Joseph M.; Gladwin, Mark T.; Bomberger, Jennifer M.

    2014-01-01

    Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, while the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects in other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain ‘poisons’, can be safely nebulized at high concentration in humans. PMID:25229185

  19. Community Acquired Enterococcal Urinary Tract Infections and Antibiotic Resistance Profile in North India

    PubMed Central

    Goel, Varun; Kumar, Dinesh; Kumar, Rajendra; Mathur, Purva; Singh, Sarman

    2016-01-01

    Background: Urinary tract infections (UTIs) remain a major problem both in hospitalized and outdoor patients. Multidrug-resistant enterococci are emerging as a major nosocomial pathogen with increasing frequency. However, the incidence of community-acquired enterococcal infections and species prevalent in India is not thoroughly investigated. Objectives: This study aims to estimate the burden of community-acquired UTIs seen at a tertiary care hospital and to identify the Enterococcus species isolated from these patients. The study also aims to determine the antibiotic susceptibility pattern with reference to high-level aminoglycosides and vancomycin. Materials and Methods: Semi-quantitative cultures from a total of 22,810 urine samples obtained from patients seen at various Outpatient Departments were analyzed. From them 115 nonduplicate isolates of enterococci were obtained as significant pure growth (>105 cfu/ml) and speciated. Antibiotic susceptibility was performed by Kirby–Bauer disc diffusion method. Vancomycin resistance screening was performed by the vancomycin screen agar method recommended by Clinical and Laboratory Standards Institute and confirmed by determination of minimum inhibitory concentration by agar dilution method. Results: Of 115 enterococcal isolates, 61 were identified as Enterococcus faecalis, 42 as Enterococcus faecium, 3 each as Enterococcus dispar, and Enterococcus pseudoavium. High-level gentamicin resistance (HLGR) was higher in E. faecium (47.6%) than E. faecalis (32.7%) and HLSR also showed the same pattern with 47.6% and 27.9% resistance, respectively. Vancomycin resistant enterococci accounted for 11.3% of the isolates, and out of them 53.8% were E. faecium by agar dilution method. Conclusion: High rate of resistance to antibiotics of penicillin group and aminoglycosides was observed in our tertiary care hospital even in community acquired UTIs. Hence, there is an urgent need for more rational and restricted use of antimicrobials

  20. Genetic diversity and antibiotic resistance profiles of Campylobacter jejuni isolates from poultry and humans in Turkey.

    PubMed

    Abay, Secil; Kayman, Tuba; Otlu, Baris; Hizlisoy, Harun; Aydin, Fuat; Ertas, Nurhan

    2014-05-16

    In this study, the investigation of clonal relations between human and poultry Campylobacter jejuni isolates and the determination of susceptibilities of isolates to various antibiotics were aimed. A total of 200 C. jejuni isolates concurrently obtained from 100 chicken carcasses and 100 humans were genotyped by the Pulsed-Field Gel Electrophoresis (PFGE) and automated Repetitive Extragenic Palindromic PCR (Rep-PCR, DiversiLab system) methods and were tested for their susceptibility to six antibiotics with disk diffusion method. The minimum inhibitory concentration (MIC) values of ciprofloxacin (CI), enrofloxacin (EF) and erythromycin (EM) were evaluated by E-test. By using PFGE 174 of (87.0%) the isolates were able to be typed. The clonally related strains were placed in 35 different clusters and 115 different genotypes were obtained. All of the two hundred isolates could be typed by using Rep-PCR and were divided into 133 different genotypes. One hundred and fourteen clonally related isolates (57.0%) were included in 47 clusters. In disk diffusion test, while the susceptibility rates of AMC and S to human and chicken derived C. jejuni isolates were 84.0%-96.0% and 96.0%-98.0%, respectively, all isolates were susceptible to gentamicin. The resistance rates of human isolates to AMP, NA and TE were detected as 44.0%, 84.0% and 38.0% of the resistances of chicken isolates to these antibiotics were 34.0%, 95.0% and 56.0%, respectively. The MIC values of human and chicken isolates to CI, EF and EM were detected as 81.0-93.0%, 85.0-88.0% and 6.0-7.0%, respectively. The clonal proximity rates were detected between human and poultry origin C. jejuni isolates. The discriminatory power of PFGE and Rep-PCR was similar, with Simpson's diversity indexes of 0.993 and 0.995, respectively. Concordance of the two methods as determined by Adjusted Rand coefficient was 0.198 which showed the low congruence between Rep-PCR and PFGE. High rates of quinolone resistance were detected in

  1. Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure.

    PubMed

    Schoepp, Nathan G; Khorosheva, Eugenia M; Schlappi, Travis S; Curtis, Matthew S; Humphries, Romney M; Hindler, Janet A; Ismagilov, Rustem F

    2016-08-08

    Rapid antimicrobial susceptibility testing (AST) would decrease misuse and overuse of antibiotics. The "holy grail" of AST is a phenotype-based test that can be performed within a doctor visit. Such a test requires the ability to determine a pathogen's susceptibility after only a short antibiotic exposure. Herein, digital PCR (dPCR) was employed to test whether measuring DNA replication of the target pathogen through digital single-molecule counting would shorten the required time of antibiotic exposure. Partitioning bacterial chromosomal DNA into many small volumes during dPCR enabled AST results after short exposure times by 1) precise quantification and 2) a measurement of how antibiotics affect the states of macromolecular assembly of bacterial chromosomes. This digital AST (dAST) determined susceptibility of clinical isolates from urinary tract infections (UTIs) after 15 min of exposure for all four antibiotic classes relevant to UTIs. This work lays the foundation to develop a rapid, point-of-care AST and strengthen global antibiotic stewardship.

  2. Effects of scopolamine on autonomic profiles underlying motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, Sebastian H. J.; Stern, Robert M.; Koch, Kenneth L.

    1993-01-01

    The purpose of this study was to examine the effects of scopolamine on the physiological patterns occurring prior to and during motion sickness stimulation. In addition, the use of physiological profiles in the prediction of motion sickness was evaluated. Sixty subjects ingested either 0.6 mg scopolamine, 2.5 mg methoscopolamine, or a placebo. Heart rate (HR), respiratory sinus arrhythmia (an index of vagal tone), and electrogastrograms were measured prior to and during the exposure to a rotating optokinetic drum. Compared to the other groups, the scopolamine group reported fewer motion sickness symptoms, and displayed lower HR, higher vagal tone, enhanced normal gastric myoelectric activity, and depressed gastric dysrhythmias before and during motion sickness induction. Distinct physiological profiles prior to drum rotation could reliably differentiate individuals who would develop gastric discomfort from those who would not. Symptom-free subjects were characterized by high levels of vagal tone and low HR across conditions, and by maintaining normal (3 cpm) electrogastrographic activity during drum rotation. It was concluded that scopolamine offered motion sickness protection by initiating a pattern of increased vagal tone and gastric myoelectric stability.

  3. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments.

    PubMed

    Schoenfelder, Sonja M K; Dong, Ying; Feßler, Andrea T; Schwarz, Stefan; Schoen, Christoph; Köck, Robin; Ziebuhr, Wilma

    2017-02-01

    Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) have globally emerged in animal husbandry. In addition to methicillin resistance, LA-MRSA may carry a variety of novel and uncommon antimicrobial resistance genes. Occurrence of the same resistance genes in coagulase-negative staphylococci (CoNS) and S. aureus suggests an ongoing genetic exchange between LA-MRSA and other staphylococci whose driving forces in the ecological niche of the farm environment are, however, still poorly understood. To assess the potential of CoNS as putative reservoirs for antibiotic resistance genes, we analysed the antimicrobial susceptibility of CoNS from dust and manure samples obtained in 41 pig farms in Germany, most of them (36 of 41) with a proven LA-MRSA/MSSA history. Among the 344 isolates analysed, 18 different CoNS species were identified and S. sciuri represented the most prevalent species (46%). High resistance rates were detected for tetracycline (71%), penicillin (65%) and oxacillin (64%) as well as fusidic acid (50%), which was mainly due to reduced susceptibility among S. sciuri isolates. S. sciuri exhibited pronounced multiresistance, and many isolates were characterised by the carriage of a number of uncommon (multi)resistance genes (e.g. cfr, apmA, fexA) and decreased susceptibility towards last resort antibiotics such as linezolid and daptomycin. The combined data suggest that S. sciuri harbours a significant resistance gene pool that requires further attention. We hypothesise that members of this species, due to their flexible lifestyle, might contribute to the spread of such genes in livestock environments.

  4. Evaluating antibiotic release profiles as a function of polymer coating formulation - biomed 2011.

    PubMed

    Davidoff, Sherry N; Sevy, Justin O; Brooks, Benjamin D; Grainger, David W; Brooks, Amanda E

    2011-01-01

    To address persistent 1-3% infection rates associated with orthopedic implant surgeries, the next generation of bone graft filler materials will no longer pharmacologically silent being endowed as a local drug delivery vehicle to maintain locally high levels of antibiotic. Bone allograft material, used as a structural support to fill the avascular spaces in bone defects, revision surgeries, and traumatic injury, can be used as a drug depot to provide effective antibiotic delivery over the orthopedically relevant six-to-eight week time period. Passive antibiotic coatings, applied in the surgical theater, are quickly depleted from the site, inadvertently promoting the development of drug-resistance. Alternatively, many promising controlled-delivery strategies provide an initial burst release of antibiotic within 24 to 72 hours; however, this remains inadequate to combat the onslaught of ubiquitous pathogens that can persist only to reemerge once drug concentrations fall below the minimal inhibitory concentration (MIC). To improve the longevity of this strategy, a variety of coating techniques were evaluated in which clinically-accepted, FDA-recognized, degradable polycaprolactone (PCL) polymer acts as a rate-controlling membrane to retard the release of the antibiotic tobramycin from allograft bone. Using a combination of dipping and rapid drying, the drug-releasing polymer coating was applied concurrently maintaining the high surface area of the allograft bone; however, SEM imaging reveled an imperfect coating that negatively affected the release kinetics. Altering the drug-containing polymer formulation to incorporate water provided a smoother, more uniform coat and ultimately improved the drug-release profile and longevity out to 5 weeks using both bacteriostatic and bacteriocidal assays. Additionally, drug bioactivity was assessed and confirmed between 2 and 4 weeks in the absence of the water-containing polymer.

  5. Bacterial antibiotic resistance studies using in vitro dynamic models: Population analysis vs. susceptibility testing as endpoints of mutant enrichment.

    PubMed

    Firsov, Alexander A; Strukova, Elena N; Portnoy, Yury A; Shlykova, Darya S; Zinner, Stephen H

    2015-09-01

    Emergence of bacterial antibiotic resistance is usually characterised either by population analysis or susceptibility testing. To compare these endpoints in their ability to demonstrate clear relationships with the ratio of 24-h area under the concentration-time curve (AUC24) to the minimum inhibitory concentration (MIC), enrichment of ciprofloxacin-resistant mutants of four clinical isolates of Pseudomonas aeruginosa was studied in an in vitro dynamic model that simulates mono-exponential pharmacokinetics of ciprofloxacin over a wide range of the AUC24/MIC ratios. Each organism was exposed to twice-daily ciprofloxacin for 3 days. Amplification of resistant mutants was monitored by plating on media with 2×, 4×, 8× and 16× MIC of ciprofloxacin. Population analysis data were expressed by the area under the bacterial mutant concentration-time curve (AUBCM). Changes in P. aeruginosa susceptibility were examined by daily MIC determinations. To account for the different susceptibilities of P. aeruginosa strains, post-exposure MICs (MICfinal) were related to the MICs determined with the starting inoculum (MICinitial). For each organism, AUC24/MIC relationships both with AUBCM and MICfinal/MICinitial were bell-shaped, but the latter were more strain-specific than the former. Using combined data on all four isolates, AUBCM showed a better correlation than MICfinal/MICinitial (r(2)=0.75 vs. r(2)=0.53). The shift of MICfinal/MICinitial relative to AUBCM vs. AUC24/MIC curves resulted in a weak correlation between AUBCM and MICfinal/MICinitial (r(2)=0.41). These data suggest that population analysis is preferable to susceptibility testing in bacterial resistance studies and that these endpoints should not be considered interchangeable.

  6. Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University Specialized Hospital

    PubMed Central

    2013-01-01

    Introduction Hospital acquired infections are recognized as critical public health problems. Infections are frequently caused by organisms residing in healthcare environment, including contaminated medical equipment like Stethoscopes. Objective To determine bacterial contamination, bacterial profile and anti-microbial susceptibility pattern of the isolates from stethoscopes at Jimma University Specialized Hospital. Methodology Cross-sectional study conducted from May to September 2011 at Jimma University Specialized Hospital. One hundred seventy-six stethoscopes owned by Health Care Workers (HCWs) and Medical students were randomly selected and studied. Self-administered structured questionnaire was used to collect socio-demographic data. Specimen was collected using moisten sterile cotton swab and 1 ml normal saline was used to transport the specimen, all laboratory investigations were done following standard microbiological techniques, at Microbiology Laboratory, Jimma University. SPSS windows version 16 used for data analysis and P <0.05 was considered statistically significant. Result: A total, of 151 (85.8%) stethoscopes were contaminated. A total of 256 bacterial strains and a mean of 1.44×104 CFUs/diaphragm of stethoscopes was isolated. Of the 256 isolates, 133 (52%) were potential pathogens like S. aureus, Klebsiella spp., Citrobacter spp., Salmonella spp., Proteus spp., Enterobacter spp., P. aeruginosa and E. coli. All strains were resistant to multiple classes of antibiotics (two to eight classes of antibiotics). Disinfection practice was poor. Disinfection practice was found to be associated with bacterial contamination of stethoscopes (P < 0.05). High contamination rate 100 (90.9%) was observed among stethoscopes that had never been disinfected; while the least contamination 29 (72.2%) was found on those disinfected a week or less before the survey. Conclusion Bacterial contamination of the stethoscope was significant. The isolates were potential

  7. An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi.

    PubMed

    Feng, Jie; Wang, Ting; Zhang, Shuo; Shi, Wanliang; Zhang, Ying

    2014-01-01

    Lyme disease caused by Borrelia burgdorferi is the most common tick-borne disease in the US and Europe. Unlike most bacteria, measurements of growth and viability of B. burgdorferi are challenging. The current B. burgdorferi viability assays based on microscopic counting and PCR are cumbersome and tedious and cannot be used in a high throughput format. Here, we evaluated several commonly used viability assays including MTT and XTT assays, fluorescein diacetate assay, Sytox Green/Hoechst 33342 assay, the commercially available LIVE/DEAD BacLight assay, and SYBR Green I/PI assay by microscopic counting and by automated 96-well plate reader for rapid viability assessment of B. burgdorferi. We found that the optimized SYBR Green I/PI assay based on green to red fluorescence ratio is superior to all the other assays for measuring the viability of B. burgdorferi in terms of sensitivity, accuracy, reliability, and speed in automated 96-well plate format and in comparison with microscopic counting. The BSK-H medium which produced a high background for the LIVE/DEAD BacLight assay did not affect the SYBR Green I/PI assay, and the viability of B. burgdorferi culture could be directly measured using a microtiter plate reader. The SYBR Green I/PI assay was found to reliably assess the viability of planktonic as well as biofilm B. burgdorferi and could be used as a rapid antibiotic susceptibility test. Thus, the SYBR Green I/PI assay provides a more sensitive, rapid and convenient method for evaluating viability and antibiotic susceptibility of B. burgdorferi and can be used for high-throughput drug screens.

  8. Impact of Antibiotic Use during Hospitalization on the Development of Gastrointestinal Colonization with Escherichia coli with Reduced Fluoroquinolone Susceptibility

    PubMed Central

    Han, Jennifer H.; Bilker, Warren B.; Nachamkin, Irving; Tolomeo, Pam; Mao, Xiangqun; Fishman, Neil O.; Lautenbach, Ebbing

    2014-01-01

    OBJECTIVE Infections due to fluoroquinolone-resistant Escherichia coli (FQREC) are associated with significant morbidity and mortality. Fluoroquinolone resistance likely arises at the level of gastrointestinal colonization. The objective of this study was to identify risk factors for the development of FQREC gastrointestinal tract colonization in hospitalized patients, including the impact of antibiotics prescribed during hospitalization. DESIGN A prospective cohort study was conducted from 2002 to 2004 within a university health system. METHODS Hospitalized patients initially colonized with fluoroquinolone-susceptible E. coli were followed up with serial fecal sampling for new FQREC colonization or until hospital discharge or death. A Cox proportional hazards regression model was developed to identify risk factors for new FQREC colonization, with antibiotic exposure modeled as time-varying covariates. RESULTS Of 395 subjects, 73 (18.5%) became newly colonized with FQREC. Length of stay before sampling (hazard ratio [HR], 1.02 [95% confidence interval (CI), 1.1–1.03]; P = .003) and malignancy (HR, 0.37 [95% CI, 0.21–0.67]; P = .001) were significantly associated with the development of FQREC colonization. In addition, receipt of a first-generation cephalosporin (HR, 1.19 [95% CI, 1.10–1.29]; P < .001) or cefepime (HR, 1.05 [95% CI, 1.00–1.10]; P = .048) during hospitalization increased the risk of new FQREC colonization. CONCLUSIONS The acquisition of FQREC in the hospital setting is complex, and antimicrobial stewardship programs should take into account patterns of antibiotic use in implementing strategies to reduce the development of new FQREC colonization. Future studies are needed to identify risk factors for infection in hospitalized patients newly colonized with FQREC. PMID:24018924

  9. Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients.

    PubMed

    Vaněrková, Martina; Mališová, Barbora; Kotásková, Iva; Holá, Veronika; Růžička, Filip; Freiberger, Tomáš

    2017-04-01

    The aim of this study was to analyse genotypes, antimicrobial susceptibility patterns and serotypes in Pseudomonas aeruginosa clinical strains, including the clonal dissemination of particular strains throughout various intensive care units in one medical centre. Using random amplified polymorphic DNA (RAPD-PCR) and P. aeruginosa antisera, 22 different genotypes and 8 serotypes were defined among 103 isolates from 48 patients. No direct association between P. aeruginosa strain genotypes and serotypes was observed. RAPD typing in strains with the same serotype revealed different genotypes and, on the contrary, most strains with a different serotype displayed the same amplification pattern. The resulting banding patterns showed a high degree of genetic heterogeneity among all isolates from the patients examined, suggesting a non-clonal relationship between isolates from these patients. A higher degree of antibiotic resistance and stronger biofilm production in common genotypes compared to rare ones and genetic homogeneity of the most resistant strains indicated the role of antibiotic pressure in acquiring resistant and more virulent strains in our hospital. In conclusion, genetic characterisation of P. aeruginosa strains using RAPD method was shown to be more accurate in epidemiological analyses than phenotyping.

  10. Antibiotic susceptibility of thermo-tolerant Escherichia coli 2 isolated from drinking water of Khairpur City, Sindh, Pakistan.

    PubMed

    Shar, A H; Kazi, Y F; Soomro, I H

    2009-04-15

    A total 72 drinking water sample were collected and analyzed by membrane filtration method during 1 year study from various points in Khairpur City. Out of these 58 (80.55%) samples were found to be contaminated with thermo-tolerant Escherichia coli 2. The susceptibility of these isolates to 35 antibiotics was studied by disc diffusion method and the organism was highly sensitive to levoflaxin, cefipime, enoxobid, noroxin, tarivid, ciproxin, avelox, amikacin, kanamycin, rocifin, pipenedic acid and slightly sensitive to cravit, naladixic acid, neomycin, cefizox, fortum cefotaxime, cefizox, fortum, tobramycin and cefoperoxone. The resistance against 16 antibiotics such as meropenem, linkomycin, fusidic acid, orbenin, penicillin, streptomycin, bacitracin, minocin, zinacef, amoxil, ceclor, claracid, cephalexin, augmentin, cephradin and dalacin was shown by these isolates. We report the presence of multi-drug resistance in thermo-tolerant Escherichia coli isolated in municipal water with different levels of prevalence in Khairpur City. In this study a higher number of positive results were obtained in all sampling points indicating the more fecally polluted municipal water.

  11. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes

    NASA Astrophysics Data System (ADS)

    Etayash, Hashem; Khan, M. F.; Kaur, Kamaljit; Thundat, Thomas

    2016-10-01

    In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics.

  12. Bladder catheterization increases susceptibility to infection that can be prevented by prophylactic antibiotic treatment

    PubMed Central

    Rousseau, Matthieu; Goh, H.M. Sharon; Holec, Sarah; Albert, Matthew L.; Williams, Rohan B.H.; Ingersoll, Molly A.; Kline, Kimberly A.

    2016-01-01

    Catheter-associated urinary tract infections (CAUTI) are the most common hospital-associated infections. Here, we report that bladder catheterization initiated a persistent sterile inflammatory reaction within minutes of catheter implantation. Catheterization resulted in increased expression of genes associated with defense responses and cellular migration, with ensuing rapid and sustained innate immune cell infiltration into the bladder. Catheterization also resulted in hypersensitivity to Enterococcus faecalis and uropathogenic Escherichia coli (UPEC) infection, in which colonization was achieved using an inoculum 100-fold lower than the ID90 for infection of an undamaged urothelium with the same uropathogens. As the time of catheterization increased, however, colonization by the Gram-positive uropathogen E. faecalis was reduced, whereas catheterization created a sustained window of vulnerability to infection for Gram-negative UPEC over time. As CAUTI contributes to poorer patient outcomes and increased health care expenditures, we tested whether a single prophylactic antibiotic treatment, concurrent with catheterization, would prevent infection. We observed that antibiotic treatment protected against UPEC and E. faecalis bladder and catheter colonization as late as 6 hours after implantation. Thus, our study has revealed a simple, safe, and immediately employable intervention, with the potential to decrease one of the most costly hospital-incurred infections, thereby improving patient and health care economic outcome. PMID:27699248

  13. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes

    PubMed Central

    Etayash, Hashem; Khan, M. F.; Kaur, Kamaljit; Thundat, Thomas

    2016-01-01

    In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics. PMID:27698375

  14. Antibiotic susceptibility patterns and prevalence of group B Streptococcus isolated from pregnant women in Misiones, Argentina.

    PubMed

    Quiroga, M; Pegels, E; Oviedo, P; Pereyra, E; Vergara, M

    2008-04-01

    This study was performed to determine the susceptibility patterns and the colonization rate of Group B Streptococcus (GBS) in a population of pregnant women. From January 2004 to December 2006, vaginal-rectal swabs were obtained from 1105 women attending Dr. Ramón Madariaga Hospital, in Posadas, Misiones, Argentina. The carriage rate of GBS among pregnant women was 7.6%. A total of 62 GBS strains were randomly selected for in vitro susceptibility testing to penicillin G, ampicillin, tetracycline, levofloxacin, gatifloxacin, ciprofloxacin, quinupristin-dalfopristin, linezolid, vancomycin, rifampicin, trimethoprim- sulfametoxazol, nitrofurantoin, gentamicin, clindamycin and erythromycin, and determination of resistance phenotypes. No resistance to penicillin, ampicillin, quinupristin-dalfopristin, linezolid, and vancomycin was found. Of the isolates examined 96.8%, 98.3%, 46.8%, and 29.0% were susceptible to rifampicin, nitrofurantoin, trimethoprim-sulfametoxazol and tetracycline, respectively. Rank order of susceptibility for the quinolones was: gatifloxacin (98.4%) > levofloxacin (93.5%) > ciprofloxacin (64.5%). The rate of resistance to erythromycin (9.7%) was higher than that of other reports from Argentina. High-level resistance to gentamicin was not detected in any of the isolates. Based on our finding of 50% of GBS isolates with MIC to gentamicin equal o lower than 8 μg/ml, a concentration used in one of the selective media recommended for GBS isolation, we suggested, at least in our population, the use of nalidixic acid and colistin in selective media with the aim to improve the sensitivity of screening cultures for GBS carriage in women.

  15. Antibiotic susceptibility patterns and prevalence of group B Streptococcus isolated from pregnant women in Misiones, Argentina

    PubMed Central

    Quiroga, M.; Pegels, E.; Oviedo, P.; Pereyra, E.; Vergara, M.

    2008-01-01

    This study was performed to determine the susceptibility patterns and the colonization rate of Group B Streptococcus (GBS) in a population of pregnant women. From January 2004 to December 2006, vaginal-rectal swabs were obtained from 1105 women attending Dr. Ramón Madariaga Hospital, in Posadas, Misiones, Argentina. The carriage rate of GBS among pregnant women was 7.6%. A total of 62 GBS strains were randomly selected for in vitro susceptibility testing to penicillin G, ampicillin, tetracycline, levofloxacin, gatifloxacin, ciprofloxacin, quinupristin-dalfopristin, linezolid, vancomycin, rifampicin, trimethoprim- sulfametoxazol, nitrofurantoin, gentamicin, clindamycin and erythromycin, and determination of resistance phenotypes. No resistance to penicillin, ampicillin, quinupristin-dalfopristin, linezolid, and vancomycin was found. Of the isolates examined 96.8%, 98.3%, 46.8%, and 29.0% were susceptible to rifampicin, nitrofurantoin, trimethoprim-sulfametoxazol and tetracycline, respectively. Rank order of susceptibility for the quinolones was: gatifloxacin (98.4%) > levofloxacin (93.5%) > ciprofloxacin (64.5%). The rate of resistance to erythromycin (9.7%) was higher than that of other reports from Argentina. High-level resistance to gentamicin was not detected in any of the isolates. Based on our finding of 50% of GBS isolates with MIC to gentamicin equal o lower than 8 μg/ml, a concentration used in one of the selective media recommended for GBS isolation, we suggested, at least in our population, the use of nalidixic acid and colistin in selective media with the aim to improve the sensitivity of screening cultures for GBS carriage in women. PMID:24031210

  16. Same-day identification and antibiotic susceptibility testing on positive blood cultures: a simple and inexpensive procedure.

    PubMed

    Maelegheer, K; Nulens, E

    2016-11-26

    Fast diagnostic tools are becoming a hot topic in microbiology, especially in the case of septic patients. Therefore, we attempted to develop a fast, inexpensive, accurate and easy method to identify bacteria and perform an antibiotic susceptibility test directly on positive blood cultures that could be used in a routine laboratory. A procedure based on centrifugation and washing steps was performed on 110 non-duplicated (including nine seeded) positive blood culture bottles. Direct identification (DID) and antimicrobial susceptibility testing (AST) was conducted on the pellet with the MALDI Biotyper and Phoenix, respectively. Identification (ID) to the species level was correct in 44/45 (97%) cases for Gram-negative bacteria and 44/56 (79%) cases for Gram-positive bacteria. In total, 98.9% of the AST results were identical to the routine laboratory result. No very major errors, four major errors and eight minor errors were detected. A reliable identification and a high AST agreement were obtained from blood cultures seeded with multi-resistant bacteria. We simulated the timeline of DID and demonstrated an identification and AST result within 24 h using Escherichia coli- and Staphylococcus aureus-positive blood cultures as examples. We developed an easy, fast and cheap method to generate reliable ID and AST results. Moreover, this method may be used to obtain results within 24 h after incubating the blood culture bottles in the microbiology lab.

  17. Antimicrobial susceptibility profiling and genomic diversity of Acinetobacter baumannii isolates: A study in western Iran

    PubMed Central

    Mohajeri, Parviz; Farahani, Abbas; Feizabadi, Mohammad Mehdi; Ketabi, Hosnieh; Abiri, Ramin; Najafi, Farid

    2013-01-01

    Background and Objective Acinetobacter baumannii is an aerobic non-motile Gram-negative bacterial pathogen that is resistant to most antibiotics. Carbapenems are the most common antibiotics for the treatment of infections caused by this pathogen. Mechanisms of antibiotic-resistance in A. baumannii are mainly mediated by efflux pumps-lactamases. The aim of this study was to determine antibiotic susceptibility, the possibility of existence of OXAs genes and fingerprinting by Pulsed-Field Gel Electrophoresis (PFGE) among clinical isolates of Acinetobacter collected from Kermanshah hospitals. Materials and Methods One hundred and four isolates were collected from patients attending Imam Reza, Taleghani and Imam Khomeini hospitals of Kermanshah (Iran). Isolates were identified by biochemical tests and API 20NE kit. The susceptibility to different antibiotics was assessed with Kirby-Bauer disk diffusion method. PCR was performed for detection of bla OXA-23, bla OXA-24, bla OXA-51 and bla OXA-58 beta-lactamase genes. Clonal relatedness was estimated by PFGE (with the restriction enzyme Apa I) and DNA patterns were analyzed by Gel compare II 6.5 software. Results All isolates showed high-level of resistance to imipenem, meropenem as well as to other antimicrobial agents, while no resistance to polymyxin B, colistin, tigecylcine and minocycline was observed. The bla OXA-23like and bla OXA-24 like were found among 77.9% and 19.2% of the isolates, respectively. All isolates were positive for bla OXA-51, but none produced any amplicon for bla OXA-58. PFGE genotype analysis suggested the existence of eight clones among the 104 strains [A (n = 35), B (n = 29), C (n = 19), D (n = 10), E (n = 4), F (n = 3), G (n = 3), H (n = 1)]. Clone A was the dominant clone in hospital settings particularly infection wards so that the isolates in this group, compared to the other clones, showed higher levels of resistance to antibiotics. Conclusion The bla OXA-51-like and bla OXA-23like were

  18. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility.

    PubMed

    Hammer, Katherine A; Carson, Christine F; Riley, Thomas V

    2012-02-01

    This study examined the effect of subinhibitory Melaleuca alternifolia (tea tree) essential oil on the development of antibiotic resistance in Staphylococcus aureus and Escherichia coli. Frequencies of single-step antibiotic-resistant mutants were determined by inoculating bacteria cultured with or without subinhibitory tea tree oil onto agar containing 2 to 8 times the MIC of each antibiotic and with or without tea tree oil. Whereas most differences in resistance frequencies were relatively minor, the combination of kanamycin and tea tree oil yielded approximately 10-fold fewer resistant E. coli mutants than kanamycin alone. The development of multistep antibiotic resistance in the presence of tea tree oil or terpinen-4-ol was examined by culturing S. aureus and E. coli isolates daily with antibiotic alone, antibiotic with tea tree oil, and antibiotic with terpinen-4-ol for 6 days. Median MICs for each antibiotic alone increased 4- to 16-fold by day 6. Subinhibitory tea tree oil or terpinen-4-ol did not greatly alter results, with day 6 median MICs being either the same as or one concentration different from those for antibiotic alone. For tea tree oil and terpinen-4-ol alone, day 6 median MICs had increased 4-fold for S. aureus (n = 18) and 2-fold for E. coli (n = 18) from baseline values. Lastly, few significant changes in antimicrobial susceptibility were seen for S. aureus and S. epidermidis isolates that had been serially subcultured 14 to 22 times with subinhibitory terpinen-4-ol. Overall, these data indicate that tea tree oil and terpinen-4-ol have little impact on the development of antimicrobial resistance and susceptibility.

  19. Novel Antibiotic Susceptibility Tests by the ATP-Bioluminescence Method Using Filamentous Cell Treatment

    PubMed Central

    Hattori, Noriaki; Nakajima, Moto-O; O’Hara, Koji; Sawai, Tetsuo

    1998-01-01

    Antimicrobial susceptibility testing by the ATP-bioluminescence method has been noted for its speed; it provides susceptibility results within 2 to 5 h. However, several disagreements between the ATP method and standard methodology have been reported. The present paper describes a novel ATP method in a 3.5-h test which overcomes these deficiencies through the elimination of false-resistance discrepancies in tests on gram-negative bacteria with β-lactam agents. In our test model using Pseudomonas aeruginosa and piperacillin, it was shown that ATP in filamentous cells accounted for the false resistance. We found that 0.5% 2-amino-2-methyl-1,3-propanediol (AMPD) extracted ATP from the filamentous cells without affecting normal cells and that 0.3 U of adenosine phosphate deaminase (APDase)/ml simultaneously digested the extracted ATP. We used the mixture of these reagents for the pretreatment of cells in a procedure we named filamentous cell treatment, prior to ATP measurements. This novel ATP method with the filamentous cell treatment eliminated false-resistance discrepancies in tests on P. aeruginosa with β-lactam agents, including piperacillin, cefoperazone, aztreonam, imipenem-cilastatin, ceftazidime, and cefsulodin. Furthermore, this novel methodology produced results which agreed with those of the standard microdilution method in other tests on gram-negative and gram-positive bacteria, including P. aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, for non-β-lactam agents, such as fosfomycin, ofloxacin, minocycline, and aminoglycosides. MICs obtained by the novel ATP method were also in agreement with those obtained by the agar dilution method of susceptibility testing. From these results, it was shown that the novel ATP method could be used successfully to test the activities of antimicrobial agents with the elimination of the previously reported discrepancies. PMID:9624485

  20. [Rapid diagnosis and susceptibility of Mycobacterium tuberculosis to antibiotics using MGIT system].

    PubMed

    Morcillo, N; Scipioni, S; Vignoles, M; Trovero, A

    1998-01-01

    New technologies for rapid detection and drug susceptibility testing of mycobacteria are needed in clinical laboratories in order to attempt a rapid diagnosis and effective treatment of tuberculosis (TB) specially of cases resistant to isoniazid (H) and rifampin (RMP) (MDR-TB). A total of 218 pulmonary specimens from 132 HIV coinfected patients were processed and inoculated into the Mycobacterial Growth Indicator Tube system (MGIT, Becton Dickinson, MD) and on Lowenstein-Jensen (L-J) and Stonebrink (SB) solid media. The average time for recovering Mycobacterium tuberculosis (MTB) from MGIT was 18.3 days and 31.0 days from solid media. Of the patients 14.4% (19/132) were only diagnosed by MGIT. In another experiment susceptibility tests by the classical proportion method (PM) in L-J medium with H, RMP, streptomycin (SM), para-aminosalycilic-acid and ethambutol (EMB) were carried out on 120 isolates. The results were later compared with those obtained by determining the minimal inhibitory concentration (MIC) for each drug in MGIT against the above mentioned isolates. MIC results from MGIT method were available in an average of 5 days (3-10) and they correlated (correlation index 0.9974) with those of drug susceptibility obtained by the PM. A 4.7% (2/42) of disagreement among detecting isolates resistant to H and SM was found between PM and MGIT. Our results showed MGIT as a useful, safe and timesaving culture system, specially for detecting TB resistance. It might be used in clinical laboratories to improve the proper management of TB patients.

  1. Resistance profile for pathogens causing urinary tract infection in a pediatric population, and antibiotic treatment response at a University Hospital, 2010-2011

    PubMed Central

    Vélez Echeverri, Catalina; Serrano, Ana Katherina; Ochoa-García, Carolina; Rojas Rosas, Luisa; María Bedoya, Ana; Suárez, Margarita; Hincapié, Catalina; Henao, Adriana; Ortiz, Diana; Vanegas, Juan José; Zuleta, John Jairo; Espinal, David

    2014-01-01

    Introduction: Urinary tract infection (UTI) is one of the most common bacterial infections in childhood and causes acute and chronic morbidity and long-term hypertension and chronic kidney disease. Objectives: To describe the demographic characteristics, infectious agents, patterns of antibiotic resistance, etiologic agent and profile of susceptibility and response to empirical treatment of UTI in a pediatric population. Methods: This is a descriptive, retrospective study. Results: Included in the study were 144 patients, 1:2.06 male to female ratio. The most common symptom was fever (79.9%) and 31.3% had a history of previous UTI. 72.0% of the patients had positive urine leukocyte count (>5 per field), urine gram was positive in 85.0% of samples and gram negative bacilli accounted for 77.8% for the total pathogens isolated. The most frequent uropathogens isolated were Escherichia coli and Klebsiella pneumoniae. Our E.coli isolates had a susceptibility rate higher than 90% to most of the antibiotics used, but a resistance rate of 42.6% to TMP SMX and 45.5% to ampicillin sulbactam. 6.3% of E. coli was extended-spectrum beta-lactamases producer strains. The most frequent empirical antibiotic used was amikacin, which was used in 66.0% of the patients. 17 of 90 patients who underwent voiding cistouretrography (VCUG) had vesicoureteral reflux. Conclusion: This study revealed that E. coli was the most frequent pathogen of community acquired UTI. We found that E. coli and other uropathogens had a high resistance rate against TMP SMX and ampicillin sulbactam. In order to ensure a successful empirical treatment, protocols should be based on local epidemiology and susceptibility rates. PMID:24970958

  2. Nasal carriage of methicillin resistant Staphylococcus aureus and their antibiotic susceptibility patterns in children attending day-care centers.

    PubMed

    Sedighi, Iraj; Moez, Hoda Jaefari; Alikhani, Mohammad Yousef

    2011-09-01

    Nasal colonization with community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) is being increasingly reported, especially in places where people are in close contact and in reduced hygiene, such as day-care centers. In this study we investigated the frequency of MRSA colonization and their antibiotic susceptibility patterns in 1-6 years old children of day-care centers in Hamadan, West of Iran.Five hundred nasal swabs were collected from children of 27 day-care centers that had no risk factors for colonization by S. aureus. The specimens were cultured for isolation of S. aureus by standard methods. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. For evaluation of the frequency of erythromycin induced clindamycin resistance, disk approximation test (D-test) was applied.Totally, 148 (29.6%) children were colonized by S. aureus. Out of 260 male, 94 (36.2%) and of 240 female, 54 (22.5%) cases were nasal carriers of S. aureus (P value = 0.001). Six (4.1%) of the 148 S. aureus isolated from children were MRSA strains. None of MRSA and methicillin susceptible S. aureus (MSSA) was resistant to vancomycin and clindamycin. Three of the 6 strains of MRSA and 7 (4.9%) of the 142 MSSA strains were resistant to erythromycin, and D-test was positive in all of them.We conclude that the rate of colonization by S. aureus is high in children attending day-care centers but colonization with MRSA is not common in our areas. Clindamycin or trimethoprim-sulfamethoxazol could be used in mild to moderataly severe diseases caused by CA-MRSA. However, if the CA-MRSA isolates are erythromycin resistant, D-test should be carried out for detection of inducible clindamycin resistance.

  3. In vitro antibiotic susceptibility of Dutch Mycoplasma synoviae field isolates originating from joint lesions and the respiratory tract of commercial poultry.

    PubMed

    Landman, W J M; Mevius, D J; Veldman, K T; Feberwee, A

    2008-08-01

    The in vitro susceptibility of 17 Dutch Mycoplasma synoviae isolates from commercial poultry to enrofloxacin, difloxacin, doxycycline, tylosin and tilmicosin was examined. Three isolates originated from joint lesions and 14 were from the respiratory tract. The type strain M. synoviae WVU 1853 was included as a control strain. Antibiotic susceptibility was tested quantitatively using the broth microdilution test. Based on initial and final minimum inhibitory concentration values, all tested isolates were susceptible to doxycycline, tylosin and tilmicosin. Two isolates from the respiratory tract were resistant to enrofloxacin and showed intermediate resistance to difloxacin.

  4. [Profile and sensitivity to antibiotics of 2063 uropathogenic bacteria isolated in the center of Tunisia].

    PubMed

    Boukadida, J; Boukadida, N; Elraii, S

    2002-03-01

    Current bacteriological data are very useful when making therapeutic decisions in cases of non complicated urinary tract infection. In this article, we present the data gathered by a university hospital laboratory in mid-Tunisia as well as the results of 17,829 urinary cytobacteriological examinations conducted in a multidisciplinary hospital during the year 2000. Urine was sowed on usual agar. All bacterium cultivating at least 10(5) bacteria reported to ml and at 37 degrees C in a normal atmosphere was retained; identification and sensitivity to antibiotics of the bacterium followed the recommendations of the French Society of Microbiology. We collected 2063 non-redundant bacteria of which 82.3% came from female samples. Gram negative rods were distinctly predominant with 92% of the whole bacterium and Escherichia coli represented 67% of the whole of the germs; Staphylococcus saprophyticus with 4.8% and Streptococcus agalactiae with 1% dominated Gram positive bacteria. The susceptibility of bacteria to the principal antibiotics used for the treatment of the urinary tract infection was characterised by the low percentage of sensitivity of the Gram negative rods to amoxicillin (41.2% of sensitivity for Escherichia coli and 22% for the Proteus sp), and by cotrimoxazole which preserved an activity between 63.8% for Escherichia coli and 94.7% for Staphylococcus saprophyticus. The highest percentage of sensitivity was achieved by gentamicine (99.4% of Escherichia coli and 98.9% of Staphylococcus saprophyticus) and fluoroquinolons (97.8% of Escherichia coli and 100% of Staphylococcus saprophyticus are sensible); furadoin was active on almost all Escherichia coli and Staphylococcus saprophyticus. Apart from natural resistance, colistin was constantly active. Escherichia coli and Staphylococcus saprophyticus were the major agents of the urinary tract infection. Gentamicin and fluoroquinolons showed themselves to be constantly active antibiotics. Nitrofurans and colistin

  5. Serotype distribution, antibiotic susceptibility, and genetic relatedness of Neisseria meningitidis strains recently isolated in Italy.

    PubMed

    Mastrantonio, Paola; Stefanelli, Paola; Fazio, Cecilia; Sofia, Tonino; Neri, Arianna; La Rosa, Giuseppina; Marianelli, Cinzia; Muscillo, Michele; Caporali, Maria Grazia; Salmaso, Stefania

    2003-02-15

    The availability of new polysaccharide-protein conjugate vaccines against Neisseria meningitidis serogroup C prompted European National Health authorities to carefully monitor isolate characteristics. In Italy, during 1999-2001, the average incidence was 0.4 cases per 100,000 inhabitants. Serogroup B was predominant and accounted for 75% of the isolates, followed by serogroup C with 24%. Serogroup C was isolated almost twice as frequently in cases of septicemia than in cases of meningitis, and the most common phenotypes were C:2a:P1.5 and C:2b:P1.5. Among serogroup B meningococci, the trend of predominant phenotypes has changed from year to year, with a recent increase in the frequency of B:15:P1.4. Only a few meningococci had decreased susceptibility to penicillin, and, in the penA gene, all of these strains had exogenous DNA blocks deriving from the DNA of commensal Neisseria flavescens, Neisseria cinerea, and Neisseria perflava/sicca. Fluorescent amplified fragment-length polymorphism analysis revealed the nonclonal nature of the strains with decreased susceptibility to penicillin.

  6. Differences between Macrolide-Resistant and -Susceptible Streptococcus pyogenes: Importance of Clonal Properties in Addition to Antibiotic Consumption

    PubMed Central

    Silva-Costa, C.; Friães, A.; Melo-Cristino, J.

    2012-01-01

    A steady decline in macrolide resistance among Streptococcus pyogenes (group A streptococci [GAS]) in Portugal was reported during 1999 to 2006. This was accompanied by alterations in the prevalence of macrolide resistance phenotypes and in the clonal composition of the population. In order to test whether changes in the macrolide-resistant population reflected the same changing patterns of the overall population, we characterized both macrolide-susceptible and -resistant GAS associated with a diagnosis of tonsillo-pharyngitis recovered in the period from 2000 to 2005 in Portugal. Pulsed-field gel electrophoresis (PFGE) profiling was the best predictor of emm type and the only typing method that could discriminate clones associated with macrolide resistance and susceptibility within each emm type. Six PFGE clusters were significantly associated with macrolide susceptibility: T3-emm3-ST406, T4-emm4-ST39, T1-emm1-ST28, T6-emm6-ST382, B3264-emm89-ST101/ST408, and T2-emm2-ST55. Four PFGE clusters were associated with macrolide resistance: T4-emm4-ST39, T28-emm28-ST52, T12-emm22-ST46, and T1-emm1-ST28. We found no evidence for frequent ongoing horizontal transfer of macrolide resistance determinants. The diversity of the macrolide-resistant population was lower than that of susceptible isolates. The differences found between the two populations suggest that the macrolide-resistant population of GAS has its own dynamics, independent of the behavior of the susceptible population. PMID:22908153

  7. Metagenomic Profiling of Microbial Composition and Antibiotic Resistance Determinants in Puget Sound

    PubMed Central

    Port, Jesse A.; Wallace, James C.; Griffith, William C.; Faustman, Elaine M.

    2012-01-01

    Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ∼550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide

  8. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-12-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  9. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    PubMed Central

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-01-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds. PMID:27917931

  10. Microbiological profile and antimicrobial susceptibility pattern of infected root canals associated with periapical abscesses.

    PubMed

    Sousa, E L R; Gomes, B P F A; Jacinto, R C; Zaia, A A; Ferraz, C C R

    2013-04-01

    The aim of this investigation was to identify microorganisms from root canals with periapical abscesses and assess the susceptibility of specific anaerobic bacteria to selected antimicrobials and their β-lactamase production. Sixty root canals were microbiologically investigated. The susceptibility of Anaerococcus prevotii, Fusobacterium necrophorum, F. nucleatum, Parvimonas micra, and Prevotella intermedia/nigrescens to antimicrobials was evaluated with the Etest, whereas β-lactamase production was assessed with nitrocefin. A total of 287 different bacterial strains were recovered, including 201 strict anaerobes. The most frequently strict isolated anaerobes were A. prevotii, P. micra, and F. necrophorum. The selected bacteria were susceptible to all the tested antibiotics, except A. prevotii and Fusobacterium species to azithromycin and erythromycin, as well as A. prevotii and F. necrophorum to metronidazole. None of the microorganisms produced β-lactamase. Gram-positive anaerobic bacteria predominated in the root canals with periapical abscesses. All microorganisms tested were susceptible to benzylpenicillin, amoxicillin, amoxicillin + clavulanate, cefaclor, and clindamycin, producing no β-lactamase.

  11. Evaluation of Antibiotic Susceptibility of Gram-Positive Anaerobic Cocci Isolated from Cancer Patients of the N. N. Blokhin Russian Cancer Research Center.

    PubMed

    Shilnikova, Irina I; Dmitrieva, Natalia V

    2015-01-01

    In total, 81 nonduplicate gram-positive anaerobic cocci (GPAC) were involved in this study. The GPAC were isolated from samples collected from cancer patients between 2004 and 2014. Species identification was carried out by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The majority of isolates were identified as Finegoldia magna (47%) and Peptoniphilus harei (28%). The susceptibility of six species of GPAC was determined for eight antibiotics according to E-test methodology. Furthermore, all isolates were susceptible to imipenem, vancomycin, and linezolid. Susceptibility to penicillin G, amoxicillin/clavulanate, metronidazole, ciprofloxacin, and levofloxacin varied for different species. One Finegoldia magna isolate was multidrug-resistant (i.e., parallel resistance to five antimicrobial agents, including metronidazole, was observed). Two Parvimonas micra isolates were highly resistant to metronidazole (MIC 256 μg/mL) but were sensitive to other tested antibiotics.

  12. Evaluation of Antibiotic Susceptibility of Gram-Positive Anaerobic Cocci Isolated from Cancer Patients of the N. N. Blokhin Russian Cancer Research Center

    PubMed Central

    Shilnikova, Irina I.; Dmitrieva, Natalia V.

    2015-01-01

    In total, 81 nonduplicate gram-positive anaerobic cocci (GPAC) were involved in this study. The GPAC were isolated from samples collected from cancer patients between 2004 and 2014. Species identification was carried out by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The majority of isolates were identified as Finegoldia magna (47%) and Peptoniphilus harei (28%). The susceptibility of six species of GPAC was determined for eight antibiotics according to E-test methodology. Furthermore, all isolates were susceptible to imipenem, vancomycin, and linezolid. Susceptibility to penicillin G, amoxicillin/clavulanate, metronidazole, ciprofloxacin, and levofloxacin varied for different species. One Finegoldia magna isolate was multidrug-resistant (i.e., parallel resistance to five antimicrobial agents, including metronidazole, was observed). Two Parvimonas micra isolates were highly resistant to metronidazole (MIC 256 μg/mL) but were sensitive to other tested antibiotics. PMID:26798518

  13. In vitro antibiotic susceptibility of Mycoplasma iguanae proposed sp. nov. isolated from vertebral lesions of green iguanas (Iguana iguana).

    PubMed

    Westfall, Megan E; Demcovitz, Dina L; Plourdé, Daisy R; Rotstein, David S; Brown, Daniel R

    2006-06-01

    Mycoplasma iguanae proposed species nova was isolated from vertebral abscesses of two feral iguanas (Iguana iguana) from Florida. Three strains were evaluated for sensitivity to a variety of antibiotics. The minimum inhibitory concentrations for M. iguanae, assessed by broth dilution methods, of clindamycin, doxycycline, enrofloxacin, oxytetracycline, and tylosin (all <1 microg/ml) were lower than those of chloramphenicol (32 micro/ml) and erythromycin (64 microg/ml). The profile was identical to that of Mycoplasma alligatoris, previously isolated from American alligators (Alligator mississippiensis). M. iguanae strain 2327T was subcultured without antibiotics to assess mycoplasmacidal activity. Clindamycin, doxycycline, oxytetracycline, and tylosin were bacteriostatic from 0.1 to 0.5 microg/ml, whereas enrofloxacin was bactericidal at 20 ng/ml. An enrofloxacin dosage of 5-10 mg/kg achieves peak plasma concentrations >1 microg/ml, with an elimination half-life of 6-20 hr, in alligators. Although concentrations achieved in the vertebrae by i.m. or i.v. injection are probably lower than those in plasma, these data suggest that enrofloxacin may be useful to treat M. iguanae mycoplasmosis in iguanas.

  14. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  15. Analytic laboratory performance of a point of care urine culture kit for diagnosis and antibiotic susceptibility testing.

    PubMed

    Bongard, E; Frimodt-Møller, N; Gal, M; Wootton, M; Howe, R; Francis, N; Goossens, H; Butler, C C

    2015-10-01

    Currently available point-of-care (POC) diagnostic tests for managing urinary tract infections (UTIs) in general practice are limited by poor performance characteristics, and laboratory culture generally provides results only after a few days. This laboratory evaluation compared the analytic performance of the POC UK Flexicult(™) (Statens Serum Institut) (SSI) urinary kit for quantification, identification and antibiotic susceptibility testing and routine UK National Health Service (NHS) urine processing to an advanced urine culture method. Two hundred urine samples routinely submitted to the Public Health Wales Microbiology Laboratory were divided and: (1) analysed by routine NHS microbiological tests as per local laboratory standard operating procedures, (2) inoculated onto the UK Flexicult(™) SSI urinary kit and (3) spiral plated onto Colorex Orientation UTI medium (E&O Laboratories Ltd). The results were evaluated between the NHS and Flexicult(™ )methods, and discordant results were compared to the spiral plating method. The UK Flexicult(™) SSI urinary kit was compared to routine NHS culture for identification of a pure or predominant uropathogen at ≥ 10(5) cfu/mL, with a positive discordancy rate of 13.5% and a negative discordancy rate of 3%. The sensitivity and specificity were 86.7% [95% confidence interval (CI) 73.8-93.7] and 82.6% (95% CI 75.8-87.7), respectively. The UK Flexicult(™) SSI urinary kit was comparable to routine NHS urine processing in identifying microbiologically positive UTIs in this laboratory evaluation. However, the number of false-positive samples could lead to over-prescribing of antibiotics in clinical practice. The Flexicult(™) SSI kit could be useful as a POC test for UTIs in primary care but further pragmatic evaluations are necessary.

  16. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics.

    PubMed

    Boedicker, James Q; Li, Liang; Kline, Timothy R; Ismagilov, Rustem F

    2008-08-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as 'stochastic confinement'. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  17. Antibiotic susceptibility of Legionella strains isolated from public water sources in Macau and Guangzhou.

    PubMed

    Xiong, Lina; Yan, He; Shi, Lei; Mo, Ziyao

    2016-12-01

    The purpose of this study was to investigate the susceptibility of waterborne strains of Legionella to eight antimicrobials commonly used in legionellosis therapy. The minimum inhibitory concentrations (MICs) of 66 environmental Legionella strains, isolated from fountains and cooling towers of public facilities (hotels, schools, and shopping malls) in Macau and Guangzhou, were tested using the microdilution method in buffered yeast extract broth. The MIC50/MIC90 values for erythromycin, cefotaxime (CTX), doxycycline (DOC), minocycline (MIN), azithromycin, ciprofloxacin, levofloxacin (LEV), and moxifloxacin were 0.125/0.5 mg/L, 4/8 mg/L, 8/16 mg/L, 4/8 mg/L, 0.125/0.5 mg/L, 0.031/0.031 mg/L, 0.031/0.031 mg/L, and 0.031/0.062 mg/L, respectively. Legionella isolates were inhibited by either low concentrations of macrolides and fluoroquinolones, or high concentrations of CTX and tetracycline drugs. LEV was the most effective drug against different Legionella species and serogroups of L. pneumophila isolates. The latter were inhibited in decreasing order by MIN > CTX >DOC, while non-L. pneumophila isolates were inhibited by CTX> MIN >DOC. In this study, we evaluated drug resistance of pathogenic bacteria from the environment. This may help predict the emergence of drug resistance, improve patient outcomes, and reduce hospitalization costs.

  18. Enterococci from Tolminc cheese: population structure, antibiotic susceptibility and incidence of virulence determinants.

    PubMed

    Canzek Majhenic, Andreja; Rogelj, Irena; Perko, Bogdan

    2005-07-15

    Microbiological analysis of ripened artisanal Tolminc cheese revealed the presence of an enterococcal population in numbers of up to 10(6) per g. All colonies, isolated from the citrate azide tween carbonate (CATC) enterococcal selective medium were Gram positive and coccal-shaped and were analysed with PhenePlate FS system. This system discriminated 10 PhP clusters among the 90 enterococcal isolates. From each cluster the most representative isolate for that particular type was selected for further study. The 10 representative enterococci were catalase negative and grew in the presence of NaCl (2%, 4% and 6.5%) and bile salts (0.06%). Genus specific primers confirmed all 10 enterococcal representatives as Enterococcus members, while species specific primers determined them further as strains of Enterococcus faecalis species. PCR for vanA and vanB genes detection, respectively, amplified no PCR products. The absence of van genes was confirmed with both disc and E-test, as isolates were susceptible to vancomycin according to the National Committee for Clinical Laboratory Standards (NCCLS). The results of disc tests with other antimicrobial agents (ampicillin, vancomycin, kanamycin, penicillin, erythromycin, neomycin, chloramphenicol, clindamycin, rifampin) did not differ much among the tested enterococci: they were all very resistant to clindamycin only. The incidence of enterococcus virulence determinants was as expected: all of the 10 E. faecalis strains tested possessed multiple determinants (between 7 and 11).

  19. Molecular epidemiology and antibiotic susceptibility of livestock Brucella melitensis isolates from Naryn Oblast, Kyrgyzstan.

    PubMed

    Kasymbekov, Joldoshbek; Imanseitov, Joldoshbek; Ballif, Marie; Schürch, Nadia; Paniga, Sandra; Pilo, Paola; Tonolla, Mauro; Benagli, Cinzia; Akylbekova, Kulyash; Jumakanova, Zarima; Schelling, Esther; Zinsstag, Jakob

    2013-01-01

    The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.

  20. Isolation, Identification, and Antibiotic Susceptibility Testing of Salmonella from Slaughtered Bovines and Ovines in Addis Ababa Abattoir Enterprise, Ethiopia: A Cross-Sectional Study.

    PubMed

    Kebede, Abe; Kemal, Jelalu; Alemayehu, Haile; Habte Mariam, Solomon

    2016-01-01

    Salmonellae are ubiquitous, found in animals, humans, and the environment, a condition which facilitates transmission and cross contamination. Salmonella enterica serotypes exert huge health and economic impacts due to their virulence or carriage of antibiotic resistance traits. To address this significant issues with regard to public health, availability of adequate information on the prevalence and antibiotic resistance patterns of Salmonella, and establishment of adequate measures to control contamination and infection are needed. A cross-sectional study was conducted to assess the level of Salmonella infection in slaughtered bovines and ovines at Addis Ababa abattoir. Samples were collected randomly and processed for identification and antimicrobial susceptibility testing of Salmonella spp. From 280 animals examined, 13 (4.64%) (8 bovines and 5 ovines) were positive, with most samples (12/13, 92%) comprising Salmonella Dublin. Very high level of resistance to some antibiotics used in human medicine was detected. Most isolates were susceptible to gentamycin and amikacin. Nine (69%) of all isolates were resistant to multiple antibiotics. Serotyping revealed 12 of 13 isolates to be of the Dublin serotype with 9,12:g,p:- antigenic formula. This study emphasizes the importance of improving the evisceration practice during slaughtering and restricting the use of antibiotics in farm animals.

  1. Isolation, Identification, and Antibiotic Susceptibility Testing of Salmonella from Slaughtered Bovines and Ovines in Addis Ababa Abattoir Enterprise, Ethiopia: A Cross-Sectional Study

    PubMed Central

    Kebede, Abe; Alemayehu, Haile

    2016-01-01

    Salmonellae are ubiquitous, found in animals, humans, and the environment, a condition which facilitates transmission and cross contamination. Salmonella enterica serotypes exert huge health and economic impacts due to their virulence or carriage of antibiotic resistance traits. To address this significant issues with regard to public health, availability of adequate information on the prevalence and antibiotic resistance patterns of Salmonella, and establishment of adequate measures to control contamination and infection are needed. A cross-sectional study was conducted to assess the level of Salmonella infection in slaughtered bovines and ovines at Addis Ababa abattoir. Samples were collected randomly and processed for identification and antimicrobial susceptibility testing of Salmonella spp. From 280 animals examined, 13 (4.64%) (8 bovines and 5 ovines) were positive, with most samples (12/13, 92%) comprising Salmonella Dublin. Very high level of resistance to some antibiotics used in human medicine was detected. Most isolates were susceptible to gentamycin and amikacin. Nine (69%) of all isolates were resistant to multiple antibiotics. Serotyping revealed 12 of 13 isolates to be of the Dublin serotype with 9,12:g,p:- antigenic formula. This study emphasizes the importance of improving the evisceration practice during slaughtering and restricting the use of antibiotics in farm animals. PMID:27660816

  2. Molecular Epidemiology and Antibiotic Susceptibility of Vibrio cholerae Associated with a Large Cholera Outbreak in Ghana in 2014

    PubMed Central

    Eibach, Daniel; Herrera-León, Silvia; Gil, Horacio; Hogan, Benedikt; Ehlkes, Lutz; Adjabeng, Michael; Kreuels, Benno; Nagel, Michael; Opare, David; Fobil, Julius N; May, Jürgen

    2016-01-01

    Background Ghana is affected by regular cholera epidemics and an annual average of 3,066 cases since 2000. In 2014, Ghana experienced one of its largest cholera outbreaks within a decade with more than 20,000 notified infections. In order to attribute this rise in cases to a newly emerging strain or to multiple simultaneous outbreaks involving multi-clonal strains, outbreak isolates were characterized, subtyped and compared to previous epidemics in 2011 and 2012. Methodology/Principal Findings Serotypes, biotypes, antibiotic susceptibilities were determined for 92 Vibrio cholerae isolates collected in 2011, 2012 and 2014 from Southern Ghana. For a subgroup of 45 isolates pulsed-field gel electrophoresis, multilocus sequence typing and multilocus-variable tandem repeat analysis (MLVA) were performed. Eighty-nine isolates (97%) were identified as ctxB (classical type) positive V. cholerae O1 biotype El Tor and three (3%) isolates were cholera toxin negative non-O1/non-O139 V. cholerae. Among the selected isolates only sulfamethoxazole/trimethoprim resistance was detectable in 2011, while 95% of all 2014 isolates showed resistance towards sulfamethoxazole/trimethoprim, ampicillin and reduced susceptibility to ciprofloxacin. MLVA achieved the highest subtype discrimination, revealing 22 genotypes with one major outbreak cluster in each of the three outbreak years. Apart from those clusters genetically distant genotypes circulate during each annual epidemic. Conclusions/Significance This analysis suggests different endemic reservoirs of V. cholerae in Ghana with distinct annual outbreak clusters accompanied by the occurrence of genetically distant genotypes. Preventive measures for cholera transmission should focus on aquatic reservoirs. Rapidly emerging multidrug resistance must be monitored closely. PMID:27232338

  3. Antibiotic resistance profiles to determine sources of fecal contamination in a rural Virginia watershed.

    PubMed

    Graves, Alexandria K; Hagedorn, Charles; Teetor, Alison; Mahal, Michelle; Booth, Amy M; Reneau, Raymond B

    2002-01-01

    Antibiotic resistance analysis (ARA) was used to determine if enterococci of human origin were present in a stream (Spout Run) that passes through a rural nonsewered community (Millwood, VA). Millwood consists of 82 homes, all served by individual septic systems, and Spout Run drains a 5,800-ha karst topography watershed that contains large populations of livestock and wildlife. Periodic monitoring by state regulatory officials had resulted in Spout Run being placed on the Virginia impaired stream list and Millwood being categorized as an at-risk community. Stream samples were collected monthly and analyzed for fecal coliforms and enterococci (May 1999-May 2000); ARA was performed on enterococci stream isolates on a quarterly basis. All 117 stream samples were positive for fecal coliforms, and 32% exceeded the Virginia recreational water standard (1,000 fecal coliforms/100 mL). A library of 1,174 known source Enterococcus isolate antibiotic resistance profiles was constructed, and yielded correct classification rates of 94.6% for 203 human isolates, 93.7% for 734 livestock isolates, and 87.8% for 237 wildlife isolates. Antibiotic resistance analysis of 2,012 enterococcal isolates recovered from stream samples indicated isolates of human origin appeared throughout the stream as it passed through Millwood, with a yearly average of approximately 10% human, 40% wildlife, and 50% livestock. There were no human origin isolates in samples collected upstream from Millwood, and the percent human origin isolates declined downstream from Millwood. While a human signature was found in Spout Run, it was small compared with the proportion of isolates from livestock and wildlife.

  4. Investigation into the potential of sub-lethal photodynamic antimicrobial chemotherapy (PACT) to reduce susceptibility of meticillin-resistant Staphylococcus aureus (MRSA) to antibiotics

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    In PACT, a combination of a sensitising drug and visible light cause the selective destruction of microbial cells via singlet oxygen production. As singlet oxygen is a non-specific oxidizing agent and is only present during illumination, development of resistance to this treatment is thought to be unlikely. However, in response to oxidative stress, bacteria can up-regulate oxidative stress genes and associated antibiotic resistance genes. The up-regulation of these genes and potential transfer of genetic material may result in a resistant bacterial population. This study determined whether treatment of clinically isolated meticillin resistant Staphylococcus aureus (MRSA) strains with sub-lethal doses of methylene blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP)-PACT resulted in reduced susceptibility to antibiotics and previously lethal PACT. Exposure of strains to sub-lethal doses of photosensitizer in combination with light had no effect on susceptibility to previously lethal photosensitization. Furthermore, exposure to sub-lethal concentrations of both photosensitizers caused no significant changes in the minimum inhibitory concentration (MIC) for each strain tested. Any differences in susceptibility were not significant as they did not cross breakpoints between resistant and susceptible for any organism or antibiotic tested. Therefore, PACT remains an attractive alternative option for treatment of MRSA infections.

  5. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction.

    PubMed

    Sattar, Sampurna; Song, Yan; Anstead, James A; Sunkar, Ramanjulu; Thompson, Gary A

    2012-06-01

    Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.

  6. Prevalence, susceptibility profile and proteinase production of yeasts causing vulvovaginitis in Turkish women.

    PubMed

    Ozcan, Sema Keceli; Budak, Fatma; Yucesoy, Gulseren; Susever, Serdar; Willke, Ayse

    2006-02-01

    In this study the prevalence of vulvovaginal candidiasis (VVC), antifungal susceptibility and proteinase production of isolated Candida species were investigated. Vaginal swabs were collected from symptomatic women with vulvovaginitis attending the Obstetrics and Gynecology Clinic of Kocaeli University, Turkey. The relation between risk factors, such as pregnancy, diabetes mellitus, antibiotic and corticosteroid use, history of sexually transmitted diseases and contraceptive methods, was recorded. Candida spp. were identified by conventional methods, then evaluated for proteinase secretion in a medium containing casein. Antifungal susceptibility was determined according to the NCCLS microdilution method. The prevalence of women with vulvovaginitis was 35.7% (170/6080) and 16% (28/170) of them were diagnosed as VVC. Candida albicans was the dominant species: 21 (75%), followed by 4 C. glabrata (14%), 2 C. tropicalis (7%), and one C. krusei (3.5%). All isolates were susceptible to fluconazole, itraconazole and amphotericin B, except one C. krusei, one C. glabrata and one C. albicans that were resistant to fluconazole. Proteinase production was determined in 19 (90.5%) C. albicans and in all C. tropicalis isolates. Proteinase activity was not associated with antifungal resistance. No association was found between risk factors and VVC.

  7. Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics

    PubMed Central

    Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R.; Baquero, Fernando; Martinez, José Luis

    2015-01-01

    Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRIr mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIr mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIr mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIr mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIr mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits. PMID

  8. Characterisation of Phenotypic and Genotypic Antibiotic Resistance Profile of Enterococci from Cheeses in Turkey

    PubMed Central

    Yipel, Mustafa; Aslantaş, Özkan; Gündoğdu, Aycan

    2016-01-01

    The aim of this study was to determine the prevalence of enterococci in cheese samples and to characterize their antimicrobial resistance profiles as well as the associated resistance genes. A total of 139 enterococci were isolated from 99 cheese samples, the isolates were identified as E. faecalis (61.2%), E. faecium (15.1%), E. gallinarum (12.9%), E. durans (5.0%), E. casseliflavis (2.9%) and E. avium (2.9%). The most frequent antimicrobial resistance observed in enterococci isolates was to lincomycin (88.5%), followed by kanamycin (84.2%), gentamycin (low level, 51.1%), rifampin (46.8%) and tetracycline (33.8%). Among the isolates, the frequencies of high level gentamycin and streptomycin resistant enterococci strains were 2.2% and 5.8%, respectively. Apart from the mentioned antibiotics, low levels of resistance to ciprofloxacin, erythromycin and chloramphenicol were found. Moreover no resistance was observed against penicillin and ampicillin. The antimicrobial resistance genes including tetM, tetL, ermB, cat, aph(3’)-IIIa, ant(6)-Ia and aac(6’)-Ieaph(2”)-Ia were found in enterococci from Turkish cheese samples. In the current study, we provided data for antibiotic resistance and the occurrence of resistance genes among enterococci. Regulatory and quality control programs for milk and other dairy products from farms to retail outlets has to be established and strengthened to monitor trends in antimicrobial resistance among emerging food borne pathogens in Turkey. PMID:27433106

  9. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    PubMed Central

    Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  10. [Antibiotic susceptibility of blood-borne Streptococcus pneumoniae and efficacy assessment of respiratory quinolones using Monte Carlo simulation].

    PubMed

    Kawamoto, Hiroshi; Nomura, Nobuhiko; Mitsuyama, Junichi; Yamaoka, Kazukiyo; Asano, Yuko; Sawamura, Haruki; Suematsu, Hiroyuki; Teraji, Mayumi; Hashido, Hikonori; Matsukawa, Yoko; Matsubara, Shigenori; Miyabe, Takanori; Mikamo, Hiroshige; Watanabe, Kunitomo

    2010-02-01

    We analyzed Streptococcus pneumoniae isolates from the bloodstream between April 2005 and February 2007. We analyzed isolates of 28 strains from medical facilities in Gifu prefecture to determine antibiotic susceptibility, genotype of penicillin-binding protein (PBP) genes and macrolide resistant genes. We also assessed the efficacy of respiratory quinolones using Monte Carlo simulation. Garenoxacin (GRNX) and moxifloxacin (MFLX) showed the lowest MIC90 value of 0.125 microg/mL, followed by MIC90 of imipenem (IPM) of 0.25 microg/mL and tosufloxacin (TFLX), MIC90 of meropenem (MEPM) and vancomycin (VCM) of 0.5 microg/mL. Twenty-two strains possessed at least one mutation in PBP-encoding genes pbp1a, pbp2x or pbp2b and seven strains possessed all three mutant alleles. Twenty-two strains possessed either of macrolide resistant genes ermB or mefA, and one strain possessed both. On efficacy assessment, we calculated the probability of target attainment for free-drug area under the curve (fAUC)/MIC ratio (fAUC/MIC). GRNX and MFLX showed a probability of 90% or more at fAUC/MIC of 30 and 125, each considered effective against Gram-positive bacteria and suppression of resistance development, furthermore, GRNX showed a probability of 89.7% at fAUC/MIC of 250.

  11. Antimicrobial susceptibility profile of Acinetobacter species isolated from blood cultures in two Japanese university hospitals.

    PubMed

    Kishii, Kozue; Kikuchi, Ken; Yoshida, Atsushi; Okuzumi, Katsuko; Uetera, Yushi; Yasuhara, Hiroshi; Moriya, Kyoji

    2014-02-01

    Carbapenem-resistant Acinetobacter baumannii has rapidly spread worldwide. This study investigated antibiotic susceptibility and genotypic resistance of 123 consecutive blood culture isolates of Acinetobacter species collected between 2003 and 2011 in two Japanese hospitals. The isolates were assigned to 13 species. Carbapenem resistance was detected in four isolates. Only one A. baumannii isolate had blaOXA-23 together with ISAba1; the remaining three isolates had IMP-1 metallo-β-lactamase. Quinolone resistance was detected in five isolates that had point mutations in the quinolone resistance-determining region. The predominance of various non-A. baumannii species and low prevalence of carbapenem resistance among blood culture isolates of Acinetobacter species in two Japanese hospitals were confirmed.

  12. Molecular Characteristics and Antibiotic Resistance Profiles of Klebsiella Isolates in Mthatha, Eastern Cape Province, South Africa

    PubMed Central

    Obi, Larry; Morobe, Isaac; Bisi-Johnson, Mary

    2017-01-01

    The increase in the incidence of extended-spectrum β-lactamase- (ESBL-) producing Klebsiella species has become a serious problem worldwide, because of their incrimination in antibiotic resistance. The objective of this study is to investigate the resistance genes responsible for ESBL-producing Klebsiella species and carbapenemase-producing Klebsiella (CRE) isolated in Mthatha and to study their epidemiology. A prospective, descriptive study of 202 nonrepetitive samples from patients was obtained from Nelson Mandela Academic Hospital. The cultured Klebsiella isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction of blaCTX-M, blaTEM, blaSHV, blaKPC, and blaNDM genes. Overall K. pneumoniae were the majority with 169 (83.7%) species isolates, followed by K. oxytoca with 29 (14.4%), while K. ozaenae and Raoultella ornithinolytica were 2 (0.9%) each. The prevalence of ESBL production in all Klebsiella species was 117 (57.9%). ESBL-genotypic resistance is driven in Mthatha by blaSHV 121 (77.1%) followed by blaTEM 105 (66.9%) and blaCTX-M at 89 (56.7%). The most common ESBL genotype combination among the Klebsiella was blaTEM + blaSHV + blaCTX-M at 79 (50.3%). There is a steady increase in the rate of ESBL genes in the last five years. PMID:28250772

  13. PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles

    PubMed Central

    Pournajaf, Abazar; Ardebili, Abdollah; Goudarzi, Leyla; Khodabandeh, Mahmoud; Narimani, Tahmineh; Abbaszadeh, Hassan

    2014-01-01

    Objective To evaluated the PCR for mecA gene compared with the conventional oxacillin disk diffusion method for methicillin-resistant Staphylococcus aureus (S. aureus) identification. Methods A total of 292 S. aureus strains were isolated from various clinical specimens obtained from hospitalized patients. Susceptibility test to several antimicrobial agents was performed by disk diffusion agar according to Clinical and Laboratory Standards Institute guidelines. The PCR amplification of the mecA gene was carried out in all the clinical isolates. Results Among antibiotics used in our study, penicillin showed the least anti-staphylococcal activity and vancomycin was the most effective. The rate of methicillin-resistant S. aureus prevalence determined by oxacillin disk diffusion method was 47.6%; whereas, 45.1% of S. aureus isolates were mecA- positive in the PCR assay. Conclusions This study is suggestive that the PCR for detection of mecA gene is a fast, accurate and valuable diagnostic tool, particularly in hospitals in areas where methicillin-resistant S. aureus is endemic. PMID:25183100

  14. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment.

    PubMed

    Ma, Yanjun; Metch, Jacob W; Yang, Ying; Pruden, Amy; Zhang, Tong

    2016-03-01

    This study investigated the response of antibiotic resistance genes (ARGs) to nanosilver (Ag) in lab-scale nitrifying sequencing batch reactors (SBRs), compared to Ag(+)-dosed and undosed controls. Quantitative polymerase chain reaction (q-PCR) targeting sul1, tet(O), ermB and the class I integron gene intI1 and corresponding RNA expression did not indicate measureable effects of nanoAg or Ag(+) on abundance or expression of these genes. However, high-throughput sequencing based metagenomic analysis provided a much broader profile of gene responses and revealed a greater abundance of aminoglycoside resistance genes (mainly strA) in reactors dosed with nanoAg. In contrast, bacitracin and macrolide-lincosamide-streptogramin (MLS) resistance genes were more abundant in the SBRs dosed with Ag(+). The distinct ARG profiles associated with nanoAg and Ag(+) were correlated with the taxonomic composition of the microbial communities. This study indicates that nanoAg may interact with bacteria differently from Ag(+) during biological wastewater treatment. Therefore, it cannot necessarily be assumed that nanosilver behaves identically as Ag(+) when conducting a risk assessment for release into the environment.

  15. Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes.

    PubMed

    Buffet-Bataillon, S; Branger, B; Cormier, M; Bonnaure-Mallet, M; Jolivet-Gougeon, A

    2011-10-01

    Quaternary ammonium compounds (QACs) are cationic surfactants used as preservatives and environmental disinfectants. Limited data are available regarding the effect of QACs in the clinical setting. We performed a prospective cohort study in 153 patients with Escherichia coli bacteraemia from February to September 2008 at University Hospital in Rennes. The minimum inhibitory concentrations (MICs) of antibiotics and QACs alkyldimethylbenzylammonium chloride (ADBAC) and didecyldimethylammonium chloride (DDAC) were determined by the agar dilution method. The capacity of biofilm production was assayed using the Crystal Violet method, and mutation frequencies by measuring the capacity of strains to generate resistance to rifampicin. Logistic regression analysis showed that one of the significant factors related to low MICs for ADBAC (≤16 mg/L) and DDAC (≤8 mg/L), was cotrimoxazole susceptibility (odds ratio: 3.72; 95% confidence interval: 1.22-11.24; P=0.02 and OR: 3.61; 95% CI: 1.56-7.56; P<0.01, respectively). Antibiotic susceptibility to cotrimoxazole was strongly associated with susceptibility to amoxicillin and nalidixic acid (P<0.01). Community-acquired or healthcare-associated bacteraemia, severity of bacteraemia, and patient outcome were independent of the MICs of ADBAC and DDAC. Our findings demonstrate an epidemiological relationship between higher MIC values of QACs in clinical E. coli isolates and antibiotic resistance.

  16. Antibiotic susceptibility rates of invasive pneumococci before and after the introduction of pneumococcal conjugate vaccination in Germany.

    PubMed

    Imöhl, Matthias; Reinert, Ralf René; van der Linden, Mark

    2015-10-01

    .4%, resistant 0.3%), 8.5% for tetracycline (intermediate 0.6%, resistant 7.9%) and 11.0% for trimethoprim-sulfamethoxazole (SXT) (intermediate 5.7%, resistant 5.3%). In summary, childhood pneumococcal conjugate vaccination has had a strong effect on the pneumococcal population in Germany, both among vaccinated children as well as among non-vaccinated children and adults. Serotypes included in the pneumococcal conjugate vaccines have strongly diminished, while some non-vaccine serotypes have gained importance, particularly with respect to antibiotic resistance. However, concerning antibiotic non-susceptibility the most outstanding change over the years is the decline in macrolide resistance, especially among children.

  17. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment.

    PubMed

    Ternent, Lucy; Dyson, Rosemary J; Krachler, Anne-Marie; Jabbari, Sara

    2015-05-07

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention.

  18. Staphylococci isolated from animals and food with phenotypically reduced susceptibility to beta-lactamase-resistant beta-lactam antibiotics.

    PubMed

    Kaszanyitzky, Eva J; Egyed, Zsuzsanna; Jánosi, Sz; Keseru, Judit; Gál, Zsuzsanna; Szabó, I; Veres, Z; Somogyi, P

    2004-01-01

    The antibiotic resistance pattern of 1921 Staphylococcus strains isolated from animals and food within the last two years were examined using diffusion tests. Among them there were only 35 strains of S. aureus having an inhibition zone diameter of 15 mm or less, and 4 strains of coagulase-negative staphylococci (CNS) having a zone diameter of 18 mm or less to 1-microg oxacillin disk. These 39 strains were examined also by E-test to oxacillin and for the detection of the mecA gene by PCR in order to determine whether they might be real methicillin-resistant staphylococci. Among the 39 strains there were only two that were susceptible to penicillin by disk diffusion method; however, further examination by the penicillinase test showed that they produced beta-lactamase. While 19 (15 S. aureus, 4 CNS) strains were resistant and 7 strains were intermediate to oxacillin in disk diffusion test, the E-test gave 8 resistant and 5 intermediate results. Six out of the 8 oxacillin-resistant strains examined by disk diffusion and E-test harboured the mecA gene. Thus only 6 out of the examined 1921 strains proved to be mecA positive. These methicillin-resistant, mecA-positive strains (5 of the S. aureus strains and 1 of the S. epidermidis) originated from two dairy herds. The results prove that methicillin-resistant S. aureus (MRSA) strains in animals are really rare in Hungary. Eighteen strains were chosen and screened for minimal inhibitory concentration (MIC) of oxacillin with or without clavulanic acid or sulbactam, and three of them produced methicillinase enzyme.

  19. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing

    PubMed Central

    Maurer, Florian P.; Pfiffner, Tamara; Böttger, Erik C.; Furrer, Reinhard

    2015-01-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 108 CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of the

  20. MIC score, a new tool to compare bacterial susceptibility to antibiotics application to the comparison of susceptibility to different penems of clinical strains of Pseudomonas aeruginosa.

    PubMed

    Bretonnière, Cédric; Maitte, Adeline; Caillon, Jocelyne; Potel, Gilles; Boutoille, David; Jacqueline, Cédric; Guitton, Christophe

    2016-11-01

    This study aimed to compare the susceptibility to carbapenems (imipenem, meropenem and doripenem) of clinical strains of Pseudomonas aeruginosa. It also studied whether susceptibility to imipenem or meropenem could predict, reliably, susceptibility to doripenem. Pseudomonal strains were collected from respiratory specimens, half of them from cystic fibrosis patients. MICs were determined according to European Committee on Antimicrobial Susceptibility Testing recommendations. Carbapenems were compared according to the susceptible, intermediate or resistant categories. A new approach also allowed comparing these carbapenems in a 'MIC score' taking into account the differences in breakpoints between drugs. One hundred thirty-nine strains were studied. They were found to be statistically more susceptible to meropenem than to the two other drugs. However, this difference was small: less than one dilution between the agents. This study also highlighted a significant correlation between susceptibility to penems taken in pairs. However, susceptibility to imipenem or meropenem did not reliably predict susceptibility to doripenem. Despite potential differences in resistance mechanisms, the Pseudomonas aeruginosa strains showed close susceptibility to three carbapenems. This was true for both cystic fibrosis patients and others. However, there were variations between strains. That justifies MICs to be determined for each of the three penems. This might be useful in case of elevated MICs and/or for potentially difficult-to-treat infections such as pneumonia in patients with cystic fibrosis patients.

  1. Effects of moxifloxacin exposure on the conjunctival flora and antibiotic resistance profile following repeated intravitreal injections

    PubMed Central

    Ataş, Mustafa; Başkan, Burhan; Özköse, Ayşe; Mutlu Sarıgüzel, Fatma; Demircan, Süleyman; Pangal, Emine

    2014-01-01

    AIM To evaluate the effects of moxifloxacin exposure on the conjunctival flora and antibiotic resistance profile following repeated intravitreal injections. METHODS Seventy-two eyes of 36 patients [36 eyes in control group, 36 eyes in intravitreal injection (IVI) group] were enrolled in the study. All the eyes had at least one IVI and had diabetic macular edema (DME) or age-related macular degeneration (ARMD). Moxifloxacin was prescribed to all the patients four times a day for five days following injection. Conjunctival cultures were obtained from the lower fornix via standardized technique with every possible effort made to minimize contamination from the lids, lashes, or skin. Before the application of any ophthalmic medication, conjunctival cultures were obtained from both eyes using sterile cotton culture. An automated microbiology system was used to identify the growing bacteria and determine antibiotic sensitivity. RESULTS The bacterial cultures were isolated from 72 eyes of 36 patients, sixteen of whom patients (44.4%) were male and twenty (55.6%) were female. Average age was 68.4±9.0 (range 50-86). The average number of injections before taking cultures was 3.1+1.0. Forty-eight (66.7%) of 72 eyes had at least one significant organism. There was no bacterial growth in 8 (20.5%) of IVI eyes and in 16 (44.4%) of control eyes (P=0.03). Of the bacteria isolated from culture, 53.8% of coagulase negative staphylococci (CoNS) in IVI eyes and 47.2% CoNS in control eyes. This difference between IVI eyes and control eyes about bacteria isolated from culture was not statistically significant (P=0.2). Eleven of 25 bacteria (44.0%) isolated from IVI eyes and 11 (57.9%) of 19 bacteria isolated from control eyes were resistant to oxacillin. The difference in frequency of moxifloxacine resistance between two groups was not statistically significant (12.0% in IVI eyes and 21.1% in control eyes) (P=0.44). There were no cases of resistance to vancomycin, teicoplanin and

  2. [Serotype identification and antibiotic susceptibility of Shiga toxin-producing Escherichia coli in the Weishan area in Shandong Province, China].

    PubMed

    Shao, C C; Hu, B; Bi, Z W; Kou, Z Q; Fang, M; Chen, B L; Bi, Z Q

    2017-01-06

    Objective: To determine the serotypes and drug resistance profiles of Shiga toxin-producing Escherichia coli (STEC) in animal stools from the Weishan area in Shandong Province, China. To provide the basis for further study. Methods: Five hundred animal stool samples (from pigs, cattle, sheep, dogs and birds) were collected from the Weishan area and STEC strains were isolated from these samples. Strains were serotyped by a serum agglutination test, and their drug resistance profiles were determined through antimicrobial sensitivity experiments. In this study, PCR was used to detect tetracycline resistance genes (tetA, tetB, tetC, tetD) and beta-lactam resistance genes (blaSHV-1, blaCTX-M, blaTEM). Results: Sixteen strains of STEC were isolated from animal stool samples. Thirteen strains were isolated from pig stool samples, two from bovine stool samples and one from a sheep stool sample. Two of the strains were identified as E. coli O157:H7, and other 14 strains were non-O157 STEC of different serotypes. Antimicrobial sensitivity experiments showed that 15 of the strains were multidrug resistant. The rates of resistance were as follows: nalidixic acid (12/16 strains), sulfisoxazole (11/16), trimethoprim and sulphame-thoxazole (11/16), doxycycline (9/16), azithromycin (9/16), tetracycline (9/16), chloramphenicol (8/16) and streptomycin (8/16). Therefore, nalidixic acid showed the highest rate of resistance among the strains, followed by trimethoprim and sulphame-thoxazole, and sulfisoxazole. Resistance to cefepime or imipenem was not detected. In total, three types of drug resistance genes (tetA, tetB and tetC) were detected among the 16 strains. Conclusion: The results showed that STEC strains isolated from animals in the Weishan area were of a range of serotypes. The 16 strains of STEC isolated from animal stools in this area were resistant to a number of antibiotics, with many strains displaying multidrug resistance.

  3. A comparison of antibiotic disks from different sources on Quicolor and Mueller-Hinton agar media in evaluation of antibacterial susceptibility testing

    PubMed Central

    Saffari, Neda; Salmanzadeh-Ahrabi, Siavosh; Abdi-Ali, Ahya; Rezaei-Hemami, Mohsen

    2016-01-01

    Background and Objectives: Antibacterial susceptibility testing of clinical bacterial isolates through disk diffusion method plays a major role in antibacterial treatment. One of the main factors affecting the result of these tests is the type, structure and quality of the disks. The main objective of this study was to compare the agreement of antibiotic disks originated from three companies on Quicolor and Mueller-Hinton agar. Materials and Methods: Quicolor and Mueller-Hinton agar media were used in disk diffusion method. Seventy clinical isolates from Enterobacteriaceae family (21 Klebsiella spp., 36 Escherichia coli, 1 Enterobacter spp. and 12 Shigella spp.) were investigated in the study. After obtaining data, the results were interpreted as resistant, sensitive or intermediate. Kappa coefficient measured the agreement of two media. Coefficient of variation (CV) was also calculated for antibiotic disks. Results: The kappa agreement values for three types of antibiotic disks on Quicolor and Mueller-Hinton agar plates were good or excellent for all the examined antibiotics. CV values were also very satisfactory in the majority of cases. Conclusion: Antibiotic disks from three manufacturers can successfully be used on both Quicolor and Mueller-Hinton agar plates. PMID:28149489

  4. Rapid identification and antimicrobial susceptibility profiling of Gram-positive cocci in blood cultures with the Vitek 2 system.

    PubMed

    Lupetti, A; Barnini, S; Castagna, B; Capria, A-L; Nibbering, P H

    2010-01-01

    Rapid identification and antimicrobial susceptibility profiling of the bacteria in blood cultures can result in clinical and financial benefits. Addition of saponin to the fluid from blood culture bottles promotes the recovery of the bacteria and thus may shorten the turnaround time of the microbiological analyses. In this study we compared the identification and susceptibility profiles of saponin-treated and untreated (standard method) blood cultures monomicrobial for Gram-positive cocci using Vitek 2. We concordantly identified 49 (89%) of 55 monobacterial cultures using the results with the standard method as reference. Complete categorical agreement between the susceptibility profiles with the new and the standard method was found for 26 (53%) of 49 isolates, while discrepancies were seen for 23 (47%) cultures. E-tests indicated that the new method resulted in a correct susceptibility profile for 8 (35%) of these 23 blood cultures. Therefore, 34 (69%) of 49 cultures showed a concordant/correct susceptibility profile for all antimicrobials with an overall error rate of 2.3%. Thus, addition of saponin to the fluid from blood culture bottles of the Bactec 9240 leads to the rapid (results available >or=12 hours earlier) and reliable identification and susceptibility profiling of Gram-positive cocci in blood cultures with Vitek 2.

  5. [Characterization and determination of antibiotic resistance profiles of a single clone Acinetobacter baumannii strains isolated from blood cultures].

    PubMed

    Karagöz, Alper; Baran, Irmak; Aksu, Neriman; Acar, Sümeyra; Durmaz, Rıza

    2014-10-01

    Acinetobacter baumannii which is a significant cause of nosocomial infections, increases the rate of morbidity and mortality in health care settings especially in intensive care units (ICUs). The aim of this study was to determine the antibiotic resistance profiles of A.baumannii strains isolated from blood cultures of inpatients from different ICUs, wards and hospital environment and evaluate their clonal relationships and epidemiologic features. A total of 54 A.baumannii strains (47 from the blood cultures and 7 from the hospital environment), identified between 01 January 2012-28 December 2012 at the Clinical Microbiology Laboratory of Ankara Numune Training and Research Hospital, Turkey, were included in the study. Identification of A.baumannii isolates and their antimicrobial [sulbactam-ampicillin (SAM), piperacillin (PIP), piperacillin-tazobactam (TZP), ceftazidime (CFZ), cefoperazone-sulbactam (SCF), cefepime (CEF), imipenem (IMP), meropenem (MER), amikacin (AMK), gentamicin (GEN), netilmicin (NT), ciprofloxacin (CIP), levofloxacin (LVF), tetracycline (TET), tigecycline (TG), colistin (COL), trimethoprim-sulfamethoxazole (SXT)] susceptibility testing were performed by Vitek 2 (bioMérieux, France) system. The clonal relationship between the A.baumannii isolates was analysed by pulsed-field gel electrophoresis (PFGE). In our study colistin, tigecycline and netilmicin were found to be the most effective agents against A.baumannii isolates. All of the clinical isolates (n= 47) were found susceptible to COL, however all were resistant to SAM, PIP, TZP, CEF, IPM, CFZ, MER and CIP. While 1.85%, 14.8%, 14.8%, 16.6%, 59.2% and 22.2% of the isolates were susceptible to SCF, AMK, NT, GEN, TG and SXT, respectively; 1.85%, 1.85%, 9.2%, 16.6%, 38.8% and 27.7% of the isolates were intermediate to SCF, TET, AMK, NT, LVF and TG, respectively. Similarly, all of the environmental A.baumannii isolates (n= 7) were resistant to SAM, PIP, TZP, CFZ, CEF, IPM, MER and CIP, and all

  6. The Quorum Sensing Inhibitor Hamamelitannin Increases Antibiotic Susceptibility of Staphylococcus aureus Biofilms by Affecting Peptidoglycan Biosynthesis and eDNA Release

    PubMed Central

    Brackman, Gilles; Breyne, Koen; De Rycke, Riet; Vermote, Arno; Van Nieuwerburgh, Filip; Meyer, Evelyne; Van Calenbergh, Serge; Coenye, Tom

    2016-01-01

    Treatment of Staphylococcus aureus infections has become increasingly challenging due to the rapid emergence and dissemination of methicillin-resistant strains. In addition, S. aureus reside within biofilms at the site of infection. Few novel antibacterial agents have been developed in recent years and their bacteriostatic or bactericidal activity results in selective pressure, inevitably inducing antimicrobial resistance. Consequently, innovative antimicrobials with other modes of action are urgently needed. One alternative approach is targeting the bacterial quorum sensing (QS) system. Hamamelitannin (2′,5-di-O-galloyl-d-hamamelose; HAM) was previously suggested to block QS through the TraP QS system and was shown to increase S. aureus biofilm susceptibility towards vancomycin (VAN) although mechanistic insights are still lacking. In the present study we provide evidence that HAM specifically affects S. aureus biofilm susceptibility through the TraP receptor by affecting cell wall synthesis and extracellular DNA release of S. aureus. We further provide evidence that HAM can increase the susceptibility of S. aureus biofilms towards different classes of antibiotics in vitro. Finally, we show that HAM increases the susceptibility of S. aureus to antibiotic treatment in in vivo Caenorhabditis elegans and mouse mammary gland infection models. PMID:26828772

  7. Antibiotic susceptibility of Stenotrophomonas (Xanthomonas) maltophilia: comparative (NCCLS criteria) evaluation of antimicrobial drugs with the agar dilution and the agar disk diffusion (Bauer-Kirby) tests.

    PubMed

    Traub, W H; Leonhard, B; Bauer, D

    1998-01-01

    Ninety-six clinical isolates of Stenotrophomonas maltophilia were examined with the agar dilution method for susceptibility to 19 antimicrobial drugs. Doxycycline, cotrimoxazole, timentin, ofloxacin, fosfomycin, and piperacillin + tazobactam, in that order, inhibited the majority of strains. All isolates were resistant to nitrofurantoin. Concurrent disk susceptibility (Bauer-Kirby method) testing, using currently valid NCCLS interpretative criteria for Pseudomonas aeruginosa, uncovered a significant incidence of very major (category I), major (category II), and minor (categories III and IV) discrepancies for aminoglycosides, cephalosporins, chloramphenicol, and piperacillin + tazobactam and ticarcillin + clavulanic acid. Therefore, new interpretative criteria indicative of intermediate (I) susceptibility of S. maltophilia to these various antibiotics were proposed. In addition, new intermediate susceptibility criteria were proposed for the two beta-lactam-beta-lactamase inhibitor combinations. It was recommended to exclude ciprofloxacin from test batteries against this microorganism due to the wide scatter of minimal inhibitory concentration values and diameters of inhibition zones; the same was true for polymyxin B. It is hoped that the proposed modified, species-specific criteria will improve the clinical utility of laboratory-generated disk antibiograms with respect to the inherently multiple antibiotic-resistant, opportunistic pathogen S. maltophilia.

  8. Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci.

    PubMed

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.

  9. Antibiotic susceptibility of vancomyin and nitrofurantoin in Staphylococcus aureus isolated from burnt patients in Sulaimaniyah, Iraqi Kurdistan.

    PubMed

    Babakir-Mina, Muhammed; Othman, Nasih; Najmuldeen, Hastyar Hamarashid; Noori, Chia Kamil; Fatah, Choman Faraj; Perno, Carlo-Federico; Ciotti, Marco

    2012-10-01

    Burns remain a significant public health problem in terms of morbidity and mortality throughout the world, especially in low and middle-income countries. Burning raptures the skin barriers that normally prevent invasion by microorganisms and infection is a major complication in burn patients. Methicillin resistant Staphylococcus aureus (MRSA) is the most important nosocomial pathogen. This retrospective analysis was conducted in the burn unit of the Department of Microbiology in the Sulamaini Plastic Surgery and Burns Hospital. The analysis is based on data collected from the medical records of 2938 burn patients, hospitalized between May 2008 and December 2011. The clinical samples were taken from various body sources for microbiological tests. Patients with a high percentage of total body surface area burnt (P<0.001) and a longer hospital stay (P<0.001) were more likely to have infection compared to other patients. In addition, among all tested antibiotics, vancomycin and nitrofurantion seem to be the most effective antibiotics for MR- SA. Furthermore there was a significant association between age and antibiotic resistance for all antibiotics except for vancomycin and nitrofurantoin. Resistance to antibiotics increased with advancing age. The wide use of antibiotics in the treatment of bacterial infections has probably led to the emergence and spread of resistant strains. Routine microbiological surveillance and careful in vitro testing prior to antibiotic use and strict adherence to hospital antibiotic policy may help in the prevention and treatment of antibiotic resistant pathogens in burn infections.

  10. Antibacterial efficacy of nisin, pediocin 34 and enterocin FH99 against L. monocytogenes, E. faecium and E. faecalis and bacteriocin cross resistance and antibiotic susceptibility of their bacteriocin resistant variants.

    PubMed

    Kaur, Gurpreet; Singh, Tejinder Pal; Malik, Ravinder Kumar; Bhardwaj, Arun; De, Sachinandan

    2014-02-01

    The bacteriocin susceptibility of Listeria monocytogenes MTCC 657, Enterococcus faecium DSMZ 20477, E. faecium VRE, and E. faecalis ATCC 29212 and their corresponding bacteriocin resistant variants was assessed. The single and combined effect of nisin and pediocin 34 and enterocin FH99 bacteriocins produced by Pediococcus pentosaceus 34, and E. faecium FH99, respectively, was determined. Pediocin34 proved to be more effective in inhibiting L. monocytogenes MTCC 657. A greater antibacterial effect was observed against E. faecium DSMZ 20477 and E. faecium (VRE) when the a combination of nisin, pediocin 34 and enterocin FH99 were used whereas in case of L. monocytogenes MTCC 657 a combination of pediocin 34 and enterocin FH99 was more effective in reducing the survival of pathogen. Bacteriocin cross-resistance and the antibiotic susceptibility of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class and also the acquired resistance to bacteriocins can modify the antibiotic susceptibility/resistance profile of the bacterial species used in the study. According to the hydrophobicity nisin resistant variant of L. monocytogenes was more hydrophobic (p < 0.001), whereas the pediocin 34 and enterocin FH99 resistant variants were less hydrophobic than the wild type strain. Nisin, pediocin 34 and enterocin FH99 resistant variants of E. faecium DSMZ 20477 and E. faecium VRE were less hydrophobic than their wild type counterparts. Nisin resistant E. faecalis ATCC 29212 was less hydrophobic than its wild type counterpart.

  11. Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction.

    PubMed

    Galhardi, Cristiano M; Diniz, Yeda S; Faine, Luciane A; Rodrigues, Hosana G; Burneiko, Regina C M; Ribas, Bartolome O; Novelli, Ethel L B

    2004-12-01

    The present study was carried out to investigate the effects of copper (Cu) intake on lipid profile, oxidative stress and tissue damage in normal and in diabetic condition. Since diabetes mellitus is a situation of high-risk susceptibility to toxic compounds, we examined potential early markers of Cu excess in diabetic animals. Male Wistar rats, at 60-days-old were divided into six groups of eight rats each. The control(C) received saline from gastric tube, the no-diabetic(Cu-10), treated with 10 mg/kg of Cu(Cu(++)-CuSO4, gastric tube), no-diabetic with Cu-60 mg/kg(Cu-60), diabetic(D), diabetic low-Cu(DCu-10) and diabetic high-Cu(DCu-60). Diabetes was induced by an ip injection of streptozotocin (60 mg/kg). After 30 days of treatments, no changes were observed in serum lactate dehydrogenase, alanine transaminase and alkaline phosphatase, indicating no adverse effects on cardiac and hepatic tissues. D-rats had glucose intolerance and dyslipidemic profile. Cholesterol and LDL-cholesterol were higher in Cu-60 and DCu-60 than in C, Cu-10 and D and DCu-10 groups respectively. Cu-60 rats had higher lipid hydroperoxide (HP) and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) serum activities than C and Cu-10 rats. LH was increased and GSH-Px was decreased, while no alterations were observed in SOD and catalase in serum of DCu-60 animals. DCu-60 rats had increased urinary glucose, creatinine and albumin. In conclusion, Cu intake at high concentration induced adverse effects on lipid profile, associated with oxidative stress and diminished activities of antioxidant enzymes. Diabetic animals were more susceptible to copper toxicity. High Cu intake induced dyslipidemic profile, oxidative stress and kidney dysfunction in diabetic condition. Copper renal toxicity was associated with oxidative stress and reduction at least, one of the antioxidant enzymes.

  12. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale.

    PubMed

    Su, Hao-Chang; Pan, Chang-Gui; Ying, Guang-Guo; Zhao, Jian-Liang; Zhou, Li-Jun; Liu, You-Sheng; Tao, Ran; Zhang, Rui-Quan; He, Liang-Ying

    2014-08-15

    The aim of this study was to investigate the contamination profiles of tetracycline, sulfonamide, and macrolide resistance genes, as well as integrons in sediments of Dongjiang River basin of South China by real time quantitative polymerase chain reaction. sul2 was the most abundant resistance gene, with the average concentration of 6.97×10(8) copies/g and 1.00×10(8) copies/g in the dry and wet seasons, respectively, followed by ermF, sul3, sul1, intI1, tetA, ermB, tetX, tetM, tetQ, tetO, tetW, tetS, ermC, and tetB. The abundance of intI2 gene was the lowest in the sediment samples. Significant correlations existed between the ARGs and sediment properties as well as metals (Cu and Zn) and corresponding antibiotic classes, suggesting that the contamination of ARGs is related to chemical pollution of the sediments in the river basin. Principal component analysis showed distinct groupings of the sampling sites, reflecting that human activities are the key player in the dissemination of ARGs in the catchment environment.

  13. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats.

    PubMed

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    2014-04-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC-MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. Using CE-MS and (1)H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC-MS and CE-MS. Overall, HILIC-MS appears to be highly complementary to CE-MS and (1)H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.

  14. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile.

    PubMed

    Venieri, Danae; Gounaki, Iosifina; Bikouvaraki, Maria; Binas, Vassilios; Zachopoulos, Apostolos; Kiriakidis, George; Mantzavinos, Dionissios

    2016-06-14

    The presence of pathogenic microorganisms in wastewater and their resistant nature to antibiotics impose effective disinfection treatment for public health and environmental protection. In this work, photocatalysis with metal-doped titania under artificial and natural sunlight, chlorination and UV-C irradiation were evaluated for their potential to inactivate Klebsiella pneumoniae in real wastewater. Their overall effect on antibiotic resistance profile and target antibiotic resistance genes (ARGs) was also investigated. In particular, Mn-, Co- and binary Mn/Co-TiO2 were tested resulting in bacterial decrease from 4 to 6 Logs upon 90 min of exposure to simulated solar irradiation. The response of catalysts under natural solar light was insufficient, as only a 2 Log reduction was recorded even after 60 min of treatment. The relative activity of the applied methods for K. pneumoniae inactivation was decreased in the order: photocatalysis with the binary Co/Mn-TiO2 under artificial light > chlorination with dose of 5 mg/L of free chlorine > UV-C irradiation, at an initial bacterial concentration of 10(7) CFU/mL. The applied methods showed various effects on antibiotic resistance profile in residual cells. Among the tested antibiotics (ampicillin, cefaclor, sulfamethoxazole and tetracycline), considerable changes in MIC values were recorded for cefaclor and tetracycline. Resistance of surviving cells after treatment remained in high levels, reflecting the abundance of the corresponding target ARGs, namely tetA, tetM, sul1, blaTEM and ampC. The notable presence of target ARGs post disinfection raises concerns and makes wastewater effluent a carrier of antibiotic resistance elements into the aquatic environment.

  15. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile

    PubMed Central

    Deorukhkar, Sachin C.; Saini, Santosh

    2014-01-01

    The incidence of invasive candidiasis has increased over the past few decades. Although Candida albicans remains by far the most common species encountered, in recent years shift towards non-albicans Candida species like Candida tropicalis is noted. Here in this study we determined the virulence factors and antifungal susceptibility profile of 125 C. tropicalis isolated from various clinical specimens. Biofilm formation was seen in 53 (42.4%) isolates. Coagulase production was noted in 18 (14.4%) isolates. Phospholipase enzyme was the major virulent factor produced by C. tropicalis isolates. A total of 39 biofilm forming isolates showed phospholipase activity. Proteinase activity was demonstrated by 65 (52%) isolates. A total of 38 (30.4%) isolates showed haemolytic activity. Maximum isolates demonstrated resistance to fluconazole. Fluconazole resistance was more common in C. tropicalis isolated from blood cultures. Antifungal resistance was more in isolates possessing the ability to produce phospholipase and biofilm. C. tropicalis exhibit a great degree of variation not only in their pathogenicity but also in their antifungal susceptibility profile. The identification of virulence attributes specific for each species and their correlation with each other will aid in the understanding of the pathogenesis of infection. PMID:24803934

  16. First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes

    PubMed Central

    Figueiredo-Carvalho, Maria Helena Galdino; Ramos, Livia de Souza; Barbedo, Leonardo Silva; Chaves, Alessandra Leal da Silva; Muramoto, Ilda Akemi; dos Santos, André Luis Souza; Almeida-Paes, Rodrigo; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management. PMID:26814644

  17. Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin

    SciTech Connect

    Neuhof, Torsten . E-mail: t.neuhof@gmx.de; Seibold, Michael; Thewes, Sascha; Laue, Michael; Han, Chang-Ok; Hube, Bernhard; Doehren, Hans von

    2006-10-20

    This is First report on the antifungal effects of the new glycolipopeptide hassallidin A. Due to related molecular structure moieties between hassallidin A and the established antifungal drug caspofungin we assumed parallels in the effects on cell viability. Therefore we compared hassallidin A with caspofungin by antifungal susceptibility testing and by analysing the genome-wide transcriptional profile of Candida albicans. Furthermore, we examined modifications in ultracellular structure due to hassallidin A treatment by electron microscopy. Hassallidin A was found to be fungicidal against all tested Candida species and Cryptococcus neoformans isolates. MICs ranged from 4 to 8 {mu}g/ml, independently from the species. Electron microscopy revealed noticeable ultrastructural changes in C. albicans cells exposed to hassallidin A. Comparing the transcriptional profile of C. albicans cells treated with hassallidin A to that of cells exposed to caspofungin, only 20 genes were found to be similarly up- or down-regulated in both assays, while 227 genes were up- or down-regulated induced by hassallidin A specifically. Genes up-regulated in cells exposed to hassallidin A included metabolic and mitotic genes, while genes involved in DNA repair, vesicle docking, and membrane fusion were down-regulated. In summary, our data suggest that, although hassallidin A and caspofungin have similar structures, however, the effects on susceptibility and transcriptional response to yeasts seem to be different.

  18. Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases

    PubMed Central

    Chatziioannou, Aristotelis; Georgiadis, Panagiotis; Hebels, Dennie G.; Liampa, Irene; Valavanis, Ioannis; Bergdahl, Ingvar A.; Johansson, Anders; Palli, Domenico; Chadeau-Hyam, Marc; Siskos, Alexandros P.; Keun, Hector; Botsivali, Maria; de Kok, Theo M. C. M.; Pérez, Almudena Espín; Kleinjans, Jos C. S.; Vineis, Paolo; Kyrtopoulos, Soterios A.; Gottschalk, Ralph; van Leeuwen, Danitsja; Timmermans, Leen; Bendinelli, Benedetta; Kelly, Rachel; Vermeulen, Roel; Portengen, Lutzen; Saberi-Hosnijeh, Fatemeh; Melin, Beatrice; Hallmans, Göran; Lenner, Per; Athersuch, Toby J.; Kogevinas, Manolis; Stephanou, Euripides G.; Myridakis, Antonis; Fazzo, Lucia; De Santis, Marco; Comba, Pietro; Kiviranta, Hannu; Rantakokko, Panu; Airaksinen, Riikka; Ruokojärvi, Päivi; Gilthorpe, Mark; Fleming, Sarah; Fleming, Thomas; Tu, Yu-Kang; Jonsson, Bo; Lundh, Thomas; Chen, Wei J.; Lee, Wen-Chung; Hsiao, Chuhsing Kate; Chien, Kuo-Liong; Kuo, Po-Hsiu; Hung, Hung; Liao, Shu-Fen

    2017-01-01

    We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment. PMID:28225026

  19. [Serotype distribution and antibiotic susceptibilities of Streptococcus pneumoniae causing acute exacerbations and pneumonia in children with chronic respiratory diseases].

    PubMed

    Altınkanat Gelmez, Gülşen; Soysal, Ahmet; Kuzdan, Canan; Karadağ, Bülent; Hasdemir, Ufuk; Bakır, Mustafa; Söyletir, Güner

    2013-10-01

    This study aimed to investigate serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates obtained from children with chronic respiratory diseases admitted to hospital with a diagnosis of acute exacerbations between 2008-2010 at Marmara University Hospital, Istanbul, Turkey. Sixty one S.pneumoniae strains isolated from the respiratory samples of patients were studied for erythromycin, clindamycin, tetracyline, trimethoprim-sulphametoxazole (TMP-SMX), vancomycin, levofloxacin susceptibilities by disk diffusion method; MIC values of penicillin and ceftriaxone were determined by E-test (AB Biodisk, Sweden). Results were evaluated according to the CLSI standards. The erythromycin-clindamycin double disc method was applied for the detection of macrolide resistance phenotypes. The presence of macrolide resistance genes, ermB, mef(A)/(E), ermTR were determined by PCR using specific primers for each gene. The serotypes were determined by multiplex PCR using specific primers for 40 different serotypes. According to CLSI criteria, penicillin resistance in S.pneumoniae isolates were found to be 8.2% (5/61) and intermediate resistance rate was 54% (33/61) for oral penicillin. Penicillin resistance were found to be only 1.6% (1/61) for parenteral penicillin. Resistance rates of erythromycin, clindamycin, tetracyline, TMP-SMX were detected as 55.8%, 46%, 47.5% and 67.2%; respectively. No resistance was detected to vancomycin and levofloxacin. Constitutive macrolide-lincosamide-streptogramin B (cMLSB) phenotype and M phenotype were observed in 82.4% (n= 28) and 17.6% (n= 6) of the macrolide resistant isolates, respectively. Inducible macrolide-lincosamide-streptogramin B (iMLSB) phenotype was not detected. The macrolid resistance genotypes, ermB, mef(A)/(E), were positive 50% and 14.7%; respectively. Both ermB and mef(A)/(E) genes were detected 35.3% of the macrolid resistant isolates. None of the isolates were positive for ermTR gene. The most

  20. Characterisation of a collection of Streptococcus pneumoniae isolates from patients suffering from acute exacerbations of chronic bronchitis: in vitro susceptibility to antibiotics and biofilm formation in relation to antibiotic efflux and serotypes/serogroups.

    PubMed

    Vandevelde, Nathalie M; Tulkens, Paul M; Diaz Iglesias, Yvan; Verhaegen, Jan; Rodriguez-Villalobos, Hector; Philippart, Ivan; Cadrobbi, Julie; Coppens, Nathalie; Boel, An; Van Vaerenbergh, Kristien; Francart, Hugo; Vanhoof, Raymond; Liistro, Giuseppe; Jordens, Paul; d'Odemont, Jean-Paul; Valcke, Yvan; Verschuren, Franck; Van Bambeke, Françoise

    2014-09-01

    The correlation between Streptococcus pneumoniae serotypes, biofilm production, antibiotic susceptibility and drug efflux in isolates from patients suffering from acute exacerbations of chronic bronchitis (AECB) remains largely unexplored. Using 101 isolates collected from AECB patients for whom partial (n=51) or full (n=50) medical details were available, we determined serotypes (ST)/serogroups (SG) (Quellung reaction), antibiotic susceptibility patterns [MIC (microdilution) using EUCAST and CLSI criteria] and ability to produce biofilm in vitro (10-day model; crystal violet staining). The majority of patients were 55-75 years old and <5% were vaccinated against S. pneumoniae. Moreover, 54% showed high severity scores (GOLD 3-4), and comorbidities were frequent including hypertension (60%), cancer (24%) and diabetes (20%). Alcohol and/or tobacco dependence was >30%. Isolates of SG6-11-15-23, known for large biofilm production and causing chronic infections, were the most prevalent (>15% each), but other isolates also produced biofilm (SG9-18-22-27 and ST8-20 being most productive), except SG7, SG29 and ST5 (<2% of isolates each). Resistance (EUCAST breakpoints) was 8-13% for amoxicillin and cefuroxime, 35-39% for macrolides, 2-8% for fluoroquinolones and 2% for telithromycin. ST19A isolates showed resistance to all antibiotics, ST14 to all except moxifloxacin, and SG9 and SG19 to all except telithromycin, moxifloxacin and ceftriaxone (SG19 only). Solithromycin and telithromycin MICs were similar. No correlation was observed between biofilm production and MIC or efflux (macrolides, fluoroquinolones). S. pneumoniae serotyping may improve AECB treatment by avoiding antibiotics with predictable low activity, but it is not predictive of biofilm production.

  1. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics.

    PubMed

    Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R; Baquero, Fernando; Martinez, José Luis; Coque, Teresa M

    2015-01-01

    Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRI(r)) and triclosan-hypersusceptible (TRI(hs)) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRI(r) mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRI(r) mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRI(r) mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRI(r) mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRI(r) mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive

  2. Virulence Attributes and Antifungal Susceptibility Profile of Opportunistic Fungi Isolated from Ophthalmic Infections.

    PubMed

    Sav, Hafize; Ozdemir, Havva Gül; Altınbas, Rabiye; Kiraz, Nuri; Ilkit, Macit; Seyedmousavi, Seyedmojtaba

    2016-10-01

    Investigations of both virulence factors and antifungal susceptibility profiles are crucial for understanding the pathogenesis and prognosis of ophthalmic mycoses. In this study, we investigated the in vitro antifungal susceptibility of amphotericin B (AMB), voriconazole (VRC), and natamycin (NAT) against a set of 50 fungal isolates obtained from patients with ocular mycoses using the Clinical and Laboratory Standards Institute broth microdilution method. In addition, putative virulence factor, such as secretory phospholipases and proteinases, and biofilm formation activity were analyzed. The geometric means (GMs) of the minimum inhibitory concentrations (MICs) of the antifungals across all isolates were the following (in increasing order): VRC (0.70 μg/mL), AMB (0.81 μg/mL), and NAT (1.05 μg/mL). The highest activity against 14 Aspergillus strains was exhibited by VRC (GM MIC: 0.10 μg/mL), followed by AMB and NAT (GM MICs: 0.21 and 0.27 μg/mL), respectively. However, for 12 Fusarium spp., the GM MIC of VRC (2.66) was higher than those of NAT and AMB (GM MICs 1.3 and 0.8 μg/mL, respectively). Proteinase and phospholipase activity were observed in 30 % and 42 % of the isolates, respectively, whereas only 8 % of the isolates were able to produce biofilms. Phospholipase activity was observed in all Fusarium isolates, but not in any of the Aspergillus isolates. In contrast, biofilm-forming capability was detected in 25 % of the Fusarium isolates, but none of the Aspergillus isolates. The differences in the MICs of AMB, VRC, and NAT, biofilm-forming ability and proteinase and phospholipase activities among the isolates were not significant (p > 0.05). Overall, our study suggests no significant correlation between the antifungal susceptibility profiles and virulence attributes of ocular fungal isolates.

  3. Relation between serotype distribution and antibiotic resistance profiles of Listeria monocytogenes isolated from ground turkey.

    PubMed

    Ayaz, Naim Deniz; Erol, Irfan

    2010-05-01

    The objectives of this study were to determine the serotype distribution of Listeria monocytogenes isolated from ground turkey using a multiplex PCR assay and to determine antimicrobial resistance profiles of the isolates using the disc diffusion method. Of 78 isolates, 35 (44.9%), 29 (37.2%), 7 (9.0%), and 7 (9.0%) were identified as serotypes 1/2a (or 3a), 4b (or 4d or 4e), 1/2b (or 3b), and 1/2c (or 3c), respectively. Overall, 63 isolates (80.8%) were resistant to penicillin G, and 53 (67.9%) were resistant to ampicillin. All 1/2c (or 3c) serotype isolates were resistant to penicillin G and ampicillin, and all 1/2b (or 3b) serotype isolates were resistant to penicillin G. In addition, 91.4% (32 of 35) of 1/2a (or 3a), 57.1% (4 of 7) of 1/2b (or 3b), and 37.9% (11 of 29) of 4b (or 4d or 4e) serotype isolates were resistant to ampicillin, and 85.7% (30 of 35) of 1/2a (or 3a) and 65.5% (19 of 29) of 4b (or 4d or 4e) serotype isolates were resistant to penicillin G. In conclusion, most of the L. monocytogenes isolates identified were serotype 1/2a (or 3a) and 4b (or 4d or 4e). Serotype 1/2c (or 3c) isolates were highly resistant to antibiotics compared with isolates of serotypes 1/2a (or 3a), 1/2b (or 3b), and 4b (or 4d or 4e). Increasing resistance of L. monocytogenes to ampicillin and penicillin is an especially serious concern for public health because of the common use of these antibiotics in treatment of human listeriosis cases.

  4. In vitro activities of rifapentine and rifampin, alone and in combination with six other antibiotics, against methicillin-susceptible and methicillin-resistant staphylococci of different species.

    PubMed Central

    Varaldo, P E; Debbia, E; Schito, G C

    1985-01-01

    The antistaphylococcal activity of rifapentine, a new rifamycin SV derivative, was evaluated in vitro and compared with that of rifampin. A total of 313 staphylococcal strains freshly isolated from clinical material and including representatives of all currently recognized Staphylococcus species of human origin were used. The susceptibility to methicillin of all the test strains was determined preliminarily. Despite minor differences with some species, the MICs of rifapentine were found to be substantially similar to those of rifampin. Methicillin-resistant strains of all species were most resistant to rifapentine and rifampin than were their methicillin-susceptible counterparts. For most strains tested, the MBCs of both rifamycins exceeded by twofold the respective MICs. Both the checkerboard dilution and time-kill methods were used to determine the interactions of rifapentine or rifampin with six different antibiotics: cefamandole, vancomycin, teicoplanin, gentamicin, erythromycin, and fusidic acid. No significant differences between the two rifamycins in the combinations were observed against either methicillin-susceptible or methicillin-resistant strains. Minor differences were noted depending on the second antibiotic tested or the staphylococcal species examined. Antagonism was never observed, and indifference was the prevalent response. Cases of synergism were observed occasionally with the checkerboard method and slightly more often with the time-kill method. PMID:3847272

  5. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance.

    PubMed Central

    Mayer, L W

    1988-01-01

    Plasmids are circular deoxyribonucleic acid molecules that exist in bacteria, usually independent of the chromosome. The study of plasmids is important to medical microbiology because plasmids can encode genes for antibiotic resistance or virulence factors. Plasmids can also serve as markers of various bacterial strains when a typing system referred to as plasmid profiling, or plasmid fingerprinting is used. In these methods partially purified plasma deoxyribonucleic acid species are separated according to molecular size by agarose gel electrophoresis. In a second procedure, plasmid deoxyribonucleic acid which has been cleaved by restriction endonucleases can be separated by agarose gel electrophoresis and the resulting pattern of fragments can be used to verify the identity of bacterial isolates. Because many species of bacteria contain plasmids, plasmid profile typing has been used to investigate outbreaks of many bacterial diseases and to trace inter- and intra-species spread of antibiotic resistance. Images PMID:2852997

  6. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis.

    PubMed

    Fernández-Natal, I; Rodríguez-Lázaro, D; Marrodán-Ciordia, T; Sáez-Nieto, J A; Valdezate, S; Rodríguez-Pollán, H; Tauch, A; Soriano, F

    2016-11-01

    Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X), tet(W), cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  7. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy.

    PubMed

    Dong, Tao; Zhao, Xinyan

    2015-02-17

    The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.

  8. Phenotypic, antimicrobial susceptibility profile and virulence factors of Klebsiella pneumoniae isolated from buffalo and cow mastitic milk

    PubMed Central

    Osman, Kamelia M; Hassan, Hany M; Orabi, Ahmed; Abdelhafez, Ahmed S T

    2014-01-01

    Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance. PMID:24915048

  9. Strategy for rapid identification and antibiotic susceptibility testing of gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system.

    PubMed

    Wimmer, Jana L; Long, S Wesley; Cernoch, Patricia; Land, Geoffrey A; Davis, James R; Musser, James M; Olsen, Randall J

    2012-07-01

    Decreasing the time to species identification and antibiotic susceptibility determination of strains recovered from patients with bacteremia significantly decreases morbidity and mortality. Herein, we validated a method to identify Gram-negative bacteria directly from positive blood culture medium using the Bruker MALDI Biotyper and to rapidly perform susceptibility testing using the BD Phoenix.

  10. Routine use of antibiotic laden bone cement for primary total knee arthroplasty: impact on infecting microbial patterns and resistance profiles.

    PubMed

    Hansen, Erik N; Adeli, Bahar; Kenyon, Robert; Parvizi, Javad

    2014-06-01

    Antibiotic-laden bone cement (ALBC) is used in primary arthroplasties throughout Europe. In North America, ALBC is only FDA approved for revision arthroplasty after periprosthetic joint infection (PJI). No article has evaluated whether infecting microbial profile and resistance has changed with the introduction of ALBC. We hypothesized that prophylactic use of ALBC in primary total knee arthroplasty (TKA) has not had a significant impact on infecting pathogens, and antibiotic resistance profiles. A retrospective cohort analysis was conducted of all PJI patients undergoing primary TKA and total hip arthroplasty (THA) between January 2000 and January 2009. No significant change in the patterns of infecting PJI pathogens, and no notable increase in percentage resistance was found among organisms grown from patients with PJI that had received prophylactic antibiotic-loaded cement in their primary joint arthroplasty. Early findings suggest that routine prophylactic use of ALBC has not led to changes in infecting pathogen profile, nor has led to the emergence of antimicrobial resistance at our institution.

  11. Susceptibility profile of methicillin-resistant Staphylococcus aureus to linezolid in clinical isolates

    PubMed Central

    Shariq, Ali; Tanvir, Syed Bilal; Zaman, Atif; Khan, Salman; Anis, Armeena; Khan, Misha Aftab; Ahmed, Sumaira

    2017-01-01

    Objective: To determine the resistance and sensitivity pattern of methicillin-resistant Staphylococcus aureus (MRSA) isolates to linezolid (LZD) along with its prevalence in a tertiary care hospital of Karachi, Pakistan. Materials and Methods: A cross-sectional study was carried out. This study lasted for about 1 year. Prevalence and sensitivity of LZD, vancomycin, and oxacillin was tested against isolates of MRSA. Results: Out of total 369 specimens 165 were found to be MRSA making the prevalence in our study 44.7%. All of the isolates which were tested positive for MRSA were susceptible to LZD and no resistance was noted when compared with previous studies performed in Europe and USA. Conclusion: Stringent implementation of infection control measures along with screening for resistance in patients on prolonged LZD therapy or who previously went under LZD therapy should be performed, coupled with judicious usage of the aforementioned antibiotic should be undertaken, as sufficient data is not available at this point for the clinical spectrum of LZD resistant S. aureus, antimicrobial resistance. PMID:28293153

  12. Triclosan Can Select for an AdeIJK-Overexpressing Mutant of Acinetobacter baumannii ATCC 17978 That Displays Reduced Susceptibility to Multiple Antibiotics

    PubMed Central

    Fernando, Dinesh M.; Xu, Wayne; Loewen, Peter C.; Zhanel, George G.

    2014-01-01

    In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a 116G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump. PMID:25136007

  13. Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics.

    PubMed

    Fernando, Dinesh M; Xu, Wayne; Loewen, Peter C; Zhanel, George G; Kumar, Ayush

    2014-11-01

    In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.

  14. In vitro comparison of Pseudomonas aeruginosa isolates with various susceptibilities to aminoglycosides and ten beta-lactam antibiotics.

    PubMed Central

    Wu, D H; Baltch, A L; Smith, R P

    1984-01-01

    Susceptibilities of 98 clinical isolates of Pseudomonas aeruginosa, including 33 strains with known mechanisms of amikacin resistance, were tested by the agar dilution method against 10 beta-lactam drugs. Ceftazidime, imipenem, and cefsulodin had the greatest activity, regardless of the aminoglycoside susceptibilities. The strains which were highly resistant to amikacin appeared to be less susceptible to some beta-lactam drugs, especially if their resistance was related to amikacin-inactivating enzymes; statistical significance, however, was observed for aztreonam only. PMID:6428308

  15. Profiles of Epigenetic Histone Post-translational Modifications at Type 1 Diabetes Susceptible Genes*

    PubMed Central

    Miao, Feng; Chen, Zhuo; Zhang, Lingxiao; Liu, Zheng; Wu, Xiwei; Yuan, Yate-Ching; Natarajan, Rama

    2012-01-01

    Both genetic and environmental factors are implicated in type 1 diabetes (T1D). Because environmental factors can trigger epigenetic changes, we hypothesized that variations in histone post-translational modifications (PTMs) at the promoter/enhancer regions of T1D susceptible genes may be associated with T1D. We therefore evaluated histone PTM variations at known T1D susceptible genes in blood cells from T1D patients versus healthy nondiabetic controls, and explored their connections to T1D. We used the chromatin immunoprecipitation-linked to microarray approach to profile key histone PTMs, including H3-lysine 4 trimethylation (H3K4me3), H3K27me3, H3K9me3, H3K9 acetylation (H3K9Ac), and H4K16Ac at genes within the T1D susceptible loci in lymphocytes, and H3K4me3, H3K9me2, H3K9Ac, and H4K16Ac at the insulin-dependent diabetes mellitus 1 region in monocytes of T1D patients and healthy controls separately. We screened for potential variations in histone PTMs using computational methods to compare datasets from T1D and controls. Interestingly, we observed marked variations in H3K9Ac levels at the upstream regions of HLA-DRB1 and HLA-DQB1 within the insulin-dependent diabetes mellitus 1 locus in T1D monocytes relative to controls. Additional experiments with THP-1 monocytes demonstrated increased expression of HLA-DRB1 and HLA-DQB1 in response to interferon-γ and TNF-α treatment that were accompanied by changes in H3K9Ac at the same promoter regions as that seen in the patient monocytes. These results suggest that the H3K9Ac status of HLA-DRB1 and HLA-DQB1, two genes highly associated with T1D, may be relevant to their regulation and transcriptional response toward external stimuli. Thus, the promoter/enhancer architecture and chromatin status of key susceptible loci could be important determinants in their functional association to T1D susceptibility. PMID:22431725

  16. Antimicrobial susceptibility of Bacillus anthracis strains from Hungary.

    PubMed

    Kreizinger, Zsuzsa; Sulyok, Kinga Mária; Makrai, László; Rónai, Zsuzsanna; Fodor, László; Jánosi, Szilárd; Gyuranecz, Miklós

    2016-06-01

    The susceptibility of 29 Bacillus anthracis strains, collected in Hungary between 1933 and 2014, was tested to 10 antibiotics with commercially available minimum inhibitory concentration (MIC) test strips. All strains were susceptible to amoxicillin, ciprofloxacin, clindamycin, doxycycline, gentamicin, penicillin, rifampicin, and vancomycin. Intermediate susceptibility to erythromycin and cefotaxime was detected in 17.2% (5/29) and 58.6% (17/29) of the strains, respectively. Correlations were not observed between the isolation date, location, host species, genotype, and antibiotic susceptibility profile of strains.

  17. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed

  18. Antimicrobial susceptibility profiles of Staphylococcus intermedius isolates from clinical cases of canine pyoderma in South Africa.

    PubMed

    Blunt, Catherine A; van Vuuren, Moritz; Picard, Jacqueline

    2013-05-16

    Successful treatment of canine pyoderma has become compromised owing to the development of antimicrobial resistance with accompanying recurrence of infection. Canine skin samples submitted to a veterinary diagnostic laboratory for microbiological culture and sensitivity between January 2007 and June 2010, from which Staphylococcus intermedius was isolated, were selected for this investigation. Antimicrobial resistance of S. intermedius was most prevalent with reference to ampicillin followed by resistance to tetracycline and then potentiated sulphonamides. In general, antimicrobial resistance was low and very few methicillin-resistant isolates were detected. Temporal trends were not noted, except for ampicillin, with isolates becoming more susceptible, and potentiated sulphonamides (co-trimoxazole), with isolates becoming more resistant. In general, both the Kirby-Bauer disc diffusion and broth dilution minimum inhibitory concentration tests yielded similar results for the antimicrobial agents tested. The main difference was evident in the over-estimation of resistance by the Kirby-Bauer test for ampicillin, co-trimoxazole, penicillin and doxycycline. Knowledge of trends in bacterial resistance is important for veterinarians when presented with canine pyoderma. Analysis of antimicrobial susceptibility profiles of S. intermedius isolated from canine pyodermas will guide veterinarians' use of the most appropriate agent and encourage prudent use of antimicrobials in companion animals.

  19. Antibiotic susceptibility of Escherichia coli isolates from inpatients with urinary tract infections in hospitals in Addis Ababa and Stockholm.

    PubMed Central

    Ringertz, S.; Bellete, B.; Karlsson, I.; Ohman, G.; Gedebou, M.; Kronvall, G.

    1990-01-01

    A high level of antimicrobial resistance of bacteria has been detected at the Tikur Anbessa Hospital (TAH), Addis Ababa, for many years. In contrast, at the Karolinska Hospital (KH), Stockholm, the level of resistance is low. Reported are the results of an investigation of the correlation between antibiotic usage and the antimicrobial resistance rates of Escherichia coli isolates from patients with urinary tract infections in these hospitals. At TAH the strains of E. coli isolated were considerably more resistant to all seven antibiotics tested. The level of multiresistance was 63% at TAH and 7% at KH. There were no significant differences in the total amount of antibiotics used in the two hospitals, except for antituberculosis agents. The strain biotypes and antibiograms, together with the length of patients' hospitalization before a positive urine culture was obtained, suggest that the majority of the strains from TAH were of nosocomial origin. PMID:2189587

  20. Evaluation of the PREVI® Isola automated seeder system compared to reference manual inoculation for antibiotic susceptibility testing by the disk diffusion method.

    PubMed

    Le Page, S; van Belkum, A; Fulchiron, C; Huguet, R; Raoult, D; Rolain, J-M

    2015-09-01

    The disk diffusion (DD) method remains the most popular manual technique for antibiotic susceptibility testing (AST) in clinical microbiology laboratories. This is because of its simplicity, reproducibility, and limited cost compared to (automated) microdilution systems, which are usually less sensitive at detecting certain important mechanisms of resistance. Here, we evaluate the PREVI® Isola automated seeder system using a new protocol for spreading bacterial suspensions (eight deposits of calibrated inocula of bacteria, followed by two rounds of rotation) in comparison with manual DD reference testing on a large series of clinical and reference strains. The average time required for seeding one agar plate for DD with this new protocol was 51 s per plate, i.e., 70 agar plates/h. Reproducibility and repeatability was assessed on three reference and three randomly chosen clinical strains, as usually requested by the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and was excellent compared to the manual method. The standard deviations of zones of growth inhibition showed no statistical discrimination. The correlation between the two methods, assessed using 294 clinical isolates and a panel of six antibiotics (n = 3,528 zones of growth inhibition measured), was excellent, with a correlation coefficient of 0.977. The new PREVI® Isola protocol adapted for DD had a sensitivity of 99 % and a specificity of 100 % compared to the manual technique for interpreting DD as recommended by the EUCAST.

  1. Characterization of Structural Variations in the Peptidoglycan of Vancomycin-Susceptible Enterococcus faecium: Understanding Glycopeptide-Antibiotic Binding Sites using Mass Spectrometry

    PubMed Central

    Patti, Gary J.; Chen, Jiawei; Schaefer, Jacob; Gross, Michael L.

    2008-01-01

    Enterococcus faecium, an opportunistic pathogen that causes a significant number of hospital-acquired infections each year, presents a serious clinical challenge because an increasing number of infections are resistant to the so-called antibiotic of last resort, vancomycin. Vancomycin and other new glycopeptide derivatives target the bacterial cell wall, thereby perturbing its biosynthesis. To help determine the modes of action of glycopeptide antibiotics, we have developed a bottom-up mass spectrometry approach complemented by solid-state NMR to elucidate important structural characteristics of vancomycin-susceptible E. faecium peptidoglycan. Using accurate-mass measurements and integrating ion-current chromatographic peaks of digested peptidoglycan, we identified individual muropeptide species and approximated the relative amount of each. Even though the organism investigated is susceptible to vancomycin, only 3% of the digested peptidoglycan has the well-known D-Ala-D-Ala vancomycin-binding site. The data are consistent with a previously proposed template model of cell-wall biosynthesis where D-Ala-D-Ala stems that are not cross-linked are cleaved in mature peptidoglycan. Additionally, our mass-spectrometry approach allowed differentiation and quantification of muropeptide species seen as unresolved chromatographic peaks. Our method provides an estimate of the extent of muropeptides containing O-acetylation, amidation and hydroxylation, and the number of species forming cyclic imides. The varieties of muropeptides on which the modifications are detected suggest that significant processing occurs in mature peptidoglycan where several enzymes are active in editing cell-wall structure. PMID:18692403

  2. Antibiotic susceptibility pattern and identification of extended spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran

    PubMed Central

    Mansury, Davood; Motamedifar, Mohammad; Sarvari, Jamal; Shirazi, Babak; Khaledi, Azad

    2016-01-01

    Background and Objectives: Klebsiella pneumoniae, one of the important causes of nosocomial infections, is the most common extended spectrum β-lactamases (ESBLs) producing organism. ESBLs are defined as the enzymes capable of hydrolyzing oxyimino-cephalosporins, monobactams and carbapenems. The aims of this study were to identify ESBL-producing K. pneumoniae isolates and detect their antibiotic susceptibility pattern. Materials and Methods: This cross-sectional study was conducted from December 2012 to May 2013 in teaching hospitals in Shiraz. Clinical specimens from the urine, sputum, wound, blood, throat, and body fluids were isolated and identified as K. pneumoniae. Antibacterial susceptibility testing was performed for 14 antibiotics using disk diffusion method according to CLSI guidelines. Isolates showing resistant to at least one of the β-lactam antibiotics were then evaluated for production of β-lactamase enzymes using E-test ESBL and combined disk Method. Also, MICs for ceftazidime and imipenem were determined using E-test. The presence of the blaSHV, blaTEM, blaPER and blaCTX-M genes was assessed by PCR. Results: Of 144 K. pneumoniae isolates from different specimens, 38 (26.3 %) was identified as ESBL producer by phenotypic confirmatory test. All ESBL producing isolates were susceptible to imipenem and meropenem and resistant to aztreonam. The highest rate of resistance belonged to amoxicillin (100%), cefotaxime (50%) and gentamicin (42.3%) and the lowest rates were seen for meropenem (11.8%), imipenem and amikacin (both 15.9%). Sixty-two isolates had MICs≥ 4 μg/mL for ceftazidime, of which 38 were positive for ESBLs in phenotypic confirmatory tests (PCT). The prevalence of blaSHV, blaCTX-M, and blaTEM genes among these isolates were 22.2%, 19% and 16%. blaPER was not detected in the studied isolates. Conclusions: Due to the relatively high prevalence of ESBLs-producing K. pneumoniae isolates in the studied population, it seems that screening of

  3. Multiple Genetic Analysis System-Based Antibiotic Susceptibility Testing in Helicobacter pylori and High Eradication Rate With Phenotypic Resistance-Guided Quadruple Therapy.

    PubMed

    Dong, Fangyuan; Ji, Danian; Huang, Renxiang; Zhang, Fan; Huang, Yiqin; Xiang, Ping; Kong, Mimi; Nan, Li; Zeng, Xianping; Wu, Yong; Bao, Zhijun

    2015-11-01

    Antibiotics resistance in Helicobacter pylori (H. pylori) is the major factor for eradication failure. Molecular tests including fluorescence in situ hybridization, PCR-restriction fragment length polymorphism, and dual priming oligonucleotide-PCR (DPO-PCR) play critical roles in the detection of antibiotic susceptibility; however, limited knowledge is known about application of multiple genetic analysis system (MGAS) in the area of H. pylori identification and antibiotics resistance detection.The aim of this study is to determine the antibiotics resistance using different molecular tests and evaluate the treatment outcomes of E-test-based genotypic resistance.A total of 297 patients with dyspepsia complaint were recruited for gastroscopies. Ninety patients with H. pylori culture positive were randomly divided into 2 groups (test group and control group). E-test, general PCR, and MGAS assay were performed in test group. Patients in control group were treated with empirical therapy (rabeprazole + bismuth potassium citrate + amoxicillin [AMX] + clarithromycin [CLR]), whereas patients in test group received quadruple therapy based on E-test results twice daily for 14 consecutive days. The eradication effect of H. pylori was confirmed by C-urea breath test after at least 4 weeks when treatment was finished.Rapid urease test showed 46.5% (128/297) patients with H. pylori infection, whereas 30.3% (90/297) patients were H. pylori culture positive. E-test showed that H. pylori primary resistance rate to CLR, AMX, metronidazole, tetracycline, and levofloxacin (LVX) was 40.0% (18/45), 4.4% (2/45), 53.3% (24/45), 0% (0/45), and 55.6% (25/45), respectively. In addition, there are many multidrug resistant (MDR) phenotypes, and the MDR strains have higher minimum inhibitory concentration than their single-drug resistant counterparts. Considering E-test as the reference test, the sensitivities of general PCR and MGAS in detecting CLR resistance were 83.3% (15/18) and 94.4% (17

  4. Sporothrix schenckii COMPLEX: SUSCEPTIBILITIES TO COMBINED ANTIFUNGAL AGENTS AND CHARACTERIZATION OF ENZYMATIC PROFILES

    PubMed Central

    OLIVEIRA, Daniele Carvalho; de LORETO, Érico Silva; MARIO, Débora Alves Nunes; LOPES, Paulo G. Markus; NEVES, Louise Vignolles; da ROCHA, Marta Pires; SANTURIO, Janio Morais; ALVES, Sydney Hartz

    2015-01-01

    SUMMARY Sporothrix schenckiiwas reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans (n = 1) , S. brasiliensis (n = 6) , S. globosa (n = 1), S. mexicana(n = 1) and S. schenckii(n = 36) to terbinafine (TRB) alone and in combination with itraconazole (ITZ), ketoconazole (KTZ), and voriconazole (VRZ) by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5%) or indifferent (70%, 50% and 52.5%) for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA) activity was observed only for S. albicans and S. mexicana. The species S. globosaand S. mexicanawere the only species without β-glucosidase (GS) activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrixin further studies. PMID:26422151

  5. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication.

    PubMed

    Aendekerk, Séverine; Diggle, Stephen P; Song, Zhijun; Høiby, Niels; Cornelis, Pierre; Williams, Paul; Cámara, Miguel

    2005-04-01

    In Pseudomonas aeruginosa the production of multiple virulence factors depends on cell-to-cell communication through the integration of N-acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in n-butanoyl-L-homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance. Provision of exogenous PQS improved growth and restored AHL and virulence factor production as well as antibiotic susceptibility, indicating that the pump mutants retained their capacity to respond to PQS. RT-PCR analysis indicated that expression of the PQS biosynthetic genes, phnA and pqsA, was inhibited when the mutants reached stationary phase, suggesting that the pleiotropic phenotype observed may be due to intracellular accumulation of a toxic PQS precursor. To explore this hypothesis, double mexI phnA (unable to produce anthranilate, the precursor of PQS) and mexI pqsA mutants were constructed; the improved growth of the former suggested that the toxic compound is likely to be anthranilate or a metabolite of it. Mutations in mexI and opmD also resulted in the attenuation of virulence in rat and plant infection models. In plants, addition of PQS restored the virulence of mexI and opmD mutants. Collectively, these results demonstrate an essential function for the MexGHI-OpmD pump in facilitating cell-to-cell communication, antibiotic susceptibility and promoting virulence and growth in P. aeruginosa.

  6. In vitro susceptibility of e.faecalis and c.albicans isolates from apical periodontitis to common antimicrobial agents, antibiotics and antifungal medicaments

    PubMed Central

    Yoldas, Oguz; Yilmaz, Sehnaz; Akcimen, Beril; Seydaoglu, Gulsah; Kipalev, Arzu; Koksal, Fatih

    2012-01-01

    The aim of this study was to evaluate in vitro antimicrobial activity of 4 antibiotic agents (for E.faecalis) and 4 antifungal agents (for C.albicans) by agar dilution method. Additionally, modified strip diffusion method was used for detection of in vitro antimicrobial activities of 5% NaOCl, 2.5% NaOCl, 17% EDTA and 2% CHX and agar diffusion method for detection of in vitro susceptibilities of three intracanal medicaments for 18 E.faecalis and 18 C.albicans isolates from primary and secondary root canal infection. Isolates were recovered from 231 endodontic samples of patients, with the need of root canal treatment and retreatment. All tested E.faecalis isolates showed resistance to antibiotics. For irrigation solutions, 2% CHX was more effective in eliminating E.faecalis but 5% NaOCl showed larger inhibition zone than 2.5% NaOCl, 17% EDTA and 2% CHX. For intracanal medication, Ca(OH)2-CHX worked efficiently in killing E.faecalis isolates compared to Ca(OH)2-Steril saline solution, Ca(OH)2-Glycerin. For C.albicans, 18 isolates were susceptible to amphotericin B, nistatin, fluconazole but showed resistance to ketoconazole. 5% NaOCl was more effective in eliminating and produced larger inhibition zone compared to 2.5% NaOCl, 17% EDTA and 2% CHX. Ca(OH)2-Glycerin intracanal medication was better in eliminating C.albicans isolates and produced larger inhibition zone compared to other Ca(OH)2 medicaments. Key words:E.faecalis, C.albicans, antimicrobial, antibiotic, antifungal. PMID:24558517

  7. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013.

    PubMed

    Jean, Shio-Shin; Coombs, Geoffrey; Ling, Thomas; Balaji, V; Rodrigues, Camilla; Mikamo, Hiroshige; Kim, Min-Ja; Rajasekaram, Datin Ganeswrie; Mendoza, Myrna; Tan, Thean Yen; Kiratisin, Pattarachai; Ni, Yuxing; Weinman, Barry; Xu, Yingchun; Hsueh, Po-Ren

    2016-04-01

    A total of 9599 isolates of Gram-negative bacteria (GNB) causing urinary tract infections (UTIs) were collected from 60 centres in 13 countries in the Asia-Pacific region from 2010-2013. These isolates comprised Enterobacteriaceae species (mainly Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Enterobacter cloacae and Morganella morganii) and non-fermentative GNB species (predominantly Pseudomonas aeruginosa and Acinetobacter baumannii). In vitro susceptibilities were determined by the agar dilution method and susceptibility profiles were determined using the minimum inhibitory concentration (MIC) interpretive breakpoints recommended by the Clinical and Laboratory Standards Institute in 2015. Production of extended-spectrum β-lactamases (ESBLs) amongst E. coli, K. pneumoniae, P. mirabilis and K. oxytoca isolates was determined by the double-disk synergy test. China, Vietnam, India, Thailand and the Philippines had the highest rates of GNB species producing ESBLs and the highest rates of cephalosporin resistance. ESBL production and hospital-acquired infection (isolates obtained ≥48 h after admission) significantly compromised the susceptibility of isolates of E. coli and K. pneumoniae to ciprofloxacin, levofloxacin and most β-lactams, with the exception of imipenem and ertapenem. However, >87% of ESBL-producing E. coli strains were susceptible to amikacin and piperacillin/tazobactam, indicating that these antibiotics might be appropriate alternatives for treating UTIs due to ESBL-producing E. coli. Fluoroquinolones were shown to be inappropriate as empirical therapy for UTIs. Antibiotic resistance is a serious problem in the Asia-Pacific region. Therefore, continuous monitoring of evolutionary trends in the susceptibility profiles of GNB causing UTIs in Asia is crucial.

  8. Crystal Structures of Penicillin-Binding Protein 2 From Penicillin-Susceptible And -Resistant Strains of Neisseria Gonorrhoeae Reveal An Unexpectedly Subtle Mechanism for Antibiotic Resistance

    SciTech Connect

    Powell, A.J.; Tomberg, J.; Deacon, A.M.; Nicholas, R.A.; Davies, C.

    2009-05-21

    Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for {beta}-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by {beta}-lactam antibiotics.

  9. Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture

    PubMed Central

    2013-01-01

    Background The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food. Results These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities. Conclusions To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB

  10. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots.

    PubMed

    Galland, J C; Hyatt, D R; Crupper, S S; Acheson, D W

    2001-04-01

    Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.

  11. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates.

    PubMed

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona E; Colombo, Arnaldo Lopes

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC(50)/MIC(90), 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula

  12. Molecular Identification, Antifungal Susceptibility Profile, and Biofilm Formation of Clinical and Environmental Rhodotorula Species Isolates

    PubMed Central

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona e

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC50/MIC90, 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula species

  13. Differences in Rhodococcus equi Infections Based on Immune Status and Antibiotic Susceptibility of Clinical Isolates in a Case Series of 12 Patients and Cases in the Literature

    PubMed Central

    Suzuki, Yasuhiro; Ribes, Julie A.; Thornton, Alice

    2016-01-01

    Rhodococcus equi is an unusual zoonotic pathogen that can cause life-threatening diseases in susceptible hosts. Twelve patients with R. equi infection in Kentucky were compared to 137 cases reported in the literature. Although lungs were the primary sites of infection in immunocompromised patients, extrapulmonary involvement only was more common in immunocompetent patients (P < 0.0001). Mortality in R. equi-infected HIV patients was lower in the HAART era (8%) than in pre-HAART era (56%) (P < 0.0001), suggesting that HAART improves prognosis in these patients. Most (85–100%) of clinical isolates were susceptible to vancomycin, clarithromycin, rifampin, aminoglycosides, ciprofloxacin, and imipenem. Interestingly, there was a marked difference in susceptibility of the isolates to cotrimoxazole between Europe (35/76) and the US (15/15) (P < 0.0001). Empiric treatment of R. equi infection should include a combination of two antibiotics, preferably selected from vancomycin, imipenem, clarithromycin/azithromycin, ciprofloxacin, rifampin, or cotrimoxazole. Local antibiograms should be checked prior to using cotrimoxazole due to developing resistance. PMID:27631004

  14. The Frequency, Antifungal Susceptibility and Enzymatic Profiles of Candida Species Isolated from Neutropenic Patients

    PubMed Central

    Gharaghani, Maral; Rezaei-Matehkolaei, Ali; Zarei Mahmoudabadi, Ali; Keikhaei, Bijan

    2016-01-01

    Background Neutropenia, as a predisposing factor for invasive candidiasis, is defined as a reduction in neutrophil count to less than 1500/mm3. It is a common condition in patients with hematological malignancy and cytostatic chemotherapy. Extensive chemotherapy and prophylaxis with antifungals have increased the resistance of Candida isolates to antifungal drugs. Although, Candida albicans is the most common causative agent among neutropenic patients, there is an increasing rate of non-albicans species. Extracellular enzymes activity pattern and antifungal agent sensitivity profiles are two important factors for spreading resistant strains. Objectives The aim of the present study was to identify the Candida strains isolated from hospitalized neutropenic patients. The patterns of antifungal susceptibility of the causative agents to antifungals and the extracellular enzymes activity of the isolates were also evaluated. Patients and Methods In the present study, 243 urine and 243 oral swab samples were collected from neutropenic patients and inoculated on CHROMagar Candida. In addition, 100 blood samples were also inoculated in biphasic Brain Heart Infusion medium. Several yeast isolates were isolated from samples and identified by classical and molecular techniques. The profiles of extracellular enzymes and the susceptibility of recovered agents to amphotericin B, fluconazole and caspofungin were also evaluated. Results A total of 110 yeast strains isolated from urine and oral cavities were identified as C. albicans (51.8%), C. krusei (25.5%), C. glabrata (6.4%) and other yeasts (16.3%). No yeast species was isolated from blood samples. Our result showed that in 90% of the isolates, the range of secretion of extracellular enzymes was medium (2+) and high (3+), however only a few isolates were negative for this characteristic. All isolates were sensitive to caspofungin and fluconazole, whereas 54.7% of isolates were resistant to amphotericin B. Conclusions We found a

  15. Antibiotic resistance & pathogen profile in ventilator-associated pneumonia in a tertiary care hospital in India

    PubMed Central

    Chaudhury, Abhijit; Rani, A. Shobha; Kalawat, Usha; Sumant, Sachin; Verma, Anju; Venkataramana, B.

    2016-01-01

    Background & objectives: Ventilator-associated pneumonia (VAP) is an important hospital-acquired infection with substantial mortality. Only a few studies are available from India addressing the microbiological aspects of VAP, which have been done with small study populations. This study was carried out in the intensive care units (ICUs) of a tertiary care hospital to assess the profile of pathogens and to determine the pattern of antimicrobial resistance. Methods: This was a retrospective study of clinically suspected cases of VAP. Over a three year period, a total of 247 cases in 2011, 297 in 2012 and 303 in 2013 admitted in ICUs on mechanical ventilation with clinical evidence of VAP were included in our study. The endotracheal aspirate samples from these suspected cases were subjected to quantitative culture technique, and colony count of ≥105 colony forming units/ml was considered significant. Antimicrobial susceptibility test for the isolates was done. Results: VAP rates of 44.1, 43.8 and 26.3 were seen in 2011, 2012 and 2013, respectively. In all the three years, non-fermentative Gram-negative bacilli were the predominant organisms, followed by Pseudomonas spp. and Klebsiella spp. Staphylococcus aureus exhibited a downwards trend in prevalence from 50.0 per cent in 2011 to 34.9 per cent in 2013. An increase in vancomycin-resistant enterococci was seen from 4.3 per cent in 2012 to 8.3 per cent in 2013, while methicillin resistance amongst the S. aureus crossed the 50 per cent mark in 2013. An increasing trend in resistance was shown by Pseudomonas spp. for piperacillin-tazobactam (PTZ), amikacin and imipenem (IPM). For the non-fermenters, resistance frequency remained very high except for IPM (33.1%) and polymyxin-B (2.4%). Interpretation & conclusions: Our findings show VAP as an important problem in the ICU setting. The incidence of multidrug-resistant pathogens was on the rise. The resistance pattern of these pathogens can help an institution to formulate

  16. Growth Inhibitory, Bactericidal, and Morphostructural Effects of Dehydrocostus Lactone from Magnolia sieboldii Leaves on Antibiotic-Susceptible and -Resistant Strains of Helicobacter pylori

    PubMed Central

    Lee, Hyun-Kyung; Song, Ha Eun; Lee, Haeng-Byung; Kim, Cheol-Soo; Koketsu, Mamoru; Thi My Ngan, Luong; Ahn, Young-Joon

    2014-01-01

    Helicobacter pylori is associated with various diseases of the upper gastrointestinal tract, such as gastric inflammation and duodenal and gastric ulcers. The aim of the study was to assess anti-H. pylori effects of the sesquiterpene lactone dehydrocostus lactone (DCL) from Magnolia sieboldii leaves, compared to commercial pure DCL, two previously known sesquiterpene lactones (costunolide and parthenolide), (–)-epigallocatechin gallate, and four antibiotics. The antibacterial activity of natural DCL toward antibiotic-susceptible H. pylori ATCC 700392 and H. pylori ATCC 700824 strains (MIC, 4.9 and 4.4 mg/L) was similar to that of commercial DCL and was more effective than costunolide, parthenolide, and EGCG. The activity of DCL was slightly lower than that of metronidazole (MIC, 1.10 and 1.07 mg/L). The antibacterial activity of DCL was virtually identical toward susceptible and resistant strains, even though resistance to amoxicillin (MIC, 11.1 mg/L for PED 503G strain), clarithromycin (49.8 mg/L for PED 3582GA strain), metronidazole (21.6 mg/L for H. pylori ATCC 43504 strain; 71.1 mg/L for 221 strain), or tetracycline (14.2 mg/L for B strain) was observed. This finding indicates that DCL and the antibiotics do not share a common mode of action. The bactericidal activity of DCL toward H. pylori ATCC 43504 was not affected by pH values examined (4.0–7.0). DCL caused considerable conversion to coccoid form (94 versus 49% at 8 and 4 mg/L of DCL for 48 h). The Western blot analysis revealed that urease subunits (UreA and UreB) of H. pylori ATCC 43504 were not affected by 10 mM of DCL, whereas UreA monomer band completely disappeared at 0.1 mM of (–)-epigallocatechin gallate. Global efforts to reduce the level of antibiotics justify further studies on M. sieboldii leaf-derived materials containing DCL as potential antibacterial products or a lead molecule for the prevention or eradication of drug-resistant H. pylori. PMID:24747984

  17. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    PubMed

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  18. Virulence factors and antimicrobial susceptibility profile of extraintestinal Escherichia coli isolated from an avian colisepticemia outbreak.

    PubMed

    Maciel, Jonas Fernandes; Matter, Letícia Beatriz; Trindade, Michele Martins; Camillo, Giovana; Lovato, Maristela; de Ávila Botton, Sônia; Castagna de Vargas, Agueda

    2017-02-01

    In this study an avian colisepticemia outbreak was investigated. Two isolates from a chicken with colisepticemia were characterized for antimicrobial susceptibility and virulence factors profile. For this purpose 7 antimicrobial and 29 genes (fimH, hrlA/hek, iha, papC, sfa/focCD, tsh, mat, tia, gimB, ibeA, chuA, fyuA, ireA, iroN, irp2, iucD, sitD. chr., sitD. ep., iss, neuC, ompA, traT, astA, hlyA, sat, vat, pic, malX, cvi/cva) were tested. The outbreak happened in a hick chicken breeding located in the northwestern region of Rio Grande do Sul state in South of Brazil and caused 28.3% (102 deads of a total of 360 chickens) of mortality rate. Escherichia coli isolates obtained from the avian spleen and liver belong to the same phylogenetic group A and present resistance to all antimicrobials tested (ampicillin, tetracycline, gentamicin, neomycin, sulfa + trimethoprim, enrofloxacin, and norfloxacin). Both isolates harbor virulence factors related to adhesion (fimH, papC, mat), invasion (tia), iron acquisition system (iroN) and serum resistance (iss, ompA, traT), showing that these groups are important for Avian Pathogenic E. coli (APEC). However, they present different virulence profiles for some genes, whereas liver-isolate carries more hrlA/hek (adhesin), gimB (invasin), sitD ep. (iron acquisition system), sat (toxin) and hylA (toxin) genes, the spleen-isolate harbors fyuA (iron acquisition system) gene. Here, we highlight a coinfection by different strains of APEC in the same animal with colisepticemia, the great antimicrobial resistance of these bacterial isolates and the genetic traits that modulate the virulence for high mortality rate of chickens for human consumption.

  19. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system.

    PubMed

    Pontais, Isabelle; Treutter, Dieter; Paulin, Jean-Pierre; Brisset, Marie-Noëlle

    2008-03-01

    Fire blight is a disease affecting Maloideae caused by the necrogenic bacterium Erwinia amylovora, which requires the type III protein secretion system (TTSS) for pathogenicity. Profiles of methanol-extractable leaf phenolics of two apple (Malus x domestica) genotypes with contrasting susceptibility to this disease were analyzed by HPLC after infection. Some qualitative differences were recorded between the constitutive compositions of the two genotypes but in both of them dihydrochalcones accounted for more than 90% of total phenolics. Principal component analysis separated leaves inoculated with a virulent wild-type strain from those inoculated with a non-pathogenic TTSS-defective mutant or with water. The changes in levels of the various groups of phenolics in response to the virulent bacterium were similar between the two genotypes, with a significant decrease of dihydrochalcones and a significant increase of hydroxycinnamate derivatives. Differences between genotypes were, however, recorded in amplitude and kinetic of variation in these groups. Occurrence of oxidation and polymerization reactions is proposed, based on the browning process of infected tissues, but whether some by-products act in defense as toxic compounds remain to be tested. Among direct antibacterial constitutive compounds present in apple leaves, the dihydrochalcone phloretin only was found at levels close to lethal concentrations in both genotypes. However, E. amylovora exhibited the ability to stabilize this compound at sublethal levels even in the resistant apple, rejecting the hypothesis of its involvement in the resistance of this genotype.

  20. Incidence, microbiological profile of nosocomial infections, and their antibiotic resistance patterns in a high volume Cardiac Surgical Intensive Care Unit

    PubMed Central

    Sahu, Manoj Kumar; Siddharth, Bharat; Choudhury, Arin; Vishnubhatla, Sreenivas; Singh, Sarvesh Pal; Menon, Ramesh; Kapoor, Poonam Malhotra; Talwar, Sachin; Choudhary, Shiv; Airan, Balram

    2016-01-01

    Background: Nosocomial infections (NIs) in the postoperative period not only increase morbidity and mortality, but also impose a significant economic burden on the health care infrastructure. This retrospective study was undertaken to (a) evaluate the incidence, characteristics, risk factors and outcomes of NIs and (b) identify common microorganisms responsible for infection and their antibiotic resistance profile in our Cardiac Surgical Intensive Care Unit (CSICU). Patients and Methods: After ethics committee approval, the CSICU records of all patients who underwent cardiovascular surgery between January 2013 and December 2014 were reviewed retrospectively. The incidence of NI, distribution of NI sites, types of microorganisms and their antibiotic resistance, length of CSICU stay, and patient-outcome were determined. Results: Three hundred and nineteen of 6864 patients (4.6%) developed NI after cardiac surgery. Lower respiratory tract infections (LRTIs) accounted for most of the infections (44.2%) followed by surgical-site infection (SSI, 11.6%), bloodstream infection (BSI, 7.5%), urinary tract infection (UTI, 6.9%) and infections from combined sources (29.8%). Acinetobacter, Klebsiella, Escherichia coli, and Staphylococcus were the most frequent pathogens isolated in patients with LRTI, BSI, UTI, and SSI, respectively. The Gram-negative bacteria isolated from different sources were found to be highly resistant to commonly used antibiotics. Conclusion: The incidence of NI and sepsis-related mortality, in our CSICU, was 4.6% and 1.9%, respectively. Lower respiratory tract was the most common site of infection and Gram-negative bacilli, the most common pathogens after cardiac surgery. Antibiotic resistance was maximum with Acinetobacter spp. PMID:27052070

  1. Serratia marcescens: Biochemical, Serological, and Epidemiological Characteristics and Antibiotic Susceptibility of Strains Isolated at Boston City Hospital

    PubMed Central

    Wilfert, James N.; Barrett, Fred F.; Ewing, W. H.; Finland, Maxwell; Kass, Edward H.

    1970-01-01

    The biochemical, serological, and epidemiological characteristics of 95 strains of Serratia marcescens isolated at the Boston City Hospital were examined. Several strains were shown to be endemic, and the majority of isolates were cultured from urine or respiratory secretions. Serratia species were highly resistant to polymyxin B and the cephalosporins, and various proportions were also resistant to other antibiotics including kanamycin, but all of the isolates were sensitive to gentamicin. The appearance of resistance to kanamycin and nalidixic acid among endemic strains was demonstrated. The nosocomial nature of Serratia infections, particularly those involving the urinary tract, was confirmed. Many clinical bacteriology laboratories currently fail to identify the nonpigmented strains. PMID:4314379

  2. Predose and Postdose Blood Gene Expression Profiles Identify the Individuals Susceptible to Acetaminophen-Induced Liver Injury in Rats

    PubMed Central

    Lu, Xiaoyan; Hu, Bin; Zheng, Jie; Ji, Cai; Fan, Xiaohui; Gao, Yue

    2015-01-01

    The extent of drug-induced liver injury (DILI) can vary greatly between different individuals. Thus, it is crucial to identify susceptible population to DILI. The aim of this study was to determine whether transcriptomics analysis of predose and postdose rat blood would allow prediction of susceptible individuals to DILI using the widely applied analgesic acetaminophen (APAP) as a model drug. Based on ranking in alanine aminotransferase levels, five most susceptible and five most resistant rats were identified as two sub-groups after APAP treatment. Predose and postdose gene expression profiles of blood samples from these rats were determined by microarray analysis. The expression of 158 genes innately differed in the susceptible rats from the resistant rats in predose data. In order to identify more reliable biomarkers related to drug responses for detecting individuals susceptibility to APAP-induced liver injury (AILI), the changes of these genes' expression posterior to APAP treatment were detected. Through the further screening method based on the trends of gene expression between the two sub-groups before and after drug treatment, 10 genes were identified as potential predose biomarkers to distinguish between the susceptible and resistant rats. Among them, four genes, Incenp, Rpgrip1, Sbf1, and Mmp12, were found to be reproducibly in real-time PCR with an independent set of animals. They were all innately higher expressed in resistant rats to AILI, which are closely related to cell proliferation and tissue repair functions. It indicated that rats with higher ability of cell proliferation and tissue repair prior to drug treatment might be more resistant to AILI. In this study, we demonstrated that combination of predose and postdose gene expression profiles in blood might identify the drug related inter-individual variation in DILI, which is a novel and important methodology for identifying susceptible population to DILI. PMID:26512990

  3. Antibiotic Resistance in Staphylococcus aureus Strains Isolated from Cows with Mastitis in Eastern Poland and Analysis of Susceptibility of Resistant Strains to Alternative Nonantibiotic Agents: Lysostaphin, Nisin and Polymyxin B

    PubMed Central

    SZWEDA, Piotr; SCHIELMANN, Marta; FRANKOWSKA, Aneta; KOT, Barbara; ZALEWSKA, Magdalena

    2013-01-01

    ABSTRACT The aim of this study was to analyze the resistance of Staphylococcus aureus isolates from bovine mastitis in the eastern part of Poland to a set of 20 antibiotics and three alternative agents: lysostaphin, nisin and polymyxin B. Eighty-six out of 123 examined isolates were susceptible to all 20 tested antibiotics (70%). The highest percentage of resistance was observed in the case of β-lactam antibiotics: amoxicillin (n=22, 17.9%), ampicillin (n=28, 22.8%), penicillin (n=29, 23.6%) and streptomycin (n=13; 10.6%). Twenty-five of the penicillin-resistant strains were found to carry the blaZ gene coding for β-lactamases. Two strains were found to be mecA positive and a few strains were classified as multidrug resistant (MDR), one of them was simultaneously resistant to six antibiotics. All strains, resistant to at least one antibiotic (n=37) and two control strains, were susceptible to lysostaphin with MIC values of 0.008–0.5 µg/ml (susceptibility breakpoint 32 µg/ml). Twenty-one (54%) isolates were susceptible to nisin. The MIC value of this agent for 17 (44%) strains was 51.2 µg/ml and was not much higher than the susceptibility breakpoint value (32 µg/ml). Polymyxin B was able to inhibit the growth of the strains only at a high concentration (32–128 µg/ml). The presented results confirmed the observed worldwide problem of spreading antibiotic resistance among staphylococci isolated from bovine mastitis; on the other hand, we have indicated a high level of bactericidal activity of nisin and especially lysostaphin. PMID:24212507

  4. Salmonella enterica subsp. enterica isolated from chicken carcasses and environment at slaughter in Reunion Island: prevalence, genetic characterization and antibiotic susceptibility.

    PubMed

    Henry, Isabelle; Granier, Sophie; Courtillon, Céline; Lalande, Françoise; Chemaly, Marianne; Salvat, Gilles; Cardinale, Eric

    2013-01-01

    Salmonella contamination of 71 chicken broiler flocks was investigated at the slaughterhouse in Reunion Island between October 2007 and January 2009. Samples were collected from live broiler chickens and chicken carcasses as well as the slaughterhouse environment. Salmonella spp. was isolated from 40 of 71 (56 % with a confidence interval 5 % [45-67]) broiler chicken flocks at slaughter. The most prominent serovars were Blockley (31 %), Typhimurium and Brancaster (14 %), Hadar (10 %), Salmonella multidrug resistant clinical organisms serotypes 1,4,[5],12:i:-, and Virchow (8 %) and Livingstone, St. Paul, Seftenberg, Llandoff, Infantis and Indiana. At the farm, 27 % of the broiler chicken flocks tested positive for Salmonella spp. Salmonella spp. was isolated from 124 of 497 environmental samples (25 %). In most cases, there was no relationship between pulsed field gel electrophoresis (PFGE) pattern and antibiotic resistance pattern. The predominant Salmonella serovars were susceptible to most of the tested antibiotic drugs, but S. Hadar exhibited multidrug resistance. This study highlighted the primary source of Salmonella was the farm of origin and downstream stages in processing could not remedy to but amplify this Salmonella contamination.

  5. A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance.

    PubMed

    Sandersjöö, Lisa; Kostallas, George; Löfblom, John; Samuelson, Patrik

    2014-01-01

    Proteases are involved in many biological processes and have become important tools in biomedical research and industry. Technologies for engineering and characterization of, for example, proteolytic activity and specificity are essential in protease research. Here, we present a novel method for assessment of site-specific proteolysis. The assay utilizes plasmid-encoded reporters that, upon processing by a co-expressed protease, confer antibiotic resistance to bacteria in proportion to the cleavage efficiency. We have demonstrated that cells co-expressing cleavable reporters together with tobacco etch virus protease (TEVp) could be discriminated from cells with non-cleavable reporters by growth in selective media. Importantly, the resistance to antibiotics proved to correlate with the substrate processing efficiency. Thus, by applying competitive growth of a mock library in antibiotic-containing medium, we could show that the substrate preferred by TEVp was enriched relative to less-efficient substrates. We believe that this simple methodology will facilitate protease substrate identification, and hold great promise for directed evolution of proteases and protease recognition sequences towards improved or even new functionality.

  6. Antibiotic susceptibility and resistance of Staphylococcus aureus isolated from fresh porcine skin xenografts: risk to recipients with thermal injury.

    PubMed

    Busby, Stacey-Ann; Robb, Andrew; Lang, Sue; Takeuchi, Yasu; Vesely, Pavel; Scobie, Linda

    2014-03-01

    The previous use of fresh porcine xenografts at the Prague Burn Centre had raised concerns over the transmission of zoonotic pathogens. This study examines the risk of zoonotic Staphylococcus aureus colonisation of burn patients from fresh porcine skin xenografts. Samples were collected from the nares, skin and perineum of commercial pigs (n=101) and were screened for methicillin sensitive S. aureus (MSSA) and resistant S. aureus (MRSA). The efficacy of the antibiotic wash used in decontamination of the pigskin was tested against planktonic- and biofilm-grown isolates. The spa type of each isolate was also confirmed. All pig swabs were negative for MRSA but 86% positive for MSSA. All planktonic-grown isolates of MSSA were sensitive to chloramphenicol and nitrofurantoin and 44% of isolates were resistant to streptomycin. Isolates grown as biofilm exhibited higher rates of antimicrobial resistance. Sequence analysis revealed three distinct spa types of the MRSA ST398 clonal type. This finding demonstrates the existence of a MSSA reservoir containing spa types resembling those of well-known MRSA strains. These MSSA exhibit resistance to antibiotics used for decontamination of the pigskin prior to xenograft. Amended use of procurement could allow the use of fresh pigskin xenografts to be reinstated.

  7. Antibiofilm Peptides Increase the Susceptibility of Carbapenemase-Producing Klebsiella pneumoniae Clinical Isolates to β-Lactam Antibiotics

    PubMed Central

    Ribeiro, Suzana Meira; de la Fuente-Núñez, César; Baquir, Beverlie; Faria-Junior, Célio

    2015-01-01

    Multidrug-resistant carbapenemase-producing Klebsiella pneumoniae (KpC) strains are becoming a common cause of infections in health care centers. Furthermore, Klebsiella can develop multicellular biofilms, which lead to elevated adaptive antibiotic resistance. Here, we describe the antimicrobial and antibiofilm activities of synthetic peptides DJK-5, DJK-6, and 1018 against five KpC isolates. Using static microplate assays, it was observed that the concentration required to prevent biofilm formation by these clinical isolates was below the MIC for planktonic cells. More-sophisticated flow cell experiments confirmed the antibiofilm activity of the peptides against 2-day-old biofilms of different KpC isolates, and in some cases, the peptides induced significant biofilm cell death. Clinically relevant combinations of DJK-6 and β-lactam antibiotics, including the carbapenem meropenem, also prevented planktonic growth and biofilm formation of KpC strain1825971. Interestingly, peptide DJK-6 was able to enhance, at least 16-fold, the ability of meropenem to eradicate preformed biofilms formed by this strain. Using peptide DJK-6 to potentiate the activity of β-lactams, including meropenem, represents a promising strategy to treat infections caused by KpC isolates. PMID:25896694

  8. Prevalence and antibiotic resistance profile of thermophilic Campylobacter spp. of slaughtered cattle and sheep in Shiraz, Iran

    PubMed Central

    Khoshbakht, Rahem; Tabatabaei, Mohammad; Hoseinzadeh, Saeid; Raeisi, Mojtaba; Aski, Hesamaddin Shirzad; Berizi, Enayat

    2016-01-01

    Although poultry meat is considered as the main source for human Campylobacter infections, there is limited information about non-poultry sources. The present study was aimed to investigate the prevalence and the antibiotic resistance of thermophilic Campylobacter spp. in fecal samples of the cattle and sheep in Shiraz, Iran. A total of 302 fecal samples were obtained from clinically healthy, slaughtered cattle and sheep from Shiraz slaughterhouse. The animals were clinically healthy before being slaughtered. The samples were cultured according to the specific cultivation method under thermophilic conditions. The susceptibility of Campylobacter isolates were determined for 13 antimicrobial agents. All enriched samples and cultured isolates were targeted for polymerase chain reaction (PCR) detection of 16S rRNA and multiplex PCR for determining their species. Among 302 fecal samples, 65 (21.5%) and 205 (67.8%) samples were positive for the presence of Campylobacter species with the cultivation and PCR techniques, respectively. All 65 distinct isolates were susceptible to neomycin and colistin and the isolates showed high resistance to cephalotin (83.0%) and ciprofloxacin (67.7%). After the multiplex PCR, 78.5% of total positive samples showed the simultaneous presence of Campylobacter jejuni and Campylobacter coli. In conclusion, the results emphasized that non-poultry farms are important as a possible source of Campylobacter infections. PMID:27872721

  9. Antibiotic Resistance Profile and Distribution of Oxacillinase Genes Among Clinical Isolates of Acinetobacter baumannii in Shiraz Teaching Hospitals, 2012 - 2013

    PubMed Central

    Kooti, Sara; Motamedifar, Mohammad; Sarvari, Jamal

    2015-01-01

    Background: The emergence of multidrug-resistant Acinetobacter baumannii complicates the therapy of the related infections. Hospital isolates of A. baumannii are usually multidrug-resistant. The problem is compounded by increasing resistance to broad-spectrum antibiotics including carbapenems. Objectives: The aim of this study was to determine antimicrobial susceptibility patterns and distribution of blaOXA-type carbapenemases genes among A. baumannii isolates from hospitalized patients in Shiraz, Southwest Iran. Materials and Methods: Two hundred A. baumannii isolates were recovered from different clinical specimens in four Shiraz teaching hospitals. Isolates were detected as A. baumannii by Microgen kit and PCR with specific primers of blaOXA-51-like gene. Antimicrobial susceptibility testing was determined by disk diffusion method for all the isolates. Multiplex PCR assays were performed for detection of blaOXA-23-like, blaOXA-24-like and blaOXA-58-like genes. Results: All the isolates were susceptible to colistin and polymyxin B. Moreover, all of them were resistant to piperacillin, piperacillin-tazobactam, ampicillin, ceftazidime, cefoxitin and aztreonam. Eighty (40%) isolates had positive results for blaOXA-23-like, 14 (7%) for blaOXA-24-like and 1 (0.5%) isolate for blaOXA-58-like. The co-existence of studied genes was detected for blaOXA-23-like plus blaOXA-24-like in nine (4.5%) isolates. Conclusions: The prevalence of carbapenem resistant A. baumannii isolates in Shiraz hospitals is high. The blaOXA-23-like gene was the most frequent carbapenemase identified among resistant A. baumannii isolated in Shiraz hospitals. The increasing incidence of A. baumannii is a serious concern, therefore control of this pathogen and taking preventive measures are emphasized. PMID:26464764

  10. Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress

    PubMed Central

    Hodes, Georgia E.; Pfau, Madeline L.; Purushothaman, Immanuel; Ahn, H. Francisca; Golden, Sam A.; Christoffel, Daniel J.; Magida, Jane; Brancato, Anna; Takahashi, Aki; Flanigan, Meghan E.; Ménard, Caroline; Aleyasin, Hossein; Koo, Ja Wook; Lorsch, Zachary S.; Feng, Jian; Heshmati, Mitra; Wang, Minghui; Turecki, Gustavo; Neve, Rachel; Zhang, Bin; Shen, Li; Nestler, Eric J.

    2015-01-01

    Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. SIGNIFICANCE STATEMENT Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic

  11. Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic

    PubMed Central

    Chalhoub, Hussein; Pletzer, Daniel; Weingart, Helge; Braun, Yvonne; Tunney, Michael M.; Elborn, J. Stuart; Rodriguez-Villalobos, Hector; Plésiat, Patrick; Kahl, Barbara C.; Denis, Olivier; Winterhalter, Mathias; Tulkens, Paul M.; Van Bambeke, Françoise

    2017-01-01

    The β-lactam antibiotic temocillin (6-α-methoxy-ticarcillin) shows stability to most extended spectrum β-lactamases, but is considered inactive against Pseudomonas aeruginosa. Mutations in the MexAB-OprM efflux system, naturally occurring in cystic fibrosis (CF) isolates, have been previously shown to reverse this intrinsic resistance. In the present study, we measured temocillin activity in a large collection (n = 333) of P. aeruginosa CF isolates. 29% of the isolates had MICs ≤ 16 mg/L (proposed clinical breakpoint for temocillin). Mutations were observed in mexA or mexB in isolates for which temocillin MIC was ≤512 mg/L (nucleotide insertions or deletions, premature termination, tandem repeat, nonstop, and missense mutations). A correlation was observed between temocillin MICs and efflux rate of N-phenyl-1-naphthylamine (MexAB-OprM fluorescent substrate) and extracellular exopolysaccharide abundance (contributing to a mucoid phenotype). OpdK or OpdF anion-specific porins expression decreased temocillin MIC by ~1 two-fold dilution only. Contrarily to the common assumption that temocillin is inactive on P. aeruginosa, we show here clinically-exploitable MICs on a non-negligible proportion of CF isolates, explained by a wide diversity of mutations in mexA and/or mexB. In a broader context, this work contributes to increase our understanding of MexAB-OprM functionality and help delineating how antibiotics interact with MexA and MexB. PMID:28091521

  12. [Vaginal colonization of the Streptococcus agalactiae in pregnant woman in Tunisia: risk factors and susceptibility of isolates to antibiotics].

    PubMed

    Ferjani, A; Ben Abdallah, H; Ben Saida, N; Gozzi, C; Boukadida, J

    2006-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is one of the main bacterial causes of serious infections in newborns. We have evaluated prospectively GBS vaginal colonization in pregnant women and we have tried to determine the risk factors of the colonization by GBS and the particularities of the different isolated strains. We have screened 300 pregnant women with vaginal and anal sample in a same swab. Thirty nine (13%) pregnant women are colonized by SGB, 0% in the first trimester, 10.2% in the second trimester and 17% in the third trimester. Different factors are associated significantly with GBS colonization: past history of infection in newborns, genital infection during pregnancy and parity The highest rates of resistance are found in tetracycline (97.4%), erythromycin (51.3%) and lincomycin (46.2%). All the strains were susceptible to amoxicilin and pristinamycin.

  13. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice.

    PubMed

    Puhl, Nathan J; Uwiera, Richard R E; Yanke, L Jay; Selinger, L Brent; Inglis, G Douglas

    2012-02-01

    The influence of three antibiotics (bacitracin, enrofloxacin, and neomycin sulfate) on the mucosa-associated enteric microbiota and the intestines of mice was examined. Antibiotics caused conspicuous enlargement of ceca and an increase in overall length of the intestine. However, there were no pathologic changes associated with increased cecal size or length of the intestine. Conspicuous reductions in the richness of mucosa-associated bacteria and changes to community profiles within the small (duodenum, proximal jejunum, middle jejunum, distal jejunum, and ileum) and large (cecum, ascending colon, and descending colon) intestine occurred in mice administered antibiotics. Communities in antibiotic-treated mice were dominated by a limited number of Clostridium-like (i.e. clostridial cluster XIVa) and Bacteroides species. The richness of mucosa-associated communities within the small and large intestine increased during the 14-day recovery period. However, community profiles within the large intestine did not return to baseline (i.e. relative to the control). Although antibiotic administration greatly reduced bacterial richness, densities of mucosa-associated bacteria were not reduced correspondingly. These data showed that the antibiotics, bacitracin, enrofloxacin, and neomycin sulfate, administered for 21 days to mice did not sterilize the intestine, but did impart a tremendous and prolonged impact on mucosa-associated bacterial communities throughout the small and large intestine.

  14. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively.

  15. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  16. Prevalence and antibiotic susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) among primary school children and prisoners in Jimma Town, Southwest Ethiopia

    PubMed Central

    2013-01-01

    Background Staphylococcus aureus infections are increasingly reported from both health institutions and communities around the world. In particular, infections due to methicillin-resistant Staphylococcus aureus (MRSA) strains have been detected worldwide. If MRSA becomes the most common form of S. aureus in a community, it makes the treatment of common infections much more difficult. But, report on the current status of community acquired MRSA in the study area is scanty. Methods Community-based cross sectional study was conducted to evaluate the current prevalence and antibiotic susceptibility pattern of MRSA among primary school children and prisoners in Jimma town. MRSA was detected using Cefoxitin (30μg) disc; and epidemiologic risk factors were assessed using pre-designed questionnaires distributed to the children’s parents and prisoners. A total of 354 nasal swabs were collected from primary school children and prisoners from December 2010 to March 2011 following standards microbiological methods. Results A total of 169 S. aureus isolates were recovered. The overall prevalence of MRSA among the study population was 23.08 % (39/169). Specifically, the prevalence of MRSA among primary school children and prisoners were 18.8% (27/144) and 48% (12/25), respectively. The isolated S. aureus and MRSA displayed multiple drug resistance (MDR) to 2 to 10 antibiotics. The most frequent MDR was Amp/Bac/Ery/Pen/Fox (resistance to Ampicillin, Bacitracin, Erythromycin, Penicillin, and Cefoxitin). Conclusion The present study revealed that MRSA could be prevalent in the healthy community, transmitted from hospital to the community. The high distribution of MRSA could be favored by potential risk factors. Thus, for comprehensive evaluation of the current prevalence of MRSA and design control measures, consideration need to be given to the healthy community besides data coming from health institutions. PMID:23731679

  17. Antibiotic susceptibility in relation to genotype of Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae responsible for community-acquired pneumonia in children.

    PubMed

    Morozumi, Miyuki; Chiba, Naoko; Okada, Takafumi; Sakata, Hiroshi; Matsubara, Keita; Iwata, Satoshi; Ubukata, Kimiko

    2013-06-01

    Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae are the main pathogens causing community-acquired pneumonia (CAP). We identified S. pneumoniae (n = 241), H. influenzae (n = 123), and M. pneumoniae (n = 54) as causative pathogens from clinical findings and blood tests from pediatric CAP patients (n = 903) between April 2008 and April 2009. Identification of genes mediating antimicrobial resistance by real-time PCR was performed for all isolates of these three pathogens, as was antibiotic susceptibility testing using an agar dilution method or broth microdilution method. The genotypic (g) resistance rate was 47.7 % for penicillin-resistant S. pneumoniae (gPRSP) possessing abnormal pbp1a, pbp2x, and pbp2b genes, 62.6 % for β-lactamase-nonproducing, ampicillin-resistant (gBLNAR) H. influenzae possessing the amino acid substitutions Ser385Thr and Asn526Lys, and 44.4 % for macrolide-resistant M. pneumoniae (gMRMP) possessing a mutation of A2063G, A2064G, or C2617A. Serotype 6B (20.3 %) predominated in S. pneumoniae, followed by 19F (15.4 %), 14 (14.5 %), 23F (12.0 %), 19A (6.2 %), and 6C (5.4 %). Coverage for the isolates by heptavalent pneumococcal conjugate vaccine (PCV7) and PCV13, respectively, was calculated as 68.5 and 80.9 %. A small number of H. influenzae were identified as type b (6.5 %), type e (0.8 %), or type f (0.8 %); all others were nontypeable. Proper use of antibiotics based on information about resistance in CAP pathogens is required to control rapid increases in resistance. Epidemiological surveillance of pediatric patients also is needed to assess the effectiveness of PCV7 and Hib vaccines after their introduction in Japan.

  18. Differences between two clinical Staphylococcus capitis subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling.

    PubMed

    Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Daley, Andrew J; Deighton, Margaret A

    2013-01-01

    Coagulase-negative staphylococci have been identified as major causes of late-onset neonatal bacteremia in neonatal intensive care units. Sixty isolates of Staphylococcus capitis obtained from blood cultures of neonates between 2000 and 2005 were examined in this study. Biochemical analysis confirmed that 52 of these isolates belonged to the subsp. urealyticus, and the remaining 8 belonged to the subsp. capitis. Isolates of the predominant subsp. urealyticus clones were characterized by their resistance to penicillin, erythromycin, and oxacillin and their biofilm formation ability, whereas subsp. capitis isolates were generally antibiotic susceptible and biofilm negative. Pulsed-field gel electrophoresis (PFGE) after SacII digestion separated the 60 isolates into five major clusters. Sequence analysis showed that, in S. capitis, the ica operon plus the negative regulator icaR was 4,160 bp in length. PCRs demonstrated the presence of the ica operon in all isolates. Further analysis of five isolates (two biofilm-positive subsp. urealyticus, one biofilm-negative subsp. urealyticus, and two biofilm-negative subsp. capitis) revealed that the ica operons were identical in all of the biofilm-positive subsp. urealyticus strains; however, the biofilm-negative isolates showed variations. The distinctive phenotypic and genotypic characteristics revealed by this study may affect the epidemiology of the two subspecies of S. capitis in the clinical setting. These results may provide a better understanding of the contribution of these two species to bloodstream infections in neonates.

  19. Microbial identification and automated antibiotic susceptibility testing directly from positive blood cultures using MALDI-TOF MS and VITEK 2.

    PubMed

    Wattal, C; Oberoi, J K

    2016-01-01

    The study addresses the utility of Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight mass spectrometry (MALDI-TOF MS) using VITEK MS and the VITEK 2 antimicrobial susceptibility testing (AST) system for direct identification (ID) and timely AST from positive blood culture bottles using a lysis-filtration method (LFM). Between July and December 2014, a total of 140 non-duplicate mono-microbial blood cultures were processed. An aliquot of positive blood culture broth was incubated with lysis buffer before the bacteria were filtered and washed. Micro-organisms recovered from the filter were first identified using VITEK MS and its suspension was used for direct AST by VITEK 2 once the ID was known. Direct ID and AST results were compared with classical methods using solid growth. Out of the 140 bottles tested, VITEK MS resulted in 70.7 % correct identification to the genus and/ or species level. For the 103 bottles where identification was possible, there was agreement in 97 samples (94.17 %) with classical culture. Compared to the routine method, the direct AST resulted in category agreement in 860 (96.5 %) of 891 bacteria-antimicrobial agent combinations tested. The results of direct ID and AST were available 16.1 hours before those of the standard approach on average. The combined use of VITEK MS and VITEK 2 directly on samples from positive blood culture bottles using a LFM technique can result in rapid and reliable ID and AST results in blood stream infections to result in early institution of targeted treatment. The combination of LFM and AST using VITEK 2 was found to expedite AST more reliably.

  20. Nosocomial candidiasis in Rio de Janeiro State: Distribution and fluconazole susceptibility profile.

    PubMed

    Neufeld, Paulo Murillo; Melhem, Marcia de Souza Carvalho; Szeszs, Maria Walderez; Ribeiro, Marcos Dornelas; Amorim, Efigênia de Lourdes Teixeira; da Silva, Manuela; Lazéra, Marcia dos Santos

    2015-06-01

    One hundred and forty-one Candida species isolated from clinical specimens of hospitalized patients in Rio de Janeiro, Brazil, during 2002 to 2007, were analized in order to evaluate the distribution and susceptibility of these species to fluconazole. Candida albicans was the most frequent species (45.4%), followed by C. parapsilosis sensu lato (28.4%), C. tropicalis (14.2%), C. guilliermondii (6.4%), C. famata (2.8%), C. glabrata (1.4%), C. krusei (0.7%) and C. lambica (0.7%). The sources of fungal isolates were blood (47.5%), respiratory tract (17.7%), urinary tract (16.3%), skin and mucous membrane (7.1%), catheter (5.6%), feces (2.1%) and mitral valve tissue (0.7%). The susceptibility test was performed using the methodology of disk-diffusion in agar as recommended in the M44-A2 Document of the Clinical and Laboratory Standards Institute (CLSI). The majority of the clinical isolates (97.2%) was susceptible (S) to fluconazole, although three isolates (2.1%) were susceptible-dose dependent (S-DD) and one of them (0.7%) was resistant (R). The S-DD isolates were C. albicans, C. parapsilosis sensu lato and C. tropicalis. One isolate of C. krusei was resistant to fluconazole. This work documents the high susceptibility to fluconazole by Candida species isolated in Rio de Janeiro, Brazil.

  1. Nosocomial candidiasis in Rio de Janeiro State: Distribution and fluconazole susceptibility profile

    PubMed Central

    Neufeld, Paulo Murillo; Melhem, Marcia de Souza Carvalho; Szeszs, Maria Walderez; Ribeiro, Marcos Dornelas; Amorim, Efigênia de Lourdes Teixeira; da Silva, Manuela; Lazéra, Marcia dos Santos

    2015-01-01

    One hundred and forty-one Candida species isolated from clinical specimens of hospitalized patients in Rio de Janeiro, Brazil, during 2002 to 2007, were analized in order to evaluate the distribution and susceptibility of these species to fluconazole. Candida albicans was the most frequent species (45.4%), followed by C. parapsilosis sensu lato (28.4%), C. tropicalis (14.2%), C. guilliermondii (6.4%), C. famata (2.8%), C. glabrata (1.4%), C. krusei (0.7%) and C. lambica (0.7%). The sources of fungal isolates were blood (47.5%), respiratory tract (17.7%), urinary tract (16.3%), skin and mucous membrane (7.1%), catheter (5.6%), feces (2.1%) and mitral valve tissue (0.7%). The susceptibility test was performed using the methodology of disk-diffusion in agar as recommended in the M44-A2 Document of the Clinical and Laboratory Standards Institute (CLSI). The majority of the clinical isolates (97.2%) was susceptible (S) to fluconazole, although three isolates (2.1%) were susceptible-dose dependent (S-DD) and one of them (0.7%) was resistant (R). The S-DD isolates were C. albicans, C. parapsilosis sensu lato and C. tropicalis. One isolate of C. krusei was resistant to fluconazole. This work documents the high susceptibility to fluconazole by Candida species isolated in Rio de Janeiro, Brazil. PMID:26273262

  2. Decline in epidemic of multidrug resistant Salmonella typhi is not associated with increased incidence of antibiotic-susceptible strain in Bangladesh.

    PubMed Central

    Rahman, M.; Ahmad, A.; Shoma, S.

    2002-01-01

    Since 1987, multidrug resistant (MDR) strains of Salmonella Typhi, resistant simultaneously to ampicillin, chloramphenicol and trimethoprim-sulfamethoxazole, have caused epidemics of severe typhoid fever in Asia and Africa. A retrospective analysis of blood culture results (1989-96) in a Diarrhoea Treatment Centre in Dhaka, Bangladesh detected MDR strains in 0.3% (8 of 2793) of samples in 1990. The isolation rate peaked to 3.2% (240 of 7501) in 1994 (P < 0.01) and decreased to 1.8% (165 of 9348) in 1995 and further to 1.0% (82 of 8587) in 1996 (P < 0.01 compared to 1994) indicating the emergence and decline of MDR typhoid epidemic. Ten of 15 MDR strains tested had a 176 kb conjugative R plasmid that mediates resistance to ampicillin, chloramphenicol and trimethoprim-sulfamethoxazole to Escherichia coli K12. Unlike MDR strains, the isolation rate (approximately 3.3%) of susceptible S. Typhi remained remarkably unchanged during the study. The significant decrease in isolation of MDR strains suggests that cheaper and effective first-line antibiotics may re-emerge as drugs of choice for the treatment of typhoid fever in Bangladesh. PMID:12211593

  3. Root knot nematode effects on metabolic profiles of susceptible and resistant grapevine rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root knot nematodes (Meloidogyne spp.) can negatively impact newly planted and stressed vineyards. Nematode infestations also may increase grapevine susceptibility to other stresses such as water deficit or various diseases. However, little is known about direct or indirect effects of nematode feedi...

  4. Diversity within Serogroups of Rhizobium leguminosarum biovar viceae in the Palouse Region of Eastern Washington as Indicated by Plasmid Profiles, Intrinsic Antibiotic Resistance, and Topography

    PubMed Central

    Brockman, F. J.; Bezdicek, D. F.

    1989-01-01

    Serology, plasmid profiles, and intrinsic antibiotic resistance (IAR) were determined for 192 isolates of Rhizobium leguminosarum biovar viceae from nodules of peas (Pisum sativum L.) grown on the south slope and bottomland topographic positions in eastern Washington State. A total of 3 serogroups and 18 plasmid profile groups were identified. Nearly all isolates within each plasmid profile group were specific for one of the three serogroups. Cluster analysis of IAR data showed that individual clusters were dominated by one serogroup and by one or two plasmid profile groups. Plasmid profile analysis and IAR analysis grouped 72% of the isolates similarly. Most plasmid profile groups and several IAR clusters favored either the south slope or the bottomland topographic position. These findings show that certain intraserogroup strains possess a greater competitiveness for nodulation and/or possess a greater ability to survive in adjacent soil environments. Images PMID:16347814

  5. Effects of systemic administration of sitafloxacin on subgingival microflora and antimicrobial susceptibility profile in acute periodontal lesions.

    PubMed

    Tomita, Sachiyo; Kasai, Shunsuke; Ihara, Yuichiro; Imamura, Kentaro; Kita, Daichi; Ota, Koki; Kinumatsu, Takashi; Nakagawa, Taneaki; Saito, Atsushi

    2014-01-01

    The aim of this study was to assess the effect(s) of systemic administration of sitafloxacin on subgingival microbial profiles of acute periodontal lesions. Antimicrobial susceptibility of clinical isolates was also investigated. Patients with acute phases of chronic periodontitis were subjected to clinical examination and microbiological assessment of their subgingival plaque samples by culture technique. Sitafloxacin was then administered (100 mg/day for 5 days) systemically. The clinical and microbiological examinations were repeated 6-8 days after administration. Susceptibilities of clinical isolates to various antimicrobials were determined using the broth and agar dilution methods. From the sampled sites in 30 participants, a total of 355 clinical isolates (34 different bacterial species) were isolated and identified. Parvimonas micra, Prevotella intermedia and Streptococcus mitis were the most prevalent cultivable bacteria in acute sites. Systemic administration of sitafloxacin yielded a significant improvement in clinical and microbiological parameters. Among the antimicrobials tested, sitafloxacin was the most potent against the clinical isolates with an MIC90 of 0.12 μg/ml at baseline. After administration, most clinical isolates were still highly susceptible to sitafloxacin although some increase in MICs was observed. The results suggest that systemic administration of sitafloxacin is effective against subgingival bacteria isolated from acute periodontal lesions.

  6. In Vitro Susceptibility Profiles of Eight Antifungal Drugs against Clinical and Environmental Strains of Phaeoacremonium

    PubMed Central

    Badali, Hamid; Khodavaisy, Sadegh; Fakhim, Hamed; de Hoog, G. Sybren

    2015-01-01

    In vitro susceptibilities of a worldwide collection of molecularly identified Phaeoacremonium strains (n = 43) belonging to seven species and originating from human and environmental sources were determined for eight antifungal drugs. Voriconazole had the lowest geometric mean MIC (0.35 μg/ml), followed by posaconazole (0.37 μg/ml), amphotericin B (0.4 μg/ml), and isavuconazole (1.16 μg/ml). Caspofungin, anidulafungin, fluconazole, and itraconazole had no activity. PMID:26369976

  7. In vitro antifungal susceptibility profiles of Cryptococcus species isolated from HIV-associated cryptococcal meningitis patients in Zimbabwe.

    PubMed

    Nyazika, Tinashe K; Herkert, Patricia F; Hagen, Ferry; Mateveke, Kudzanai; Robertson, Valerie J; Meis, Jacques F

    2016-11-01

    Cryptococcus neoformans is the leading cause of cryptococcosis in HIV-infected subjects worldwide. Treatment of cryptococcosis is based on amphotericin B, flucytosine, and fluconazole. In Zimbabwe, little is known about antifungal susceptibility of Cryptococcus. Sixty-eight genotyped Cryptococcus isolates were tested for antifungal profiles. Amphotericin B, isavuconazole, and voriconazole showed higher activity than other triazoles. Fluconazole and flucytosine were less effective, with geometric mean MICs of 2.24 and 2.67mg/L for C. neoformans AFLP1/VNI, 1.38 and 1.53mg/L for C. neoformans AFLP1A/VNB/VNII and AFLP1B/VNII, and 1.85 and 0.68mg/L for Cryptococcus tetragattii, respectively. A significant difference between flucytosine geometric mean MICs of C. neoformans and C. tetragattii was observed (P=0.0002). The majority of isolates (n=66/68; 97.1%) had a wild-type MIC phenotype of all antifungal agents. This study demonstrates a favorable situation with respect to the tested antifungals agents. Continued surveillance of antifungal susceptibility profiles is important due to the high burden of cryptococcosis in Africa.

  8. Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers

    PubMed Central

    Detours, V; Delys, L; Libert, F; Weiss Solís, D; Bogdanova, T; Dumont, J E; Franc, B; Thomas, G; Maenhaut, C

    2007-01-01

    Papillary thyroid cancers (PTCs) incidence dramatically increased in the vicinity of Chernobyl. The cancer-initiating role of radiation elsewhere is debated. Therefore, we searched for a signature distinguishing radio-induced from sporadic cancers. Using microarrays, we compared the expression profiles of PTCs from the Chernobyl Tissue Bank (CTB, n=12) and from French patients with no history of exposure to ionising radiations (n=14). We also compared the transcriptional responses of human lymphocytes to the presumed aetiological agents initiating these tumours, γ-radiation and H2O2. On a global scale, the transcriptomes of CTB and French tumours are indistinguishable, and the transcriptional responses to γ-radiation and H2O2 are similar. On a finer scale, a 118 genes signature discriminated the γ-radiation and H2O2 responses. This signature could be used to classify the tumours as CTB or French with an error of 15–27%. Similar results were obtained with an independent signature of 13 genes involved in homologous recombination. Although sporadic and radio-induced PTCs represent the same disease, they are distinguishable with molecular signatures reflecting specific responses to γ-radiation and H2O2. These signatures in PTCs could reflect the susceptibility profiles of the patients, suggesting the feasibility of a radiation susceptibility test. PMID:17712314

  9. Comparative metabolite profiling of foxglove aphids (Aulacorthum solani Kaltenbach) on leaves of resistant and susceptible soybean strains.

    PubMed

    Sato, Dan; Sugimoto, Masahiro; Akashi, Hiromichi; Tomita, Masaru; Soga, Tomoyoshi

    2014-04-01

    Aphid infestations can cause severe decreases in soybean (Glycine max [L.] Merr.) yield. Since planting aphid-resistant soybean strains is a promising approach for pest control, understanding the resistance mechanisms employed by aphids is of considerable importance. We compared aphid resistance in seven soybean strains and found that strain Tohoku149 was the most resistant to the foxglove aphid, Aulacorthum solani Kaltenbach. We subsequently analyzed the metabolite profiles of aphids cultured on the leaves of resistant and susceptible soybean strains using capillary electrophoresis-time-of-flight mass spectrometry. Our findings showed that the metabolite profiles of several amino acids, glucose 6-phosphate, and components of the tricarboxylic acid cycle were similar in aphids reared on Tohoku149 leaves and in aphids maintained under conditions of starvation, suggesting that Tohoku149 is more resistant to aphid feeding. Compared to susceptible strains, we also found that two methylated metabolites, S-methylmethionine and trigonelline, were either not detected or decreased in aphids reared on Tohoku149 plants. Since these metabolites function as important sulfur transporters in phloem sap and osmoprotectants involved in salt and drought stress, respectively, aphid-resistance is considered to be related to sulfur metabolism and methylation. These results contribute to an increase in our understanding of soybean aphid resistance mechanisms at the molecular level.

  10. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  11. Comparative antigen-induced gene expression profiles unveil novel aspects of susceptibility/resistance to adjuvant arthritis in rats.

    PubMed

    Yu, Hua; Lu, Changwan; Tan, Ming T; Moudgil, Kamal D

    2013-12-01

    Lewis (LEW) and Wistar Kyoto (WKY) rats of the same major histocompatibility complex (MHC) haplotype (RT.1(l)) display differential susceptibility to adjuvant-induced arthritis (AIA). LEW are susceptible while WKY are resistant to AIA. To gain insights into the mechanistic basis of these disparate outcomes, we compared the gene expression profiles of the draining lymph node cells (LNC) of these two rat strains early (day 7) following a potentially arthritogenic challenge. LNC were tested both ex vivo and after restimulation with the disease-related antigen, mycobacterial heat-shock protein 65. Biotin-labeled fragment cRNA was generated from RNA of LNC and then hybridized with an oligonucleotide-based DNA microarray chip. The differentially expressed genes (DEG) were compared by limiting the false discovery rate to <5% and fold change ≥2.0, and their association with quantitative trait loci (QTL) was analyzed. This analysis revealed overall a more active immune response in WKY than LEW rats. Important differences were observed in the association of DEG with QTL in LEW vs. WKY rats. Both the number of upregulated DEG associated with rat arthritis-QTL and their level of expression were relatively higher in LEW when compared to WKY rat; however, the number of downregulated DEG-associated with rat arthritis-QTL as well as AIA-QTL were found to be higher in WKY than in LEW rats. In conclusion, distinct gene expression profiles define arthritis-susceptible versus resistant phenotype of MHC-compatible inbred rats. These results would advance our understanding of the pathogenesis of autoimmune arthritis and might also offer potential novel targets for therapeutic purposes.

  12. Comparative analysis of virulence determinants, antibiotic susceptibility patterns and serogrouping of atypical enteropathogenic Escherichia coli versus typical enteropathogenic E. coli in India.

    PubMed

    Malvi, Supriya; Appannanavar, Suma; Mohan, Balvinder; Kaur, Harsimran; Gautam, Neha; Bharti, Bhavneet; Kumar, Yashwant; Taneja, Neelam

    2015-10-01

    The epidemiology of enteropathogenic Escherichia coli (EPEC) and the significance of isolation of atypical EPEC (aEPEC) in childhood diarrhoea have not been well studied in an Indian context. A comparative study was undertaken to investigate virulence determinants, antibiotic susceptibility patterns and serogrouping of typical EPEC (tEPEC) versus aEPEC causing diarrhoea in children. A total of 400 prospective and 500 retrospective E. coli isolates were included. PCR was performed for eae, bfpA, efa, nleB, nleE, cdt, ehxA and paa genes. The Clinical and Laboratory Standards Institute's disc diffusion test was used to determine the antimicrobial susceptibility. Phenotypic screening of extended spectrum β-lactamases (ESBLs), AmpC and Klebsiella pneumoniae carbapenemase (KPC) production, and molecular detection of bla(NDM-1), bla(VIM), bla(CTX-M-15), bla(IMP) and bla(KPC) were performed. aEPEC (57.6 %) were more common as compared with tEPEC (42.3 %). The occurrence of virulence genes was observed to be three times higher in aEPEC as compared with tEPEC, efa1 (14.7 % of aEPEC, 4 % of tEPEC) being the most common. Most of the isolates did not belong to the classical EPEC O-serogroups. The highest resistance was observed against amoxicillin (93.22 %) followed by quinolones (83 %), cephalosporins (37.28 %), cotrimoxazole (35.59 %) and carbapenems (30.5 %). Overall equal numbers of aEPEC (41.17 %) and tEPEC (40 %) were observed to be multidrug-resistant. Fifteen EPEC strains demonstrated presence of ESBLs, five produced AmpC and four each produced metallo-β-lactamases and KPC-type carbapenemases; eight, seven and one isolate(s) each were positive for bla(VIM), bla(CTX-M-15) and bla(NDM-1), respectively. Here, to the best of our knowledge, we report for the first time on carbapenem resistance and the presence of bla(NDM-1) and bla(CTX-M-15) in EPEC isolates from India.

  13. The spatial profiles and metabolic capabilities of microbial populations impact the growth of antibiotic-resistant mutants

    PubMed Central

    Kaushik, Karishma S.; Ratnayeke, Nalin; Katira, Parag; Gordon, Vernita D.

    2015-01-01

    Antibiotic resistance adversely affects clinical and public health on a global scale. Using the opportunistic human pathogen Pseudomonas aeruginosa, we show that increasing the number density of bacteria, on agar containing aminoglycoside antibiotics, can non-monotonically impact the survival of antibiotic-resistant mutants. Notably, at high cell densities, mutant survival is inhibited. A wide range of bacterial species can inhibit antibiotic-resistant mutants. Inhibition results from the metabolic breakdown of amino acids, which results in alkaline by-products. The consequent increase in pH acts in conjunction with aminoglycosides to mediate inhibition. Our work raises the possibility that the manipulation of microbial population structure and nutrient environment in conjunction with existing antibiotics could provide therapeutic approaches to combat antibiotic resistance. PMID:25972434

  14. Structural Variabilities in β-Lactamase (blaA) of Different Biovars of Yersinia enterocolitica: Implications for β-Lactam Antibiotic and β-Lactamase Inhibitor Susceptibilities

    PubMed Central

    Singhal, Neelja; Srivastava, Abhishikha; Kumar, Manish; Virdi, Jugsharan Singh

    2015-01-01

    Yersiniosis caused by Yersinia enterocolitica has been reported from all continents. The bacterial species is divided into more than fifty serovars and six biovars viz. 1A, 1B, 2, 3, 4 and 5 which differ in geographical distribution, ecological niches and pathogenicity. Most Y.enterocolitica strains harbor chromosomal genes for two β-lactamases, blaA an Ambler class A penicillinase and blaB an Ambler class C inducible cephalosporinase. In the present study, susceptibility to b-lactam antibiotics and β-lactamase inhibitor was studied for Y. enterocolitica strains of biovars 1A, 1B, 2 and 4. We observed that β-lactamases were expressed differentially among strains of different biovars. To understand the molecular mechanisms underlying such differential expression, the sequences of genes and promoters of blaA were compared. Also, the variants of blaA present in different biovars were modeled and docked with amoxicillin and clavulanic acid. The mRNA secondary structures of blaA variants were also predicted in-silico. Our findings indicated that neither variations in the promoter regions, nor the secondary structures of mRNA contributed to higher/lower expression of blaA in different biovars. Analysis of H-bonding residues of blaA variants with amoxicillin and clavulanic acid revealed that if amino acid residues of a β-lactamase interacting with amoxicillin and the clavulanic acid were similar, clavulanic acid was effective in engaging the enzyme, accounting for a significant reduction in MIC of amoxicillin-clavulanate. This finding might aid in designing better β-lactamase inhibitors with improved efficiencies in future. PMID:25919756

  15. Structural Variabilities in β-Lactamase (blaA) of Different Biovars of Yersinia enterocolitica: Implications for β-Lactam Antibiotic and β-Lactamase Inhibitor Susceptibilities.

    PubMed

    Singhal, Neelja; Srivastava, Abhishikha; Kumar, Manish; Virdi, Jugsharan Singh

    2014-01-01

    Yersiniosis caused by Yersinia enterocolitica has been reported from all continents. The bacterial species is divided into more than fifty serovars and six biovars viz. 1A, 1B, 2, 3, 4 and 5 which differ in geographical distribution, ecological niches and pathogenicity. Most Y.enterocolitica strains harbor chromosomal genes for two β-lactamases, blaA an Ambler class A penicillinase and blaB an Ambler class C inducible cephalosporinase. In the present study, susceptibility to b-lactam antibiotics and β-lactamase inhibitor was studied for Y. enterocolitica strains of biovars 1A, 1B, 2 and 4. We observed that β-lactamases were expressed differentially among strains of different biovars. To understand the molecular mechanisms underlying such differential expression, the sequences of genes and promoters of blaA were compared. Also, the variants of blaA present in different biovars were modeled and docked with amoxicillin and clavulanic acid. The mRNA secondary structures of blaA variants were also predicted in-silico. Our findings indicated that neither variations in the promoter regions, nor the secondary structures of mRNA contributed to higher/lower expression of blaA in different biovars. Analysis of H-bonding residues of blaA variants with amoxicillin and clavulanic acid revealed that if amino acid residues of a β-lactamase interacting with amoxicillin and the clavulanic acid were similar, clavulanic acid was effective in engaging the enzyme, accounting for a significant reduction in MIC of amoxicillin-clavulanate. This finding might aid in designing better β-lactamase inhibitors with improved efficiencies in future.

  16. Bacteriological Profile and Antimicrobial Susceptibility Pattern of Blood Culture Isolates among Septicemia Suspected Children in Selected Hospitals Addis Ababa, Ethiopia

    PubMed Central

    Negussie, Adugna; Mulugeta, Gebru; Bedru, Ahmed; Ali, Ibrahim; Shimeles, Damte; Lema, Tsehaynesh; Aseffa, Abraham

    2015-01-01

    Background Blood stream infections are major cause of morbidity and mortality in children in developing countries. The emerging of causative agents and resistance to various antimicrobial agents are increased from time to time. The main aim of this study was to determine the bacterial agents and antimicrobial susceptibility patterns among children suspected of having septicemia. Methods A cross sectional study involved about 201 pediatric patients (≤ 12 years) was conducted from October 2011 to February 2012 at pediatric units of TikurAnbessa Specialized Hospital and Yekatit 12 Hospital. Standard procedure was followed for blood sample collection, isolate identifications and antimicrobial susceptibility testing. Results Among 201 study subjects 110 (54.7%) were males. Majority 147 (73.1%) of them were neonates (≤ 28 days). The mean length of hospital stay before sampling was 4.29 days. Out of the 201 tested blood samples, blood cultures were positive in 56 (27.9%).Gram negative and Gram positive bacteria constituted 29(51.8%) and 26(46.4%), respectively. The most frequent pathogen found was Staphylococcus aureus 13 (23.2%), followed by Serratia marcescens 12(21.4%), CoNS 11(19.6%), klebsiella spp 9(16%) and Salmonella spp 3(5.4%). Majority of bacterial isolates showed high resistance to Ampicillin, Penicillin, Co-trimoxazole, Gentamicin and Tetracycline which commonly used in the study area. Conclusion Majority of the isolates were multidrug resistant. These higher percentages of multi-drug resistant emerged isolates urge us to take infection prevention measures and to conduct other large studies for appropriate empiric antibiotic choice. PMID:26997847

  17. Evaluation of new antimicrobials for the hospital formulary. Policies restricting antibiotic use in hospitals.

    PubMed

    Pujol, Miquel; Delgado, Olga; Puigventós, Francesc; Corzo, Juan E; Cercenado, Emilia; Martínez, José Antonio

    2013-09-01

    In Spain, the inclusion of new antibiotics in hospital formularies is performed by the Infection Policy Committee or the Pharmacy and Therapeutic Committee, although now the decision is moving to a regional level. Criteria for the evaluation of new drugs include efficacy, safety and cost. For antimicrobial drugs evaluation it is necessary to consider local sensibility and impact in bacterial resistance to determinate the therapeutic positioning. There is compelling evidence that the use of antibiotics is associated with increasing bacterial resistance, and a great number of antibiotics are used incorrectly. In order to decrease the inappropriate use of antibiotics, several approaches have been proposed. Limiting the use of antimicrobials through formulary restrictions, often aimed at drugs with a specific resistance profile, shows benefits in improving antimicrobial susceptibilities and decreasing colonization by drug-resistant organisms. However, the restriction of one agent may result in the increased utilization of other agents. By using antibiotic cycling, the amount of antibiotics is maintained below the threshold where bacterial resistance develops, thus preserving highly efficient antibiotics. Unfortunately, cumulative evidence to date suggests that antibiotic cycling has limited efficacy in preventing antibiotic resistance. Finally, although there is still little clinical evidence available on antibiotic heterogeneity, the use of most of the existing antimicrobial classes could limit the emergence of resistance. This review summarizes information regarding antibiotic evaluation and available restrictive strategies to limit the use of antibiotics at hospitals with the aim of curtailing increasing antibiotic resistance.

  18. MOLECULAR CHARACTERIZATION OF VIRULENCE AND ANTIMICROBIAL SUSCEPTIBILITY PROFILES OF UROPATHOGENIC ESCHERICHIA COLI FROM PATIENTS IN A TERTIARY HOSPITAL, SOUTHERN THAILAND.

    PubMed

    Themphachanal, Monchanok; Kongpheng, Suttiporn; Rattanachuay, Pattamarat; Khianngam, Saowapar; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2015-11-01

    Among uropathogens, uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection (UTI) worldwide, but clinical aspects due to this bacterial species is not fully understood in southern Thailand. Two hundred fifty-four UPEC isolates from patients admitted to Maharaj Nakhon Si Thammarat Hospital, southern Thailand were examined for crucial virulence genes, showing that 33.5% contained at least one of the virulence, genes tested. Genes encoding P fimbria, cytotoxic necrotizing factor-1 and α-hemolysin constituted the majority (15.8%) carried by UPEC isolates. Phylogenetic group classification revealed that 57.5% of UPEC belonged to group D. Antimicrobial susceptibility tests showed that 70.5% and 65.1% of the isolates were resistant to ciprofloxacin and norfloxacin, respectively. Moreover, 50.0% of UPEC were capable of producing extended spectrum beta-lactamases. These findings should be of benefit for more appropriate treatment of UTI patients in this region of Thailand. Keywords: uropathogenic Escherichia coli, antibiotics resistance, cnfl, hlyA, pap, Thailand

  19. Identification and Antifungal Susceptibility Profiles of Candida nivariensis and Candida bracarensis in a Multi-Center Chinese Collection of Yeasts

    PubMed Central

    Hou, Xin; Xiao, Meng; Chen, Sharon C.-A.; Wang, He; Yu, Shu-Ying; Fan, Xin; Kong, Fanrong; Xu, Ying-Chun

    2017-01-01

    Candida nivariensis and C. bracarensis are two emerging cryptic species within the C. glabrata complex. Thirteen of these isolates from 10 hospitals in China were studied for their species identification and antifungal susceptibilities. Phenotypic and molecular [rDNA ITS sequencing, D1/D2 sequencing and ITS sequencer-based capillary gel electrophoresis (SCGE)] and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS identification methods were compared for their performance in species identification. Twelve of 13 (92.3%) isolates were identified as C. nivariensis and one as C. bracarensis using ITS sequencing as the reference method. Results obtained by D1/D2 sequencing and ITS SCGE were concordant with ITS sequencing results for all (100%) isolates. SCGE was able to subtype 12 C. nivariensis into four ITS SCGE length types. All isolates failed to be identified by the Vitek MALDI-TOF MS system (bioMérieux), whilst the Bruker MS system (Bruker Daltoniks) correctly identified all C. nivariensis isolates but using a lowered (≥1.700) cut-off score for species assignment; the C. bracarensis isolate was identified but with score <1.700. The Vitek 2 Compact system could not identify 11 C. nivariensis and one C. bracarensis isolate and misidentified the remaining C. nivarensis strain as “C. glabrata.” All isolates were susceptible-dose dependent to fluconazole [minimum inhibitory concentration (MIC) range 0.5–4 μg/mL] and were classed as susceptible to echinocandins (MICs ≤ 0.06 μg/mL). All 13 isolates had low MICs for other azoles (MICs ≤ 0.5 μg/mL), amphotericin B (MICs ≤ 2 μg/mL) and 5-flucytosine (MICs ≤ 0.25 μg/mL). Our results reinforce the need for molecular differentiation of species of C. nivarensis and C. bracarensis. The performance of MALDI-TOF may be improved by adding mass spectral profiles (MSPs) into the current databases. The antifungal susceptibility profile of isolates should be monitored. PMID:28154553

  20. Differential expression profiling of miRNAs between Marek’s disease resistant and susceptible chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mounting evidence indicates microRNAs (miRNAs) play important roles in various biological processes including all aspects of cancer biology. The aim of this study was to profile and to assess the differences of miRNAs between the treatment groups of two lines of White Leghorns with or without viral ...

  1. Panton-Valentine leukocidin and some exotoxins of Staphylococcus aureus and antimicrobial susceptibility profiles of staphylococci isolated from milks of small ruminants.

    PubMed

    Ünal, Nilgün; Askar, Şinasi; Macun, Hasan Ceyhun; Sakarya, Fatma; Altun, Belgin; Yıldırım, Murat

    2012-03-01

    The aims of this study were to determine the existence of pvl gene, some toxin genes, and mecA gene in Staphylococcus aureus strains isolated from sheep milk and to examine antimicrobial resistance profiles in staphylococci from sheep and goats' milk. The milk samples were collected from 13 different small ruminant farms in Kirikkale province from February to August 2009. A total of 1,604 half-udder milk samples from 857 ewes and 66 half-udder milk samples from 33 goats were collected. Staphylococcus spp. were isolated and identified from the samples. Toxin genes and mecA gene among S. aureus strains were determined by PCR. Antimicrobial susceptibility of staphylococci was examined by the disk diffusion method on Mueller-Hinton agar, and interpreted according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The prevalence of subclinical intramammary infection in both ewes and goats was 5.2%. The most prevalent subclinical mastitis agents were coagulase-negative staphylococci and S. aureus with prevalences 2.8% (n:46) and 1.3% (n = 21), respectively. The prevalence of resistances in isolated Staphylococcus spp. to penicilin G, tetracycline, erythromycin, gentamicin, and enrofloxacin were found as 26.9% (18), 7.5% (5), 6.0% (4), 3.0% (2), and 1.5% (1), respectively. Only 3 of the 21 S. aureus ewe isolates (13.4%) were shown to harbor enterotoxin genes being either seh, sej or sec. However, fourteen (66.6%) of the 21 S. aureus isolates had pvl gene while none of the isolates harbored mecA gene. In conclusion, Staphylococci were shown to be the most prevalent bacteria isolated from subclinical mastitis of ewes and goats and these isolates were susceptible to most of the antibiotics. In addition, S. aureus strains isolated from ewes were harboring few staphylococcal enterotoxin genes. However, Panton-Valentine leukocidin produced by S. aureus could be an important virulence factor and contribute to subclinical mastitis pathogenicity.

  2. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    PubMed

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major

  3. Pithomyces species (Montagnulaceae) from clinical specimens: identification and antifungal susceptibility profiles.

    PubMed

    da Cunha, Keith Cássia; Sutton, Deanna A; Gené, Josepa; Cano, Josep; Capilla, Javier; Madrid, Hugo; Decock, Cony; Wiederhold, Nathan P; Guarro, Josep

    2014-10-01

    The fungal genus Pithomyces comprises numerous dematiaceous saprobic species commonly found on dead leaves and stems of a great variety of plants. Occasionally, they have been recovered from clinical specimens. We morphologically and molecularly (rDNA sequences) investigated a set of 42 isolates tentatively identified as Pithomyces recovered from clinical specimens in the United States. The predominant species were P. chartarum and P. sacchari (33.3% each), followed by Pithomyces sp. I (28.6%) and P. maydicus (4.8%). Most of the isolates were obtained from samples of superficial tissue (50%), the respiratory tract (21.4%), and the nasal region (19%). In general, these fungi were highly susceptible in vitro to the eight antifungal agents tested.

  4. Antimicrobial Susceptibility Profiles of Human Campylobacter jejuni Isolates and Association with Phylogenetic Lineages

    PubMed Central

    Cha, Wonhee; Mosci, Rebekah; Wengert, Samantha L.; Singh, Pallavi; Newton, Duane W.; Salimnia, Hossein; Lephart, Paul; Khalife, Walid; Mansfield, Linda S.; Rudrik, James T.; Manning, Shannon D.

    2016-01-01

    Campylobacter jejuni is a zoonotic pathogen and the most common bacterial cause of human gastroenteritis worldwide. With the increase of antibiotic resistance to fluoroquinolones and macrolides, the drugs of choice for treatment, C. jejuni was recently classified as a serious antimicrobial resistant threat. Here, we characterized 94 C. jejuni isolates collected from patients at four Michigan hospitals in 2011 and 2012 to determine the frequency of resistance and association with phylogenetic lineages. The prevalence of resistance to fluoroquinolones (19.1%) and macrolides (2.1%) in this subset of C. jejuni isolates from Michigan was similar to national reports. High frequencies of fluoroquinolone-resistant C. jejuni isolates, however, were recovered from patients with a history of foreign travel. A high proportion of these resistant isolates were classified as multilocus sequence type (ST)-464, a fluoroquinolone-resistant lineage that recently emerged in Europe. A significantly higher prevalence of tetracycline-resistant C. jejuni was also found in Michigan and resistant isolates were more likely to represent ST-982, which has been previously recovered from ruminants and the environment in the U.S. Notably, patients with tetracycline-resistant C. jejuni infections were more likely to have contact with cattle. These outcomes prompt the need to monitor the dissemination and diversification of imported fluoroquinolone-resistant C. jejuni strains and to investigate the molecular epidemiology of C. jejuni recovered from cattle and farm environments to guide mitigation strategies. PMID:27199922

  5. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland.

    PubMed

    Lewandowska, Magda; Jędrychowska-Dańska, Krystyna; Zamerska, Alicja; Płoszaj, Tomasz; Witas, Henryk W

    2017-01-01

    For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.

  6. Effects of residual antibiotics in groundwater on Salmonella typhimurium: changes in antibiotic resistance, in vivo and in vitro pathogenicity.

    PubMed

    Haznedaroglu, Berat Z; Yates, Marylynn V; Maduro, Morris F; Walker, Sharon L

    2012-01-01

    An outbreak-causing strain of Salmonella enterica serovar Typhimurium was exposed to groundwater with residual antibiotics for up to four weeks. Representative concentrations (0.05, 1, and 100 μg L(-1)) of amoxicillin, tetracycline, and a mixture of several other antibiotics (1 μg L(-1) each) were spiked into artificially prepared groundwater (AGW). Antibiotic susceptibility analysis and the virulence response of stressed Salmonella were determined on a weekly basis by using human epithelial cells (HEp2) and soil nematodes (C. elegans). Results have shown that Salmonella typhimurium remains viable for long periods of exposure to antibiotic-supplemented groundwater; however, they failed to cultivate as an indication of a viable but nonculturable state. Prolonged antibiotics exposure did not induce any changes in the antibiotic susceptibility profile of the S. typhimurium strain used in this study. S. typhimurium exposed to 0.05 and 1 μg L(-1) amoxicillin, and 1 μg L(-1) tetracycline showed hyper-virulent profiles in both in vitro and in vivo virulence assays with the HEp2 cells and C. elegans respectively, most evident following 2nd and 3rd weeks of exposure.

  7. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum).

    PubMed

    Zhong, Daibin; Wang, Mei-Hui; Pai, Aditi; Yan, Guiyun

    2013-05-01

    The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.

  8. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  9. Strategies to minimize antibiotic resistance.

    PubMed

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-09-12

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  10. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009-2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART).

    PubMed

    Lu, Po-Liang; Liu, Yung-Ching; Toh, Han-Siong; Lee, Yu-Lin; Liu, Yuag-Meng; Ho, Cheng-Mao; Huang, Chi-Chang; Liu, Chun-Eng; Ko, Wen-Chien; Wang, Jen-Hsien; Tang, Hung-Jen; Yu, Kwok-Woon; Chen, Yao-Shen; Chuang, Yin-Ching; Xu, Yingchun; Ni, Yuxing; Chen, Yen-Hsu; Hsueh, Po-Ren

    2012-06-01

    In 2009, the Study for Monitoring Antimicrobial Resistance Trends (SMART) was expanded to include surveillance of Gram-negative pathogens causing urinary tract infections (UTIs) in the Asia-Pacific region. A total of 1762 isolates were collected from 38 centers in 11 countries from patients with UTIs in 2009 and 2010. In vitro susceptibilities were determined by the broth microdilution method and susceptibility profiles were determined using minimum inhibitory concentration (MIC) interpretive criteria, as recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2010 (M100-S20), in 2011 (M100-S21), and in 2012 (M100-S22). Enterobacteriaceae comprised 86.0% of the isolates, of which Escherichia coli (56.5%) and Klebsiella pneumoniae (13.8%) were the two most common species. Amikacin was the most effective antibiotic (91.7%), followed by ertapenem (86.9%), imipenem (86.6%), and piperacillin-tazobactam (84.9%). Rates of susceptibility were 50.3% for cefoxitin and ranged from 50.3% to 74.2% for the third- and fourth-generation cephalosporins. For ciprofloxacin and levofloxacin, the susceptibility rates were 51.4% and 54.4%, respectively. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae comprised 28.2% of all isolates. We also found a high rate of resistance to carbapenems among Acinetobacter baumannii and Pseudomonas aeruginosa causing UTI. Interestingly, according to 2012 CLSI breakpoints, approximately 33.4% of ESBL producers were still susceptible to ceftazidime. However, this in vitro efficacy of ceftazidime needs to be validated in vivo by clinical data. The lowered CLSI interpretive breakpoints for piperacillin-tazobactam, carbapenems, and some cephalosporins in 2011-2012 for Enterobacteriaceae resulted in an approximate 5% drop in susceptibility rates for each drug, with the exception of imipenem for which the susceptibility rate dropped from 99.4% according to 2010 criteria to 91.2% according to 2011 criteria. With the updated

  11. Antibiotics Quiz

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  12. Serotypes and Antibiotic Susceptibility of Streptococcus pneumoniae Isolates from Invasive Pneumococcal Disease and Asymptomatic Carriage in a Pre-vaccination Period, in Algeria.

    PubMed

    Ziane, Hanifa; Manageiro, Vera; Ferreira, Eugénia; Moura, Inês B; Bektache, Soumia; Tazir, Mohamed; Caniça, Manuela

    2016-01-01

    In Algeria, few data is available concerning the distribution of pneumococcal serotypes and respective antibiotic resistance for the current pre-vaccination period, which is a public health concern. We identified the most frequent Streptococcus pneumoniae serogroup/types implicated in invasive pneumococcal disease (IPD; n = 80) and carriage (n = 138) in Algerian children younger than 5 years old. Serogroup/types of 78 IPD isolates were identified by capsular typing using a sequential multiplex PCR. Overall, serotypes 14, 19F, 6B, 23F, 18C, 1, 5, 7F, 19A, and 3 (55% of PCV7 serotypes, 71.3% of PCV10, and 90% of PCV13) were identified. Additionally, 7.5% of the non-vaccine serotypes 6C, 9N/L, 20, 24F, 35B, and 35F, were observed. In the case of S. pneumoniae asymptomatic children carriers, the most common serogroup/types were 6B, 14, 19F, 23F, 4, 9V/A, 1, 19A, 6A, and 3 (42.7% of PCV7 serotypes, 44.2% of PCV10, and 58% of PCV13). For 6.1% of the cases co-colonization was detected. Serotypes 14, 1, 5, and 19A were more implicated in IPD (p < 0.01), whereas serotype 6A was exclusively isolated from carriers (p < 0.01). Deaths associated with IPD were related to serotypes 19A, 14, 18C, and one non-typeable isolate. Among IPD related to vaccine serotypes, the rates of penicillin non-susceptible isolates were higher in no meningitis cases (80%) than in meningitis (66.7%), with serotypes 14, 19A, 19F, and 23F presenting the highest MIC levels (>2μg/ml). Resistance to cefotaxime was higher in isolates from meningitis (40.5%); however, resistance to erythromycin and co-trimoxazole (>40%) was more pronounced in no-meningeal forms. Overall, our results showed that PCV13 conjugate vaccine would cover up to 90% of the circulating isolates associated with IPD in Algeria, highlighting the importance of monitoring the frequency of S. pneumoniae serogroups/types during pre- and post-vaccination periods.

  13. Serotypes and Antibiotic Susceptibility of Streptococcus pneumoniae Isolates from Invasive Pneumococcal Disease and Asymptomatic Carriage in a Pre-vaccination Period, in Algeria

    PubMed Central

    Ziane, Hanifa; Manageiro, Vera; Ferreira, Eugénia; Moura, Inês B.; Bektache, Soumia; Tazir, Mohamed; Caniça, Manuela

    2016-01-01

    In Algeria, few data is available concerning the distribution of pneumococcal serotypes and respective antibiotic resistance for the current pre-vaccination period, which is a public health concern. We identified the most frequent Streptococcus pneumoniae serogroup/types implicated in invasive pneumococcal disease (IPD; n = 80) and carriage (n = 138) in Algerian children younger than 5 years old. Serogroup/types of 78 IPD isolates were identified by capsular typing using a sequential multiplex PCR. Overall, serotypes 14, 19F, 6B, 23F, 18C, 1, 5, 7F, 19A, and 3 (55% of PCV7 serotypes, 71.3% of PCV10, and 90% of PCV13) were identified. Additionally, 7.5% of the non-vaccine serotypes 6C, 9N/L, 20, 24F, 35B, and 35F, were observed. In the case of S. pneumoniae asymptomatic children carriers, the most common serogroup/types were 6B, 14, 19F, 23F, 4, 9V/A, 1, 19A, 6A, and 3 (42.7% of PCV7 serotypes, 44.2% of PCV10, and 58% of PCV13). For 6.1% of the cases co-colonization was detected. Serotypes 14, 1, 5, and 19A were more implicated in IPD (p < 0.01), whereas serotype 6A was exclusively isolated from carriers (p < 0.01). Deaths associated with IPD were related to serotypes 19A, 14, 18C, and one non-typeable isolate. Among IPD related to vaccine serotypes, the rates of penicillin non-susceptible isolates were higher in no meningitis cases (80%) than in meningitis (66.7%), with serotypes 14, 19A, 19F, and 23F presenting the highest MIC levels (>2μg/ml). Resistance to cefotaxime was higher in isolates from meningitis (40.5%); however, resistance to erythromycin and co-trimoxazole (>40%) was more pronounced in no-meningeal forms. Overall, our results showed that PCV13 conjugate vaccine would cover up to 90% of the circulating isolates associated with IPD in Algeria, highlighting the importance of monitoring the frequency of S. pneumoniae serogroups/types during pre- and post-vaccination periods. PMID:27379023

  14. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina.

    PubMed

    Córdoba, Susana; Isla, Maria G; Szusz, Wanda; Vivot, Walter; Altamirano, Rodrigo; Davel, Graciela

    2016-06-01

    Epidemiological cut-off values (ECVs) based on minimal inhibitory concentration (MIC) distribution have been recently proposed for some antifungal drug/Cryptococcus neoformans combinations. However, these ECVs vary according to the species studied, being serotypes and the geographical origin of strains, variables to be considered. The aims were to define the wild-type (WT) population of the C. neoformans species complex (C. neoformans) isolated from patients living in Argentina, and to propose ECVs for six antifungal drugs. A total of 707 unique C. neoformans isolates obtained from HIV patients suffering cryptococcal meningitis were studied. The MIC of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and posaconazole was determined according to the EDef 7.2 (EUCAST) reference document. The MIC distribution, MIC50 , MIC90 and ECV for each of these drugs were calculated. The highest ECV, which included ≥95% of the WT population modelled, was observed for flucytosine and fluconazole (32 μg ml(-1) each). For amphotericin B, itraconazole, voriconazole and posaconazole, the ECVs were: 0.5, 0.5, 0.5 and 0.06 μg ml(-1) respectively. The ECVs determined in this study may aid in identifying the C. neoformans strains circulating in Argentina with decreased susceptibility to the antifungal drugs tested.

  15. Immunological profile of resistance and susceptibility in naturally infected dogs by Leishmania infantum.

    PubMed

    de Almeida Leal, Gleisiane Gomes; Roatt, Bruno Mendes; de Oliveira Aguiar-Soares, Rodrigo Dian; Carneiro, Cláudia Martins; Giunchetti, Rodolfo Cordeiro; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Francisco, Amanda Fortes; Cardoso, Jamille Mirelle; Mathias, Fernando Augusto Siqueira; Correa-Oliveira, Rodrigo; Carneiro, Mariângela; Coura-Vital, Wendel; Reis, Alexandre Barbosa

    2014-10-15

    Visceral leishmaniasis has a great impact on public health, and dogs are considered the main domestic reservoir of Leishmania infantum, the causal parasite. In this study, 159 animals naturally infected by L. infantum from an endemic area of Brazil were evaluated through an analysis of cellular responses, using flow cytometry, and of the hematological parameters. The results confirmed that disease progression is associated with anemia and reductions in eosinophils, monocytes and lymphocytes. The investigation of the immune response, based on the immunophenotypic profile of peripheral blood, showed declines in the absolute numbers of T lymphocytes CD5(+) and their subsets (CD4(+) and CD8(+)) and a drop of B lymphocytes in asymptomatic seropositive (AD-II) and symptomatic seropositive (SD) dogs. Neutrophils, when stimulated with soluble antigen of L. infantum, showed higher synthesis of interferon (IFN)-γ(+) in AD-II and SD groups, with decreased production of interleukin (IL)-4(+) in asymptomatic seronegative dogs positive for L. infantum infection based on polymerase chain reaction testing (AD-I group). In the AD-II and SD groups, subpopulations of stimulated lymphocytes (CD4(+) and CD8(+)) also exhibited greater synthesis of IFN-γ(+) and IL-4(+) in culture. These results suggest that the animals of the AD-II and SD groups exhibited a mixed immune response (Type 1 and 2) and the AD-I group presenting an immune profile very similar to normal control animals.

  16. Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility

    PubMed Central

    Zhou, Wei; Tang, Yi-Fan; Pan, Lei-Lei; Cai, Yi-Ling

    2015-01-01

    Objective To identify differentially expressed genes associated with motion sickness (MS) susceptibility in the rat caudal vestibular nucleus. Methods We identified MS susceptible (MSS) and insusceptible (inMSS) rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN) after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR) methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis. Results A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR) α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R), tachykinin neurokinin-1 (NK1R), γ-aminobutyric acid A receptor (GABAAR) α6 subunit, olfactory receptor 81 (Olr81) and homology 2 domain-containing transforming protein 1 (Shc1). In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma β-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma β-endorphin level occurred in the presence of the GABAAR antagonist gabazine. Conclusion Our findings suggested that the variability of the CVN gene expression profile after motion

  17. The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing.

    PubMed

    Chen, Hao; Shu, Weiqun; Chang, Xiaosong; Chen, Ji-an; Guo, Yebin; Tan, Yao

    2010-07-01

    The spreading of extended-spectrum beta-lactamases (ESBL)-producing thermotolerant coliforms (TC) in the water environment is a threat to human health but little is known about ESBL-producing TCs in the Yangtze River. We received 319 ESBL-producing stains obtained from the Chongqing basin and we investigated antibiotic susceptibility, bla gene types and the presence of integrons and gene cassettes. 16.8% of TC isolates were ESBL-producing bacteria and bla(TEM+CTx-M) was the predominant ESBL type. 65.2% of isolates contained class 1 integrons, but only 3 carried intI 2. Gene cassettes were amplified and sequenced. aadA, drfA, cmlA, sat1, aar3 and two ORF cassettes were found. In conclusion, Yangtze River is heavily polluted by ESBL-producing TC bacteria and the combined bla gene type could enhance antibiotic resistance. Class 1 integrons were widespread in ESBL-producing isolates and play an important role in multi-drug resistance. Characterization of gene cassettes could reveal the dissemination of antibiotic resistance genes.

  18. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  19. Can carbapenem-resistant enterobacteriaceae susceptibility results obtained from surveillance cultures predict the susceptibility of a clinical carbapenem-resistant enterobacteriaceae?

    PubMed

    Perez, Leandro Reus Rodrigues; Rodrigues, Diógenes; Dias, Cícero

    2016-08-01

    We evaluated the susceptibility profile of a colonizing carbapenem-resistant enterobacteriaceae to predict its susceptibility when recovered from a clinical specimen. An overall agreement of 88.7% (517 out of 583; 95% confidence interval, 85.8%-91.0%) was observed for the combinations of 11 antibiotics with 53 pairs of Klebsiella pneumoniae carbapenemase-producing K pneumoniae (the only carbapenem-resistant enterobacteriaceae detected). Very major errors were observed mainly for aminoglycoside agents and colistin, limiting the predictability of the susceptibility profile for these clinical isolates.

  20. Evaluation of bacteriological profile and antibiotic sensitivity patterns in children with urinary tract infection: A prospective study from a tertiary care center

    PubMed Central

    Badhan, Ranjana; Singh, Dig Vijay; Badhan, Lashkari R.; Kaur, Anureet

    2016-01-01

    Introduction: Development of regional surveillance programs is necessary for the development of community-acquired urinary tract infection (UTI) guidelines, especially for sub-urban and rural areas where empirical treatment is the mainstay in the absence of proper diagnostic modalities. Our aim was to evaluate the bacteriological profile and antibiotic sensitivity patterns in children with UTI prospectively from a tertiary care center. Methods: A total of 800 children up to 18 years of age with suspected UTI attending our center were included. For all suspected cases urine microscopy, gram staining, and culture were done. Antibiotic sensitivity was performed on selected antimicrobials using disk diffusion method following Clinical Laboratory Standards Institute guidelines. Results: Majority of pathogens were isolated from female (54.2%) patients. Pre-teens (52.1%) and teens (27.1%) were most commonly affected age group. The most common presentation in culture-proven UTI was fever with urinary symptoms (33.3%). In a group of 192 patients 26.7% had proven UTI. Escherichia coli (42.3%) was the most common aetiological agent, followed by Enterococcus fecalis (13.5%), Klebsiella spp. (11.5%) and Staphylococcus aureus (11.5%). Most active antibiotics against Gram-negative isolates were nitrofurantoin, cefotaxime, and amikacin. Gram-positive isolates were sensitive to nitrofurantoin, cotrimoxazole, and novobiocin. Conclusion: E. coli was the commonest isolate. The organisms grown in significant numbers were E. fecalis, Klebsiella spp. and S. aureus, causing UTI in 0–18 years of age group. Gram-negative isolates were sensitive to nitrofurantoin, amikacin, and cefotaxime. Gram-positive isolates were sensitive to nitrofurantoin, cotrimoxazole, and novobiocin. Prospective, regional studies are ensured periodically to explain bacteriological profile and antibiotic sensitivity patterns to be applicable for children with UTI over that geographic area. PMID:26941495

  1. Prevalence of antibiotic resistance among Acinetobacter baumannii isolates from Aleppo, Syria.

    PubMed

    Hamzeh, Abdul Rezzak; Al Najjar, Mona; Mahfoud, Maysa

    2012-10-01

    This study describes and analyzes Acinetobacter baumannii antibiotic susceptibly profile in Aleppo, Syria, thus providing vital information for guiding treatment of A baumannii infections. Two hundred sixty nonrepetitive A baumannii isolates were studied over 3.5 years. Resistance rates are at the higher end of globally reported levels. Newer cephalosporins and β-lactamase-resistant agents are becoming practically ineffective. Better activity is limited to carbapenems and colistin, which elicited the highest susceptibility levels.

  2. Socioeconomic Differences in the Risk Profiles of Susceptibility and Ever Use of Tobacco Among Indian Urban Youth: A Latent Class Approach

    PubMed Central

    2014-01-01

    Purpose: To empirically determine the socioeconomic differences in risk profiles of susceptibility and ever use of tobacco among adolescents in India and to investigate the association between the risk profiles and the psychosocial factors for tobacco use. Methods: Students in 16 private (higher socioeconomic status [SES]; n = 4,489) and 16 government (lower SES; n = 7,153) schools in two large cities in India were surveyed about their tobacco use and related psychosocial factors in 2004. Latent class analysis was used to identify homogenous, mutually exclusive typologies existing within the data. Results: Overall, 3 and 4 latent classes of susceptibility and ever use of tobacco best described students in higher- and lower- SES schools, respectively. Profiles with various combinations of susceptibility and ever use of tobacco were differentially related to psychosocial factors, with lower- SES students being more vulnerable to increased levels of tobacco use than higher- SES students. Conclusions: Acknowledging the multiple dimensions of tobacco use behaviors and identifying constellations of risk behaviors will enable more accurate understanding of etiological processes and will provide information for refining and targeting preventive interventions. Additionally, identifying the socioeconomic differences in susceptibility and ever use risk profiles and their psychosocial correlates will enable policy makers to address these inequities through improved allocation of resources. PMID:24271966

  3. Disinfectant and antimicrobial susceptibility profiles of the big six non-O157 Shiga toxin-producing Escherichia coli strains from food animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfectant and antimicrobial susceptibility profiles of 144 non-O157 Shiga toxin-producing Escherichia coli (STECs) from food animals and humans were determined. An overall moderate prevalence of 38.9% antimicrobial resistance (AMR) was observed in these strains. Animal strains had a lower p...

  4. Elution of antibiotics from poly(methyl methacrylate) bone cement after extended implantation does not necessarily clear the infection despite susceptibility of the clinical isolates

    PubMed Central

    Swearingen, Matthew C.; Granger, Jeffrey F.; Sullivan, Anne; Stoodley, Paul

    2015-01-01

    Chronic orthopedic infections are commonly caused by bacterial biofilms, which are recalcitrant to antibiotic treatment. In many cases, the revision procedure for periprosthetic joint infection or trauma cases includes the implantation of antibiotic-loaded bone cement to kill infecting bacteria via the elution of a strong local dose of antibiotic(s) at the site. While many studies have addressed the elution kinetics of both non-absorbable and absorbable bone cements both in vitro and in vivo, the potency of ALBC against pathogenic bacteria after extended implantation time is not clear. In this communication, we use two case studies, a Viridans streptococci infected total knee arthroplasty (TKA) and a MRSA-polymicrobial osteomyelitis of a distal tibial traumatic amputation (TA) to demonstrate that an antibiotic-loaded poly(methyl methacrylate) (ALPMMA) coated intermedullary rod implanted for 117 days (TKA) and three ALPMMA suture-strung beads implanted for 210 days (TA) retained killing ability against Pseudomonas aeruginosa and Staphylococcus aureus in vitro, despite different clinical efficacies. The TKA infection resolved and the patient progressed to an uneventful second stage. However, the TA infection only resolved after multiple rounds of debridement, IV vancomycin and removal of the PMMA beads and placement of vancomycin and tobramycin loaded calcium sulfate beads. PMID:26527622

  5. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.

    PubMed

    Mongkolrob, Rungrawee; Taweechaisupapong, Suwimol; Tungpradabkul, Sumalee

    2015-11-01

    Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.

  6. Elution of antibiotics from poly(methyl methacrylate) bone cement after extended implantation does not necessarily clear the infection despite susceptibility of the clinical isolates.

    PubMed

    Swearingen, Matthew C; Granger, Jeffrey F; Sullivan, Anne; Stoodley, Paul

    2016-02-01

    Chronic orthopedic infections are commonly caused by bacterial biofilms, which are recalcitrant to antibiotic treatment. In many cases, the revision procedure for periprosthetic joint infection or trauma cases includes the implantation of antibiotic-loaded bone cement to kill infecting bacteria via the elution of a strong local dose of antibiotic(s) at the site. While many studies have addressed the elution kinetics of both non-absorbable and absorbable bone cements both in vitro and in vivo, the potency of ALBC against pathogenic bacteria after extended implantation time is not clear. In this communication, we use two case studies, a Viridans streptococci infected total knee arthroplasty (TKA) and a MRSA-polymicrobial osteomyelitis of a distal tibial traumatic amputation (TA) to demonstrate that an antibiotic-loaded poly(methyl methacrylate) (ALPMMA) coated intermedullary rod implanted for 117 days (TKA) and three ALPMMA suture-strung beads implanted for 210 days (TA) retained killing ability against Pseudomonas aeruginosa and Staphylococcus aureus in vitro, despite different clinical efficacies. The TKA infection resolved and the patient progressed to an uneventful second stage. However, the TA infection only resolved after multiple rounds of debridement, IV vancomycin and removal of the PMMA beads and placement of vancomycin and tobramycin loaded calcium sulfate beads.

  7. In vitro antimicrobial susceptibility of Mycoplasma bovis isolated in Israel from local and imported cattle.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Lysnyansky, Inna

    2009-06-12

    Monitoring of susceptibility to antibiotics in field isolates of pathogenic bovine mycoplasmas is important for appropriate choice of treatment. Our study compared in vitro susceptibility profiles of Mycoplasma bovis clinical strains, isolated during 2005-2007 from Israeli and imported calves. Minimal inhibitory concentration (MIC) values were determined for macrolides by the microbroth dilution test, for aminoglycosides by commercial Etest, and for fluoroquinolones and tetracyclines by both methods. Notably, although correlation between the methods was generally good, it was not possible to determine the MIC endpoint for enrofloxacin-resistant strains (MIC > or =2.5 microg/ml in the microtest) by Etest. Comparison of antibiotic susceptibility profiles between local and imported M. bovis strains revealed that local strains were significantly more resistant to macrolides than most isolates from imported animals, with MIC(50) of 128 microg/ml vs. 2 microg/ml for tilmicosin and 8 microg/ml vs. 1 microg/ml for tylosin, respectively. However, local strains were more susceptible than most imported strains to fluoroquinolones and spectinomycin. Difference in susceptibility to tetracycline, doxycycline and oxytetracycline between local and imported strains was expressed in MIC(90) values for imported strains in the susceptible range compared to intermediate susceptibility for local strains. The marked difference in susceptibility profiles of M. bovis strains isolated from different geographical regions seen in this study emphasizes the necessity for performing of the antimicrobial susceptibility testing periodically and on a regional basis.

  8. In Vitro Activity of Polymyxin B in Combination with Various Antibiotics against Extensively Drug-Resistant Enterobacter cloacae with Decreased Susceptibility to Polymyxin B.

    PubMed

    Cai, Yiying; Lim, Tze-Peng; Teo, Jocelyn; Sasikala, Suranthran; Lee, Winnie; Hong, Yanjun; Chan, Eric Chun Yong; Tan, Thean Yen; Tan, Thuan-Tong; Koh, Tse Hsien; Hsu, Li Yang; Kwa, Andrea L

    2016-09-01

    Against extensively drug-resistant (XDR) Enterobacter cloacae, combination antibiotic therapy may be the only option. We investigated the activity of various antibiotics in combination with polymyxin B using time-kill studies (TKS). TKS were conducted with four nonclonal XDR E. cloacae isolates with 5 log10 CFU/ml bacteria against maximum, clinically achievable concentrations of polymyxin B alone and in two-drug combinations with 10 different antibiotics. A hollow-fiber infection model (HFIM) simulating clinically relevant polymyxin B and tigecycline dosing regimens was conducted for two isolates over 240 h. Emergence of resistance was quantified using antibiotic-containing (3× MIC) media. Biofitness and stability of resistant phenotypes were determined. All XDR E. cloacae isolates were resistant to all antibiotics except for polymyxin B (polymyxin B MIC, 1 to 4 mg/liter). All isolates harbored metallo-β-lactamases (two with NDM-1, two with IMP-1). In single TKS, all antibiotics alone demonstrated regrowth at 24 h, except amikacin against two strains and polymyxin B and meropenem against one strain each. In combination TKS, only polymyxin B plus tigecycline was bactericidal against all four XDR E. cloacae isolates at 24 h. In HFIM, tigecycline and polymyxin B alone did not exhibit any killing activity. Bactericidal kill was observed at 24 h for both isolates for polymyxin B plus tigecycline; killing was sustained for one isolate but regrowth was observed for the second. Phenotypically stable resistant mutants with reduced in vitro growth rates were observed. Polymyxin B plus tigecycline is a promising combination against XDR E. cloacae However, prolonged and indiscriminate use can result in resistance emergence.

  9. In Vitro Activity of Polymyxin B in Combination with Various Antibiotics against Extensively Drug-Resistant Enterobacter cloacae with Decreased Susceptibility to Polymyxin B

    PubMed Central

    Cai, Yiying; Lim, Tze-Peng; Sasikala, Suranthran; Lee, Winnie; Hong, Yanjun; Chan, Eric Chun Yong; Tan, Thean Yen; Tan, Thuan-Tong; Koh, Tse Hsien; Hsu, Li Yang

    2016-01-01

    Against extensively drug-resistant (XDR) Enterobacter cloacae, combination antibiotic therapy may be the only option. We investigated the activity of various antibiotics in combination with polymyxin B using time-kill studies (TKS). TKS were conducted with four nonclonal XDR E. cloacae isolates with 5 log10 CFU/ml bacteria against maximum, clinically achievable concentrations of polymyxin B alone and in two-drug combinations with 10 different antibiotics. A hollow-fiber infection model (HFIM) simulating clinically relevant polymyxin B and tigecycline dosing regimens was conducted for two isolates over 240 h. Emergence of resistance was quantified using antibiotic-containing (3× MIC) media. Biofitness and stability of resistant phenotypes were determined. All XDR E. cloacae isolates were resistant to all antibiotics except for polymyxin B (polymyxin B MIC, 1 to 4 mg/liter). All isolates harbored metallo-β-lactamases (two with NDM-1, two with IMP-1). In single TKS, all antibiotics alone demonstrated regrowth at 24 h, except amikacin against two strains and polymyxin B and meropenem against one strain each. In combination TKS, only polymyxin B plus tigecycline was bactericidal against all four XDR E. cloacae isolates at 24 h. In HFIM, tigecycline and polymyxin B alone did not exhibit any killing activity. Bactericidal kill was observed at 24 h for both isolates for polymyxin B plus tigecycline; killing was sustained for one isolate but regrowth was observed for the second. Phenotypically stable resistant mutants with reduced in vitro growth rates were observed. Polymyxin B plus tigecycline is a promising combination against XDR E. cloacae. However, prolonged and indiscriminate use can result in resistance emergence. PMID:27324776

  10. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments.

    PubMed

    Muziasari, Windi I; Pärnänen, Katariina; Johnson, Timothy A; Lyra, Christina; Karkman, Antti; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-04-01

    Antibiotics are commonly used in aquaculture and they can change the environmental resistome by increasing antibiotic resistance genes (ARGs). Sediment samples were collected from two fish farms located in the Northern Baltic Sea, Finland, and from a site outside the farms (control). The sediment resistome was assessed by using a highly parallel qPCR array containing 295 primer sets to detect ARGs, mobile genetic elements and the 16S rRNA gene. The fish farm resistomes were enriched in transposon and integron associated genes and in ARGs encoding resistance to antibiotics which had been used to treat fish at the farms. Aminoglycoside resistance genes were also enriched in the farm sediments despite the farms not having used aminoglycosides. In contrast, the total relative abundance values of ARGs were higher in the control sediment resistome and they were mainly genes encoding efflux pumps followed by beta-lactam resistance genes, which are found intrinsically in many bacteria. This suggests that there is a natural Baltic sediment resistome. The resistome associated with fish farms can be from native ARGs enriched by antibiotic use at the farms and/or from ARGs and mobile elements that have been introduced by fish farming.

  11. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles

    PubMed Central

    de Mello, Thaís Pereira; Aor, Ana Carolina; de Oliveira, Simone Santiago Carvalho; Branquinha, Marta Helena; dos Santos, André Luis Souza

    2016-01-01

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  12. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods.

    PubMed

    Sánchez Valenzuela, Antonio; Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Pérez Pulido, Rubén; Abriouel, Hikmate

    2013-02-01

    A collection of 55 enterococci (41 Enterococcus faecium and 14 E. faecalis strains) isolated from various traditional fermented foodstuffs of both animal and vegetable origins, and water was evaluated for resistance against 15 antibiotics. Lower incidence of resistance was observed with gentamicin, ampicillin, penicillin and teicoplanin. However, a high incidence of antibiotic resistance was detected for rifampicin (12 out of 14 of isolates), ciprofloxacin (9/14), and quinupristin/dalfopristin (8/14) in E. faecalis strains. Enterococcus faecium isolates were resistant to rifampicin (25/41), ciprofloxacin (23/41), erythromycin (18/41), levofloxacin (16/41), and nitrofurantoin (15/41). One Enterococcus faecalis and two E. faecium strains were resistant to vancomycin (MIC>16 μg/mL). Among 55 isolates, 27 (19 E. faecium and eight E. faecalis) were resistant to at least three antibiotics. High level of multidrug resistance to clinically important antibiotics was detected in E. faecalis strains (57% of E. faecalis versus 46% of E. faecium), which showed resistance to six to seven antibiotics, especially those isolated from foods of animal origin. So, it is necessary to re-evaluate the use of therapeutic antibiotics in stock farms at both regional and international levels due to the high number of multiple resistant (MR) bacteria. Fifty-six MR E. faecalis and E. faecium strains selected from this and previous studies (Valenzuela et al., 2008, 2010) were screened by polymerase chain reaction for antibiotic resistance genes, revealing the presence of tet(L), tet(M), ermB, cat, efrA, efrB, mphA, or msrA/B genes. The ABC Multidrug Efflux Pump EfrAB was detected in 96% of E. faecalis strains and also in 13% of E. faecium strains; this is the first report describing EfrAB in this enterococcal species. The efflux pump-associated msrA/B gene was detected in 66.66% of E. faecium strains, but not in E. faecalis strains.

  13. Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy.

    PubMed

    Dekter, H E; Orelio, C C; Morsink, M C; Tektas, S; Vis, B; Te Witt, R; van Leeuwen, W B

    2017-01-01

    Patients suffering from bacterial bloodstream infections have an increased risk of developing systematic inflammatory response syndrome (SIRS), which can result in rapid deterioration of the patients' health. Diagnostic methods for bacterial identification and antimicrobial susceptibility tests are time-consuming. The aim of this study was to investigate whether Raman spectroscopy would be able to rapidly provide an antimicrobial susceptibility profile from bacteria isolated directly from positive blood cultures. First, bacterial strains (n = 133) were inoculated in tryptic soy broth and incubated in the presence or absence of antibiotics for 5 h. Antimicrobial susceptibility profiles were analyzed by Raman spectroscopy. Subsequently, a selection of strains was isolated from blood cultures and analyzed similarly. VITEK®2 technology and broth dilution were used as the reference methods. Raman spectra from 67 antibiotic-susceptible strains showed discriminatory spectra in the absence or at low concentrations of antibiotics as compared to high antibiotic concentrations. For 66 antibiotic-resistant strains, no antimicrobial effect was observed on the bacterial Raman spectra. Full concordance with VITEK®2 data and broth dilution was obtained for the antibiotic-susceptible strains, 68 % and 98 %, respectively, for the resistant strains. Discriminative antimicrobial susceptibility testing (AST) profiles were obtained for all bacterial strains isolated from blood cultures, resulting in full concordance with the VITEK®2 data. It can be concluded that Raman spectroscopy is able to detect the antimicrobial susceptibility of bacterial species isolated from a positive blood culture bottle within 5 h. Although Raman spectroscopy is cheap and rapid, further optimization is required, to fulfill a great promise for future AST profiling technology development.

  14. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007-2009 to 2010-2012 based on the CLSI methodology.

    PubMed

    Hastey, Christine J; Boyd, Halsey; Schuetz, Audrey N; Anderson, Karen; Citron, Diane M; Dzink-Fox, Jody; Hackel, Meredith; Hecht, David W; Jacobus, Nilda V; Jenkins, Stephen G; Karlsson, Maria; Knapp, Cynthia C; Koeth, Laura M; Wexler, Hannah; Roe-Carpenter, Darcie E

    2016-12-01

    Antimicrobial susceptibility testing of anaerobic isolates was conducted at four independent sites from 2010 to 2012 and compared to results from three sites during the period of 2007-2009. This data comparison shows significant changes in antimicrobial resistance in some anaerobic groups. Therefore, we continue to recommend institutions regularly perform susceptibility testing when anaerobes are cultured from pertinent sites. Annual generation of an institutional-specific antibiogram is recommended for tracking of resistance trends over time.

  15. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    PubMed

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert

  16. Antibiotic-Resistant Vibrios in Farmed Shrimp

    PubMed Central

    Albuquerque Costa, Renata; Araújo, Rayza Lima; Souza, Oscarina Viana; Vieira, Regine Helena Silva dos Fernandes

    2015-01-01

    Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75%) was observed, with the following phenotypic profiles: monoresistance (n = 42), cross-resistance to β-lactams (n = 20) and multiple resistance (n = 13). Plasmid resistance was characterized for penicillin (n = 11), penicillin + ampicillin (n = 1), penicillin + aztreonam (n = 1), and ampicillin (n = 1). Resistance to antimicrobial drugs by the other strains (n = 86) was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to β-lactam and tetracycline. PMID:25918714

  17. Gene expression profiling within the spleen of Clostridium perfringens-challenged Broilers fed antibiotic-medicated and non-medicated diets

    PubMed Central

    Sarson, Aimie J; Wang, Ying; Kang, Zhumei; Dowd, Scot E; Lu, Yang; Yu, Hai; Han, Yanming; Zhou, Huaijun; Gong, Joshua

    2009-01-01

    Background Clostridium perfringens (Cp) is a Gram-positive anaerobic bacterium that causes necrotic enteritis (NE) in poultry when it overgrows in the small intestine. NE disease has previously been controlled through the use of growth-promoting antibiotics. This practice was recently banned in European countries, leading to significantly increased incidence of NE threatening the poultry industry. Control strategies and technology as substitutes to dietary antibiotics are therefore urgently required. To develop the substitutes, it is important to understand host immune responses to Cp infection. However, the knowledge is still lacking. We therefore investigated gene expression profiles within immunologically-relevant tissue, the spleen, in order to identify factors that are involved in immunity to NE and have potential as therapeutic targets. Results Use of a 44 K Agilent chicken genome microarray revealed significant up-regulation of many immune-associated genes in Cp-challenged chickens, including galectin 3, IFNAR1, IgY-receptor, TCRγ, granzyme A, and mannose-6-P-R, which were subsequently validated by quantitative PCR assays. Functional annotation of differentially expressed genes was conducted using the High Throughput Gene Ontology Functional Annotation database. Medicated and Non-medicated chickens had similar annotation profiles with cell activities and regulation being the most dominant biological processes following Cp infection. Conclusion Broiler chickens demonstrated an intricate and holistic magnitude of host response to Cp challenge and the development of NE. Although the influence of dietary antibiotics appeared to be less significant than the disease process, both had a considerable impact on the host response. Markers previously identified in intestinal inflammatory diseases of other species, including humans, and indicators of enhanced antibody responses, appeared to be involved in the chicken response to Cp challenge. The significance in host

  18. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso.

    PubMed

    Youenou, Benjamin; Hien, Edmond; Deredjian, Amélie; Brothier, Elisabeth; Favre-Bonté, Sabine; Nazaret, Sylvie

    2016-12-01

    This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.

  19. Detection of Salmonella spp. with the BACTEC 9240 Automated Blood Culture System in 2008 - 2014 in Southern Iran (Shiraz): Biogrouping, MIC, and Antimicrobial Susceptibility Profiles of Isolates

    PubMed Central

    Anvarinejad, Mojtaba; Pouladfar, Gholam Reza; Pourabbas, Bahman; Amin Shahidi, Maneli; Rafaatpour, Noroddin; Dehyadegari, Mohammad Ali; Abbasi, Pejman; Mardaneh, Jalal

    2016-01-01

    Background Human salmonellosis continues to be a major international problem, in terms of both morbidity and economic losses. The antibiotic resistance of Salmonella is an increasing public health emergency, since infections from resistant bacteria are more difficult and costly to treat. Objectives The aims of the present study were to investigate the isolation of Salmonella spp. with the BACTEC automated system from blood samples during 2008 - 2014 in southern Iran (Shiraz). Detection of subspecies, biogrouping, and antimicrobial susceptibility testing by the disc diffusion and agar dilution methods were performed. Patients and Methods A total of 19 Salmonella spp. were consecutively isolated using BACTEC from blood samples of patients between 2008 and 2014 in Shiraz, Iran. The isolates were identified as Salmonella, based on biochemical tests embedded in the API-20E system. In order to characterize the biogroups and subspecies, biochemical testing was performed. Susceptibility testing (disc diffusion and agar dilution) and extended-spectrum β-lactamase (ESBL) detection were performed according to the clinical and laboratory standards institute (CLSI) guidelines. Results Of the total 19 Salmonella spp. isolates recovered by the BACTEC automated system, all belonged to the Salmonella enterica subsp. houtenae. Five isolates (26.5%) were resistant to azithromycin. Six (31.5%) isolates with the disc diffusion method and five (26.3%) with the agar dilution method displayed resistance to nalidixic acid (minimum inhibitory concentration [MIC] > 32 μg/mL). All nalidixic acid-resistant isolates were also ciprofloxacin-sensitive. All isolates were ESBL-negative. Twenty-one percent of isolates were found to be resistant to chloramphenicol (MIC ≥ 32 μg/mL), and 16% were resistant to ampicillin (MIC ≥ 32 μg/mL). Conclusions The results indicate that multidrug-resistant (MDR) strains of Salmonella are increasing in number, and fewer antibiotics may be useful for

  20. Antibiotics and Breastfeeding.

    PubMed

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant.

  1. Selection of antibiotic resistance at very low antibiotic concentrations.

    PubMed

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  2. [Profile and sensitivity to antibiotics of 115 staphylococcal strains implicated in septicemia in a Tunisian general hospital].

    PubMed

    Boukadida, J; Ben Abdallah, H; Boukadida, N

    2003-11-01

    Staphylococci remain among the main responsible bacteria for septicemia. The resistance to antibiotics already makes a prognosis difficult. We carried out a study on Staphylococcus isolated from blood culture on 3 years in general hospital in Tunisia. We present the different species and their sensitivity to antibiotics. S. aureus is the predominant isolated species. S. epidermidis is essentially isolated in newborn intensive care unit. The meticillino-resistance concerns 14% of the whole strains and 5.2 of the S. aureus. No resistance is found as regard the vancomycin and the pristinamycin; ofloxacine is inactive on 14.8% of strains and the gentamicine on 11.3%. The resistance of staphylococci of our study is lower than the rates reported in southern Europe and in North America.

  3. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets ...

  4. Occurrence and Multiple Antibiotic Resistance Profiles of Non-fermentative Gram-Negative Microflora in Five Brands of Non-carbonated French Bottled Spring Water.

    PubMed

    Mary; Defives; Hornez

    2000-05-01

    Five brands of French bottled mineral water were analyzed by heterotrophic plate counts (HPC) and for the presence of multiple antibiotic resistant bacteria. HPC at 22 degrees C were around 10(4) colony forming units ml(-1) on R2A medium. Enumeration on PCA/10, MH, and especially PCA and King B media was less efficient. At 37 degrees C, HPC were two to three orders of magnitude less than at 22 degrees C. Moreover, phenotypic diversity (7 to 15 phenotypes) was optimal on R2A incubated at 22 degrees C. All isolates were identified as non-fermentative Gram-negative rods and 75% were non-identifiable with the API 20NE system. Stenotrophomonas maltophilia and fluorescent Pseudomonas were isolated on VIA and CFC selective agar media, respectively. Burkholderia cepacia strains were not isolated on BCSA medium. The species S. maltophilia was found in 33%, 28%, and 11% of sample from springs A, D, and E, respectively. Independent of brand, isolates from HPC media were less efficient to achieve confluent growth in 18 h on MH at 30 or 37 degrees C (0 to 40%) than isolates from selective media (28 to 63%). Seventy percent of the total isolates from dominant microflora (1-5 x 10(3) CFU ml(-1) on HPC media) were resistant against two or four antibiotics. The antibiotics concerned were principally aztreonam, ampicillin, and nalidixic acid. The remaining dominant bacteria showed a 6-9 multiple antibiotic resistant (MAR) pattern. All isolates were susceptible to newer antimicrobial agents. Owing to their low nutrient and temperature requirements, these isolates are unlikely to cause concern to public heath. Fifty percent of strains isolated from selective media (non-dominant microflora, 4-40 CFU l(-1)) showed a 10-18 MAR pattern and 33%, identified as S. maltophilia, a 20-27 MAR pattern. However, minocycline was effective against all isolates. Owing to its low concentration, colonization of human intestine by MAR S. maltophilia is unlikely.

  5. Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections.

    PubMed

    Liu, Tingting; Lu, Yi; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2014-11-01

    Rapid pathogen detection and antimicrobial susceptibility testing (AST) are required in diagnosis of acute bacterial infections to determine the appropriate antibiotic treatment. Molecular approaches for AST are often based on the detection of known antibiotic resistance genes. Phenotypic culture analysis requires several days from sample collection to result reporting. Toward rapid diagnosis of bacterial infection in non-traditional healthcare settings, we have developed a rapid AST approach that combines phenotypic culture of bacterial pathogens in physiological samples and electrochemical sensing of bacterial 16S rRNA. The assay determines the susceptibility of pathogens by detecting bacterial growth under various antibiotic conditions. AC electrokinetic fluid motion and Joule heating induced temperature elevation are optimized to enhance the sensor signal and minimize the matrix effect, which improve the overall sensitivity of the assay. The electrokinetics enhanced biosensor directly detects the bacterial pathogens in blood culture without prior purification. Rapid determination of the antibiotic resistance profile of Escherichia coli clinical isolates is demonstrated.

  6. Evaluation of polymyxin susceptibility profile among KPC-producing Klebsiella pneumoniae using Etest and MicroScan WalkAway automated system.

    PubMed

    Perez, Leandro Reus Rodrigues

    2015-11-01

    Determination of polymyxin susceptibility profile is important to monitor resistance rates and for implementing control measures for polymyxin-resistant carbapenem-resistant Enterobacteriaceae. Some laboratorial methods have been used to determine the polymyxin susceptibility profile. However, the performance of MicroScan WalkAway has been poorly reported for KPC-producing Klebsiella pneumoniae, so far. To evaluate two different methods, Etest and the MicroScan automated system, in determining minimal inhibitory concentration (MIC) of polymyxin among KPC-producing K. pneumoniae isolated from patients in two care units (ICUs) of a tertiary hospital in Porto Alegre, Southern Brazil. A total of 101 KPC-Kb isolates were obtained from rectal swabs and clinical specimens (urine, blood, and endotracheal aspirate). Colistin and polymyxin B MICs were determined using MicroScan WalkAway automated system and Etest, respectively. Discrepant results were resolved by broth microdilution (BMD). MicroScan showed 88.1% of sensitivity for predicting polymyxin B resistance in KP